WO2023017825A1 - Elastic wave device and method for manufacturing same - Google Patents

Elastic wave device and method for manufacturing same Download PDF

Info

Publication number
WO2023017825A1
WO2023017825A1 PCT/JP2022/030446 JP2022030446W WO2023017825A1 WO 2023017825 A1 WO2023017825 A1 WO 2023017825A1 JP 2022030446 W JP2022030446 W JP 2022030446W WO 2023017825 A1 WO2023017825 A1 WO 2023017825A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave device
elastic wave
resin
electrode
piezoelectric layer
Prior art date
Application number
PCT/JP2022/030446
Other languages
French (fr)
Japanese (ja)
Inventor
毅 山根
真理 佐治
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023017825A1 publication Critical patent/WO2023017825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device and its manufacturing method.
  • Patent Literature 1 discloses an example of an elastic wave device.
  • a supporting substrate a high acoustic velocity film, a low acoustic velocity film and a piezoelectric thin film are laminated.
  • An IDT (Interdigital Transducer) electrode is provided on the piezoelectric thin film.
  • Such a laminated structure is intended to confine surface acoustic waves to the piezoelectric thin film side.
  • materials for the support substrate include Si.
  • An object of the present invention is to provide an elastic wave device and a method of manufacturing the same in which the energy of elastic waves can be confined on the piezoelectric layer side and deterioration of conductance is less likely to occur.
  • An acoustic wave device includes a mounting board, a resin member provided on the mounting board and having an opening, and a resin member provided on the mounting board and arranged in the opening of the resin member. and a piezoelectric film member including a piezoelectric layer; an acoustic wave element having a functional electrode provided on the piezoelectric layer; and a lid member closing the opening of the resin member. and a hollow portion is provided between the lid member and the piezoelectric film member.
  • a method for manufacturing an elastic wave device according to the present invention is a method for manufacturing an elastic wave device according to the present invention, comprising: providing the piezoelectric film member on a support substrate; a step of obtaining a wave element; a step of bonding the acoustic wave element to the mounting board; and forming a sealing resin on the mounting board so as to seal the acoustic wave element.
  • a step of obtaining an intermediate body having the acoustic wave element, the supporting substrate, and the sealing resin a transporting step of transporting the intermediate body; and after exposing the supporting substrate from the sealing resin, forming the resin member by removing the support substrate to form the opening extending to the piezoelectric film member; a step of providing a lid member, performing a step of forming the resin member after the conveying step, and performing a step of providing the lid member on the resin member immediately after the step.
  • an elastic wave device and a method of manufacturing the same, in which the energy of the elastic wave can be confined on the piezoelectric layer side and the conductance is less likely to deteriorate.
  • FIG. 1 is a front cross-sectional view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a bottom view for explaining the IDT electrodes in the first embodiment of the invention.
  • FIGS. 3(a) to 3(e) are for explaining an example of steps up to mounting an acoustic wave element on a mounting board in the method of manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • It is a front sectional view.
  • 4(a) and 4(b) are front cross-sectional views for explaining an example of steps up to formation of a resin member in the method of manufacturing the elastic wave device according to the first embodiment of the present invention. be.
  • FIG. 1 is a front cross-sectional view of an elastic wave device according to a first embodiment of the invention.
  • FIG. 2 is a bottom view for explaining the IDT electrodes in the first embodiment of the invention.
  • FIGS. 3(a) to 3(e) are for explaining an example of steps up to mounting
  • FIG. 5 is a front cross-sectional view of an elastic wave device according to a first modification of the first embodiment of the invention.
  • FIG. 6 is a front cross-sectional view of an acoustic wave device according to a second modification of the first embodiment of the invention.
  • FIG. 7 is a front cross-sectional view of an elastic wave device according to a third modification of the first embodiment of the invention.
  • FIG. 8 is a front cross-sectional view of an acoustic wave device according to a fourth modification of the first embodiment of the invention.
  • FIG. 9 is a front cross-sectional view of an elastic wave device according to a second embodiment of the invention.
  • FIG. 1 is a front cross-sectional view of an elastic wave device according to the first embodiment of the present invention.
  • the acoustic wave device 10 has a mounting substrate 12, a resin member 13, and an acoustic wave element 1.
  • the acoustic wave device 1 and the resin member 13 are provided on the mounting board 12 .
  • the elastic wave device 1 has a WLP (Wafer Level Package) structure.
  • the resin member 13 is provided with an opening 13a.
  • the elastic wave element 1 is arranged inside the opening 13 a of the resin member 13 .
  • the resin member 13 is a member for protecting the acoustic wave element 1 from the outside.
  • a lid member 14 is provided on the resin member 13 .
  • the lid member 14 closes the opening 13 a of the resin member 13 .
  • the resin member 13 and the lid member 14 are joined together at a joining portion A.
  • the joint portion A is a portion where the resin member 13 and the lid member 14 are joined with the material that constitutes the resin member 13 or the lid member 14 . Therefore, the joint portion A is not a member other than the resin member 13 and the lid member 14 .
  • the joint portion A may be, for example, a resin layer made of a material other than the material forming the resin member 13 and the material forming the lid member 14 .
  • the acoustic wave device 1 has a piezoelectric film member 2.
  • the piezoelectric film member 2 includes a piezoelectric layer 3 .
  • the piezoelectric layer 3 has a first main surface 3a and a second main surface 3b.
  • the first main surface 3a and the second main surface 3b face each other.
  • the first main surface 3a is the main surface on the mounting board 12 side.
  • a dielectric film 4 is provided on the second main surface 3 b of the piezoelectric layer 3 .
  • the piezoelectric film member 2 is a laminated film of a piezoelectric layer 3 and a dielectric film 4 .
  • the piezoelectric film member 2 may be composed of only the piezoelectric layer 3 .
  • An IDT electrode 5 as a functional electrode is provided on the first principal surface 3 a of the piezoelectric layer 3 . By applying an AC voltage to the IDT electrodes 5, elastic waves are excited.
  • a pair of reflectors 6A and 6B are provided on both sides of the IDT electrode 5 on the first main surface 3a in the elastic wave propagation direction.
  • the feature of this embodiment is that the lid member 14 is provided on the resin member 13 and the hollow portion O is provided between the lid member 14 and the piezoelectric film member 2 .
  • the energy of the elastic wave can be confined on the piezoelectric layer 3 side, and deterioration of conductance is less likely to occur. This is explained below.
  • a laminated structure including a support substrate and a piezoelectric layer has been adopted in order to confine the energy of elastic waves in the piezoelectric layer.
  • the support substrate is made of silicon or the like, electrical carriers may occur on the surface of the support substrate. Electrical characteristics such as conductance may deteriorate due to the influence of these electrical carriers.
  • the piezoelectric film member 2 is not laminated with a supporting substrate or the like. That is, the elastic wave device 10 does not have a so-called support substrate such as a silicon substrate, which is included in conventional elastic wave devices.
  • the elastic wave device 10 does not have a so-called support substrate such as a silicon substrate, which is included in conventional elastic wave devices.
  • electrical characteristics such as conductance are not affected by the electrical carriers described above. Therefore, in the elastic wave device 10, degradation of conductance can be suppressed.
  • the piezoelectric film member 2 faces the cavity O, the energy of the elastic wave can be effectively confined to the piezoelectric layer 3 side.
  • the direction viewed from above in FIG. 1 is defined as a plan view, and the direction viewed from below is defined as a bottom view.
  • FIG. 2 is a bottom view for explaining the IDT electrodes in the first embodiment.
  • the IDT electrode 5 has a first busbar 18a and a second busbar 18b, and a plurality of first electrode fingers 19a and a plurality of second electrode fingers 19b.
  • the first busbar 18a and the second busbar 18b face each other.
  • One end of each of the plurality of first electrode fingers 19a is connected to the first bus bar 18a.
  • One end of each of the plurality of second electrode fingers 19b is connected to the second bus bar 18b.
  • the plurality of first electrode fingers 19a and the plurality of second electrode fingers 19b are interdigitated with each other.
  • the first electrode finger 19a and the second electrode finger 19b may be simply referred to as electrode fingers.
  • electrode pads 16 are provided on the first main surface 3a of the piezoelectric layer 3. As shown in FIG. The electrode pads 16 are electrically connected to the IDT electrodes 5 . Furthermore, a support member 7 is provided on the first main surface 3 a so as to surround the IDT electrode 5 . More specifically, the support member 7 has an opening 7a. The IDT electrode 5 is positioned within the opening 7a. Note that the support member 7 covers at least a portion of the electrode pad 16 .
  • a cover member 8 is provided on the support member 7 so as to cover the opening 7a. Thereby, a hollow portion surrounded by the cover member 8, the support member 7 and the piezoelectric layer 3 is provided. An IDT electrode 5 is arranged in this hollow portion.
  • a through electrode 9 is provided so as to penetrate through the cover member 8 and the support member 7 .
  • One end of the through electrode 9 is connected to the electrode pad 16 .
  • a bump 15 is joined to the other end of the through electrode 9 .
  • a plurality of electrode pads 16, through electrodes 9, and bumps 15 are provided.
  • mounting terminals 17 are provided on the mounting board 12 .
  • the bumps 15 are joined to the mounting terminals 17 .
  • the acoustic wave device 1 is mounted on the mounting board 12 .
  • the acoustic wave device 1 may have conductive bonding members other than the bumps 15 .
  • the acoustic wave element 1 may be joined to the mounting substrate 12 by the conductive joining member.
  • the IDT electrodes 5 are electrically connected to the mounting board 12 via electrode pads 16 , through electrodes 9 and bumps 15 .
  • Acoustic wave device 1 including IDT electrodes 5 is electrically connected to other devices through mounting substrate 12 .
  • the thickness of the piezoelectric layer 3 is 1 ⁇ or less.
  • the electrode finger pitch is the center-to-center distance between the adjacent first electrode fingers 19a and second electrode fingers 19b, and the wavelength ⁇ is twice the center-to-center distance defined above. be.
  • materials for the piezoelectric layer 3 include lithium niobate, lithium tantalate, zinc oxide, aluminum nitride, crystal, and PZT (lead zirconate titanate).
  • the dielectric film 4 is a low sound velocity film.
  • a low sound velocity membrane is a relatively low sound velocity membrane. More specifically, the acoustic velocity of the bulk wave propagating through the low velocity film is lower than the acoustic velocity of the bulk wave propagating through the piezoelectric layer 3 .
  • the material of the low sound velocity film for example, glass, silicon oxide, silicon oxynitride, lithium oxide, tantalum pentoxide, or a material whose main component is a compound obtained by adding fluorine, carbon, or boron to silicon oxide can be used. can.
  • the acoustic wave element 1 is provided inside the opening 13a of the resin member 13. More specifically, the portion corresponding to the side surface of the acoustic wave element 1 is joined to the resin member 13 .
  • the portions corresponding to the side surfaces of the acoustic wave element 1 refer to the outer peripheral surfaces of the piezoelectric film member 2, the support member 7, and the cover member 8 in plan view.
  • the side surfaces of the piezoelectric layer 3 in the piezoelectric film member 2 are surfaces connected to the first main surface 3a and the second main surface 3b.
  • the dielectric film 4 as a low-temperature film is mainly composed of silicon oxide. Thereby, the bonding strength between the resin member 13 and the dielectric film 4 can be easily increased. Therefore, the arrangement of the acoustic wave elements 1 can be stabilized, and damage to the acoustic wave device 10 is less likely to occur.
  • the main component means a component that occupies more than 50% of a certain member.
  • the lid member 14 is made of resin. More preferably, the material of the lid member 14 and the material of the resin member 13 are the same. Thereby, the resin member 13 and the lid member 14 can be easily joined.
  • the lid member 14 closes the opening 13 a of the resin member 13 .
  • the portion of the resin member 13 surrounding the hollow portion O can be fixed. Therefore, deformation of the resin member 13 toward the acoustic wave element 1 can be suppressed. Therefore, the stress applied to the acoustic wave element 1 from the resin member 13 side can be reduced. Therefore, the elastic wave device 1 is less likely to be damaged.
  • 3(a) to 3(e) are front sectional views for explaining an example of steps up to mounting an acoustic wave element on a mounting board in the method of manufacturing the acoustic wave device 10 according to the first embodiment. It is a diagram. 4A and 4B are front cross-sectional views for explaining an example of steps up to formation of a resin member in the method of manufacturing the elastic wave device 10 according to the first embodiment.
  • a dielectric film 4 is formed on a piezoelectric substrate 23, as shown in FIG. 3(a). More specifically, the piezoelectric substrate 23 has a first main surface 23a and a second main surface 23b. Dielectric film 4 is formed on second main surface 23b. The dielectric film 4 can be formed by, for example, a sputtering method or a vacuum deposition method. Next, a support substrate 26 is provided on the dielectric film 4 . Note that the dielectric film 4 may be provided on the support substrate 26 and the piezoelectric substrate 23 may be provided on the dielectric film 4 . A laminate of the support substrate 26, the dielectric film 4 and the piezoelectric substrate 23 may be formed.
  • the thickness of the piezoelectric substrate 23 is reduced.
  • the thickness of the piezoelectric substrate 23 may be reduced by using an ion slicing method or the like.
  • the piezoelectric layer 3 is formed as shown in FIG. 3(b). In this manner, the piezoelectric film member 2 is provided on the support substrate 26 .
  • an IDT electrode 5, a pair of reflectors 6A and 6B, electrode pads 16, and respective wirings are formed on the first main surface 3a of the piezoelectric layer 3.
  • the IDT electrode 5, the pair of reflectors 6A and 6B, the electrode pad 16, and each wiring can be formed by, for example, a sputtering method or a vacuum deposition method.
  • the support member 7 is formed on the first main surface 3a of the piezoelectric layer 3. As shown in FIG. More specifically, the support member 7 is formed so as to surround the IDT electrode 5, the pair of reflectors 6A and 6B, and cover at least a portion of the electrode pad 16. As shown in FIG. The support member 7 can be formed by, for example, a photolithographic method. Next, a cover member 8 is formed on the support member 7 so as to cover the opening 7a.
  • through holes are provided in the support member 7 and the cover member 8 so as to reach the electrode pads 16.
  • through electrodes 9 are provided in the through holes.
  • the through-holes can be formed, for example, by irradiation with laser light.
  • the through electrodes 9 can be formed by, for example, a plating method.
  • bumps 15 are provided so as to be joined to the through electrodes 9. Acoustic wave device 1 is thus obtained. Then, the bumps 15 are joined to the mounting terminals 17 on the mounting board 12 . As a result, the acoustic wave device 1 is bonded to the mounting board 12 . That is, the acoustic wave device 1 is mounted on the mounting board 12 .
  • a sealing resin 25 is formed on the mounting substrate 12 so as to seal the acoustic wave device 1 and the support substrate 26. Then, as shown in FIG. The sealing resin 25 is formed by resin molding. Intermediate 20 is thus obtained. Note that the intermediate body 20 has the mounting substrate 12 , the acoustic wave element 1 , the supporting substrate 26 and the sealing resin 25 .
  • the opening 13a shown in FIG. 4(b) is formed in the sealing resin 25.
  • the support substrate 26 is exposed from the sealing resin 25 by grinding the sealing resin 25 .
  • the support substrate 26 is removed by etching or the like.
  • the resin member 13 is formed by forming the opening 13a so as to reach the piezoelectric film member 2.
  • the lid member 14 shown in FIG. 1 is provided on the resin member 13 so as to close the opening 13a. At this time, the resin member 13 and the lid member 14 may be joined by the resin forming the resin member 13 .
  • the elastic wave device 10 is obtained.
  • the piezoelectric film member 2 is supported by the support substrate 26 from the process shown in FIG. 3A to the process shown in FIG. 4A. Therefore, transportation can be easily performed, and the piezoelectric film member 2 and the like are less likely to be damaged during transportation.
  • the transporting step is performed. It is preferable that the transporting step after obtaining the intermediate 20 is performed before forming the opening 13a shown in FIG. 4(b). In this case, the elastic wave element 1 is supported by the support substrate 26 and the entirety of the elastic wave element 1 is covered with the sealing resin 25 .
  • the elastic wave element 1 is less likely to be damaged. It is preferable that the step of forming the resin member 13 is performed after the step of conveying the intermediate 20, and the step of providing the lid member 14 on the resin member 13 is performed immediately after the step. As a result, damage to the acoustic wave element 1 can be suppressed more reliably. Note that "immediately after” refers to performing the next process without performing the transport process after a certain process.
  • the joint A is not a member other than the resin member 13 and the lid member 14.
  • a first variant and a second variant of the first embodiment are shown, differing from the first embodiment only in the joints. Modifications other than the first modification and the second modification are also shown below.
  • the energy of elastic waves can be confined on the piezoelectric layer side, and deterioration of conductance is less likely to occur.
  • the joint B is a resin layer separate from the resin member 13 and the lid member 14 .
  • materials for the resin layer include epoxy resin and polyethylene resin.
  • the joint portion B may be a laminate.
  • the joint portion B may be a laminate including the resin layer of this modified example.
  • the joint C is a metal layer. At least one metal selected from the group consisting of Sn, Ag, Cu, Au, Al, Ge and Ti is preferably used for the metal layer. Thereby, the resin member 13 and the lid member 14 can be suitably joined.
  • the joint portion C may be, for example, a laminate including the metal layer of this modified example.
  • the dielectric film in the piezoelectric film member 2 may be provided in multiple layers.
  • the piezoelectric film member 22 has dielectric films 24A, 24B and 24C. More specifically, a dielectric film 24A is provided on the second main surface 3b of the piezoelectric layer 3. As shown in FIG. A dielectric film 24B is provided on the dielectric film 24A. A dielectric film 24C is provided on the dielectric film 24B. Note that the number of layers of the dielectric film is not particularly limited.
  • the lid member 14 is made of resin.
  • the lid member 14 may be made of a material other than resin.
  • the lid member 24 is a silicon substrate. Since the silicon substrate has high thermal conductivity, it is possible to improve the heat dissipation in the acoustic wave device. Furthermore, the coefficient of linear expansion of the silicon substrate is smaller than the coefficient of linear expansion of the resin. Therefore, deformation of the lid member 24 due to temperature change is small. Therefore, when the temperature changes, the resin member 13 can be restrained by the lid member 24, and deformation of the resin member 13 can be suppressed. Thereby, the stress applied to the acoustic wave element 1 from the resin member 13 side can be reduced. Therefore, damage to the acoustic wave element 1 due to temperature change can be suppressed.
  • FIG. 9 is a front cross-sectional view of an elastic wave device according to the second embodiment.
  • This embodiment differs from the first embodiment in that the piezoelectric film member consists of only the piezoelectric layer 3 and in the configuration of the functional electrodes. Furthermore, the wiring connected to the functional electrodes is also different from that of the first embodiment. Except for the above points, the elastic wave device 30 of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
  • the functional electrodes are the first electrode 35A and the second electrode 35B.
  • a first electrode 35A is provided on the first principal surface 3a of the piezoelectric layer 3 .
  • a second electrode 35B is provided on the second main surface 3b.
  • the first electrode 35A and the second electrode 35B face each other with the piezoelectric layer 3 interposed therebetween.
  • a region where the first electrode 35A and the second electrode 35B face each other is an excitation region. Elastic waves are excited in this excitation region.
  • the first electrode 35A is connected to the electrode pad 16. More specifically, the first electrode 35A is connected to the electrode pad 16 by a wiring electrode provided on the first main surface 3a. In this embodiment, the first electrode 35A, the wiring electrode and the electrode pad 16 are integrally provided.
  • an electrode pad 36 is provided on the second main surface 3b of the piezoelectric layer 3. As shown in FIG. A second electrode 35B is connected to the electrode pad 36 . More specifically, the second electrode 35B is connected to the electrode pad 36 by a wiring electrode provided on the second main surface 3b. In this embodiment, the second electrode 35B, the wiring electrode and the electrode pad 36 are integrally provided.
  • the electrode pads 16 are connected to the through electrodes 9 as in the first embodiment. Therefore, the first electrodes 35A are electrically connected to the mounting board 12 via the electrode pads 16, the through electrodes 9 and the bumps 15. As shown in FIG. On the other hand, the electrode pads 36 on the second main surface 3b of the piezoelectric layer 3 are connected to through-electrodes 39 .
  • the through electrode 39 penetrates the cover member 8 , the support member 7 and the piezoelectric layer 3 .
  • a bump 15 is joined to the through electrode 39 . Therefore, the second electrodes 35B are electrically connected to the mounting board 12 via the electrode pads 36, the through electrodes 39 and the bumps 15. As shown in FIG.
  • the piezoelectric film member in the elastic wave device 30 consists of the piezoelectric layer 3 only. However, even when the second electrode 35B is provided on the second main surface 3b of the piezoelectric layer 3, at least one layer of dielectric film may be provided on the second main surface 3b. .
  • the lid member 14 is provided on the resin member 13, and the hollow portion O is provided between the lid member 14 and the piezoelectric film member. Therefore, as in the first embodiment, the energy of the elastic wave can be confined on the piezoelectric layer 3 side, and deterioration of conductance is less likely to occur.
  • the first electrode 35A can be formed by, for example, a sputtering method or a vacuum deposition method, like the IDT electrode 5 in the first embodiment.
  • the second electrodes 35B and the electrode pads 36 may be formed on the second main surface 3b after the piezoelectric layer 3 is formed.
  • the second electrodes 35B and the electrode pads 36 can be formed by, for example, sputtering or vacuum deposition.
  • the through electrode 39 may be formed in the step of forming the through electrode 9 . At this time, through holes are formed through the cover member 8, the support member 7, and the piezoelectric layer 3 by, for example, laser light irradiation. After that, the through electrode 39 may be formed by, for example, a plating method.

Abstract

Provides are an elastic wave device capable of confining elastic wave energy to a piezoelectric layer side and in which conductance does not readily deteriorate, and a method for manufacturing the elastic wave device. An elastic wave device 10 comprises: a mounting substrate 12; a resin member 13 provided on the mounting substrate 12 and having an opening 13a; an elastic wave element 1 having a piezoelectric film member 2 that is provided on the mounting substrate 12, is disposed inside the opening 13a of the resin member 13, and includes a piezoelectric layer 3, and functional electrodes (IDT electrodes 5) provided on the piezoelectric layer 3; and a lid member 14 that blocks the opening 13a of the resin member 13. A cavity O is provided between the lid member 14 and the piezoelectric film member 2.

Description

弾性波装置及びその製造方法Acoustic wave device and manufacturing method thereof
 本発明は、弾性波装置及びその製造方法に関する。 The present invention relates to an elastic wave device and its manufacturing method.
 従来、弾性波装置が携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には、弾性波装置の一例が開示されている。この弾性波装置においては、支持基板、高音速膜、低音速膜及び圧電薄膜が積層されている。圧電薄膜上にIDT(Interdigital Transducer)電極が設けられている。このような積層構造により、弾性表面波を圧電薄膜側に閉じ込めることが図られている。支持基板の材料の例としては、Siなどが挙げられている。 Conventionally, elastic wave devices have been widely used in filters for mobile phones. Patent Literature 1 below discloses an example of an elastic wave device. In this elastic wave device, a supporting substrate, a high acoustic velocity film, a low acoustic velocity film and a piezoelectric thin film are laminated. An IDT (Interdigital Transducer) electrode is provided on the piezoelectric thin film. Such a laminated structure is intended to confine surface acoustic waves to the piezoelectric thin film side. Examples of materials for the support substrate include Si.
国際公開第2015/098679号WO2015/098679
 しかしながら、特許文献1のような構造の弾性波装置においては、コンダクタンスの劣化が生じることがあった。 However, in the elastic wave device having the structure as in Patent Document 1, deterioration of conductance may occur.
 本発明の目的は、弾性波のエネルギーを圧電体層側に閉じ込めることができ、かつコンダクタンスの劣化が生じ難い、弾性波装置及びその製造方法を提供することにある。 An object of the present invention is to provide an elastic wave device and a method of manufacturing the same in which the energy of elastic waves can be confined on the piezoelectric layer side and deterioration of conductance is less likely to occur.
 本発明に係る弾性波装置は、実装基板と、前記実装基板上に設けられており、開口部を有する樹脂部材と、前記実装基板上に設けられており、前記樹脂部材の前記開口部内に配置されており、かつ圧電体層を含む圧電性膜部材と、前記圧電体層上に設けられている機能電極とを有する弾性波素子と、前記樹脂部材の前記開口部を塞いでいる蓋部材とを備え、前記蓋部材と前記圧電性膜部材との間に空洞部が設けられている。 An acoustic wave device according to the present invention includes a mounting board, a resin member provided on the mounting board and having an opening, and a resin member provided on the mounting board and arranged in the opening of the resin member. and a piezoelectric film member including a piezoelectric layer; an acoustic wave element having a functional electrode provided on the piezoelectric layer; and a lid member closing the opening of the resin member. and a hollow portion is provided between the lid member and the piezoelectric film member.
 本発明に係る弾性波装置の製造方法は、本発明に係る弾性波装置を製造する方法であって、支持基板上に前記圧電性膜部材を設ける工程と、前記圧電性膜部材を含む前記弾性波素子を得る工程と、前記実装基板に前記弾性波素子を接合する工程と、前記実装基板上に、前記弾性波素子を封止するように封止樹脂を形成することにより、前記実装基板と、前記弾性波素子と、前記支持基板と、前記封止樹脂とを有する中間体を得る工程と、前記中間体を搬送する搬送工程と、前記封止樹脂から前記支持基板を露出させた後、前記支持基板を除去することにより、前記圧電性膜部材に至るように前記開口部を形成することによって、前記樹脂部材を形成する工程と、前記樹脂部材上に、前記開口部を塞ぐように前記蓋部材を設ける工程とを備え、前記搬送工程の後に、前記樹脂部材を形成する工程を行い、該工程の直後に、前記樹脂部材上に前記蓋部材を設ける工程を行う。 A method for manufacturing an elastic wave device according to the present invention is a method for manufacturing an elastic wave device according to the present invention, comprising: providing the piezoelectric film member on a support substrate; a step of obtaining a wave element; a step of bonding the acoustic wave element to the mounting board; and forming a sealing resin on the mounting board so as to seal the acoustic wave element. a step of obtaining an intermediate body having the acoustic wave element, the supporting substrate, and the sealing resin; a transporting step of transporting the intermediate body; and after exposing the supporting substrate from the sealing resin, forming the resin member by removing the support substrate to form the opening extending to the piezoelectric film member; a step of providing a lid member, performing a step of forming the resin member after the conveying step, and performing a step of providing the lid member on the resin member immediately after the step.
 本発明によれば、弾性波のエネルギーを圧電体層側に閉じ込めることができ、かつコンダクタンスの劣化が生じ難い、弾性波装置及びその製造方法を提供することができる。 According to the present invention, it is possible to provide an elastic wave device and a method of manufacturing the same, in which the energy of the elastic wave can be confined on the piezoelectric layer side and the conductance is less likely to deteriorate.
図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。FIG. 1 is a front cross-sectional view of an elastic wave device according to a first embodiment of the invention. 図2は、本発明の第1の実施形態におけるIDT電極を説明するための底面図である。FIG. 2 is a bottom view for explaining the IDT electrodes in the first embodiment of the invention. 図3(a)~図3(e)は、本発明の第1の実施形態に係る弾性波装置の製造方法における、弾性波素子を実装基板に実装するまでの工程の一例を説明するための正面断面図である。FIGS. 3(a) to 3(e) are for explaining an example of steps up to mounting an acoustic wave element on a mounting board in the method of manufacturing the acoustic wave device according to the first embodiment of the present invention. It is a front sectional view. 図4(a)及び図4(b)は、本発明の第1の実施形態に係る弾性波装置の製造方法における、樹脂部材を形成するまでの工程の一例を説明するための正面断面図である。4(a) and 4(b) are front cross-sectional views for explaining an example of steps up to formation of a resin member in the method of manufacturing the elastic wave device according to the first embodiment of the present invention. be. 図5は、本発明の第1の実施形態の第1の変形例に係る弾性波装置の正面断面図である。FIG. 5 is a front cross-sectional view of an elastic wave device according to a first modification of the first embodiment of the invention. 図6は、本発明の第1の実施形態の第2の変形例に係る弾性波装置の正面断面図である。FIG. 6 is a front cross-sectional view of an acoustic wave device according to a second modification of the first embodiment of the invention. 図7は、本発明の第1の実施形態の第3の変形例に係る弾性波装置の正面断面図である。FIG. 7 is a front cross-sectional view of an elastic wave device according to a third modification of the first embodiment of the invention. 図8は、本発明の第1の実施形態の第4の変形例に係る弾性波装置の正面断面図である。FIG. 8 is a front cross-sectional view of an acoustic wave device according to a fourth modification of the first embodiment of the invention. 図9は、本発明の第2の実施形態に係る弾性波装置の正面断面図である。FIG. 9 is a front cross-sectional view of an elastic wave device according to a second embodiment of the invention.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is an example, and partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。 FIG. 1 is a front cross-sectional view of an elastic wave device according to the first embodiment of the present invention.
 弾性波装置10は、実装基板12と、樹脂部材13と、弾性波素子1とを有する。弾性波素子1及び樹脂部材13は、実装基板12上に設けられている。本実施形態では、弾性波素子1はWLP(Wafer Level Package)構造である。樹脂部材13には開口部13aが設けられている。樹脂部材13の開口部13a内に弾性波素子1が配置されている。なお、樹脂部材13は、弾性波素子1を外部から保護するための部材である。 The acoustic wave device 10 has a mounting substrate 12, a resin member 13, and an acoustic wave element 1. The acoustic wave device 1 and the resin member 13 are provided on the mounting board 12 . In this embodiment, the elastic wave device 1 has a WLP (Wafer Level Package) structure. The resin member 13 is provided with an opening 13a. The elastic wave element 1 is arranged inside the opening 13 a of the resin member 13 . In addition, the resin member 13 is a member for protecting the acoustic wave element 1 from the outside.
 樹脂部材13上には蓋部材14が設けられている。蓋部材14は、樹脂部材13の開口部13aを塞いでいる。樹脂部材13及び蓋部材14は、接合部Aにおいて接合されている。本実施形態においては、接合部Aは、樹脂部材13または蓋部材14を構成している材料により、樹脂部材13及び蓋部材14が接合されている部分である。よって、接合部Aは、樹脂部材13及び蓋部材14以外の部材ではない。もっとも、接合部Aは、例えば、樹脂部材13を構成する材料、及び蓋部材14を構成する材料以外の材料からなる樹脂層などであってもよい。 A lid member 14 is provided on the resin member 13 . The lid member 14 closes the opening 13 a of the resin member 13 . The resin member 13 and the lid member 14 are joined together at a joining portion A. As shown in FIG. In the present embodiment, the joint portion A is a portion where the resin member 13 and the lid member 14 are joined with the material that constitutes the resin member 13 or the lid member 14 . Therefore, the joint portion A is not a member other than the resin member 13 and the lid member 14 . However, the joint portion A may be, for example, a resin layer made of a material other than the material forming the resin member 13 and the material forming the lid member 14 .
 図1に示すように、弾性波素子1は圧電性膜部材2を有する。圧電性膜部材2は、圧電体層3を含む。圧電体層3は第1の主面3a及び第2の主面3bを有する。第1の主面3a及び第2の主面3bは互いに対向している。第1の主面3a及び第2の主面3bのうち第1の主面3aが実装基板12側の主面である。圧電体層3の第2の主面3bには誘電体膜4が設けられている。圧電性膜部材2は、圧電体層3及び誘電体膜4の積層膜である。もっとも、圧電性膜部材2は、圧電体層3のみにより構成されていてもよい。 As shown in FIG. 1, the acoustic wave device 1 has a piezoelectric film member 2. The piezoelectric film member 2 includes a piezoelectric layer 3 . The piezoelectric layer 3 has a first main surface 3a and a second main surface 3b. The first main surface 3a and the second main surface 3b face each other. Of the first main surface 3a and the second main surface 3b, the first main surface 3a is the main surface on the mounting board 12 side. A dielectric film 4 is provided on the second main surface 3 b of the piezoelectric layer 3 . The piezoelectric film member 2 is a laminated film of a piezoelectric layer 3 and a dielectric film 4 . However, the piezoelectric film member 2 may be composed of only the piezoelectric layer 3 .
 圧電体層3の第1の主面3aには、機能電極としてのIDT電極5が設けられている。IDT電極5に交流電圧を印加することにより、弾性波が励振される。第1の主面3aにおけるIDT電極5の弾性波伝搬方向両側に、1対の反射器6A及び反射器6Bが設けられている。 An IDT electrode 5 as a functional electrode is provided on the first principal surface 3 a of the piezoelectric layer 3 . By applying an AC voltage to the IDT electrodes 5, elastic waves are excited. A pair of reflectors 6A and 6B are provided on both sides of the IDT electrode 5 on the first main surface 3a in the elastic wave propagation direction.
 本実施形態の特徴は、樹脂部材13上に蓋部材14が設けられており、蓋部材14と圧電性膜部材2との間に空洞部Oが設けられていることにある。それによって、弾性波のエネルギーを圧電体層3側に閉じ込めることができ、かつコンダクタンスの劣化が生じ難い。これを以下において説明する。 The feature of this embodiment is that the lid member 14 is provided on the resin member 13 and the hollow portion O is provided between the lid member 14 and the piezoelectric film member 2 . As a result, the energy of the elastic wave can be confined on the piezoelectric layer 3 side, and deterioration of conductance is less likely to occur. This is explained below.
 従来より、弾性波のエネルギーを圧電体層側に閉じ込めるために、支持基板及び圧電体層を含む積層構造が採用されている。しかしながら、支持基板がシリコンなどからなる場合、支持基板の表面には、電気的なキャリアが生じることがある。この電気的なキャリアの影響により、コンダクタンスなどの電気的特性が劣化することがある。 Conventionally, a laminated structure including a support substrate and a piezoelectric layer has been adopted in order to confine the energy of elastic waves in the piezoelectric layer. However, when the support substrate is made of silicon or the like, electrical carriers may occur on the surface of the support substrate. Electrical characteristics such as conductance may deteriorate due to the influence of these electrical carriers.
 これに対して、弾性波装置10においては、圧電性膜部材2には、支持基板などが積層されていない。すなわち、弾性波装置10にあっては、従来の弾性波装置が有している、シリコン基板などのいわゆる支持基板を備えていない。この構造をとることによって、コンダクタンスなどの電気的特性に対する、上記の電気的なキャリアによる影響が生じない。従って、弾性波装置10においては、コンダクタンスの劣化を抑制することができる。しかも、圧電性膜部材2が空洞部Oに面しているため、弾性波のエネルギーを圧電体層3側に効果的に閉じ込めることができる。 On the other hand, in the elastic wave device 10, the piezoelectric film member 2 is not laminated with a supporting substrate or the like. That is, the elastic wave device 10 does not have a so-called support substrate such as a silicon substrate, which is included in conventional elastic wave devices. By adopting this structure, electrical characteristics such as conductance are not affected by the electrical carriers described above. Therefore, in the elastic wave device 10, degradation of conductance can be suppressed. Moreover, since the piezoelectric film member 2 faces the cavity O, the energy of the elastic wave can be effectively confined to the piezoelectric layer 3 side.
 以下において、弾性波装置10における弾性波素子1の構成の、さらなる詳細を説明する。なお、本明細書においては、図1における上方から見る方向を平面視とし、下方から見る方向を底面視とする。 Further details of the configuration of the elastic wave element 1 in the elastic wave device 10 will be described below. In this specification, the direction viewed from above in FIG. 1 is defined as a plan view, and the direction viewed from below is defined as a bottom view.
 図2は、第1の実施形態におけるIDT電極を説明するための底面図である。 FIG. 2 is a bottom view for explaining the IDT electrodes in the first embodiment.
 IDT電極5は、第1のバスバー18a及び第2のバスバー18bと、複数の第1の電極指19a及び複数の第2の電極指19bとを有する。第1のバスバー18a及び第2のバスバー18bは互いに対向している。第1のバスバー18aに、複数の第1の電極指19aの一端がそれぞれ接続されている。第2のバスバー18bに、複数の第2の電極指19bの一端がそれぞれ接続されている。複数の第1の電極指19a及び複数の第2の電極指19bは互いに間挿し合っている。以下においては、第1の電極指19a及び第2の電極指19bを、単に電極指と記載することがある。 The IDT electrode 5 has a first busbar 18a and a second busbar 18b, and a plurality of first electrode fingers 19a and a plurality of second electrode fingers 19b. The first busbar 18a and the second busbar 18b face each other. One end of each of the plurality of first electrode fingers 19a is connected to the first bus bar 18a. One end of each of the plurality of second electrode fingers 19b is connected to the second bus bar 18b. The plurality of first electrode fingers 19a and the plurality of second electrode fingers 19b are interdigitated with each other. Hereinafter, the first electrode finger 19a and the second electrode finger 19b may be simply referred to as electrode fingers.
 図1に戻り、圧電体層3の第1の主面3aには、電極パッド16が設けられている。電極パッド16は、IDT電極5に電気的に接続されている。さらに、第1の主面3aには、IDT電極5を囲むように、支持部材7が設けられている。より具体的には、支持部材7は開口部7aを有する。IDT電極5は、開口部7a内に位置している。なお、支持部材7は電極パッド16の少なくとも一部を覆っている。 Returning to FIG. 1, electrode pads 16 are provided on the first main surface 3a of the piezoelectric layer 3. As shown in FIG. The electrode pads 16 are electrically connected to the IDT electrodes 5 . Furthermore, a support member 7 is provided on the first main surface 3 a so as to surround the IDT electrode 5 . More specifically, the support member 7 has an opening 7a. The IDT electrode 5 is positioned within the opening 7a. Note that the support member 7 covers at least a portion of the electrode pad 16 .
 支持部材7上に、開口部7aを覆うように、カバー部材8が設けられている。これにより、カバー部材8、支持部材7及び圧電体層3によって囲まれた中空部が設けられている。この中空部内にIDT電極5が配置されている。 A cover member 8 is provided on the support member 7 so as to cover the opening 7a. Thereby, a hollow portion surrounded by the cover member 8, the support member 7 and the piezoelectric layer 3 is provided. An IDT electrode 5 is arranged in this hollow portion.
 カバー部材8及び支持部材7を貫通するように、貫通電極9が設けられている。貫通電極9の一方端は、電極パッド16に接続されている。貫通電極9の他方端には、バンプ15が接合されている。なお、電極パッド16、貫通電極9及びバンプ15は、それぞれ複数設けられている。 A through electrode 9 is provided so as to penetrate through the cover member 8 and the support member 7 . One end of the through electrode 9 is connected to the electrode pad 16 . A bump 15 is joined to the other end of the through electrode 9 . A plurality of electrode pads 16, through electrodes 9, and bumps 15 are provided.
 他方、実装基板12上には実装用端子17が設けられている。実装用端子17には上記バンプ15が接合されている。これにより、実装基板12に弾性波素子1が実装されている。もっとも、弾性波素子1は、バンプ15以外の導電性接合部材を有していてもよい。該導電性接合部材により、弾性波素子1が実装基板12に接合されていてもよい。バンプ15以外の導電性接合部材としては、例えば、導電性接着剤などを用いることができる。 On the other hand, mounting terminals 17 are provided on the mounting board 12 . The bumps 15 are joined to the mounting terminals 17 . Accordingly, the acoustic wave device 1 is mounted on the mounting board 12 . However, the acoustic wave device 1 may have conductive bonding members other than the bumps 15 . The acoustic wave element 1 may be joined to the mounting substrate 12 by the conductive joining member. As a conductive bonding member other than the bumps 15, for example, a conductive adhesive or the like can be used.
 IDT電極5は、電極パッド16、貫通電極9及びバンプ15を介して、実装基板12に電気的に接続されている。そして、IDT電極5を含む弾性波素子1は、実装基板12を介して、他の素子などに電気的に接続される。 The IDT electrodes 5 are electrically connected to the mounting board 12 via electrode pads 16 , through electrodes 9 and bumps 15 . Acoustic wave device 1 including IDT electrodes 5 is electrically connected to other devices through mounting substrate 12 .
 以下において、圧電性膜部材2の詳細を説明する。 The details of the piezoelectric film member 2 will be described below.
 IDT電極5の電極指ピッチにより規定される波長をλとしたときに、圧電体層3の厚みは1λ以下である。もっとも、圧電体層3の厚みは上記に限定されない。なお、電極指ピッチは、隣り合う第1の電極指19a及び第2の電極指19bの間の中心間距離であり、波長λは前述のように定義される中心間距離の2倍の値である。圧電体層3の材料としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、酸化亜鉛、窒化アルミニウム、水晶、またはPZT(チタン酸ジルコン酸鉛)などを用いることができる。 When the wavelength defined by the electrode finger pitch of the IDT electrode 5 is λ, the thickness of the piezoelectric layer 3 is 1λ or less. However, the thickness of the piezoelectric layer 3 is not limited to the above. The electrode finger pitch is the center-to-center distance between the adjacent first electrode fingers 19a and second electrode fingers 19b, and the wavelength λ is twice the center-to-center distance defined above. be. Examples of materials for the piezoelectric layer 3 include lithium niobate, lithium tantalate, zinc oxide, aluminum nitride, crystal, and PZT (lead zirconate titanate).
 本実施形態においては、誘電体膜4は低音速膜である。低音速膜は相対的に低音速な膜である。より具体的には、低音速膜を伝搬するバルク波の音速は、圧電体層3を伝搬するバルク波の音速よりも低い。低音速膜の材料としては、例えば、ガラス、酸化ケイ素、酸窒化ケイ素、酸化リチウム、五酸化タンタル、または、酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料を用いることができる。  In the present embodiment, the dielectric film 4 is a low sound velocity film. A low sound velocity membrane is a relatively low sound velocity membrane. More specifically, the acoustic velocity of the bulk wave propagating through the low velocity film is lower than the acoustic velocity of the bulk wave propagating through the piezoelectric layer 3 . As the material of the low sound velocity film, for example, glass, silicon oxide, silicon oxynitride, lithium oxide, tantalum pentoxide, or a material whose main component is a compound obtained by adding fluorine, carbon, or boron to silicon oxide can be used. can.
 上記のように、弾性波素子1は樹脂部材13の開口部13a内に設けられている。より具体的には、弾性波素子1の側面に相当する部分は、樹脂部材13に接合されている。なお、弾性波素子1の側面に相当する部分とは、圧電性膜部材2、支持部材7及びカバー部材8の、平面視における外周に位置する面をいう。例えば、圧電性膜部材2における圧電体層3の側面は、第1の主面3a及び第2の主面3bに接続された面である。 As described above, the acoustic wave element 1 is provided inside the opening 13a of the resin member 13. More specifically, the portion corresponding to the side surface of the acoustic wave element 1 is joined to the resin member 13 . The portions corresponding to the side surfaces of the acoustic wave element 1 refer to the outer peripheral surfaces of the piezoelectric film member 2, the support member 7, and the cover member 8 in plan view. For example, the side surfaces of the piezoelectric layer 3 in the piezoelectric film member 2 are surfaces connected to the first main surface 3a and the second main surface 3b.
 低音速膜としての誘電体膜4は、酸化ケイ素を主成分とすることが好ましい。これにより、樹脂部材13及び誘電体膜4の間における接合力を容易に高めることができる。よって、弾性波素子1の配置を安定化することができ、弾性波装置10の破損が生じ難い。なお、主成分とは、ある部材における占有率が50%を越える成分をいう。 It is preferable that the dielectric film 4 as a low-temperature film is mainly composed of silicon oxide. Thereby, the bonding strength between the resin member 13 and the dielectric film 4 can be easily increased. Therefore, the arrangement of the acoustic wave elements 1 can be stabilized, and damage to the acoustic wave device 10 is less likely to occur. Note that the main component means a component that occupies more than 50% of a certain member.
 蓋部材14が樹脂からなることが好ましい。蓋部材14の材料と、樹脂部材13の材料とが同じであることがより好ましい。それによって、樹脂部材13及び蓋部材14を容易に接合することができる。 It is preferable that the lid member 14 is made of resin. More preferably, the material of the lid member 14 and the material of the resin member 13 are the same. Thereby, the resin member 13 and the lid member 14 can be easily joined.
 弾性波装置10においては、蓋部材14により、樹脂部材13の開口部13aを塞いでいる。これにより、樹脂部材13における、空洞部Oを囲んでいる部分を固定することができる。そのため、樹脂部材13の弾性波素子1側に向かう変形を抑制することができる。よって、樹脂部材13側から弾性波素子1に加わる応力を低減することができる。従って、弾性波素子1が破損し難い。 In the elastic wave device 10 , the lid member 14 closes the opening 13 a of the resin member 13 . Thereby, the portion of the resin member 13 surrounding the hollow portion O can be fixed. Therefore, deformation of the resin member 13 toward the acoustic wave element 1 can be suppressed. Therefore, the stress applied to the acoustic wave element 1 from the resin member 13 side can be reduced. Therefore, the elastic wave device 1 is less likely to be damaged.
 以下において、弾性波装置10の製造方法の一例を説明する。 An example of a method for manufacturing the elastic wave device 10 will be described below.
 図3(a)~図3(e)は、第1の実施形態に係る弾性波装置10の製造方法における、弾性波素子を実装基板に実装するまでの工程の一例を説明するための正面断面図である。図4(a)及び図4(b)は、第1の実施形態に係る弾性波装置10の製造方法における、樹脂部材を形成するまでの工程の一例を説明するための正面断面図である。 3(a) to 3(e) are front sectional views for explaining an example of steps up to mounting an acoustic wave element on a mounting board in the method of manufacturing the acoustic wave device 10 according to the first embodiment. It is a diagram. 4A and 4B are front cross-sectional views for explaining an example of steps up to formation of a resin member in the method of manufacturing the elastic wave device 10 according to the first embodiment.
 図3(a)に示すように、圧電基板23上に誘電体膜4を形成する。より具体的には、圧電基板23は、第1の主面23a及び第2の主面23bを有する。第2の主面23bに誘電体膜4を形成する。誘電体膜4は、例えば、スパッタリング法または真空蒸着法などにより形成することができる。次に、誘電体膜4上に支持基板26を設ける。なお、支持基板26上に誘電体膜4を設け、誘電体膜4上に圧電基板23を設けてもよい。支持基板26、誘電体膜4及び圧電基板23の積層体を形成すればよい。 A dielectric film 4 is formed on a piezoelectric substrate 23, as shown in FIG. 3(a). More specifically, the piezoelectric substrate 23 has a first main surface 23a and a second main surface 23b. Dielectric film 4 is formed on second main surface 23b. The dielectric film 4 can be formed by, for example, a sputtering method or a vacuum deposition method. Next, a support substrate 26 is provided on the dielectric film 4 . Note that the dielectric film 4 may be provided on the support substrate 26 and the piezoelectric substrate 23 may be provided on the dielectric film 4 . A laminate of the support substrate 26, the dielectric film 4 and the piezoelectric substrate 23 may be formed.
 次に、例えば、圧電基板23の第1の主面23a側を機械的に研磨することにより、圧電基板23の厚みを薄くする。あるいは、例えば、イオンスライス法などを用いることにより、圧電基板23の厚みを薄くしてもよい。これにより、図3(b)に示すように、圧電体層3を形成する。このようにして、支持基板26上に圧電性膜部材2を設ける。 Next, for example, by mechanically polishing the first main surface 23a side of the piezoelectric substrate 23, the thickness of the piezoelectric substrate 23 is reduced. Alternatively, for example, the thickness of the piezoelectric substrate 23 may be reduced by using an ion slicing method or the like. Thus, the piezoelectric layer 3 is formed as shown in FIG. 3(b). In this manner, the piezoelectric film member 2 is provided on the support substrate 26 .
 次に、圧電体層3の第1の主面3aに、IDT電極5、1対の反射器6A及び反射器6B、電極パッド16並びに各配線を形成する。IDT電極5、1対の反射器6A及び反射器6B、電極パッド16並びに各配線は、例えば、スパッタリング法または真空蒸着法などにより形成することができる。 Next, an IDT electrode 5, a pair of reflectors 6A and 6B, electrode pads 16, and respective wirings are formed on the first main surface 3a of the piezoelectric layer 3. Next, as shown in FIG. The IDT electrode 5, the pair of reflectors 6A and 6B, the electrode pad 16, and each wiring can be formed by, for example, a sputtering method or a vacuum deposition method.
 次に、図3(c)に示すように、圧電体層3の第1の主面3aに、支持部材7を形成する。より具体的には、IDT電極5、1対の反射器6A及び反射器6Bを囲み、かつ電極パッド16の少なくとも一部を覆うように、支持部材7を形成する。支持部材7は、例えば、フォトリソグラフィ法などにより形成することができる。次に、支持部材7上に、開口部7aを覆うように、カバー部材8を形成する。 Next, as shown in FIG. 3(c), the support member 7 is formed on the first main surface 3a of the piezoelectric layer 3. As shown in FIG. More specifically, the support member 7 is formed so as to surround the IDT electrode 5, the pair of reflectors 6A and 6B, and cover at least a portion of the electrode pad 16. As shown in FIG. The support member 7 can be formed by, for example, a photolithographic method. Next, a cover member 8 is formed on the support member 7 so as to cover the opening 7a.
 次に、図3(d)に示すように、支持部材7及びカバー部材8に、電極パッド16に至るように貫通孔を設ける。次に、貫通孔内に貫通電極9を設ける。貫通孔は、例えば、レーザー光の照射などにより形成することができる。貫通電極9は、例えば、めっき法などにより形成することができる。 Next, as shown in FIG. 3(d), through holes are provided in the support member 7 and the cover member 8 so as to reach the electrode pads 16. Then, as shown in FIG. Next, through electrodes 9 are provided in the through holes. The through-holes can be formed, for example, by irradiation with laser light. The through electrodes 9 can be formed by, for example, a plating method.
 次に、図3(e)に示すように、貫通電極9に接合するように、バンプ15を設ける。以上により、弾性波素子1を得る。そして次に、実装基板12上の実装用端子17にバンプ15を接合する。これにより、実装基板12に弾性波素子1を接合する。すなわち、実装基板12に弾性波素子1を実装する。 Next, as shown in FIG. 3(e), bumps 15 are provided so as to be joined to the through electrodes 9. Acoustic wave device 1 is thus obtained. Then, the bumps 15 are joined to the mounting terminals 17 on the mounting board 12 . As a result, the acoustic wave device 1 is bonded to the mounting board 12 . That is, the acoustic wave device 1 is mounted on the mounting board 12 .
 次に、図4(a)に示すように、実装基板12上に、弾性波素子1及び支持基板26を封止するように封止樹脂25を形成する。封止樹脂25は、樹脂モールドを行うことにより形成する。これにより、中間体20を得る。なお、中間体20は、実装基板12と、弾性波素子1と、支持基板26と、封止樹脂25とを有する。 Next, as shown in FIG. 4A, a sealing resin 25 is formed on the mounting substrate 12 so as to seal the acoustic wave device 1 and the support substrate 26. Then, as shown in FIG. The sealing resin 25 is formed by resin molding. Intermediate 20 is thus obtained. Note that the intermediate body 20 has the mounting substrate 12 , the acoustic wave element 1 , the supporting substrate 26 and the sealing resin 25 .
 次に、封止樹脂25に、図4(b)に示す開口部13aを形成する。具体的には、例えば、封止樹脂25を研削することによって、封止樹脂25から支持基板26を露出させる。次に、支持基板26を、エッチングなどにより除去する。これにより、圧電性膜部材2に至るように開口部13aを形成することによって、樹脂部材13を形成する。次に、樹脂部材13上に、開口部13aを塞ぐように、図1に示す蓋部材14を設ける。このとき、樹脂部材13を構成している樹脂により、樹脂部材13及び蓋部材14を接合すればよい。以上により、弾性波装置10を得る。 Next, the opening 13a shown in FIG. 4(b) is formed in the sealing resin 25. Then, as shown in FIG. Specifically, for example, the support substrate 26 is exposed from the sealing resin 25 by grinding the sealing resin 25 . Next, the support substrate 26 is removed by etching or the like. Thus, the resin member 13 is formed by forming the opening 13a so as to reach the piezoelectric film member 2. Next, as shown in FIG. Next, the lid member 14 shown in FIG. 1 is provided on the resin member 13 so as to close the opening 13a. At this time, the resin member 13 and the lid member 14 may be joined by the resin forming the resin member 13 . As described above, the elastic wave device 10 is obtained.
 ところで、各工程間においては、得られた部材などを搬送する搬送工程が行われる。上記に示した製造方法では、図3(a)に示す工程から図4(a)に示す工程まで、支持基板26により圧電性膜部材2が支持されている。よって、搬送を容易に行うことができ、かつ搬送に際し圧電性膜部材2などが破損し難い。そして、図4(a)に示す中間体20を得た後にも、搬送工程が行われる。中間体20を得た後の搬送工程は、図4(b)に示す開口部13aを形成する前に行うことが好ましい。この場合には、支持基板26により弾性波素子1が支持されており、かつ封止樹脂25により弾性波素子1の全体が覆われている。よって、中間体20を搬送する工程において、弾性波素子1が破損し難い。そして、中間体20を搬送する工程の後に、樹脂部材13を形成する工程を行い、該工程の直後に、樹脂部材13上に蓋部材14を設ける工程を行うことが好ましい。それによって、弾性波素子1の破損をより確実に抑制することができる。なお、上記直後とは、ある工程の後に、搬送工程を行わずに次の工程を行うことを指す。 By the way, between each process, a transporting process for transporting the obtained members and the like is performed. In the manufacturing method shown above, the piezoelectric film member 2 is supported by the support substrate 26 from the process shown in FIG. 3A to the process shown in FIG. 4A. Therefore, transportation can be easily performed, and the piezoelectric film member 2 and the like are less likely to be damaged during transportation. Also after obtaining the intermediate 20 shown in FIG. 4(a), the transporting step is performed. It is preferable that the transporting step after obtaining the intermediate 20 is performed before forming the opening 13a shown in FIG. 4(b). In this case, the elastic wave element 1 is supported by the support substrate 26 and the entirety of the elastic wave element 1 is covered with the sealing resin 25 . Therefore, in the process of conveying the intermediate body 20, the elastic wave element 1 is less likely to be damaged. It is preferable that the step of forming the resin member 13 is performed after the step of conveying the intermediate 20, and the step of providing the lid member 14 on the resin member 13 is performed immediately after the step. As a result, damage to the acoustic wave element 1 can be suppressed more reliably. Note that "immediately after" refers to performing the next process without performing the transport process after a certain process.
 図1に示すように、第1の実施形態においては、接合部Aは、樹脂部材13及び蓋部材14以外の部材ではない。もっとも、これに限定されるものではない。以下において、接合部のみが第1の実施形態と異なる、第1の実施形態の第1の変形例及び第2の変形例を示す。なお、以下においては、第1の変形例及び第2の変形例以外の変形例も示す。第1の実施形態の各変形例においても、第1の実施形態と同様に、弾性波のエネルギーを圧電体層側に閉じ込めることができ、かつコンダクタンスの劣化が生じ難い。 As shown in FIG. 1, in the first embodiment, the joint A is not a member other than the resin member 13 and the lid member 14. However, it is not limited to this. In the following, a first variant and a second variant of the first embodiment are shown, differing from the first embodiment only in the joints. Modifications other than the first modification and the second modification are also shown below. In each of the modifications of the first embodiment, similarly to the first embodiment, the energy of elastic waves can be confined on the piezoelectric layer side, and deterioration of conductance is less likely to occur.
 図5に示す第1の変形例においては、接合部Bは樹脂部材13及び蓋部材14とは別の樹脂層である。該樹脂層の材料としては、例えば、エポキシ樹脂やポリエチレン樹脂などを挙げることができる。なお、接合部Bは積層体であってもよい。例えば、接合部Bは、本変形例の樹脂層を含む積層体であってもよい。 In the first modified example shown in FIG. 5, the joint B is a resin layer separate from the resin member 13 and the lid member 14 . Examples of materials for the resin layer include epoxy resin and polyethylene resin. Note that the joint portion B may be a laminate. For example, the joint portion B may be a laminate including the resin layer of this modified example.
 図6に示す第2の変形例においては、接合部Cは金属層である。該金属層には、例えば、Sn、Ag、Cu、Au、Al、Ge及びTiからなる群から選択された少なくとも1種の金属が用いられていることが好ましい。それによって、樹脂部材13及び蓋部材14を好適に接合することができる。なお、接合部Cは、例えば、本変形例の金属層を含む積層体であってもよい。 In the second modification shown in FIG. 6, the joint C is a metal layer. At least one metal selected from the group consisting of Sn, Ag, Cu, Au, Al, Ge and Ti is preferably used for the metal layer. Thereby, the resin member 13 and the lid member 14 can be suitably joined. Note that the joint portion C may be, for example, a laminate including the metal layer of this modified example.
 ところで、圧電性膜部材2における誘電体膜は複数層設けられていてもよい。図7に示す第1の実施形態の第3の変形例においては、圧電性膜部材22は、誘電体膜24A、誘電体膜24B及び誘電体膜24Cを有する。より具体的には、圧電体層3の第2の主面3bに誘電体膜24Aが設けられている。誘電体膜24A上に誘電体膜24Bが設けられている。誘電体膜24B上に誘電体膜24Cが設けられている。なお、誘電体膜の層数は特に限定されない。 By the way, the dielectric film in the piezoelectric film member 2 may be provided in multiple layers. In a third modification of the first embodiment shown in FIG. 7, the piezoelectric film member 22 has dielectric films 24A, 24B and 24C. More specifically, a dielectric film 24A is provided on the second main surface 3b of the piezoelectric layer 3. As shown in FIG. A dielectric film 24B is provided on the dielectric film 24A. A dielectric film 24C is provided on the dielectric film 24B. Note that the number of layers of the dielectric film is not particularly limited.
 第1の実施形態においては、蓋部材14は樹脂からなる。もっとも、蓋部材14は樹脂以外の材料からなっていてもよい。図8に示す第1の実施形態の第4の変形例においては、蓋部材24はシリコン基板である。シリコン基板においては熱伝導性が高いため、弾性波装置における放熱性を高めることができる。さらに、シリコン基板の線膨張係数は、樹脂の線膨張係数よりも小さい。そのため、温度変化による蓋部材24の変形は小さい。よって、温度変化が生じた際、蓋部材24により樹脂部材13を拘束することができ、樹脂部材13の変形を抑制することができる。これにより、樹脂部材13側から弾性波素子1に加わる応力を低減することができる。従って、温度変化による弾性波素子1の破損を抑制することができる。 In the first embodiment, the lid member 14 is made of resin. However, the lid member 14 may be made of a material other than resin. In a fourth modification of the first embodiment shown in FIG. 8, the lid member 24 is a silicon substrate. Since the silicon substrate has high thermal conductivity, it is possible to improve the heat dissipation in the acoustic wave device. Furthermore, the coefficient of linear expansion of the silicon substrate is smaller than the coefficient of linear expansion of the resin. Therefore, deformation of the lid member 24 due to temperature change is small. Therefore, when the temperature changes, the resin member 13 can be restrained by the lid member 24, and deformation of the resin member 13 can be suppressed. Thereby, the stress applied to the acoustic wave element 1 from the resin member 13 side can be reduced. Therefore, damage to the acoustic wave element 1 due to temperature change can be suppressed.
 図9は、第2の実施形態に係る弾性波装置の正面断面図である。 FIG. 9 is a front cross-sectional view of an elastic wave device according to the second embodiment.
 本実施形態は、圧電性膜部材が圧電体層3のみからなる点、及び機能電極の構成が第1の実施形態と異なる。さらに、機能電極に接続されている配線も第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置30は第1の実施形態の弾性波装置10と同様の構成を有する。 This embodiment differs from the first embodiment in that the piezoelectric film member consists of only the piezoelectric layer 3 and in the configuration of the functional electrodes. Furthermore, the wiring connected to the functional electrodes is also different from that of the first embodiment. Except for the above points, the elastic wave device 30 of this embodiment has the same configuration as the elastic wave device 10 of the first embodiment.
 弾性波装置30においては、機能電極は、第1の電極35A及び第2の電極35Bである。圧電体層3の第1の主面3aに第1の電極35Aが設けられている。第2の主面3bに第2の電極35Bが設けられている。第1の電極35A及び第2の電極35Bは、圧電体層3を挟み互いに対向している。第1の電極35A及び第2の電極35Bが互いに対向している領域が励振領域である。この励振領域において弾性波が励振される。 In the elastic wave device 30, the functional electrodes are the first electrode 35A and the second electrode 35B. A first electrode 35A is provided on the first principal surface 3a of the piezoelectric layer 3 . A second electrode 35B is provided on the second main surface 3b. The first electrode 35A and the second electrode 35B face each other with the piezoelectric layer 3 interposed therebetween. A region where the first electrode 35A and the second electrode 35B face each other is an excitation region. Elastic waves are excited in this excitation region.
 第1の電極35Aは電極パッド16に接続されている。より具体的には、第1の電極35Aは、第1の主面3aに設けられた配線電極により、電極パッド16に接続されている。本実施形態では、第1の電極35A、該配線電極及び電極パッド16は一体として設けられている。一方で、圧電体層3の第2の主面3bには、電極パッド36が設けられている。第2の電極35Bは電極パッド36に接続されている。より具体的には、第2の電極35Bは、第2の主面3bに設けられた配線電極により、電極パッド36に接続されている。本実施形態では、第2の電極35B、該配線電極及び電極パッド36は一体として設けられている。 The first electrode 35A is connected to the electrode pad 16. More specifically, the first electrode 35A is connected to the electrode pad 16 by a wiring electrode provided on the first main surface 3a. In this embodiment, the first electrode 35A, the wiring electrode and the electrode pad 16 are integrally provided. On the other hand, an electrode pad 36 is provided on the second main surface 3b of the piezoelectric layer 3. As shown in FIG. A second electrode 35B is connected to the electrode pad 36 . More specifically, the second electrode 35B is connected to the electrode pad 36 by a wiring electrode provided on the second main surface 3b. In this embodiment, the second electrode 35B, the wiring electrode and the electrode pad 36 are integrally provided.
 電極パッド16は、第1の実施形態と同様に、貫通電極9に接続されている。よって、第1の電極35Aは、電極パッド16、貫通電極9及びバンプ15を介して、実装基板12に電気的に接続されている。他方、圧電体層3の第2の主面3bにおける電極パッド36は、貫通電極39に接続されている。貫通電極39は、カバー部材8、支持部材7及び圧電体層3を貫通している。貫通電極39にはバンプ15が接合されている。よって、第2の電極35Bは、電極パッド36、貫通電極39及びバンプ15を介して、実装基板12に電気的に接続されている。 The electrode pads 16 are connected to the through electrodes 9 as in the first embodiment. Therefore, the first electrodes 35A are electrically connected to the mounting board 12 via the electrode pads 16, the through electrodes 9 and the bumps 15. As shown in FIG. On the other hand, the electrode pads 36 on the second main surface 3b of the piezoelectric layer 3 are connected to through-electrodes 39 . The through electrode 39 penetrates the cover member 8 , the support member 7 and the piezoelectric layer 3 . A bump 15 is joined to the through electrode 39 . Therefore, the second electrodes 35B are electrically connected to the mounting board 12 via the electrode pads 36, the through electrodes 39 and the bumps 15. As shown in FIG.
 弾性波装置30における圧電性膜部材は、圧電体層3のみからなる。もっとも、圧電体層3の第2の主面3bに第2の電極35Bが設けられている場合においても、第2の主面3bに、少なくとも1層の誘電体膜が設けられていてもよい。 The piezoelectric film member in the elastic wave device 30 consists of the piezoelectric layer 3 only. However, even when the second electrode 35B is provided on the second main surface 3b of the piezoelectric layer 3, at least one layer of dielectric film may be provided on the second main surface 3b. .
 本実施形態においても、樹脂部材13上に蓋部材14が設けられており、蓋部材14と圧電性膜部材との間に空洞部Oが設けられている。よって、第1の実施形態と同様に、弾性波のエネルギーを圧電体層3側に閉じ込めることができ、かつコンダクタンスの劣化が生じ難い。 Also in this embodiment, the lid member 14 is provided on the resin member 13, and the hollow portion O is provided between the lid member 14 and the piezoelectric film member. Therefore, as in the first embodiment, the energy of the elastic wave can be confined on the piezoelectric layer 3 side, and deterioration of conductance is less likely to occur.
 弾性波装置30を製造するに際しては、第1の電極35Aは、第1の実施形態におけるIDT電極5と同様に、例えば、スパッタリング法または真空蒸着法などにより形成することができる。第2の電極35B及び電極パッド36は、圧電体層3を形成した後に、第2の主面3bに形成すればよい。第2の電極35B及び電極パッド36は、例えば、スパッタリング法または真空蒸着法などにより形成することができる。貫通電極39は、貫通電極9を形成する工程において、形成すればよい。このとき、例えばレーザー光の照射などにより、カバー部材8、支持部材7及び圧電体層3を貫通するように貫通孔を形成する。その後に、例えばめっき法などにより、貫通電極39を形成すればよい。 When manufacturing the acoustic wave device 30, the first electrode 35A can be formed by, for example, a sputtering method or a vacuum deposition method, like the IDT electrode 5 in the first embodiment. The second electrodes 35B and the electrode pads 36 may be formed on the second main surface 3b after the piezoelectric layer 3 is formed. The second electrodes 35B and the electrode pads 36 can be formed by, for example, sputtering or vacuum deposition. The through electrode 39 may be formed in the step of forming the through electrode 9 . At this time, through holes are formed through the cover member 8, the support member 7, and the piezoelectric layer 3 by, for example, laser light irradiation. After that, the through electrode 39 may be formed by, for example, a plating method.
1…弾性波素子
2…圧電性膜部材
3…圧電体層
3a,3b…第1,第2の主面
4…誘電体膜
5…IDT電極
6A,6B…反射器
7…支持部材
7a…開口部
8…カバー部材
9…貫通電極
10…弾性波装置
12…実装基板
13…樹脂部材
13a…開口部
14…蓋部材
15…バンプ
16…電極パッド
17…実装用端子
18a,18b…第1,第2のバスバー
19a,19b…第1,第2の電極指
20…中間体
22…圧電性膜部材
23…圧電基板
23a,23b…第1,第2の主面
24…蓋部材
24A~24C…誘電体膜
25…封止樹脂
26…支持基板
30…弾性波装置
35A,35B…第1,第2の電極
36…電極パッド
39…貫通電極
A~C…接合部
O…空洞部
DESCRIPTION OF SYMBOLS 1... Acoustic wave element 2... Piezoelectric film member 3... Piezoelectric layers 3a, 3b... First and second main surfaces 4... Dielectric film 5... IDT electrodes 6A, 6B... Reflector 7... Support member 7a... Opening Part 8 Cover member 9 Penetrating electrode 10 Elastic wave device 12 Mounting substrate 13 Resin member 13a Opening 14 Lid member 15 Bump 16 Electrode pad 17 Mounting terminals 18a, 18b First and second 2 bus bars 19a, 19b... first and second electrode fingers 20... intermediate body 22... piezoelectric film member 23... piezoelectric substrates 23a, 23b... first and second main surfaces 24... lid members 24A to 24C... dielectric Body membrane 25 Sealing resin 26 Support substrate 30 Elastic wave devices 35A, 35B First and second electrodes 36 Electrode pads 39 Penetration electrodes A to C Junction O Cavity

Claims (16)

  1.  実装基板と、
     前記実装基板上に設けられており、開口部を有する樹脂部材と、
     前記実装基板上に設けられており、前記樹脂部材の前記開口部内に配置されており、かつ圧電体層を含む圧電性膜部材と、前記圧電体層上に設けられている機能電極と、を有する弾性波素子と、
     前記樹脂部材の前記開口部を塞いでいる蓋部材と、
    を備え、
     前記蓋部材と前記圧電性膜部材との間に空洞部が設けられている、弾性波装置。
    a mounting board;
    a resin member provided on the mounting substrate and having an opening;
    a piezoelectric film member provided on the mounting substrate, arranged in the opening of the resin member, and including a piezoelectric layer; and a functional electrode provided on the piezoelectric layer. an acoustic wave element having
    a lid member closing the opening of the resin member;
    with
    An elastic wave device, wherein a cavity is provided between the lid member and the piezoelectric film member.
  2.  前記機能電極がIDT電極である、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the functional electrode is an IDT electrode.
  3.  前記圧電体層が、互いに対向している第1の主面及び第2の主面を有し、
     前記機能電極が、前記圧電体層の前記第1の主面に設けられている第1の電極、及び前記第2の主面に設けられている第2の電極であり、前記第1の電極及び前記第2の電極が、前記圧電体層を挟み互いに対向している、請求項1に記載の弾性波装置。
    the piezoelectric layer has a first main surface and a second main surface facing each other;
    The functional electrode is a first electrode provided on the first main surface of the piezoelectric layer and a second electrode provided on the second main surface of the piezoelectric layer, and the first electrode 2. The elastic wave device according to claim 1, wherein said second electrode and said second electrode face each other with said piezoelectric layer interposed therebetween.
  4.  前記圧電体層が、互いに対向している第1の主面及び第2の主面を有し、前記圧電体層の前記第1の主面及び前記第2の主面のうち前記第1の主面が前記実装基板側の主面であり、
     前記圧電性膜部材が、前記圧電体層の前記第2の主面に設けられている少なくとも1層の誘電体膜を含む、請求項1または2に記載の弾性波装置。
    The piezoelectric layer has a first principal surface and a second principal surface facing each other, and the first principal surface and the second principal surface of the piezoelectric layer the main surface is the main surface on the side of the mounting board,
    3. The acoustic wave device according to claim 1, wherein said piezoelectric film member includes at least one layer of dielectric film provided on said second main surface of said piezoelectric layer.
  5.  前記少なくとも1層の誘電体膜が低音速膜を含み、前記低音速膜を伝搬するバルク波の音速が、前記圧電体層を伝搬するバルク波の音速よりも低い、請求項4に記載の弾性波装置。 5. The elasticity of claim 4, wherein the at least one layer of dielectric film comprises a low acoustic velocity film, and the acoustic velocity of bulk waves propagating in the low acoustic velocity film is lower than the acoustic velocity of bulk waves propagating in the piezoelectric layer. wave equipment.
  6.  前記低音速膜が酸化ケイ素を主成分とする、請求項5に記載の弾性波装置。 The elastic wave device according to claim 5, wherein the low-temperature velocity film is mainly composed of silicon oxide.
  7.  前記蓋部材が樹脂からなる、請求項1~6のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 6, wherein the lid member is made of resin.
  8.  前記蓋部材の材料と、前記樹脂部材の材料とが同じである、請求項7に記載の弾性波装置。 The elastic wave device according to claim 7, wherein the material of the lid member and the material of the resin member are the same.
  9.  前記蓋部材がシリコン基板である、請求項1~6のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 6, wherein the lid member is a silicon substrate.
  10.  前記蓋部材は、接合部で前記樹脂部材に接合されている、請求項1~9のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 9, wherein the cover member is joined to the resin member at a joining portion.
  11.  前記樹脂部材及び前記蓋部材が接合されている前記接合部が、前記樹脂部材の樹脂により、前記蓋部材が前記樹脂部材に接合された部分である、請求項10に記載の弾性波装置。 The elastic wave device according to claim 10, wherein the joint portion where the resin member and the cover member are joined is a portion where the cover member is joined to the resin member by the resin of the resin member.
  12.  前記樹脂部材及び前記蓋部材が接合されている前記接合部が、前記樹脂部材及び前記蓋部材とは別の樹脂層を含む、請求項10に記載の弾性波装置。 The elastic wave device according to claim 10, wherein the joint portion where the resin member and the cover member are joined includes a resin layer separate from the resin member and the cover member.
  13.  前記樹脂部材及び前記蓋部材が接合されている前記接合部が金属層を含む、請求項10に記載の弾性波装置。 The elastic wave device according to claim 10, wherein the joint portion where the resin member and the lid member are joined includes a metal layer.
  14.  前記金属層に、Sn、Ag、Cu、Au、Al、Ge及びTiからなる群から選択された少なくとも1種の金属が用いられている、請求項13に記載の弾性波装置。 The elastic wave device according to claim 13, wherein the metal layer uses at least one metal selected from the group consisting of Sn, Ag, Cu, Au, Al, Ge and Ti.
  15.  前記圧電体層が、互いに対向している第1の主面及び第2の主面を有し、前記圧電体層の前記第1の主面及び前記第2の主面のうち前記第1の主面が前記実装基板側の主面であり、
     前記弾性波素子が、前記圧電体層の前記第1の主面に設けられており、前記機能電極を囲むように設けられている支持部材と、前記支持部材上に設けられているカバー部材と、前記カバー部材上に設けられている導電性接合部材と、を有し、前記弾性波素子が前記導電性接合部材により前記実装基板に接合されている、請求項1~14のいずれか1項に記載の弾性波装置。
    The piezoelectric layer has a first principal surface and a second principal surface facing each other, and the first principal surface and the second principal surface of the piezoelectric layer the main surface is the main surface on the side of the mounting board,
    The elastic wave element is provided on the first main surface of the piezoelectric layer, and a support member provided so as to surround the functional electrode; and a cover member provided on the support member. , and a conductive joint member provided on the cover member, wherein the acoustic wave element is joined to the mounting substrate by the conductive joint member. Elastic wave device according to.
  16.  請求項1~15のいずれか1項に記載の弾性波装置を製造する方法であって、
     支持基板上に前記圧電性膜部材を設ける工程と、
     前記圧電性膜部材を含む前記弾性波素子を得る工程と、
     前記実装基板に前記弾性波素子を接合する工程と、
     前記実装基板上に、前記弾性波素子を封止するように封止樹脂を形成することにより、前記実装基板と、前記弾性波素子と、前記支持基板と、前記封止樹脂と、を有する中間体を得る工程と、
     前記中間体を搬送する搬送工程と、
     前記封止樹脂から前記支持基板を露出させた後、前記支持基板を除去することにより、前記圧電性膜部材に至るように前記開口部を形成することによって、前記樹脂部材を形成する工程と、
     前記樹脂部材上に、前記開口部を塞ぐように前記蓋部材を設ける工程と、
    を備え、
     前記搬送工程の後に、前記樹脂部材を形成する工程を行い、該工程の直後に、前記樹脂部材上に前記蓋部材を設ける工程を行う、弾性波装置の製造方法。
    A method for manufacturing the elastic wave device according to any one of claims 1 to 15,
    providing the piezoelectric film member on a support substrate;
    obtaining the acoustic wave element including the piezoelectric film member;
    bonding the acoustic wave element to the mounting substrate;
    By forming a sealing resin on the mounting board so as to seal the acoustic wave element, an intermediate structure including the mounting board, the acoustic wave element, the support substrate, and the sealing resin the process of obtaining a body;
    a conveying step of conveying the intermediate;
    forming the resin member by exposing the support substrate from the sealing resin and then removing the support substrate to form the opening so as to reach the piezoelectric film member;
    providing the lid member on the resin member so as to cover the opening;
    with
    A method of manufacturing an elastic wave device, wherein a step of forming the resin member is performed after the transporting step, and a step of providing the lid member on the resin member is performed immediately after the step.
PCT/JP2022/030446 2021-08-11 2022-08-09 Elastic wave device and method for manufacturing same WO2023017825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-131357 2021-08-11
JP2021131357 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023017825A1 true WO2023017825A1 (en) 2023-02-16

Family

ID=85200600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030446 WO2023017825A1 (en) 2021-08-11 2022-08-09 Elastic wave device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2023017825A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283289A (en) * 2002-03-25 2003-10-03 Kyocera Corp Surface acoustic wave device
JP2004254287A (en) * 2003-01-28 2004-09-09 Fujitsu Media Device Kk Surface acoustic wave device and its manufacturing method
JP2004297693A (en) * 2003-03-28 2004-10-21 Fujitsu Media Device Kk Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP2018201083A (en) * 2017-05-26 2018-12-20 太陽誘電株式会社 Electronic component
JP2019125871A (en) * 2018-01-12 2019-07-25 株式会社村田製作所 Acoustic wave device
JP2020102768A (en) * 2018-12-21 2020-07-02 株式会社村田製作所 Elastic wave device and electronic component module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283289A (en) * 2002-03-25 2003-10-03 Kyocera Corp Surface acoustic wave device
JP2004254287A (en) * 2003-01-28 2004-09-09 Fujitsu Media Device Kk Surface acoustic wave device and its manufacturing method
JP2004297693A (en) * 2003-03-28 2004-10-21 Fujitsu Media Device Kk Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP2018201083A (en) * 2017-05-26 2018-12-20 太陽誘電株式会社 Electronic component
JP2019125871A (en) * 2018-01-12 2019-07-25 株式会社村田製作所 Acoustic wave device
JP2020102768A (en) * 2018-12-21 2020-07-02 株式会社村田製作所 Elastic wave device and electronic component module

Similar Documents

Publication Publication Date Title
US11218130B2 (en) Acoustic wave device
JP6315716B2 (en) Elastic wave device
US10250222B2 (en) Electronic device
JP4210958B2 (en) Piezoelectric device
US11515856B2 (en) Acoustic wave device, front-end circuit, and communication apparatus
US11764752B2 (en) Elastic wave device
JP6963445B2 (en) Electronic components
JP6934340B2 (en) Electronic components
JP6315650B2 (en) Electronic devices
KR20190110022A (en) Elastic wave device
US11695389B2 (en) Acoustic wave device, front-end circuit, and communication apparatus
US11509289B2 (en) Composite component and mounting structure therefor
WO2023017825A1 (en) Elastic wave device and method for manufacturing same
US20220416757A1 (en) Acoustic wave device, filter and multiplexer
JP2020065158A (en) Acoustic wave device and composite substrate
US11765978B2 (en) Acoustic wave device
WO2020130051A1 (en) Elastic wave element and elastic wave device
JP2020174332A (en) Acoustic wave device, filter, and multiplexer
JP2020184703A (en) Acoustic wave device, filter, and multiplexer
JP2020036285A (en) Electronic component and method of manufacturing electronic component
WO2023157798A1 (en) Elastic wave device
WO2021100506A1 (en) Electronic component
WO2023153272A1 (en) Acoustic wave device
WO2021006157A1 (en) Elastic wave device
JP2017046330A (en) Acoustic wave element and acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE