WO2023016308A1 - 一种rgb ingan基micro led的制作方法及其制作的器件 - Google Patents

一种rgb ingan基micro led的制作方法及其制作的器件 Download PDF

Info

Publication number
WO2023016308A1
WO2023016308A1 PCT/CN2022/109902 CN2022109902W WO2023016308A1 WO 2023016308 A1 WO2023016308 A1 WO 2023016308A1 CN 2022109902 W CN2022109902 W CN 2022109902W WO 2023016308 A1 WO2023016308 A1 WO 2023016308A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
epitaxial
ingan
rgb
components
Prior art date
Application number
PCT/CN2022/109902
Other languages
English (en)
French (fr)
Inventor
王晓靁
施能泰
宋高梅
Original Assignee
王晓靁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓靁 filed Critical 王晓靁
Publication of WO2023016308A1 publication Critical patent/WO2023016308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the invention relates to a method for manufacturing RGB InGaN-based micro LEDs on the same chip, and to a device manufactured by the method.
  • Micro LED technology shrinks the size of traditional LEDs of the general millimeter (10 -3 m) level to less than 100 microns (10 -6 m), which is 1% of the original LED volume.
  • the micron-level RGB three-color Micro LED is transported to the display substrate (or called the target substrate), and the RGB pixels are arranged in a matrix to achieve full color through addressing to control the degree of dimming and brightness.
  • the display substrate or called the target substrate
  • the RGB pixels are arranged in a matrix to achieve full color through addressing to control the degree of dimming and brightness.
  • Micro LED Compared with LCD and OLED, Micro LED has superior characteristics. It can be explained from the structure first. Because LCD itself is not self-illuminating, it needs a backlight module as a light source, and liquid crystal molecules need a combination of polarizers and color filters to act as a light source. Polarization is used to control brightness and color, so it has a complex and thick structure; OLED has self-luminous pixel characteristics, which can save the backlight module of TFT LCD, but its organic light-emitting material is sensitive to moisture, so it needs to be formed on the upper and lower substrates The structure is sealed to enhance its weather resistance to the environment; Micro LED uses inorganic LEDs as pixels, and there is no OLED packaging problem.
  • Micro LED has the simplest composition and can make the thinnest structure; In the TFT LCD display, it plays the role of the backlight source. When it evolves to the Micro LED display, the Micro LED is directly used as the light-emitting pixel. In terms of characteristics, Micro LED has many advantages such as self-illumination, low power consumption, fast response time, high brightness, ultra-high contrast, wide color gamut, wide viewing angle, ultra-thin, long service life and adaptability to various operating temperatures. Compared with LCD and OLED, the technical specifications of Micro LED have an overwhelming advantage.
  • the Micro LED transfer process must be carried out to transfer millions of micron-scale Micro LEDs to the display substrate, which is called mass transfer technology; if the transfer process cannot be effectively If the time is completed, it cannot be mass-produced, and the number of single transfers and high precision required for pick-and-place are not found in the current mass-production technology. Therefore, the first key challenge in the development of Micro LED displays is the huge Quantitative transfer, the goal is to accurately transfer millions to tens of millions of micron-sized Micro LEDs from the epitaxial substrate to the display substrate within a reasonable time. Developing novel transfer technologies is unfamiliar and difficult to the existing LED or LCD industry, and transfer technologies are quite related to epitaxy, repair, and equipment patent technologies.
  • the transfer technology can be regarded as the key technology in the development of Micro LED display technology.
  • Manufacture of micron-scale Micro LEDs with mass transfer technology including the complexity and challenges of mass transfer and the corresponding inspection and repair process, is not only the difficulty of technological development itself but also the main reason for the manufacturing cost to be improved; if it is technically overcome
  • the existing obstacle is to realize the manufacture of RGB three LED components or at least two of them on the same epitaxial substrate, and lay out according to the requirements of the finished product, which will effectively skip or simplify the massive transfer process.
  • RGB red, green and blue
  • the main manufacturing technology needs to use a mixture of nitrides (Nitrides) and phosphides. (Phosphides) series of light-emitting diodes can meet the needs of the three primary colors.
  • RGB red, green, blue
  • a direct-emitting RGB (red, green, blue) three-primary-color light-emitting diode is realized on the same material system, it will not only help to solve the above problems, but also reduce the complexity of the process and the conversion due to the omission of the color-light conversion mechanism such as fluorescent materials.
  • the loss of energy efficiency will benefit the development of Micro LED technology.
  • Indium Gallium Nitride In x Ga 1-x N series epitaxial material is one of the material systems currently used in the production of mainstream blue light-emitting diodes.
  • the direct energy gap characteristic is also expected to have better luminous efficacy, especially the blue light mass production technology is mature, so it has received more attention than other material systems.
  • RGB direct LED Light-emitting diodes
  • substrates green and red light-emitting diodes of In x Ga 1-x N-based epitaxial materials are currently facing technical bottlenecks.
  • the In content ratio of the epitaxial layer is increased; this effect can also be used to maintain the same In x Ga 1-
  • the In content of the x N epitaxial layer increases the epitaxial temperature at the same time to improve the crystallization quality and luminous efficiency of the epitaxial layer.
  • the inventor once developed CN201910240892.5 "RGB full-color InGaN-based LED and its preparation method", using 2D layered materials to cover the surface of the substrate material as an intermediary layer for In x Ga 1-x N epitaxy, and performing van der Waals epitaxy ( van der Waals Epitaxy) or Quasi van der Waals Epitaxy (Quasi van der Waals Epitaxy) technology application, so that the stress or strain energy from the crystal lattice and thermal expansion mismatch in the epitaxy process can be relieved to a certain extent, and can be used on the currently available substrate surface Realize high-quality high-In content In x Ga 1-x N epitaxy, and realize high-efficiency direct green/red light-emitting diodes (direct green/red LED); the outermost layer of 2D layered materials uses MoSe 2 or WSe 2
  • the lattice constant can be as high as 0.3283nm or 0.3297nm, providing an epitaxial layer that fully matches the red light emission range
  • MQW multiple quantum well
  • the surface of the 2D layered material can be further covered with a nitride layer containing Al or In or Ga with precisely adjusted lattice constants as the top layer of the epitaxial interposer, in addition to enhancing the epitaxial nucleation of In x Ga 1-x N, A parameter for adjusting the epitaxial process is also added, which can effectively adjust the temperature required for the In x Ga 1-x N epitaxial process, and make it possible to have the same parameters such as the temperature of the blue, green, and red InGaN light-emitting diode epitaxial process.
  • the inventors continued to study and found that, based on the application of the previous technology, under the reduction of the epitaxial layer structure and the process, the thermal history (thermal budget) of the process can be effectively reduced, and the two processes can be completed sequentially on the same epitaxial chip. Or the feasibility of the epitaxial process of three kinds of InGaN LED components is improved; by adopting the mature integrated circuit process, it is carried out on an epitaxial chip separately, including the 2D and nitride lattice modulation layer and the epitaxial process that may be required, according to the epitaxial process The temperature requirements are sequentially carried out from the high temperature ones to the low temperature ones. After the epitaxy process is completed, the common processes required by the remaining components can be performed at the same time.
  • the area occupied by light-emitting components may be much lower than 50%, so there will be room in the layout to accommodate modules including touch or sensing; therefore, on the same epitaxial chip
  • DRAM dynamic random access memory
  • the purpose of the present invention is to provide a method for manufacturing RGB InGaN-based micro LEDs on the same chip, and provide corresponding manufacturing devices.
  • the solution of the present invention is:
  • a method for manufacturing RGB InGaN-based micro LEDs which is used to manufacture micro LED devices composed of multiple RGB InGaN LED components, and two or three color light components in the RGB InGaN LED components are fabricated on the same epitaxial chip , and distribute according to the layout design required by the finished product, the steps are as follows:
  • the first step is to perform epitaxial growth level polishing on the epitaxial chip material, and prepare for the subsequent manufacturing process through appropriate pre-treatment;
  • the second step evaporation, deposits SiO 2 or other oxides, nitrides or carbides with electrical insulation, visible light penetration and amorphous properties on the epitaxial chip as the isolation layer of the epitaxial region of each color optical component;
  • the third step etching, removes the isolation layer SiO 2 of the LED epitaxial region corresponding to the two or three color light components on the same epitaxial chip to form a block groove;
  • the fourth step is to select a region, and at least one and two types of components correspond to the bottom of the block groove to grow an interposer layer for modulating the epitaxial lattice constant;
  • the interposer is composed of a single type of 2D material, or a composite layer composed of multiple types of 2D materials;
  • the intermediary layer is composed of a bottom layer and a surface layer
  • the bottom layer is composed of a single type of 2D material or a composite layer of multiple types of 2D materials
  • the surface layer is covered on the bottom layer
  • the surface layer is a nitride containing elements such as Al or Ga or In constituted
  • the fifth step is to carry out the LED epitaxy process in the block groove.
  • the 2D material primer layer includes a heterostructure layer or a single layer with a total thickness ranging from 0.5nm to 1000nm.
  • 2D materials are hBN (hexagonal boron nitride), graphene and TMD family (transition metal dichalcogenide), etc.; existing processes can be used, including growth, deposition, transfer, coating ( coating)... etc., as well as related necessary pre-processing and post-processing procedures.
  • the 2D material undercoating is carried out from outside the effective range of components on the edge of the epitaxial chip for side coating (bevel coating) or backside coating (backside coating).
  • the fourth step, the 2D material of the interposer layer of selective growth can adopt the process of one step (one step) growth or deposition process (such as CVD or MOCVD, etc.) or two step (two step) growth, for example first A metal layer of tungsten or molybdenum is deposited and then selenized (Se) or sulfurized.
  • the nitride surface layer of the region-selectively grown interposer layer can be deposited by various physical or chemical vapor phases such as MOCVD process or sputtering (sputter) or molecular beam epitaxy (MBE), and the thickness can be controlled at about 20nm but This is not the limit.
  • the epitaxial processes of different color optical components can be performed simultaneously or sequentially.
  • the size of the InGaN LED component manufactured on the same epitaxial chip is within the size range of micro LED.
  • a pixel is formed by RGB InGaN LED components, and the layout of the RGB InGaN LED components in a single pixel can be designed with more than one set of RGB InGaN LED components as a backup (redundancy) for repairing defective components to improve Yield is used.
  • pixels are formed by RGB InGaN LED components, and this layout design can reserve enough area to match the needs of touch components, sensing components and various biometric components that may be configured on the display.
  • the epitaxial chip is detached first and then bonded to the driver and control circuit, or directly bonded to the substrate on which the driver and control circuit is formed and the epitaxial chip is detached.
  • the driver and control circuit design includes a redundancy (redundancy) RGB LED component testing and repair (such as electronic fuse efuse, etc.) mechanism.
  • redundancy redundancy
  • RGB LED component testing and repair such as electronic fuse efuse, etc.
  • An RGB InGaN-based micro LED device is composed of a plurality of RGB InGaN LED components, which are distributed according to the layout design required by the finished product.
  • Two or three color light components in the RGB InGaN LED components are formed on the same epitaxial chip;
  • An epitaxial isolation layer is formed on the chip, and block grooves for two or three color optical components are formed on the same epitaxial isolation layer.
  • at least one or two color optical components are formed at the bottom of the block grooves for adjusting An interlayer with variable epitaxial lattice constant, and an epitaxial layer of InGaN-based material corresponding to the color optical component is formed in the block groove.
  • the intermediary layer is composed of a single type of 2D material, or a composite layer composed of multiple types of 2D materials.
  • the intermediary layer is composed of a bottom layer and a surface layer, the bottom layer is composed of a single type of 2D material or a composite layer of multiple types of 2D materials, the surface layer is covered on the bottom layer, and the surface layer is made of Al or Ga or In. composed of nitrides.
  • the thickness of the nitride surface layer of the intermediary layer is controlled at about 20nm.
  • the epitaxial chip is made of sapphire, silicon, silicon carbide or other materials suitable for the range of InGaN epitaxial process conditions.
  • the thickness of the 2D material primer layer ranges from 0.5nm to 1000nm.
  • the 2D material base layer is coated on the side or back from outside the effective use range of the edge of the epitaxial chip.
  • the 2D materials are hBN (hexagonal boron nitride), graphene (graphene) and TMD family (transition metal dichalcogenides), etc.
  • the epitaxial region isolation layer on the epitaxial chip forms the block grooves of the three color light components, and the bottom of the block grooves of the three color light components are all formed with an interposer for modulating the epitaxial lattice constant, and the blue light component block
  • the interposer layer at the bottom of the groove is composed of WS 2 layer and GaN layer
  • the interposer layer at the bottom of the groove of the green light component block is composed of WSe 2 layer and In x Ga 1-x N layer
  • the interposer layer at the bottom of the groove of the red light component block is composed of WSe 2 layer and In y Ga 1-y N layer, where y>x.
  • the present invention uses 2D materials and nitride lattice modulation to make the parameters such as the temperature of the epitaxial process of different color optical components consistent, and can realize two or three InGaN LED components on the same epitaxial chip in sequence or at the same time.
  • Epitaxial process, and complete the required process of other components, the mass transfer process will be effectively reduced.
  • Redundancy repair design is introduced for light-emitting components, which greatly reduces the complexity and cost of the subsequent repair process, and effectively improves the yield rate.
  • Fig. 1 is existing process flowchart
  • Fig. 2 is the process flow chart of embodiment one of the present invention.
  • Fig. 3 is the process flow chart of embodiment two of the present invention.
  • Fig. 4 is a schematic diagram of an RGB InGaN LED assembly of the present invention.
  • Fig. 5 is a schematic diagram of the product of the present invention.
  • a manufacturing method of an RGB InGaN-based micro LED disclosed by the present invention is used to manufacture a micro LED device composed of a plurality of RGB InGaN LED components, and two or three color light components in the three components of the RGB InGaN LED The components are manufactured on the same epitaxial chip and distributed according to the layout design required by the finished product.
  • the present invention takes the manufacture of red, green and blue LED components on the same chip as an example to illustrate the manufacturing process of the present invention.
  • epitaxial growth grade polishing is performed on the material of the epitaxial chip 1 (sapphire chip).
  • the polished sapphire chip conforming to the epitaxial growth grade is used as the starting material, and proper pretreatment (including chip cleaning) is used as the preparation for the subsequent manufacturing process.
  • the epitaxial chip 1 is made of sapphire, silicon, silicon carbide or other materials suitable for InGaN epitaxial process conditions.
  • the 2D material base layer 2 can be added according to the design requirements, that is, the 2D material base layer 2 can be grown with the existing manufacturing process (taking hBN as an example).
  • the surface of the epitaxial chip 1 can be fully coated with a 2D material primer layer 2, which can be used as an etching stop layer in the region-selective RGB epitaxy process and a substrate for the growth of the region-selective 2D material as well as components and epitaxial chip 1 after the LED process is completed. Detached van der Waals bonded layer.
  • the 2D material primer layer 2 includes a heterostructure layer or a single layer with a total thickness ranging from 0.5 nm to 1000 nm.
  • 2D materials can be hBN (hexagonal boron nitride), graphene (graphene) and TMD family (transition metal dichalcogenides), etc.; existing processes can be used, including growth (growth), deposition (deposition), transfer (transfer) ), coating (coating), etc., as well as related necessary pre-treatment and post-treatment procedures.
  • the side coating can be performed from outside the effective component use range of the edge of the epitaxial chip 1 (bevel coating) or backside coating (backside coating), in order to effectively cover the side edge of the 2D material base layer 2 to avoid the risk of partial or complete desorption during the assembly process; perform side etching (bevel coating) after the assembly process is completed etch) to remove the protective layer, and then detach the epitaxial chip;
  • the material of the protective layer can be oxide or nitride.
  • SiO 2 is deposited on the epitaxial chip as the isolation layer 3 for the epitaxial region of each color optical component.
  • SiO 2 can also be replaced by other oxides, nitrides or carbides with electrical insulation, visible light penetration and amorphous properties.
  • the third step yellow light/etching, on the same epitaxial chip 1, remove the isolation layer SiO 2 of the LED epitaxial region corresponding to the light components of various colors, and the etching stops at the 2D material primer layer 2 (hBN surface), which is made for Make three groups of block slots 31 for three-color components. If there is no primer layer 2 of the aforementioned 2D material, the etching stops on the epitaxial chip 1 .
  • the fourth step, area selection means that in the n block grooves 31 in the third step, at least (n-1) block grooves 31 are selected, and the 2D material primer layer 2 (hBN surface) at the bottom of the block groove 31 ) to grow an interposer, and the interposer is used to modulate the epitaxial lattice constant.
  • the selection area in the fourth step has at least two groups (can be two groups or three groups) of block grooves 31 grow an interposer at the bottom; if only two color optical components are fabricated on the same chip, the epitaxial isolation layer 3 has only two sets of block grooves, and at least one component corresponding to the block groove 31 grows at the bottom for modulation Epitaxial lattice constant for the interposer.
  • the red, green and blue LED components are manufactured on the same chip, and the epitaxial isolation layer 3 has three sets of block grooves 31, so there are at least two sets of block grooves 31 corresponding to the growth medium at the bottom.
  • an interposer layer is grown on the bottom of the block groove 31 corresponding to the three components.
  • the interposer here can be composed of a single type of 2D material, or a composite layer composed of multiple types of 2D materials.
  • the intermediary layer is composed of a bottom layer and a surface layer
  • the bottom layer is composed of a single type of 2D material or a composite layer of multiple types of 2D materials
  • the surface layer is covered on the bottom layer
  • the surface layer is a nitride containing elements such as Al or Ga or In constituted.
  • 2D materials can also be hBN (hexagonal boron nitride), graphene (graphene) and TMD family (transition metal dichalcogenides), etc.
  • the block groove 31 of the Blu-ray module is grown on the 2D material base layer 2 (hBN surface) by chemical vapor deposition (chemical vapor deposition, CVD).
  • Beam epitaxy, MBE grows GaN, thereby constructing the interposer 41 in the blue light region;
  • the interposer 42 of the green component block groove 31 on the 2D material underlying layer 2 is MBE In x Ga 1-x N/CVD WSe 2 ,
  • the intermediary layer 43 of the block groove 31 of the red light component on the 2D material base layer 2 is MBE In y Ga 1-y N/CVD WSe 2 , where y>x.
  • the 2D material of the interposer layer of selective growth can be used as a one-step growth or deposition process (such as CVD or MOCVD, etc.) or a two-step (two step) growth, such as depositing a tungsten or molybdenum metal layer first Then this layer is selenized (Se) or sulfurized.
  • a one-step growth or deposition process such as CVD or MOCVD, etc.
  • a two-step (two step) growth such as depositing a tungsten or molybdenum metal layer first Then this layer is selenized (Se) or sulfurized.
  • the nitride surface layer containing elements such as Al, Ga, or In used in the interlayer of selective growth can be deposited by various physical or chemical vapor phases such as MOCVD process, sputtering (sputter) or molecular beam epitaxy (MBE), and the thickness can be Controlled at around 20nm but not limited thereto.
  • the fifth step based on the lattice modulation effect of the aforementioned intermediary layers 41, 42, and 43, it is possible to make consistent parameters such as the temperature of the epitaxial process, and perform the LED epitaxial process in the block groove 31 on the same epitaxial chip 1 to form the epitaxial layer 5 .
  • the epitaxial process of fabricating different color optical components on the same chip can be carried out simultaneously or sequentially.
  • the size of the InGaN LED component fabricated on the same epitaxial chip 1 is within the size range of the micro LED.
  • the common LED component completion process can be continued.
  • Typical processes include mesa etching, and fabrication of electrodes 6, isolation layers and metal pads 7, etc.
  • the substrate 9 that contains the driver and the control circuit, and then the epitaxial chip 1 used for the original epitaxial extension is detached or removed; or, as shown in FIG. 3 , the epitaxial chip 1 is first bonded. Detach, and then connect with the driver and control circuit.
  • the substrate 9 can be a substrate containing silicon-based CMOS components or a control circuit or a glass substrate with TFTs.
  • the driver and control circuit design includes a redundancy (redundancy) RGB LED component testing and repair (such as electronic fuse efuse, etc.) mechanism.
  • the core functional structure of the three components of its RGB InGaN LED is composed of a nitride semiconductor epitaxial layer, and the active light-emitting layer material is InGaN. This method can save or simplify the mass transfer process when making microLED displays.
  • a RGB InGaN-based micro LED device manufactured by the present invention is composed of a plurality of RGB InGaN LED components, and is distributed according to the layout design required by the finished product.
  • the three colors in the RGB InGaN LED components The optical components are formed on the same epitaxial chip 1; a 2D material base layer 2 is formed by evaporation on the epitaxial chip 1, and an SiO 2 epitaxial isolation layer 3 is deposited on the 2D material base layer 2, and the same epitaxial isolation layer 3 is etched
  • the block grooves 31 of the three-color light components are formed, and the bottoms of the block grooves 31 of the three-color light components are respectively formed with three kinds of intermediary layers 41, 42, 43 for modulating the epitaxial lattice constants, and in the block grooves 31
  • epitaxial layers 5 of InGaN-based materials corresponding to the optical components of the three colors are formed.
  • RGB InGaN LED components form a pixel (pixel).
  • the layout of RGB InGaN LED components in a single pixel can design more than one set of RGB InGaN LED components as a backup (redundancy), as Repair defective components to improve yield.
  • This layout design can reserve enough area to match the needs of touch components, sensing components and various biometric components that may be configured on the display.
  • another process option is to directly carry out the processes such as TFT and other arrays on the same epitaxial chip 1 that can be integrated into the same epitaxial chip; (driver and control circuit, etc.) substrate bonding, or directly bond to the substrate containing the necessary mechanism and detach the epitaxial chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开一种RGB InGaN基micro LED的制作方法,步骤如下:对外延芯片材料进行前处理,在外延芯片上沉积隔离层,在同一片外延芯片上将两种或三种颜色光组件对应的LED外延区隔离层去除,制成区块槽,分别至少有一种及两种组件对应的区块槽底部成长用于调变外延晶格常数的中介层,在区块槽中进行LED外延工序。本发明还公开了制作的器件。本发明可以实现依序或同时在同一外延芯片上完成两种或三种InGaN LED组件的外延工序,并完成其余组件所需工序,巨量转移工序将获得有效的减省。针对发光组件导入备援修补设计,大幅降低后续修复工序的复杂度及成本,有效地提升良品率。

Description

一种RGB InGaN基micro LED的制作方法及其制作的器件 技术领域
本发明涉及一种在同一芯片上制作RGB InGaN基micro LED的制作方法,并涉及其制作的器件。
背景技术
随着时代的进步,显示器变得更轻、薄、更省电,显示器主流技术已从阴极射线管(Cathode Ray Tube,CRT)显示器、LCD,逐渐变成新兴的OLED显示器,而近来各国积极投入的Micro LED显示器具有优越特性与可行性,在国际领导厂商的引领与产业界的积极参与之下,有望成为下一世代的显示器的主流技术。Micro LED技术将一般毫米(10 -3m)等级之传统LED尺寸微缩至100微米(10 -6m)以下,是原本LED体积的1%,透过巨量转移技术,将成长于外延基板(或称为原生基板或同质基板)之微米等级RGB三色Micro LED搬运至显示基板(或称为目的基板)上,矩阵排列RGB像素经由寻址控制其暗亮程度而达成全彩化,以形成Micro LED显示器。
Micro LED相较于LCD与OLED具有优越的特性,可以先从结构来说明,LCD由于本身非自发光,需要背光模块作为光源,且液晶分子需要偏光片与彩色滤光片的搭配,以作为光偏振控制明亮程度与彩色化之手段,故具有较复杂且厚重之构造;OLED具有像素自发光特性,可以省去TFT LCD的背光模块,然而其有机发光材料对于湿气敏感,故需要上下基板形成密封结构以增强其对环境之耐候性;Micro LED以无机LED作为像素,并无OLED的封装问题,相较之下,Micro LED的组成最简单,可以做出最轻薄的结构;而传统LED在TFT LCD显示器中作为背光源的角色,当演进至Micro LED显示器,Micro LED则直接作为发光像素。再由特性方面来说明,Micro LED具有自发光、低功耗、响应时间快、高亮度、超高对比度、广色域、广视角、超轻薄、使用寿命长与适应各种工作温度的诸多优异特性,Micro LED的技术规格相较于LCD与OLED具有压倒性的优势。
前项提到,在外延工序完成后,必须要进行Micro LED转移工序,将数以百万计微米等级的Micro LED转移至显示基板,称为巨量转移技术;若转移工序无法有效地在合理时间完成,则无法量产,而在拾取与放置所要求的单次转移数量与高精密度,并未见于现行的量产技术,因此在开发Micro LED显示器所面临的第一个关键挑战就是巨量转移,目标是希望能在合理的时间内将数百万至数千万颗微米等级的Micro LED由外延基板精确无误地转移至显示基板。开发新颖的转 移技术对现有的LED或LCD产业是陌生且困难的,且转移技术与外延、修复、设备专利技术皆具有相当之关联性,某种程度上说,不同转移技术各自搭配了对应的外延、修复与设备技术,故转移技术可谓发展Micro LED显示器技术中之关键技术。以巨量转移技术制造微米等级的Micro LED,包括巨量转移及相应的检测与修复工序其复杂度与挑战性,既是技术发展的困难本身也是制造成本仍待改善的主因;如果在技术上克服现有障碍,实现将RGB三种LED组件或至少其中两种组件在同一外延基板上制造,并按照成品需求布局,将有效的跳脱或简省巨量转移工序。
在Micro-LED的显示器(Displays)制造过程中,需采用红绿蓝(RGB)三原色发光二极管来构成单元的像素(pixels),目前主要的制造技术需混和采用氮化物(Nitrides)系和磷化物(Phosphides)系的发光二极管,才能满足三原色的需求。不同材料系统发光二极管混用时,不同的发热及衰减特性直接影响了影像呈现的质量;不同的电气驱动特性,则直接导致了显示模块驱动设计上的复杂度。因此,如果在同一材料系统上,实现直接发光RGB(红绿蓝)三原色发光二极管,除了有利于上述问题解决外,也同时因为省去荧光物等色光转换机制将降低工序复杂度以及转换所致能效损失,将对Micro LED技术的发展有利。氮化铟镓In xGa 1-xN系外延材料是目前制作主流蓝光发光二极管的材料系统之一,理论上可通过铟镓固溶比例调控覆盖整个可见光发光范围,氮化铟镓受益于具有直接能隙(energy gap)特性也预期将有较佳的发光效能,尤其蓝光量产技术纯熟,因此受到比其他材料系统更多的关注,在制作具有近似控制条件同时效能佳的直接红绿蓝发光二极管(RGB direct LED)深具潜能。然而基板,目前在In xGa 1-xN系外延材料的绿光及红光发光二极管却面临技术瓶颈,由于要达到绿光及红光合适的发光波段时,需增加In xGa 1-xN系外延的In含量比例,在外延制造工序上必须以降低外延温度等方式增加In含量,却面临外延质量不符应用规格等阻碍;有鉴于此,法国Soitec公司于2017年宣布开发出适用于上述目的的基板材料,同一年度发布使用该基板成功制作的直接绿光发光二极管(direct green LED),该公司发布所开发出的基板表面晶格常数最高可以达到0.3205纳米(nm),表面层为应力舒缓的In xGa 1-xN层;2018年则发布了成功制作的直接红光发光二极管(direct red LED);该公司所发布的基板晶格常数最高值仍维持不变为0.3205纳米(nm);该公司的基板开发除了获得具体成效,然而,该项基板技术采用复杂繁复的制造工序,制造成本偏高为市场广泛采纳时可能的阻碍。其结果也证明基板晶格常数为成功实现In xGa 1-xN直接绿光/红光发光二极管(direct green/red LED)的关键之一,即多数研究均提及的晶格拉张效应(lattice pulling effect) 之影响。在外延In xGa 1-xN时,当基板或下层晶格常数由GaN端增加移向InN端时,外延层的In含量比例获得提升;利用此效应也可以在维持相同In xGa 1-xN外延层的In含量的同时提高外延温度来改善外延层结晶质量与发光效能。
因此,本发明人曾经研发了CN201910240892.5《RGB全彩InGaN基LED及其制备方法》,采用2D层状材料覆盖基板材料表面作为In xGa 1-xN外延的中介层,进行范德华外延(van der Waals Epitaxy)或准范德华外延(Quasi van der Waals Epitaxy)技术应用,使得来自于外延工序中晶格以及热膨胀不匹配的应力或应变能因此获得一定程度的舒缓,能在目前可用的基板表面实现高质量的高In含量In xGa 1-xN外延,并实现高效能的直接绿光/红光发光二极管(direct green/red LED);2D层状材料最外层采用MoSe 2或WSe 2时晶格常数可上达0.3283nm或0.3297nm,提供完全匹配于红光发光范围的外延层确保外延层质量之外,有机会将外延及组件工序简化,发光二极管从n极、多层量子井(multiple quantum well,MQW)到p极全由In xGa 1-xN外延层构成,也将使得高质量直接绿光/红光发光二极管得以实现。同时,可以进一步在2D层状材料表面覆盖晶格常数精准调整的含Al或In或Ga的氮化物层作为外延的中介层的顶层,除了增进In xGa 1-xN外延成核之外,也增加了一项调整外延工序的参数,可以有效调整In xGa 1-xN外延工序所需温度,并使蓝绿红InGaN发光二极管外延工序温度等参数相同成为可能。
本发明人继续研究发现,基于前项技术的应用,在减省外延层结构与工序之下,有效减省工序的热历程(thermal budget)时,将使依序在同一外延芯片上完成两种或三种InGaN LED组件之外延工序可行性提高;通过采用成熟的集成电路工序,在一外延芯片上分别择区进行,包含可能需要的2D及氮化物晶格调变层及外延工序,按照外延工序温度需求,由高温者依序向低温者进行,外延工序均完成后可同时执行共通的剩余组件所需工序。同样基于前项技术的应用,在不同组件通过2D及氮化物晶格调变层使得外延工序温度等参数一致成为可能时,将使同时在同一外延芯片上完成两种或三种InGaN LED组件之外延工序成为可能;通过采用成熟的集成电路工序,在一外延芯片上分别择区进行,先完成可能需要的2D及氮化物晶格调变层工序之后,同时执行外延工序与其余组件所需工序。如此一来,巨量转移工序将获得有效的减省。
依据现有micro LED技术实务,在一micro LED器件上,发光组件占据面积可能远低于50%,因此平面布局上将有余裕容纳包含触控或感测等模块;因此,在同一外延芯片上制作两种或三种InGaN LED组件可行的前提下,针对发光组件导入动态随机存取内存(DRAM)等惯 常使用的备援(Redundancy)修补概念也将成为可行,如此将大幅降低后续修复工序的复杂度及成本,并有效地提升良品率。作法上在每一画素(pixel)中的RGB择区中均制造复数的组件,并在控制电路上加入修补电路的设计,于检测修补阶段执行修补。如此将使micro LED制造工艺走向集成电路化成为可能,也将使更有效率整合控制电路组件与触控或感测等模块工艺成为可能。
现有工艺如图1所示:分别制作蓝绿红光micro led晶粒,将大量的蓝绿红光led晶粒与外延芯片脱离,经过拾取与放置工序巨量转移至显示基板,再进行micro led晶粒的测试与修复的工序。
发明内容
本发明的目的在于提供一种在同一芯片上制作RGB InGaN基micro LED的制作方法,并提供相应的制作器件。
为了达成上述目的,本发明的解决方案是:
一种RGB InGaN基micro LED的制作方法,用于制作由复数RGB InGaN LED组件构成的micro LED器件,其RGB InGaN LED组件中的两种或三种颜色光组件在同一片外延芯片上完成组件制作,并按照成品所需的布局设计分布,其步骤如下:
第一步,对外延芯片材料进行外延成长等级抛光,并经由适当前处理作为后续制造程序的准备;
第二步,蒸镀,在外延芯片上沉积SiO 2或其他具有电气绝缘性、可见光穿透性及非结晶质的氧化物或氮化物或碳化物作为各颜色光组件的外延区隔离层;
第三步,蚀刻,在同一片外延芯片上将两种或三种颜色光组件对应的LED外延区隔离层SiO 2去除,制成区块槽;
第四步,择区,分别至少有一种及两种组件对应的区块槽底部成长用于调变外延晶格常数的中介层;
中介层由单一种类的2D材料构成,或者由复数种类的2D材料构成复合层;
或者,中介层由底层和表层所构成,底层由单一种类的2D材料构成或者由复数种类的2D材料构成复合层,表层披覆在底层上,表层为含Al或Ga或In等元素的氮化物所构成;
第五步,在区块槽中进行LED外延工序。
所述第二步之前,以既有制造工艺,成长2D材料打底层。2D材料打底层包含异质材料接合(heterostructure)层或单层,总厚度范围在0.5nm到1000nm。2D材料为hBN(六方氮化硼)、graphene以及TMD家族(过渡金属二硫族化物)等;可以采用既存的工序,包括成长(growth)、沉积(deposition)、转移(transfer)、涂覆(coating)… 等,以及相关必要的前处理与后处理工序。所述2D材料打底层,从外延芯片边缘有效组件使用范围之外进行侧边披覆(bevel coating)或背向披覆(backside coating)。
所述第四步,择区成长的中介层的2D材料,可以采用的工序为一步骤(one step)的成长或沉积工序(如CVD或MOCVD等)或两步骤(two step)成长,例如先沉积钨或钼金属层再将此层硒(Se)化或硫化。
所述第四步,择区成长的中介层的氮化物表层,可以采用MOCVD工序或溅镀(sputter)或分子束外延(MBE)等各种物理或化学气相沉积,厚度可以控制在20nm左右但不以此为限。
所述第五步,不同颜色光组件的外延工序可以同时进行或依序进行。
所述在同一片外延芯片上完成组件制作的InGaN LED组件尺寸大小为micro LED尺寸范围。
所述布局设计中,由RGB InGaN LED组件形成画素(pixel),单一画素中RGB InGaN LED组件布局可以设计多于一组的RGB InGaN LED组件作为备援(redundancy),做为修复不良组件以提升良率之用。
所述布局设计中,由RGB InGaN LED组件形成画素(pixel),此布局设计可以预留足够区域以匹配显示器可能配置的触控组件、感测组件以及各种生物辨识组件所需。
所述第五步之后,先进行外延芯片的脱附再与驱动器以及控制电路等接合,或是直接与制有驱动器以及控制电路等的基板接合并进行外延芯片脱附。
所述第五步之后,直接于同一外延芯片上进行TFT等数组等可资整合于同一外延芯片的工序;工序完成后,可以先进行外延芯片的脱附再与含有必要机构(驱动器以及控制电路等)的基板接合,或是直接与含有必要机构的基板接合并进行外延芯片脱附。
所述驱动器及控制电路设计包含备援(redundancy)RGB LED组件测试与修复(例如电子熔丝efuse等)机构。
一种RGB InGaN基micro LED器件,由复数RGB InGaN LED组件构成,按照成品所需的布局设计分布,RGB InGaN LED组件中的两种或三种颜色光组件形成在同一片外延芯片上;在外延芯片上形成外延区隔离层,在同一外延区隔离层形成两种或三种颜色光组件的区块槽,相应地,分别至少有一种或两种颜色光组件的区块槽底部形成用于调变外延晶格常数的中介层,区块槽中则形成对应颜色光组件的InGaN系材料外延层。
所述中介层由单一种类的2D材料构成,或者由复数种类的2D材料构成复合层。或者,所述中介层由底层和表层所构成,底层由单一 种类的2D材料构成或者由复数种类的2D材料构成复合层,表层披覆在底层上,表层为含Al或Ga或In等元素的氮化物所构成。所述中介层的氮化物表层厚度控制在20nm左右。
所述外延芯片采用蓝宝石、硅、碳化硅等芯片或其他适用于InGaN外延工序条件范围的材质。
所述外延芯片与外延区隔离层之间还具有全面披覆的2D材料打底层,区块槽的底部止于2D材料打底层。
所述2D材料打底层的厚度范围在0.5nm到1000nm。
所述2D材料打底层从外延芯片边缘有效使用范围之外进行侧边披覆或背向披覆。
所述2D材料为hBN(六方氮化硼)、graphene(石墨烯)以及TMD家族(过渡金属二硫族化物)等。
所述外延芯片上的外延区隔离层形成三种颜色光组件的区块槽,三种颜色光组件的区块槽底部都形成用于调变外延晶格常数用之中介层,蓝光组件区块槽底部的中介层由WS 2层和GaN层组成,绿光组件区块槽底部的中介层由WSe 2层和In xGa 1-xN层组成,红光组件区块槽底部的中介层由WSe 2层和In yGa 1-yN层组成,其中y>x。
采用上述方案后,本发明通过2D材料及氮化物晶格调变,使得不同颜色光组件外延工序温度等参数一致,可以实现依序或同时在同一外延芯片上完成两种或三种InGaN LED组件的外延工序,并完成其余组件所需工序,巨量转移工序将获得有效的减省。针对发光组件导入备援(Redundancy)修补设计,大幅降低后续修复工序的复杂度及成本,并有效地提升良品率。
附图说明
图1是现有工艺流程图;
图2是本发明实施例一的工艺流程图;
图3是本发明实施例二的工艺流程图;
图4是本发明的RGB InGaN LED组件示意图;
图5是本发明的产品示意图。
标号说明
1    外延芯片            2    2D材料打底层
3    隔离层              31   区块槽
41、42、43 中介层        5    外延层
6    电极                7    金属接垫
8    驱动器与控制电路    9    基板
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
本发明揭示的一种RGB InGaN基micro LED的制作方法,是用于制作由复数RGB InGaN LED组件构成的micro LED器件,将其RGB InGaN LED三种组件中的两种或三种颜色光组件在同一片外延芯片上完成组件制作,并按照成品所需的布局设计分布。
请参见图2至图5所示,本发明以在同一芯片上制作红绿蓝三色LED组件为例,说明本发明的制作工艺。
第一步,对外延芯片1(蓝宝石芯片)材料进行外延成长等级抛光,以符合外延成长等级的抛光蓝宝石芯片为起始材料,经由适当前处理(含芯片清洗)作为后续制造程序的准备。
所述外延芯片1采用蓝宝石、硅、碳化硅等芯片或其他适用于InGaN外延工序条件范围的材质。
接着,可以根据设计需要增加2D材料打底层2,即,以既有制造工艺成长2D材料打底层2(以hBN为例)。具体是,在外延芯片1表面可以全面性披覆2D材料打底层2,作为后述择区RGB外延工序中的蚀刻停止层以及择区2D材料成长的基底以及LED工序完成后组件与外延芯片1脱离的范德华键结层。
2D材料打底层2包含异质材料接合(heterostructure)层或单层,总厚度范围在0.5nm到1000nm。2D材料可以为hBN(六方氮化硼)、graphene(石墨烯)以及TMD家族(过渡金属二硫族化物)等;可以采用既存的工序,包括成长(growth)、沉积(deposition)、转移(transfer)、涂覆(coating)等等,以及相关必要的前处理与后处理工序。并且,外延芯片1表面全面性披覆2D材料打底层2并进行外延组件工序时,可在披覆该2D材料打底层2后,从外延芯片1边缘有效组件使用范围之外进行侧边披覆(bevel coating)或背向披覆(backside coating),以期有效包覆2D材料打底层2侧缘以避免组件工序进行中发生局部或全面脱附风险;待组件工序完成后执行侧边蚀刻(bevel etch)去除此保护层,再进行外延芯片脱附;保护层材质可以是氧化物或氮化物。
第二步,蒸镀,在外延芯片上沉积SiO 2作为各颜色光组件的外延区隔离层3。SiO 2也可以采用其他具有电气绝缘性、可见光穿透性及非结晶质的氧化物或氮化物或碳化物代替。
第三步,黄光/蚀刻,在同一片外延芯片1上将各种颜色光组件对应的LED外延区隔离层SiO 2去除,蚀刻停止于2D材料打底层2(hBN表面),制成用于制作三色组件的三组区块槽31。如果没有前述2D材料打底层2,则蚀刻停止于外延芯片1上。
第四步,择区,是指在第三步的n个区块槽31中,至少选择(n-1)个区块槽31,在区块槽31底部的2D材料打底层2(hBN表面)上成 长中介层,中介层用于调变外延晶格常数。比如,将三种颜色光组件制作在同一芯片上,前述第三步制成三组区块槽31,那么第四步的择区至少有两组(可以是两组或三组)区块槽31在底部成长中介层;如果只将两种颜色光组件制作在同一芯片上,则外延隔离层3只有两组区块槽,那么至少有一种组件对应的区块槽31底部成长有用于调变外延晶格常数的中介层。
对于图2至图5而言,是将红绿蓝三色LED组件制作在同一芯片上,外延隔离层3有三组区块槽31,那么至少有两种组件对应的区块槽31底部成长中介层,图中所示是在三种组件对应的区块槽31底部都成长有中介层。这里的中介层可以由单一种类的2D材料构成,或者由复数种类的2D材料构成复合层。或者,中介层由底层和表层所构成,底层由单一种类的2D材料构成或者由复数种类的2D材料构成复合层,表层披覆在底层上,表层为含Al或Ga或In等元素的氮化物所构成。2D材料同样可以为hBN(六方氮化硼)、graphene(石墨烯)以及TMD家族(过渡金属二硫族化物)等。如图2至图5所示,蓝光组件区块槽31在2D材料打底层2(hBN表面)以化学气象沉积(chemical vapor deposition,CVD)法外延成长WS 2层,然后以分子束外延(molecular beam epitaxy,MBE)成长GaN,由此构件蓝光区的中介层41;绿光组件区块槽31在2D材料打底层2上的中介层42为MBE In xGa 1-xN/CVD WSe 2,红光组件区块槽31在2D材料打底层2上的中介层43为MBE In yGa 1-yN/CVD WSe 2,其中y>x。
择区成长的中介层的2D材料,可以采用的工序为一步骤(one step)的成长或沉积工序(如CVD或MOCVD等)或两步骤(two step)成长,例如先沉积钨或钼金属层再将此层硒(Se)化或硫化。
择区成长的中介层所采用的含Al或Ga或In等元素的氮化物表层,可以采用MOCVD工序或溅镀(sputter)或分子束外延(MBE)等各种物理或化学气相沉积,厚度可以控制在20nm左右但不以此为限。
第五步,基于前述中介层41、42、43的晶格调变作用,使得外延工序温度等参数一致成为可能,在同一外延芯片1上的区块槽31中进行LED外延工序,形成外延层5。在同一片芯片上制作不同颜色光组件的外延工序可以同时进行或依序进行。在同一片外延芯片1上完成组件制作的InGaN LED组件尺寸大小为micro LED尺寸范围。
蓝绿红InGaN LED外延层5工序完成后,可以继续施行共同的LED组件完成工序,典型工序包含mesa蚀刻,并制作电极6、隔离层以及金属接垫7等。然后,如图2所示,直接与另行制作含有驱动器与控制电路的基板9接合,再将原外延使用的外延芯片1脱附或去除;或者,如图3所示,先进行外延芯片1的脱附,再与驱动器以及控制电路等接合。基板9可采用含硅基CMOS组件的基板或控制电路或制 有TFT的玻璃基板等。进行蓝绿红LED组件测试并利用备援(redundancy)蓝绿红LED组件修复(例如使用电子熔丝efuse等机构修复)。所述驱动器及控制电路设计包含备援(redundancy)RGB LED组件测试与修复(例如电子熔丝efuse等)机构。
这样,本发明完成micro LED器件制作。其RGB InGaN LED三种组件核心功能结构由氮化物半导体外延层构成,主动发光层材料为InGaN。此方法制作microLED显示器时可以省去或简化巨量转移(mass transfer)工序。
再请参见图2至图5所示,本发明制作的一种RGB InGaN基micro LED器件,由复数RGB InGaN LED组件构成,按照成品所需的布局设计分布,RGB InGaN LED组件中的三种颜色光组件形成在同一片外延芯片1上;在外延芯片1上蒸镀形成2D材料打底层2,在2D材料打底层2上沉积形成SiO 2外延区隔离层3,在同一外延区隔离层3蚀刻形成三种颜色光组件的区块槽31,三种颜色光组件的区块槽31底部分别形成三种用于调变外延晶格常数的中介层41、42、43,区块槽31中则再在中介层41、42、43上形成对应三种颜色光组件的InGaN系材料外延层5。
按照成品所需的布局(layout)设计,由RGB InGaN LED组件形成画素(pixel),单一画素中RGB InGaN LED组件布局可以设计多于一组的RGB InGaN LED组件作为备援(redundancy),做为修复不良组件以提升良率之用。此布局设计可以预留足够区域以匹配显示器可能配置的触控组件、感测组件以及各种生物辨识组件所需。LED组件工序完成后,另一工序选项是直接于同一外延芯片1上进行TFT等数组等可资整合于同一外延芯片的工序;工序完成后,可以先进行外延芯片的脱附再与含有必要机构(驱动器以及控制电路等)的基板接合,或是直接与含有必要机构的基板接合并进行外延芯片脱附。
使用本发明方法可以制作各种显示器或相关组件产品。
以上所述仅为本发明的较佳实施例,并非对本发明的限制。应当指出,本领域的技术人员在阅读完本说明书后,依本案的设计思路所做的等同变化,均落入本案的保护范围。

Claims (17)

  1. 一种RGB InGaN基micro LED的制作方法,其特征在于:用于制作由复数RGB InGaN LED组件构成的micro LED器件,其RGB InGaN LED组件中的两种或三种颜色光组件在同一片外延芯片上完成组件制作,并按照成品所需的布局设计分布,其步骤如下:
    第一步,对外延芯片材料进行外延成长等级抛光,并经由适当前处理作为后续制造程序的准备;
    第二步,蒸镀,在外延芯片上沉积SiO 2或其他具有电气绝缘性、可见光穿透性及非结晶质的氧化物或氮化物或碳化物作为各颜色光组件的外延区隔离层;
    第三步,蚀刻,在同一片外延芯片上将两种或三种颜色光组件对应的LED外延区隔离层去除,制成区块槽;
    第四步,择区,分别至少有一种及两种组件对应的区块槽底部成长用于调变外延晶格常数的中介层;
    中介层由单一种类的2D材料构成,或者由复数种类的2D材料构成复合层;
    或者,中介层由底层和表层所构成,底层由单一种类的2D材料构成或者由复数种类的2D材料构成复合层,表层披覆在底层上,表层为含Al或Ga或In元素的氮化物所构成;
    第五步,在区块槽中进行LED外延工序。
  2. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述第二步之前,以既有制造工艺成长2D材料打底层。
  3. 如权利要求2所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述2D材料打底层包含异质材料接合层或单层,总厚度范围在0.5nm到1000nm。
  4. 如权利要求2所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述2D材料打底层,从外延芯片边缘有效组件使用范围之外进行侧边披覆或背向披覆。
  5. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述第四步,择区成长的中介层的2D材料,采用的工序为一步骤的成长或沉积工序或两步骤成长。
  6. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述第四步,择区成长的中介层的氮化物表层,采用MOCVD工序或溅镀或分子束外延,厚度可以控制在20nm左右但不以此为限。
  7. 如权利要求1所述的一种RGB InGaN基micro LED的制作方 法,其特征在于:所述第五步,不同颜色光组件的外延工序可以同时进行或依序进行。
  8. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述布局设计中,由RGB InGaN LED组件形成画素,单一画素中RGB InGaN LED组件布局设计多于一组的RGB InGaN LED组件作为备援。
  9. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述布局设计中,由RGB InGaN LED组件形成画素,此布局设计预留足够区域以匹配显示器可能配置的触控组件、感测组件以及各种生物辨识组件所需。
  10. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述第五步之后,先进行外延芯片的脱附再与驱动器以及控制电路接合,或是直接与制有驱动器以及控制电路等的基板接合并进行外延芯片脱附。
  11. 如权利要求1所述的一种RGB InGaN基micro LED的制作方法,其特征在于:所述第五步之后,直接于同一外延芯片上进行TFT等数组等可资整合于同一外延芯片的工序;工序完成后,先进行外延芯片的脱附再与含有必要机构的基板接合,或是直接与含有必要机构的基板接合并进行外延芯片脱附。
  12. 一种RGB InGaN基micro LED器件,其特征在于:由复数RGB InGaN LED组件构成,按照成品所需的布局设计分布,RGB InGaN LED组件中的两种或三种颜色光组件形成在同一片外延芯片上;在外延芯片上形成外延区隔离层,在同一外延区隔离层形成两种或三种颜色光组件的区块槽,相应地,分别至少有一种或两种颜色光组件的区块槽底部形成用于调变外延晶格常数的中介层,区块槽中则形成对应颜色光组件的InGaN系材料外延层。
  13. 如权利要求12所述的一种RGB InGaN基micro LED器件,其特征在于:所述中介层由单一种类的2D材料构成,或者由复数种类的2D材料构成复合层。
  14. 如权利要求12所述的一种RGB InGaN基micro LED器件,其特征在于:所述中介层由底层和表层所构成,底层由单一种类的2D材料构成或者由复数种类的2D材料构成复合层,表层披覆在底层上,表层为含Al或Ga或In元素的氮化物所构成,所述中介层的氮化物表层厚度控制在20nm左右。
  15. 如权利要求12所述的一种RGB InGaN基micro LED器件,其特征在于:所述外延芯片与外延区隔离层之间还具有全面披覆的2D材料打底层,区块槽的底部止于2D材料打底层。
  16. 如权利要求12所述的一种RGB InGaN基micro LED器件, 其特征在于:所述2D材料打底层从外延芯片边缘有效使用范围之外形成侧边披覆或背向披覆。
  17. 如权利要求12所述的一种RGB InGaN基micro LED器件,其特征在于:所述外延芯片上的外延区隔离层形成三种颜色光组件的区块槽,三种颜色光组件的区块槽底部都形成用于调变外延晶格常数用之中介层,蓝光组件区块槽底部的中介层由WS 2层和GaN层组成,绿光组件区块槽底部的中介层由WSe 2层和In xGa 1-xN层组成,红光组件区块槽底部的中介层由WSe 2层和In yGa 1-yN层组成,其中y>x。
PCT/CN2022/109902 2021-08-12 2022-08-03 一种rgb ingan基micro led的制作方法及其制作的器件 WO2023016308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110924887.3 2021-08-12
CN202110924887.3A CN113644168B (zh) 2021-08-12 2021-08-12 一种RGB InGaN基micro LED的制作方法及其制作的器件

Publications (1)

Publication Number Publication Date
WO2023016308A1 true WO2023016308A1 (zh) 2023-02-16

Family

ID=78421172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109902 WO2023016308A1 (zh) 2021-08-12 2022-08-03 一种rgb ingan基micro led的制作方法及其制作的器件

Country Status (4)

Country Link
CN (1) CN113644168B (zh)
DE (1) DE202022002984U1 (zh)
TW (1) TWI815603B (zh)
WO (1) WO2023016308A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230733A (zh) * 2023-05-09 2023-06-06 江西兆驰半导体有限公司 一种Micro LED芯片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644168B (zh) * 2021-08-12 2024-04-23 王晓靁 一种RGB InGaN基micro LED的制作方法及其制作的器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833878A (zh) * 2017-11-29 2018-03-23 北京工业大学 一种全色堆栈式外延的Micro‑LED倒装阵列制备方法
CN107994047A (zh) * 2017-11-29 2018-05-04 北京工业大学 一种全彩色平面排列的Micro-LED阵列制备方法
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN111009602A (zh) * 2020-01-03 2020-04-14 王晓靁 具有2d材料中介层的外延基板及制备方法和制作组件
CN112331747A (zh) * 2020-11-17 2021-02-05 厦门大学 一种全色Micro/Nano LED阵列直接外延方法和结构
CN113644168A (zh) * 2021-08-12 2021-11-12 王晓靁 一种RGB InGaN基micro LED的制作方法及其制作的器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140552A (zh) * 2015-09-08 2018-06-08 麻省理工学院 基于石墨烯的层转移的系统和方法
WO2018195152A1 (en) * 2017-04-18 2018-10-25 Massachusetts Institute Of Technology Systems and methods for fabricating semiconductor devices via remote epitaxy
CN107706273A (zh) * 2017-09-12 2018-02-16 合肥惠科金扬科技有限公司 一种microLED外延结构及其制备方法
CN107946417B (zh) * 2017-11-29 2019-09-03 北京工业大学 一种全色微型led阵列垂直外延制备方法
CN215834528U (zh) * 2021-08-12 2022-02-15 王晓靁 一种RGB InGaN基micro LED

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833878A (zh) * 2017-11-29 2018-03-23 北京工业大学 一种全色堆栈式外延的Micro‑LED倒装阵列制备方法
CN107994047A (zh) * 2017-11-29 2018-05-04 北京工业大学 一种全彩色平面排列的Micro-LED阵列制备方法
CN110010729A (zh) * 2019-03-28 2019-07-12 王晓靁 RGB全彩InGaN基LED及其制备方法
CN111009602A (zh) * 2020-01-03 2020-04-14 王晓靁 具有2d材料中介层的外延基板及制备方法和制作组件
CN112331747A (zh) * 2020-11-17 2021-02-05 厦门大学 一种全色Micro/Nano LED阵列直接外延方法和结构
CN113644168A (zh) * 2021-08-12 2021-11-12 王晓靁 一种RGB InGaN基micro LED的制作方法及其制作的器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230733A (zh) * 2023-05-09 2023-06-06 江西兆驰半导体有限公司 一种Micro LED芯片及其制备方法

Also Published As

Publication number Publication date
TW202308151A (zh) 2023-02-16
DE202022002984U1 (de) 2024-03-18
CN113644168A (zh) 2021-11-12
CN113644168B (zh) 2024-04-23
TWI815603B (zh) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2023016308A1 (zh) 一种rgb ingan基micro led的制作方法及其制作的器件
KR102625489B1 (ko) 마이크로 led 표시 패널 및 그 제조 방법
US20220367771A1 (en) Display device using micro led, and manufacturing method therefor
CN109742200A (zh) 一种显示面板的制备方法、显示面板及显示装置
US11990559B2 (en) Method of manufacturing micro-light emitting diode-based display and micro-light emitting diode-based display
CN102394240B (zh) 一种tft-led彩色阵列显示基板及其制造方法
US20230045618A1 (en) Display device
CN102427080B (zh) 一种多量子阱tft-led阵列显示基板及其制造方法
CN115579435A (zh) 一种含有量子阱的外延片、Micro-LED阵列芯片及其制备方法
KR20190079147A (ko) 마이크로 led 전사 방법, 이를 이용한 마이크로 led 표시 패널 제조 방법 및 마이크로 led 표시 패널
CN215834528U (zh) 一种RGB InGaN基micro LED
CN102437170B (zh) 一种蓝光激发tft-led阵列显示基板及其制造方法
JP2013055170A (ja) 自発光ディスプレイおよび自発光ディスプレイの製造方法
WO2023060855A1 (zh) MicroLED三基色发光结构及其制备方法
CN202454604U (zh) 一种多量子阱tft-led阵列显示基板
US20230037052A1 (en) Led display apparatus and manufacturing method of the same
US20220416127A1 (en) Display apparatus using semiconductor light emitting device and method for manufacturing same
CN202332854U (zh) 一种tft-led彩色阵列显示基板
US11605668B2 (en) Pixel architectures for low power micro light-emitting diode displays
US20230069739A1 (en) Display device and manufacturing method thereof
US20240154057A1 (en) Light emitting device and display device including the same
WO2023240497A1 (zh) 阵列基板及其制备方法、显示装置
US20220399397A1 (en) Light emitting diode and preparation method therefor
CN202363462U (zh) 一种蓝光激发tft-led阵列显示基板
CN110931520B (zh) 一种Micro-LED制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE