WO2023016099A1 - 降低煤表面纳米气泡的煤层气增产实验装置及方法 - Google Patents

降低煤表面纳米气泡的煤层气增产实验装置及方法 Download PDF

Info

Publication number
WO2023016099A1
WO2023016099A1 PCT/CN2022/100603 CN2022100603W WO2023016099A1 WO 2023016099 A1 WO2023016099 A1 WO 2023016099A1 CN 2022100603 W CN2022100603 W CN 2022100603W WO 2023016099 A1 WO2023016099 A1 WO 2023016099A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation chamber
coal
pressure
box
nano
Prior art date
Application number
PCT/CN2022/100603
Other languages
English (en)
French (fr)
Inventor
郭红玉
夏大平
邓泽
田继先
李国富
张伟
陈林勇
赵树峰
徐强
Original Assignee
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学 filed Critical 河南理工大学
Priority to SE2350272A priority Critical patent/SE2350272A1/en
Publication of WO2023016099A1 publication Critical patent/WO2023016099A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/02Means for regulation, monitoring, measurement or control, e.g. flow regulation of foam
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/582Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention belongs to the technical field of coal bed gas production increase experiment, and in particular relates to a coal bed gas production increase test device and method for reducing coal surface nano-bubbles.
  • Coalbed methane belongs to unconventional natural gas and can be used as a new type of clean energy. Coalbed methane has potential economic benefits and broad development prospects. The development of coalbed methane can reduce disasters and reduce the greenhouse effect.
  • microbial stimulation of coalbed methane can increase the biomethane production of coal by adding nutrients, using alkali hydrolysis and lignin enzyme pretreatment, chemical, biological and physical pretreatment, etc.
  • the methane gas produced by methanogenic bacteria will enrich a large number of "nanobubbles" on the surface of the cell membrane.
  • This layer of nanobubbles is extremely stable and difficult to remove by macro-control methods such as temperature, pressure, and concentration.
  • the existence of "nanobubbles” It will inhibit the supply of the cells' own nutrients, which is not conducive to their survival, resulting in "difficult entry of substrates and difficult exit of products", resulting in a low rate.
  • the purpose of the present invention is to overcome the deficiencies in the above-mentioned prior art and provide an experimental device for reducing nano-bubbles on the coal surface and improving biological gas production.
  • the present invention provides the following technical solutions:
  • An experimental device for increasing production of coalbed methane that reduces nano-bubbles on the coal surface comprising:
  • a box body inside the box body is provided with a fermentation chamber for holding coal and bacterial liquid, so that the coal and bacterial liquid can be fermented in the fermentation chamber; above the box body is provided with a feeding port facing the fermentation chamber , the feeding port is correspondingly provided with a material cover;
  • a pressure adjustment mechanism acts on the fermentation chamber, and is used to adjust the pressure inside the fermentation chamber, so that the nano-bubbles generated on the coal surface are expanded and ruptured by negative pressure;
  • the pressure adjustment mechanism at least includes a piston plate and a piston chamber, the piston chamber is correspondingly connected to the fermentation chamber, and the piston plate performs piston movement in the piston chamber to change the pressure inside the fermentation chamber;
  • a bubble monitoring module the bubble monitoring module is facing the fermentation chamber, and is used for real-time monitoring of the dynamics of nano-bubbles on the coal surface;
  • the experimental device also includes a vacuum pump and a nitrogen bottle corresponding to the fermentation chamber;
  • the experimental device also includes a gas-liquid collection test system, the gas-liquid collection test system includes a gas-liquid analysis and detection device and a liquid collection tank that are connected through the first conduit, and the gas-liquid analysis and detection device is connected through the second conduit.
  • an exhaust valve is provided on the second conduit;
  • the liquid collection tank is connected to the lower edge of the fermentation chamber through a third conduit, and a drain valve and a peristaltic pump are arranged on the third conduit;
  • a filter membrane is provided between the third conduit and the fermentation chamber.
  • the present invention also provides an experimental method for increasing production of coalbed methane by reducing nano-bubbles on the coal surface
  • Step S1 after adding coal and bacterial liquid into the fermentation chamber, vacuumize the inside of the box, and after the vacuuming is completed, fill the inside of the box with nitrogen, so that the pressure in the box is the same as the atmospheric pressure;
  • Step S2 after fermenting for a certain period of time, the internal pressure of the fermentation chamber is regularly adjusted by a pressure regulating mechanism, so that the nano-bubbles generated on the coal surface are expanded and ruptured by negative pressure;
  • step S3 the nano-bubbles on the coal surface are dynamically monitored in real time, and the processes of nucleation, growth, merging and rupture of the nano-bubbles are recorded.
  • the invention generates negative pressure during the coal bio-fermentation process, promotes the expansion and rupture of nano-bubbles on the coal surface under negative pressure, and conducts real-time observation of nano-bubbles, and dynamically analyzes the nucleation, growth, merger, and rupture processes of nano-bubbles to evaluate Coal biogas production effect
  • Fig. 1 is a schematic structural diagram of an experimental device in a specific embodiment provided by the present invention.
  • Electromagnetic push rod 10, electric heating layer; 11, filter membrane; 12, gas-liquid analysis and detection device; 13, liquid collection tank; 14, nitrogen bottle; 15, vacuum pump; 16, computer; 17, roller; 18, first conduit; 19 , the second conduit; 20, the third conduit; 21, the peristaltic pump.
  • an experimental device for increasing production of coalbed methane that reduces nano-bubbles on the coal surface includes a box body 1, a pressure adjustment mechanism, and a bubble monitoring module 4, and the inside of the box body 1 is provided with a container for holding coal and bacterial liquid
  • the fermentation chamber is used to ferment the coal and bacteria liquid in the fermentation chamber to produce coalbed gas
  • the pressure regulating mechanism acts on the fermentation chamber to adjust the pressure inside the fermentation chamber, and can form a negative pressure in the fermentation chamber by adjusting, so that the coal surface
  • the generated nano-bubbles are expanded and ruptured by negative pressure
  • the bubble monitoring module 4 is facing the fermentation chamber, and is used to monitor the dynamics of nano-bubbles on the coal surface in real time, observe and record the nucleation, growth, merger, and rupture processes of nano-bubbles, and record nano-bubbles
  • the process from nucleation to rupture helps to further understand the limiting factors that hinder the production of coalbed methane, and provides a theoretical basis for finding solutions.
  • the pressure regulating mechanism at least includes a piston plate 2 and a piston cavity, the shape of the piston plate 2 is adapted to the cross section of the cavity of the piston cavity, and the piston plate 2 is slidingly sealed with the inner wall of the piston cavity.
  • the piston moves in the chamber, and the pressure inside the fermentation chamber is changed by the piston movement. With the movement of the piston plate 2, the pressure changes.
  • the piston chamber is connected to the fermentation chamber, so that the pressure of the fermentation chamber can be changed, and the nano bubbles on the coal surface are broken.
  • the piston cavity can be set outside the box body 1 or inside the box body 1 .
  • a partition 3 is provided inside the casing 1, and the partition 3 divides the inner chamber of the casing 1 into a piston chamber and a fermentation chamber, and the upper edge of the partition 3 and the inner wall of the casing 1 There is a ventilating gap between them, and the pressure of the fermentation chamber can be directly changed by the movement of the piston;
  • the piston plate 2 is parallel to the partition plate 3, a distance measuring sensor 8 is provided on the side of the piston plate 2 close to the partition plate 3, and an electromagnetic sensor is provided on the side of the piston plate 2 away from the partition plate 3.
  • the push rod 9, the end of the electromagnetic push rod 9 away from the partition 3 is connected to the inner wall of the box body 1 facing the partition 3, the electromagnetic push rod 9 and the distance measuring sensor 8 are connected to the controller correspondingly, after a certain period of fermentation , the electromagnetic push rod 9 drives the piston plate 2 away from the partition plate 3 to generate negative pressure and maintain it for a certain period of time.
  • the movement range of the piston plate 2 can be adjusted in real time according to the pressure at the fermentation chamber.
  • the controller is arranged on the outer wall of the box body 1, the connection line between the controller and the electromagnetic push rod 9 extends out of the box body 1, and the connection line is sealed and connected with the box body 1.
  • the controller is a computer 16.
  • the computer 16 can control the automatic movement of the piston plate.
  • the adjustment of the movement of the piston plate 2 is mainly related to the pressure of the fermentation chamber.
  • the required pressure range can be set, and the piston plate is controlled by the computer.
  • the pressure sensor in the fermentation chamber exceeds the set range
  • the piston plate 2 moves accordingly. Under normal circumstances, the pressure is too high.
  • the piston plate moves to the side away from the partition plate; the distance measuring sensor 8 is set to monitor the moving distance of the piston plate. , to ensure the accuracy of pressure regulation.
  • the side of the piston plate 2 close to the partition plate 3 is a rubber layer 7, the rubber layer 7 slides and seals with the inner wall of the box body 1, and the independence of the two sides of the piston plate 2 is guaranteed by the rubber layer 7 , so as to ensure that the piston movement produces a corresponding pressure change;
  • the side of the piston plate 2 away from the partition plate 3 is provided with a roller 17, so as to be supported on the inner wall of the box body 1 by the roller 17, and move along the direction of the piston plate 2 in the box body 1
  • the inner wall rolls, and the rubber layer 7 is prevented from being deformed by gravity and the inner wall of the box body 1 through the roller 17, while reducing friction to ensure the coaxiality of the piston plate 2 and the inner cavity of the box body 1.
  • the experimental device also includes a gas-liquid collection test system
  • the gas-liquid collection test system includes a gas-liquid analysis and detection device 12 and a liquid collection tank 13 that are connected through the first conduit 18, and the gas-liquid analysis and detection device 12 is connected to the upper edge of the fermentation chamber through the second conduit 19, and an exhaust valve is provided on the second conduit 19; after the fermentation is completed, the exhaust valve is opened, and the gas produced by fermentation passes through the second conduit 19 to the gas-liquid analysis and detection device 12 is detected to analyze the effect of coal biogas production;
  • the liquid collection tank 13 is connected to the lower edge of the fermentation chamber through the third conduit 20, and the third conduit 20 is provided with a drain valve and a peristaltic pump 21;
  • a filter membrane 11 is arranged between the 20 and the fermentation chamber, the liquid discharge valve is opened, and the liquid phase product produced by fermentation is directed to the liquid collection tank 13 through the third conduit 20, and is filtered through the filter membrane 11 before being discharged into the liquid collection tank 13 to realize Solid-liquid separation: a peristaltic pump 21
  • the specific names of the gas-liquid analysis and detection device 12 are: gas chromatography, liquid chromatography-mass spectrometry simple detection device, which identifies gas components and liquid phase small molecules, and analyzes gas components and liquid phase products. The law of change.
  • a feed opening facing the fermentation chamber is provided above the box body 1, and a feed cover is correspondingly provided at the feed opening. Open the material cover, add coal of different particle sizes and enriched bacterial solution into the fermentation chamber through the feeding port, and then install the material cover to seal the feeding port.
  • the experimental device also includes a vacuum pump 15 and nitrogen gas corresponding to the fermentation chamber. Bottle 14; vacuum pump 15 can vacuumize the inside of the box body 1 through the vacuum pumping pipeline. After the vacuum pumping is completed, close the vacuum pump 15 and open the gas outlet of the nitrogen bottle 14, and fill the inside of the box body 1 with nitrogen through the gas delivery pipeline until the biological
  • the pressure inside the gas production box 1 is one atmospheric pressure, so as to realize the construction of a relatively anaerobic environment.
  • the experimental device also includes a temperature sensor 6, a pressure sensor 5 and an electric heating layer 10, and the temperature sensor 6 is arranged in the casing 1.
  • the temperature sensor 6 is arranged in the casing 1 corresponding to the fermentation process.
  • the position of the chamber is used to detect the temperature inside the fermentation chamber;
  • the pressure sensor 5 is arranged at the position corresponding to the fermentation area in the box body 1, and is used to detect the pressure inside the fermentation chamber;
  • the electric heating layer 10 is arranged at the The inner wall is used to heat and connect the inside of the box body 1;
  • the electric heating layer 10 is an electric heating sheet, which is turned on for heating, and the temperature sensor 6 is used to monitor the internal temperature of the box body 1 in real time. 1.
  • the computer 16 controls the electric plus interlayer to close or reduce the power to cool down, maintain the inside of the box 1 at a constant temperature, and realize the control of the internal temperature of the biogas box 1; the electric heating sheet is adjusted by power
  • the device is correspondingly connected to the computer 16, the temperature in the casing 1 is displayed in real time by the computer 16, the temperature range is set, and the power of the electric heating sheet is controlled in real time by the computer 16 to ensure that the inside of the casing 1 maintains a constant temperature; a microscopic camera, a power regulator , the temperature sensor 6 and the pressure sensor 5 are connected to the computer 16 correspondingly.
  • the bubble monitoring module 4 is a microscopic camera, which can observe nanobubbles and record the nucleation, growth, merging, and rupture processes of nanobubbles in real time.
  • the image measured by the microscopic camera is transmitted to the computer 16 through a data line, and the pressure sensor 5 transmits the pressure.
  • the data is transmitted to the computer 16 in real time, and the pressure in the box 1 can be displayed in real time. Once the pressure is abnormal, the abnormal information will be fed back to the computer 16 to prompt the staff to suspend the experiment.
  • the present invention also provides an experimental method for increasing coalbed methane production by reducing nano-bubbles on the coal surface, including step S1, after adding coal and bacterial liquid into the fermentation chamber, vacuumize the inside of the box body 1, and After the vacuum is completed, nitrogen is filled inside the box body 1 so that the pressure inside the box body 1 is the same as the atmospheric pressure; specifically, the material cover is opened, and coal with different particle sizes and the enriched bacterial solution are added to the fermentation chamber through the feeding port. Then install the material cover to seal and block the feeding port.
  • the experimental device also includes a vacuum pump 15 and a nitrogen bottle 14 corresponding to the fermentation chamber; the vacuum pump 15 can vacuumize the inside of the box body 1 through the vacuum pipeline.
  • the inside of the box 1 is heated to make the coal and bacterial liquid ferment in the fermentation chamber, and the internal temperature of the box 1 is monitored in real time; the temperature sensor 6 is used to monitor the temperature inside the box 1 in real time. 1.
  • control the power of the electric heating plate to reduce or turn off to cool down, maintain the inside of the cabinet 1 at a constant temperature, and realize the control of the internal temperature of the cabinet 1.
  • Step S2 after fermenting for a certain period of time, the internal pressure of the fermentation chamber is regularly adjusted by the pressure regulating mechanism, so that the nano-bubbles generated on the coal surface are expanded and ruptured by negative pressure; after 3 days of fermentation, the electromagnetic push rod 9 is controlled by the computer 16 Start to work, the electromagnetic push rod 9 drives the piston plate 2 to move regularly in the box body 1, the specific piston plate 2 is facing the partition plate 3, and is close to or away from the partition plate 3, so that the gap between the partition plate 3 and the piston plate 2 The size of the space, the negative pressure generated by the piston plate 2 away from the partition 3, the nano-bubbles on the coal surface will burst and dissolve, thereby eliminating the influence of the nano-bubbles on the growth of bacteria, and improving the effect of coal fermentation biological gas production; the duration of negative pressure Control the movement law and speed of the piston plate 2, calculate and measure the moving distance and speed of the piston plate 2 through the infrared ranging sensor 8, so as to accurately control the movement of the piston plate 2, and the partition plate 3 can block the movement
  • step S3 the nano-bubbles on the coal surface are dynamically monitored in real time, and the processes of nucleation, growth, merging and rupture of the nano-bubbles are recorded.
  • the microscopic camera is always on. The microscopic camera is used to observe the visualization process of the nanobubbles, and the imaging technology is used to analyze the nucleation, growth, merger, and rupture of the nanobubbles.
  • the image data is transmitted to the computer 16 via a cable.
  • the gas and liquid products produced by the fermentation are discharged for gas and liquid analysis and detection.
  • the exhaust valve is opened, and the gas produced by the fermentation is sent to the gas-liquid analysis and detection device 12 for detection through the second conduit 19, so as to analyze the effect of coal biological gas production;
  • the three conduits 20 are discharged into the liquid collection tank 13, the bottom of the fermentation chamber is provided with a liquid outlet corresponding to the third conduit 20, and the liquid outlet is provided with a filter membrane 11 for filtration to achieve solid-liquid separation; open the liquid drain valve to start peristalsis Pump 21, peristaltic pump 21 extracts the liquid in the fermentation chamber through the third conduit 20 and collects it in the liquid collection tank 13, and the liquid in the liquid collection tank 13 flows into the gas-liquid analysis and detection device 12 through the first conduit 18 for detection, To evaluate the coal degradation effect. It can be understood that, the above description is only exemplary, and this embodiment of the present application does not limit it.

Abstract

一种降低煤表面纳米气泡的煤层气增产试验装置,包括:箱体(1)内部设有用于盛放煤和菌液的发酵腔,以使煤和菌液在发酵腔内发酵;压强调节机构作用于发酵腔,用于调节发酵腔内部的压强,使煤表面所产生的纳米气泡受负压膨胀破裂;气泡监测模块(4)正对发酵腔,用于实时监测煤表面纳米气泡的动态。该装置在煤生物发酵过程产生负压,促进煤表面纳米气泡受负压膨胀破裂,并对纳米气泡进行实时观测,动态分析纳米气泡的成核、生长、合并、破裂过程,以评价煤生物产气效果。

Description

降低煤表面纳米气泡的煤层气增产实验装置及方法 技术领域
本发明属于煤层气增产实验的技术领域,具体涉及一种降低煤表面纳米气泡的煤层气增产实验装置及方法。
背景技术
煤层气属于非常规天然气,可作为新型清洁的能源,煤层气存在潜在的经济效益和广阔的发展前景,对煤层气的开发能够减灾和降低温室效应等作用。
在众多煤层气增产技术中,微生物增产煤层气可通过添加营养物质、利用碱水解和木质酶前处理、化学、生物和物理预处理等方法提高煤的生物甲烷产量,微生物增产煤层气过程中,产甲烷菌产生的甲烷气体会在细胞膜表面富集大量的“纳米气泡”,这层纳米气泡稳定性极高,很难用温度、压力、浓度等宏观调控手段脱除,“纳米气泡”的存在会抑制细胞自身养料的供给,不利于其生存,导致“底物难进,产物难出”,造成速率低下。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本发明的目的是克服上述现有技术中的不足,提供一种降低煤表面纳米气泡提高生物产气实验装置。
为了实现上述目的,本发明提供如下技术方案:
一种降低煤表面纳米气泡的煤层气增产实验装置,所述实验装置包括:
箱体,所述箱体内部设有用于盛放煤和菌液的发酵腔,以使煤和菌液在发酵腔内发酵;在所述箱体上方设有正对所述发酵腔的投料口,所述投料口处对应设置有料盖;
压强调节机构,所述压强调节机构作用于所述发酵腔,用于调节所述发酵腔内部的压强,使煤表面所产生的纳米气泡受负压膨胀破裂;所述压强调节机构至少包括活塞板和活塞腔,所述活塞腔对应连通所述发酵腔,所述活塞板在所述活塞腔内进行活塞运动,以改变所述发酵腔内部的压强;
气泡监测模块,所述气泡监测模块正对所述发酵腔,用于实时监测煤表面纳米气泡的动态;
所述实验装置还包括对应所述发酵腔的真空泵和氮气瓶;
所述实验装置还包括气液收集测试系统,所述气液收集测试系统包括通过第一导管对应连通的气液分析检测装置和液体收集罐,所述气液分析检测装置通过第二导管连接在所述发酵腔的上沿,在所述第二导管上设有排气阀;
所述液体收集罐通过第三导管连接在所述发酵腔的下沿,在所述第三导管上设有排液阀和蠕动泵;
在所述第三导管和所述发酵腔之间设有滤膜。
本发明还提供一种降低煤表面纳米气泡的煤层气增产实验方法,
步骤S1,将煤和菌液加入发酵腔后,对箱体内部抽真空,抽真空完成后,向箱体内部充氮气,使箱体内压强与大气压相同;
对箱体内部进行加热,使煤和菌液在发酵腔内发酵,并对箱体的内部温度进行实时监测;
步骤S2,发酵一定时间后,通过压强调节机构对所述发酵腔的内部压强进行规律性调节,使煤表面所产生的纳米气泡受负压膨胀破裂;
步骤S3,对煤表面的纳米气泡进行实时动态监测,记录纳米气泡的成核、生长、合并、破裂过程。
有益效果:本发明在煤生物发酵过程产生负压,促进煤表面纳米气泡受负压膨胀破裂,并对纳米气泡进行实时观测,动态分析纳米气泡的成核、生长、合并、破裂过程,以评价煤生物产气效果
附图说明
图1为本发明所提供具体实施例中实验装置的结构简图。
图中:1、箱体;2、活塞板;3、隔板;4、气泡监测模块;5、压强传感器;6、温度传感器;7、橡胶层;8、测距传感器;9、电磁推杆;10、电加热层;11、滤膜;12、气液分析检测装置;13、液体收集罐;14、氮气瓶;15、真空泵;16、计算机;17、滚轮;18、第一导管;19、第二导管;20、第三导管;21、蠕动泵。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
如图1所示,一种降低煤表面纳米气泡的煤层气增产实验装置,实验装置包括箱体1、压强调节机构、气泡监测模块4,箱体1内部设有用于盛放煤和菌液的发酵腔,以使煤和菌液在发酵腔内发酵,从而产生煤层气;压强调节机构作用于发酵腔,能够调节发酵腔内部的压强,可通过调节在发酵腔内形成负压,使煤表面所产生的纳米气泡受负压膨胀破裂;气泡监测模块4正对发酵腔,用于实时监测煤表面的纳米气泡动态,观察并记录纳米气泡的成核、生长、合并、破裂过程,记录纳米气泡的成核到破裂过程有助于进一步认识阻碍煤层气产出的限制因素,对于寻找解决措施提供了理论依据,以往增产煤层气措施中,都是从发酵底物、菌群、预处理、外加材料等方面入手,忽视了气体在产出过程中受到的限制,通过对纳米气泡进行动态观察能够发现、认识并消除纳米气泡是促进煤层气产出的新技术。
在另一可选实施例中,压强调节机构至少包括活塞板2和活塞腔,活塞板2形状与活塞腔内腔截面相适配,活塞板2与活塞腔内壁滑动密封,活塞板2在活塞腔内进行活塞运动,通过活塞运动改变发酵腔内部的压强,随着活塞板2的移动产生压强变化,活塞腔连通着发酵腔,从而能够改变发酵腔的压强,使煤表面的纳米气泡破裂.
在本实施例中,活塞腔可以设置在箱体1外部,或者设置于箱体1内部。
在另一可选实施例中,在箱体1的内部设有隔板3,隔板3将箱体1的内腔分隔为活塞腔和发酵腔,隔板3上沿与箱体1内壁之间具有透气间隙,通过活塞运动可直接改变发酵腔的压强;在本实施例中,箱体1为封闭方箱, 对应的,活塞板2为对应箱体1内壁的方形。
在另一可选实施例中,活塞板2平行于隔板3,在活塞板2靠近隔板3的一侧设有测距传感器8,在活塞板2远离隔板3的一侧设有电磁推杆9,电磁推杆9远离隔板3的一端连接箱体1正对隔板3一侧的内壁,该电磁推杆9和测距传感器8对应连接在控制器上,在发酵一定时间后,电磁推杆9驱动活塞板2远离隔板3产生负压,并保持一定时间,观测过程中能够根据发酵腔处压强实时进行活塞板2运动幅度的调节,活塞板2运动幅度越大,腔体内压强变化幅度越大;控制器设置于箱体1外壁,控制器与电磁推杆9之间的连接线伸出箱体1,连接线与箱体1之间密封连接,在本实施例中,控制器为计算机16。
具体地,计算机16可以控制活塞板自动移动,活塞板2移动调节主要与发酵腔压强相关,可以设定所需的压强范围,通过计算机控制活塞板,只要发酵腔内的压强传感器超过设定范围活塞板2就做相应移动,常规情况下会出现压强偏大的情况,当压强偏大时,活塞板向远离隔板一侧移动;设置测距传感器8,能够对活塞板的移动距离进行监测,保证压强调节的精度。
在另一可选实施例中,活塞板2靠近隔板3的一侧为橡胶层7,橡胶层7与箱体1的内壁滑动密封,通过该橡胶层7保证活塞板2两侧的独立性,从而保证活塞运动产生相应的压强变化;活塞板2远离隔板3一侧设有滚轮17,以通过滚轮17支撑在箱体1的内壁上,并随沿活塞板2移动方向在箱体1内壁滚动,通过滚轮17避免橡胶层7受重力与箱体1内壁挤压发生形变,同时降低摩擦,保证活塞板2与箱体1内腔的同轴度。
在另一可选实施例中,实验装置还包括气液收集测试系统,气液收集测试系统包括通过第一导管18对应连通的气液分析检测装置12和液体收集罐13,气液分析检测装置12通过第二导管19连接在发酵腔的上沿,在第二导管19上设有排气阀;发酵完成后,打开排气阀,发酵产生的气体通过第二导管19向气液分析检测装置12中进行检测,以分析煤生物产气效果;液体收集罐13通过第三导管20连接在发酵腔的下沿,在第三导管20上设有排液阀和蠕动泵21;在第三导管20和发酵腔之间设有滤膜11,打开排液阀,将发酵产生的液相产物通过第三导管20导向液体收集罐13,排入液体收集罐13之前通过滤膜11进行过滤,实现固液分离;设置蠕动泵21,蠕动泵21将液 相产物排向液体收集罐13中,液体收集罐13中的液体通过第一导管18导入气液分析检测装置12中进行检测,以评价煤降解效果。
在本实施例中,气液分析检测装置12的具体名称为:气相色谱、液相色谱-质谱简检测装置,对气体成分、液相小分子物质进行鉴定,分析气体组分与液相产物的变化规律。
在另一可选实施例中,在箱体1上方设有正对发酵腔的投料口,投料口处对应设置有料盖。打开料盖,通过投料口将不同粒径的煤和富集好的菌液加入到发酵腔,再安装好料盖对投料口进行密封封堵,实验装置还包括对应发酵腔的真空泵15和氮气瓶14;真空泵15可以通过抽真空管路对箱体1内部进行抽真空,抽真空完成后,关闭真空泵15并打开氮气瓶14的出气口,通过气体输送管路向箱体1内部充氮气,直至生物产气箱体1内压力为一个大气压,实现相对的厌氧环境的构建。
在另一可选实施例中,实验装置还包括温度传感器6、压强传感器5和电加热层10,温度传感器6设置在箱体1内,优选地,温度传感器6设置在箱体1内对应发酵腔的位置,以对发酵腔内部的温度进行检测;压强传感器5设置在箱体1内对应发酵区的位置,用于对发酵腔内部的压强进行检测;电加热层10设置于箱体1的内壁,用于对箱体1的内部进行加热连接;电加热层10为电加热片,打开电加热片进行加热,通过温度传感器6对箱体1内部温度进行实时监测,一旦生物产气箱体1内部温度超出设定的温度,计算机16控制电加夹层关闭或者降低功率进行降温,维持箱体1内部处于恒温状态,实现对生物产气箱体1内部温度的控制;电加热片通过功率调节器对应连接在计算机16上,通过计算机16实时显示箱体1内的温度,设定温度范围,通过计算机16实时控制电加热片功率,保证箱体1内部保持恒温;显微摄像头、功率调节器、温度传感器6和压强传感器5对应连接在计算机16上。气泡监测模块4为显微摄像头,能够进行纳米气泡观测,实时记录纳米气泡的成核、生长、合并、破裂过程,显微摄像头所测的影像通过数据线传输到计算机16,压强传感器5将压强数据实时传输至计算机16,能够对箱体1内压强进行实时显示,一旦压力出现异常,将异常信息反馈到计算机16,提示工作人员暂停实验。
在另一可选实施例中,本发明还提供一种降低煤表面纳米气泡的煤层气 增产实验方法,包括步骤S1,将煤和菌液加入发酵腔后,对箱体1内部抽真空,抽真空完成后,向箱体1内部充氮气,使箱体1内压强与大气压相同;具体地,打开料盖,通过投料口将不同粒径的煤和富集好的菌液加入到发酵腔,再安装好料盖对投料口进行密封封堵,实验装置还包括对应发酵腔的真空泵15和氮气瓶14;真空泵15可以通过抽真空管路对箱体1内部进行抽真空,抽真空完成后,关闭真空泵15并打开氮气瓶14的出气口,通过气体输送管路向箱体1内部充氮气,直至生物产气箱体1内压力为一个大气压,实现相对的厌氧环境的构建;通过电加热片对箱体1内部进行加热,使煤和菌液在发酵腔内发酵,并对箱体1的内部温度进行实时监测;通过温度传感器6对箱体1内部温度进行实时监测,一旦生物产气箱体1内部温度超出设定的温度,控制电加热片功率降低或者关闭进行冷却降温,维持箱体1内部处于恒温状态,实现对箱体1内部温度的控制。
步骤S2,发酵一定时间后,通过压强调节机构对发酵腔的内部压强进行规律性调节,使煤表面所产生的纳米气泡受负压膨胀破裂;具体发酵3天后,通过计算机16控制电磁推杆9开始工作,电磁推杆9带动活塞板2在箱体1的有规律地移动,具体的活塞板2正对隔板3,并靠近或者远离隔板3,从而隔板3与活塞板2之间空间的大小,活塞板2远离隔板3产生负压,则煤表面的纳米气泡便会破裂并溶解,进而消除纳米气泡对细菌生长的影响,提高煤发酵生物产气效果;负压的持续时间通过活塞板2的移动规律及速度进行控制,通过红外测距传感器8计算测活塞板2的移动距离和速度,以便精确控制活塞板2的移动,隔板3可以阻断煤、菌液的移动,使煤、菌液处于一个相对稳定的区域,从而以便有效观测纳米气泡,通过压强传感器5进行发酵区压强监测,一旦压力出现异常,将异常信息反馈到计算机16,提示工作人员暂停实验。
步骤S3,对煤表面的纳米气泡进行实时动态监测,记录纳米气泡的成核、生长、合并、破裂过程。煤生物发酵过程中,显微摄像头始终处于打开状态,通过显微摄像头对纳米气泡的可视化过程进行观测,利用成像技术分析纳米气泡的成核、生长、合并、破裂过程,显微摄像头所测的影像数据线传输到 计算机16。记录纳米气泡的成核过程有助于进一步认识阻碍煤层气产出的限制因素,对于寻找解决措施提供了理论依据;其次以往增产煤层气措施中,都是从发酵底物、菌群、预处理、外加材料等方面入手,忽视了气体在产出过程中受到的限制,通过对气泡进行动态观察能够发现、认识并消除纳米气泡是促进煤层气产出的新技术。
在另一可选实施例中,煤生物发酵完成后,将发酵所产生的气、液产物排出,以进行气、液分析检测。煤生物发酵完成后,打开排气阀,发酵产生的气体通过第二导管19输送到气液分析检测装置12中进行检测,以分析煤生物产气效果;煤生物发酵产生的液相产物通过第三导管20排出排向液体收集罐13中,发酵腔底部设有对应第三导管20的出液口,出液口设置滤膜11进行过滤,实现固液分离;打开液体排液阀,启动蠕动泵21,蠕动泵21将发酵腔的液体通过第三导管20抽出并收集到液体收集罐13中,液体收集罐13中的液体通过第一导管18流进气液分析检测装置12中进行检测,以评价煤降解效果。可以理解的是,以上描述仅为示例性的,本申请实施例对此并不进行限定。

Claims (7)

  1. 一种降低煤表面纳米气泡的煤层气增产实验装置,其特征在于,所述实验装置包括:
    箱体,所述箱体内部设有用于盛放煤和菌液的发酵腔,以使煤和菌液在发酵腔内发酵;在所述箱体上方设有正对所述发酵腔的投料口,所述投料口处对应设置有料盖;
    压强调节机构,所述压强调节机构作用于所述发酵腔,用于调节所述发酵腔内部的压强,使煤表面所产生的纳米气泡受负压膨胀破裂;所述压强调节机构至少包括活塞板和活塞腔,所述活塞腔对应连通所述发酵腔,所述活塞板在所述活塞腔内进行活塞运动,以改变所述发酵腔内部的压强;
    气泡监测模块,所述气泡监测模块正对所述发酵腔,用于实时监测煤表面纳米气泡的动态;
    所述实验装置还包括对应所述发酵腔的真空泵和氮气瓶;
    所述实验装置还包括气液收集测试系统,所述气液收集测试系统包括通过第一导管对应连通的气液分析检测装置和液体收集罐,所述气液分析检测装置通过第二导管连接在所述发酵腔的上沿,在所述第二导管上设有排气阀;
    所述液体收集罐通过第三导管连接在所述发酵腔的下沿,在所述第三导管上设有排液阀和蠕动泵;
    在所述第三导管和所述发酵腔之间设有滤膜。
  2. 根据权利要求1所述的降低煤表面纳米气泡的煤层气增产实验装置,其特征在于,所述箱体为封闭方箱,在所述箱体的内部设有隔板,所述隔板将所述箱体的内腔分隔为所述活塞腔和所述发酵腔,所述隔板上沿与所述箱体内壁之间具有透气间隙。
  3. 根据权利要求2所述的降低煤表面纳米气泡的煤层气增产实验装置,其特征在于,所述活塞板平行于所述隔板,在所述活塞板靠近所述隔板的一侧设有测距传感器,在所述活塞板远离所述隔板的一侧设有电磁推杆,所述电磁推杆远离所述隔板的一端连接所述箱体正对所述隔板一侧的内壁。
  4. 根据权利要求3所述的降低煤表面纳米气泡的煤层气增产实验装置,其特征在于,所述活塞板靠近所述隔板的一侧为橡胶层,橡胶层与所述箱体的内壁滑动密封;所述活塞板远离隔板一侧设有滚轮,以通过所述滚轮支撑在所述箱体的内壁上。
  5. 根据权利要求1所述的降低煤表面纳米气泡的煤层气增产实验装置,其特征在于,所述实验装置还包括:
    温度传感器,所述温度传感器用于对所述发酵腔内部的温度进行检测;
    压强传感器,所述压强传感器用于对所述发酵腔内部的压强进行检测;
    电加热层,所述电加热层设置于所述箱体的内壁,用于对所述箱体的内部进行加热连接;所述气泡监测模块为显微摄像头,所述显微摄像头、电加热层、温度传感器和压强传感器对应连接在计算机上。
  6. 一种降低煤表面纳米气泡的煤层气增产实验方法,其特征在于,
    步骤S1,将煤和菌液加入发酵腔后,对箱体内部抽真空,抽真空完成后,向箱体内部充氮气,使箱体内压强与大气压相同;
    对箱体内部进行加热,使煤和菌液在发酵腔内发酵,并对箱体的内部温度进行实时监测;
    步骤S2,发酵一定时间后,通过压强调节机构对所述发酵腔的内部压强进行规律性调节,使煤表面所产生的纳米气泡受负压膨胀破裂;
    步骤S3,对煤表面的纳米气泡进行实时动态监测,记录纳米气泡的成核、生长、合并、破裂过程。
  7. 根据权利要求6所述降低煤表面纳米气泡的煤层气增产实验方法,其特征在于,
    煤生物发酵完成后,将发酵所产生的气、液产物排出,以进行气、液分析检测。
PCT/CN2022/100603 2021-10-21 2022-06-23 降低煤表面纳米气泡的煤层气增产实验装置及方法 WO2023016099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE2350272A SE2350272A1 (en) 2021-10-21 2022-06-23 Experimental device and method for increasing production of coalbed methane by reducing the nanobubbles on the coal surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111228397.6A CN113881559A (zh) 2021-10-21 2021-10-21 降低煤表面纳米气泡提高生物产气实验装置及其工作方法
CN202210501674.4A CN114836315A (zh) 2021-10-21 2022-05-09 降低煤表面纳米气泡的煤层气增产实验装置及方法
CN202210501674.4 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023016099A1 true WO2023016099A1 (zh) 2023-02-16

Family

ID=79004235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100603 WO2023016099A1 (zh) 2021-10-21 2022-06-23 降低煤表面纳米气泡的煤层气增产实验装置及方法

Country Status (3)

Country Link
CN (2) CN113881559A (zh)
SE (1) SE2350272A1 (zh)
WO (1) WO2023016099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631918A (zh) * 2023-07-25 2023-08-22 深圳市鲁光电子科技有限公司 一种氮化镓功率器件的封装设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881559A (zh) * 2021-10-21 2022-01-04 河南理工大学 降低煤表面纳米气泡提高生物产气实验装置及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807002A (zh) * 2016-04-01 2016-07-27 河南理工大学 产甲烷菌降解煤层残留胍胶兼具产气的实验装置及方法
CN205538905U (zh) * 2016-04-01 2016-08-31 河南理工大学 产甲烷菌降解煤层残留胍胶兼具产气的实验装置
CN107358858A (zh) * 2017-07-18 2017-11-17 山西蓝焰煤层气集团有限责任公司 煤层生物气成藏过程模拟装置及实验方法
CN113652335A (zh) * 2021-09-16 2021-11-16 河南理工大学 基于原位储层条件煤厌氧发酵制取生物甲烷的方法
WO2021228428A1 (de) * 2020-05-09 2021-11-18 Sven Nefigmann Kohlendioxidneutrale biokonverteranlagen zur herstellung von biogas mit wasserstoff und aktivierten kohlemassen in der gärflüssigkeit der biokonverter
CN113881559A (zh) * 2021-10-21 2022-01-04 河南理工大学 降低煤表面纳米气泡提高生物产气实验装置及其工作方法
CN215828796U (zh) * 2021-09-16 2022-02-15 河南理工大学 基于原位储层条件煤厌氧发酵制取生物甲烷的实验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807002A (zh) * 2016-04-01 2016-07-27 河南理工大学 产甲烷菌降解煤层残留胍胶兼具产气的实验装置及方法
CN205538905U (zh) * 2016-04-01 2016-08-31 河南理工大学 产甲烷菌降解煤层残留胍胶兼具产气的实验装置
CN107358858A (zh) * 2017-07-18 2017-11-17 山西蓝焰煤层气集团有限责任公司 煤层生物气成藏过程模拟装置及实验方法
WO2021228428A1 (de) * 2020-05-09 2021-11-18 Sven Nefigmann Kohlendioxidneutrale biokonverteranlagen zur herstellung von biogas mit wasserstoff und aktivierten kohlemassen in der gärflüssigkeit der biokonverter
CN113652335A (zh) * 2021-09-16 2021-11-16 河南理工大学 基于原位储层条件煤厌氧发酵制取生物甲烷的方法
CN215828796U (zh) * 2021-09-16 2022-02-15 河南理工大学 基于原位储层条件煤厌氧发酵制取生物甲烷的实验装置
CN113881559A (zh) * 2021-10-21 2022-01-04 河南理工大学 降低煤表面纳米气泡提高生物产气实验装置及其工作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116631918A (zh) * 2023-07-25 2023-08-22 深圳市鲁光电子科技有限公司 一种氮化镓功率器件的封装设备
CN116631918B (zh) * 2023-07-25 2024-01-26 深圳市鲁光电子科技有限公司 一种氮化镓功率器件的封装设备

Also Published As

Publication number Publication date
SE2350272A1 (en) 2023-03-13
CN113881559A (zh) 2022-01-04
CN114836315A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023016099A1 (zh) 降低煤表面纳米气泡的煤层气增产实验装置及方法
CN104893974A (zh) 可在线动态实时监测的便捷式干细胞扩增培养设备
WO2019206207A1 (zh) 活性通气组件以及活性通气式生物反应器和细胞培养器
CN108681297A (zh) 一种生物发酵过程控制装置
CN102676386B (zh) 一种超声波低频-高频耦合式雾化生物反应装置
CN108138111B (zh) 监测生物反应器中的状态偏差
CN203530286U (zh) 实验室用白酒固态发酵装置
US20160083683A1 (en) Anaerobic Digester System
CN103728396B (zh) 一种测定污泥比产甲烷活性的方法
CN110656044A (zh) 新型智能微生物发酵装置
CN204135042U (zh) 一种科研教学用的小型厌氧/好氧一体式发酵罐
CN201495225U (zh) 一种微生物在线观测装置
JP3747923B2 (ja) メタン発酵処理方法及び装置
CN105414144A (zh) 一种科研教学用的小型厌氧/好氧一体式发酵罐
CN205152237U (zh) 一种微生物发酵装置
CN209741150U (zh) 一种高效便捷补料的发酵罐
CN210560383U (zh) 一种厌氧菌的培养装置
CN210458198U (zh) 一种实验室用微好氧微生物培养装置
CN105273994A (zh) 一种合成气厌氧发酵用塔式反应器
CN203947097U (zh) 微生物培养反应系统
CN208038451U (zh) 一种负压厌氧菌株发酵装置
CN1316005C (zh) 细胞体外生长代谢状况检测系统
CN205313568U (zh) 一种新型发酵装置
Feng et al. The effect of magnesium ions on the hydrogen-producing bacteria in the water during the ecological restoration process
CN103103116B (zh) 内带高压储气室的沼气池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855084

Country of ref document: EP

Kind code of ref document: A1