WO2023017747A1 - Electroconductive ink - Google Patents

Electroconductive ink Download PDF

Info

Publication number
WO2023017747A1
WO2023017747A1 PCT/JP2022/029321 JP2022029321W WO2023017747A1 WO 2023017747 A1 WO2023017747 A1 WO 2023017747A1 JP 2022029321 W JP2022029321 W JP 2022029321W WO 2023017747 A1 WO2023017747 A1 WO 2023017747A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive ink
ink according
mass
group
mgkoh
Prior art date
Application number
PCT/JP2022/029321
Other languages
French (fr)
Japanese (ja)
Inventor
椋平 加納
政俊 中川
佳彦 藤原
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2023017747A1 publication Critical patent/WO2023017747A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • metal nanoparticles such as silver nanoparticles can be sintered at low temperatures, they are used to form electronic components such as electrodes and wiring on plastic substrates.
  • Patent Document 1 by coating the surface of silver nanoparticles with a protective agent containing an amine, good dispersion stability in a solvent can be obtained, and the silver nanoparticles are treated with alicyclic hydrocarbons, alcohols, etc.
  • an object of the present disclosure is to provide a conductive ink in which aggregation of metal nanoparticles is suppressed.
  • the inventors of the present disclosure have made intensive studies to solve the above problems, and as a result, an ink obtained by dispersing metal nanoparticles having a structure in which the surface is coated with a protective agent containing an amine in a dispersion solvent together with a dispersant. However, it was found that aggregation of metal nanoparticles hardly occurred. The present disclosure has been completed based on these findings.
  • the present disclosure provides a conductive ink containing surface-modified metal nanoparticles (A) coated with a protective agent containing an amine, a wetting and dispersing agent (B), and a dispersing solvent (C).
  • the wetting and dispersing agent (B) preferably has an amine value of 3 to 145 mgKOH/g and an acid value of 4 to 185 mgKOH/g.
  • the amines in the surface-modified metal nanoparticles (A) include an aliphatic monoamine (1) having 6 or more carbon atoms, an aliphatic monoamine (2) having 5 or less carbon atoms and/or an aliphatic diamine having 8 or less carbon atoms ( 3) is preferably included.
  • the above aliphatic monoamine (1) is preferably an alkyl monoamine having a linear alkyl group with 6 to 18 carbon atoms and/or an alkyl monoamine having a branched alkyl group with 6 to 16 carbon atoms.
  • the above aliphatic monoamine (2) is preferably an alkyl monoamine having a linear or branched alkyl group with 2 to 5 carbon atoms.
  • the surface-modified metal nanoparticles (A) are preferably surface-modified silver nanoparticles.
  • the wetting and dispersing agent (B) preferably has an acidic group.
  • the content of the wetting and dispersing agent (B) is preferably 0.5 to 5.0% by mass with respect to 100% by mass of the conductive ink.
  • the conductive ink preferably further contains a binder resin (D).
  • the conductive ink may further contain an antifoaming agent (E).
  • the antifoaming agent (E) is preferably a polymer antifoaming agent.
  • the content of the antifoaming agent (E) is preferably 0.1 to 10% by mass with respect to 100% by mass of the conductive ink.
  • the conductive ink preferably further contains a sintering aid.
  • the sintering aid is preferably an aliphatic diamine having a primary amino group and/or a tertiary amino group.
  • the aliphatic diamine is preferably 3-diethylaminopropylamine.
  • the conductive ink preferably has a viscosity of 1 to 200 Pa ⁇ s at 25° C. and a shear rate of 10 s ⁇ 1 .
  • the present disclosure also provides a method of manufacturing an electronic device, including a step of applying the conductive ink on a substrate by screen printing and a step of sintering.
  • the present disclosure also provides an electronic device comprising the sintered body of the conductive ink.
  • the conductive ink of the present disclosure has the above configuration, aggregation of metal nanoparticles is less likely to occur. Therefore, it can be suitably used for manufacturing an electronic device by forming electrodes, wiring, etc. on a plastic substrate by printing.
  • the conductive ink of the present disclosure contains surface-modified metal nanoparticles (A) coated with an amine-containing protective agent, and further contains a wetting and dispersing agent (B) and a dispersing solvent (C).
  • a conductive ink is an ink that can exhibit conductivity after being applied and sintered.
  • the surface-modified metal nanoparticles (A) have a structure in which the surface of the metal nanoparticles is coated with a protective agent containing an amine. It has a physically coordinated configuration.
  • the surface-modified metal nanoparticles according to the present disclosure preferably have a primary average particle size of 0.5 to 100 nm, more preferably 0.5 to 80 nm, even more preferably 1.0 to 65 nm, and particularly preferably 1.0 to 50 nm. is.
  • metals constituting the metal nanoparticles include metals having conductivity, such as gold, silver, copper, nickel, aluminum, rhodium, cobalt, ruthenium, platinum, palladium, chromium, and indium.
  • metals having conductivity such as gold, silver, copper, nickel, aluminum, rhodium, cobalt, ruthenium, platinum, palladium, chromium, and indium.
  • silver is particularly preferred because it can fuse with each other at a temperature of about 100° C. and can form a bonding member such as an electronic component having conductivity even on a general-purpose plastic substrate with low heat resistance. Nanoparticles are preferred.
  • amine examples include aliphatic monoamines having at least one amino group selected from primary amino groups, secondary amino groups and tertiary amino groups, or polyvalent amines having two or more (diamine etc.).
  • the amine is at least one selected from aliphatic monoamines (1) having a total carbon number of 6 or more, aliphatic monoamines having a total carbon number of 5 or less (2), and aliphatic diamines having a total carbon number of 8 or less (3). and more preferably containing an aliphatic monoamine (1) and an aliphatic monoamine (2) and/or an aliphatic diamine (3).
  • the aliphatic monoamine (1) has a total carbon number of 6 to 18 (more preferably 6 to 16, more preferably 6 to 12) amine compounds having a straight-chain alkyl group are preferred, for example, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexa decylamine, heptadecylamine, octadecylamine and the like.
  • aliphatic monoamine (1) a branched alkyl group having a total carbon number of 6 to 16 (more preferably 6 to 10) can be imparted with dispersibility even in a small amount due to steric factors. , such as isohexylamine, 2-ethylhexylamine, tert-octylamine, and the like.
  • the aliphatic monoamine (1) also includes, for example, primary amines having a cycloalkyl group (cyclohexylamine, etc.), primary amines having an alkenyl group, etc. (oleylamine, etc.), primary amines having a linear alkyl group, etc.
  • Secondary amines N,N-dipropylamine, N,N-dibutylamine, N,N-dipentylamine, N,N-dihexylamine, N,N-dipeptylamine, N,N-dioctylamine, N,N- dinonylamine, N,N-didecylamine, N,N-diundecylamine, N,N-didodecylamine, N-propyl-N-butylamine, etc.), secondary amines having branched alkyl groups (N,N- diisohexylamine, N,N-di(2-ethylhexyl)amine, etc.), tertiary amines having branched alkyl groups (tertiary amines having linear alkyl groups (tributylamine, trihexylamine, etc.) ), triisohexylamine, tri(2-ethylhexyl)amine, etc
  • the aliphatic monoamine (2) has a total carbon number of 2 to 5 (more preferably 3 to 5, more preferably 4 to 5) Amine compounds having a linear or branched alkyl group are preferred.
  • aliphatic monoamine (2) examples include primary amines having a linear or branched alkyl group (ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec- butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine, etc.), secondary amines having linear or branched alkyl groups (N,N-dimethylamine, N,N-diethylamine, N -methyl-N-propylamine, N-ethyl-N-propylamine, etc.).
  • primary amines having a linear or branched alkyl group ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec- butylamine, tert-butylamine, pentylamine, isopentylamine, tert
  • diamines (more preferably alkylenediamines), such as 2-dimethylaminoethylamine, 2-diethylaminoethylamine, 3-dimethylaminopropylamine, 3-diethylaminopropylamine, 4-dimethylaminobutylamine, 4-diethylaminobutylamine, 6- dimethylaminohexylamine and the like.
  • the aliphatic diamine (3) is a diamine having two primary amino groups (ethylenediamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, 1,4-butanediamine, 1 ,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,5-diamino-2-methylpentane, etc.), diamines having two secondary amino groups (N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl-1,3-propanediamine, N,N'- Dimethyl-1,4-butanediamine, N,N'-diethyl-1,4-butanediamine, N,N'-dimethyl-1,6-hexanediamine, etc.), diamines having two tertiary amino groups ( N,N,
  • the aliphatic monoamine (1), the aliphatic monoamine (2), and the aliphatic diamine (3) may be used alone or in combination of two or more.
  • the amine according to the present disclosure may contain other amine compounds in addition to the aliphatic monoamine (1), the aliphatic monoamine (2), and the aliphatic diamine (3).
  • the content of is preferably 40.0% by mass or less, more preferably 20.0% by mass or less, still more preferably 10.0% by mass or less, and particularly preferably 0% by mass with respect to 100% by mass of the amine according to the present disclosure. % by mass.
  • the content of the surface-modified metal nanoparticles (A) according to the present disclosure is preferably 30 to 90% by mass, more preferably 40 to 85% by mass, and even more preferably 50 to 80% by mass with respect to 100% by mass of the conductive ink. % by mass.
  • the wetting and dispersing agent (B) is a wetting and dispersing agent that can be easily applied to a low-polar dispersion solvent, such as a surfactant.
  • the wetting and dispersing agent (B) is preferably a compound having a basic polar functional group and/or an acidic polar functional group.
  • the basic polar functional group include an amino group, an imino group, an amide group, an imide group and the like.
  • the basic polar functional group adheres to the surface-modified metal nanoparticles (A) and exhibits the effect of imparting dispersibility to the surface-modified metal nanoparticles (A).
  • the acidic polar functional group is a so-called acidic group, and examples thereof include a phosphate group.
  • the acidic polar functional group exhibits affinity for a low-polar dispersing solvent.
  • the wetting and dispersing agent (B) may form a salt. That is, the wetting and dispersing agent (B) may be a polymer salt.
  • the wetting and dispersing agent (B) preferably has at least an acidic polar functional group, and particularly preferably has an acidic polar functional group and a basic polar functional group, in terms of particularly excellent dispersibility. Accordingly, the wetting and dispersing agent (B) is preferably a compound having an acidic group, and particularly preferably a compound having both an acidic group and a basic group.
  • the acid value preferably exceeds the amine value.
  • the difference between the oxidation value and the amine value is, for example, preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, even more preferably 30 mgKOH/g or more, and particularly preferably 45 mgKOH/g or more.
  • the difference between the oxidation value and the amine value is, for example, preferably 150 mgKOH/g or less, more preferably 100 mgKOH/g or less, still more preferably 70 mgKOH/g or less.
  • the acid value of the wetting and dispersing agent (B) is, for example, 4 to 185 mgKOH/g (preferably 40 to 145 mgKOH/g, more preferably 50 to 145 mgKOH/g, still more preferably 100 to 145 mgKOH/g, particularly preferably 110 to 135 mgKOH /g).
  • the acid value is expressed in mg of KOH required to neutralize 1 g of sample.
  • the amine value of the wetting and dispersing agent (B) is, for example, 0 to 145 mgKOH/g (preferably 30 to 100 mgKOH/g, more preferably 40 to 100 mgKOH/g, still more preferably 50 to 100 mgKOH/g, particularly preferably 70 to 90 mgKOH /g).
  • the amine value is expressed in mg of KOH equivalent to the amount of hydrochloric acid required to neutralize 1 g of sample.
  • the wetting and dispersing agent (B) has a molecular weight of, for example, 100-10,000, preferably 300-5,000.
  • the wetting and dispersing agent (B) specifically adsorbs to the surface of the surface-modified metal nanoparticles (A) and forms a network that maintains a certain distance by hydrogen bonding to suppress aggregation, so during storage Separation and sedimentation of aggregates are unlikely to occur, and stable re-dispersion is possible even if they do occur.
  • it is excellent in printability capable of drawing fine lines with high precision by screen printing or the like, continuous printability capable of continuous printing while suppressing clogging of a screen plate, etc., and storage stability of the conductive ink.
  • wetting and dispersing agent (B) Commercially available products can be used as the wetting and dispersing agent (B), and specific examples thereof include “DISPERBYK-106”, “DISPERBYK-180", “DISPERBYK-102”, “DISPERBYK-118” and “DISPERBYK-103".
  • the content of the wetting and dispersing agent (B) according to the present disclosure is preferably 0.5 to 5.0% by mass, more preferably 0.7 to 4.0% by mass, with respect to 100% by mass of the conductive ink. More preferably, it is 1.0 to 3.0% by mass.
  • the content of the wetting and dispersing agent (B) according to the present disclosure is preferably 0.5 to 25.0 parts by mass, more preferably 0.8 to 20 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). .0 parts by mass, more preferably 1.0 to 15.0 parts by mass.
  • the dispersion solvent (C) preferably contains at least a terpene solvent. Also, the content of the solvent having a boiling point of less than 130° C. is preferably 20% by mass or less of the total amount of the dispersing solvent. Since the conductive ink of the present disclosure uses the dispersing solvent (C), clogging of the screen plate due to volatilization of the solvent is unlikely to occur, and continuous printing is facilitated.
  • the terpene-based solvent preferably has a boiling point of 130°C or higher (more preferably 130 to 300°C, still more preferably 200 to 270°C).
  • terpene solvent examples include 4-(1'-acetoxy-1'-methylethyl)-cyclohexanol acetate, 1,8-terpine-1-acetate, 1,8-terpine-8-acetate, 1, 8-terpine-1,8-diacetate, 1,2,5,6-tetrahydrobenzyl alcohol, 1,2,5,6-tetrahydrobenzyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, 4-t-butylcyclohexyl Acetate, terpineol, dihydroterpineol, dihydroterpineol acetate, ⁇ -terpineol, ⁇ -terpineol, L- ⁇ -terpineol, dihydroterpinyloxyethanol, terpinyl methyl ether, dihydroterpinyl methyl ether etc. can be mentioned. These may be used alone or in combination
  • terpene-based solvent Commercially available products can be used as the terpene-based solvent, and specific examples include “Tersolve MTPH”, “Tersolve IPG”, “Tersolve IPG-Ac”, “Tersolve IPG-2Ac”, “Terpineol C” ( ⁇ - mixture of terpineol, ⁇ -terpineol, and ⁇ -terpineol), “Telsolve DTO-210", “Telsolve THA-70", “Telsolve THA-90”, “Telsolve TOE-100” (Nippon Terpene Chemical Co., Ltd.) made) and the like.
  • the dispersion solvent (C) may contain solvents other than the terpene-based solvent.
  • the other solvents include glycol ether solvents, glycol ester solvents, and the like.
  • glycol ether compounds and glycol ester compounds examples include glycol diethers, glycol ether esters, glycol diesters, glycol monoethers and glycol monoesters.
  • glycol diether the glycol ether ester, and the glycol diester are preferably compounds represented by the following formula (1).
  • R 1 and R 3 are the same or different and represent an alkyl group, and R 2 represents an alkylene group.
  • l and n are the same or different and represent 0 or 1
  • m represents an integer of 1-8.
  • the alkyl group for R 1 and R 3 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and specific examples thereof include methyl group, methylmethyl group, dimethylmethyl group, ethyl group, propyl group, trimethyl group, tetramethyl group, isobutyl group, tert-butyl group, pentamethyl group, hexamethyl group, heptyl group, octyl group, nonyl group, decyl group, etc. mentioned.
  • the alkylene group for R 2 is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 2 to 3 carbon atoms, and specific examples are Examples include methylene group, methylmethylene group, ethylene group, dimethylmethylene group, trimethylene group, propylene group, tetramethylene group, 1-methylpropylene group, dimethylethylene group, pentamethylene group, hexamethylene group and the like. .
  • m is preferably an integer of 1 to 8, more preferably 1 to 3, and still more preferably 2 to 3.
  • glycol diether examples include propylene glycol methyl-n-propyl ether, propylene glycol methyl-n-butyl ether, propylene glycol methyl isoamyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol ethyl methyl ether.
  • glycol ether ester examples include ethylene glycol methyl ether acetate, ethylene glycol-n-butyl ether acetate, propylene glycol methyl ether acetate, 3-methoxybutyl acetate, diethylene glycol-n-butyl ether acetate, diethylene glycol ethyl ether acetate, Diethylene glycol butyl ether acetate, dipropylene glycol methyl ether acetate and the like can be mentioned. These may be used alone or in combination of two or more.
  • glycol diester examples include propylene glycol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, 1,6-hexanediol diacetate, ethylene glycol dipropionate, and ethylene.
  • Glycol dibutyrate, ethylene glycol diisobutyrate, ethylene glycol di-t-butyrate, ethylene glycol dihexylate and the like can be mentioned. These may be used alone or in combination of two or more.
  • the boiling point of the glycol diether, the glycol ether ester, and the glycol diester is preferably 130° C. or higher, more preferably 130 to 300° C., and still more preferably 170° C., because it is difficult to evaporate during printing and volatilizes easily during sintering. ⁇ 300°C, particularly preferably 200-300°C.
  • glycol monoether and the glycol monoester are preferably compounds represented by the following formula (2).
  • R4 represents an alkyl group, an aryl group or an aralkyl group
  • R5 represents an alkylene group.
  • s represents 0 or 1
  • t represents an integer of 1-8.
  • alkyl group for R 4 examples include the same groups as those for R 1 and R 3 above.
  • Examples of the aryl group for R 4 include phenyl group and naphthyl group, and examples of aralkyl group include benzyl group and phenethyl group.
  • Examples of the alkylene group for R 5 are the same as those for R 2 .
  • the above t is preferably 1-8, more preferably 1-3, and still more preferably 2-3.
  • glycol monoether examples include ethylene glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono-t-butyl ether, ethylene glycol monohexyl ether, ethylene glycol mono -2-ethylhexyl ether, ethylene glycol monophenyl ether, ethylene glycol monobenzyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, butyl carbitol, diethylene glycol monoisobutyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monopentyl ether, diethylene glycol monoisopentyl ether , diethylene glycol monohexyl ether, hexyl carbitol, diethylene glycol mono-2-ethylhexyl ether, diethylene glycol monophenyl ether, diethylene
  • glycol monoester examples include ethylene glycol monoacetate, ethylene glycol monopropionate, ethylene glycol monobutyrate, ethylene glycol monoisobutyrate, ethylene glycol mono-t-butyrate, and ethylene glycol monohexylate. etc. These may be used alone or in combination of two or more.
  • the boiling point of the glycol monoether and glycol monoester is preferably 130° C. or higher, more preferably 130 to 300° C., still more preferably 150 to 270° C., especially since it is difficult to evaporate during printing and volatilizes easily during sintering. It is preferably 170 to 250°C.
  • the conductive ink of the present disclosure may contain other dispersion solvents in addition to the terpene-based solvent, the glycol ether-based solvent, and the glycol ester-based solvent.
  • the content of the dispersion solvent (C) according to the present disclosure is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, and still more preferably 20 to 50% by mass with respect to 100% by mass of the conductive ink. be.
  • the content of the dispersion solvent (C) according to the present disclosure is preferably 15 to 200 parts by mass, more preferably 20 to 120 parts by mass, and even more preferably 25 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). ⁇ 80 parts by mass.
  • the conductive ink of the present disclosure preferably has an appropriate viscosity and contains a binder resin (D) from the viewpoint of facilitating drawing of fine lines with higher accuracy.
  • binder resin (D) examples include vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin, polyester resin, acrylic resin, cellulose resin (ethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate, nitrocellulose and the like, preferably ethyl cellulose), among others, cellulose-based resins are preferred. These may be used alone or in combination of two or more.
  • the weight-average molecular weight of the binder resin (D) is preferably 40,000 to 1,000,000, more preferably 45,000 to 600,000, and still more preferably 50,000 to 400,000 in terms of imparting an appropriate viscosity to the conductive ink.
  • a weight average molecular weight can be measured by a gel permeation chromatography (GPC) method, for example.
  • cellulose resin Commercially available products can be used as the cellulose resin, and specific examples include “Metolose SM-100”, “Metolose 90SH” (manufactured by Shin-Etsu Chemical Co., Ltd.), “Ethocel STD 200", and “Ethocel STD 300” (manufactured by Dow Chemical Co., Ltd.), “SANHEC”, “NEOVISCO MC” (manufactured by Sansho Co., Ltd.) and the like.
  • the content ratio of the binder resin (D) according to the present disclosure is preferably 0.1 to 4.0% by mass with respect to 100% by mass of the conductive ink, from the viewpoint of making it easier to draw fine lines with higher accuracy. It is preferably 0.3 to 3.0% by mass, more preferably 0.5 to 2.0% by mass.
  • the content ratio of the binder resin (D) according to the present disclosure is also preferably 0.5 to 10.0 parts by mass, more preferably 0.8 to 100 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). 7.0 parts by mass, more preferably 1.1 to 4.0 parts by mass.
  • the conductive ink of the present disclosure may contain an antifoaming agent (E) from the viewpoint of suppressing the generation of air bubbles during printing and drying.
  • antifoaming agent (E) examples include polymer-based and silicone-based antifoaming agents, among which polymer-based antifoaming agents are preferred. These may be used alone or in combination of two or more.
  • polymer antifoaming agent examples include "BYK-051N”, “BYK-052N”, “BYK-054", “BYK-055", “BYK-057”, “BYK-354”, “BYK- 392", “BYK-1752”, “BYK-1759”, “BYK-1788", “BYK-1790”, “BYK-1791”, “BYK-1794”, “BYK-1795”, “BYK-1797” , “BYK-1799", "BYK-011", “BYK-012", “BYK-014", “BYK-015", “BYK-1640", “BYK-1680” (above, BYK-Chemie Japan ( Co., Ltd.), “Dappo SN-348”, “Dappo SN-351”, “Dappo SN-354” (manufactured by San Nopco Co., Ltd.), “Disparon OX-881”, Disparon OX-883
  • silicone antifoaming agent examples include “BYK-017”, “BYK-018”, “BYK-019”, “BYK-065", “BYK-066N”, “BYK-067A”, “BYK- 077”, “BYK-081”, “BYK-1650”, “BYK-1719”, “BYK-1724”, “BYK-1730”, “BYK-1770”, “BYK-W9010” (above, BYK-Chemie Japan Co., Ltd.); “KF-96”, “FA-630”, “X-50-1039A”, “KS-7708”, “KS-66”, “KSP-69”, “X -50-1105G”, “KS-602A”, and “KSP-600” (manufactured by Shin-Etsu Silicone Co., Ltd.).
  • the content of the antifoaming agent (E) according to the present disclosure is preferably 0.1 to 10% by mass, more preferably 0.1 to 10% by mass with respect to 100% by mass of the conductive ink, because the volume resistivity tends to be low. 5 to 7.0% by mass, more preferably 1.0 to 5.0% by mass.
  • the content of the antifoaming agent (E) according to the present disclosure is preferably 0.1 to 35.0 parts by mass, more preferably 0.5 parts by mass, with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). 17.5 parts by mass, more preferably 1.0 to 10.0 parts by mass.
  • the viscosity (at 25° C. and shear rate of 10 s ⁇ 1 ) of the conductive ink of the present disclosure is preferably 1 to 200 Pa ⁇ s, more preferably 3 to 175 Pa ⁇ s, still more preferably 5 to 150 Pa ⁇ s.
  • the conductive ink of the present disclosure can be suitably used as a conductive ink for screen printing when it has a viscosity within the above range.
  • the viscosity can be measured using, for example, a rheometer (product name “Physica MCR301”, manufactured by Anton Paar).
  • the conductive ink of the present disclosure includes, for example, plasticizers (adipic plasticizers, maleates, organic phosphates, sulfonamides, polyethers, etc.), leveling agents (silicone leveling agents, fluorine leveling agents, etc.), adhesion agents (imidazole-based adhesion agents, thiazole-based adhesion agents, triazole-based adhesion agents, silane coupling agents, etc.), sintering aids, etc. can be included as appropriate.
  • plasticizers adipic plasticizers, maleates, organic phosphates, sulfonamides, polyethers, etc.
  • leveling agents silicone leveling agents, fluorine leveling agents, etc.
  • adhesion agents imidazole-based adhesion agents, thiazole-based adhesion agents, triazole-based adhesion agents, silane coupling agents, etc.
  • sintering aids etc.
  • aliphatic diamines as the above aliphatic diamine (3) (ethylenediamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, 1,4-butanediamine, 1,5- Pentanediamine, 1,6-hexanediamine, N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl-1,3 -propanediamine, N,N'-dimethyl-1,4-butanediamine, 3-diethylaminopropylamine, 4-dimethylaminobutylamine, etc.) and aromatic diamines (p-phenylenediamine, m-phenylenediamine, o-phenylene diamine, N,N-diethyl-p-phenylenediamine, 2,4-diaminotoluene, 2,6-diami
  • an aliphatic diamine having a primary amino group and/or a tertiary amino group is preferred, an aliphatic diamine having a primary amino group and a tertiary amino group is more preferred, and 3-diethylaminopropylamine is further preferred. preferable.
  • the conductive ink of the present disclosure includes, for example, a step of mixing a metal compound and a protective agent containing an amine to generate a complex, and thermally decomposing the generated complex to obtain surface-modified metal nanoparticles (A); It can be produced through a step of mixing the obtained surface-modified metal nanoparticles (A) with at least a wetting and dispersing agent (B) and a dispersing solvent.
  • metal compounds examples include metal carboxylates (metal formates, metal acetates, metal oxalates, metal malonates, metal benzoates, metal phthalates, etc.), metal halides (metal fluorides , metal chlorides, metal bromides, metal iodides, etc.), metal inorganic acid salts (metal sulfates, metal nitrates, metal carbonates, etc.) can be used.
  • metal carboxylates metal formates, metal acetates, metal oxalates, metal malonates, metal benzoates, metal phthalates, etc.
  • metal halides metal fluorides , metal chlorides, metal bromides, metal iodides, etc.
  • metal inorganic acid salts metal sulfates, metal nitrates, metal carbonates, etc.
  • metal oxalates are preferable because they easily generate metals by decomposition and are less likely to produce impurities other than metals.
  • the amount of the protective agent (preferably amine) used is preferably 1 to 50 mol with respect to 1 mol of the metal atom of the metal compound, in terms of imparting sufficient dispersibility to the surface-modified metal nanoparticles (A). , more preferably 10 to 40 mol, still more preferably 15 to 35 mol.
  • the reaction between the metal compound and the protective agent for forming the complex may be carried out in the presence of a reaction solvent or in the absence of a reaction solvent.
  • a reaction solvent for example, an alcohol solvent (preferably an aliphatic alcohol) having 3 or more carbon atoms can be used.
  • the amount of the reaction solvent used is preferably 120 to 1000 parts by mass, more preferably 130 to 800 parts by mass, and even more preferably 150 to 500 parts by mass with respect to 100 parts by mass of the metal compound.
  • the reaction to generate the above complex can be carried out, for example, at a reaction temperature of 5 to 40°C and a reaction time of 30 minutes to 3 hours.
  • the above thermal decomposition may be carried out in the presence of a reaction solvent similar to the above reaction solvent.
  • the thermal decomposition temperature is, for example, preferably 80 to 120° C., more preferably 100 to 110° C.
  • the thermal decomposition time is, for example, 10 minutes to 5 hours.
  • the thermal decomposition of the complex can be carried out in an air atmosphere or an inert gas (nitrogen, argon, etc.) atmosphere.
  • the surface-modified metal nanoparticles (A) obtained by the above pyrolysis may be washed by centrifugation or decantation.
  • the manufacturing method of the electronic device of the present disclosure includes a step of applying the conductive ink of the present disclosure to a substrate by a printing method (dispenser printing method, mask printing method, screen printing method, inkjet printing method, etc.), and a step of sintering. .
  • the conductive ink since the conductive ink is used, sintering is possible at a low temperature (for example, 60° C. or higher, 100° C. or higher, or 120° C. or higher).
  • the upper limit of the sintering temperature is not particularly limited, and may be, for example, 500°C, 300°C, 200°C, or 150°C.
  • the sintering time is, for example, 0.5 to 3 hours, preferably 0.5 to 2 hours, more preferably 0.5 to 1 hour.
  • the substrate may be a glass substrate, a heat-resistant plastic substrate such as a polyimide film, or a polyethylene terephthalate (PET) film.
  • a heat-resistant plastic substrate such as a polyimide film, or a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • General-purpose plastic substrates with low heat resistance such as polyester films such as polyethylene naphthalate (PEN) films, and polyolefin films such as polypropylene, can also be suitably used.
  • Examples of electronic devices obtained by the electronic device manufacturing method of the present invention include liquid crystal displays, organic EL displays, field emission displays (FED), IC cards, IC tags, solar cells, LED elements, organic transistors, capacitors (capacitors ), electronic paper, flexible batteries, flexible sensors, membrane switches, touch panels, and EMI shields.
  • the surface-modified metal nanoparticles (A), wetting and dispersing agent (B), dispersing solvent (C), binder resin (D) and antifoaming agent (E) used in Examples and Comparative Examples are as follows.
  • Silver oxalate (molecular weight: 303.78) was obtained from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). A 500 mL flask was charged with 40.0 g (0.1317 mol) of the above silver oxalate, and 60 g of n-butanol was added to prepare an n-butanol slurry of silver oxalate.
  • n-butylamine (molecular weight: 73.14, reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 115.58 g (1.5802 mol), 2-ethylhexylamine (molecular weight: 129.25, Fujifilm Sum Kojun Chemical Co., Ltd. reagent) 51.06 g (0.3950 mol) and n-octylamine (molecular weight: 129.25, Tokyo Chemical Industry Co., Ltd. reagent) 17.02 g (0.1317 mol) amine mixture
  • the liquid was added dropwise. After dropping, the mixture was stirred at 30° C.
  • the mixture was heated at 110° C. for 1 hour to thermally decompose the silver oxalate-amine complex to obtain a dark blue suspension containing surface-modified silver nanoparticles.
  • the resulting suspension is cooled, 120 g of methanol (reagent manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) is added and stirred, and then the surface-modified silver nanoparticles are precipitated by centrifugation. Liquid was removed.
  • 120 g of methanol is added to the surface-modified silver nanoparticles and stirred, then the surface-modified silver nanoparticles are precipitated by centrifugation, the supernatant is removed, and dipropylene glycol n-butyl ether ( Reagent manufactured by Dow Chemical Co., Ltd.) (120 g) was added and stirred, then the surface-modified silver nanoparticles were sedimented by centrifugation, and the supernatant was removed.
  • dipropylene glycol n-butyl ether Reagent manufactured by Dow Chemical Co., Ltd.
  • the wet state surface-modified silver nanoparticles 1 were observed using a scanning electron microscope ("JSM-6700F", manufactured by JEOL Ltd.), and 10 arbitrarily selected silver nanoparticles were observed in the SEM photograph.
  • the particle diameters of the particles were determined, and the average value thereof was taken as the average particle diameter.
  • the average particle size (primary particle size) of the silver nanoparticle portion in the surface-modified silver nanoparticles 1 was about 50 nm.
  • BYK106 polymer salt having an acidic group, amine value 74 mgKOH / g, acid value 132 mgKOH / g, trade name "DISPERBYK-106", manufactured by BYK Chemie Japan Co., Ltd.
  • BYK180 copolymer alkylol containing an acid group Ammonium salt, amine value 94 mgKOH/g, acid value 94 mgKOH/g, trade name “DISPERBYK-180”, BYK-Chemie Japan Co., Ltd.
  • BYK102 copolymer having an acidic group, no amine value, acid value 101 mgKOH/g, product Name “DISPERBYK-102”, BYK-Chemie Japan Co., Ltd.
  • BYK118 Linear polymer having pigment affinity group, no amine value, acid value 36 mgKOH / g, trade name “DISPERBYK-118”, BYK-Chemie Japan Co., Ltd.
  • BYK103 A copolymer with an affinity for pigments, no amine value, no acid value, trade name “DISPERBYK-103”, BYK Chemie Japan Co., Ltd.
  • BYK111 A copolymer containing an acid group, amine No value, acid value 129 mgKOH/g, trade name “DISPERBYK-111” BYK-Chemie Japan Co., Ltd.
  • BYK145 Phosphate ester salt of copolymer with affinity for pigment, amine value 71 mgKOH/g, acid value 76 mgKOH/g, trade name “DISPERBYK-145”, BYK-Chemie Japan Co., Ltd.
  • BYK2155 Block copolymer with affinity for pigment, amine value 48 mgKOH/g, no acid value, trade name “DISPERBYK-2155” , BYK-Chemie Japan Co., Ltd.
  • ⁇ Dispersion solvent (C)> ⁇ THA70 A mixture of 1,8-terpine-1-acetate, 1,8-terpine-8-acetate and 1,8-terpine-1,8-diacetate, boiling point 223°C, trade name “Tersolve THA-70” , manufactured by Nippon Terpene Chemical Co., Ltd.
  • DPNB dipropylene glycol mono-n-butyl ether, boiling point 230 ° C., manufactured by Dow Chemical Company
  • ⁇ Antifoaming agent (E)> ⁇ BYK054: Polymer antifoaming agent, trade name “BYK-054”, manufactured by BYK-Chemie Japan Co., Ltd.
  • Example 1 (Preparation of silver ink) The surface-modified silver nanoparticles 1, BYK106, THA70, DPNB, and EC300 were blended so that the content ratio (% by mass) shown in Table 1 below was obtained, and stirred and kneaded (2 minutes x 3 times) to give a black-brown color. A silver ink was prepared. The stirring and kneading was performed using a rotation-revolution type kneader (product name: "Mazerustar KKK2508", manufactured by Kurashiki Boseki Co., Ltd.).
  • Examples 2 to 16 Comparative Examples 1 and 2 A silver ink was prepared in the same manner as in Example 1, except that each component was blended so as to have the content ratio (% by mass) shown in Tables 1 and 2 below.
  • the silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were evaluated for viscosity, electrical conductivity of the sintered body, number of aggregates, printability, continuous printability, storage stability, and defoaming effect by the following methods. evaluated.
  • viscosity The viscosities (25° C., shear rate 10 s ⁇ 1 ) of the silver inks prepared in Examples and Comparative Examples were measured using a rheometer (product name “Physica MCR301”, manufactured by Anton Paar).
  • the silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were applied onto a glass plate to form a coating film. Immediately after forming the coating film, the coating film was sintered in a blower drying furnace at 120° C. for 30 minutes to obtain a sintered body having a thickness of about 4 ⁇ m. The conductivity of the obtained sintered body was evaluated by measuring the volume resistivity using a four-probe method (Loresta GP MCP-T610).
  • the conductivity evaluation criteria are as follows. ⁇ (very good): 25 ⁇ cm or less ⁇ (good): over 25 ⁇ cm, 50 ⁇ cm or less ⁇ (defective): over 50 ⁇ cm
  • the silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were applied onto a glass plate to form a coating film. Immediately after forming the coating film, the coating film was sintered in a blower drying furnace at 120° C. for 30 minutes to obtain a sintered body having a thickness of about 4 ⁇ m. Regarding the obtained sintered body, the number of aggregates of 15 ⁇ m or more (per 1 cm 2 ) was evaluated by observation using an optical microscope.
  • Evaluation criteria for smoothness are as follows. ⁇ (good): 20 or less ⁇ (slightly good): more than 20 and 100 or less ⁇ (poor): more than 100
  • the printability evaluation criteria are as follows. ⁇ (good): can be printed with high accuracy by screen printing ⁇ (somewhat good): can be printed by screen printing, but bleeding and disconnection are observed ⁇ (poor): cannot be printed by screen printing
  • Evaluation criteria for continuous printability are as follows. ⁇ (Good): The number of times that printing was possible in succession was 40 or more ⁇ (Bad): The number of times that printing was possible in succession was less than 40
  • Storage stability The viscosities of the silver inks prepared in Examples and Comparative Examples were measured after storage at 5° C. for 20 weeks. Storage stability was evaluated by the amount of increase in viscosity after storage relative to viscosity before storage.
  • the evaluation criteria for storage stability are as follows. ⁇ (good): the amount of increase in viscosity is less than 20% ⁇ (slightly good): the amount of increase in viscosity is 20% or more and 50% or less ⁇ (poor): the amount of increase in viscosity is more than 50%
  • the silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were applied onto a glass plate to form a coating film. Immediately after forming the coating film, the coating film was sintered in a blower drying furnace at 120° C. for 30 minutes to obtain a sintered body having a thickness of about 4 ⁇ m. The defoaming effect of the obtained sintered body was evaluated by observing the number of pores (per 1 cm 2 ) of 15 ⁇ m or more using an optical microscope.
  • the evaluation criteria for the defoaming effect are as follows. ⁇ (very good): the number of holes is 0 ⁇ (good): the number of holes is 1 to 2 ⁇ (slightly good): the number of holes is more than 25 and not more than 25 ⁇ (poor): holes is greater than 25
  • Example 1 to 16 were 0 to ⁇ , while Comparative Examples 1 and 2 were x.
  • Example 2 and Comparative Example 1 were evaluated as ⁇ .
  • the viscosity of Example 2 was 73.8 Pa ⁇ s
  • Example 6 was 113.4 Pa ⁇ s
  • Comparative Example 1 was 78.0 a ⁇ s.
  • the average primary particle size of the surface-modified metal nanoparticles (A) is 0.5 to 100 nm (preferably 0.5 to 80 nm, more preferably 1.0 to 65 nm, and even more preferably 1.0 to 50 nm).
  • the amine value of the wetting and dispersing agent (B) is 0 to 145 mgKOH/g (preferably 30 to 100 mgKOH/g, more preferably 40 to 100 mgKOH/g, still more preferably 50 to 100 mgKOH/g, particularly preferably 70 to 90 mgKOH/g), the conductive ink according to appendix 1 or 2.
  • the wetting and dispersing agent (B) has an acid value of 4 to 185 mgKOH/g (preferably 40 to 145 mgKOH/g, more preferably 50 to 145 mgKOH/g, still more preferably 100 to 145 mgKOH/g, particularly preferably 110 to 135 mgKOH/g), the conductive ink according to appendix 1 or 2.
  • the amine value of the wetting and dispersing agent (B) is 0 to 145 mgKOH/g (preferably 30 to 100 mgKOH/g, more preferably 40 to 100 mgKOH/g, still more preferably 50 to 100 mgKOH/g, particularly preferably 70 to 90 mgKOH/g) and an acid value of 4 to 185 mgKOH/g (preferably 40 to 145 mgKOH/g, more preferably 50 to 145 mgKOH/g, more preferably 100 to 145 mgKOH/g, particularly preferably 110 to 135 mgKOH / g), the conductive ink according to Appendix 1 or 2.
  • the difference between the oxidation value and the amine value is 5 mgKOH/g or more (preferably 10 mgKOH/g or more, more preferably 30 mgKOH/g or more, still more preferably 45 mgKOH/g or more), and 150 mgKOH /g or less (preferably 100 mgKOH/g or less, more preferably 70 mgKOH/g or less).
  • the amines in the surface-modified metal nanoparticles (A) are an aliphatic monoamine (1) having a total carbon number of 6 or more and an aliphatic monoamine (2) having a total carbon number of 5 or less and/or the total carbon number 7.
  • the aliphatic monoamine (1) is an alkyl monoamine having a linear alkyl group with a total carbon number of 6 to 18 (preferably 6 to 16, more preferably 6 to 12), and / or total carbon
  • the aliphatic monoamine (2) is an alkyl monoamine having a linear or branched alkyl group with a total carbon number of 2 to 5 (preferably 3 to 5, more preferably 4 to 5).
  • Appendix 13 The conductive ink according to any one of Appendices 1 to 12, wherein the wetting and dispersing agent (B) is a compound having an acidic group.
  • Appendix 14 The conductive ink according to any one of Appendices 1 to 13, wherein the wetting and dispersing agent (B) is a polymer salt.
  • Appendix 15 The content of the wetting and dispersing agent (B) is 0.5 to 5.0% by mass (preferably 0.7 to 4.0% by mass, more preferably 1.0 to 3.0% by mass ), the conductive ink according to any one of appendices 1 to 14.
  • the content of the wetting and dispersing agent (B) is 0.5 to 25.0 parts by mass (preferably 0.8 to 20.0 parts by mass) with respect to 100 parts by mass of the surface-modified metal nanoparticles (A) 16 parts by weight, more preferably 1.0 to 15.0 parts by weight).
  • Appendix 18 The conductive ink according to any one of Appendices 1 to 17, wherein the content of the solvent having a boiling point of less than 130° C. is 20% by mass or less with respect to the total amount of the dispersion solvent (C).
  • the dispersion solvent (C) has the following formula (1) 20.
  • the dispersion solvent (C) is represented by the following formula (2) 20.
  • the content ratio of the wetting and dispersing agent (C) is 15 to 200 parts by mass (preferably 20 to 120 parts by mass, more preferably 25 to 200 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). 80 parts by mass), the conductive ink according to any one of appendices 1 to 23.
  • Appendix 27 The conductive ink according to Appendix 25 or 26, wherein the binder resin (D) has a weight average molecular weight of 40,000 to 1,000,000 (preferably 45,000 to 600,000, more preferably 50,000 to 400,000).
  • the content of the wetting and dispersing agent (D) is 0.1 to 4.0% by mass (preferably 0.3 to 3.0% by mass, more preferably 0.5 to 2.0% by mass ), the conductive ink according to any one of Appendices 25 to 27.
  • the content of the wetting and dispersing agent (D) is 0.5 to 10.0 parts by mass (preferably 0.8 to 7.0 parts by mass) with respect to 100 parts by mass of the surface-modified metal nanoparticles (A) parts by weight, more preferably 1.1 to 4.0 parts by weight).
  • the content of the antifoaming agent (E) is 0.1 to 10% by mass (preferably 0.5 to 7.0% by mass, more preferably 1.0 to 5.0% by mass). 33.
  • the content of the wetting and dispersing agent (E) is 0.1 to 35.0 parts by mass (preferably 0.5 to 17.5 parts by mass) with respect to 100 parts by mass of the surface-modified metal nanoparticles (A) parts by weight, more preferably 1.0 to 10.0 parts by weight).
  • Appendix 35 The conductive ink according to any one of Appendices 1 to 34, further comprising a sintering aid.
  • Appendix 36 The conductive ink according to Appendix 35, wherein the sintering aid is an aliphatic diamine having a primary amino group and/or a tertiary amino group.
  • Appendix 37 The conductive ink according to Appendix 35, wherein the aliphatic diamine is 3-diethylaminopropylamine.
  • Appendix 38 Any one of Appendices 1 to 37, wherein the viscosity at 25°C and a shear rate of 10 s -1 is 1 to 200 Pa s (preferably 3 to 175 Pa s, more preferably 5 to 150 Pa s).
  • Appendix 39 A method of manufacturing an electronic device, comprising the steps of applying the conductive ink according to any one of Appendices 1 to 38 on a substrate, and sintering.
  • Appendix 40 An electronic device comprising a sintered body of the conductive ink according to any one of Appendices 1 to 38 on a substrate.
  • the inkjet head cleaning liquid of the present disclosure after cleaning the inkjet head, it is possible to check the clogged state of the ejection port without actually trying to eject the inkjet ink, and the cleaning of the inkjet head becomes easy, and the cleaning time is reduced. can save money. Therefore, the present disclosure has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

An electroconductive ink is provided in which metal nanoparticles are inhibited from aggregating. The electroconductive ink comprises surface-modified metal nanoparticles (A) coated with a protectant comprising one or more amines, a wetting dispersant (B), and a dispersing solvent (C). The wetting dispersant (B) preferably has an amine value of 3-145 mgKOH/g and an acid value of 4-185 mgKOH/g. The amines in the surface-modified metal nanoparticles (A) preferably comprise: an aliphatic monoamine (1) having six or more carbon atoms in total; and an aliphatic monoamine (2) having five or more carbon atoms in total and/or an aliphatic diamine (3) having eight or less carbon atoms in total.

Description

導電性インクconductive ink
 本開示は、導電性インクに関する。本願は、2021年8月10日に日本に出願した特願2021-130786号の優先権を主張し、その内容をここに援用する。 The present disclosure relates to conductive ink. This application claims the priority of Japanese Patent Application No. 2021-130786 filed in Japan on August 10, 2021, the content of which is incorporated herein.
 銀ナノ粒子等の金属ナノ粒子は、低温焼結が可能であるため、プラスチック基板上に電極や配線等の電子部品を形成する用途に用いられている。特許文献1には、銀ナノ粒子の表面を、アミンを含む保護剤で被覆することで、溶剤中において良好な分散安定性が得られ、当該銀ナノ粒子を脂環式炭化水素やアルコール等を含む溶媒に分散させて得られるインクが開示されている。 Because metal nanoparticles such as silver nanoparticles can be sintered at low temperatures, they are used to form electronic components such as electrodes and wiring on plastic substrates. In Patent Document 1, by coating the surface of silver nanoparticles with a protective agent containing an amine, good dispersion stability in a solvent can be obtained, and the silver nanoparticles are treated with alicyclic hydrocarbons, alcohols, etc. Disclosed is an ink obtained by dispersing in a solvent containing
国際公開第2014/021270号WO2014/021270
 しかし、引用文献1のインクには、銀ナノ粒子が凝集し易いことから凝集物がスクリーン版等の目詰まりの原因となって連続印刷が困難であり、また、保存中の凝集沈殿物が再分散しにくいことから保存安定性に劣る、といった問題があった。 However, in the ink of Cited Document 1, since the silver nanoparticles tend to aggregate, the aggregates cause clogging of the screen plate, etc., making continuous printing difficult. Since it is difficult to disperse, there is a problem of poor storage stability.
 従って、本開示の目的は、金属ナノ粒子の凝集が抑制された導電性インクを提供することにある。 Therefore, an object of the present disclosure is to provide a conductive ink in which aggregation of metal nanoparticles is suppressed.
 本開示の発明者らは、上記課題を解決するため鋭意検討した結果、アミンを含む保護剤で表面が被覆された構成を有する金属ナノ粒子を、分散剤とともに分散溶剤に分散させて得られるインクが、金属ナノ粒子の凝集が起こりにくいことを見出した。本開示は、これらの知見に基づいて完成されたものである。 The inventors of the present disclosure have made intensive studies to solve the above problems, and as a result, an ink obtained by dispersing metal nanoparticles having a structure in which the surface is coated with a protective agent containing an amine in a dispersion solvent together with a dispersant. However, it was found that aggregation of metal nanoparticles hardly occurred. The present disclosure has been completed based on these findings.
 すなわち、本開示は、アミンを含む保護剤で被覆された表面修飾金属ナノ粒子(A)と、湿潤分散剤(B)と、分散溶剤(C)とを含有する導電性インクを提供する。 That is, the present disclosure provides a conductive ink containing surface-modified metal nanoparticles (A) coated with a protective agent containing an amine, a wetting and dispersing agent (B), and a dispersing solvent (C).
 上記湿潤分散剤(B)のアミン価が3~145mgKOH/gであり、酸価が4~185mgKOH/gであることが好ましい。 The wetting and dispersing agent (B) preferably has an amine value of 3 to 145 mgKOH/g and an acid value of 4 to 185 mgKOH/g.
 上記表面修飾金属ナノ粒子(A)における上記アミンは、炭素数6以上の脂肪族モノアミン(1)と、炭素数5以下の脂肪族モノアミン(2)及び/又は炭素数8以下の脂肪族ジアミン(3)とを含むことが好ましい。 The amines in the surface-modified metal nanoparticles (A) include an aliphatic monoamine (1) having 6 or more carbon atoms, an aliphatic monoamine (2) having 5 or less carbon atoms and/or an aliphatic diamine having 8 or less carbon atoms ( 3) is preferably included.
 上記脂肪族モノアミン(1)は、炭素数6~18の直鎖状アルキル基を有するアルキルモノアミン、及び/又は、炭素数6~16の分岐鎖状アルキル基を有するアルキルモノアミンであることが好ましい。 The above aliphatic monoamine (1) is preferably an alkyl monoamine having a linear alkyl group with 6 to 18 carbon atoms and/or an alkyl monoamine having a branched alkyl group with 6 to 16 carbon atoms.
 上記脂肪族モノアミン(2)は、炭素数2~5の直鎖状又は分岐鎖状のアルキル基を有するアルキルモノアミンであることが好ましい。 The above aliphatic monoamine (2) is preferably an alkyl monoamine having a linear or branched alkyl group with 2 to 5 carbon atoms.
 上記表面修飾金属ナノ粒子(A)は表面修飾銀ナノ粒子であることが好ましい。 The surface-modified metal nanoparticles (A) are preferably surface-modified silver nanoparticles.
 上記湿潤分散剤(B)は、酸性基を有することが好ましい。 The wetting and dispersing agent (B) preferably has an acidic group.
 上記湿潤分散剤(B)の含有割合は、導電性インク100質量%に対して、0.5~5.0質量%であることが好ましい。 The content of the wetting and dispersing agent (B) is preferably 0.5 to 5.0% by mass with respect to 100% by mass of the conductive ink.
 上記導電性インクは、更に、バインダー樹脂(D)を含有することが好ましい。 The conductive ink preferably further contains a binder resin (D).
 上記導電性インクは、更に、消泡剤(E)を含有してもよい。 The conductive ink may further contain an antifoaming agent (E).
 上記消泡剤(E)は、ポリマー系消泡剤であることが好ましい。 The antifoaming agent (E) is preferably a polymer antifoaming agent.
 上記消泡剤(E)の含有割合は、導電性インク100質量%に対して、0.1~10質量%であることが好ましい。 The content of the antifoaming agent (E) is preferably 0.1 to 10% by mass with respect to 100% by mass of the conductive ink.
 上記導電性インクは、更に、焼結助剤を含有することが好ましい。 The conductive ink preferably further contains a sintering aid.
 上記焼結助剤は、第一級アミノ基及び/又は第三級アミノ基を有する脂肪族ジアミンであることが好ましい。 The sintering aid is preferably an aliphatic diamine having a primary amino group and/or a tertiary amino group.
 上記脂肪族ジアミンは、3-ジエチルアミノプロピルアミンであることが好ましい。 The aliphatic diamine is preferably 3-diethylaminopropylamine.
 上記導電性インクの、25℃、せん断速度10s-1における粘度は、1~200Pa・sであることが好ましい。 The conductive ink preferably has a viscosity of 1 to 200 Pa·s at 25° C. and a shear rate of 10 s −1 .
 本開示は、また、基板上に、上記導電性インクを、スクリーン印刷法により塗布する工程、及び焼結する工程を含む、電子デバイスの製造方法を提供する。 The present disclosure also provides a method of manufacturing an electronic device, including a step of applying the conductive ink on a substrate by screen printing and a step of sintering.
 本開示は、また、上記導電性インクの焼結体を備えた、電子デバイスを提供する。 The present disclosure also provides an electronic device comprising the sintered body of the conductive ink.
 本開示の導電性インクは上記構成を有するので、金属ナノ粒子の凝集が起こりにくい。そのため、印刷によりプラスチック基板上に電極や配線等を形成して電子デバイスを製造する用途に好適に用いることができる。 Since the conductive ink of the present disclosure has the above configuration, aggregation of metal nanoparticles is less likely to occur. Therefore, it can be suitably used for manufacturing an electronic device by forming electrodes, wiring, etc. on a plastic substrate by printing.
[導電性インク]
 本開示の導電性インクは、アミンを含む保護剤で被覆された表面修飾金属ナノ粒子(A)を含有し、更に、湿潤分散剤(B)と、分散溶剤(C)とを含有する。導電性インクとは、塗布し焼結した後導電性を発揮し得るインクである。
[Conductive ink]
The conductive ink of the present disclosure contains surface-modified metal nanoparticles (A) coated with an amine-containing protective agent, and further contains a wetting and dispersing agent (B) and a dispersing solvent (C). A conductive ink is an ink that can exhibit conductivity after being applied and sintered.
<表面修飾金属ナノ粒子(A)>
 本開示に係る表面修飾金属ナノ粒子(A)は、金属ナノ粒子の表面が、アミンを含む保護剤で被覆された構成、より詳細には、金属ナノ粒子表面にアミンの非共有電子対が電気的に配位した構成を有する。
<Surface-modified metal nanoparticles (A)>
The surface-modified metal nanoparticles (A) according to the present disclosure have a structure in which the surface of the metal nanoparticles is coated with a protective agent containing an amine. It has a physically coordinated configuration.
 本開示に係る表面修飾金属ナノ粒子の一次平均粒子径は、0.5~100nmが好ましく、より好ましくは0.5~80nm、更に好ましくは1.0~65nm、特に好ましくは1.0~50nmである。 The surface-modified metal nanoparticles according to the present disclosure preferably have a primary average particle size of 0.5 to 100 nm, more preferably 0.5 to 80 nm, even more preferably 1.0 to 65 nm, and particularly preferably 1.0 to 50 nm. is.
 上記金属ナノ粒子を構成する金属としては、導電性を有する金属が挙げられ、例えば、金、銀、銅、ニッケル、アルミニウム、ロジウム、コバルト、ルテニウム、プラチナ、パラジウム、クロム、インジウムなどが挙げられる。上記金属ナノ粒子としては、中でも、100℃程度の温度で相互に融着し、耐熱性の低い汎用プラスチック基板上でも導電性を有する電子部品等の接合部材を形成することができる点で、銀ナノ粒子が好ましい。 Examples of metals constituting the metal nanoparticles include metals having conductivity, such as gold, silver, copper, nickel, aluminum, rhodium, cobalt, ruthenium, platinum, palladium, chromium, and indium. Among the metal nanoparticles, silver is particularly preferred because it can fuse with each other at a temperature of about 100° C. and can form a bonding member such as an electronic component having conductivity even on a general-purpose plastic substrate with low heat resistance. Nanoparticles are preferred.
 上記アミンとしては、例えば、第一級アミノ基、第二級アミノ基及び第三級アミノ基から選択される少なくとも1種のアミノ基を有する脂肪族モノアミン、又は2つ以上有する多価アミン(ジアミン等)が挙げられる。 Examples of the amine include aliphatic monoamines having at least one amino group selected from primary amino groups, secondary amino groups and tertiary amino groups, or polyvalent amines having two or more (diamine etc.).
 上記アミンは、総炭素数6以上の脂肪族モノアミン(1)、総炭素数5以下の脂肪族モノアミン(2)及び総炭素数が8以下の脂肪族ジアミン(3)から選択される少なくとも1種を含むことが好ましく、脂肪族モノアミン(1)と、脂肪族モノアミン(2)及び/又は脂肪族ジアミン(3)とを含むことがより好ましい。 The amine is at least one selected from aliphatic monoamines (1) having a total carbon number of 6 or more, aliphatic monoamines having a total carbon number of 5 or less (2), and aliphatic diamines having a total carbon number of 8 or less (3). and more preferably containing an aliphatic monoamine (1) and an aliphatic monoamine (2) and/or an aliphatic diamine (3).
 上記脂肪族モノアミン(1)としては、金属ナノ粒子の凝集を抑制でき、焼結時における除去が容易である点から、総炭素数6~18(より好ましくは6~16、更に好ましくは6~12)の直鎖状アルキル基を有するアミン化合物が好ましく、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等が挙げられる。 The aliphatic monoamine (1) has a total carbon number of 6 to 18 (more preferably 6 to 16, more preferably 6 to 12) amine compounds having a straight-chain alkyl group are preferred, for example, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexa decylamine, heptadecylamine, octadecylamine and the like.
 また、上記脂肪族モノアミン(1)としては、立体的因子により、少量であっても分散性を付与できる点から、総炭素数6~16(より好ましくは6~10)の分岐鎖状アルキル基を有するアミン化合物であってもよく、例えば、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等が挙げられる。 In addition, as the aliphatic monoamine (1), a branched alkyl group having a total carbon number of 6 to 16 (more preferably 6 to 10) can be imparted with dispersibility even in a small amount due to steric factors. , such as isohexylamine, 2-ethylhexylamine, tert-octylamine, and the like.
 上記脂肪族モノアミン(1)は、また、例えば、シクロアルキル基を有する第一級アミン(シクロヘキシルアミン等)、アルケニル基を有する第一級アミン等(オレイルアミン等)、直鎖状アルキル基を有する第二級アミン(N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-プロピル-N-ブチルアミン等)、分岐鎖状アルキル基を有する第二級アミン(N,N-ジイソヘキシルアミン、N,N-ジ(2-エチルヘキシル)アミン等)、分岐鎖状アルキル基を有する第三級アミン(直鎖状アルキル基を有する第三級アミン(トリブチルアミン、トリヘキシルアミン等)、トリイソヘキシルアミン、トリ(2-エチルヘキシル)アミン等)等であってもよい。 The aliphatic monoamine (1) also includes, for example, primary amines having a cycloalkyl group (cyclohexylamine, etc.), primary amines having an alkenyl group, etc. (oleylamine, etc.), primary amines having a linear alkyl group, etc. Secondary amines (N,N-dipropylamine, N,N-dibutylamine, N,N-dipentylamine, N,N-dihexylamine, N,N-dipeptylamine, N,N-dioctylamine, N,N- dinonylamine, N,N-didecylamine, N,N-diundecylamine, N,N-didodecylamine, N-propyl-N-butylamine, etc.), secondary amines having branched alkyl groups (N,N- diisohexylamine, N,N-di(2-ethylhexyl)amine, etc.), tertiary amines having branched alkyl groups (tertiary amines having linear alkyl groups (tributylamine, trihexylamine, etc.) ), triisohexylamine, tri(2-ethylhexyl)amine, etc.).
 上記脂肪族モノアミン(2)としては、高い配位能を有し、かつ低温焼結でも短時間で除去できる点から、総炭素数2~5(より好ましくは3~5、更に好ましくは4~5)の直鎖状又は分岐鎖状アルキル基を有するアミン化合物が好ましい。 The aliphatic monoamine (2) has a total carbon number of 2 to 5 (more preferably 3 to 5, more preferably 4 to 5) Amine compounds having a linear or branched alkyl group are preferred.
 上記脂肪族モノアミン(2)の具体例としては、例えば、直鎖状又は分岐鎖状アルキル基を有する第一級アミン(エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等)、直鎖状又は分岐鎖状アルキル基を有する第二級アミン(N,N-ジメチルアミン、N,N-ジエチルアミン、N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン等)等が挙げられる。 Specific examples of the aliphatic monoamine (2) include primary amines having a linear or branched alkyl group (ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec- butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine, etc.), secondary amines having linear or branched alkyl groups (N,N-dimethylamine, N,N-diethylamine, N -methyl-N-propylamine, N-ethyl-N-propylamine, etc.).
 上記脂肪族ジアミン(3)としては、2つのアミノ基の配位能が異なる結果、配位の複雑化を抑制できる点で、好ましくは第一級アミノ基及び第三級アミノ基を有する脂肪族ジアミン(より好ましくはアルキレンジアミン)であり、例えば、2-ジメチルアミノエチルアミン、2-ジエチルアミノエチルアミン、3-ジメチルアミノプロピルアミン、3-ジエチルアミノプロピルアミン、4-ジメチルアミノブチルアミン、4-ジエチルアミノブチルアミン、6-ジメチルアミノヘキシルアミン等が挙げられる。 As the above-mentioned aliphatic diamine (3), as a result of the difference in coordinating ability of the two amino groups, the complication of coordination can be suppressed. diamines (more preferably alkylenediamines), such as 2-dimethylaminoethylamine, 2-diethylaminoethylamine, 3-dimethylaminopropylamine, 3-diethylaminopropylamine, 4-dimethylaminobutylamine, 4-diethylaminobutylamine, 6- dimethylaminohexylamine and the like.
 前記脂肪族ジアミン(3)は、第一級アミノ基を2つ有するジアミン(エチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,5-ジアミノ-2-メチルペンタン等)、第二級アミノ基を2つ有するジアミン(N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン等)、第三級アミノ基を2つ有するジアミン(N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラエチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,4-ブタンジアミン、N,N,N’,N’-テトラエチル-1,4-ブタンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン等)であってもよい。 The aliphatic diamine (3) is a diamine having two primary amino groups (ethylenediamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, 1,4-butanediamine, 1 ,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,5-diamino-2-methylpentane, etc.), diamines having two secondary amino groups (N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl-1,3-propanediamine, N,N'- Dimethyl-1,4-butanediamine, N,N'-diethyl-1,4-butanediamine, N,N'-dimethyl-1,6-hexanediamine, etc.), diamines having two tertiary amino groups ( N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, N,N,N',N'-tetramethyl-1,3-propanediamine, N,N , N′,N′-tetraethyl-1,3-propanediamine, N,N,N′,N′-tetramethyl-1,4-butanediamine, N,N,N′,N′-tetraethyl-1, 4-butanediamine, N,N,N',N'-tetramethyl-1,6-hexanediamine, etc.).
 上記脂肪族モノアミン(1)、上記脂肪族モノアミン(2)及び上記脂肪族ジアミン(3)は、それぞれ、単独で用いてもよく2種以上を用いてもよい。 The aliphatic monoamine (1), the aliphatic monoamine (2), and the aliphatic diamine (3) may be used alone or in combination of two or more.
 本開示に係るアミンは、上記脂肪族モノアミン(1)、上記脂肪族モノアミン(2)及び上記脂肪族ジアミン(3)以外に、他のアミン化合物を含有していてもよいが、他のアミン化合物の含有量は、本開示に係るアミン100質量%に対して、40.0質量%以下が好ましく、より好ましくは20.0質量%以下、更に好ましくは10.0質量%以下、特に好ましくは0質量%である。 The amine according to the present disclosure may contain other amine compounds in addition to the aliphatic monoamine (1), the aliphatic monoamine (2), and the aliphatic diamine (3). The content of is preferably 40.0% by mass or less, more preferably 20.0% by mass or less, still more preferably 10.0% by mass or less, and particularly preferably 0% by mass with respect to 100% by mass of the amine according to the present disclosure. % by mass.
 本開示に係る表面修飾金属ナノ粒子(A)の含有割合は、導電性インク100質量%に対して、30~90質量%が好ましく、より好ましくは40~85質量%、更に好ましくは50~80質量%である。 The content of the surface-modified metal nanoparticles (A) according to the present disclosure is preferably 30 to 90% by mass, more preferably 40 to 85% by mass, and even more preferably 50 to 80% by mass with respect to 100% by mass of the conductive ink. % by mass.
<湿潤分散剤(B)>
 本開示に係る湿潤分散剤(B)は、低極性の分散溶剤に適用し易い湿潤分散剤であり、例えば界面活性剤である。
<Wetting and dispersing agent (B)>
The wetting and dispersing agent (B) according to the present disclosure is a wetting and dispersing agent that can be easily applied to a low-polar dispersion solvent, such as a surfactant.
 湿潤分散剤(B)は、塩基性の極性官能基及び/又は酸性の極性官能基を有する化合物であることが好ましい。前記塩基性の極性官能基としては、例えば、アミノ基、イミノ基、アミド基、イミド基等が挙げられる。塩基性の極性官能基は、表面修飾金属ナノ粒子(A)に付着して、表面修飾金属ナノ粒子(A)に分散性を付与する効果を発揮する。前記酸性の極性官能基はいわゆる酸性基であり、例えば、リン酸基等が挙げられる。前記酸性の極性官能基は低極性の分散溶剤に対して親和性を示す。湿潤分散剤(B)は、塩を形成していてもよい。つまり、湿潤分散剤(B)は、ポリマー塩であってもよい。 The wetting and dispersing agent (B) is preferably a compound having a basic polar functional group and/or an acidic polar functional group. Examples of the basic polar functional group include an amino group, an imino group, an amide group, an imide group and the like. The basic polar functional group adheres to the surface-modified metal nanoparticles (A) and exhibits the effect of imparting dispersibility to the surface-modified metal nanoparticles (A). The acidic polar functional group is a so-called acidic group, and examples thereof include a phosphate group. The acidic polar functional group exhibits affinity for a low-polar dispersing solvent. The wetting and dispersing agent (B) may form a salt. That is, the wetting and dispersing agent (B) may be a polymer salt.
 湿潤分散剤(B)としては、中でも、分散性に特に優れる点で、少なくとも酸性の極性官能基を有することが好ましく、酸性の極性官能基と塩基性の極性官能基を有することが特に好ましい。従って、湿潤分散剤(B)は、酸性基を有する化合物が好ましく、酸性基と塩基性基を有する化合物が特に好ましい。 Among them, the wetting and dispersing agent (B) preferably has at least an acidic polar functional group, and particularly preferably has an acidic polar functional group and a basic polar functional group, in terms of particularly excellent dispersibility. Accordingly, the wetting and dispersing agent (B) is preferably a compound having an acidic group, and particularly preferably a compound having both an acidic group and a basic group.
 湿潤分散剤(B)が、酸性の極性官能基と塩基性の極性官能基を有する場合、酸価の値がアミン価の値を上回ることが好ましい。酸化の値とアミン価の値の差は、例えば、5mgKOH/g以上が好ましく、より好ましくは10mgKOH/g以上、更に好ましくは30mgKOH/g以上、特に好ましくは45mgKOH/g以上である。また、酸化の値とアミン価の値の差は、例えば150mgKOH/g以下が好ましく、より好ましくは100mgKOH/g以下、更に好ましくは70mgKOH/g以下である。 When the wetting and dispersing agent (B) has an acidic polar functional group and a basic polar functional group, the acid value preferably exceeds the amine value. The difference between the oxidation value and the amine value is, for example, preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, even more preferably 30 mgKOH/g or more, and particularly preferably 45 mgKOH/g or more. The difference between the oxidation value and the amine value is, for example, preferably 150 mgKOH/g or less, more preferably 100 mgKOH/g or less, still more preferably 70 mgKOH/g or less.
 湿潤分散剤(B)の酸価は、例えば4~185mgKOH/g(好ましくは40~145mgKOH/g、より好ましくは50~145mgKOH/g、更に好ましくは100~145mgKOH/g、特に好ましくは110~135mgKOH/g)である。なお、酸価は、試料1gを中和するのに要するKOHのmg数で表される。 The acid value of the wetting and dispersing agent (B) is, for example, 4 to 185 mgKOH/g (preferably 40 to 145 mgKOH/g, more preferably 50 to 145 mgKOH/g, still more preferably 100 to 145 mgKOH/g, particularly preferably 110 to 135 mgKOH /g). The acid value is expressed in mg of KOH required to neutralize 1 g of sample.
 湿潤分散剤(B)のアミン価は、例えば0~145mgKOH/g(好ましくは30~100mgKOH/g、より好ましくは40~100mgKOH/g、更に好ましくは50~100mgKOH/g、特に好ましくは70~90mgKOH/g)である。なお、アミン価は、試料1gを中和するのに要する塩酸の量と当量のKOHのmg数で表される。 The amine value of the wetting and dispersing agent (B) is, for example, 0 to 145 mgKOH/g (preferably 30 to 100 mgKOH/g, more preferably 40 to 100 mgKOH/g, still more preferably 50 to 100 mgKOH/g, particularly preferably 70 to 90 mgKOH /g). The amine value is expressed in mg of KOH equivalent to the amount of hydrochloric acid required to neutralize 1 g of sample.
 湿潤分散剤(B)の分子量は、例えば100~10000、好ましくは300~5000である。 The wetting and dispersing agent (B) has a molecular weight of, for example, 100-10,000, preferably 300-5,000.
 湿潤分散剤(B)は、表面修飾金属ナノ粒子(A)に対して、特に、表面吸着して、水素結合により一定距離を保つネットワークを形成するようにして凝集を抑制するので、保存中に凝集物の分離沈降が起きにくく、起きたとしても安定した再分散が可能となる。そのため、スクリーン印刷等により細線を高精度に描画できる印刷性、スクリーン版等の目詰まりが抑制されて連続印刷できる連続印刷性、導電性インクの保存安定性に優れたものとなる。 The wetting and dispersing agent (B) specifically adsorbs to the surface of the surface-modified metal nanoparticles (A) and forms a network that maintains a certain distance by hydrogen bonding to suppress aggregation, so during storage Separation and sedimentation of aggregates are unlikely to occur, and stable re-dispersion is possible even if they do occur. As a result, it is excellent in printability capable of drawing fine lines with high precision by screen printing or the like, continuous printability capable of continuous printing while suppressing clogging of a screen plate, etc., and storage stability of the conductive ink.
 湿潤分散剤(B)としては市販品を用いることができ、具体例としては、「DISPERBYK-106」、「DISPERBYK-180」、「DISPERBYK-102」、「DISPERBYK-118」、「DISPERBYK-103」、「DISPERBYK-111」、「DISPERBYK-145」、「DISPERBYK-2155」(以上、ビックケミー(株)製)、「ディスパロン2150」、「ディスパロン1831」、「ディスパロン1850」、「ディスパロン1860」、「ディスパロンDA-703-50」、「ディスパロンDA-7301」、「ディスパロンDN-900」、「ディスパロンDA-325」、「ディスパロンDA-375」、「ディスパロンDA-234」(以上、楠本化成(株)製)等が挙げられる。 Commercially available products can be used as the wetting and dispersing agent (B), and specific examples thereof include "DISPERBYK-106", "DISPERBYK-180", "DISPERBYK-102", "DISPERBYK-118" and "DISPERBYK-103". , "DISPERBYK-111", "DISPERBYK-145", "DISPERBYK-2155" (manufactured by BYK-Chemie Co., Ltd.), "Disparlon 2150", "Disparlon 1831", "Disparlon 1850", "Disparlon 1860", "Disparlon DA-703-50", "Disparlon DA-7301", "Disparlon DN-900", "Disparlon DA-325", "Disparlon DA-375", "Disparlon DA-234" (manufactured by Kusumoto Kasei Co., Ltd. ) and the like.
 本開示に係る湿潤分散剤(B)の含有割合は、導電性インク100質量%に対して、0.5~5.0質量%が好ましく、より好ましくは0.7~4.0質量%、更に好ましくは1.0~3.0質量%である。 The content of the wetting and dispersing agent (B) according to the present disclosure is preferably 0.5 to 5.0% by mass, more preferably 0.7 to 4.0% by mass, with respect to 100% by mass of the conductive ink. More preferably, it is 1.0 to 3.0% by mass.
 本開示に係る湿潤分散剤(B)の含有割合は、表面修飾金属ナノ粒子(A)100質量部に対して、0.5~25.0質量部が好ましく、より好ましくは0.8~20.0質量部、更に好ましくは1.0~15.0質量部である。 The content of the wetting and dispersing agent (B) according to the present disclosure is preferably 0.5 to 25.0 parts by mass, more preferably 0.8 to 20 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). .0 parts by mass, more preferably 1.0 to 15.0 parts by mass.
<分散溶剤(C)>
 本開示に係る分散溶剤(C)は、テルペン系溶剤を少なくとも含むことが好ましい。また、沸点が130℃未満の溶剤の含有量が分散溶剤全量の20質量%以下であることが好ましい。本開示の導電性インクは、上記分散溶剤(C)を用いるため、溶剤が揮発することによるスクリーン版の目詰まりが起こりにくく連続印刷が容易となる。
<Dispersion solvent (C)>
The dispersion solvent (C) according to the present disclosure preferably contains at least a terpene solvent. Also, the content of the solvent having a boiling point of less than 130° C. is preferably 20% by mass or less of the total amount of the dispersing solvent. Since the conductive ink of the present disclosure uses the dispersing solvent (C), clogging of the screen plate due to volatilization of the solvent is unlikely to occur, and continuous printing is facilitated.
 上記テルペン系溶剤としては、沸点が130℃以上(より好ましくは130~300℃、更に好ましくは200~270℃)であるものが好ましい。 The terpene-based solvent preferably has a boiling point of 130°C or higher (more preferably 130 to 300°C, still more preferably 200 to 270°C).
 上記テルペン系溶剤としては、例えば、4-(1'-アセトキシ-1'-メチルエチル)-シクロヘキサノールアセテート、1,8-テルピン-1-アセテート、1,8-テルピン-8-アセテート、1,8-テルピン-1,8-ジアセテート、1,2,5,6-テトラヒドロベンジルアルコール、1,2,5,6-テトラヒドロベンジルアセテート、シクロヘキシルアセテート、2-メチルシクロヘキシルアセテート、4-t-ブチルシクロヘキシルアセテート、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、α-ターピネオール、β-ターピネオール、γ-ターピネオール、L-α-ターピネオール、ジヒドロターピニルオキシエタノール、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル等を挙げることができる。これらは単独で用いてもよく2種以上を用いてもよい。 Examples of the terpene solvent include 4-(1'-acetoxy-1'-methylethyl)-cyclohexanol acetate, 1,8-terpine-1-acetate, 1,8-terpine-8-acetate, 1, 8-terpine-1,8-diacetate, 1,2,5,6-tetrahydrobenzyl alcohol, 1,2,5,6-tetrahydrobenzyl acetate, cyclohexyl acetate, 2-methylcyclohexyl acetate, 4-t-butylcyclohexyl Acetate, terpineol, dihydroterpineol, dihydroterpineol acetate, α-terpineol, β-terpineol, γ-terpineol, L-α-terpineol, dihydroterpinyloxyethanol, terpinyl methyl ether, dihydroterpinyl methyl ether etc. can be mentioned. These may be used alone or in combination of two or more.
 上記テルペン系溶剤としては市販品を用いることができ、具体例としては、「テルソルブMTPH」、「テルソルブIPG」、「テルソルブIPG-Ac」、「テルソルブIPG-2Ac」、「ターピネオールC」(α-ターピネオール、β-ターピネオール、及びγ-ターピネオールの混合物)、「テルソルブDTO-210」、「テルソルブTHA-70」、「テルソルブTHA-90」、「テルソルブTOE-100」(以上、日本テルペン化学(株)製)等が挙げられる。 Commercially available products can be used as the terpene-based solvent, and specific examples include "Tersolve MTPH", "Tersolve IPG", "Tersolve IPG-Ac", "Tersolve IPG-2Ac", "Terpineol C" (α- mixture of terpineol, β-terpineol, and γ-terpineol), "Telsolve DTO-210", "Telsolve THA-70", "Telsolve THA-90", "Telsolve TOE-100" (Nippon Terpene Chemical Co., Ltd.) made) and the like.
 分散溶剤(C)は、上記テルペン系溶剤以外の他の溶剤を含んでいていてもよい。上記他の溶剤としては、例えば、グリコールエーテル系溶剤、グリコールエステル系溶剤等を挙げられる。 The dispersion solvent (C) may contain solvents other than the terpene-based solvent. Examples of the other solvents include glycol ether solvents, glycol ester solvents, and the like.
 上記グリコールエーテル化合物、上記グリコールエステル化合物としては、グリコールジエーテル、グリコールエーテルエステル、グリコールジエステル、グリコールモノエーテル及びグリコールモノエステルが挙げられる。 Examples of the glycol ether compounds and glycol ester compounds include glycol diethers, glycol ether esters, glycol diesters, glycol monoethers and glycol monoesters.
 上記グリコールジエーテル、上記グリコールエーテルエステル及び上記グリコールジエステルは、下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
The glycol diether, the glycol ether ester, and the glycol diester are preferably compounds represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1及びR3は、同一又は異なって、アルキル基を表し、R2はアルキレン基を表す。l及びnは、同一又は異なって、0又は1を示し、mは1~8の整数を示す。 In formula (1), R 1 and R 3 are the same or different and represent an alkyl group, and R 2 represents an alkylene group. l and n are the same or different and represent 0 or 1, and m represents an integer of 1-8.
 上記R1及びR3に係るアルキル基は、好ましくは炭素数1~10、より好ましくは炭素数1~5の、直鎖状又は分岐鎖状アルキル基であり、具体例としては、例えば、メチル基、メチルメチル基、ジメチルメチル基、エチル基、プロピル基、トリメチル基、テトラメチル基、イソブチル基、tert-ブチル基、ペンタメチル基、ヘキサメチル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 The alkyl group for R 1 and R 3 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and specific examples thereof include methyl group, methylmethyl group, dimethylmethyl group, ethyl group, propyl group, trimethyl group, tetramethyl group, isobutyl group, tert-butyl group, pentamethyl group, hexamethyl group, heptyl group, octyl group, nonyl group, decyl group, etc. mentioned.
 上記R2に係るアルキレン基は、好ましくは炭素数1~6、より好ましくは炭素数1~4、更に好ましくは炭素数2~3の、直鎖状又は分岐鎖状アルキレン基であり、具体例としては、例えば、メチレン基、メチルメチレン基、エチレン基、ジメチルメチレン基、トリメチレン基、プロピレン基、テトラメチレン基、1-メチルプロピレン基、ジメチルエチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。 The alkylene group for R 2 is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 2 to 3 carbon atoms, and specific examples are Examples include methylene group, methylmethylene group, ethylene group, dimethylmethylene group, trimethylene group, propylene group, tetramethylene group, 1-methylpropylene group, dimethylethylene group, pentamethylene group, hexamethylene group and the like. .
 上記mは、好ましくは1~8であり、より好ましくは1~3、更に好ましくは2~3の整数である。 The above m is preferably an integer of 1 to 8, more preferably 1 to 3, and still more preferably 2 to 3.
 上記グリコールジエーテルの具体例としては、例えば、プロピレングリコールメチル-n-プロピルエーテル、プロピレングリコールメチル-n-ブチルエーテル、プロピレングリコールメチルイソアミルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールメチル-イソペンチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールメチルシクロペンチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールメチル-n-プロピルエーテル、トリプロピレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等を挙げることができる。これらは単独で用いてもよく2種以上を用いてもよい。 Specific examples of the glycol diether include propylene glycol methyl-n-propyl ether, propylene glycol methyl-n-butyl ether, propylene glycol methyl isoamyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol ethyl methyl ether. , diethylene glycol isopropyl methyl ether, diethylene glycol methyl-n-butyl ether, dipropylene glycol methyl-isopentyl ether, dipropylene glycol dimethyl ether, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl-n-butyl ether, dipropylene glycol methyl Cyclopentyl ether, triethylene glycol dimethyl ether, triethylene glycol methyl-n-butyl ether, tripropylene glycol methyl-n-propyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like can be mentioned. These may be used alone or in combination of two or more.
 上記グリコールエーテルエステルの具体例としては、例えば、エチレングリコールメチルエーテルアセテート、エチレングリコール-n-ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3-メトキシブチルアセテート、ジエチレングリコール-n-ブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート等を挙げることができる。これらは単独で用いてもよく2種以上を用いてもよい。 Specific examples of the glycol ether ester include ethylene glycol methyl ether acetate, ethylene glycol-n-butyl ether acetate, propylene glycol methyl ether acetate, 3-methoxybutyl acetate, diethylene glycol-n-butyl ether acetate, diethylene glycol ethyl ether acetate, Diethylene glycol butyl ether acetate, dipropylene glycol methyl ether acetate and the like can be mentioned. These may be used alone or in combination of two or more.
 上記グリコールジエステルの具体例としては、例えば、プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールジプロピオネート、エチレングリコールジブチレート、エチレングリコールジイソブチレート、エチレングリコールジt-ブチレート、エチレングリコールジヘキシレート等を挙げることができる。これらは単独で用いてもよく2種以上を用いてもよい。 Specific examples of the glycol diester include propylene glycol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, 1,6-hexanediol diacetate, ethylene glycol dipropionate, and ethylene. Glycol dibutyrate, ethylene glycol diisobutyrate, ethylene glycol di-t-butyrate, ethylene glycol dihexylate and the like can be mentioned. These may be used alone or in combination of two or more.
 上記グリコールジエーテル、上記グリコールエーテルエステル及び上記グリコールジエステルの沸点は、印刷時には蒸散しにくく焼結時には容易に揮発する点から、130℃以上が好ましく、より好ましくは130~300℃、更に好ましくは170~300℃、特に好ましくは200~300℃である。 The boiling point of the glycol diether, the glycol ether ester, and the glycol diester is preferably 130° C. or higher, more preferably 130 to 300° C., and still more preferably 170° C., because it is difficult to evaporate during printing and volatilizes easily during sintering. ~300°C, particularly preferably 200-300°C.
 上記グリコールモノエーテル及び上記グリコールモノエステルは、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
The glycol monoether and the glycol monoester are preferably compounds represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R4は、アルキル基、アリール基又はアラルキル基を表し、R5はアルキレン基を表す。sは0又は1を示し、tは1~8の整数を示す。 In formula (2), R4 represents an alkyl group, an aryl group or an aralkyl group, and R5 represents an alkylene group. s represents 0 or 1, and t represents an integer of 1-8.
 上記R4に係るアルキル基としては、上記R1及びR3と同じものが挙げられる。 Examples of the alkyl group for R 4 include the same groups as those for R 1 and R 3 above.
 上記R4に係るアリール基としては、例えば、フェニル基、ナフチル基等が挙げられ、アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。 Examples of the aryl group for R 4 include phenyl group and naphthyl group, and examples of aralkyl group include benzyl group and phenethyl group.
 上記R5に係るアルキレン基としては、上記R2と同じものが挙げられる。 Examples of the alkylene group for R 5 are the same as those for R 2 .
 上記tは、1~8が好ましく、より好ましくは1~3、更に好ましくは2~3である。 The above t is preferably 1-8, more preferably 1-3, and still more preferably 2-3.
 上記グリコールモノエーテルの具体例としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、エチレングリコールモノt-ブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ブチルカルビトール、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノペンチルエーテル、ジエチレングリコールモノイソペンチルエーテル、ジエチレングリコールモノヘキシルエーテル、ヘキシルカルビトール、ジエチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノn-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール等が挙げられる。これらは単独で用いてもよく2種以上を用いてもよい。 Specific examples of the glycol monoether include ethylene glycol monomethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, ethylene glycol mono-t-butyl ether, ethylene glycol monohexyl ether, ethylene glycol mono -2-ethylhexyl ether, ethylene glycol monophenyl ether, ethylene glycol monobenzyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, butyl carbitol, diethylene glycol monoisobutyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monopentyl ether, diethylene glycol monoisopentyl ether , diethylene glycol monohexyl ether, hexyl carbitol, diethylene glycol mono-2-ethylhexyl ether, diethylene glycol monophenyl ether, diethylene glycol monobenzyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol mono-n-butyl ether, tripropylene glycol monomethyl ether, 3-methoxy-1-butanol and the like. These may be used alone or in combination of two or more.
 上記グリコールモノエステルの具体例としては、例えば、エチレングリコールモノアセテート、エチレングリコールモノプロピオネート、エチレングリコールモノブチレート、エチレングリコールモノイソブチレート、エチレングリコールモノt-ブチレート、エチレングリコールモノヘキシレート等が挙げられる。これらは単独で用いてもよく2種以上を用いてもよい。 Specific examples of the glycol monoester include ethylene glycol monoacetate, ethylene glycol monopropionate, ethylene glycol monobutyrate, ethylene glycol monoisobutyrate, ethylene glycol mono-t-butyrate, and ethylene glycol monohexylate. etc. These may be used alone or in combination of two or more.
 上記グリコールモノエーテル及びグリコールモノエステルの沸点は、印刷時には蒸散しにくく焼結時には容易に揮発する点から、130℃以上が好ましく、より好ましくは130~300℃、更に好ましくは150~270℃、特に好ましくは170~250℃である。 The boiling point of the glycol monoether and glycol monoester is preferably 130° C. or higher, more preferably 130 to 300° C., still more preferably 150 to 270° C., especially since it is difficult to evaporate during printing and volatilizes easily during sintering. It is preferably 170 to 250°C.
 本開示の導電性インクは、上記テルペン系溶剤、上記グリコールエーテル系溶剤及びグリコールエステル系溶剤以外にも他の分散溶剤を含んでいてもよい。 The conductive ink of the present disclosure may contain other dispersion solvents in addition to the terpene-based solvent, the glycol ether-based solvent, and the glycol ester-based solvent.
 本開示に係る分散溶剤(C)の含有割合は、導電性インク100質量%に対して、10~70質量%が好ましく、より好ましくは15~60質量%、更に好ましくは20~50質量%である。 The content of the dispersion solvent (C) according to the present disclosure is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, and still more preferably 20 to 50% by mass with respect to 100% by mass of the conductive ink. be.
 本開示に係る分散溶剤(C)の含有割合は、表面修飾金属ナノ粒子(A)100質量部に対して、15~200質量部が好ましく、より好ましくは20~120質量部、更に好ましくは25~80質量部である。 The content of the dispersion solvent (C) according to the present disclosure is preferably 15 to 200 parts by mass, more preferably 20 to 120 parts by mass, and even more preferably 25 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). ~80 parts by mass.
<バインダー樹脂(D)>
 本開示の導電性インクは、適度な粘度を有し、細線を一層高精度に描画し易くする点から、バインダー樹脂(D)を含有することが好ましい。
<Binder resin (D)>
The conductive ink of the present disclosure preferably has an appropriate viscosity and contains a binder resin (D) from the viewpoint of facilitating drawing of fine lines with higher accuracy.
 上記バインダー樹脂(D)としては、例えば、塩化ビニル-酢酸ビニル共重合体樹脂、ポリビニルブチラール樹脂、ポリエステル系樹脂、アクリル系樹脂、セルロース系樹脂(エチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、酢酸セルロース、ニトロセルロース等、好ましくはエチルセルロース)等が挙げられ、中でも、セルロース系樹脂が好ましい。これらは単独で用いてもよく2種以上を用いてもよい。 Examples of the binder resin (D) include vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin, polyester resin, acrylic resin, cellulose resin (ethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate, nitrocellulose and the like, preferably ethyl cellulose), among others, cellulose-based resins are preferred. These may be used alone or in combination of two or more.
 上記バインダー樹脂(D)の重量平均分子量は、導電性インクに適度な粘度を付与する点から、40000~1000000が好ましく、より好ましくは45000~600000、更に好ましくは50000~400000である。なお、重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定することができる。 The weight-average molecular weight of the binder resin (D) is preferably 40,000 to 1,000,000, more preferably 45,000 to 600,000, and still more preferably 50,000 to 400,000 in terms of imparting an appropriate viscosity to the conductive ink. In addition, a weight average molecular weight can be measured by a gel permeation chromatography (GPC) method, for example.
 上記セルロース系樹脂としては市販品を用いることができ、具体例としては、「メトローズSM-100」、「メトローズ90SH」(以上、信越化学工業(株)製)、「エトセルSTD 200」、「エトセルSTD 300」(以上、ダウケミカル社製)、「SANHEC」、「NEOVISCO MC」(以上、三晶(株)製)等が挙げられる。 Commercially available products can be used as the cellulose resin, and specific examples include "Metolose SM-100", "Metolose 90SH" (manufactured by Shin-Etsu Chemical Co., Ltd.), "Ethocel STD 200", and "Ethocel STD 300" (manufactured by Dow Chemical Co., Ltd.), "SANHEC", "NEOVISCO MC" (manufactured by Sansho Co., Ltd.) and the like.
 本開示に係るバインダー樹脂(D)の含有割合は、細線を一層高精度に描画し易くする点から、導電性インク100質量%に対して、0.1~4.0質量%が好ましく、より好ましくは0.3~3.0質量%、更に好ましくは0.5~2.0質量%である。 The content ratio of the binder resin (D) according to the present disclosure is preferably 0.1 to 4.0% by mass with respect to 100% by mass of the conductive ink, from the viewpoint of making it easier to draw fine lines with higher accuracy. It is preferably 0.3 to 3.0% by mass, more preferably 0.5 to 2.0% by mass.
 本開示に係るバインダー樹脂(D)の含有割合は、また、表面修飾金属ナノ粒子(A)100質量部に対して、0.5~10.0質量部が好ましく、より好ましくは0.8~7.0質量部、更に好ましくは1.1~4.0質量部である。 The content ratio of the binder resin (D) according to the present disclosure is also preferably 0.5 to 10.0 parts by mass, more preferably 0.8 to 100 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). 7.0 parts by mass, more preferably 1.1 to 4.0 parts by mass.
<消泡剤(E)>
 本開示の導電性インクは、印刷時や乾燥時の気泡の発生を抑制する点から、消泡剤(E)を含有していてもよい。
<Antifoaming agent (E)>
The conductive ink of the present disclosure may contain an antifoaming agent (E) from the viewpoint of suppressing the generation of air bubbles during printing and drying.
 上記消泡剤(E)として、例えば、ポリマー系、シリコーン系の消泡剤が挙げられ、中でも、ポリマー系消泡剤が好ましい。これらは単独で用いてもよく2種以上を用いてもよい。 Examples of the antifoaming agent (E) include polymer-based and silicone-based antifoaming agents, among which polymer-based antifoaming agents are preferred. These may be used alone or in combination of two or more.
 上記ポリマー系消泡剤としては、例えば、「BYK-051N」、「BYK-052N」、「BYK-054」、「BYK-055」、「BYK-057」、「BYK-354」、「BYK-392」、「BYK-1752」、「BYK-1759」、「BYK-1788」、「BYK-1790」、「BYK-1791」、「BYK-1794」、「BYK-1795」、「BYK-1797」、「BYK-1799」、「BYK-011」、「BYK-012」、「BYK-014」、「BYK-015」」、「BYK-1640」、「BYK-1680」(以上、ビックケミー・ジャパン(株)製)、「ダッポーSN-348」、「ダッポーSN-351」、「ダッポーSN-354」(以上、サンノプコ(株)製)、「ディスパロンOX-881」、ディスパロンOX-883HF」、ディスパロンOX-77EF」、ディスパロンOX-60」、「ディスパロンOX-750HF」(以上、楠本化成(株)製)等が挙げられる。 Examples of the polymer antifoaming agent include "BYK-051N", "BYK-052N", "BYK-054", "BYK-055", "BYK-057", "BYK-354", "BYK- 392", "BYK-1752", "BYK-1759", "BYK-1788", "BYK-1790", "BYK-1791", "BYK-1794", "BYK-1795", "BYK-1797" , "BYK-1799", "BYK-011", "BYK-012", "BYK-014", "BYK-015", "BYK-1640", "BYK-1680" (above, BYK-Chemie Japan ( Co., Ltd.), “Dappo SN-348”, “Dappo SN-351”, “Dappo SN-354” (manufactured by San Nopco Co., Ltd.), “Disparon OX-881”, Disparon OX-883HF”, Disparon OX -77EF", Disparlon OX-60", and "Disparlon OX-750HF" (manufactured by Kusumoto Kasei Co., Ltd.).
 上記シリコーン系消泡剤としては、例えば、「BYK-017」、「BYK-018」、「BYK-019」、「BYK-065」、「BYK-066N」、「BYK-067A」、「BYK-077」、「BYK-081」、「BYK-1650」、「BYK-1719」、「BYK-1724」、「BYK-1730」、「BYK-1770」、「BYK-W9010」(以上、ビックケミー・ジャパン(株)製);信越シリコーン社製「KF-96」、「FA-630」、「X-50-1039A」、「KS-7708」、「KS-66」、「KSP-69」、「X-50-1105G」、「KS-602A」、「KSP-600」(以上、信越シリコーン(株)製)等が挙げられる。 Examples of the silicone antifoaming agent include "BYK-017", "BYK-018", "BYK-019", "BYK-065", "BYK-066N", "BYK-067A", "BYK- 077”, “BYK-081”, “BYK-1650”, “BYK-1719”, “BYK-1724”, “BYK-1730”, “BYK-1770”, “BYK-W9010” (above, BYK-Chemie Japan Co., Ltd.); "KF-96", "FA-630", "X-50-1039A", "KS-7708", "KS-66", "KSP-69", "X -50-1105G", "KS-602A", and "KSP-600" (manufactured by Shin-Etsu Silicone Co., Ltd.).
 本開示に係る消泡剤(E)の含有割合は、体積抵抗率が低くなり易い点から、導電性インク100質量%に対して、0.1~10質量%が好ましく、より好ましくは0.5~7.0質量%、更に好ましくは1.0~5.0質量%である。 The content of the antifoaming agent (E) according to the present disclosure is preferably 0.1 to 10% by mass, more preferably 0.1 to 10% by mass with respect to 100% by mass of the conductive ink, because the volume resistivity tends to be low. 5 to 7.0% by mass, more preferably 1.0 to 5.0% by mass.
 本開示に係る消泡剤(E)の含有割合は、また、表面修飾金属ナノ粒子(A)100質量部に対して、0.1~35.0質量部が好ましく、より好ましくは0.5~17.5質量部、更に好ましくは1.0~10.0質量部である。 The content of the antifoaming agent (E) according to the present disclosure is preferably 0.1 to 35.0 parts by mass, more preferably 0.5 parts by mass, with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). 17.5 parts by mass, more preferably 1.0 to 10.0 parts by mass.
 本開示の導電性インクの粘度(25℃、せん断速度10s-1における)は、1~200Pa・sが好ましく、より好ましくは3~175Pa・s、更に好ましくは5~150Pa・sである。本開示の導電性インクは、上記範囲の粘度を有する場合、スクリーン印刷用の導電性インクとして好適に用いることができる。なお、粘度は、例えば、レオメーター(製品名「Physica MCR301」、Anton Paar社製)を用いて測定することができる。 The viscosity (at 25° C. and shear rate of 10 s −1 ) of the conductive ink of the present disclosure is preferably 1 to 200 Pa·s, more preferably 3 to 175 Pa·s, still more preferably 5 to 150 Pa·s. The conductive ink of the present disclosure can be suitably used as a conductive ink for screen printing when it has a viscosity within the above range. The viscosity can be measured using, for example, a rheometer (product name “Physica MCR301”, manufactured by Anton Paar).
<その他の成分>
 本開示の導電性インクは、上記成分以外にも、例えば、可塑剤(アジピン系可塑剤、マレイン酸塩、有機リン酸塩、スルホンアミド、ポリエーテル等)、レベリング剤(シリコーン系レベリング剤、フッ素系レベリング剤等)、密着性付与剤(イミダゾール系密着性付与剤、チアゾール系密着性付与剤、トリアゾール系密着性付与剤、シランカップリング剤等)、焼結助剤等の添加剤を必要に応じて含有することができる。
<Other ingredients>
In addition to the above components, the conductive ink of the present disclosure includes, for example, plasticizers (adipic plasticizers, maleates, organic phosphates, sulfonamides, polyethers, etc.), leveling agents (silicone leveling agents, fluorine leveling agents, etc.), adhesion agents (imidazole-based adhesion agents, thiazole-based adhesion agents, triazole-based adhesion agents, silane coupling agents, etc.), sintering aids, etc. can be included as appropriate.
 上記焼結助剤としては、例えば、第一級アミノ基、第二級アミノ基及び第三級アミノ基の少なくとも一つを有するジアミン、好ましくは、少なくとも一方のアミノ基が第一級アミノ基又は第三級アミノ基であるジアミン、より好ましくは、一方が第一級アミノ基又は第二級アミノ基(更に好ましくは第一級アミノ基)で他方が第三級アミノ基であるジアミンが挙げられ、例えば、上記脂肪族ジアミン(3)と同様の脂肪族ジアミン(エチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、3-ジエチルアミノプロピルアミン、4-ジメチルアミノブチルアミン等)や、芳香族ジアミン(p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、N,N-ジエチル-p-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、3,5-ジアミノビフェニル、1,5-ジアミノナフタレン、1,8-ジアミノナフタレン、2,6-ジアミノナフタレン、2,3-ジアミノナフタレン等)等が挙げられる。中でも、第一級アミノ基及び/又は第三級アミノ基を有する脂肪族ジアミンが好ましく、第一級アミノ基及び第三級アミノ基を有する脂肪族ジアミンがより好ましく、3-ジエチルアミノプロピルアミンが更に好ましい。 As the sintering aid, for example, a diamine having at least one of a primary amino group, a secondary amino group and a tertiary amino group, preferably at least one amino group is a primary amino group or A diamine that is a tertiary amino group, more preferably a diamine in which one is a primary amino group or secondary amino group (more preferably a primary amino group) and the other is a tertiary amino group. , for example, the same aliphatic diamines as the above aliphatic diamine (3) (ethylenediamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, 1,4-butanediamine, 1,5- Pentanediamine, 1,6-hexanediamine, N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl-1,3 -propanediamine, N,N'-dimethyl-1,4-butanediamine, 3-diethylaminopropylamine, 4-dimethylaminobutylamine, etc.) and aromatic diamines (p-phenylenediamine, m-phenylenediamine, o-phenylene diamine, N,N-diethyl-p-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, 3,5-diaminobiphenyl, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2, 6-diaminonaphthalene, 2,3-diaminonaphthalene, etc.). Among them, an aliphatic diamine having a primary amino group and/or a tertiary amino group is preferred, an aliphatic diamine having a primary amino group and a tertiary amino group is more preferred, and 3-diethylaminopropylamine is further preferred. preferable.
<導電性インクの製造方法>
 本開示の導電性インクは、例えば、金属化合物と、アミンを含む保護剤とを混合して錯体を生成させ、生成した錯体を熱分解させて表面修飾金属ナノ粒子(A)を得る工程と、得られた表面修飾金属ナノ粒子(A)と、少なくとも、湿潤分散剤(B)及び分散溶剤とを混合する工程を経て製造することができる。
<Method for producing conductive ink>
The conductive ink of the present disclosure includes, for example, a step of mixing a metal compound and a protective agent containing an amine to generate a complex, and thermally decomposing the generated complex to obtain surface-modified metal nanoparticles (A); It can be produced through a step of mixing the obtained surface-modified metal nanoparticles (A) with at least a wetting and dispersing agent (B) and a dispersing solvent.
 上記金属化合物としては、例えば、金属カルボン酸塩(金属ギ酸塩、金属酢酸塩、金属シュウ酸塩、金属マロン酸塩、金属安息香酸塩、金属フタル酸塩等)、金属ハロゲン化物(金属フッ化物、金属塩化物、金属臭化物、金属ヨウ化物等)、金属無機酸塩(金属硫酸塩、金属硝酸塩、金属炭酸塩等)を用いることができる。中でも、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという点から、金属シュウ酸塩が好ましい。 Examples of the metal compounds include metal carboxylates (metal formates, metal acetates, metal oxalates, metal malonates, metal benzoates, metal phthalates, etc.), metal halides (metal fluorides , metal chlorides, metal bromides, metal iodides, etc.), metal inorganic acid salts (metal sulfates, metal nitrates, metal carbonates, etc.) can be used. Among them, metal oxalates are preferable because they easily generate metals by decomposition and are less likely to produce impurities other than metals.
 上記保護剤(好ましくはアミン)の使用量は、表面修飾金属ナノ粒子(A)に十分な分散性を付与できる点から、上記金属化合物の金属原子1モルに対して、1~50モルが好ましく、より好ましくは10~40モル、更に好ましくは15~35モルである。 The amount of the protective agent (preferably amine) used is preferably 1 to 50 mol with respect to 1 mol of the metal atom of the metal compound, in terms of imparting sufficient dispersibility to the surface-modified metal nanoparticles (A). , more preferably 10 to 40 mol, still more preferably 15 to 35 mol.
 上記錯体を生成するための、上記金属化合物と上記保護剤との反応は、反応溶剤の存在下で行ってもよいし、反応溶剤の不存在下で行ってもよい。上記反応溶剤としては、例えば、炭素数3以上のアルコール系溶剤(好ましくは脂肪族アルコール)を用いることができる。 The reaction between the metal compound and the protective agent for forming the complex may be carried out in the presence of a reaction solvent or in the absence of a reaction solvent. As the reaction solvent, for example, an alcohol solvent (preferably an aliphatic alcohol) having 3 or more carbon atoms can be used.
 上記反応溶剤の使用量は、上記金属化合物100質量部に対して、120~1000質量部が好ましく、より好ましくは130~800質量部、更に好ましくは150~500質量部である。 The amount of the reaction solvent used is preferably 120 to 1000 parts by mass, more preferably 130 to 800 parts by mass, and even more preferably 150 to 500 parts by mass with respect to 100 parts by mass of the metal compound.
 上記錯体を生成する反応は、例えば、反応温度5~40℃、反応時間30分~3時間で行うことができる。 The reaction to generate the above complex can be carried out, for example, at a reaction temperature of 5 to 40°C and a reaction time of 30 minutes to 3 hours.
 上記熱分解は、上記反応溶剤と同様の反応溶剤の存在下で行ってもよい。熱分解温度は、例えば、80~120℃が好ましく、より好ましくは100~110℃であり、熱分解時間は、例えば、10分~5時間である。また、上記錯体の熱分解は、空気雰囲気下や、不活性ガス(窒素、アルゴン等)雰囲気下で行うことができる。 The above thermal decomposition may be carried out in the presence of a reaction solvent similar to the above reaction solvent. The thermal decomposition temperature is, for example, preferably 80 to 120° C., more preferably 100 to 110° C., and the thermal decomposition time is, for example, 10 minutes to 5 hours. Moreover, the thermal decomposition of the complex can be carried out in an air atmosphere or an inert gas (nitrogen, argon, etc.) atmosphere.
 上記熱分解により得られた表面修飾金属ナノ粒子(A)は、遠心分離やデカンテーションにより洗浄してもよい。 The surface-modified metal nanoparticles (A) obtained by the above pyrolysis may be washed by centrifugation or decantation.
 上記熱分解により得られた表面修飾金属ナノ粒子(A)、湿潤分散剤(B)、分散溶剤、任意のバインダー樹脂(C)及び消泡剤(D)等との混合は、例えば、自公転式撹拌脱泡装置、ホモジナイザー、プラネタリーミキサー、3本ロールミル、ビーズミル等の公知の混合用機器を用いて行うことができる。上記の各成分は、同時に混合してもよいし、逐次混合してもよい。 Mixing with the surface-modified metal nanoparticles (A) obtained by the thermal decomposition, the wetting and dispersing agent (B), the dispersing solvent, the optional binder resin (C) and the antifoaming agent (D), for example, It can be carried out using a known mixing device such as a type stirring and defoaming device, homogenizer, planetary mixer, three-roll mill, bead mill, and the like. The above components may be mixed simultaneously or sequentially.
[電子デバイスの製造方法]
 本開示の電子デバイスの製造方法は、本開示の導電性インクを印刷法(ディスペンサ印刷法、マスク印刷、スクリーン印刷法、インクジェット印刷法等)により基板に塗布する工程、及び焼結する工程を含む。
[Method for manufacturing electronic device]
The manufacturing method of the electronic device of the present disclosure includes a step of applying the conductive ink of the present disclosure to a substrate by a printing method (dispenser printing method, mask printing method, screen printing method, inkjet printing method, etc.), and a step of sintering. .
 本開示の電子デバイスの製造方法では、上記導電性インクを使用するため、低温(例えば60℃以上、100℃以上又は120℃以上であってもよい)で焼結が可能である。焼結温度の上限は、特に限定されず、例えば500℃であってよく、300℃、200℃、又は150℃であってもよい。焼結時間は、例えば0.5~3時間、好ましくは0.5~2時間、より好ましくは0.5~1時間である。 In the electronic device manufacturing method of the present disclosure, since the conductive ink is used, sintering is possible at a low temperature (for example, 60° C. or higher, 100° C. or higher, or 120° C. or higher). The upper limit of the sintering temperature is not particularly limited, and may be, for example, 500°C, 300°C, 200°C, or 150°C. The sintering time is, for example, 0.5 to 3 hours, preferably 0.5 to 2 hours, more preferably 0.5 to 1 hour.
 本開示の導電性インクを使用すれば、上記の通り低温焼結が可能であるので、基板としては、ガラス製基板、ポリイミド系フィルム等の耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板も好適に用いることができる。 When the conductive ink of the present disclosure is used, low-temperature sintering is possible as described above. Therefore, the substrate may be a glass substrate, a heat-resistant plastic substrate such as a polyimide film, or a polyethylene terephthalate (PET) film. General-purpose plastic substrates with low heat resistance, such as polyester films such as polyethylene naphthalate (PEN) films, and polyolefin films such as polypropylene, can also be suitably used.
[電子デバイス]
 本発明の電子デバイスの製造方法により得られる電子デバイスには、例えば、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド等が含まれる。
[Electronic device]
Examples of electronic devices obtained by the electronic device manufacturing method of the present invention include liquid crystal displays, organic EL displays, field emission displays (FED), IC cards, IC tags, solar cells, LED elements, organic transistors, capacitors (capacitors ), electronic paper, flexible batteries, flexible sensors, membrane switches, touch panels, and EMI shields.
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成およびそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、およびその他の変更が可能である。また、本開示に係る各発明は、実施形態や以下の実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。 Each aspect disclosed in this specification can be combined with any other feature disclosed in this specification. Each configuration, combination thereof, etc. in each embodiment is an example, and addition, omission, replacement, and other changes of configuration are possible as appropriate without departing from the scope of the present disclosure. In addition, each invention according to the present disclosure is not limited by the embodiments or the following examples, but only by the claims.
 以下、実施例により本開示をより具体的に説明するが、本開示はこれらの実施例により限定されるものではない。 The present disclosure will be described in more detail below with reference to examples, but the present disclosure is not limited to these examples.
 実施例及び比較例に使用した表面修飾金属ナノ粒子(A)、湿潤分散剤(B)、分散溶剤(C)、バインダー樹脂(D)及び消泡剤(E)は、以下の通りである。 The surface-modified metal nanoparticles (A), wetting and dispersing agent (B), dispersing solvent (C), binder resin (D) and antifoaming agent (E) used in Examples and Comparative Examples are as follows.
<表面修飾金属ナノ粒子(A)>
 硝酸銀(和光純薬工業(株)製)とシュウ酸二水和物(富士フィルム和光純薬工業(株)製)から、シュウ酸銀(分子量:303.78)を得た。500mLフラスコに上記シュウ酸銀40.0g(0.1317mol)を仕込み、これに、60gのn-ブタノールを添加し、シュウ酸銀のn-ブタノールスラリーを調製した。このスラリーに、30℃で、n-ブチルアミン(分子量:73.14、東京化成工業(株)製試薬)115.58g(1.5802mol)、2-エチルヘキシルアミン(分子量:129.25、富士フィルム和光純薬工業(株)製試薬)51.06g(0.3950mol)、及びn-オクチルアミン(分子量:129.25、東京化成工業(株)製試薬)17.02g(0.1317mol)のアミン混合液を滴下した。滴下後、30℃で1時間撹拌して、シュウ酸銀とアミンの錯形成反応を進行させた。シュウ酸銀-アミン錯体の形成後に、110℃にて1時間加熱して、シュウ酸銀-アミン錯体を熱分解させて、濃青色の、表面修飾銀ナノ粒子を含む懸濁液を得た。
<Surface-modified metal nanoparticles (A)>
Silver oxalate (molecular weight: 303.78) was obtained from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). A 500 mL flask was charged with 40.0 g (0.1317 mol) of the above silver oxalate, and 60 g of n-butanol was added to prepare an n-butanol slurry of silver oxalate. To this slurry, at 30 ° C., n-butylamine (molecular weight: 73.14, reagent manufactured by Tokyo Chemical Industry Co., Ltd.) 115.58 g (1.5802 mol), 2-ethylhexylamine (molecular weight: 129.25, Fujifilm Sum Kojun Chemical Co., Ltd. reagent) 51.06 g (0.3950 mol) and n-octylamine (molecular weight: 129.25, Tokyo Chemical Industry Co., Ltd. reagent) 17.02 g (0.1317 mol) amine mixture The liquid was added dropwise. After dropping, the mixture was stirred at 30° C. for 1 hour to allow the complex formation reaction between silver oxalate and amine to proceed. After the formation of the silver oxalate-amine complex, the mixture was heated at 110° C. for 1 hour to thermally decompose the silver oxalate-amine complex to obtain a dark blue suspension containing surface-modified silver nanoparticles.
 得られた懸濁液を冷却し、これにメタノール(富士フィルム和光純薬工業(株)製試薬、特級)120gを加えて攪拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去した。表面修飾銀ナノ粒子に対して、次に、メタノール120gを加えて攪拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去し、次に、ジプロピレングリコールn-ブチルエーテル(ダウ・ケミカル社製試薬)120gを加えて撹拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿潤状態の表面修飾銀ナノ粒子1を得た。示差熱熱重量計(製品名「TG/DTA6300」、SII社製)を用いた熱天秤の結果から、湿潤状態の表面修飾銀ナノ粒子全量(100質量%)において表面修飾銀ナノ粒子1の含有量は90質量%であった。 The resulting suspension is cooled, 120 g of methanol (reagent manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) is added and stirred, and then the surface-modified silver nanoparticles are precipitated by centrifugation. Liquid was removed. Next, 120 g of methanol is added to the surface-modified silver nanoparticles and stirred, then the surface-modified silver nanoparticles are precipitated by centrifugation, the supernatant is removed, and dipropylene glycol n-butyl ether ( Reagent manufactured by Dow Chemical Co., Ltd.) (120 g) was added and stirred, then the surface-modified silver nanoparticles were sedimented by centrifugation, and the supernatant was removed. Thus, surface-modified silver nanoparticles 1 in a wet state were obtained. From the results of thermal balance using a differential thermal thermogravimeter (product name "TG/DTA6300", manufactured by SII), the content of surface-modified silver nanoparticles 1 in the total amount of surface-modified silver nanoparticles in a wet state (100% by mass) The amount was 90% by weight.
 また、湿潤状態の表面修飾銀ナノ粒子1について、走査型電子顕微鏡(「JSM-6700F」、日本電子(株)製)を用いて観察し、SEM写真において任意に選ばれた10個の銀ナノ粒子の粒子径を求め、それらの平均値を平均粒子径とした。表面修飾銀ナノ粒子1における銀ナノ粒子部分の平均粒子径(1次粒子径)は50nm程度であった。 In addition, the wet state surface-modified silver nanoparticles 1 were observed using a scanning electron microscope ("JSM-6700F", manufactured by JEOL Ltd.), and 10 arbitrarily selected silver nanoparticles were observed in the SEM photograph. The particle diameters of the particles were determined, and the average value thereof was taken as the average particle diameter. The average particle size (primary particle size) of the silver nanoparticle portion in the surface-modified silver nanoparticles 1 was about 50 nm.
<湿潤分散剤(B)>
・BYK106:酸性基を有するポリマー塩、アミン価74mgKOH/g、酸価132mgKOH/g、商品名「DISPERBYK-106」、ビックケミー・ジャパン(株)製
・BYK180:酸基を含む共重合物のアルキロールアンモニウム塩、アミン価94mgKOH/g、酸価94mgKOH/g、商品名「DISPERBYK-180」、ビックケミー・ジャパン(株)製
・BYK102:酸性基を有するコポリマー、アミン価なし、酸価101mgKOH/g、商品名「DISPERBYK-102」、ビックケミー・ジャパン(株)製
・BYK118:顔料親和性基を有する直鎖ポリマー、アミン価なし、酸価36mgKOH/g、商品名「DISPERBYK-118」、ビックケミー・ジャパン(株)製
・BYK103:顔料に親和性のある共重合物、アミン価なし、酸価なし、商品名「DISPERBYK-103」、ビックケミー・ジャパン(株)製
・BYK111:酸基を含む共重合物、アミン価なし、酸価129mgKOH/g、商品名「DISPERBYK-111」、ビックケミー・ジャパン(株)製
・BYK145:顔料に親和性のある共重合物のリン酸エステル塩、アミン価71mgKOH/g、酸価76mgKOH/g、商品名「DISPERBYK-145」、ビックケミー・ジャパン(株)製
・BYK2155:顔料に親和性のあるブロック共重合体、アミン価48mgKOH/g、酸価なし、商品名「DISPERBYK-2155」、ビックケミー・ジャパン(株)製
<Wetting and dispersing agent (B)>
- BYK106: polymer salt having an acidic group, amine value 74 mgKOH / g, acid value 132 mgKOH / g, trade name "DISPERBYK-106", manufactured by BYK Chemie Japan Co., Ltd. - BYK180: copolymer alkylol containing an acid group Ammonium salt, amine value 94 mgKOH/g, acid value 94 mgKOH/g, trade name “DISPERBYK-180”, BYK-Chemie Japan Co., Ltd. BYK102: copolymer having an acidic group, no amine value, acid value 101 mgKOH/g, product Name “DISPERBYK-102”, BYK-Chemie Japan Co., Ltd. BYK118: Linear polymer having pigment affinity group, no amine value, acid value 36 mgKOH / g, trade name “DISPERBYK-118”, BYK-Chemie Japan Co., Ltd. ) BYK103: A copolymer with an affinity for pigments, no amine value, no acid value, trade name “DISPERBYK-103”, BYK Chemie Japan Co., Ltd. BYK111: A copolymer containing an acid group, amine No value, acid value 129 mgKOH/g, trade name “DISPERBYK-111” BYK-Chemie Japan Co., Ltd. BYK145: Phosphate ester salt of copolymer with affinity for pigment, amine value 71 mgKOH/g, acid value 76 mgKOH/g, trade name “DISPERBYK-145”, BYK-Chemie Japan Co., Ltd. BYK2155: Block copolymer with affinity for pigment, amine value 48 mgKOH/g, no acid value, trade name “DISPERBYK-2155” , BYK-Chemie Japan Co., Ltd.
<分散溶剤(C)>
・THA70:1,8-テルピン-1-アセテート、1,8-テルピン-8-アセテート及び1,8-テルピン-1,8-ジアセテートの混合物、沸点223℃、商品名「テルソルブTHA-70」、日本テルペン化学(株)製
・DPNB:ジプロピレングリコールモノn-ブチルエーテル、沸点230℃、ダウ・ケミカル社製
<Dispersion solvent (C)>
・THA70: A mixture of 1,8-terpine-1-acetate, 1,8-terpine-8-acetate and 1,8-terpine-1,8-diacetate, boiling point 223°C, trade name “Tersolve THA-70” , manufactured by Nippon Terpene Chemical Co., Ltd. DPNB: dipropylene glycol mono-n-butyl ether, boiling point 230 ° C., manufactured by Dow Chemical Company
<バインダー樹脂(D)>
・EC300:エチルセルロース、商品名「エトセルSTD 300」、ダウケミカル社製
・EC200:エチルセルロース、質量平均分子量190000、商品名「エトセルSTD 200」、ダウケミカル社製
<Binder resin (D)>
・EC300: Ethyl cellulose, trade name “Ethocel STD 300”, Dow Chemical Co. ・EC200: Ethyl cellulose, weight average molecular weight 190000, trade name “Ethocel STD 200”, Dow Chemical Co.
<消泡剤(E)>
・BYK054:ポリマー系消泡剤、商品名「BYK-054」、ビックケミー・ジャパン(株)製
・BYK066N:シリコーン系消泡剤、商品名「BYK-066N」、ビックケミー・ジャパン(株)製
<Antifoaming agent (E)>
・BYK054: Polymer antifoaming agent, trade name “BYK-054”, manufactured by BYK-Chemie Japan Co., Ltd. ・BYK066N: Silicone-based defoaming agent, trade name “BYK-066N”, manufactured by BYK-Chemie Japan Co., Ltd.
<その他>
・DEAPA:3-ジエチルアミノプロピルアミン
<Others>
・DEAPA: 3-diethylaminopropylamine
 実施例1(銀インクの調製)
 下記の表1に記載の含有割合(質量%)となるように表面修飾銀ナノ粒子1、BYK106、THA70、DPNB、EC300を配合し、攪拌混練(2分間×3回)して、黒茶色の銀インクを調製した。なお、攪拌混練は、自転公転式混練機(製品名「マゼルスターKKK2508」、倉敷紡績(株)製)を用いて行った。
Example 1 (Preparation of silver ink)
The surface-modified silver nanoparticles 1, BYK106, THA70, DPNB, and EC300 were blended so that the content ratio (% by mass) shown in Table 1 below was obtained, and stirred and kneaded (2 minutes x 3 times) to give a black-brown color. A silver ink was prepared. The stirring and kneading was performed using a rotation-revolution type kneader (product name: "Mazerustar KKK2508", manufactured by Kurashiki Boseki Co., Ltd.).
 実施例2~16、比較例1、2
 下記の表1及び2に記載の含有割合(質量%)となるように各成分を配合した以外は実施例1と同様にして、銀インクを調製した。
Examples 2 to 16, Comparative Examples 1 and 2
A silver ink was prepared in the same manner as in Example 1, except that each component was blended so as to have the content ratio (% by mass) shown in Tables 1 and 2 below.
 実施例1~16、及び比較例1、2で調製した銀インクについて、粘度、焼結体の導電性、凝集物数、印刷性、連続印刷性、保存安定性及び消泡効果を下記方法により評価した。 The silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were evaluated for viscosity, electrical conductivity of the sintered body, number of aggregates, printability, continuous printability, storage stability, and defoaming effect by the following methods. evaluated.
(粘度)
 実施例及び比較例で調製した銀インクの粘度(25℃、せん断速度10s-1)は、レオメーター(製品名「Physica MCR301」、Anton Paar社製)を用いて測定した。
(viscosity)
The viscosities (25° C., shear rate 10 s −1 ) of the silver inks prepared in Examples and Comparative Examples were measured using a rheometer (product name “Physica MCR301”, manufactured by Anton Paar).
(焼結体の導電性)
 実施例1~16、及び比較例1、2で調製した銀インクをガラス板上に塗布して塗膜を形成した。塗膜形成後、速やかに塗膜を120℃、30分間の条件で送風乾燥炉にて焼結し、およそ4μm厚みの焼結体を得た。得られた焼結体の導電性について、4端子法(ロレスタGP MCP-T610)を用いて体積抵抗率を測定して、焼結体の導電性を評価した。
(Electrical conductivity of sintered body)
The silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were applied onto a glass plate to form a coating film. Immediately after forming the coating film, the coating film was sintered in a blower drying furnace at 120° C. for 30 minutes to obtain a sintered body having a thickness of about 4 μm. The conductivity of the obtained sintered body was evaluated by measuring the volume resistivity using a four-probe method (Loresta GP MCP-T610).
 導電性の評価基準は以下の通りである。
◎(非常に良好):25μΩ・cm以下
〇(良好):25μΩ・cm超、50μΩ・cm以下
×(不良):50μΩ・cm超
The conductivity evaluation criteria are as follows.
◎ (very good): 25 μΩ・cm or less ○ (good): over 25 μΩ・cm, 50 μΩ・cm or less × (defective): over 50 μΩ・cm
(凝集物数)
 実施例1~16、及び比較例1、2で調製した銀インクを、ガラス板上に塗布して塗膜を形成した。塗膜形成後、速やかに塗膜を120℃、30分間の条件で送風乾燥炉にて焼結し、およそ4μm厚みの焼結体を得た。得られた焼結体について、15μm以上の凝集物の数(1cm2あたり)を光学顕微鏡を用いた観察により評価した。
(Number of aggregates)
The silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were applied onto a glass plate to form a coating film. Immediately after forming the coating film, the coating film was sintered in a blower drying furnace at 120° C. for 30 minutes to obtain a sintered body having a thickness of about 4 μm. Regarding the obtained sintered body, the number of aggregates of 15 μm or more (per 1 cm 2 ) was evaluated by observation using an optical microscope.
 平滑性の評価基準は以下の通りである。
〇(良好):20以下
△(やや良好):20超100以下
×(不良):100超
Evaluation criteria for smoothness are as follows.
○ (good): 20 or less △ (slightly good): more than 20 and 100 or less × (poor): more than 100
(印刷性)
 実施例及び比較例で調製した銀インクについて、25℃において、スクリーン印刷装置(製品名「LS-150TV」、ニューロング精密工業(株)製)を用いてPETフィルム上に印刷することによって印刷性を評価した。
(Printability)
The silver inks prepared in Examples and Comparative Examples were printed on a PET film at 25°C using a screen printer (product name: LS-150TV, manufactured by Newlong Seimitsu Kogyo Co., Ltd.). evaluated.
 印刷性の評価基準は以下の通りである。
○(良好):スクリーン印刷法により精度良く印字できる
△(やや良好):スクリーン印刷法により印字できるが、にじみや断線が見られる
×(不良):スクリーン印刷法により印字できない
The printability evaluation criteria are as follows.
○ (good): can be printed with high accuracy by screen printing △ (somewhat good): can be printed by screen printing, but bleeding and disconnection are observed × (poor): cannot be printed by screen printing
(連続印刷性)
 実施例及び比較例で調製した銀インクについて、25℃において、スクリーン印刷装置(製品名「LS-150TV」、ニューロング精密工業(株)製)を用いてPETフィルム上に連続して印刷することによって連続印刷性を評価した。
(Continuous printability)
The silver inks prepared in Examples and Comparative Examples are continuously printed on a PET film at 25° C. using a screen printer (product name “LS-150TV” manufactured by Newlong Seimitsu Kogyo Co., Ltd.). Continuous printability was evaluated by
 連続印刷性の評価基準は以下の通りである。
〇(良好):連続して印刷できた回数が40以上である
×(不良):連続して印刷できた回数が40未満である
Evaluation criteria for continuous printability are as follows.
○ (Good): The number of times that printing was possible in succession was 40 or more × (Bad): The number of times that printing was possible in succession was less than 40
(保存安定性)
 実施例及び比較例で調製した銀インクについて、5℃において20週間保管後に粘度を測定した。保管前の粘度に対する保管後の粘度の増加量によって保存安定性を評価した。
(Storage stability)
The viscosities of the silver inks prepared in Examples and Comparative Examples were measured after storage at 5° C. for 20 weeks. Storage stability was evaluated by the amount of increase in viscosity after storage relative to viscosity before storage.
 保存安定性の評価基準は以下の通りである。
○(良好):粘度の増加量が20%未満である
△(やや良好):粘度の増加量が20%以上、50%以下である
×(不良):粘度の増加量が50%超である
The evaluation criteria for storage stability are as follows.
○ (good): the amount of increase in viscosity is less than 20% △ (slightly good): the amount of increase in viscosity is 20% or more and 50% or less × (poor): the amount of increase in viscosity is more than 50%
(消泡効果)
 実施例1~16、及び比較例1、2で調製した銀インクを、ガラス板上に塗布して塗膜を形成した。塗膜形成後、速やかに塗膜を120℃、30分間の条件で送風乾燥炉にて焼結し、およそ4μm厚みの焼結体を得た。得られた焼結体について、15μm以上の孔の個数(1cm2あたり)を、光学顕微鏡を用いて観察することによって、消泡効果を評価した。
(Antifoaming effect)
The silver inks prepared in Examples 1 to 16 and Comparative Examples 1 and 2 were applied onto a glass plate to form a coating film. Immediately after forming the coating film, the coating film was sintered in a blower drying furnace at 120° C. for 30 minutes to obtain a sintered body having a thickness of about 4 μm. The defoaming effect of the obtained sintered body was evaluated by observing the number of pores (per 1 cm 2 ) of 15 μm or more using an optical microscope.
 消泡効果の評価基準は以下の通りである。
◎(非常に良好):孔の個数が0である
〇(良好):孔の個数が1~2である
△(やや良好):孔の個数が2超25以下である
×(不良):孔の個数が25超である
The evaluation criteria for the defoaming effect are as follows.
◎ (very good): the number of holes is 0 ○ (good): the number of holes is 1 to 2 △ (slightly good): the number of holes is more than 25 and not more than 25 × (poor): holes is greater than 25
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1、2中の保存安定性の「-」は、未評価であることを表す。 "-" for storage stability in Tables 1 and 2 indicates that it has not been evaluated.
 凝集物数について実施例1~16は、〇~△であるのに対して、比較例1、2は×であった。なお、印刷性及び連続印刷性について、実施例2、比較例1は、ともに評価〇であった。実施例2の粘度は73.8Pa・s、実施例6は113.4Pa・s、比較例1は78.0a・sであった。 Regarding the number of aggregates, Examples 1 to 16 were 0 to △, while Comparative Examples 1 and 2 were x. Regarding printability and continuous printability, both Example 2 and Comparative Example 1 were evaluated as ◯. The viscosity of Example 2 was 73.8 Pa·s, Example 6 was 113.4 Pa·s, and Comparative Example 1 was 78.0 a·s.
 以下、本開示に係る発明のバリエーションを記載する。
[付記1]アミンを含む保護剤で被覆された表面修飾金属ナノ粒子(A)と、湿潤分散剤(B)と、分散溶剤(C)とを含有する導電性インク。
[付記2]表面修飾金属ナノ粒子(A)の一次平均粒子径が0.5~100nm(好ましくは0.5~80nm、より好ましくは1.0~65nm、更に好ましくは1.0~50nm)である、付記1に記載の導電性インク。
[付記3]前記湿潤分散剤(B)のアミン価が0~145mgKOH/g(好ましくは30~100mgKOH/g、より好ましくは40~100mgKOH/g、更に好ましくは50~100mgKOH/g、特に好ましくは70~90mgKOH/g)である、付記1又は2に記載の導電性インク。
[付記4]前記湿潤分散剤(B)の酸価が4~185mgKOH/g(好ましくは40~145mgKOH/g、より好ましくは50~145mgKOH/g、更に好ましくは100~145mgKOH/g、特に好ましくは110~135mgKOH/g)である、付記1又は2に記載の導電性インク。
[付記5]前記湿潤分散剤(B)のアミン価が0~145mgKOH/g(好ましくは30~100mgKOH/g、より好ましくは40~100mgKOH/g、更に好ましくは50~100mgKOH/g、特に好ましくは70~90mgKOH/g)であり、酸価が4~185mgKOH/g(好ましくは40~145mgKOH/g、より好ましくは50~145mgKOH/g、更に好ましくは100~145mgKOH/g、特に好ましくは110~135mgKOH/g)である、付記1又は2に記載の導電性インク。
[付記6]前記酸化の値と前記アミン価の値の差が、5mgKOH/g以上(好ましくは10mgKOH/g以上、より好ましくは30mgKOH/g以上、更に好ましくは45mgKOH/g以上)であり、150mgKOH/g以下(好ましくは100mgKOH/g以下、より好ましくは70mgKOH/g以下)である、付記5に記載の導電性インク。
[付記7]前記表面修飾金属ナノ粒子(A)における前記アミンが、総炭素数6以上の脂肪族モノアミン(1)と、総炭素数5以下の脂肪族モノアミン(2)及び/又は総炭素数8以下の脂肪族ジアミン(3)とを含む、付記1~6の何れか1つに記載の導電性インク。
[付記8]前記脂肪族モノアミン(1)が、総炭素数6~18(好ましくは6~16、より好ましくは6~12)の直鎖状アルキル基を有するアルキルモノアミン、及び/又は、総炭素数6~16(好ましくは6~10)の分岐鎖状アルキル基を有するアルキルモノアミンである、付記7に記載の導電性インク。
[付記9]前記脂肪族モノアミン(2)が、総炭素数2~5(好ましくは3~5、より好ましくは4~5)の直鎖状又は分岐鎖状のアルキル基を有するアルキルモノアミンである、付記7又は8に記載の導電性インク。
[付記10]前記脂肪族ジアミン(3)が、第一級アミノ基及び第三級アミノ基を有する脂肪族ジアミン(好ましくはアルキレンジアミン)である、付記7~9の何れか1つに記載の導電性インク。
[付記11]前記表面修飾金属ナノ粒子(A)が、表面修飾銀ナノ粒子である、付記1~10の何れか1つに記載の導電性インク。
[付記12]前記表面修飾金属ナノ粒子(A)の含有割合が、30~90質量%(好ましくは40~85質量%、より好ましくは50~80質量%)である、付記1~11の何れか1つに記載の導電性インク。
[付記13]前記湿潤分散剤(B)が酸性基を有する化合物である、付記1~12の何れか1つに記載の導電性インク。
[付記14]前記湿潤分散剤(B)がポリマー塩である、付記1~13の何れか1つに記載の導電性インク。
[付記15]前記湿潤分散剤(B)の含有割合が、0.5~5.0質量%(好ましくは0.7~4.0質量%、より好ましくは1.0~3.0質量%)である、付記1~14の何れか1つに記載の導電性インク。
[付記16]前記湿潤分散剤(B)の含有割合が、表面修飾金属ナノ粒子(A)100質量部に対して、0.5~25.0質量部(好ましくは0.8~20.0質量部、より好ましくは1.0~15.0質量部)である、付記1~15の何れか1つに記載の導電性インク。
[付記17]前記分散溶剤(C)が、少なくともテルペン系溶剤を含む、付記1~16の何れか1つに記載の導電性インク。
[付記18]前記分散溶剤(C)全量に対する、沸点130℃未満の溶剤の含有量が20質量%以下である、付記1~17の何れか1つに記載の導電性インク。
[付記19]前記テルペン系溶剤の沸点が130℃以上(好ましくは130~300℃、より好ましくは200~270℃)である、付記17に記載の導電性インク。
[付記20]分散溶剤(C)が、グリコールエーテル系溶剤及び/又はグリコールエステル系溶剤を含む、付記1~19の何れか1つに記載の導電性インク。
[付記21]前記分散溶剤(C)が、下記式(1)
Figure JPOXMLDOC01-appb-C000005
で表される化合物を含む、付記1~19の何れか1つに記載の導電性インク。
[式(1)中、R1及びR3は、同一又は異なって、アルキル基を表し、R2はアルキレン基を表す。l及びnは、同一又は異なって、0又は1を示し、mは1~8の整数を示す。]
[付記22]前記分散溶剤(C)が、下記式(2)
Figure JPOXMLDOC01-appb-C000006
で表される化合物を含む、付記1~19の何れか1つに記載の導電性インク。
[式(2)中、R4は、アルキル基、アリール基又はアラルキル基を表し、R5はアルキレン基を表す。sは0又は1を示し、tは1~8の整数を示す。]
[付記23]前記湿潤分散剤(C)の含有割合が、10~70質量%(好ましくは15~60質量%、より好ましくは20~50質量%)である、付記1~22の何れか1つに記載の導電性インク。
[付記24]前記湿潤分散剤(C)の含有割合が、表面修飾金属ナノ粒子(A)100質量部に対して、15~200質量部(好ましくは20~120質量部、より好ましくは25~80質量部)である、付記1~23の何れか1つに記載の導電性インク。
[付記25]更に、バインダー樹脂(D)を含有する、付記1~24の何れか1つに記載の導電性インク。
[付記26]前記バインダー樹脂(D)がセルロース系樹脂である、付記25に記載の導電性インク。
[付記27]前記バインダー樹脂(D)の重量平均分子量が、40000~1000000(好ましくは45000~600000、より好ましくは50000~400000)である、付記25又は26に記載の導電性インク。
[付記28]前記湿潤分散剤(D)の含有割合が、0.1~4.0質量%(好ましくは0.3~3.0質量%、より好ましくは0.5~2.0質量%)である、付記25~27の何れか1つに記載の導電性インク。
[付記29]前記湿潤分散剤(D)の含有割合が、表面修飾金属ナノ粒子(A)100質量部に対して、0.5~10.0質量部(好ましくは0.8~7.0質量部、より好ましくは1.1~4.0質量部)である、付記25~28の何れか1つに記載の導電性インク。
[付記30]更に、消泡剤(E)を含有する、付記1~29の何れか1つに記載の導電性インク。
[付記31]前記消泡剤(E)が、ポリマー系消泡剤及び/又はシリコーン系消泡剤である、付記30に記載の導電性インク。
[付記32]前記消泡剤(E)が、ポリマー系消泡剤である、付記30に記載の導電性インク。
[付記33]前記消泡剤(E)の含有割合が、0.1~10質量%(好ましくは0.5~7.0質量%、より好ましくは1.0~5.0質量%)である、付記30~32の何れか1つに記載の導電性インク。
[付記34]前記湿潤分散剤(E)の含有割合が、表面修飾金属ナノ粒子(A)100質量部に対して、0.1~35.0質量部(好ましくは0.5~17.5質量部、より好ましくは1.0~10.0質量部)である、付記30~33の何れか1つに記載の導電性インク。
[付記35]更に、焼結助剤を含有する、付記1~34の何れか1つに記載の導電性インク。
[付記36]前記焼結助剤が、第一級アミノ基及び/又は第三級アミノ基を有する脂肪族ジアミンである、付記35に記載の導電性インク。
[付記37]前記脂肪族ジアミンが、3-ジエチルアミノプロピルアミンである、付記35に記載の導電性インク。
[付記38]25℃、せん断速度10s-1における粘度が、1~200Pa・s(好ましくは3~175Pa・s、より好ましくは5~150Pa・s)である、付記1~37の何れか1つに記載の導電性インク。
[付記39]基板上に、付記1~38の何れか1つに記載の導電性インクを塗布する工程、及び焼結する工程を含む、電子デバイスの製造方法。
[付記40]基板上に、付記1~38の何れか1つに記載の導電性インクの焼結体を備えた、電子デバイス。
Variations of the invention according to the present disclosure are described below.
[Appendix 1] A conductive ink containing surface-modified metal nanoparticles (A) coated with a protective agent containing amine, a wetting and dispersing agent (B), and a dispersing solvent (C).
[Appendix 2] The average primary particle size of the surface-modified metal nanoparticles (A) is 0.5 to 100 nm (preferably 0.5 to 80 nm, more preferably 1.0 to 65 nm, and even more preferably 1.0 to 50 nm). The conductive ink according to Supplementary Note 1.
[Appendix 3] The amine value of the wetting and dispersing agent (B) is 0 to 145 mgKOH/g (preferably 30 to 100 mgKOH/g, more preferably 40 to 100 mgKOH/g, still more preferably 50 to 100 mgKOH/g, particularly preferably 70 to 90 mgKOH/g), the conductive ink according to appendix 1 or 2.
[Appendix 4] The wetting and dispersing agent (B) has an acid value of 4 to 185 mgKOH/g (preferably 40 to 145 mgKOH/g, more preferably 50 to 145 mgKOH/g, still more preferably 100 to 145 mgKOH/g, particularly preferably 110 to 135 mgKOH/g), the conductive ink according to appendix 1 or 2.
[Appendix 5] The amine value of the wetting and dispersing agent (B) is 0 to 145 mgKOH/g (preferably 30 to 100 mgKOH/g, more preferably 40 to 100 mgKOH/g, still more preferably 50 to 100 mgKOH/g, particularly preferably 70 to 90 mgKOH/g) and an acid value of 4 to 185 mgKOH/g (preferably 40 to 145 mgKOH/g, more preferably 50 to 145 mgKOH/g, more preferably 100 to 145 mgKOH/g, particularly preferably 110 to 135 mgKOH / g), the conductive ink according to Appendix 1 or 2.
[Appendix 6] The difference between the oxidation value and the amine value is 5 mgKOH/g or more (preferably 10 mgKOH/g or more, more preferably 30 mgKOH/g or more, still more preferably 45 mgKOH/g or more), and 150 mgKOH /g or less (preferably 100 mgKOH/g or less, more preferably 70 mgKOH/g or less).
[Appendix 7] The amines in the surface-modified metal nanoparticles (A) are an aliphatic monoamine (1) having a total carbon number of 6 or more and an aliphatic monoamine (2) having a total carbon number of 5 or less and/or the total carbon number 7. The conductive ink according to any one of Appendices 1 to 6, comprising an aliphatic diamine (3) of 8 or less.
[Appendix 8] The aliphatic monoamine (1) is an alkyl monoamine having a linear alkyl group with a total carbon number of 6 to 18 (preferably 6 to 16, more preferably 6 to 12), and / or total carbon The conductive ink according to appendix 7, which is an alkyl monoamine having a branched alkyl group of numbers 6 to 16 (preferably 6 to 10).
[Appendix 9] The aliphatic monoamine (2) is an alkyl monoamine having a linear or branched alkyl group with a total carbon number of 2 to 5 (preferably 3 to 5, more preferably 4 to 5). , Supplementary note 7 or 8 conductive ink.
[Appendix 10] Any one of Appendices 7 to 9, wherein the aliphatic diamine (3) is an aliphatic diamine (preferably alkylenediamine) having a primary amino group and a tertiary amino group. conductive ink.
[Appendix 11] The conductive ink according to any one of Appendices 1 to 10, wherein the surface-modified metal nanoparticles (A) are surface-modified silver nanoparticles.
[Appendix 12] Any of Appendices 1 to 11, wherein the content of the surface-modified metal nanoparticles (A) is 30 to 90% by mass (preferably 40 to 85% by mass, more preferably 50 to 80% by mass). The conductive ink according to any one of the above.
[Appendix 13] The conductive ink according to any one of Appendices 1 to 12, wherein the wetting and dispersing agent (B) is a compound having an acidic group.
[Appendix 14] The conductive ink according to any one of Appendices 1 to 13, wherein the wetting and dispersing agent (B) is a polymer salt.
[Appendix 15] The content of the wetting and dispersing agent (B) is 0.5 to 5.0% by mass (preferably 0.7 to 4.0% by mass, more preferably 1.0 to 3.0% by mass ), the conductive ink according to any one of appendices 1 to 14.
[Appendix 16] The content of the wetting and dispersing agent (B) is 0.5 to 25.0 parts by mass (preferably 0.8 to 20.0 parts by mass) with respect to 100 parts by mass of the surface-modified metal nanoparticles (A) 16 parts by weight, more preferably 1.0 to 15.0 parts by weight).
[Appendix 17] The conductive ink according to any one of Appendices 1 to 16, wherein the dispersion solvent (C) contains at least a terpene solvent.
[Appendix 18] The conductive ink according to any one of Appendices 1 to 17, wherein the content of the solvent having a boiling point of less than 130° C. is 20% by mass or less with respect to the total amount of the dispersion solvent (C).
[Appendix 19] The conductive ink according to Appendix 17, wherein the terpene-based solvent has a boiling point of 130° C. or higher (preferably 130 to 300° C., more preferably 200 to 270° C.).
[Appendix 20] The conductive ink according to any one of Appendices 1 to 19, wherein the dispersion solvent (C) contains a glycol ether solvent and/or a glycol ester solvent.
[Appendix 21] The dispersion solvent (C) has the following formula (1)
Figure JPOXMLDOC01-appb-C000005
20. The conductive ink according to any one of Appendices 1 to 19, comprising a compound represented by:
[In Formula (1), R 1 and R 3 are the same or different and represent an alkyl group, and R 2 represents an alkylene group. l and n are the same or different and represent 0 or 1, and m represents an integer of 1-8. ]
[Appendix 22] The dispersion solvent (C) is represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000006
20. The conductive ink according to any one of Appendices 1 to 19, comprising a compound represented by:
[In formula (2), R 4 represents an alkyl group, an aryl group or an aralkyl group, and R 5 represents an alkylene group. s represents 0 or 1, and t represents an integer of 1-8. ]
[Appendix 23] Any one of Appendices 1 to 22, wherein the content of the wetting and dispersing agent (C) is 10 to 70% by mass (preferably 15 to 60% by mass, more preferably 20 to 50% by mass). The conductive ink according to 1.
[Appendix 24] The content ratio of the wetting and dispersing agent (C) is 15 to 200 parts by mass (preferably 20 to 120 parts by mass, more preferably 25 to 200 parts by mass with respect to 100 parts by mass of the surface-modified metal nanoparticles (A). 80 parts by mass), the conductive ink according to any one of appendices 1 to 23.
[Appendix 25] The conductive ink according to any one of Appendices 1 to 24, further comprising a binder resin (D).
[Appendix 26] The conductive ink according to Appendix 25, wherein the binder resin (D) is a cellulose resin.
[Appendix 27] The conductive ink according to Appendix 25 or 26, wherein the binder resin (D) has a weight average molecular weight of 40,000 to 1,000,000 (preferably 45,000 to 600,000, more preferably 50,000 to 400,000).
[Appendix 28] The content of the wetting and dispersing agent (D) is 0.1 to 4.0% by mass (preferably 0.3 to 3.0% by mass, more preferably 0.5 to 2.0% by mass ), the conductive ink according to any one of Appendices 25 to 27.
[Appendix 29] The content of the wetting and dispersing agent (D) is 0.5 to 10.0 parts by mass (preferably 0.8 to 7.0 parts by mass) with respect to 100 parts by mass of the surface-modified metal nanoparticles (A) parts by weight, more preferably 1.1 to 4.0 parts by weight).
[Appendix 30] The conductive ink according to any one of Appendices 1 to 29, further comprising an antifoaming agent (E).
[Appendix 31] The conductive ink according to Appendix 30, wherein the antifoaming agent (E) is a polymer antifoaming agent and/or a silicone antifoaming agent.
[Appendix 32] The conductive ink according to Appendix 30, wherein the antifoaming agent (E) is a polymer antifoaming agent.
[Appendix 33] The content of the antifoaming agent (E) is 0.1 to 10% by mass (preferably 0.5 to 7.0% by mass, more preferably 1.0 to 5.0% by mass). 33. The conductive ink according to any one of Appendices 30 to 32.
[Appendix 34] The content of the wetting and dispersing agent (E) is 0.1 to 35.0 parts by mass (preferably 0.5 to 17.5 parts by mass) with respect to 100 parts by mass of the surface-modified metal nanoparticles (A) parts by weight, more preferably 1.0 to 10.0 parts by weight).
[Appendix 35] The conductive ink according to any one of Appendices 1 to 34, further comprising a sintering aid.
[Appendix 36] The conductive ink according to Appendix 35, wherein the sintering aid is an aliphatic diamine having a primary amino group and/or a tertiary amino group.
[Appendix 37] The conductive ink according to Appendix 35, wherein the aliphatic diamine is 3-diethylaminopropylamine.
[Appendix 38] Any one of Appendices 1 to 37, wherein the viscosity at 25°C and a shear rate of 10 s -1 is 1 to 200 Pa s (preferably 3 to 175 Pa s, more preferably 5 to 150 Pa s). The conductive ink according to 1.
[Appendix 39] A method of manufacturing an electronic device, comprising the steps of applying the conductive ink according to any one of Appendices 1 to 38 on a substrate, and sintering.
[Appendix 40] An electronic device comprising a sintered body of the conductive ink according to any one of Appendices 1 to 38 on a substrate.
 本開示のインクジェットヘッド洗浄液によれば、インクジェットヘッドの洗浄後、実際にインクジェットインクの吐出を試みなくても吐出口の閉塞状況を確認することができ、インクジェットヘッドの洗浄が容易となり、洗浄時間を節約することができる。従って、本開示は、産業上の利用可能性を有する。 According to the inkjet head cleaning liquid of the present disclosure, after cleaning the inkjet head, it is possible to check the clogged state of the ejection port without actually trying to eject the inkjet ink, and the cleaning of the inkjet head becomes easy, and the cleaning time is reduced. can save money. Therefore, the present disclosure has industrial applicability.

Claims (18)

  1.  アミンを含む保護剤で被覆された表面修飾金属ナノ粒子(A)と、湿潤分散剤(B)と、分散溶剤(C)とを含有する導電性インク。 A conductive ink containing surface-modified metal nanoparticles (A) coated with a protective agent containing amine, a wetting and dispersing agent (B), and a dispersing solvent (C).
  2.  前記湿潤分散剤(B)のアミン価が0~145mgKOH/gであり、酸価が4~185mgKOH/gである、請求項1に記載の導電性インク。 The conductive ink according to claim 1, wherein the wetting and dispersing agent (B) has an amine value of 0 to 145 mgKOH/g and an acid value of 4 to 185 mgKOH/g.
  3.  前記表面修飾金属ナノ粒子(A)における前記アミンが、総炭素数6以上の脂肪族モノアミン(1)と、総炭素数5以下の脂肪族モノアミン(2)及び/又は総炭素数8以下の脂肪族ジアミン(3)とを含む、請求項1に記載の導電性インク。 The amines in the surface-modified metal nanoparticles (A) are aliphatic monoamines (1) having a total carbon number of 6 or more, aliphatic monoamines having a total carbon number of 5 or less (2) and/or fats having a total carbon number of 8 or less. The conductive ink of claim 1, comprising a group diamine (3).
  4.  前記脂肪族モノアミン(1)が、総炭素数6~18の直鎖状アルキル基を有するアルキルモノアミン、及び/又は、総炭素数6~16の分岐鎖状アルキル基を有するアルキルモノアミンである、請求項3に記載の導電性インク。 The aliphatic monoamine (1) is an alkyl monoamine having a straight-chain alkyl group with a total of 6 to 18 carbon atoms and/or an alkyl monoamine having a branched-chain alkyl group with a total of 6 to 16 carbon atoms. Item 4. The conductive ink according to item 3.
  5.  前記脂肪族モノアミン(2)が、総炭素数2~5の直鎖状又は分岐鎖状のアルキル基を有するアルキルモノアミンである、請求項3に記載の導電性インク。 The conductive ink according to claim 3, wherein the aliphatic monoamine (2) is an alkyl monoamine having a linear or branched alkyl group with a total of 2 to 5 carbon atoms.
  6.  前記表面修飾金属ナノ粒子(A)が、表面修飾銀ナノ粒子である、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, wherein the surface-modified metal nanoparticles (A) are surface-modified silver nanoparticles.
  7.  前記湿潤分散剤(B)が酸性基を有する化合物である、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, wherein the wetting and dispersing agent (B) is a compound having an acidic group.
  8.  前記湿潤分散剤(B)の含有割合が、0.5~5.0質量%である、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, wherein the content of the wetting and dispersing agent (B) is 0.5 to 5.0% by mass.
  9.  更に、バインダー樹脂(D)を含有する、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, further comprising a binder resin (D).
  10.  更に、消泡剤(E)を含有する、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, further comprising an antifoaming agent (E).
  11.  前記消泡剤(E)が、ポリマー系消泡剤である、請求項10に記載の導電性インク。 The conductive ink according to claim 10, wherein the antifoaming agent (E) is a polymer antifoaming agent.
  12.  前記消泡剤(E)の含有割合が、0.1~10質量%である、請求項10に記載の導電性インク。 The conductive ink according to claim 10, wherein the content of the antifoaming agent (E) is 0.1 to 10% by mass.
  13.  更に、焼結助剤を含有する、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, further comprising a sintering aid.
  14.  前記焼結助剤が、第一級アミノ基及び/又は第三級アミノ基を有する脂肪族ジアミンである、請求項13に記載の導電性インク。 The conductive ink according to claim 13, wherein the sintering aid is an aliphatic diamine having primary amino groups and/or tertiary amino groups.
  15.  前記脂肪族ジアミンが、3-ジエチルアミノプロピルアミンである、請求項14に記載の導電性インク。 The conductive ink according to claim 14, wherein the aliphatic diamine is 3-diethylaminopropylamine.
  16.  25℃、せん断速度10s-1における粘度が、1~200Pa・sである、請求項1~5の何れか1項に記載の導電性インク。 The conductive ink according to any one of claims 1 to 5, which has a viscosity of 1 to 200 Pa·s at 25°C and a shear rate of 10 s -1 .
  17.  基板上に、請求項1~5の何れか1項に記載の導電性インクを塗布する工程、及び焼結する工程を含む、電子デバイスの製造方法。 A method of manufacturing an electronic device, comprising a step of applying the conductive ink according to any one of claims 1 to 5 on a substrate, and a step of sintering.
  18.  基板上に、請求項1~5の何れか1項に記載の導電性インクの焼結体を備えた、電子デバイス。 An electronic device comprising a sintered body of the conductive ink according to any one of claims 1 to 5 on a substrate.
PCT/JP2022/029321 2021-08-10 2022-07-29 Electroconductive ink WO2023017747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130786 2021-08-10
JP2021130786 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023017747A1 true WO2023017747A1 (en) 2023-02-16

Family

ID=85200455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029321 WO2023017747A1 (en) 2021-08-10 2022-07-29 Electroconductive ink

Country Status (2)

Country Link
TW (1) TW202313869A (en)
WO (1) WO2023017747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153457A (en) * 2023-10-31 2023-12-01 常州聚和新材料股份有限公司 Conductive paste for preparing conductive grid line, organic carrier and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166755A1 (en) * 2014-04-28 2015-11-05 大日本印刷株式会社 Copper nanoparticle dispersion and method for manufacturing electroconductive substrate
WO2017175661A1 (en) * 2016-04-04 2017-10-12 株式会社ダイセル Ink for screen printing
WO2017195491A1 (en) * 2016-05-10 2017-11-16 バンドー化学株式会社 Electroconductive ink
WO2019225271A1 (en) * 2018-05-23 2019-11-28 株式会社ダイセル Conductive ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166755A1 (en) * 2014-04-28 2015-11-05 大日本印刷株式会社 Copper nanoparticle dispersion and method for manufacturing electroconductive substrate
WO2017175661A1 (en) * 2016-04-04 2017-10-12 株式会社ダイセル Ink for screen printing
WO2017195491A1 (en) * 2016-05-10 2017-11-16 バンドー化学株式会社 Electroconductive ink
WO2019225271A1 (en) * 2018-05-23 2019-11-28 株式会社ダイセル Conductive ink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153457A (en) * 2023-10-31 2023-12-01 常州聚和新材料股份有限公司 Conductive paste for preparing conductive grid line, organic carrier and application thereof
CN117153457B (en) * 2023-10-31 2024-01-26 常州聚和新材料股份有限公司 Conductive paste for preparing conductive grid line, organic carrier and application thereof

Also Published As

Publication number Publication date
TW202313869A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
KR102237717B1 (en) Ink for screen printing
JP6666846B2 (en) Silver particle paint composition
JP6532862B2 (en) Silver nanoparticle-containing ink for intaglio offset printing and method for producing the same
TWI806438B (en) Silver particle paint composition, manufacturing method thereof, and electronic device
KR20160149220A (en) Silver particle coating composition
WO2019225271A1 (en) Conductive ink
WO2023017747A1 (en) Electroconductive ink
WO2016052033A1 (en) Silver particle coating composition
JP2023177614A (en) conductive composition
WO2022009839A1 (en) Method for manufacturing electroconductive laminate
EP4180490A1 (en) Conductive ink
JP2022075148A (en) Conductive ink, its sintered product and electronic device
TW202206557A (en) conductive ink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE