WO2023016136A1 - 消融系统 - Google Patents

消融系统 Download PDF

Info

Publication number
WO2023016136A1
WO2023016136A1 PCT/CN2022/103388 CN2022103388W WO2023016136A1 WO 2023016136 A1 WO2023016136 A1 WO 2023016136A1 CN 2022103388 W CN2022103388 W CN 2022103388W WO 2023016136 A1 WO2023016136 A1 WO 2023016136A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
information
point
position information
spatial position
Prior art date
Application number
PCT/CN2022/103388
Other languages
English (en)
French (fr)
Inventor
彭亚辉
孙毅勇
沈刘娉
余志立
王心怡
何镓梁
Original Assignee
上海微创电生理医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110916536.8A external-priority patent/CN113349923B/zh
Application filed by 上海微创电生理医疗科技股份有限公司 filed Critical 上海微创电生理医疗科技股份有限公司
Publication of WO2023016136A1 publication Critical patent/WO2023016136A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the present application relates to an ablation system.
  • nerve ablation has been more and more clinically applied. It is mainly used for the treatment of hypertension, diabetes, heart disease, cancer and other symptoms, and has achieved good results. .
  • the inventors realized that the distribution of sympathetic nerves in the renal artery varies from person to person, and it is difficult to judge whether the target tissue area to be ablated contains sympathetic nerves. Therefore, the current selection of ablation locations is usually random. In this way, there may be repeated ablation or missed ablation, which finally leads to ablation failure. Furthermore, in the traditional technology, the manipulation of the ablation catheter and the positioning of the ablation point are performed with the help of X-ray imaging. X-ray imaging is a two-dimensional image and is very unclear, resulting in inaccurate positioning of the ablation catheter, which in turn leads to inaccurate ablation , making the ablation effect unsatisfactory.
  • an ablation system is provided.
  • An ablation system comprising: a communication-connected information processing module and a signal input and output module;
  • the signal input and output module is used to connect at least one medical catheter, and when the medical catheter outputs ablation energy, the signal input and output module obtains the spatial position information of the ablation site according to the current position of the medical catheter, and sending the spatial position information of the ablation site to the information processing module;
  • the information processing module is used to obtain target spatial position information according to a target ablation point, and periodically calculate the position information to be compared according to the spatial position information of the ablation site within a predetermined period of time, and periodically The position information to be compared is compared with the target spatial position information to generate ablation prompt information.
  • the above-mentioned ablation system includes an information processing module and a signal input and output module connected by communication; through the signal input and output module, the spatial position information of the ablation site is obtained according to the current position of the medical catheter, and the spatial position information of the ablation site is sent to To the information processing module; the information processing module is used to obtain target spatial position information according to a target ablation point, generate ablation prompt information according to the target spatial position information of the target ablation point and the spatial position information of the ablation site, and can During the ablation process, the position of the medical catheter deviates from the target ablation point, resulting in repeated ablation or ineffective ablation, thereby ensuring accurate ablation.
  • Fig. 1 is a structural block diagram of an ablation system according to one or more embodiments
  • Fig. 2 is a schematic structural diagram of an ablation system in practical application according to one or more embodiments
  • Fig. 3 is a schematic diagram of functional modules of the ablation instrument according to the embodiment shown in Fig. 2;
  • Fig. 4 is a schematic diagram of renal artery ablation according to one or more embodiments, wherein the dotted box is a schematic diagram of a three-dimensional geometric model and ablation point markers displayed by the display module;
  • Fig. 5 is a workflow diagram of the ablation system according to one or more embodiments.
  • 100 three-dimensional mapping system 101 working module, 102 signal control unit, 103 signal receiving unit, 200 excitation field generator, 300 ablation instrument, 301 physiological parameter sensor, 302 neutral electrode, 303 medical catheter, 401 right kidney , 402 abdominal aorta, 403 right renal artery, 404 left renal artery.
  • proximal and distal refer to the relative orientation, relative position, direction of elements or actions relative to each other from the perspective of the physician using the product, although “proximal” and “distal” are not Restrictive, but “proximal” generally refers to the end of the product that is closest to the physician during normal operation, while “distal” and “tip” generally refer to the end that enters the patient first.
  • the present application provides an ablation system
  • the ablation system includes an information processing module and a signal input and output module connected by communication.
  • the signal input and output module is used to connect at least one medical catheter 303, and when the medical catheter 303 outputs ablation energy, the signal input and output module obtains the spatial position information of the ablation site according to the current position of the medical catheter 303, and sends the ablation site The spatial position information is sent to the information processing module.
  • the information processing module is used to obtain the target spatial position information according to a target ablation point, and periodically calculate the position information to be compared according to the spatial position information of the ablation site within a predetermined period of time, and periodically compare the The position information is compared with the target spatial position information to generate ablation prompt information.
  • the target ablation point may be a recommended ablation point, such as a recommended ablation point after physiological stimulation (the recommended ablation point will be described in detail below), or a target ablation point determined by other means, such as a doctor's decision based on the ablation situation.
  • the spatial position information of the ablation site is the spatial position information of the electrodes performing ablation on the medical catheter 303 .
  • the information processing module compares the spatial position information of the ablation site acquired in real time with the target spatial position information, thereby generating ablation prompt information.
  • the ablation prompt information may be output through display and/or voice to prompt the user.
  • the ablation prompt information may be output by voice.
  • different types of speech templates are preset, and when the spatial location information of the ablation site and the target spatial location information meet certain requirements, the information processing module obtains the corresponding speech template and outputs it.
  • the ablation prompt information can also be output by means of display.
  • the signal input and output module is also used to obtain the modeling spatial position information according to the spatial position information of the distal end of the medical catheter 303, and the modeling spatial position
  • the information is sent to the information processing module; the information processing module is also used to construct a three-dimensional geometric model of the area where the distal end of the medical catheter 303 is located according to the modeling space position information, and mark the generated ablation prompt information in the three-dimensional geometric model.
  • the three-dimensional geometric model is displayed in the display module, and the display module and the construction of the three-dimensional geometric model will be described in detail below.
  • the spatial position information of the ablation site refers to the spatial position information of the distal end of the medical catheter 303 when the medical catheter 303 outputs ablation energy
  • the spatial position information of the ablation site refers to the spatial position information of the medical catheter 303 Spatial position information of the ablation electrode at the distal end of the medical catheter 303 when outputting ablation energy.
  • the predetermined time period can be preset, such as 1 second, etc.
  • the predetermined time period can be other values
  • the position information to be compared is calculated according to the spatial position information of the ablation site within the predetermined time period , can be to calculate the statistical information of the spatial position information of all ablation sites within a predetermined time period to obtain the position information to be compared, such as taking the average value, that is, the average position of the ablation electrode of the medical catheter 303 within this time period information. For example, the average position coordinates of the ablation electrodes within 1 second.
  • the position information to be compared may also be obtained by selecting statistical information of spatial position information of some representative ablation sites within a predetermined time period, which is not limited in the present application.
  • the first preset distance is also preset, for example, 1 mm. In other embodiments, the first preset distance may be other values.
  • the ablation prompt information may include at least one of identification information and operation prompt information of each position in the area to be ablated, and the identification information of each position includes but not limited to recommended ablation point information, non-recommended ablation point information, and various Information about whether the recommended ablation point has been ablated.
  • the operation prompt information is used to prompt whether the current spatial position information of the ablation site satisfies the operation requirements according to the target spatial position information, which may include but not limited to prompt information for ablation position movement, prompt information for repeated ablation, and the like.
  • the above-mentioned ablation system includes an information processing module and a signal input and output module connected by communication; through the signal, the signal input and output module obtains the spatial position information of the ablation site according to the current position of the medical catheter 303, and the spatial position information of the ablation site
  • the information is sent to the information processing module; the information processing module is used to obtain target spatial position information according to a target ablation point, and generate ablation prompt information according to the target spatial position information of the target ablation point and the spatial position information of the ablation site, which can prevent During the ablation process, the position of the medical catheter 303 deviates from the target ablation point, resulting in repeated ablation or ineffective ablation, so as to ensure accurate positioning of the distal end of the medical catheter 303 and accurate ablation.
  • the signal input and output module may be connected to the medical catheter 303 and used to obtain the spatial position information of the ablation site according to the current position of the medical catheter 303 .
  • the spatial position information of the ablation site refers to the spatial position information of the distal end of the medical catheter 303 when the medical catheter 303 outputs ablation energy.
  • the medical catheter 303 is provided with electrodes, which can be used for stimulation, ablation or positioning etc.
  • the spatial position information of the ablation site refers to the spatial position information corresponding to the ablation electrodes on the medical catheter 303 when the medical catheter 303 outputs ablation energy.
  • the medical catheter 303 may include one or more electrodes to output energy through the one or more electrodes.
  • the ablation system also includes a neutral electrode 302 or the ablation system also includes It is connected to a neutral electrode 302, which acts as an energy circuit.
  • the distal end of the medical catheter 303 is provided with a spatial position information collection device in communication with the signal input and output module.
  • the spatial position information collection device may be a three-dimensional positioning sensor, such as a magnetic positioning sensor. Therefore, the position of the distal end of the medical catheter 303 can be located in real time through the spatial position information collection device.
  • the electrodes on the medical catheter 303 can also be used as three-dimensional positioning sensors to acquire spatial position information, which is not limited in this application.
  • the ablation system may include a three-dimensional mapping system 100 and a radiofrequency ablation instrument 300, wherein the three-dimensional mapping system 100 and the radiofrequency ablation instrument 300 may share a processor, or the three-dimensional mapping system 100 and a radiofrequency ablation
  • the ablation instrument 300 is separately provided with a processor, and the processor of the three-dimensional mapping system 100 and the processor of the radiofrequency ablation instrument 300 are connected in communication with each other for information transmission.
  • the processor described here is the information processing module in this embodiment, that is to say, the information processing module in this embodiment can be shared by the three-dimensional mapping system 100 and the radiofrequency ablation instrument 300, or the information processing module It includes two parts, one part is located in the three-dimensional mapping system 100, and the other part is located in the radiofrequency ablation instrument 300, but the two parts can communicate.
  • the ablation system can also combine the three-dimensional mapping system 100 and the radiofrequency ablation instrument
  • the functions of the 300 are integrated into one body, and at this time, one information processing module can be used to process relevant data.
  • the three-dimensional mapping system 100 and the radiofrequency ablation instrument 300 are separately provided with a processor as an example, and the information processing module includes the work set in the three-dimensional mapping system 100 in FIG.
  • the module 101 is configured with the intelligent analysis module of the radiofrequency ablation apparatus 300 in FIG. 3 , and the working module 101 and the intelligent analysis module can communicate.
  • the medical catheter 303 is an ablation catheter connected with the radiofrequency ablation instrument 300 , and the system configuration is realized by connecting the medical catheter 303 with the signal input and output modules of the three-dimensional mapping system 100 . Specifically, using the embodiments shown in FIG. 2 and FIG.
  • the signal input and output module of the three-dimensional mapping system 100 may include a signal receiving unit 103 and a signal control unit 102, and a part of the information processing module is the The other part of the working module 101 is the intelligent analysis module in FIG. 3 .
  • the excitation field generator 200 of the three-dimensional mapping system 100 when in use, the excitation field generator 200 of the three-dimensional mapping system 100 is first installed, and the excitation field generator 200 is used to output the excitation field for three-dimensional positioning.
  • the excitation field The generator 200 is placed under the bed, for example, installed at the position under the bed corresponding to the position of the patient to be ablated. Taking the renal artery as an example, the excitation field generator 200 is placed under the bed near the waist of the patient.
  • the excitation field generator 200 can be a magnetic field, electric field or other energy field generator, and its output signal is a known harmless, low-power, medium-low frequency electric field or magnetic field signal, so as to realize magnetic field positioning, Electric field localization, or impedance localization imaging technology to obtain spatial position information.
  • the signal control unit 102 controls the output of the excitation field, so that the signal receiving unit 103 can receive the spatial position collected by the spatial position information collection device at the far end of the medical catheter 303 when the distal end of the medical catheter 303 enters the effective range of the excitation field information, and send the spatial location information to the signal control unit 102;
  • the spatial location information received by the signal receiving unit 103 is an analog signal, so the signal receiving unit 103 first modulates and demodulates the analog signal and digitizes it, Then send it to the signal control unit 102; the signal control unit 102 processes and calculates the spatial position information to obtain three-dimensional positioning data, including information such as three-dimensional coordinates, directions and angles.
  • the signal processing module can acquire the spatial position information from the signal control unit 102 to perform three-dimensional modeling and/or image processing or generate ablation prompt information in combination with other information.
  • the working module 101 can also establish a three-dimensional geometric model of the area where the distal end of the medical catheter 303 is located according to the spatial position information, and record the generated ablation prompt information into the three-dimensional geometric model for subsequent data recording and analysis.
  • the working module 101 in the information processing module is also used to record the spatial position information of the ablated points. Specifically, the working module 101 in the information processing module periodically calculates the position to be compared according to the spatial position information of the ablation site within a predetermined period of time during the process of outputting ablation energy by the medical catheter 303; and periodically Properly comparing the location information to be compared with the target spatial location information; if the distance calculated according to the current location information to be compared and the target spatial location information within the current predetermined time period is less than or equal to the first preset distance, Then, when the medical catheter 303 completes the ablation, the target spatial position information is recorded as the spatial position information of an ablated point.
  • the working module 101 in the information processing module can also be used to monitor whether the ablation position moves. Specifically, the working module 101 in the information processing module is used to periodically calculate the position to be compared according to the spatial position information of the ablation site within a predetermined time period during the process of outputting ablation energy by the medical catheter 303; and Periodically compare the location information to be compared with the target spatial location information; if the distance calculated according to the current location information to be compared and the target spatial location information within the current predetermined time period is greater than the first preset distance, then the information The processing module outputs an indication of movement of the ablation location.
  • the working module 101 in the information processing module can be selectively used to record the spatial position information of the ablated point or monitor whether the ablation position has moved, and it is not required to have these two functions at the same time;
  • the working module 101 or the signal control unit 102 can send information such as the spatial position information of the ablation site and the target spatial position information to the intelligent analysis module in the ablation instrument 300, and the intelligent analysis module completes the recording of the ablation
  • the spatial position information of the point or the function of monitoring whether the ablation position has moved is not limited in this application.
  • the working module 101 or the intelligent analysis module in the information processing module can also determine whether they are the same ablation point by comparing the current location information to be compared with the target spatial location information.
  • the distance calculated according to the current location information to be compared and the target spatial location information within the current predetermined time period is less than or equal to the first preset distance, it means that the distance change is within a certain range, and when the medical catheter 303 completes the ablation , recording the target spatial position information as the spatial position information of an ablated point.
  • the spatial position information of the ablated points may refer to the spatial position information of the ablation points that have completed the ablation time or reached a qualified ablation effect index, or may refer to the ablation points that the doctor considers to be completed.
  • the spatial location information is not limited in this application.
  • the completion of the ablation here may be the completion of the ablation duration set by the system or the end of the ablation time set by the system, or the user (doctor) judges that the ablation is completed based on experience, which is not limited in this application.
  • the processing module determines that the ablation position has moved, it can send the prompt information or alarm information to the display module, so that the prompt information or alarm information can be issued through the display module.
  • the ablation position movement can also be output through voice prompts. hint.
  • the working module 101 or the intelligent analysis module in the information processing module calculates the average position coordinates of the ablation electrodes in each period of time during the ablation process in real time, for example, calculates and saves the average position coordinates of the ablation electrodes every 1 second. Comparing the target spatial position information, if the distance changes within a certain range (such as 1mm), it is considered to be the same ablation point.
  • the user will be reminded to move the ablation position, and the doctor can view the position corresponding to the target spatial position information
  • the ablation effect index at the target ablation point can be used to judge the ablation situation at the target ablation point, or the doctor can judge based on experience whether to continue ablation at this position or whether to re-mark the ablation point, etc.
  • the module sends it to the display module to send prompt information or alarm information through the display module, and the communication module will be described in detail below.
  • the information processing module is also used to compare the current position information to be compared within the current predetermined time period with the spatial position information of any previously ablated point, such as according to the current predetermined time period If the calculated distance between the current location information to be compared and the target spatial location information of any previously ablated point is less than the second preset distance, the information processing module outputs a prompt to repeat the ablation.
  • the second preset distance is also preset, for example, 2 millimeters. In other embodiments, the second preset distance may be other values. Judging whether the distance calculated according to the current location information to be compared within the current predetermined time period and the target spatial location information of any previously ablated point is less than the second preset distance, if so, the information processing module outputs a prompt for repeated ablation, And according to the user's selection, it is determined whether to perform repeated ablation on the new ablation point position, where the new ablation point position refers to the current position to be compared within the current predetermined time period.
  • the user may confirm whether to continue ablation at the new ablation point position. If the user confirms to continue the ablation at the new ablation point position, then use the new ablation point position information as the target spatial position information, and continue periodically during the ablation process according to the ablation point within a predetermined period of time The spatial position information is calculated to obtain the position information to be compared, and the above processing is continued.
  • the displacement of the ablation electrodes during the ablation process is monitored and a prompt or alarm is issued by calculating the variation of the position coordinates of the ablation electrodes during the ablation process, so as to avoid invalid ablation.
  • the above-mentioned ablation system also includes a physiological stimulation module and a physiological parameter detection module.
  • the physiological stimulation module and the physiological parameter detection module are set in the ablation instrument 300, and the physiological parameter detection module can collect physiological parameters through the physiological parameter sensor 301,
  • the physiological stimulation module is connected with the medical catheter 303, and the physiological stimulation module is used to generate stimulation signals according to the stimulation parameters, so that the medical catheter 303 outputs stimulation energy;
  • the physiological parameter detection module is used to detect the physiological parameters generated under the stimulation signals, and
  • the parameters are sent to the information processing module; when the medical catheter 303 outputs stimulation energy, the information input and output module obtains the spatial position information of the stimulation point according to the current position of the medical catheter 303, and sends the spatial position information of the stimulation point to the information processing module, which
  • the information processing module is also used to generate ablation prompt information according to the physiological parameters and the spatial position information of the stimulation point, and the ablation prompt information includes recommended ablation point information and non-recommended ablation point information.
  • the physiological stimulation module is used to output physiological stimulation signals, which are generally low-power energy stimulation.
  • the stimulation parameters set can be input through the human-computer interaction module, such as the display module, and then the physiological stimulation module generates a physiological stimulation signal according to the stimulation parameters, and outputs the stimulation energy through the electrodes at the far end of the medical catheter 303, so that the patient The stimulation point receives the stimulation signal and produces a corresponding physiological response.
  • the physiological parameter detection module is used to detect the physiological parameters generated under the stimulation signal, and the physiological parameter detection module can be at least one of blood pressure, heartbeat, body temperature or bioelectric activity.
  • the physiological parameter detection module may be a blood pressure detection module, and the blood pressure detection module is connected with a blood pressure sensor to detect the patient's blood pressure, wherein the blood pressure sensor may include a blood pressure monitoring sensor and supporting accessories.
  • a Invasive blood pressure monitoring can also be used as an alternative to non-invasive blood pressure monitoring.
  • invasive blood pressure monitoring taking the renal artery as an example, radial artery puncture can be selected, and the puncture point is placed on the same level as the heart and fixed, and real-time blood pressure monitoring starts and is recorded.
  • the physiological parameter detection module may be replaced by other physiological parameter monitoring units that can reflect sympathetic nerve excitation, such as heart rate, body temperature, bioelectric activity, and the like.
  • the body temperature can be collected by installing a temperature sensor at the far end of the medical catheter 303 .
  • the physiological parameter detection module collects the physiological parameters, then processes the measurement results to obtain the measurement results, and sends the measurement results to the intelligent analysis module of the information processing module, and the intelligent analysis module according to the physiological parameters and The spatial position information of the stimulation point generates ablation prompt information.
  • the ablation prompt information includes recommended ablation point information and non-recommended ablation point information.
  • the intelligent analysis module generates recommended ablation point information and non-recommended ablation point information through physiological parameters during stimulation, so as to avoid repeated physiological stimulation or ineffective ablation at unrecommended ablation points, and also avoid omissions in recommended Efficient ablation of ablation points.
  • the intelligent analysis module or the physiological parameter detection module can also send the physiological parameters and the spatial position information of the stimulation point to the working module 101 of the three-dimensional mapping system 100, and the working module 101 generates ablation prompt information , this application is not limited to this.
  • the information processing module is also used to use the spatial position information of the corresponding stimulation point in the recommended ablation point information as the target spatial position information of the target ablation point, and calculate the target spatial position information of the current target ablation point and any The distance between the spatial position information of the previously ablated points, when the distance calculated according to the target spatial position information of the current target ablation point and the spatial position information of any previous ablated point is less than or equal to the third preset distance, the output repeats Ablation Tips.
  • the recommended ablation point information can be obtained by analyzing the information processing module, for example, according to the analysis of the physiological parameters at the location of the stimulation point.
  • the spatial location information of the stimulation point at this time that is, the spatial location information of the recommended ablation point, is used as the target spatial location information of the target ablation point, wherein the target spatial location information is also the location information of the target point.
  • the repeat ablation prompt is output when the distance between the two ablation points (the current recommended ablation point and the ablation point) is less than or equal to the third preset distance.
  • the information processing module calculates the distance between the current target ablation point, that is, the distance between the current recommended ablation point and any ablation point, and judges the distance between the distance and the third preset distance If the relationship between is less than or equal to the third preset distance, the currently recommended ablation point is a repeated ablation point.
  • the third preset distance can be preset, for example, it can be 2 millimeters. In other embodiments, the third preset distance can be other values. Preferably, the third preset distance can be the same as the second preset distance, because the second preset distance is a threshold used to distinguish whether the ablation point is the same ablation point, so that the standard can be unified and the system judgment can be improved. consistency.
  • the working module 101 or the intelligent analysis module in the information processing module is also used to use the spatial position information of the corresponding stimulation point in the recommended ablation point information as the target spatial position information of the target ablation point to calculate the current target ablation point
  • the distance between the target spatial position information of the point and the position information to be compared, when the distance between the target spatial position information of the current target ablation point and the position information to be compared is greater than the fourth preset distance, output the movement of the ablation position hint.
  • the movement of the ablation position may be the movement of the ablation position caused by the deviation of the medical catheter 303 during the ablation process at the target ablation point, or it may be that the medical catheter 303 deviates from the target ablation point before ablation. In this embodiment, the If the medical catheter 303 deviates from the target ablation point after starting to output ablation energy, it will remind the ablation position to move.
  • the fourth preset distance may be equal to the first preset distance.
  • the signal input and output module in the above-mentioned ablation system is also used to obtain the modeling spatial position information according to the spatial position information of the distal end of the medical catheter 303, and send the modeling spatial position information to the working module 101 or
  • the intelligent analysis module is also used to construct a three-dimensional geometric model of the area where the distal end of the medical catheter 303 is located according to the modeling space position information, and mark the generated ablation prompt information in the three-dimensional geometric model.
  • the establishment of the three-dimensional geometric model is an accurate model of the position to be ablated obtained by sending the medical catheter 303 into the position to be ablated before or during the ablation.
  • the signal input and output module can receive the modeling spatial position information, so that the information processing module can start modeling.
  • the information processing module may store a reference three-dimensional model generated in advance according to the medical imaging device, so that the direction of the medical catheter 303 can be determined according to the reference three-dimensional model, and Cross-referencing with real-time generated 3D geometry improves accuracy.
  • the information processing module can obtain the reference three-dimensional model, and then advance the medical catheter 303 to the preset position to be ablated according to the reference three-dimensional model, and when the distal end of the medical catheter 303 enters the effective range , then the signal input and output module can receive the modeling space position information, and send the modeling space position information to the information processing module, so that the information processing module can start modeling, and the information processing module can put Refer to the 3D model as a reference to determine whether there are unmodeled areas and correct position information, etc.
  • the medical catheter 303 can enter the human body from the femoral artery of the right leg, and the distal end of the medical catheter 303 is advanced along the femoral artery and enters the abdominal aorta 402 .
  • the signal input and output module can obtain the spatial position information of the distal end of the medical catheter 303, and at this time, you can choose to start building a three-dimensional geometric model of the arterial vessel.
  • the three-dimensional geometric model includes 402 segments of blood vessels of the renal artery and/or abdominal aorta.
  • the medical catheter 303 can be controlled to move along the blood vessel wall near the area where the branch of the renal artery is located, covering as many positions as possible.
  • the three-dimensional modeling range can be selected to cover the parts near the left and right renal artery branches of the abdominal aorta 402 (ie, the proximal end and the distal end of the abdominal aorta 402), so as to better reflect the structural information of this area.
  • the trunk of the renal sympathetic nerve is distributed in the adventitia of the aorta 402, and if a target point where the distribution of the sympathetic nerve is concentrated is found, a better ablation effect will be brought about. In this way, the three-dimensional positioning and modeling of the 402 abdominal aorta blood vessels extending from the renal artery to its vicinity, and the subsequent positioning and ablation of the sympathetic nerve ablation target based on this will bring better ablation effects.
  • the signal input and output module sends the modeling spatial position information to the working module 101 or the intelligent analysis module in the information processing module, and the working module 101 or the intelligent analysis module is used to establish a three-dimensional geometric model according to the modeling spatial position information, And the ablation prompt information is generated according to the target spatial position information corresponding to the target ablation point and the spatial position information of the ablation site.
  • the ablation prompt information includes whether the stimulation point determined according to the physiological stimulation is a recommended ablation point or not recommended ablation point, and one or more kinds of information in the ablation information generated by ablation processing at the target ablation point, for example Ablation point, movement of ablation position, repeated ablation, etc.
  • the ablation information of the ablation point includes but not limited to ablation parameters and ablation result information.
  • the ablation parameters are the parameters corresponding to the output energy of the medical catheter 303.
  • the ablation result information is After the point is ablated, the evaluation information of the ablation effect.
  • the information processing module displays the recommended ablation point information and the unrecommended ablation point information in the three-dimensional geometric model. Further, the information processing module displays the recommended ablation point information and the non-recommended ablation point information in the three-dimensional geometric model as the recommended ablation point mark and the non-recommended ablation point mark.
  • the physiological stimulation module in Figure 3 is the physiological stimulation module in this embodiment
  • the multi-parameter detection module and blood pressure detection module in Figure 3 are the physiological stimulation module in this embodiment.
  • the physiological parameter detection module is the physiological parameter detection module.
  • the renal artery is taken as an example for illustration, in which the distal electrode of the medical catheter 303 enters one side of the renal artery, the ablation electrode adheres to the vessel wall and maintains a fixed position, and the information processing module marks the position at the same time Coordinates are displayed on the 3D geometric model with convention marks. Then set the stimulation parameters in the corresponding window of the user interface of the display module, output a certain amount of physiological stimulation pulses to the renal artery wall, and the information processing module judges the blood vessel wall according to the physiological parameters during stimulation, such as the change rule of blood pressure Whether it contains sympathetic nerves (or parasympathetic nerves, vagus nerves), and record the judgment results.
  • the physiological parameters during stimulation such as the change rule of blood pressure Whether it contains sympathetic nerves (or parasympathetic nerves, vagus nerves), and record the judgment results.
  • this location is determined as the recommended ablation point. If it is judged that there are only sympathetic nerves or mainly sympathetic nerves, this location is determined as the recommended ablation point. If it is judged that the sympathetic nerve is not included or the sympathetic nerve is not dominant, the position is determined as a non-recommended ablation point, and optionally, the information processing module displays the information of the recommended ablation point and the information of the non-recommended ablation point on the three-dimensional geometric model .
  • the ablation system further includes an ablation energy module and a display module, the ablation energy module is connected with the medical catheter 303, and the display module is in communication connection with the information processing module.
  • the ablation energy module is used to generate an ablation signal according to the ablation parameters, so that the medical catheter 303 outputs ablation energy;
  • the display module is used to display a three-dimensional geometric model and ablation prompt information.
  • the signal input and output module obtains the spatial position information of the ablation site according to the current position of the medical catheter 303, and sends the spatial position information of the ablation site to the information processing module;
  • a target ablation point acquires target spatial position information, and generates ablation prompt information according to the target spatial position information and the spatial position information of the ablation site.
  • the ablation prompt information includes ablation point marks, and the ablation point marks are displayed on the three-dimensional geometric model.
  • the ablation energy module is mainly used to output ablation energy, for example, it may generate ablation energy through radio frequency, so as to output the ablation energy through the medical catheter 303 .
  • Ablation energy can be measured by ablation power or ablation current.
  • the display module may be a human-computer interaction display module, so that parameters of ablation energy can be set through the display module, so that the ablation energy module can generate corresponding ablation energy according to the ablation energy parameters.
  • the information processing module When the medical catheter 303 outputs ablation energy, the information processing module generates ablation prompt information according to the target spatial position information and the spatial position information of the ablation site, that is, the information processing module is used to obtain the target spatial position information according to a target ablation point, and periodically
  • the position information to be compared is calculated according to the spatial position information of the ablation site within a predetermined period of time, and the position information to be compared is compared with the target spatial position information periodically to generate ablation prompt information, and the ablation prompt information For example, it is an ablation point mark, and the ablation point mark is displayed at a corresponding position of the three-dimensional geometric model.
  • the number of display modules can be set according to needs, and the content displayed by the display modules can be preset according to user's habits and the like.
  • the contents displayed by the two display modules can be completely consistent, partially overlapped, or completely inconsistent.
  • FIG. 3 is a schematic structural diagram of an ablation instrument 300 in an embodiment.
  • the radio frequency generating module in the ablation instrument 300 is the ablation energy module in this embodiment.
  • the man-machine The interactive module is the display module.
  • the ablation instrument 300 communicates with the working module 101 of the 3D mapping system 100 through the communication module, so as to transmit ablation related information to the working module 101 .
  • the power module of the ablation device 300 is used to supply power to the ablation device 300 so that various parts of the ablation device 300 can work normally.
  • the intelligent analysis module can be used to process information related to ablation, and the working module 101 can be used to process information related to position.
  • the intelligent analysis module and the information processed by the working module 101 The type can be set in advance, and there is no specific limitation here.
  • the intelligent analysis module first obtains the parameters of the ablation energy through the human-computer interaction module, so that the intelligent analysis module can calculate the ablation information according to the parameters of the ablation energy to control the radio frequency generation module Ablation energy is generated and output to the medical catheter 303 to ablate the ablation point.
  • the working module 101 displays the acquired spatial position information of the ablation site in the three-dimensional geometric model, and communicates with the ablation device 300 through the communication module of the ablation device 300, according to the target spatial position information and the ablation site
  • the ablation prompt information is generated from the spatial position information of the target ablation point, which is used by the information processing module to obtain the target spatial position information according to a target ablation point, and to periodically calculate the to-be-compared position information, and periodically compare the position information to be compared with the target spatial position information to generate ablation prompt information, and display the ablation prompt information in the three-dimensional geometric model.
  • the ablation prompt information can be generated by the intelligent analysis module according to the target spatial position information and the spatial position information of the ablation site, for example, when the physiological parameter information at the target spatial position (that is, at the target position) meets the requirements , the ablation point marker is generated, so that the working module 101 displays the ablation point marker in the three-dimensional geometric model to complete an ablation;
  • the physiological parameter information at the position of the target point) is sent to the working module 101, and the working module 101 judges that when the physiological parameter information meets the requirements, a mark of the ablated point is generated, and the mark of the ablated point is displayed in the three-dimensional geometric model, to complete an ablation.
  • the intelligent analysis module can calculate ablation information according to the parameters of the ablation energy, thereby controlling the radio frequency generation module to generate ablation energy, and output the ablation energy to the medical catheter 303 to ablate the ablation point.
  • the intelligent analysis module judges whether the ablation of the recommended ablation point meets the requirements according to the physiological information of the recommended ablation point obtained in real time, such as blood pressure information.
  • the ablation can be stopped; During the ablation process, the ablation-related information is recorded according to the location points.
  • the medical catheter 303 is manipulated to make the ablation electrode reach other positions of the renal artery wall, and the above process is repeated.
  • several ablation points need to be processed on one side of the renal artery to ensure the blockage of the sympathetic nerve on this side, and the judgment is based on the absence of an area that stimulates the increase in blood pressure on this side.
  • the medical catheter 303 is manipulated to make the ablation electrode enter the blood vessel of the other side of the renal artery, and the treatment is performed in the same process.
  • the ablation energy module generates ablation energy for ablation
  • the information processing module displays the generated ablation prompt information in the corresponding 3D geometric model, so that the user can view the relevant ablation prompt information in the 3D geometric model , more intelligent, improves user experience, reduces the operator's learning curve, and improves the effectiveness and safety of surgery.
  • the ablation prompt information includes marker color information, and the ablation prompt information of different marker types corresponds to match different marker color information.
  • different position points in the three-dimensional geometric model are distinguished by different mark types, for example, by color information. See Figure 4.
  • the recommended ablation points judged after physiological stimulation are dominated by sympathetic nerves are marked with yellow hollow line frames, and the non-recommended ablation points where sympathetic nerves are not dominant are marked with gray hollow line frames.
  • Add a solid red dot marker is marked.
  • the marking color information corresponds to the ablation effect index, and different ablation effects are represented by different color depths.
  • the above-mentioned ablation prompt information of different marker types can be ablation point markers, recommended ablation point markers and non-recommended ablation point markers. Of course, it can also be ablation prompt information of other marker types, which can be set according to user needs, and this application does not make any limit.
  • the dotted-line frame part is an area where three-dimensional geometric modeling can be performed, including the right kidney 401, and R01-R04 are electrode stimulation or electrode stimulation in the medical catheter 303 in the right renal artery 403 of the three-dimensional geometric model.
  • the ablation point marks displayed after ablation L01-L02 are the ablation point marks displayed after the electrode stimulation or ablation of the medical catheter 303 in the left renal artery 404 of the three-dimensional geometric model, and M01-M02 are the abdominal aorta in the three-dimensional geometric model
  • the ablation point marks displayed after electrode stimulation or ablation of the medical catheter 303 include: a recommended ablation point mark, a non-recommended ablation point mark, and an ablation point mark.
  • the ablation system further includes an ablation effect judging module for calculating an ablation effect index, and the ablation effect index depends on ablation parameters, and the ablation parameters include ablation power, loss power, surface area of ablation electrodes, and ablation duration.
  • the ablation effect judging module is mainly used to calculate the ablation effect index.
  • the ablation effect index judges whether the ablation of the ablation point is effective according to parameters and algorithms, which depends on the ablation parameters.
  • the ablation parameters include ablation power, loss power, ablation Electrode surface area and duration of ablation.
  • Ablation power refers to the output power of the ablation energy module
  • loss power refers to the energy taken away by blood flow and cold saline perfusion per unit time
  • the surface area of the ablation electrode is obtained based on the electrode shape and effective surface area information entered in advance.
  • the outer surface size such as a ring electrode with an outer diameter of 2.0mm, a width of 1.5mm, and a surface area of 9.4mm2
  • the ablation duration refers to the time from the energy output of the ablation energy module to the end of the energy output at the ablation point
  • the sampling point is the ablation
  • the ablation effect index can be calculated by the following formula:
  • AE is the ablation effect index
  • n is the nth sampling point
  • N is the total number of sampling points of a continuous ablation, which is equal to the ablation duration/sampling time interval of a certain ablation point
  • k is the proportional coefficient, and the value is 0.3 ⁇ 0.9
  • Prf(n) is the ablation power recorded at the nth sampling point
  • S is the surface area of the ablation electrode
  • ⁇ t is the sampling time interval
  • Pco(n) is the loss power corresponding to the nth sampling point, that is It is said that the energy taken away by blood flow and cold saline perfusion per unit time is determined by the surface area and temperature of the ablation electrode, body temperature, and blood heat transfer coefficient, as well as the temperature of cold saline, body temperature, and saline heat transfer coefficient.
  • h is the heat exchange coefficient, which can be selected according to experience, and the value is between 200 and 3000, and the unit is W/m2*°C; T(n) is the first
  • the electrode temperature of n sampling points, TS refers to the temperature of the internal environment of the human body. This temperature is the actual temperature in the body measured under the conditions of non-ablation and non-perfusion modes. It can be a fixed value, such as 37 ° C, or a period T(n) and TS are in °C instead of the mean value of body temperature measured over time.
  • the ablation prompt information also includes ablation record information
  • the information processing module is also used to receive an instruction, which is used to adjust the information at the mark of the ablation point.
  • the information processing module will ablation record information Information is displayed on the display module. Specifically, touch or press or click the ablation point mark in the corresponding window of the user interface of the display module, the information processing module receives the touch, press or click instruction, and calls the information at the ablation point mark, and converts the ablation point Record information is displayed in the display module.
  • Ablation record information includes ablation point identification, spatial location information of ablation points, sequence of ablation points, ablation power, ablation current, intensity of stimulation signals, frequency of stimulation signals, time of stimulation signals, changes in physiological parameters, temperature, ablation time, At least one of impedance, ablation recommendation and ablation effect index.
  • the identification of the ablation point may be performed according to a pre-defined rule, and the spatial position information of the ablation point is obtained through the input and output module.
  • the order of the ablation points is the number of ablation points, and the marking time can also be recorded here.
  • parameters collected in real time such as ablation power, ablation current, stimulation signal strength, impedance, and temperature, can be displayed in data, such as in a graph or numerical form, for easy observation.
  • the ablation effect index combines the electrode shape and effective surface area information entered in advance, as well as real-time perfusion flow and other parameters to conduct a more in-depth analysis of ablation parameters.
  • the specific ablation record information can be found in the following table, which is the record information corresponding to a certain ablation point:
  • the distribution direction of arterial nerves can be judged to help detect new ablation points and avoid missing ablation of arterial nerves.
  • ablation record information will include multi-parameter detection and graphical display including ablation energy, time, temperature, impedance, blood pressure, ablation effect and other parameters, and combined with the three-dimensional geometric model, the information display is more intuitive and convenient for ablation Operation, avoid repeated ablation and missing ablation targets, facilitate the search for effective ablation targets, and improve the safety and effectiveness of the ablation process.
  • Fig. 5 is a working flow diagram of an ablation system in an embodiment.
  • renal artery ablation is taken as an example for illustration.
  • the equipment is installed, and the excitation field generator 200 Installed under the hospital bed, as shown in the dotted line box in Figure 2, the medical catheter 303 is communicatively connected with the ablation instrument 300, and the medical catheter 303 is connected with the signal receiving unit 103 of the three-dimensional mapping system 100, and the signal control of the three-dimensional mapping system 100
  • the unit 102 is connected with the excitation field generator 200 , and the neutral electrode 302 is used as an energy circuit and communicated with the ablation instrument 300 .
  • invasive blood pressure monitoring is used, choose radial artery puncture, place the puncture point at the same level as the heart and fix it, and start real-time blood pressure monitoring and recording.
  • the medical catheter 303 information is generally selected and set first, such as the type of the medical catheter 303 and ablation electrode parameters.
  • the medical catheter 303 is inserted into the blood vessel through the incised skin tissue and reaches the abdominal aorta 402 and the renal artery area along the vascular cavity. In the process, the assistance of other equipment is needed.
  • the head end of the medical catheter 303 arrives within the effective range of the three-dimensional spatial positioning, that is, Within the effective working range of the excitation field generator 200, the distal end of the medical catheter 303 can be positioned in real time, and corresponding spatial position information can be obtained, including three-dimensional coordinates, directions, and angles.
  • the invasive blood pressure probe can be inserted into the appropriate blood vessel position of the patient, such as the radial artery, to start blood pressure monitoring.
  • the coordinates obtained in real time can be used to perform three-dimensional modeling of the blood vessels in the corresponding area, so as to obtain a more intuitive three-dimensional geometric model of the blood vessels.
  • the electrode at the distal end of the medical catheter 303 searches for the target ablation point in the renal artery vessel and the abdominal aorta 402 blood vessel area nearby, including: the physiological stimulation module generates a stimulation signal according to the stimulation parameters, so that the medical catheter 303 outputs the stimulation energy; the physiological parameter detection module detects the physiological parameters generated under the stimulation signal.
  • the signal input and output module obtains the spatial position information of the stimulation point according to the current position of the medical catheter 303, and sends the spatial position information of the stimulation point to the information processing module, and the information processing module generates an ablation prompt according to the physiological parameters and the spatial position information of the stimulation point
  • the ablation prompt information includes recommended ablation point information and unrecommended ablation point information.
  • the recommended ablation point information and unrecommended ablation point information are displayed on the three-dimensional geometric model. That is to say, the information processing module records the identification and parameters involved in finding the target ablation point, and associates them with the corresponding marker points in the three-dimensional geometric model for easy viewing.
  • the recommended ablation point at this time can be used as the target ablation point, and ablation is started for the recommended ablation point, and ablation-related information, such as power, temperature, impedance, and cold saline perfusion flow rate, is recorded at the same time.
  • ablation-related information such as power, temperature, impedance, and cold saline perfusion flow rate
  • the three-dimensional spatial positioning of the distal end of the medical catheter 303 in the renal artery can be realized through the medical catheter 303, and the bilateral renal artery blood vessel and/or abdominal aorta 402 can be adjusted according to the positioning of the distal end of the medical catheter 303.
  • Modeling of vascular lumen structure The combination of 3D space positioning and modeling technology and radiofrequency ablation technology improves the traditional renal artery ablation process from a two-dimensional method of fuzzy positioning to a three-dimensional method capable of three-dimensional modeling and precise positioning. Significantly reduce or even completely eliminate the use of X-ray imaging, reducing the impact on the health of patients and doctors.
  • the real-time positioning of the medical catheter 303 can be realized, the data information can be seamlessly connected, and the coordinate information of each operation ablation point can be displayed, as well as relevant technical parameters for performing the ablation operation.
  • the information processing module in this application may include the working module 101 in FIG. 2 and the intelligent analysis module in FIG. 3 .
  • the working module 101 in FIG. 3 may only include one, and the functions of the working module 101 and the intelligent analysis module are preconfigured into this one as required.
  • the display module in this application can be shown in Figure 2 and Figure 3, and it is only the human-computer interaction module in Figure 3.
  • the display module in this application can include at least two, one of which is located in In the three-dimensional mapping system 100 in FIG. 2 , another display module is located in the radiofrequency ablation apparatus 300 in FIG. 2 .
  • the content displayed by the two display modules can be preconfigured according to needs, and no specific limitation is made here.
  • steps in the flow chart of FIG. 5 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in FIG. 5 may include multiple steps or stages, and these steps or stages are not necessarily executed at the same moment, but may be executed at different moments, and the execution sequence of these steps or stages is also It is not necessarily performed sequentially, but may be performed alternately or alternately with other steps or at least a part of steps or stages in other steps.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory can include Random Access Memory (RAM) or external cache memory.
  • RAM can take many forms, such as Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM).
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • radiofrequency ablation energy is listed in the embodiment of the present application, and other ablation energy such as pulse ablation and microwave ablation may also be used in the present application, which is not limited in the present application.
  • ablation energy such as pulse ablation and microwave ablation may also be used in the present application, which is not limited in the present application.
  • the above-mentioned embodiments only represent several implementation modes of the present application, and the description thereof is relatively specific and detailed, but it should not be construed as limiting the scope of the patent for the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the scope of protection of the patent application should be based on the appended claims.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Plasma & Fusion (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Computer Graphics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Surgical Instruments (AREA)

Abstract

一种消融系统包括:通讯连接的信息处理模块和信号输入输出模块;信号输入输出模块用于连接至少一根医疗导管(303),当医疗导管(303)输出消融能量时,信号输入输出模块根据医疗导管的当前位置获取消融位点的空间位置信息,并将消融位点的空间位置信息发送至信息处理模块;信息处理模块用于根据一目标消融点获取目标空间位置信息,并周期性地根据在一预定时间段内消融位点的空间位置信息计算得到待比对位置信息,并周期性地将待比对位置信息与目标空间位置信息相比对以生成消融提示信息。

Description

消融系统
相关申请的交叉引用
本申请要求于2021年8月11日提交中国专利局,申请号为2021109165368,申请名称为“消融系统”的中国专利申请的优先权以及于2021年8月11日提交中国专利局,申请号为202111509147X,申请名称为“消融系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种消融系统。
背景技术
随着微创伤介入技术的发展,神经消融术在临床上得到越来越多地应用,其主要用于高血压、糖尿病、心脏病、癌症肿瘤等症状的治疗,并取得了较好的效果。
然而,发明人意识到肾动脉部位交感神经的分布因人而异,很难判断预备消融的目标组织区域是否包含交感神经,因此,目前对于消融位置的选择通常是随机选择。这样可能会存在重复消融或者是遗漏消融的情况,最后导致消融失败。更进一步地,传统技术中是在X射线成像的帮助下进行消融导管的操控及消融点定位,X射线成像是二维影像且非常不清晰,导致消融导管的定位不准确,进而导致不能准确消融,使得消融效果不理想。
发明内容
根据本申请公开的各种实施例,提供一种消融系统。
一种消融系统,包括:通讯连接的信息处理模块和信号输入输出模块;
所述信号输入输出模块用于连接至少一根医疗导管,当所述医疗导管输出消融能量时,所述信号输入输出模块根据所述医疗导管的当前位置获取消融位点的空间位置信息,并将所述消融位点的空间位置信息发送至所述信息处理模块;及
所述信息处理模块用于根据一目标消融点获取目标空间位置信息,并周期性地根据在一预定时间段内所述消融位点的空间位置信息计算得到待比对位置信息,并周期性地将所述待比对位置信息与所述目标空间位置信息相比对以生成消融提示信息。
上述消融系统包括通讯连接的信息处理模块和信号输入输出模块;通过所述信号输入输出模块根据医疗导管的当前位置获取消融位点的空间位置信息,并将所述消融位点的空间位置信息发送至所述信息处理模块;所述信息处理模块用于根据一目标消融点获取目标空间位置信息,根据目标消融点的目标空间位置信息和所述消融位点的空间位置信息产生消融提示信息,可以防止在消融过程中,所述医疗导管位置偏离所述目标消融点导致重复消融或者消融无效等问题,从而确保准确消融。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据一个或多个实施例中消融系统的结构框图;
图2为根据一个或多个实施例中实际应用中消融系统的结构示意图;
图3为根据图2所示实施例中消融仪的功能模块示意图;
图4为根据一个或多个实施例中肾动脉消融示意图,其中虚线框为显示模块所显示的三维几何模型以及消融点标记示意图;
图5为根据一个或多个实施例中消融系统的工作流程图;
其中,100三维标测系统,101工作模块,102信号控制单元,103信号接收单元,200激励场发生器,300消融仪,301生理参数传感器,302中性电极,303医疗导管,401右侧肾脏,402腹主动脉,403右侧肾动脉,404左侧肾动脉。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。本申请中,“近端”和“远端”是从使用产品的医生角度来看相对于彼此的元件或动作的相对方位、相对位置、方向,尽管“近端”和“远端”并非是限制性的,但是“近端”通常指该产品在正常操作过程中靠近医生的一端,而“远端”和“头端”通常是指首先进入患者体内的一端。
在一些实施例中,如图1所示,本申请提供了一种消融系统,该消融系统包括通讯连接的信息处理模块和信号输入输出模块。信号输入输出模块用于连接至少一根医疗导管303,并当医疗导管303输出消融能量时,信号输入输出模块根据医疗导管303的当前位置获取消融位点的空间位置信息,并将消融位点的空间位置信息发送至信息处理模块。信息处理模块用于根据一目标消融点获取目标空间位置信息,并周期性地根据在一预定时间段内消融位点的空间位置信息计算得到待比对位置信息,并周期性地将待比对位置信息与目标空间位置信息相比对以生成消融提示信息。
目标消融点可以是推荐消融点,例如经过生理刺激后所推荐的推荐消融点(关于推荐消融点下文会做详细描述),或者是通过其他方式所确定的目标消融点,例如医生根据消融情况所指定的目标消融点。消融位点的空间位置信息为医疗导管303上实施消融的电极的空间位置信息。在消融过程中,信息处理模块将实时获取到的消融位点的空间位置信息与目标空间位置信息进行比对,从而生成消融提示信息。其中该消融提示信息可以是通过显示和/或语音等方式输出,以给用户以提示。
例如,该消融提示信息可以是通过语音的方式输出。在其中一些实施例中,预先设置不同类型的话术模板,当消融位点的空间位置信息与目标空间位置信息满足一定要求时,则信息处理模块获取对应的话术模板并输出。
该消融提示信息还可以是通过显示的方式输出,在其中一些实施例中,信号输入输出模块还用于 根据医疗导管303远端的空间位置信息获取建模空间位置信息,并将建模空间位置信息发送至信息处理模块;信息处理模块还用于根据建模空间位置信息构建医疗导管303远端所在区域的三维几何模型,并将所产生的消融提示信息标记在三维几何模型中。可选地,该三维几何模型显示在显示模块中,显示模块和构建三维几何模型会在下文作详细介绍。
在上述实施例中,消融位点的空间位置信息是指在医疗导管303输出消融能量时医疗导管303远端的空间位置信息,具体地,消融位点的空间位置信息是指所述医疗导管303输出消融能量时医疗导管303远端的消融电极的空间位置信息。预定时间段可以是预先设置的,例如1秒等,在其他的实施例中预定时间段可以为其他的数值,根据在预定时间段内的消融位点的空间位置信息计算得到待比对位置信息,可以是计算在预定时间段内的所有消融位点的空间位置信息的统计信息得到待比对位置信息,例如取平均值等,即在该时间段内医疗导管303的消融电极的位置的平均信息。例如1秒内消融电极的平均位置坐标。也可以通过初步筛选去除一些在该预定时间段内明显错误的消融位点的空间位置信息,通过计算在预定时间段内的其他消融位点的空间位置信息的统计信息得到待比对位置信息,也可以选取在预定时间段内的部分有代表性的消融位点的空间位置信息的统计信息得到待比对位置信息,本申请对此不作限制。其中第一预设距离也是预先设置的,例如1毫米,在其他的实施例中,该第一预设距离可以为其他的数值。
需要说明的一点是,消融提示信息可以包括待消融的区域内各个位置的标识信息以及操作提示信息其中至少一个,各个位置的标识信息包括但不限于推荐消融点信息、不推荐消融点信息以及各个推荐消融点是否已消融的信息。操作提示信息是用于根据目标空间位置信息以提示当前的消融位点的空间位置信息是否满足操作要求的,其可以包括但不限于消融位置移动的提示信息、重复消融的提示信息等。
上述消融系统包括通讯连接的信息处理模块和信号输入输出模块;通过所述信号,通过信号输入输出模块根据医疗导管303的当前位置获取消融位点的空间位置信息,并将消融位点的空间位置信息发送至信息处理模块;信息处理模块用于根据一目标消融点获取目标空间位置信息,根据目标消融点的目标空间位置信息和所述消融位点的空间位置信息产生消融提示信息,可以防止在消融过程中,所述医疗导管303位置偏离所述目标消融点导致重复消融或者消融无效等问题,从而确保准确定位医疗导管303远端,保证准确消融。
在其中一些实施例中,结合图1,信号输入输出模块可以是与医疗导管303相连接,用于根据医疗导管303的当前位置获取消融位点的空间位置信息。具体地,消融位点的空间位置信息是指在医疗导管303输出消融能量时医疗导管303远端的空间位置信息,更具体地,医疗导管303上设置有电极, 电极可用于刺激、消融或者定位等,消融位点的空间位置信息是指在医疗导管303输出消融能量时医疗导管303上消融电极对应的空间位置信息。
在上述实施例中,医疗导管303可以包括一个或多个电极,以通过该一个或多个电极输出能量,此外,需要说明的是,该消融系统还包括一中性电极302或者该消融系统还与一中性电极302相连,该中性电极302作为能量回路。该医疗导管303的远端设置有与信号输入输出模块相通信的空间位置信息采集装置,该空间位置信息采集装置可以为三维定位传感器,比如:磁定位传感器。从而通过该空间位置信息采集装置可以实时定位医疗导管303远端的位置。当然,医疗导管303上的电极本身也可以作为三维定位传感器,获取空间位置信息,本申请对此不作限制。
具体地,在实际应用中,该消融系统可以包括三维标测系统100和射频消融仪300,其中该三维标测系统100和射频消融仪300可以共用处理器,或者是三维标测系统100和射频消融仪300单独设置有处理器,且三维标测系统100的处理器和射频消融仪300的处理器相互通信连接,以进行信息传输。此处所述的处理器即为本实施例中的信息处理模块,也就是说本实施例中的信息处理模块可以是三维标测系统100和射频消融仪300共用的,或者是该信息处理模块包括两个部分,一部分位于三维标测系统100,另外一部分位于射频消融仪300,但是该两个部分可以通信,在其他实施例中,该消融系统还可以将三维标测系统100和射频消融仪300的功能集成为一体,此时可以使用一个信息处理模块即可处理相关数据。
结合图2和图3,在该实施例中,以三维标测系统100和射频消融仪300单独设置有处理器为例进行说明,信息处理模块包括图2中设置于三维标测系统100的工作模块101和图3中设置于射频消融仪300的智能分析模块,且该工作模块101和智能分析模块可以通信。该医疗导管303是与射频消融仪300相连接的消融导管,通过将该医疗导管303与三维标测系统100的信号输入输出模块相连接,以实现系统的配置。具体地,以图2和图3中所示的实施例进行说明,三维标测系统100的信号输入输出模块可以包括信号接收单元103和信号控制单元102,信息处理模块的一部分即图2中的工作模块101,另一部分即为图3中的智能分析模块。
如图2所示,在使用的时候,首先将三维标测系统100的激励场发生器200进行安装,激励场发生器200用于输出用于三维定位的激励场,可选地,该激励场发生器200放在病床下,例如安装在患者所要消融位置对应的病床下的位置,以肾动脉为例,则将该激励场发生器200放置在患者腰部附近的病床下。该激励场发生器200可以是磁场、电场或其他能量场发生器,其输出的信号是目前所知对人体无害的、低功率的、中低频率电场或者磁场信号,从而实现通过磁场定位、电场定位、或者阻抗定位成像技术获取空间位置信息。
其中信号控制单元102控制激励场的输出,从而信号接收单元103可以在医疗导管303的远端进入到激励场的有效范围时,接收到医疗导管303远端的空间位置信息采集装置采集的空间位置信息,并将该空间位置信息发送给信号控制单元102;可选地,信号接收单元103接收的空间位置信息是模拟信号,因此信号接收单元103先将该模拟信号进行调制解调并数字化后,再发送给信号控制单元102;信号控制单元102对该空间位置信息进行处理计算以得到三维定位数据,包括三维坐标、方向以及角度等信息。从而信号处理模块可以从信号控制单元102获取到该空间位置信息,以进行三维建模和/或图像处理或结合其他信息生成消融提示信息等。在其他实施例中,工作模块101还可以根据该空间位置信息建立医疗导管303远端所在区域的三维几何模型,并将生成的消融提示信息记录到该三维几何模型中,用于后续数据的记录和分析。
对上述消融系统,信息处理模块中的工作模块101还用于记录已消融点的空间位置信息。具体地,信息处理模块中的工作模块101在医疗导管303输出消融能量的过程中,周期性地根据在一预定时间段内的消融位点的空间位置信息计算得到待比对位置;并周期性地将待比对位置信息与目标空间位置信息相比对;如根据当前预定时间段内的当前待比对位置信息与所述目标空间位置信息所计算的距离小于或等于第一预设距离,则当医疗导管303完成消融时,将目标空间位置信息记录为一已消融点的空间位置信息。
进一步地,信息处理模块中的工作模块101还可以用于监控消融位置是否发生移动。具体地,信息处理模块中的工作模块101用于在医疗导管303输出消融能量的过程中,周期性地根据在一预定时间段内的消融位点的空间位置信息计算得到待比对位置;并周期性地将待比对位置信息与目标空间位置信息相比对;如根据当前预定时间段内的当前待比对位置信息与目标空间位置信息所计算的距离大于第一预设距离,则信息处理模块输出消融位置移动的提示。
当然,在另一些实施例中,信息处理模块中的工作模块101可选择性地用于记录已消融点的空间位置信息或监控消融位置是否发生移动,并不要求必须同时具备这两种功能;在又一些实施例中,工作模块101或信号控制单元102可以将消融位点的空间位置信息和目标空间位置信息等信息发送至消融仪300中的智能分析模块,由智能分析模块完成记录已消融点的空间位置信息或监控消融位置是否发生移动的功能,本申请对此不做限制。
信息处理模块中的工作模块101或智能分析模块还可以通过比较该当前待比对位置信息与目标空间位置信息,来确定是否为同一个消融点。
若根据当前预定时间段内的当前待比对位置信息与目标空间位置信息所计算的距离小于或等于第一预设距离时,则说明距离变化在一定范围内,且在医疗导管303完成消融时,将该目标空间位置信 息记录为一已消融点的空间位置信息。需要说明的是,此处的已消融点的空间位置信息可以是指已经完成消融时间或者达到合格的消融效果指数的消融点的空间位置信息,也可以是指医生认为消融完成了的消融点的空间位置信息,本申请对此不作限制。此处的完成消融时可以是完成了系统设置的消融持续时间或者到了系统设置的结束消融时间,也可以是用户(医生)根据经验判断消融完成,本申请对此不作限制。
如根据当前预定时间段内的当前待比对位置信息与目标空间位置信息所计算的距离大于第一预设距离,则说明距离变化超过一定范围,则给出消融位置移动提示,具体地,信息处理模块在确定消融位置移动时,可以将该提示信息或报警信息发送给显示模块,以通过显示模块发出提示信息或者报警信息,在其他实施例中,还可以通过语音提示的方式输出消融位置移动提示。
在实际应用中,信息处理模块中的工作模块101或智能分析模块实时计算消融过程中每段时间内消融电极的平均位置坐标,比如计算每1秒时间内消融电极的平均位置坐标并保存,与目标空间位置信息对比,距离变化在一定范围内(比如1mm)则认为是同一个消融点,距离变化超过一定范围,则提醒用户(医生)消融位置移动,医生可以查看目标空间位置信息对应的位置处的消融效果指数,判断目标消融点处的消融情况或者医生可以根据经验判断是否继续在该位置进行消融或者是否需要重新标记消融点等等,并将消融位置移动的提示信息或报警信息通过通讯模块发送给显示模块,以通过显示模块发出提示信息或报警信息,通讯模块会在下文作详细描述。
上述实施例中,通过监测消融过程中消融电极和靶点组织之间的位移,避免消融过程中电极移动影响消融效果。
在上述实施例中,更进一步地,信息处理模块还用于将当前预定时间段内的当前待比对位置信息与任一之前已消融点的空间位置信息相比对,如根据当前预定时间段内的当前待比对位置信息与任一之前已消融点的目标空间位置信息所计算的距离小于第二预设距离,则信息处理模块输出重复消融的提示。
具体地,第二预设距离也是预先设置的,例如2毫米,在其他的实施例中,该第二预设距离可以为其他的数值。判断根据当前预定时间段内的当前待比对位置信息与任一之前已消融点的目标空间位置信息所计算的距离是否小于第二预设距离,若是,则信息处理模块输出重复消融的提示,并根据用户的选择来确定是否需要对这个新的消融点位置进行重复消融,此处的新的消融点位置是指当前预定时间段内的当前待比对位置。
可选地,信息处理模块输出重复消融的提示后,可以由用户来确认是否继续在新的消融点位置处进行消融。若是用户确认在新的消融点位置处继续进行消融,则将该新的消融点位置信息作为目标空 间位置信息,并继续在消融过程中周期性地根据在一预定时间段内的消融位点的空间位置信息计算得到待比对位置信息,并继续上文中的处理。
上述实施例中,通过监测消融过程中消融电极和靶点组织之间的位移,避免消融过程中电极移动造成无效消融。
上述几个实施例中,通过计算消融过程中消融电极位置坐标的变化量,监控消融过程中消融电极的位移情况并发出提示或报警,避免无效消融。
上述消融系统还包括生理刺激模块和生理参数检测模块,在本实施例中,生理刺激模块和生理参数检测模块被设置于消融仪300中,生理参数检测模块可以通过生理参数传感器301采集生理参数,该生理刺激模块与医疗导管303相连接,生理刺激模块用于根据刺激参数生成刺激信号,使得医疗导管303输出刺激能量;生理参数检测模块用于检测在刺激信号下产生的生理参数,并将生理参数发送至信息处理模块;当医疗导管303输出刺激能量时,信息输入输出模块根据医疗导管303的当前位置获得刺激点的空间位置信息,并将刺激点的空间位置信息发送给信息处理模块,该信息处理模块还用于根据生理参数及刺激点的空间位置信息生成消融提示信息,消融提示信息包括推荐消融点信息和不推荐消融点信息。
具体地,生理刺激模块是用于输出生理刺激信号的,该生理刺激信号一般为低功率能量刺激。可选地,可以通过人机交互模块,例如显示模块输入设置的刺激参数,然后生理刺激模块根据该刺激参数产生生理刺激信号,并通过医疗导管303远端的电极输出该刺激能量,以使得患者的刺激点接收到该刺激信号,从而产生对应的生理反应。
生理参数检测模块则是用于检测在刺激信号下产生的生理参数,该生理参数检测模块可以为血压、心跳、体温或者生物电活动中的至少一个。可选地,该生理参数检测模块可以是血压检测模块,该血压检测模块与血压传感器相连接,以检测患者血压,其中血压传感器可以包括血压监测传感器及配套的附件,在本实施例中可采用有创血压监测,也可采用无创血压监测方式作为替代。在使用有创血压监测时,以肾动脉为例,可以选择桡动脉穿刺,穿刺点与心脏置于同一水平面并固定好,开始实时血压监测并记录。在其他的实施例中,生理参数检测模块可以采用其他能反映交感神经兴奋的生理参数监测单元进行替代,比如心率、体温、生物电活动等。其中体温可以是通过在医疗导管303的远端安装温度传感器来进行采集。
其中,当医疗导管303输出刺激能量时,生理参数检测模块采集到生理参数,然后进行处理得到测量结果,并将该测量结果发送至信息处理模块的智能分析模块,智能分析模块根据该生理参数及刺激点的空间位置信息产生消融提示信息。消融提示信息包括推荐消融点信息和不推荐消融点信息。具 体地,智能分析模块通过刺激时的生理参数等来生成推荐消融点信息和不推荐消融点信息,从而可以避免在不推荐消融点进行重复的生理刺激或进行无效消融,也可以避免遗漏在推荐消融点的有效消融。
当然,在另一实施例中,智能分析模块或生理参数检测模块也可以将该生理参数及刺激点的空间位置信息发送至三维标测系统100的工作模块101,又工作模块101产生消融提示信息,本申请对此不作限制。
在其中一些实施例中,信息处理模块还用于将推荐消融点信息中对应的刺激点的空间位置信息作为目标消融点的目标空间位置信息,计算当前目标消融点的目标空间位置信息与任一之前已消融点的空间位置信息之间的距离,在根据当前目标消融点的目标空间位置信息与任一之前已消融点的空间位置信息所计算的距离小于等于第三预设距离时,输出重复消融提示。具体地,上述实施例中,推荐消融点信息可以是经过信息处理模块分析得到,例如根据刺激点位置处的生理参数分析得到,当生理参数满足要求时,说明该刺激点位置处满足消融要求,为推荐消融点。将此时的刺激点的空间位置信息也即此推荐消融点的空间位置信息作为目标消融点的目标空间位置信息,其中该目标空间位置信息也即为靶点的位置信息。重复消融提示是在两个消融点(当前推荐消融点与已消融点)的距离小于等于第三预设距离时输出的。每次根据生理参数判断得到当前推荐消融点后,信息处理模块均计算该当前目标消融点也即当前推荐消融点与任一已消融点之间的距离,并判断该距离与第三预设距离之间的关系,若是小于等于第三预设距离,则当前推荐消融点为重复消融点。
第三预设距离可以是预先设置的,例如可以为2毫米,在其他的实施例中,该第三预设距离可以为其他值。较佳地,该第三预设距离可与第二预设距离相同,这是由于第二预设距离是用于区分消融点是否为同一消融点的阈值,以此可统一标准,提高系统判断的一致性。
上述实施例中,当前推荐消融点靠近已有消融点一定距离范围内(比如2mm)时,提醒操作者注意避免重复消融。通过当前消融电极坐标位置与已有消融点位置坐标对比,避免同一位置或过度邻近的位置重复消融。
在其中一些实施例中,信息处理模块中的工作模块101或智能分析模块还用于将推荐消融点信息中对应的刺激点的空间位置信息作为目标消融点的目标空间位置信息,计算当前目标消融点的目标空间位置信息与待比对位置信息之间的距离,在当前目标消融点的目标空间位置信息与待比对位置信息之间的距离大于第四预设距离时,输出消融位置移动的提示。
具体地,消融位置移动可以是在目标消融点处进行消融过程中的医疗导管303的偏离导致的消融位置移动,也可以是消融之前医疗导管303就偏离了目标消融点,本实施例中,在开始输出消融能量后若医疗导管303就偏离了目标消融点,则会提醒消融位置移动。
可选地,第四预设距离可以等于第一预设距离。
进一步地,上述消融系统中的信号输入输出模块还用于根据医疗导管303远端的空间位置信息获取建模空间位置信息,并将建模空间位置信息发送至信息处理模块中的工作模块101或智能分析模块;信息处理模块还用于根据建模空间位置信息构建医疗导管303远端所在区域的三维几何模型,并将所产生的消融提示信息标记在三维几何模型中。
具体地,三维几何模型的建立则是在消融之前或消融过程中,通过将医疗导管303送入至待消融的位置所得到的该待消融的位置精确的模型。在医疗导管303的远端进入到有效范围时,则信号输入输出模块可以接收到建模空间位置信息,从而信息处理模块可以开始进行建模。且可选地,为了保证医疗导管303的行走轨迹的准确,信息处理模块可以存储有预先根据医疗成像设备所生成的参考三维模型,从而可以根据该参考三维模型来确定医疗导管303的走向,并与实时生成的三维几何模型互为参考,提高了准确性。因此在实际处理中,信息处理模块可以获取到该参考三维模型,然后根据该参考三维模型将医疗导管303推进到预设的待消融的位置,且在医疗导管303的远端进入到有效范围时,则信号输入输出模块可以接收到建模空间位置信息,并将建模空间位置信息发送至信息处理模块,从而信息处理模块可以开始进行建模,且在信息处理模块建模的过程中可以将参考三维模型作为参考,以确定是否存在未建模的区域和修正位置信息等。
以肾动脉为例进行三维几何模型的建立说明,该医疗导管303可以从右腿股动脉血管进入人体,医疗导管303远端沿股动脉血管向上推进,进入腹主动脉402。同时,当医疗导管303远端进入有效磁场激励范围时,信号输入输出模块可以获取医疗导管303远端的空间位置信息,此时可以选择开始建立该段动脉血管的三维几何模型。在参考三维模型中观测到医疗导管303远端接近肾动脉分支位置时,控制医疗导管303远端进入右侧(或左侧)肾动脉,同时建立右侧(或左侧)肾动脉血管的三维模型。或者,不借助于参考三维模型,而是通过在X射线影像下观测到医疗导管303远端接近肾动脉分支位置时,控制医疗导管303远端进入右侧(或左侧)肾动脉,同时建立右侧(或左侧)肾动脉血管的三维模型。
可选地,三维几何模型包括肾动脉血管和/或腹主动脉402段血管。为了建立比较精确的三维血管模型,在肾动脉分支所在区域附近,可以控制医疗导管303沿血管壁运动,覆盖尽量多的位置点。三维建模范围可以选择覆盖到腹主动脉402左右肾动脉分支的附近的部位(即腹主动脉402近心端和远心端),以更好地反应该区域的结构信息,这是由于腹主动脉402外膜分布有肾交感神经的主干,如果找到交感神经分布集中的靶点,则会带来更好的消融效果。这样由肾动脉血管扩展到其附近的腹主动脉402段血管的三维定位及建模,以及基于此进行后续的交感神经消融靶点的定位和消融,会带来更 好的消融效果。
信号输入输出模块将建模空间位置信息发送至所述信息处理模块中的工作模块101或智能分析模块,工作模块101或智能分析模块则是用于根据建模空间位置信息以建立三维几何模型,并根据目标消融点对应的目标空间位置信息和消融位点的空间位置信息产生消融提示信息。该消融提示信息包括根据生理刺激所确定的刺激点是否为推荐消融点、不推荐消融点的信息,以及在目标消融点处进行消融处理所产生的消融信息中的一种或者多种信息,例如已消融点、消融位置移动、重复消融等,该已消融点的消融信息包括但不限于消融参数和消融结果信息,消融参数即医疗导管303输出能量所对应的参数,消融结果信息即在该消融点进行消融后,对消融效果的评价信息。
可选地,在其中一些实施例中,信息处理模块将推荐消融点信息和不推荐消融点信息显示于三维几何模型中。进一步地,信息处理模块将推荐消融点信息和不推荐消融点信息以推荐消融点标记和不推荐消融点标记显示在三维几何模型中。
具体地,请结合图2和图3所示,其中图3中的生理刺激模块即为本实施例中的生理刺激模块,图3中的多参数检测模块和血压检测模块即为本实施例中的生理参数检测模块。
在图3所示实施例中,以肾动脉为例进行说明,其中医疗导管303远端电极进入一侧肾动脉,消融电极与血管壁贴紧并保持位置固定,信息处理模块同时标记该处位置坐标,同时在三维几何模型上以约定标记显示出来。然后在显示模块的用户界面的对应窗口中设置刺激参数,将一定量的生理刺激脉冲输出到所在的肾动脉血管壁,信息处理模块根据刺激时生理参数,例如血压的变化规律判断该处血管壁内是否包含交感神经(或者副交感神经、迷走神经),并将判断结果记录下来。如果判断结果为该处仅有交感神经或以交感神经为主,则将该位置确定为推荐消融点。如果判断为不包含交感神经或者交感神经不占主导地位,则将该位置确定为不推荐消融点,可选地,信息处理模块将推荐消融点信息和不推荐消融点信息显示在三维几何模型上。
在其中一些实施例中,该消融系统还包括消融能量模块以及显示模块,该消融能量模块与医疗导管303相连接,该显示模块与信息处理模块通讯连接。消融能量模块用于根据消融参数生成消融信号,使得医疗导管303输出消融能量;显示模块用于显示三维几何模型以及消融提示信息。
当医疗导管303输出消融能量时,信号输入输出模块根据医疗导管303的当前位置获取消融位点的空间位置信息,并将消融位点的空间位置信息发送至信息处理模块;信息处理模块用于根据一目标消融点获取目标空间位置信息,并根据目标空间位置信息和消融位点的空间位置信息生成消融提示信息,消融提示信息包括已消融点标记,已消融点标记被显示于三维几何模型。
具体地,消融能量模块主要是用于输出消融能量,例如其可通过射频发生的方式来产生消融能量, 从而通过医疗导管303输出该消融能量。消融能量可以通过消融功率或消融电流来衡量。可选地,该显示模块可以是人机交互显示模块,从而通过该显示模块可以设置消融能量的参数,从而消融能量模块可以根据消融能量参数产生对应的消融能量。在医疗导管303输出消融能量时,信息处理模块根据目标空间位置信息和消融位点的空间位置信息生成消融提示信息,即信息处理模块用于根据一目标消融点获取目标空间位置信息,并周期性地根据在一预定时间段内消融位点的空间位置信息计算得到待比对位置信息,并周期性地将待比对位置信息与目标空间位置信息相比对以生成消融提示信息,消融提示信息例如为已消融点标记,且将该已消融点标记显示在三维几何模型的对应的位置处。
在上述实施例中,显示模块的数量可以根据需要设置,且显示模块所显示的内容可以根据用户的习惯等进行预设。可选地,显示模块可以为1个,该显示模块可以与信息处理模块进行通信,以显示需要显示的所有信息。在其他实施例中,显示模块可以为2个,其中一个显示模块位于三维标测系统100,另外一个显示模块位于射频消融仪300,该两个显示模块的显示内容可以根据需要进行设置,该两个显示模块显示的内容可以完全一致,或者是部分重合,或者是完全不一致。其中以两个显示模块为例,其中一个显示模块与工作模块101相通信,以显示与位置相关的信息,另外一个显示模块与智能分析模块相通信,以显示与消融相关的信息,在其他实施例中,与工作模块101相通信的显示模块还可以显示与消融相关的信息,与智能分析模块相通信的显示模块也可以显示与位置相关的信息。结合图3所示,图3为一个实施例中的消融仪300的结构示意图,在该实施例中,该消融仪300中的射频发生模块即为本实施例中的消融能量模块,该人机交互模块即为显示模块。其中该消融仪300通过通讯模块与三维标测系统100的工作模块101进行通信,以传输消融相关信息至工作模块101。消融仪300的电源模块用于给消融仪300供电,以使得消融仪300的各个部分正常工作。
在实际应用中,智能分析模块可以用于处理与消融有关的信息,工作模块101可以用于处理与位置相关的信息,在其他的实施例中,智能分析模块和工作模块101所处理的信息的类型可以预先进行设置,在此不做具体限制,智能分析模块先通过人机交互模块获取到消融能量的参数,从而智能分析模块可以根据该消融能量的参数来计算消融信息,以控制射频发生模块产生消融能量,并输出消融能量至医疗导管303以对消融点进行消融。在消融过程中,工作模块101将获取到的消融位点的空间位置信息显示在三维几何模型中,且通过消融仪300的通讯模块与消融仪300进行通信,根据目标空间位置信息和消融位点的空间位置信息生成消融提示信息,即为信息处理模块用于根据一目标消融点获取目标空间位置信息,并周期性地根据在一预定时间段内消融位点的空间位置信息计算得到待比对位置信息,并周期性地将待比对位置信息与目标空间位置信息相比对以生成消融提示信息,并将消融提示信息显示在三维几何模型中。在上述实施例中,消融提示信息可以是智能分析模块根据目标空间位 置信息和消融位点的空间位置信息生成的,例如当目标空间位置处(也即靶点位置处)的生理参数信息满足要求时,则生成已消融点标记,从而工作模块101将该已消融点标记显示在三维几何模型中,以完成一次消融;在其他的实施例中,智能分析模块可以将目标空间位置处(也即靶点位置处)的生理参数信息发送至工作模块101,由工作模块101来判断当生理参数信息满足要求时,则生成已消融点标记,并将该已消融点标记显示在三维几何模型中,以完成一次消融。
仍以肾动脉为例进行说明,将推荐消融点作为目标消融点时,在推荐消融点处保持消融电极与血管壁贴靠紧密,在显示模块的用户界面的对应窗口中设置消融参数并开始消融,即智能分析模块可以根据该消融能量的参数来计算消融信息,从而控制射频发生模块产生消融能量,并输出消融能量至医疗导管303以对消融点进行消融。消融期间智能分析模块根据实时获取该推荐消融点的生理信息,例如血压信息判断该点消融是否达到要求,如果判断该消融点已经达到消融要求则可停止消融,否则需要继续进行消融。在消融过程中,按位置点区分将消融相关信息记录下来。一个位置点处理结束后,操控医疗导管303使消融电极到达肾动脉血管壁的其他位置,重复上述流程。一般一侧肾动脉需要处理若干个消融点以保证该侧交感神经的阻断,以在该侧找不到刺激导致血压升高的区域为判断依据。一侧肾动脉消融处理结束后,操控医疗导管303使消融电极进入另一侧肾动脉血管,以相同的流程进行处理。
上述实施例中,通过消融能量模块产生消融能量,以进行消融,并且信息处理模块将产生的消融提示信息显示在对应的三维几何模型中,从而用户可以在三维几何模型中查看相关的消融提示信息,更加智能化,提高了用户体验,降低了术者的学习曲线,提高了手术的有效性和安全性。
在其中一些实施例中,消融提示信息包括标记颜色信息,不同标记类型的消融提示信息对应匹配不同的标记颜色信息。
具体地,三维几何模型中不同的位置点采用不同的标记类型予以区分,例如通过颜色信息来进行区分。参见图4所示,比如生理刺激后判断的交感神经占优的推荐消融点用黄色中空线框进行标记、交感神经不占优的不推荐消融点用灰色中空线框进行标记、已消融点再加上红色实心点标记。可选地,标记颜色信息与消融效果指数相对应,通过不同的颜色深度表示不同的消融效果。上述不同标记类型的消融提示信息可以是已消融点标记、推荐消融点标记和不推荐消融点标记,当然也可以是其他标记类型的消融提示信息,可以根据用户需求进行设置,本申请对此不作限制。
具体地,如图4中,虚线框部分是可以进行三维几何建模的区域,包括右侧肾脏401,R01~R04为在三维几何模型的右侧肾动脉403中医疗导管303中的电极刺激或消融后显示的消融点标记,L01~L02为在三维几何模型的左侧肾动脉404中医疗导管303的电极刺激或消融后显示的消融点标记, M01~M02为在三维几何模型的腹主动脉402中医疗导管303的电极刺激或消融后显示的消融点标记,在本实施例中,消融点标记包括:推荐消融点标记、不推荐消融点标记和已消融点标记。
在其中一些实施例中,上述消融系统还包括消融效果判断模块,用于计算消融效果指数,消融效果指数取决于消融参数,消融参数包括消融功率、损失功率、消融电极的表面积及消融持续时间。
具体地,该消融效果判断模块主要用于计算消融效果指数,该消融效果指数是根据参数及算法判断该消融点的消融是否有效,其取决于消融参数,消融参数包括消融功率、损失功率、消融电极的表面积及消融持续时间。消融功率是指消融能量模块的输出功率,损失功率是指单位时间内血液流动以及冷盐水灌注带走的能量,消融电极的表面积则是根据提前录入的电极形状和有效表面积信息得到的,电极形状一般描述为外表面尺寸,比如环形电极,外径2.0mm、宽度1.5mm,表面积为9.4mm2;消融持续时间是指该消融点从消融能量模块输出能量至能量输出结束的时间,采样点即消融参数的数据记录,一个采样点对应一个记录数据,采样点的数量是指一次持续消融的总采样点的数量,其等于消融时间比上采样时间间隔,比如某一消融点的持续消融时间为60S,数据采样时间间隔为10mS,则总采样点数N=6000。
在其中一些实施例中,消融效果指数可以通过以下公式计算:
Figure PCTCN2022103388-appb-000001
AE为消融效果指数;n为第n个采样点,N为一次持续消融的总采样点的数量,其等于某一消融点的消融持续时间/采样时间间隔;k为比例系数,取值在0.3~0.9之间;Prf(n)为第n个采样点记录的消融功率;S为消融电极的表面积;Δt为采样时间间隔;Pco(n)为第n个采样点对应的损失功率,也就是说单位时间内血液流动以及冷盐水灌注带走的能量,由消融电极的表面积、温度与人体体温、血液换热系数决定,以及冷盐水温度、人体体温以及盐水换热系数决定,因此,本申请拟定Pco(n)=hS[T(n)-TS],h为热交换系数,可根据经验选择,取值在200~3000之间,单位为W/m2*℃;T(n)为第n个采样点的电极温度,TS是指人体内部环境的温度,这个温度是在非消融、非灌注模式等条件下实际测得的体内温度,其可以采用固定值,比如37℃,也可用一段时间内测得的体内温度的平均值替代,T(n)和TS的单位为℃。
上述实施例中,通过计算消融效果指数来判断消融点的消融是否有效,从而通过不同的颜色来表示消融效果指数,以供用户查勘。
在其中一些实施例中,消融提示信息还包括消融记录信息,信息处理模块还用于接收一指令,该指令用于调取消融点标记处的信息,当指令被激活时,信息处理模块将消融记录信息显示于显示模块。 具体地,触摸或者按压或者点击所述显示模块的用户界面的对应窗口中的消融点标记,信息处理模块接收触摸、按压或者点击指令,并调取该消融点标记处的信息,并将该消融记录信息显示于显示模块中。
消融记录信息包括消融点标识、消融点的空间位置信息、消融点的顺序、消融功率、消融电流、刺激信号的强度、刺激信号的频率、刺激信号的时间、生理参数变化、温度、消融时间、阻抗、消融推荐度以及消融效果指数中的至少一个。
消融点标识可以是按照预先定义的规则进行的,消融点的空间位置信息则是通过输入输出模块来获取到的。消融点的顺序即消融的第几个点,此处也可以记录标记时间。进一步地,消融功率、消融电流、刺激信号的强度、阻抗以及温度等实时采集的参数可以通过数据显示,比如图表方式显示或者数值方式显示,以便于观测。
消融效果指数是结合提前录入的电极形状及有效表面积信息,以及实时灌注流量等参数进行更深入的消融参数分析。具体地消融记录信息可以参见下表所示,其为某个消融点对应的记录信息:
Figure PCTCN2022103388-appb-000002
上述实施例中,三维几何模型中,选中某个标记点,可以显示该点对应的信息,比如刺激信息、消融推荐度信息、消融相关信息等。同时,根据已有消融点标记的位置分布,判断动脉神经的分布走向,帮助探测新的消融点,避免遗漏对动脉神经的消融。此外,由于上述消融记录信息将包含消融能量、时间、温度、阻抗、血压、消融效果等参数在内的多参数检测及图形化显示,并且与三维几何模型相结合,信息显示更直观,方便消融操作,避免重复消融以及遗漏消融靶点,方便有效消融靶点的寻找,提高消融过程的安全性及有效性。
具体地,参见图5所示,图5为一个实施例中的消融系统的工作流程图,在该实施例中,以肾动脉消融为例进行说明,先进行设备安装,将激励场发生器200安装至病床下,如图2中的虚线框,将医疗导管303与消融仪300通讯连接,并且医疗导管303与三维标测系统100的信号接收单元103相连接,三维标测系统100的信号控制单元102与激励场发生器200相连接,中性电极302作为能量回路,与消融仪300通讯连接。若是采用有创血压监测,则选择桡动脉穿刺,穿刺点与心脏置于同一水平面并固定好,开始实时血压监测并记录。
在消融的时候,一般先选择并设置医疗导管303信息,比如医疗导管303种类、消融电极参数。可选地,将包含肾动脉及周边动脉血管组织的三维影像导入系统,比如CT影像或MRI影像,即导入信息处理模块,并经图像处理分割出肾动脉及腹主动脉402血管三维结构。然后将医疗导管303经切开的皮肤组织插入血管并沿血管腔到达腹主动脉402、肾动脉区域,过程中需要其他器材辅助,医疗导管303头端到达位于三维空间定位的有效范围内,即激励场发生器200的有效工作范围内,医疗导管303的远端可以进行实时空间位置定位,并可得到相应的空间位置信息,包括三维坐标、方向以及角度等。同时可将有创血压探针插入患者适当血管位置,比如桡动脉,开始进行血压监测。医疗导管303的远端到达有效范围内后,可利用实时获取的坐标对相应区域血管进行三维建模,得到更直观的血管三维几何模型。
这样通过操作医疗导管303,使得医疗导管303远端的电极在肾动脉血管及其附近的腹主动脉402血管区域内寻找目标消融点,包括:生理刺激模块根据刺激参数生成刺激信号,使得医疗导管303输出刺激能量;生理参数检测模块检测在刺激信号下产生的生理参数。这样信号输入输出模块根据医疗导管303的当前位置获得刺激点的空间位置信息,并将刺激点的空间位置信息发送至信息处理模块,信息处理模块根据生理参数及刺激点的空间位置信息生成消融提示信息,消融提示信息包括推荐消融点信息和不推荐消融点信息,可选地,推荐消融点信息和不推荐消融点信息被显示于三维几何模型。也就是说信息处理模块将寻找目标消融点涉及到的标识和参数记录下来,并与三维几何模型中的对应的标记点关联起来,以便于查看。进而,根据推荐消融点的推荐结果,此时的推荐消融点可作为目标消融点,对推荐消融点开始消融,同时记录消融相关信息,比如功率、温度、阻抗以及冷盐水灌注流速等。根据消融参数计算消融效果量化指数,结合患者其他生理参数的反应,判断该推荐消融点是否达到目的,如果达到则可以停止该推荐消融点的消融,否则可以选择继续消融。经过多个消融靶点的去交感神经消融后,判断是否达到消融目标,如果达到则可结束消融,否则可以选择寻找其他消融靶点继续消融,直到达到最终目标。
上述实施例中,通过医疗导管303可以实现在肾动脉血管中医疗导管303远端的三维空间定位, 以及根据医疗导管303的远端的定位对双侧肾动脉血管和/或腹主动脉402段血管内腔结构建模。三维空间定位及建模技术与射频消融技术结合,将传统肾动脉消融处理从模糊定位的二维方式提升为能够三维建模并进行精确定位的三维方式。显著减少甚至完全避免使用X射线成像,降低对患者及医生健康的影响。可以实现医疗导管303的实时定位,数据信息无缝连接,可以显示每一个操作消融点的坐标信息、以及实施消融操作的相关技术参数。
此外,需要说明的一点是,本申请的以上实施例是以图2和图3所示的硬件结构为例进行说明的,但是本申请中的消融系统的硬件结构并不限于图2和图3所示,比如,本申请中的信息处理模块可以包括图2中的工作模块101和图3中的智能分析模块,在其他的实施例中,图2中的工作模块101和图3中的智能分析模块可以仅包括一个,并且将工作模块101和智能分析模块中的功能根据需要预先配置到这一个中。本申请中的显示模块可以如图2和图3所示,仅为图3中的人机交互模块,在其他的实施例中,本申请的显示模块可以包括至少两个,其中一个显示模块位于图2中的三维标测系统100,另外一个显示模块位于图2中的射频消融仪300,该两个显示模块所显示的内容可以根据需要进行预先配置,在此不做具体的限制。
应该理解的是,虽然图5的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图5中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质或易失性计算机可读存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。而且本申请的创新虽然来源于肾动脉消融, 但本领域的技术人员可以理解,本申请也可应用于心脏消融,支气管消融等不同部位的消融。另外,本申请实施例中列举了射频消融能量,本申请也可以采用脉冲消融、微波消融等其他消融能量,本申请对此不作限制。以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种消融系统,其中,包括:通讯连接的信息处理模块和信号输入输出模块;
    所述信号输入输出模块用于连接至少一根医疗导管,当所述医疗导管输出消融能量时,所述信号输入输出模块根据所述医疗导管的当前位置获取消融位点的空间位置信息,并将所述消融位点的空间位置信息发送至所述信息处理模块;及
    所述信息处理模块用于根据一目标消融点获取目标空间位置信息,并周期性地根据在一预定时间段内所述消融位点的空间位置信息计算得到待比对位置信息,并周期性地将所述待比对位置信息与所述目标空间位置信息相比对以生成消融提示信息。
  2. 根据权利要求1所述的系统,其中,所述信息处理模块还用于如根据当前所述预定时间段内的当前所述待比对位置信息与所述目标空间位置信息所计算的距离小于或等于第一预设距离,则当所述医疗导管完成消融时,将所述目标空间位置信息记录为一已消融点的空间位置信息。
  3. 根据权利要求2所述的系统,其中,所述信息处理模块还用于如根据当前所述预定时间段内的当前所述待比对位置信息与所述目标空间位置信息所计算的距离大于所述第一预设距离,则输出消融位置移动的提示。
  4. 根据权利要求2所述的系统,其中,所述信息处理模块还用于将当前所述预定时间段内的当前所述待比对位置信息与任一之前所述已消融点的空间位置信息相比对,如当前所述预定时间段内的当前所述待比对位置信息与任一之前所述已消融点的空间位置信息所计算的距离小于第二预设距离,则所述信息处理模块输出重复消融的提示。
  5. 根据权利要求2所述的系统,其中,所述系统还包括:
    生理刺激模块,所述生理刺激模块与所述医疗导管相连接,所述生理刺激模块用于根据刺激参数生成刺激信号,使得所述医疗导管输出刺激能量;
    生理参数检测模块,所述生理参数检测模块用于检测在所述刺激信号下产生的生理参数,并将所述生理参数发送至所述信息处理模块;及
    当所述医疗导管输出所述刺激能量时,所述信号输入输出模块根据所述医疗导管的当前位置获取刺激点的空间位置信息,并将所述刺激点的空间位置信息发送至所述信息处理模块,所述信息处理模块还用于根据所述生理参数及所述刺激点的空间位置信息生成所述消融提示信息,所述消融提示信息包括推荐消融点信息和不推荐消融点信息。
  6. 根据权利要求5所述的系统,其中,所述信息处理模块还用于将所述推荐消融点信息中对应的所述刺激点的空间位置信息作为所述目标消融点的目标空间位置信息,计算当前所述目标消融点的 目标空间位置信息与任一之前所述已消融点的空间位置信息之间的距离,在根据当前所述目标消融点的目标空间位置信息与任一之前所述已消融点的空间位置信息所计算的距离小于等于第三预设距离时,输出重复消融提示。
  7. 根据权利要求5所述的系统,其中,所述信息处理模块还用于将所述推荐消融点信息中对应的所述刺激点的空间位置信息作为所述目标消融点的目标空间位置信息,计算当前所述目标消融点的目标空间位置信息与所述待比对位置信息之间的距离,在当前所述目标消融点的目标空间位置信息与所述待比对位置信息之间的距离大于第四预设距离时,输出消融位置移动的提示。
  8. 根据权利要求1至7任意一项所述的系统,其中,所述信号输入输出模块还用于根据所述医疗导管远端的空间位置信息获取建模空间位置信息,并将所述建模空间位置信息发送至所述信息处理模块;所述信息处理模块还用于根据所述建模空间位置信息构建所述医疗导管远端所在区域的三维几何模型,并将所产生的消融提示信息标记在所述三维几何模型中。
  9. 根据权利要求8所述的系统,其中,所述系统还包括:
    消融能量模块,所述消融能量模块与所述医疗导管相连接,所述消融能量模块用于根据消融参数生成消融信号,使得所述医疗导管输出所述消融能量;及
    显示模块,与所述信息处理模块通讯连接,用于显示所述三维几何模型以及所述消融提示信息。
  10. 根据权利要求9所述的系统,其中,所述消融提示信息包括标记颜色信息,不同标记类型的消融提示信息对应匹配不同的所述标记颜色信息。
  11. 根据权利要求10所述的系统,其中,还包括消融效果判断模块,用于计算消融效果指数,所述消融效果指数取决于所述消融参数,所述消融参数包括消融功率、损失功率、消融电极的表面积及消融持续时间。
  12. 根据权利要求11所述的系统,其中,所述标记颜色信息与所述消融效果指数相对应,通过不同的颜色深度表示不同的消融效果。
  13. 根据权利要求11所述的系统,其中,所述消融效果指数通过以下公式计算:
    Figure PCTCN2022103388-appb-100001
    其中,AE为消融效果指数;n为第n个采样点,N为一次持续消融的总采样点数,其等于所述消融持续时间/采样时间间隔;k为比例系数,取值在0.3~0.9之间;Prf(n)为第n个采样点记录的所述消融功率;S为所述消融电极的表面积;Δt为采样间隔;Pco(n)为第n个采样点对应的所述损失功率,其中Pco(n)=h S[T(n)-TS],h为热交换系数,取值在200~3000之间,单位为W/m2*℃;T(n)为第n个 采样点的电极温度,TS为人体内部环境的温度,单位为℃。
  14. 根据权利要求11所述的系统,其中,所述消融提示信息还包括消融记录信息,所述信息处理模块还用于接收一指令,所述指令用于调取消融点标记处的信息,当所述指令被激活时,所述信息处理模块将所述消融记录信息显示于所述显示模块。
  15. 根据权利要求14所述的系统,其中,所述消融记录信息包括消融点标识、消融点的空间位置信息、消融点的顺序、消融功率、消融电流、刺激信号的强度、刺激信号的频率、刺激信号的时间、生理参数变化、温度、消融时间、阻抗、消融推荐度以及消融效果指数中的至少一个。
  16. 根据权利要求8所述的系统,其中,所述三维几何模型包括肾动脉血管和/或腹主动脉段血管。
PCT/CN2022/103388 2021-08-11 2022-07-01 消融系统 WO2023016136A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111509147.XA CN115886989A (zh) 2021-08-11 2021-08-11 消融系统
CN202110916536.8 2021-08-11
CN202110916536.8A CN113349923B (zh) 2021-08-11 2021-08-11 消融系统
CN202111509147.X 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023016136A1 true WO2023016136A1 (zh) 2023-02-16

Family

ID=85200528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103388 WO2023016136A1 (zh) 2021-08-11 2022-07-01 消融系统

Country Status (2)

Country Link
CN (1) CN115886989A (zh)
WO (1) WO2023016136A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040078036A1 (en) * 2002-10-21 2004-04-22 Yaron Keidar Real-time monitoring and mapping of ablation lesion formation in the heart
CN103385705A (zh) * 2012-05-07 2013-11-13 韦伯斯特生物官能(以色列)有限公司 自动消融跟踪
CN105125279A (zh) * 2014-06-02 2015-12-09 韦伯斯特生物官能(以色列)有限公司 心脏消融位点之间的间隙的识别和可视化
US20160095651A1 (en) * 2009-11-20 2016-04-07 St. Jude Medical, Atrial Fibrillation Division, In System and method for assessing effective delivery of ablation therapy
CN110198680A (zh) * 2016-11-16 2019-09-03 纳维斯国际有限公司 消融有效性估计器
WO2019217430A1 (en) * 2018-05-08 2019-11-14 Acutus Medical, Inc. Cardiac information processing system
CN112336445A (zh) * 2019-12-26 2021-02-09 上海微创电生理医疗科技股份有限公司 一种消融系统及其神经探测设备
CN112842514A (zh) * 2020-12-31 2021-05-28 杭州堃博生物科技有限公司 消融操作提示方法、电子装置及计算机可读存储介质
CN113349923A (zh) * 2021-08-11 2021-09-07 上海微创电生理医疗科技股份有限公司 消融系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040078036A1 (en) * 2002-10-21 2004-04-22 Yaron Keidar Real-time monitoring and mapping of ablation lesion formation in the heart
US20160095651A1 (en) * 2009-11-20 2016-04-07 St. Jude Medical, Atrial Fibrillation Division, In System and method for assessing effective delivery of ablation therapy
CN103385705A (zh) * 2012-05-07 2013-11-13 韦伯斯特生物官能(以色列)有限公司 自动消融跟踪
CN105125279A (zh) * 2014-06-02 2015-12-09 韦伯斯特生物官能(以色列)有限公司 心脏消融位点之间的间隙的识别和可视化
CN110198680A (zh) * 2016-11-16 2019-09-03 纳维斯国际有限公司 消融有效性估计器
WO2019217430A1 (en) * 2018-05-08 2019-11-14 Acutus Medical, Inc. Cardiac information processing system
CN112336445A (zh) * 2019-12-26 2021-02-09 上海微创电生理医疗科技股份有限公司 一种消融系统及其神经探测设备
CN112842514A (zh) * 2020-12-31 2021-05-28 杭州堃博生物科技有限公司 消融操作提示方法、电子装置及计算机可读存储介质
CN113349923A (zh) * 2021-08-11 2021-09-07 上海微创电生理医疗科技股份有限公司 消融系统

Also Published As

Publication number Publication date
CN115886989A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US11931157B2 (en) Cardiac analysis user interface system and method
EP3457928B1 (en) Determining pulse wave velocity using intravascular pressure measurement and external ultrasound imaging, and associated devices, systems, and methods
US11517372B2 (en) System and method for assessing lesions in tissue
CN113349923B (zh) 消融系统
WO2020000963A1 (zh) 针的超声引导辅助装置及系统
EP2875780B1 (en) Tracking of catheter using impedance measurements
JP5833664B2 (ja) アブレーション治療中の組織内損傷形成を表す情報を提示するためのシステムと方法
RU2539010C2 (ru) Устройство, способ и компьютерная программа для определения характеристик сердца
US20090292181A1 (en) Integrated physiology and imaging workstation
JP2022509393A (ja) 管腔内超音波ナビゲーションガイダンス、並びに、関連するデバイス、システム、及び方法
JP6158936B2 (ja) 超音波データ可視化装置
JP2002526188A (ja) 体内への医療処置中にカテーテルの位置を判定するためのシステム及び方法
JP2012520474A (ja) 人体腔内壁の三次元測定方法、並びにその装置及びシステム
US10806503B2 (en) Methods and systems for electrophysiology ablation gap analysis
JP7080650B2 (ja) ブルガダ症候群を排除するためのecg信号の解析及びマッピング並びにアブレーション点の決定
WO2023016136A1 (zh) 消融系统
WO2020118872A1 (zh) 导管末端定位方法
US20220096004A1 (en) System for visualizing patient stress
JP7150519B2 (ja) ユーザ定義マップのためのecgデータを管理するシステム及び方法
US20220238203A1 (en) Adaptive navigation and registration interface for medical imaging
EP3544536B9 (en) Determining ablation location using probabilistic decision-making
JP2021062207A (ja) 局所的レンダリングベースのマルチモダリティサブセットの提示
CN110269594A (zh) 一种冠状动脉血流储备分数测量系统
JP2022025027A (ja) 生物医学的システム及び方法のための仮想接地との可視化及び記録システムインターフェース
JP2021030076A (ja) 臓器の電気活動の向上した可視化

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855120

Country of ref document: EP

Effective date: 20240311