WO2023013584A1 - Air-conditioning indoor unit and air conditioner - Google Patents

Air-conditioning indoor unit and air conditioner Download PDF

Info

Publication number
WO2023013584A1
WO2023013584A1 PCT/JP2022/029501 JP2022029501W WO2023013584A1 WO 2023013584 A1 WO2023013584 A1 WO 2023013584A1 JP 2022029501 W JP2022029501 W JP 2022029501W WO 2023013584 A1 WO2023013584 A1 WO 2023013584A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
unit
humidification
indoor unit
electrostatic atomization
Prior art date
Application number
PCT/JP2022/029501
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 松本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280054129.3A priority Critical patent/CN117836568A/en
Publication of WO2023013584A1 publication Critical patent/WO2023013584A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • F24F6/10Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements heated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation

Definitions

  • an air conditioning indoor unit that performs indoor air conditioning and an air conditioner equipped with an air conditioning indoor unit.
  • Air conditioning indoor units equipped with electrostatic atomization units have been known for some time.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-20578
  • an electrostatic atomization unit of an air conditioner indoor unit uses moisture in the air to generate liquid particles containing ions by electric discharge. do.
  • Air conditioning indoor units equipped with electrostatic atomization units have the problem of improving the generation efficiency of liquid particles in the electrostatic atomization unit.
  • the air conditioning indoor unit of the first aspect is an air conditioning indoor unit that performs indoor air conditioning, and includes a casing, a humidification duct, an electrostatic atomization unit, and a control device.
  • the humidification duct is arranged in the casing and has an outlet for humidifying outside air, which is outdoor air, and supplying it to the room.
  • the electrostatic atomization unit is located within the casing and emits liquid particles containing ions by electrical discharge.
  • a controller controls the electrostatic atomization unit.
  • the control device operates the electrostatic atomization unit while the outside air is being supplied to the room through the humidification duct or within a predetermined time after the supply of the outside air to the room is finished. .
  • the moisture contained in the outside air is used to easily cause condensation in the electrostatic atomization unit, and the generation efficiency of water particles containing ions is improved.
  • the humidification operation when the outside air is supplied to the room through the humidification duct, and by operating the electrostatic atomization unit within a predetermined time after the supply of the outside air is completed, the outside air is further humidified.
  • an electrostatic atomization unit By incorporating an electrostatic atomization unit, it is possible to increase the efficiency of generating water particles even when the humidity of the outside air is low.
  • the air conditioning indoor unit of the second aspect is the air conditioning indoor unit of the first aspect, and the electrostatic atomization unit is arranged within 100 mm from the outlet of the air supply member.
  • air containing a large amount of outside air blown out from the outlet of the air supply member can be guided to the electrostatic atomization unit, making it easier for condensation to occur in the electrostatic atomization unit.
  • the air conditioning indoor unit of the third aspect is the air conditioning indoor unit of the first aspect or the second aspect, and is provided with a heat exchanger that is arranged in the casing and performs heat exchange between the indoor air, the outside air, and the heat medium.
  • the electrostatic atomization unit is arranged upstream of the heat exchanger.
  • the outside air before passing through the heat exchanger can be taken into the electrostatic atomization unit, and the absolute humidity of the air taken into the electrostatic atomization unit can be prevented from decreasing. can.
  • An air conditioning indoor unit is the air conditioning indoor unit according to any one of the first aspect to the third aspect, and is a heat exchanger arranged in a casing for exchanging heat between the indoor air, the outside air, and the heat medium. and the humidification duct is arranged with its outlet facing the heat exchanger.
  • the air conditioning indoor unit according to the fifth aspect is the air conditioning indoor unit according to any one of the first aspect to the fourth aspect, and includes an air supply filter through which outside air taken into the electrostatic atomization unit passes.
  • the air supply filter can prevent fine particles such as pollen from being mixed with the outside air and taken into the electrostatic atomization unit. can be suppressed.
  • the air conditioning indoor unit of the sixth aspect is the air conditioning indoor unit of the fifth aspect, and the electrostatic atomization unit is arranged downstream of the outlet of the air supply member.
  • the air supply filter is arranged near the outlet of the air supply member.
  • the air supply filter can be downsized by arranging the air supply filter in the vicinity of the outlet of the air supply member, and the air supply filter does not reduce the efficiency of air conditioning. can be prevented.
  • An air conditioner according to a seventh aspect is the air conditioner indoor unit according to any one of the first aspect to the sixth aspect, and is connected to the air conditioner indoor unit to form a refrigerant circuit that implements a vapor compression refrigeration cycle together with the air conditioner indoor unit. and a humidifier that is integrated with the air conditioner outdoor unit and humidifies the outside air supplied by the humidification duct.
  • An air conditioner includes the air conditioner indoor unit according to any one of the first aspect to the sixth aspect, and a humidifier that humidifies the outside air supplied by the humidification duct, wherein the humidifier contains moisture in the outside air. and a heater for desorbing moisture from the adsorption rotor. The adsorption rotor and the heater add moisture to the outside air supplied through the humidification duct.
  • FIG. 2 is a diagram for explaining a refrigerant circuit and an air flow path included in the air conditioning system of FIG. 1; (a) It is the partially broken plan view which fracture
  • FIG. 3 is a schematic cross-sectional view of the air conditioner indoor unit for explaining the arrangement position of the electrostatic atomization unit according to the embodiment; It is a front view which shows the external appearance of a humidification duct. It is a side view which shows the external appearance of a humidification duct. It is a rear view which shows the external appearance of a humidification duct.
  • FIG. 8 is a cross-sectional view of the humidifying duct cut along line II of FIG. 7; It is a schematic diagram which shows the outline
  • FIG. 2 is a schematic cross-sectional view showing the outline of the configuration of the electrostatic atomization unit; 4 is a flowchart for explaining control during humidification operation of the electrostatic atomization unit according to the embodiment. 4 is a flowchart for explaining control during ventilation operation of the electrostatic atomization unit according to the embodiment.
  • FIG. 7 is a schematic cross-sectional view of an air conditioner indoor unit for explaining the arrangement position of an electrostatic atomization unit according to Modification A;
  • FIG. 11 is a perspective view showing a humidifying duct and an electrostatic atomizer according to modification B;
  • FIG. 10 is a cross-sectional view showing a humidifying duct and an electrostatic atomization unit according to modification C;
  • FIG. 11 is a perspective view showing a humidifying duct and an electrostatic atomization unit according to modification C;
  • FIG. 7 is a schematic cross-sectional view of an air conditioner indoor unit for explaining the arrangement position of an electrostatic atomization unit according to Modification E.
  • FIG. 9 is a flowchart for explaining control of an electrostatic atomization unit according to Modification F.
  • FIG. 10 is a flowchart for explaining control of the electrostatic atomization unit according to Modification G.
  • the air conditioning system 1 includes an air conditioning indoor unit 2 , an air conditioning outdoor unit 4 and a humidifier 6 .
  • the expressions "top”, “bottom”, “front”, and “back” shown in FIGS. 1, 2 and 6 are used to describe the direction of each arrow.
  • thick arrows indicate the flow of air.
  • the operation modes of the air conditioning system 1 include, for example, a cooling operation, a heating operation, a dehumidifying operation, a humidifying operation, an air blowing operation, a ventilation operation, and an air cleaning operation.
  • the air conditioning system 1 includes a controller 8 that controls the air conditioning indoor unit 2 and the humidifier 6, as shown in FIG.
  • the air conditioning indoor unit 2 is installed in the room RM (see FIG. 1) and performs air conditioning in the room RM (indoor). As shown in FIGS. 1 and 4 , the air conditioning indoor unit 2 is included in the air conditioner 10 of the air conditioning system 1 .
  • the air conditioner 10 includes an air conditioner indoor unit 2 and an air conditioner outdoor unit 4 .
  • the air conditioner indoor unit 2 and the air conditioner outdoor unit 4 are connected by refrigerant communication pipes 11 and 12 .
  • the air conditioning indoor unit 2 , the air conditioning outdoor unit 4 , and the refrigerant communication pipes 11 and 12 form a refrigerant circuit 13 .
  • the air conditioning system 1 can perform, for example, a cooling operation, a heating operation, a dehumidification operation, a ventilation operation, and an air cleaning operation by using the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 (air conditioner 10) without using the humidifier 6. can drive.
  • the refrigerant circuit 13 for example, the vapor compression refrigeration cycle is repeated during cooling operation, heating operation, and dehumidification operation.
  • the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 are controlled by the control unit 8 .
  • the air conditioning indoor unit 2 is attached to the wall WL of the room RM.
  • the type of the air conditioning indoor unit 2 is not limited to the type installed on the wall WL of the room RM.
  • the air conditioner indoor unit 2 may be installed, for example, on the ceiling CI or the floor FL.
  • the air conditioner indoor unit 2 has a heat exchanger 21 as shown in FIG.
  • the air conditioner indoor unit 2 performs heat exchange of the air by passing the air through the heat exchanger 21 .
  • the heat exchanger 21 has a plurality of heat transfer fins 21a and a plurality of heat transfer tubes 21b. In the heat exchanger 21, air passes between the heat transfer fins 21a. During heat exchange, the air passes through the heat transfer fins 21a and the refrigerant flows through the heat transfer tubes 21b.
  • the refrigerant flowing through the heat transfer tubes 21b is a kind of heat medium.
  • the heat transfer tube 21b is thermally connected to the plurality of heat transfer fins 21a so as to be folded back a plurality of times and penetrate each heat transfer fin 21a a plurality of times.
  • the air conditioning system 1 can perform, for example, humidification operation and ventilation operation.
  • the air-conditioning indoor unit 2 of the air-conditioning system 1 configured as described above can perform operations corresponding to, for example, cooling operation, heating operation, dehumidification operation, humidification operation, ventilation operation, ventilation operation, and air cleaning operation.
  • the humidifier 6 has an air supply/exhaust hose 68 that communicates with the room via the air conditioning indoor unit 2 .
  • the air conditioning indoor unit 2 can humidify the room by increasing the humidity in the room RM with the moisture supplied into the room RM through the air supply/exhaust hose 68 by the humidifier 6 .
  • the air conditioning indoor unit 2 can ventilate the room RM with the outside air supplied into the room RM (inside the room) through the air supply/exhaust hose 68 by the humidifier 6 .
  • the ambient air described in this disclosure is outdoor OD air.
  • the control unit 8 of the air conditioning system 1 includes a control device 81 that controls the air conditioning indoor unit 2 and an outdoor control plate 82 that controls the air conditioning outdoor unit 4 and the humidifier 6 .
  • the control device 81 and the outdoor control board 82 are controllers implemented by, for example, microcomputers.
  • the control device 81 includes a timer 81a, a control arithmetic device 81b, and a storage device 81c.
  • a processor such as a CPU or GPU can be used for the control arithmetic unit 81b.
  • the control arithmetic device 81b reads a program stored in the storage device 81c, and performs, for example, predetermined sequence processing and arithmetic processing according to this program.
  • the control arithmetic device 81b can write the arithmetic result to the storage device 81c and read the information stored in the storage device 81c according to the program.
  • the air conditioner indoor unit 2 includes an electrostatic atomization unit 75 shown in FIG.
  • the electrostatic atomization unit 75 is a device that emits liquid particles containing ions by electric discharge.
  • the electrostatic atomization unit 75 is arranged near the exit of the humidification duct 28, which is the air supply member shown in FIG.
  • the humidification duct 28 is a member that allows outside air to flow.
  • the fact that the electrostatic atomization unit 75 is arranged in the vicinity of the outlet of the humidification duct 28 which is an air supply member means that the air supplied by the humidification duct 28 flows to the electrostatic atomization unit 75 . That is.
  • the outlet of the humidification duct 28 is located at the blow-out opening 28a (see FIG. 10).
  • the air conditioning indoor unit 2 includes a casing 23.
  • the casing 23 of the air conditioning indoor unit 2 described here has a frame 23f, a grille 23g, and a front panel 23p, as shown in FIG.
  • the configuration of the casing 23 of the air conditioning indoor unit 2 is not limited to the configuration described here.
  • the front panel 23p and the grille 23g may be integrated.
  • This casing 23 extends long along the longitudinal direction D1.
  • One end E1 of the casing 23 in the longitudinal direction D1 is on the left when the casing 23 is viewed from the front, and the other end E2 of the casing 23 in the longitudinal direction D1 is on the right when the casing 23 is viewed from the front.
  • the side closer to the one end E1 than the center CE in the longitudinal direction D1 of the casing 23 is called the one end side
  • the side closer to the other end E2 than the center CE is called the other end side.
  • the area between the center CE of the casing 23 and the one end E1 is the one end side
  • the area between the center CE and the other end E2 is the other end side.
  • Outside air is supplied to one end by an air supply/exhaust hose 68 .
  • one end of the casing 23 in the longitudinal direction D1 becomes the air supply passage R1.
  • the flow of outside air is indicated by a thick dashed-dotted arrow.
  • the electrostatic atomization unit 75 is arranged in the air supply passage R1.
  • the air conditioning indoor unit 2 includes a heat exchanger 21, a fan 22, a casing 23, Equipped with a filter 24, a drain pan 26, a horizontal flap 27, a vertical flap (not shown), a humidification duct 28, and an electrostatic atomizer 70 (see FIG. 11) including an electrostatic atomizer unit 75.
  • the air conditioning indoor unit 2 also includes an indoor temperature sensor 31 and an indoor humidity sensor 32 .
  • the indoor temperature sensor 31 and the indoor humidity sensor 32 are connected to the controller 81 .
  • the heat exchanger 21 is arranged upstream of the fan 22 in the ventilation passage FP from the suction port 23a to the blowout port 23b.
  • the heat exchanger 21 has a downwardly open shape so as to cover the upper side of the fan 22 when viewed in the direction in which the heat transfer tubes 21b extend (when viewed from the side).
  • a shape is called a ⁇ shape or a C shape.
  • the heat exchanger 21 has a first heat exchange section 21F far from the wall WL and a second heat exchange section 21R close to the wall WL.
  • a drain pan 26 is arranged under the lower portion of the first heat exchange portion 21F and the lower portion of the second heat exchange portion 21R of the ⁇ -shaped or C-shaped heat exchanger 21 .
  • Condensation generated in the first heat exchange section 21 ⁇ /b>F of the heat exchanger 21 is received by the drain pan 26 arranged in the lower front portion of the heat exchanger 21 .
  • Condensation generated in the second heat exchange section 21R of the heat exchanger 21 is received by the drain pan 26 arranged in the rear lower portion of the heat exchanger 21 .
  • a horizontal flap 27 and a vertical flap are arranged at the outlet 23b.
  • the horizontal flap 27 vertically changes the direction of the air blown from the outlet 23b. Therefore, the horizontal flap 27 is configured so that the angle formed with the horizontal direction can be changed by a motor 27m.
  • the vertical flap is configured to be able to change the direction of the air blown out from the outlet 23b to the left or right.
  • the air conditioning indoor unit 2 drives, for example, a vertical flap with a motor (not shown) so as to change the angle formed with the front-rear direction.
  • An air filter 24 is arranged downstream of the suction port 23 a in the casing 23 and upstream of the heat exchanger 21 . Substantially all of the room air supplied to the heat exchanger 21 passes through the air filter 24 . Therefore, dust particles larger than the mesh of the air filter 24 are removed by the air filter 24 and do not reach the heat exchanger 21 .
  • the air conditioning indoor unit 2 includes a humidification duct 28 as an air supply member inside the casing 23 .
  • the humidification duct 28 is arranged on one end side of the casing 23 in the longitudinal direction D1 and is included in the air supply flow path R1 formed on the one end side of the casing 23 .
  • outlet opening 28a is arranged to face heat exchanger 21 (see FIG. 6). Outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the ventilation operation.
  • the humidifying operation in the humidifier 6 is stopped, and outside air is sent from the humidifier 6 through the air supply/exhaust hose 68 to the humidification duct 28 as it is.
  • Humidified outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the humidification operation.
  • humidification operation humidification operation is performed in the humidifier 6 , and humidified outside air is sent from the humidifier 6 to the humidification duct 28 through the air supply/exhaust hose 68 .
  • the humidification duct 28 is provided with a duct filter 28b. Outside air sent through the air supply/exhaust hose 68 is blown out into the casing 23 through the duct filter 28b.
  • the electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 (see FIG. 11).
  • the electrostatic atomization unit 75 is preferably arranged within 100 mm from the outlet opening 28 a of the humidifying duct 28 .
  • An area AR1 indicated by a two-dot chain line shown in FIGS. 5 and 6 is an area within 100 mm from the blow-out opening 28a.
  • an electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 attached to the surface of the humidification duct 28 in the area AR1.
  • the electrostatic atomizer 70 and the electrostatic atomizer unit 75 are arranged upstream of the heat exchanger 21 .
  • the control device 81 arranged in the air conditioning indoor unit 2 is connected to the motor 22m of the fan 22 and the motor 27m of the horizontal flap 27, as shown in FIG.
  • the control device 81 can control the number of rotations of the motor 22m of the fan 22 and the rotation angle of the motor 27m of the horizontal flap.
  • the control device 81 is connected to an outdoor control plate 82 (see FIG. 4) arranged inside the air conditioner outdoor unit 4 .
  • the control device 81 has a timer 81a, a control arithmetic device 81b, and a storage device 81c will be described. It may be provided in place.
  • the timer 81a, the control arithmetic device 81b, and the storage device 81c may be provided on the outdoor control board 82.
  • the control device 81 can detect the temperature of the indoor air with the indoor temperature sensor 31 and the relative humidity of the indoor air with the indoor humidity sensor 32 .
  • the controller 81 can set the on/off timing of the electrostatic atomizer 70 using the timer 81a.
  • the humidification duct 28 includes a blowout opening 28a, a duct filter 28b, a wide portion 28c, a connection portion 28d, and a feeder. It has an air opening 28e.
  • a supply/exhaust hose 68 is connected to the cylindrical connecting portion 28d. Outside air flows through the air supply/exhaust hose 68 from the air supply opening 28e at the tip of the connection portion 28d.
  • a wide portion 28c that is wider in the longitudinal direction D1 (horizontal direction) than the connecting portion 28d is arranged downstream of the connecting portion 28d.
  • a duct filter 28b is detachably attached to the wide portion 28c.
  • the duct filter 28b By opening the front panel 23p of the air conditioning indoor unit 2, the duct filter 28b can be pulled out from the casing 23 forward.
  • a blowout opening 28a is formed downstream of the duct filter 28b in the wide portion 28c.
  • Blow-out opening 28 a faces heat exchanger 21 .
  • the blowout opening 28a is arranged below the air filter 24, and the outside air blown out from the blowout opening 28a flows into the heat exchanger 21 without passing through the air filter 24. Since the fan 22 generates an air flow in a direction perpendicular to the longitudinal direction D1, the outside air blown out from the humidification duct 28 to one end side of the casing 23 flows through the air supply flow path R1 and then into the other flow path R2. does not flow.
  • a supply air humidity sensor 33 is attached to the humidification duct 28 .
  • the supply air humidity sensor 33 is attached to the outlet opening 28a.
  • the supply air humidity sensor 33 measures the relative humidity of the outside air supplied by the humidification duct 28 .
  • the supply air humidity sensor 33 is connected to the control device 81 and transmits data of the detected outside air relative humidity to the control device 81 .
  • the electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 as shown in FIG.
  • the electrostatic atomizer 70 includes, for example, a housing 71, an inlet 72a, an outlet 72b, a blower 74, and a high-voltage transformer 73.
  • the electrostatic atomizer 70 is attached to the upper surface of the humidification duct 28 .
  • the case where the electrostatic atomizer 70 is attached to the upper surface of the humidification duct 28 is described as an example. It may be on the side.
  • the discharge port 72b is arranged at the top of the housing 71 of the electrostatic atomizer 70 .
  • the suction port 72a is arranged on the surface of the housing 71 adjacent to the blowout opening 28a of the humidification duct 28 .
  • the suction port 72a is arranged in the rear part of the housing 71 here, it may be arranged in another part of the housing 71, for example, on the end surface of the housing 71 in the longitudinal direction.
  • a discharge port 72 b of the electrostatic atomizer 70 is arranged downstream of the air filter 24 .
  • the intake port 72 a sucks air from the ventilation passage FP of the casing 23 .
  • the electrostatic atomizer 70 includes a blower 74 in the housing 71 so that the air sucked from the suction port 72a passes through the electrostatic atomization unit 75 in the housing 71 and is discharged from the discharge port 72b. It is preferable to have However, if airflow is generated in the housing 71 without the blower 74, the blower 74 may be omitted.
  • the electrostatic atomization unit 75 converts water condensed on the discharge electrode 78 into water fine particles 77 containing ions by discharging and emits the water.
  • a high voltage is applied between the discharge electrode 78 and the counter electrode 79 by the high voltage transformer 73 in order to generate a high voltage discharge at the discharge electrode 78 . Due to the discharge phenomenon that occurs in the discharge electrode 78, the moisture on the discharge electrode 78 turns into nanometer-sized fine particles and is charged, generating electrostatic mist.
  • the electrostatic atomization unit 75 is equipped with, for example, a cooling element 76 in order to generate condensed water on the discharge electrode 78 .
  • the cooling element 76 has a heat dissipation surface 76a and a cooling surface 76b.
  • a heat dissipation portion 76c is thermally connected to the heat dissipation surface 76a.
  • a heat radiation fin for example, can be used for the heat radiation portion 76c.
  • the cooling surface 76b is thermally connected to the discharge electrode 78 via an electrical insulator (not shown).
  • the discharge electrode 78 installed upright on the cooling surface 76b is arranged to be separated from the counter electrode 40 by a predetermined distance.
  • the cooling element 76 is, for example, a Peltier element.
  • a plurality of cooling elements 76 may be provided.
  • the cooling element 76 is a Peltier element
  • the cooling surface 76b absorbs heat and the heat radiation surface 76a generates heat.
  • the temperature of electrode 78 decreases.
  • the temperature of the discharge electrode 78 drops below the dew point temperature of the air sucked from the suction port 72a, dew condensation occurs on the discharge electrode 78 .
  • FIG. and a housing 47 Air Conditioner Outdoor Unit As shown in FIG. and a housing 47 .
  • Compressor 41 , four-way valve 42 , accumulator 43 , outdoor heat exchanger 44 , outdoor expansion valve 45 and outdoor fan 46 are housed in housing 47 .
  • the housing 47 has a rear opening 47a (see FIG. 4) for sucking outside air and a front opening 47b (see FIGS. 1 and 4) for blowing out air after heat exchange.
  • the rear opening 47 a is arranged on the rear side of the housing 47 .
  • the air conditioner outdoor unit 4 functions as a heat source unit that supplies thermal energy to the air conditioner indoor unit 2 .
  • the compressor 41 sucks in gas refrigerant, compresses it, and discharges it.
  • the compressor 41 is, for example, a variable capacity compressor whose operating capacity can be changed by adjusting the operating frequency of the motor 41m with an inverter. As the operating frequency increases, the operating capacity of the compressor 41 increases.
  • the four-way valve 42 has four ports. A first port P ⁇ b>1 of the four-way valve 42 is connected to a discharge port of the compressor 41 . A second port P ⁇ b>2 of the four-way valve 42 is connected to one inlet/outlet of the outdoor heat exchanger 44 . A third port P3 of the four-way valve 42 is connected to the accumulator 43 . A fourth port P4 of the four-way valve 42 is connected to one inlet/outlet of the heat exchanger 21 .
  • the accumulator 43 is connected between the third port P3 of the four-way valve 42 and the suction port of the compressor 41.
  • the outdoor heat exchanger 44 has the other inlet/outlet connected to one inlet/outlet of the outdoor expansion valve 45 .
  • the outdoor heat exchanger 44 exchanges heat between the refrigerant that has flowed into the inside from one entrance or the other entrance and the outside air.
  • the outdoor expansion valve 45 has the other inlet/outlet connected to the other inlet/outlet of the heat exchanger 21 .
  • An outdoor control plate 82 that constitutes the control unit 8 is arranged in the air conditioner outdoor unit 4 .
  • the outdoor control plate 82 is connected to the control device 81 .
  • the outdoor control plate 82 is connected to the motor 41 m of the compressor 41 , the four-way valve 42 and the motor 46 m of the outdoor fan 46 .
  • the control unit 8 can control the operating frequency of the motor 41 m of the compressor 41 , the opening degree of the four-way valve 42 , and the rotation speed of the motor 46 m of the outdoor fan 46 with the outdoor control plate 82 .
  • the refrigerant circuit 13 includes a compressor 41 , a four-way valve 42 , an accumulator 43 , an outdoor heat exchanger 44 , an outdoor expansion valve 45 and a heat exchanger 21 .
  • a refrigerant circulates in the refrigerant circuit 13 .
  • Refrigerants include, for example, fluorocarbons such as R32 refrigerant and R410 refrigerant, and carbon dioxide.
  • the refrigerant is compressed by the compressor 41 and heated, and then radiates heat in the outdoor heat exchanger 44 or the heat exchanger 21 .
  • the refrigerant is decompressed and expanded by the outdoor expansion valve 45 , and then the refrigerant absorbs heat in the heat exchanger 21 or the outdoor heat exchanger 44 .
  • the accumulator 43 gas-liquid separation of the refrigerant sucked into the compressor 41 is performed.
  • the four-way valve 42 switches the direction of refrigerant flow in the refrigerant circuit 13 .
  • the humidifier 6 of this embodiment is integrated with the air conditioner outdoor unit 4 .
  • the humidifier 6 and the air conditioner outdoor unit 4 may be configured as separable separate bodies.
  • the humidifier 6 takes in moisture from outside air.
  • the humidifier 6 can generate high-humidity air by applying the taken-in moisture to the outside air.
  • the humidifier 6 sends this high-humidity air to the air conditioner indoor unit 2 .
  • the air conditioner indoor unit 2 mixes the high-humidity air sent from the humidifier 6 with the indoor air during the humidification operation.
  • the air conditioner indoor unit 2 humidifies the room by blowing out air mixed with high-humidity air into the room RM.
  • the humidifier 6 is controlled by the controller 8 .
  • the humidifier 6 can also stop the humidification operation and send outside air to the air conditioning indoor unit 2 without humidifying.
  • the air conditioning indoor unit 2 mixes the outside air sent from the humidifier 6 with the indoor air during ventilation operation.
  • the air conditioning indoor unit 2 can supply the outside air to the room by blowing out the air mixed with the outside air into the room RM (inside the room).
  • the humidifier 6 can also stop the humidification operation and exhaust the indoor air from the air conditioning indoor unit 2 to the outdoor OD without humidifying.
  • the air conditioning indoor unit 2 can supply outside air into the room RM and exhaust indoor air in the room RM to the outside OD.
  • the humidifier 6 as shown in FIG. there is
  • the humidifier 6 also includes an air supply/exhaust hose 68 .
  • the housing 69 of the humidifier 6 is attached to the housing 47 of the air conditioner outdoor unit 4 .
  • the humidifier 6 has a housing 69 with an adsorption air outlet 69a, an adsorption air intake 69b, and a humidification air intake 69c.
  • the adsorption rotor 61 is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
  • the humidity control rotor can be formed, for example, by firing an adsorbent that has the property of adsorbing moisture in the air that comes in contact with it.
  • the adsorbent of the adsorption rotor 61 has the property of desorbing the adsorbed moisture when heated.
  • unheated air passes through the adsorption rotor 61 of the honeycomb structure, moisture in the air is adsorbed on the adsorption rotor 61 .
  • moisture of the adsorption rotor 61 is imparted to the air.
  • the adsorption rotor 61 is rotated by being driven by a motor 61m.
  • the rotation speed of the adsorption rotor 61 can be changed by changing the rotation speed of the motor 61m.
  • the heater 62 is arranged between the humidifying air intake 69 c and the switching damper 63 . Outside air taken in from the humidifying air intake 69 c passes through the heater 62 and then through the adsorption rotor 61 to reach the switching damper 63 . When the air heated by the heater 62 passes through the adsorption rotor 61 , moisture is desorbed from the adsorption rotor 61 and supplied from the adsorption rotor 61 to the heated outside air.
  • the heater 62 can change its output, and the temperature of the air that has passed through the heater 62 can be changed according to the output.
  • the adsorption rotor 61 tends to desorb more moisture as the temperature of the air passing through the adsorption rotor 61 increases.
  • the amount of water added to the outside air can be adjusted.
  • the switching damper 63 has a first entrance 63a and a second entrance 63b.
  • the switching damper 63 can switch between the first inlet/outlet 63a and the second inlet/outlet 63b as the air inlet for sucking air when the air supply/exhaust fan 64 is driven.
  • the air inlet is the first inlet/outlet 63a
  • outside air flows from the humidifying air inlet 69c in the direction of the solid arrow in FIG. 1 entrance/exit 63a, air supply/exhaust fan 64, second entrance/exit 63b, duct 66, air supply/exhaust hose 68, and air conditioning indoor unit 2 in this order.
  • the air supply/exhaust fan 64 is arranged between the first entrance 63 a and the second entrance 63 b of the switching damper 63 .
  • the air supply/exhaust fan 64 generates an air flow from the first inlet/outlet 63a to the second inlet/outlet 63b or from the second inlet/outlet 63b to the first inlet/outlet 63a.
  • the air supply/exhaust fan 64 is driven by a motor 64m.
  • the air supply/exhaust hose 68 has one end connected to the duct 66 and the other end connected to the air conditioning indoor unit 2 . With such a configuration, the air supply/exhaust hose 68 and the room RM communicate with each other via the air conditioning indoor unit 2 .
  • An adsorption fan 65 is arranged in a passage leading from the adsorption air intake 69b to the adsorption air outlet 69a, and the adsorption rotor 61 is arranged so as to hang over this passage.
  • the adsorption fan 65 generates an airflow from the adsorption air intake port 69b toward the adsorption air outlet 69a, the adsorption rotor 61 adsorbs moisture from the outside air passing through the adsorption rotor 61 .
  • the suction fan 65 is driven by a motor 65m.
  • the motor 61 m of the adsorption rotor 61 , the motor 63 m of the switching damper 63 , the motor 64 m of the air supply/exhaust fan 64 and the heater 62 are connected to the outdoor control plate 82 .
  • the controller 8 can control the number of rotations of the adsorption rotor 61 , the switching of the switching damper 63 , the ON/OFF of the air supply/exhaust fan 64 and the adsorption fan 65 , and the output of the heater 62 using the outdoor control plate 82 .
  • Operation modes of the air conditioning system 1 include, for example, cooling operation, heating operation, dehumidification operation, humidification operation, fan operation, ventilation operation, and air cleaning operation. be. Note that a plurality of operations can be combined. For example, heating operation and humidifying operation, cooling operation and humidifying operation, air blowing operation and humidifying operation, ventilation operation and cooling operation, ventilation operation and heating operation, ventilation operation and dehumidifying operation, and ventilation operation and air blowing operation can be combined. In addition, the humidifying operation, the heating operation and the humidifying operation, the cooling operation and the humidifying operation, and the blowing operation and the humidifying operation can be combined with the air cleaning operation.
  • the controller 81 of the control section 8 is instructed to perform the cooling operation and the target temperature from, for example, a remote controller (not shown).
  • the controller 8 switches the four-way valve 42 to the state indicated by the solid line in FIG.
  • the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the second port P2, and the refrigerant to flow between the third port P3 and the fourth port P4.
  • the four-way valve 42 during cooling operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the outdoor heat exchanger 44 .
  • the outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 .
  • the refrigerant cooled by the outdoor heat exchanger 44 is depressurized by the outdoor expansion valve 45 and flows into the heat exchanger 21 .
  • the heat exchanger 21 exchanges heat between the refrigerant and the air supplied by the fan 22 .
  • the air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air.
  • the refrigerant warmed by heat exchange in the heat exchanger 21 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 .
  • the indoor air is cooled by blowing the indoor air cooled by the heat exchanger 21 or the mixed air of the indoor air and the outdoor air from the air conditioning indoor unit 2 to the room RM.
  • the heat exchanger 21 functions as a refrigerant evaporator to cool the room RM
  • the outdoor heat exchanger 44 functions as a refrigerant radiator.
  • the controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
  • the controller 81 of the control section 8 is instructed to perform the heating operation and the target temperature from, for example, a remote controller.
  • the control unit 8 switches the four-way valve 42 to the state indicated by the dashed line in FIG.
  • the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the fourth port P4, and the refrigerant between the second port P2 and the third port P3.
  • the four-way valve 42 during heating operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the heat exchanger 21 . In the heat exchanger 21, heat is exchanged between the air supplied by the fan 22 and the refrigerant.
  • the air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air.
  • the refrigerant cooled by the heat exchanger 21 is depressurized by the outdoor expansion valve 45 and flows into the outdoor heat exchanger 44 .
  • the outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 .
  • the refrigerant warmed by heat exchange in the outdoor heat exchanger 44 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 .
  • the room is heated by blowing out the indoor air warmed by the heat exchanger 21 or the mixed air of the indoor air and the outside air from the air conditioning indoor unit 2 into the room RM.
  • the heat exchanger 21 functions as a refrigerant radiator to warm the room RM
  • the outdoor heat exchanger 44 functions as a refrigerant evaporator.
  • the controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
  • the control device 81 of the control unit 8 is instructed to operate the blowing operation from, for example, a remote controller. During the blowing operation, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . The control unit 8 also stops the operation of the humidifier 6 . In the air blowing operation, there are cases where the target air volume is instructed from the remote controller, and where the air conditioning indoor unit 2 automatically selects the target air volume.
  • the control device 81 controls the motor 22m of the fan 22 so as to achieve the target air volume.
  • control device 81 is configured so that the rotation speed can be increased in order from the LL tap, which has the lowest rotation speed, to the L tap, the M tap, and the H tap.
  • the controller 8 also stops the operation of the humidifier 6 when the air blowing operation is being performed. In the air blowing operation, the indoor air in the room RM is circulated by the air conditioning indoor unit 2 .
  • the controller 81 of the control section 8 is instructed to perform the humidification operation and the target humidity from, for example, a remote controller.
  • the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 .
  • the refrigeration cycle in the refrigerant circuit 13 is also performed at the same time as the humidification operation.
  • the control unit 8 Upon receiving the humidification operation instruction, the control unit 8 first causes the humidifier 6 to dry the air supply/exhaust hose 68 . After the air supply/exhaust hose 68 is dried, the controller 8 causes the humidifier 6 to start the humidification operation.
  • the controller 8 drives the suction fan 65 and controls the suction rotor 61 to rotate. By driving the adsorption fan 65 and passing the outside air through the adsorption rotor 61 , the adsorption rotor 61 adsorbs moisture from the outside air. Due to the rotation of the adsorption rotor 61, the location where moisture is adsorbed moves to a location through which the air heated by the heater 62 passes.
  • the air that has passed through the adsorption rotor 61 and becomes highly humid is sent to the room RM through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 by the air supply/exhaust fan 64 .
  • the control device 81 drives the fan 22 of the air conditioner indoor unit 2 in order to blow high-humidity air into the room RM.
  • the control unit 8 controls the air conditioning indoor unit 2, the air conditioning outdoor unit 4, and the humidifier 6 so that the humidity detected by the predetermined humidity sensor approaches the target humidity.
  • the predetermined humidity sensor is a humidity sensor provided in a flow path through which air flows in the humidifier 6 and the air conditioner indoor unit 2 .
  • Predetermined humidity sensors include, for example, the room humidity sensor 32 and the humidity sensor attached to the humidification duct 28 .
  • the control device 81 of the control section 8 is instructed to perform the ventilation operation from, for example, a remote controller.
  • the humidification operation is stopped.
  • the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 .
  • the control unit 8 drives the compressor 41 to perform the refrigeration cycle in the refrigerant circuit 13 .
  • the rotation of the adsorption fan 65 and the adsorption rotor 61 is stopped.
  • the controller 8 controls the motor 64m to drive the air supply/exhaust fan 64 .
  • the controller 8 switches between the air supply state and the air exhaust state by controlling the switching damper 63 .
  • the air supply state outside air is taken in from the humidifying air intake port 69c and blown through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 into the room RM.
  • the exhaust state indoor air is exhausted from the room RM through the air conditioning indoor unit 2 and the air supply/exhaust hose 68 from the humidification air intake port 69c.
  • the control device 81 drives the fan 22 of the air conditioner indoor unit 2 to blow outside air into the room RM.
  • the humidification duct 28 functions as an air supply duct that supplies outside air that has not been humidified by the humidifier 6 as it is.
  • the air conditioning system 1 can perform an air cleaning operation using the electrostatic atomizer 70 .
  • the air cleaning operation is an operation for suppressing harmful components and/or odorous components in the air.
  • the air cleaning operation is, for example, an operation in which harmful or odorous components are suppressed with water particles (electrostatic mist) containing ions generated by the electrostatic atomizer 70 .
  • Air cleaning operation using the electrostatic atomizer 70 is performed together with humidification operation or ventilation operation.
  • the control device 81 of the air conditioning indoor unit 2 performs electrostatic atomization when outside air is introduced into the room RM (indoor) during humidification operation. Control the electrostatic atomizer 70 to operate the unit 75 .
  • the controller 81 controls the electrostatic atomizer 70 according to the flow shown in FIG. 13, for example.
  • the control device 81 determines whether or not the operation mode of the air conditioning indoor unit 2 instructed by a remote controller (not shown) or the like is an operation mode in which the electrostatic atomization unit 75 can be operated (step ST1).
  • step ST2 when the instructed operation mode is a mode in which humidification operation and air cleaning operation are performed (Yes in step ST1), it is determined whether or not humidification is being performed by the humidifier 6 (step ST2). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, it can receive information on humidification by the humidifier 6 from the outdoor control plate 82. When humidification is being performed by the humidifier 6 (Yes in step ST2), the control device 81 controls the electrostatic atomization unit 75 to discharge (step ST3). When humidification by the humidifier 6 is not performed (No in step ST2), the control device 81 controls the electrostatic atomization unit 75 so as not to discharge (step ST4).
  • step ST5 It is determined whether or not the operation mode will be changed while the air cleaning operation and the humidification operation are being performed.
  • the process returns to the determination (step ST1) of whether or not the changed operation mode is an operation mode in which the electrostatic atomization unit 75 can be operated.
  • step ST6 it is determined whether or not there is an instruction to end the operation. If there is no instruction to end the operation (No in step ST6), the process returns to the beginning of the flow (step ST1). If there is an instruction to end the operation (Yes in step ST6), the control flow shown in FIG. 13 ends.
  • the controller 81 of the air conditioning indoor unit 2 operates when outside air is being introduced into the room RM (indoor) during air supply in the ventilation operation.
  • the electrostatic atomizer 70 is controlled to operate the electrostatic atomizer unit 75 .
  • the controller 81 controls the electrostatic atomizer 70 according to the flow shown in FIG. 14, for example.
  • the control device 81 determines whether or not the operation mode of the air conditioning indoor unit 2 instructed by a remote controller (not shown) or the like is an operation mode in which the electrostatic atomization unit 75 can be operated (step ST1).
  • step ST22 when the instructed operation mode is a mode in which the ventilation operation and the air cleaning operation are performed (Yes in step ST1), it is determined whether or not the humidifier 6 is supplying air for the ventilation operation (step ST22). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, information regarding air supply by the humidifier 6 can be received from the outdoor control plate 82. . When humidification is being performed by the humidifier 6 (Yes in step ST22), the control device 81 controls the electrostatic atomization unit 75 to discharge (step ST3). Air that is more humid than outside air can be guided to the electrostatic atomization unit, and the efficiency of generating water particles can be increased even when the humidity of the outside air is low.
  • step ST4 When humidification by the humidifier 6 is not performed (No in step ST22), the control device 81 controls the electrostatic atomization unit 75 so as not to discharge (step ST4). Since the steps after step ST3 and step ST4 are the same as the flow shown in FIG. 13, description thereof is omitted.
  • the duct filter 28b closes to the blowout opening of the humidification duct 28. It is preferably located in the vicinity of 28a. Also, the electrostatic atomizer 70 may be attached side by side with the humidifying duct 28 away from the humidifying duct 28 .
  • the electrostatic atomization unit 75 is arranged in the vicinity of the blowout opening 28a of the humidification duct 28, which is the outlet of the air supply member.
  • the electrostatic atomization unit 75 may be arranged in the bypass route R3 of the humidification duct 28, which is the air supply member, as shown in FIG.
  • a housing 71 of the electrostatic atomizer 70 is arranged side by side with a distance from the wide portion 28c of the humidification duct 28 .
  • the housing 71 and the wide portion 28c communicate with each other through a cylinder, and this cylinder forms an inlet 72a of the electrostatic atomizer 70.
  • the intake port 72a is provided downstream of a duct filter (not shown in FIG. 15).
  • the discharge port 72b is provided separately from the blowout opening 28a of the humidification duct 28. As shown in FIG. Air is blown out from the outlet 72b in the same manner as the air is blown out from the blow-out opening 28a. Therefore, the air blower 74 is not provided in the electrostatic atomizer 70 shown in FIG. Although the illustration of the duct filter is omitted in FIG. 16, even in the form of the humidifying duct 28 shown in FIG. placed.
  • the electrostatic atomization unit 75 is arranged in the vicinity of the blowout opening 28a of the humidification duct 28, which is the outlet of the air supply member.
  • the electrostatic atomization unit 75 may be arranged in the internal space IN1 of the humidification duct 28, which is the air supply member.
  • the internal space IN1 is a space inside the wide portion 28c of the humidifying duct 28.
  • the electrostatic atomization unit 75 is arranged directly in the internal space IN1 without the housing 71, and the air blower 74 is also omitted.
  • the electrostatic atomizing unit 75 can function as an electrostatic atomizing device even if the housing 71 and the air blower 74 are omitted and the electrostatic atomizing unit 75 is installed directly in the humidifying duct 28. 17 and 18, the illustration of the high-voltage transformer 73 is omitted, but the high-voltage transformer 73 is preferably arranged outside the humidification duct 28. As shown in FIG.
  • the electrostatic atomization unit 75 is arranged downstream of the duct filter 28b. Water particles emitted from the electrostatic atomization unit 75 are emitted into the casing 23 from the blowout opening 28 a of the humidification duct 28 . The water particles are preferably emitted downstream of the air filter 24 so as not to reduce the number of water particles.
  • the supply air humidity sensor 33 may be arranged in the internal space IN1 of the humidifying duct 28 as shown in FIGS. good.
  • the air supply member is not limited to the humidification duct 28 only.
  • an air supply/exhaust device that only supplies and exhausts outside air without a humidification function may be provided outdoors.
  • an air supply duct is arranged in the casing 23 instead of the humidification duct 28 .
  • the air conditioning indoor unit 2 cannot perform the humidification operation, but can perform the ventilation operation to supply outside air to the room RM (indoor).
  • the arrangement relationship between the air supply duct and the electrostatic atomization unit 75 can be set in the same manner as the arrangement relationship between the humidification duct 28 and the electrostatic atomization unit 75 .
  • the electrostatic atomizer 70 may be attached so as to cover the blowout opening 28a of the humidification duct 28 .
  • the electrostatic atomizer 70 exchanges heat with the outlet opening 28a of the humidification duct 28. It may be arranged at a position between the container 21 and covering the blowout opening 28a. With such a configuration, the electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged downstream of the blowout opening 28 a of the humidification duct 28 .
  • the electrostatic atomizer 70 may be attached so as to cover the blowout opening 28a of the humidification duct 28 shown in FIGS. When the electrostatic atomizer 70 is attached to the position covering the blow-out opening 28a shown in FIGS. placed adjacent to each other.
  • the airflow generated in the humidification duct 28 can also generate an airflow inside the electrostatic atomizer 70. can be omitted.
  • the duct filter 28b is preferably arranged upstream of the electrostatic atomizer 70 .
  • duct filter 28b may be attached to outlet opening 28a.
  • the controller 81 controls the electrostatic atomization unit 75 to discharge (activate) while the humidifier 6 is performing humidification. explained the case. However, when the humidification operation and the air cleaning operation are performed, the humidification of the room RM by the humidifier 6 is completed during the period when the control device 81 controls discharge (operation) of the electrostatic atomization unit 75. It may be within a predetermined period of time. Information on the predetermined time is stored in the storage device 81c, for example. When counting the predetermined time, the control device 81 uses the timer 81a to count the predetermined time read from the storage device 81c, for example.
  • the electrostatic atomization unit 75 is operated to discharge electricity. It may be configured to allow Note that the predetermined time may vary depending on the humidity of the humidified air. If the humidity of the humidified air is high, the predetermined time is set shorter than when the humidity of the humidified air is low. may be In such control, for example, as shown in FIG. 20, the determination of whether or not humidification is being performed, which was performed in step ST2 of FIG. (step ST12).
  • control device 81 of the control unit 8 Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, it can receive information on humidification by the humidifier 6 from the outdoor control plate 82.
  • the control device 81 counts a predetermined time by the timer 81a after the humidifier 6 finishes humidification.
  • the steps other than step ST12 in FIG. 20 are the same as the steps other than step ST2 in FIG. 13, so description thereof will be omitted.
  • step ST32 the determination of whether or not humidification is being performed, which was performed in step ST2 of FIG. It may be replaced with judgment (step ST32). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, information regarding air supply by the humidifier 6 can be received from the outdoor control plate 82. . The control device 81 counts a predetermined time by the timer 81a after the humidifier 6 ends air supply. Note that when the electrostatic atomization unit 75 is operated, the control section 8 prevents air from being exhausted after being supplied.
  • the steps other than step ST32 in FIG. 21 are the same as the steps other than step ST2 in FIG. 13, so description thereof will be omitted.
  • the measurement result of the supplied air humidity sensor 33 is not used for determining whether or not to discharge the electrostatic atomization unit 75 .
  • the measurement result of the supplied air humidity sensor 33 may be used to determine whether or not to discharge the electrostatic atomization unit 75 .
  • the measurement result of the supply air humidity sensor 33 is used to determine whether air is being supplied with a relative humidity equal to or higher than a predetermined value. You can judge.
  • the relative humidity of the supply air with a predetermined value or more It may be determined whether or not it is within a predetermined time after the end.
  • a humidification duct 28 or an air supply duct which is an air supply member, is arranged in the casing 23 .
  • the air supply duct is, for example, a duct for supplying non-humidified outside air during ventilation operation.
  • the humidification duct 28 when the humidifier 6 stops humidification and supplies air can be regarded as an air supply duct.
  • Outside air which is outdoor OD air, is supplied from the humidification duct 28 or the supply air duct to the room RM, which is an indoor room.
  • the electrostatic atomization unit 75 is arranged in the vicinity of the inner space IN1 of the humidification duct 28, the bypass route R3 of the humidification duct 28, or the outlet opening 28a of the humidification duct 28.
  • the internal space IN1 of the humidifying duct 28 is an example of the internal space of the air supply member.
  • Another example of the internal space of the air supply member is the internal space of an air supply duct for supplying non-humidified outside air.
  • a bypass route R3 of the humidification duct 28 is an example of a bypass route of the air supply member.
  • Another example of the bypass path of the air supply member is the bypass path of the air supply duct described above.
  • the blowout opening 28a of the humidification duct 28 is an example of the outlet of the air supply member.
  • outlet of the air supply member is the outlet of the aforementioned air supply duct.
  • moisture contained in the outside air is used to easily cause condensation in the electrostatic atomization unit 75, and the generation efficiency of water particles containing ions is improved.
  • the electrostatic atomization unit 75 is arranged within 100 mm from the blowout opening 28 a of the humidification duct 28 . Alternatively, it is arranged within 100 mm from the outlet of the supply air duct. By arranging the air outlet 28a or near the outlet of the air supply duct in this way, air containing a large amount of outside air blown from the outlet of the air supply member can be guided to the electrostatic atomization unit 75 . As a result, dew condensation in the electrostatic atomization unit 75 is facilitated.
  • control device 81 In the case where the control device 81 is configured to operate the electrostatic atomization unit 75 when outside air is supplied to the room, outside air is supplied to the electrostatic atomization unit 75 when the electrostatic atomization unit 75 is operating. can be taken in. By taking outside air into the electrostatic atomization unit 75 in this way, it becomes easier to maintain a high generation efficiency of water particles.
  • the air conditioning indoor unit 2 described above includes a duct filter 28b, which is an air supply filter through which outside air taken into the electrostatic atomization unit 75 passes.
  • the air supply filter can prevent fine particles such as pollen from being mixed with the outside air and being taken into the electrostatic atomization unit 75 .
  • the air conditioning indoor unit 2 provided with the duct filter 28b can suppress the occurrence of abnormal discharge due to fine particles.
  • the duct filter 28b is positioned at the blowout opening 28a of the humidification duct 28, as shown in FIG. Or it may be located near the outlet of the supply air duct. In such a case, the size of the duct filter 28b can be reduced, and it is possible to prevent the duct filter 28b from lowering the efficiency of air conditioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

The present invention improves, in an air-conditioning indoor unit comprising an electrostatic atomization unit, the efficiency of fine liquid particle production by the electrostatic atomization unit. A humidification duct (28) having an outlet (28a), which is an exit port for supplying outdoor air that has been humidified to the indoor, is disposed inside a casing (23). An electrostatic atomization unit (75) which ejects fine liquid particles that contain ions produced by electric discharge is disposed in the internal space of the humidification duct (28), a bypass path of the humidification duct (28), or the vicinity of the outlet opening (28a) of the humidification duct (28). A control device (81) controls the electrostatic atomization unit (75). During humidification operation, the control device (81) causes the electrostatic atomization unit (75) to operate when the outdoor air is being supplied to the indoor via the humidification duct (28), or within a prescribed time after the supply of the outdoor air to the indoor has ended.

Description

空調室内機及び空気調和機Air conditioner indoor unit and air conditioner
 室内の空気調和を行う空調室内機及び空調室内機を備える空気調和機に関する。  Regarding an air conditioning indoor unit that performs indoor air conditioning and an air conditioner equipped with an air conditioning indoor unit.
 従来から、静電霧化ユニットが搭載された空調室内機が知られている。例えば、特許文献1(特開2014-20578号公報)に記載されているように、空調室内機の静電霧化ユニットは、空気中の水分を使って、放電によってイオンを含む液体微粒子を生成する。 Air conditioning indoor units equipped with electrostatic atomization units have been known for some time. For example, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-20578), an electrostatic atomization unit of an air conditioner indoor unit uses moisture in the air to generate liquid particles containing ions by electric discharge. do.
 特許文献1に記載されている空調室内機は、室内空気から液体微粒子を生成するため、室内空気の湿度が低く設定されている場合には、静電霧化ユニットにおいて液体微粒子の生成効率が悪くなる。 Since the air conditioning indoor unit described in Patent Document 1 generates liquid particles from indoor air, when the humidity of the indoor air is set low, the efficiency of generating liquid particles in the electrostatic atomization unit is low. Become.
 静電霧化ユニットを備える空調室内機には、静電霧化ユニットでの液体微粒子の生成効率を向上させるという課題がある。 Air conditioning indoor units equipped with electrostatic atomization units have the problem of improving the generation efficiency of liquid particles in the electrostatic atomization unit.
 第1観点の空調室内機は、室内の空気調和を行う空調室内機であって、ケーシングと、加湿ダクトと、静電霧化ユニットと、制御装置とを備える。加湿ダクトは、ケーシングの中に配置され、屋外の空気である外気を加湿して室内に供給するための出口を有する。静電霧化ユニットは、ケーシングの中に配置され、放電によるイオンを含む液体微粒子を放出する。制御装置は、静電霧化ユニットを制御する。制御装置は、加湿運転時において、外気が加湿ダクトを介して室内に供給されているときに、または外気の室内への供給が終了してから所定時間以内に、静電霧化ユニットを作動させる。 The air conditioning indoor unit of the first aspect is an air conditioning indoor unit that performs indoor air conditioning, and includes a casing, a humidification duct, an electrostatic atomization unit, and a control device. The humidification duct is arranged in the casing and has an outlet for humidifying outside air, which is outdoor air, and supplying it to the room. The electrostatic atomization unit is located within the casing and emits liquid particles containing ions by electrical discharge. A controller controls the electrostatic atomization unit. During the humidification operation, the control device operates the electrostatic atomization unit while the outside air is being supplied to the room through the humidification duct or within a predetermined time after the supply of the outside air to the room is finished. .
 第1観点の空調室内機では、外気に含まれる湿気を使って静電霧化ユニットで結露させ易くなり、イオンを含む水微粒子の発生効率が良くなる。加湿運転時において、外気が加湿ダクトを介して室内に供給されているときに、また、静電霧化ユニットを外気の供給終了後の所定時間以内に動作させることで、外気を更に加湿した空気を静電霧化ユニットが取り入れられ、外気の湿度が低い場合であっても、水微粒子の発生効率を高めることができる。 In the air conditioner indoor unit of the first point of view, the moisture contained in the outside air is used to easily cause condensation in the electrostatic atomization unit, and the generation efficiency of water particles containing ions is improved. In the humidification operation, when the outside air is supplied to the room through the humidification duct, and by operating the electrostatic atomization unit within a predetermined time after the supply of the outside air is completed, the outside air is further humidified. By incorporating an electrostatic atomization unit, it is possible to increase the efficiency of generating water particles even when the humidity of the outside air is low.
 第2観点の空調室内機は、第1観点の空調室内機であって、静電霧化ユニットは、給気部材の出口から100mm以内に配置されている。 The air conditioning indoor unit of the second aspect is the air conditioning indoor unit of the first aspect, and the electrostatic atomization unit is arranged within 100 mm from the outlet of the air supply member.
 第2観点の空調室内機では、給気部材の出口から吹き出される外気を多く含む空気を静電霧化ユニットに導くことができ、静電霧化ユニットで結露させ易くなる。 In the second aspect of the air conditioning indoor unit, air containing a large amount of outside air blown out from the outlet of the air supply member can be guided to the electrostatic atomization unit, making it easier for condensation to occur in the electrostatic atomization unit.
 第3観点の空調室内機は、第1観点または第2観点の空調室内機であって、ケーシングの中に配置され、室内空気及び外気と熱媒体との熱交換を行う熱交換器を備える。静電霧化ユニットは、熱交換器の上流に配置されている。 The air conditioning indoor unit of the third aspect is the air conditioning indoor unit of the first aspect or the second aspect, and is provided with a heat exchanger that is arranged in the casing and performs heat exchange between the indoor air, the outside air, and the heat medium. The electrostatic atomization unit is arranged upstream of the heat exchanger.
 第3観点の空調室内機では、熱交換器を通過する前の外気を静電霧化ユニットに取り入れることができ、静電霧化ユニットに取り入れる空気の絶対湿度が低下するのを防止することができる。 In the air conditioner indoor unit of the third aspect, the outside air before passing through the heat exchanger can be taken into the electrostatic atomization unit, and the absolute humidity of the air taken into the electrostatic atomization unit can be prevented from decreasing. can.
 第4観点の空調室内機は、第1観点から第3観点のいずれかの空調室内機であって、ケーシングの中に配置され、室内空気及び外気と熱媒体との熱交換を行う熱交換器を備え、加湿ダクトは、出口が熱交換器に対向するように配置されている。 An air conditioning indoor unit according to a fourth aspect is the air conditioning indoor unit according to any one of the first aspect to the third aspect, and is a heat exchanger arranged in a casing for exchanging heat between the indoor air, the outside air, and the heat medium. and the humidification duct is arranged with its outlet facing the heat exchanger.
 第5観点の空調室内機は、第1観点から第4観点のいずれかの空調室内機であって、静電霧化ユニットに取り入れられる外気が通過する給気フィルタを備える。 The air conditioning indoor unit according to the fifth aspect is the air conditioning indoor unit according to any one of the first aspect to the fourth aspect, and includes an air supply filter through which outside air taken into the electrostatic atomization unit passes.
 第5観点の空調室内機では、静電霧化ユニットに、外気に混じって例えば花粉などの微粒子が取り込まれるのを給気フィルタで防ぐことができるので、微粒子によって放電に異常が発生するのを抑制することができる。 In the air conditioner indoor unit of the fifth aspect, the air supply filter can prevent fine particles such as pollen from being mixed with the outside air and taken into the electrostatic atomization unit. can be suppressed.
 第6観点の空調室内機は、第5観点の空調室内機であって、静電霧化ユニットは、給気部材の出口の下流に配置されている。給気フィルタは、給気部材の出口の近傍に配置されている。 The air conditioning indoor unit of the sixth aspect is the air conditioning indoor unit of the fifth aspect, and the electrostatic atomization unit is arranged downstream of the outlet of the air supply member. The air supply filter is arranged near the outlet of the air supply member.
 第6観点の空調室内機では、給気フィルタを、給気部材の出口の近傍に配置することにより、給気フィルタを小型化することができ、給気フィルタによって空気調和の効率が低下するのを防止することができる。 In the air conditioning indoor unit of the sixth aspect, the air supply filter can be downsized by arranging the air supply filter in the vicinity of the outlet of the air supply member, and the air supply filter does not reduce the efficiency of air conditioning. can be prevented.
 第7観点の空気調和機は、第1観点から第6観点のいずれかに記載の空調室内機と、空調室内機に接続され、空調室内機とともに蒸気圧縮式冷凍サイクルを実施する冷媒回路を構成する空調室外機と、空調室外機と一体化され、加湿ダクトで供給される外気を加湿する加湿器とを備える。 An air conditioner according to a seventh aspect is the air conditioner indoor unit according to any one of the first aspect to the sixth aspect, and is connected to the air conditioner indoor unit to form a refrigerant circuit that implements a vapor compression refrigeration cycle together with the air conditioner indoor unit. and a humidifier that is integrated with the air conditioner outdoor unit and humidifies the outside air supplied by the humidification duct.
 第8観点の空気調和機は、第1観点から第6観点のいずれかに記載の空調室内機と、加湿ダクトで供給される外気を加湿する加湿器とを備え、加湿器は、外気の水分を吸着する吸着ロータと吸着ロータから水分を脱離させるためのヒータとを有し、吸着ロータとヒータによって加湿ダクトで供給される外気に水分を付与する。 An air conditioner according to an eighth aspect includes the air conditioner indoor unit according to any one of the first aspect to the sixth aspect, and a humidifier that humidifies the outside air supplied by the humidification duct, wherein the humidifier contains moisture in the outside air. and a heater for desorbing moisture from the adsorption rotor. The adsorption rotor and the heater add moisture to the outside air supplied through the humidification duct.
実施形態に係る空調室内機を含む空気調和機を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows the air conditioner containing the air-conditioning indoor unit which concerns on embodiment. 実施形態に係る空調室内機の断面図である。It is a sectional view of an air-conditioning indoor unit concerning an embodiment. 実施形態に係る空調室内機の分解斜視図である。It is an exploded perspective view of an air-conditioning indoor unit concerning an embodiment. 図1の空調システムが有する冷媒回路と空気流路とを説明するための図である。FIG. 2 is a diagram for explaining a refrigerant circuit and an air flow path included in the air conditioning system of FIG. 1; (a)実施形態に係る空調室内機の一部を破断した部分破断平面図である。(b)実施形態に係る空調室内機の一部を破断した部分破断正面図である。(a) It is the partially broken plan view which fracture|ruptured a part of air-conditioning indoor unit which concerns on embodiment. (b) It is the partially broken front view which fracture|ruptured a part of air-conditioning indoor unit which concerns on embodiment. 実施形態に係る静電霧化ユニットの配置位置を説明するための空調室内機の模式的な断面図である。Fig. 3 is a schematic cross-sectional view of the air conditioner indoor unit for explaining the arrangement position of the electrostatic atomization unit according to the embodiment; 加湿ダクトの外観を示す正面図である。It is a front view which shows the external appearance of a humidification duct. 加湿ダクトの外観を示す側面図である。It is a side view which shows the external appearance of a humidification duct. 加湿ダクトの外観を示す背面図である。It is a rear view which shows the external appearance of a humidification duct. 図7のI-I線で切断した加湿ダクトの断面図である。FIG. 8 is a cross-sectional view of the humidifying duct cut along line II of FIG. 7; 静電霧化装置の構成の概要を示す模式図である。It is a schematic diagram which shows the outline|summary of a structure of an electrostatic atomizer. 静電霧化ユニットの構成の概要を示す模式的な断面図である。Fig. 2 is a schematic cross-sectional view showing the outline of the configuration of the electrostatic atomization unit; 実施形態に係る静電霧化ユニットの加湿運転時の制御を説明するためのフローチャートである。4 is a flowchart for explaining control during humidification operation of the electrostatic atomization unit according to the embodiment. 実施形態に係る静電霧化ユニットの換気運転時の制御を説明するためのフローチャートである。4 is a flowchart for explaining control during ventilation operation of the electrostatic atomization unit according to the embodiment. 変形例Aに係る静電霧化ユニットの配置位置を説明するための空調室内機の模式的な断面図である。FIG. 7 is a schematic cross-sectional view of an air conditioner indoor unit for explaining the arrangement position of an electrostatic atomization unit according to Modification A; 変形例Bに係る加湿ダクト及び静電霧化装置を示す斜視図である。FIG. 11 is a perspective view showing a humidifying duct and an electrostatic atomizer according to modification B; 変形例Cに係る加湿ダクト及び静電霧化ユニットを示す断面図である。FIG. 10 is a cross-sectional view showing a humidifying duct and an electrostatic atomization unit according to modification C; 変形例Cに係る加湿ダクト及び静電霧化ユニットを示す斜視図である。FIG. 11 is a perspective view showing a humidifying duct and an electrostatic atomization unit according to modification C; 変形例Eに係る静電霧化ユニットの配置位置を説明するための空調室内機の模式的な断面図である。FIG. 7 is a schematic cross-sectional view of an air conditioner indoor unit for explaining the arrangement position of an electrostatic atomization unit according to Modification E. FIG. 変形例Fに係る静電霧化ユニットの制御を説明するためのフローチャートである。9 is a flowchart for explaining control of an electrostatic atomization unit according to Modification F. FIG. 変形例Gに係る静電霧化ユニットの制御を説明するためのフローチャートである。10 is a flowchart for explaining control of the electrostatic atomization unit according to Modification G. FIG.
 (1)空調システムの構成の概要
 (1-1)空調システムの全体構成の概要
 図1に示されているように、実施形態に係る空調室内機2は、空調システム1に適用されている。空調システム1は、空調室内機2と空調室外機4と加湿器6とを備えている。なお、以下の説明では、図1、図2及び図6に示されている「上」、「下」、「前」、「後」という表現を用いて、それぞれの矢印の方向を説明する場合がある。また、図4及び図6には、太い矢印で空気の流れが示されている。この空調システム1の運転モードには、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転、換気運転及び空気清浄運転がある。空調システム1は、図4に示されているように、空調室内機2及び加湿器6を制御する制御部8を備えている。
(1) Outline of Configuration of Air Conditioning System (1-1) Outline of Overall Configuration of Air Conditioning System As shown in FIG. The air conditioning system 1 includes an air conditioning indoor unit 2 , an air conditioning outdoor unit 4 and a humidifier 6 . In the following description, the expressions "top", "bottom", "front", and "back" shown in FIGS. 1, 2 and 6 are used to describe the direction of each arrow. There is Further, in FIGS. 4 and 6, thick arrows indicate the flow of air. The operation modes of the air conditioning system 1 include, for example, a cooling operation, a heating operation, a dehumidifying operation, a humidifying operation, an air blowing operation, a ventilation operation, and an air cleaning operation. The air conditioning system 1 includes a controller 8 that controls the air conditioning indoor unit 2 and the humidifier 6, as shown in FIG.
 空調室内機2は、部屋RMに対して設置され(図1参照)、部屋RMの中(室内)の空気調和を行う。図1及び図4に示されているように、空調室内機2は、空調システム1の空気調和機10に含まれている。空気調和機10は、空調室内機2と空調室外機4とを備えている。空調室内機2と空調室外機4とは、冷媒連絡管11,12で接続されている。空調室内機2と空調室外機4と冷媒連絡管11,12とは冷媒回路13を構成している。空調システム1は、加湿器6を用いなくても、空調室内機2と空調室外機4(空気調和機10)を用いることで、例えば、冷房運転、暖房運転、除湿運転、送風運転及び空気清浄運転を行うことができる。冷媒回路13では、例えば、冷房運転、暖房運転及び除湿運転の際に、蒸気圧縮式冷凍サイクルが繰り返される。空調室内機2と空調室外機4は、制御部8により制御される。 The air conditioning indoor unit 2 is installed in the room RM (see FIG. 1) and performs air conditioning in the room RM (indoor). As shown in FIGS. 1 and 4 , the air conditioning indoor unit 2 is included in the air conditioner 10 of the air conditioning system 1 . The air conditioner 10 includes an air conditioner indoor unit 2 and an air conditioner outdoor unit 4 . The air conditioner indoor unit 2 and the air conditioner outdoor unit 4 are connected by refrigerant communication pipes 11 and 12 . The air conditioning indoor unit 2 , the air conditioning outdoor unit 4 , and the refrigerant communication pipes 11 and 12 form a refrigerant circuit 13 . The air conditioning system 1 can perform, for example, a cooling operation, a heating operation, a dehumidification operation, a ventilation operation, and an air cleaning operation by using the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 (air conditioner 10) without using the humidifier 6. can drive. In the refrigerant circuit 13, for example, the vapor compression refrigeration cycle is repeated during cooling operation, heating operation, and dehumidification operation. The air conditioning indoor unit 2 and the air conditioning outdoor unit 4 are controlled by the control unit 8 .
 本実施形態では、空調室内機2が部屋RMの壁WLに取り付けられて設置される場合について説明する。しかし、空調室内機2のタイプは、部屋RMの壁WLに設置されるタイプに限られるものではない。空調室内機2は、例えば、天井CIまたは床FLに設置されるものであってもよい。 In this embodiment, the case where the air conditioning indoor unit 2 is attached to the wall WL of the room RM will be described. However, the type of the air conditioning indoor unit 2 is not limited to the type installed on the wall WL of the room RM. The air conditioner indoor unit 2 may be installed, for example, on the ceiling CI or the floor FL.
 空調室内機2は、図2に示されているように、熱交換器21を有している。空調室内機2は、熱交換器21に空気を通して空気の熱交換を行う。熱交換器21は、複数の伝熱フィン21aと複数の伝熱管21bとを有している。熱交換器21においては、複数の伝熱フィン21aの間を空気が通過する。また、熱交換の際には、複数の伝熱フィン21aの間を空気が通過すると同時に、伝熱管21bの中を冷媒が流れる。伝熱管21bの中を流れる冷媒は、熱媒体の一種である。伝熱管21bは、複数回折り返されていて各伝熱フィン21aを複数回貫通するように、複数の伝熱フィン21aと熱的に接続されている。 The air conditioner indoor unit 2 has a heat exchanger 21 as shown in FIG. The air conditioner indoor unit 2 performs heat exchange of the air by passing the air through the heat exchanger 21 . The heat exchanger 21 has a plurality of heat transfer fins 21a and a plurality of heat transfer tubes 21b. In the heat exchanger 21, air passes between the heat transfer fins 21a. During heat exchange, the air passes through the heat transfer fins 21a and the refrigerant flows through the heat transfer tubes 21b. The refrigerant flowing through the heat transfer tubes 21b is a kind of heat medium. The heat transfer tube 21b is thermally connected to the plurality of heat transfer fins 21a so as to be folded back a plurality of times and penetrate each heat transfer fin 21a a plurality of times.
 空調システム1は、空調室内機2及び空調室外機4とともに、図1及び図4に示されている加湿器6を用いることで、例えば、加湿運転及び換気運転を行うことができる。言い換えると、このような構成の空調システム1の空調室内機2は、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転、換気運転及び空気清浄運転に対応した運転ができるということである。加湿器6は、空調室内機2を介して室内に連通している給排気ホース68を有している。空調室内機2は、加湿器6により、給排気ホース68を通じて部屋RMの中(室内)に供給される水分で、室内の湿度を上げる加湿を行うことができる。また、空調室内機2は、加湿器6により、給排気ホース68を通じて部屋RMの中(室内)に供給される外気で、部屋RMの換気を行うことができる。本開示において説明する外気は、屋外ODの空気である。 By using the humidifier 6 shown in FIGS. 1 and 4 together with the air conditioning indoor unit 2 and the air conditioning outdoor unit 4, the air conditioning system 1 can perform, for example, humidification operation and ventilation operation. In other words, the air-conditioning indoor unit 2 of the air-conditioning system 1 configured as described above can perform operations corresponding to, for example, cooling operation, heating operation, dehumidification operation, humidification operation, ventilation operation, ventilation operation, and air cleaning operation. be. The humidifier 6 has an air supply/exhaust hose 68 that communicates with the room via the air conditioning indoor unit 2 . The air conditioning indoor unit 2 can humidify the room by increasing the humidity in the room RM with the moisture supplied into the room RM through the air supply/exhaust hose 68 by the humidifier 6 . In addition, the air conditioning indoor unit 2 can ventilate the room RM with the outside air supplied into the room RM (inside the room) through the air supply/exhaust hose 68 by the humidifier 6 . The ambient air described in this disclosure is outdoor OD air.
 空調システム1の制御部8は、空調室内機2を制御する制御装置81と、空調室外機4と加湿器6とを制御する室外制御板82とを含んでいる。制御装置81及び室外制御板82は、それぞれ、例えば、マイクロコンピュータにより実現されるコントローラである。例えば、制御装置81は、タイマ81aと制御演算装置81bと記憶装置81cとを備える。制御演算装置81bには、CPUまたはGPUといったプロセッサを使用できる。制御演算装置81bは、記憶装置81cに記憶されているプログラムを読み出し、このプログラムに従って、例えば所定のシーケンス処理及び演算処理を行う。さらに、制御演算装置81bは、プログラムに従って、演算結果を記憶装置81cに書き込んだり、記憶装置81cに記憶されている情報を読み出したりすることができる。 The control unit 8 of the air conditioning system 1 includes a control device 81 that controls the air conditioning indoor unit 2 and an outdoor control plate 82 that controls the air conditioning outdoor unit 4 and the humidifier 6 . The control device 81 and the outdoor control board 82 are controllers implemented by, for example, microcomputers. For example, the control device 81 includes a timer 81a, a control arithmetic device 81b, and a storage device 81c. A processor such as a CPU or GPU can be used for the control arithmetic unit 81b. The control arithmetic device 81b reads a program stored in the storage device 81c, and performs, for example, predetermined sequence processing and arithmetic processing according to this program. Furthermore, the control arithmetic device 81b can write the arithmetic result to the storage device 81c and read the information stored in the storage device 81c according to the program.
 (1-2)空調室内機の静電霧化ユニットの配置
 空調室内機2は、図4に示されている静電霧化ユニット75を備えている。静電霧化ユニット75は、放電によるイオンを含む液体微粒子を放出する装置である。静電霧化ユニット75は、図4に示されている給気部材である加湿ダクト28の出口の近傍に配置されている。加湿ダクト28は、外気を流すことが可能な部材である。静電霧化ユニット75が給気部材である加湿ダクト28の出口の近傍に配置されているというのは、言い換えると、加湿ダクト28で給気される空気が静電霧化ユニット75に流れるということである。なお、本実施形態で加湿ダクト28の出口は、吹出開口28aにある(図10参照)。
(1-2) Arrangement of Electrostatic Atomization Unit of Air Conditioner Indoor Unit The air conditioner indoor unit 2 includes an electrostatic atomization unit 75 shown in FIG. The electrostatic atomization unit 75 is a device that emits liquid particles containing ions by electric discharge. The electrostatic atomization unit 75 is arranged near the exit of the humidification duct 28, which is the air supply member shown in FIG. The humidification duct 28 is a member that allows outside air to flow. The fact that the electrostatic atomization unit 75 is arranged in the vicinity of the outlet of the humidification duct 28 which is an air supply member means that the air supplied by the humidification duct 28 flows to the electrostatic atomization unit 75 . That is. In addition, in this embodiment, the outlet of the humidification duct 28 is located at the blow-out opening 28a (see FIG. 10).
 空調室内機2は、ケーシング23を備えている。ここで説明する空調室内機2のケーシング23は、図3に示されているように、フレーム23fとグリル23gと前面パネル23pとを有している。空調室内機2のケーシング23の構成は、ここで説明する構成には限られない。例えば、前面パネル23pとグリル23gが一体化されていてもよい。このケーシング23は、長手方向D1に沿って長く延びている。長手方向D1におけるケーシング23の一端E1は、正面からケーシング23を見て左手になり、長手方向D1におけるケーシング23の他端E2は、正面からケーシング23を見て右手になる。本開示において、ケーシング23の長手方向D1の中央CEよりも一端E1に近い側を一端側、中央CEよりも他端E2に近い側を他端側という。言い換えると、ケーシング23の中央CEと一端E1との間の領域が一端側であり、中央CEと他端E2との間の領域が他端側である。外気は、一端側に給排気ホース68によって供給される。その結果、ケーシング23の長手方向D1における一端側が給気流路R1になる。図4において、一点鎖線の太い矢印で外気の流れが示されている。ケーシング23の長手方向D1における他端側には、給排気ホース68からの外気の供給がないため、この他端側が給気流路以外の流路R2になる。静電霧化ユニット75は、給気流路R1に配置されている。 The air conditioning indoor unit 2 includes a casing 23. The casing 23 of the air conditioning indoor unit 2 described here has a frame 23f, a grille 23g, and a front panel 23p, as shown in FIG. The configuration of the casing 23 of the air conditioning indoor unit 2 is not limited to the configuration described here. For example, the front panel 23p and the grille 23g may be integrated. This casing 23 extends long along the longitudinal direction D1. One end E1 of the casing 23 in the longitudinal direction D1 is on the left when the casing 23 is viewed from the front, and the other end E2 of the casing 23 in the longitudinal direction D1 is on the right when the casing 23 is viewed from the front. In the present disclosure, the side closer to the one end E1 than the center CE in the longitudinal direction D1 of the casing 23 is called the one end side, and the side closer to the other end E2 than the center CE is called the other end side. In other words, the area between the center CE of the casing 23 and the one end E1 is the one end side, and the area between the center CE and the other end E2 is the other end side. Outside air is supplied to one end by an air supply/exhaust hose 68 . As a result, one end of the casing 23 in the longitudinal direction D1 becomes the air supply passage R1. In FIG. 4 , the flow of outside air is indicated by a thick dashed-dotted arrow. Since the outside air is not supplied from the air supply/exhaust hose 68 to the other end side of the casing 23 in the longitudinal direction D1, this other end side becomes a flow path R2 other than the air supply flow path. The electrostatic atomization unit 75 is arranged in the air supply passage R1.
 (2)詳細構成
 (2-1)空調室内機
 図2、図4及び図6に示されているように、空調室内機2は、熱交換器21と、ファン22と、ケーシング23と、エアフィルタ24と、ドレンパン26と、水平フラップ27と、垂直フラップ(図示せず)と、加湿ダクト28と、静電霧化ユニット75を含む静電霧化装置70(図11参照)とを備えている。また、空調室内機2は、室内温度センサ31と、室内湿度センサ32とを備えている。室内温度センサ31と室内湿度センサ32は、制御装置81に接続されている。
(2) Detailed configuration (2-1) Air conditioning indoor unit As shown in FIGS. 2, 4 and 6, the air conditioning indoor unit 2 includes a heat exchanger 21, a fan 22, a casing 23, Equipped with a filter 24, a drain pan 26, a horizontal flap 27, a vertical flap (not shown), a humidification duct 28, and an electrostatic atomizer 70 (see FIG. 11) including an electrostatic atomizer unit 75. there is The air conditioning indoor unit 2 also includes an indoor temperature sensor 31 and an indoor humidity sensor 32 . The indoor temperature sensor 31 and the indoor humidity sensor 32 are connected to the controller 81 .
 吸込口23aから吹出口23bに向う通風路FPにおいて、ファン22の上流に熱交換器21が配置されている。熱交換器21は、伝熱管21bの延びる方向に見て(側面視において)、ファン22の上方を覆うように、下に向って開いた形状を呈する。ここでは、このような形状をΛ形状またはC字形状と呼ぶ。熱交換器21は、壁WLから遠い第1熱交換部21Fと壁WLに近い第2熱交換部21Rを有している。Λ形状またはC字形状の熱交換器21の第1熱交換部21Fの下部及び第2熱交換部21Rの下部の下に、ドレンパン26が配置されている。熱交換器21のうちの第1熱交換部21Fで発生した結露は、熱交換器21の前方下部に配置されているドレンパン26で受け止められる。熱交換器21のうちの第2熱交換部21Rで発生した結露は、熱交換器21の後方下部に配置されているドレンパン26で受け止められる。 The heat exchanger 21 is arranged upstream of the fan 22 in the ventilation passage FP from the suction port 23a to the blowout port 23b. The heat exchanger 21 has a downwardly open shape so as to cover the upper side of the fan 22 when viewed in the direction in which the heat transfer tubes 21b extend (when viewed from the side). Here, such a shape is called a Λ shape or a C shape. The heat exchanger 21 has a first heat exchange section 21F far from the wall WL and a second heat exchange section 21R close to the wall WL. A drain pan 26 is arranged under the lower portion of the first heat exchange portion 21F and the lower portion of the second heat exchange portion 21R of the Λ-shaped or C-shaped heat exchanger 21 . Condensation generated in the first heat exchange section 21</b>F of the heat exchanger 21 is received by the drain pan 26 arranged in the lower front portion of the heat exchanger 21 . Condensation generated in the second heat exchange section 21R of the heat exchanger 21 is received by the drain pan 26 arranged in the rear lower portion of the heat exchanger 21 .
 吹出口23bには、水平フラップ27及び垂直フラップが配置されている。水平フラップ27は、吹出口23bから吹出される空気の風向を上下に変更する。そのため、水平フラップ27は、モータ27mにより、水平方向とのなす角を変更することができるように構成されている。垂直フラップは、吹出口23bから吹出される空気の風向を左右に変更することができるように構成されている。空調室内機2は、例えば、垂直フラップをモータ(図示せず)で前後方向とのなす角を変更するように駆動する。 A horizontal flap 27 and a vertical flap are arranged at the outlet 23b. The horizontal flap 27 vertically changes the direction of the air blown from the outlet 23b. Therefore, the horizontal flap 27 is configured so that the angle formed with the horizontal direction can be changed by a motor 27m. The vertical flap is configured to be able to change the direction of the air blown out from the outlet 23b to the left or right. The air conditioning indoor unit 2 drives, for example, a vertical flap with a motor (not shown) so as to change the angle formed with the front-rear direction.
 ケーシング23の中の吸込口23aの下流且つ熱交換器21の上流には、エアフィルタ24が配置されている。熱交換器21に供給される室内空気は、実質的に全てエアフィルタ24を通過する。従って、エアフィルタ24の網目よりも大きな塵埃は、エアフィルタ24で除去されるので熱交換器21には到達しない。 An air filter 24 is arranged downstream of the suction port 23 a in the casing 23 and upstream of the heat exchanger 21 . Substantially all of the room air supplied to the heat exchanger 21 passes through the air filter 24 . Therefore, dust particles larger than the mesh of the air filter 24 are removed by the air filter 24 and do not reach the heat exchanger 21 .
 空調室内機2は、ケーシング23の中に、給気部材として、加湿ダクト28を備えている。図5に示されているように、加湿ダクト28は、ケーシング23の長手方向D1の一端側に配置され、ケーシング23の一端側に形成されている給気流路R1に含まれている。加湿ダクト28においては、吹出開口28aが熱交換器21に対向するように配置されている(図6参照)。空調室内機2が換気運転を行っているときには、加湿ダクト28からは、外気が吹き出される。換気運転のときには、加湿器6における加湿動作が停止されており、加湿器6から給排気ホース68を通じて加湿ダクト28に外気がそのまま送られる。空調室内機2が加湿運転を行っているときには、加湿ダクト28からは、加湿された外気が吹き出される。加湿運転のときには、加湿器6における加湿動作が行われており、加湿器6から給排気ホース68を通じて加湿ダクト28に加湿された外気が送られる。加湿ダクト28には、ダクトフィルタ28bが設けられている。給排気ホース68を通じて送られてきた外気はダクトフィルタ28bを通過してケーシング23の中に吹出される。 The air conditioning indoor unit 2 includes a humidification duct 28 as an air supply member inside the casing 23 . As shown in FIG. 5, the humidification duct 28 is arranged on one end side of the casing 23 in the longitudinal direction D1 and is included in the air supply flow path R1 formed on the one end side of the casing 23 . In humidification duct 28, outlet opening 28a is arranged to face heat exchanger 21 (see FIG. 6). Outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the ventilation operation. During the ventilation operation, the humidifying operation in the humidifier 6 is stopped, and outside air is sent from the humidifier 6 through the air supply/exhaust hose 68 to the humidification duct 28 as it is. Humidified outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the humidification operation. During humidification operation, humidification operation is performed in the humidifier 6 , and humidified outside air is sent from the humidifier 6 to the humidification duct 28 through the air supply/exhaust hose 68 . The humidification duct 28 is provided with a duct filter 28b. Outside air sent through the air supply/exhaust hose 68 is blown out into the casing 23 through the duct filter 28b.
 静電霧化ユニット75は、静電霧化装置70の中に配置されている(図11参照)。静電霧化ユニット75は、加湿ダクト28の出口である吹出開口28aから100mm以内に配置されることが好ましい。図5及び図6に示されている二点鎖線で示されている領域AR1が吹出開口28aから100mm以内の領域である。本実施形態では、領域AR1の中の加湿ダクト28の表面に取り付けられた静電霧化装置70の中に静電霧化ユニット75が配置されている。静電霧化装置70及び静電霧化ユニット75は、熱交換器21の上流に配置されている。 The electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 (see FIG. 11). The electrostatic atomization unit 75 is preferably arranged within 100 mm from the outlet opening 28 a of the humidifying duct 28 . An area AR1 indicated by a two-dot chain line shown in FIGS. 5 and 6 is an area within 100 mm from the blow-out opening 28a. In this embodiment, an electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 attached to the surface of the humidification duct 28 in the area AR1. The electrostatic atomizer 70 and the electrostatic atomizer unit 75 are arranged upstream of the heat exchanger 21 .
 空調室内機2の中に配置されている制御装置81は、図4に示されているように、ファン22のモータ22m及び水平フラップ27のモータ27mに接続されている。制御装置81は、ファン22のモータ22mの回転数及び水平フラップのモータ27mの回転角度を制御することができる。制御装置81は、空調室外機4の中に配置されている室外制御板82(図4参照)に接続されている。ここでは、タイマ81aと制御演算装置81bと記憶装置81cとを制御装置81が有している場合について説明するが、タイマ81aと制御演算装置81bと記憶装置81cとは、制御部8の他の箇所に設けられてもよい。例えば、タイマ81aと制御演算装置81bと記憶装置81cとは、室外制御板82に設けられてもよい。制御装置81は、室内温度センサ31により室内空気の温度を検知することができ、室内湿度センサ32により室内空気の相対湿度を検知することができる。制御装置81は、タイマ81aを使って静電霧化装置70のオンオフのタイミングを設定することができる。 The control device 81 arranged in the air conditioning indoor unit 2 is connected to the motor 22m of the fan 22 and the motor 27m of the horizontal flap 27, as shown in FIG. The control device 81 can control the number of rotations of the motor 22m of the fan 22 and the rotation angle of the motor 27m of the horizontal flap. The control device 81 is connected to an outdoor control plate 82 (see FIG. 4) arranged inside the air conditioner outdoor unit 4 . Here, a case where the control device 81 has a timer 81a, a control arithmetic device 81b, and a storage device 81c will be described. It may be provided in place. For example, the timer 81a, the control arithmetic device 81b, and the storage device 81c may be provided on the outdoor control board 82. FIG. The control device 81 can detect the temperature of the indoor air with the indoor temperature sensor 31 and the relative humidity of the indoor air with the indoor humidity sensor 32 . The controller 81 can set the on/off timing of the electrostatic atomizer 70 using the timer 81a.
 (2-1―1)加湿ダクト
 加湿ダクト28は、図7、図8、図9及び図10に示されているように、吹出開口28a、ダクトフィルタ28b、幅広部28c、接続部28d及び給気開口28eを有している。円筒状の接続部28dに給排気ホース68が接続される。接続部28dの先端の給気開口28eからは、給排気ホース68を通じて外気が流れ込む。接続部28dの下流には、接続部28dよりも長手方向D1(左右方向)に広がっている幅広部28cが配置されている。幅広部28cには、ダクトフィルタ28bが抜き差し可能に取り付けられている。空調室内機2の前面パネル23pを開けて、ダクトフィルタ28bをケーシング23から前方に向かって引き抜くことができる。幅広部28cにおいて、ダクトフィルタ28bの下流には、吹出開口28aが形成されている。吹出開口28aは、熱交換器21に対向している。本実施形態の空調室内機2では、エアフィルタ24よりも下に吹出開口28aが配置され、吹出開口28aから吹き出された外気は、エアフィルタ24を通過することなく、熱交換器21に流れ込む。ファン22が長手方向D1に対して垂直な方向に空気の流れを生じさせるため、ケーシング23の一端側に加湿ダクト28から吹出された外気は、給気流路R1を流れ、他の流路R2には流れない。
(2-1-1) Humidification Duct As shown in FIGS. 7, 8, 9 and 10, the humidification duct 28 includes a blowout opening 28a, a duct filter 28b, a wide portion 28c, a connection portion 28d, and a feeder. It has an air opening 28e. A supply/exhaust hose 68 is connected to the cylindrical connecting portion 28d. Outside air flows through the air supply/exhaust hose 68 from the air supply opening 28e at the tip of the connection portion 28d. A wide portion 28c that is wider in the longitudinal direction D1 (horizontal direction) than the connecting portion 28d is arranged downstream of the connecting portion 28d. A duct filter 28b is detachably attached to the wide portion 28c. By opening the front panel 23p of the air conditioning indoor unit 2, the duct filter 28b can be pulled out from the casing 23 forward. A blowout opening 28a is formed downstream of the duct filter 28b in the wide portion 28c. Blow-out opening 28 a faces heat exchanger 21 . In the air conditioning indoor unit 2 of the present embodiment, the blowout opening 28a is arranged below the air filter 24, and the outside air blown out from the blowout opening 28a flows into the heat exchanger 21 without passing through the air filter 24. Since the fan 22 generates an air flow in a direction perpendicular to the longitudinal direction D1, the outside air blown out from the humidification duct 28 to one end side of the casing 23 flows through the air supply flow path R1 and then into the other flow path R2. does not flow.
 加湿ダクト28には、給気湿度センサ33が取り付けられている。図9に示されている例では、給気湿度センサ33が、吹出開口28aに取り付けられている。給気湿度センサ33は、加湿ダクト28で供給される外気の相対湿度を測定する。給気湿度センサ33は、制御装置81に接続され、検出した外気の相対湿度のデータを制御装置81に送信する。 A supply air humidity sensor 33 is attached to the humidification duct 28 . In the example shown in FIG. 9, the supply air humidity sensor 33 is attached to the outlet opening 28a. The supply air humidity sensor 33 measures the relative humidity of the outside air supplied by the humidification duct 28 . The supply air humidity sensor 33 is connected to the control device 81 and transmits data of the detected outside air relative humidity to the control device 81 .
 (2-1―2)静電霧化装置
 静電霧化ユニット75は、図11に示されているように、静電霧化装置70の中に配置されている。静電霧化装置70は、例えば、筐体71、吸入口72a、放出口72b、送風装置74及び高圧トランス73を備えている。静電霧化装置70は、加湿ダクト28の上部の表面に取り付けられている。ここでは、静電霧化装置70は、加湿ダクト28の上部の表面に取り付けられている場合を例に挙げて説明しているが、加湿ダクト28の取り付け位置は、加湿ダクト28の後面であってもよく、側面であってもよい。放出口72bは、静電霧化装置70の筐体71の上部に配置されている。ここでは、吸入口72aは、筐体71の中の加湿ダクト28の吹出開口28aに隣接する面に配置されている。ここでは、吸入口72aが筐体71の後部に配置されているが、筐体71の他の部分、例えば筐体71の長手方向の端面に配置されてもよい。静電霧化装置70の放出口72bは、エアフィルタ24の下流に配置されている。吸入口72aは、ケーシング23の通風路FPから空気を吸入している。吸入口72aから吸入した空気を、筐体71の中の静電霧化ユニット75を通して、放出口72bから放出するために、静電霧化装置70は、筐体71の中に送風装置74を備えていることが好ましい。しかし、送風装置74が無くても筐体71の中に気流が生じる場合には、送風装置74を省いてもよい。
(2-1-2) Electrostatic atomization device The electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 as shown in FIG. The electrostatic atomizer 70 includes, for example, a housing 71, an inlet 72a, an outlet 72b, a blower 74, and a high-voltage transformer 73. The electrostatic atomizer 70 is attached to the upper surface of the humidification duct 28 . Here, the case where the electrostatic atomizer 70 is attached to the upper surface of the humidification duct 28 is described as an example. It may be on the side. The discharge port 72b is arranged at the top of the housing 71 of the electrostatic atomizer 70 . Here, the suction port 72a is arranged on the surface of the housing 71 adjacent to the blowout opening 28a of the humidification duct 28 . Although the suction port 72a is arranged in the rear part of the housing 71 here, it may be arranged in another part of the housing 71, for example, on the end surface of the housing 71 in the longitudinal direction. A discharge port 72 b of the electrostatic atomizer 70 is arranged downstream of the air filter 24 . The intake port 72 a sucks air from the ventilation passage FP of the casing 23 . The electrostatic atomizer 70 includes a blower 74 in the housing 71 so that the air sucked from the suction port 72a passes through the electrostatic atomization unit 75 in the housing 71 and is discharged from the discharge port 72b. It is preferable to have However, if airflow is generated in the housing 71 without the blower 74, the blower 74 may be omitted.
 静電霧化ユニット75は、図12に示されているように、放電電極78に結露した水分を、放電により、イオンを含む水微粒子77に変えて放出する。放電電極78で高電圧放電を発生させるために、高圧トランス73によって放電電極78と対向電極79との間に高電圧が印加される。放電電極78に生じる放電現象により、放電電極78の上の水分がナノメートルサイズの微粒子となって帯電し、静電ミストが発生する。 As shown in FIG. 12, the electrostatic atomization unit 75 converts water condensed on the discharge electrode 78 into water fine particles 77 containing ions by discharging and emits the water. A high voltage is applied between the discharge electrode 78 and the counter electrode 79 by the high voltage transformer 73 in order to generate a high voltage discharge at the discharge electrode 78 . Due to the discharge phenomenon that occurs in the discharge electrode 78, the moisture on the discharge electrode 78 turns into nanometer-sized fine particles and is charged, generating electrostatic mist.
 静電霧化ユニット75は、放電電極78に結露水を発生させるために、例えば、冷却素子76を備えている。冷却素子76は、放熱面76aと冷却面76bとを有する。放熱面76aには、例えば、放熱部76cが熱的に接続されている。放熱部76cには、例えば放熱フィンを用いることができる。冷却面76bは、電気絶縁材(図示せず)を介して放電電極78に熱的に接続されている。冷却面76bに立てて設置されている放電電極78は、対向電極40から所定距離だけ話して配置されている。冷却素子76には、例えばペルチェ素子がある。冷却素子76は複数設けられてもよい。冷却素子76がペルチェ素子である場合、ペルチェ素子に直流電流を流すと、冷却面76bで吸熱が発生し、放熱面76aで発熱が発生するので、冷却面76bに熱的に接続されている放電電極78の温度が低下する。放電電極78の温度が、吸入口72aから吸入した空気の露点温度よりも低下すると、放電電極78で結露が生じる。放電電極78を高圧トランス73のマイナス側に、対向電極79を高圧トランス73のプラス側に接続することで、水微粒子77にマイナスイオンが生じ、放電電極78で生じる静電ミストは、負に帯電する。 The electrostatic atomization unit 75 is equipped with, for example, a cooling element 76 in order to generate condensed water on the discharge electrode 78 . The cooling element 76 has a heat dissipation surface 76a and a cooling surface 76b. For example, a heat dissipation portion 76c is thermally connected to the heat dissipation surface 76a. A heat radiation fin, for example, can be used for the heat radiation portion 76c. The cooling surface 76b is thermally connected to the discharge electrode 78 via an electrical insulator (not shown). The discharge electrode 78 installed upright on the cooling surface 76b is arranged to be separated from the counter electrode 40 by a predetermined distance. The cooling element 76 is, for example, a Peltier element. A plurality of cooling elements 76 may be provided. When the cooling element 76 is a Peltier element, when a direct current is passed through the Peltier element, the cooling surface 76b absorbs heat and the heat radiation surface 76a generates heat. The temperature of electrode 78 decreases. When the temperature of the discharge electrode 78 drops below the dew point temperature of the air sucked from the suction port 72a, dew condensation occurs on the discharge electrode 78 . By connecting the discharge electrode 78 to the negative side of the high-voltage transformer 73 and connecting the counter electrode 79 to the positive side of the high-voltage transformer 73, negative ions are generated in the water particles 77, and the electrostatic mist generated by the discharge electrode 78 is negatively charged. do.
 (2-2)空調室外機
 空調室外機4は、図4に示されているように、圧縮機41と四方弁42とアキュムレータ43と室外熱交換器44と室外膨張弁45と室外ファン46とハウジング47とを備えている。圧縮機41と四方弁42とアキュムレータ43と室外熱交換器44と室外膨張弁45と室外ファン46とは、ハウジング47の中に収納されている。ハウジング47は、外気を吸い込む後方開口部47a(図4参照)と、熱交換後の空気を吹き出す前方開口部47b(図1及び図4参照)とを有する。後方開口部47aは、ハウジング47の後側に配置されている。空調室外機4は、空調室内機2に熱エネルギーを供給する熱源ユニットとして機能する。
(2-2) Air Conditioner Outdoor Unit As shown in FIG. and a housing 47 . Compressor 41 , four-way valve 42 , accumulator 43 , outdoor heat exchanger 44 , outdoor expansion valve 45 and outdoor fan 46 are housed in housing 47 . The housing 47 has a rear opening 47a (see FIG. 4) for sucking outside air and a front opening 47b (see FIGS. 1 and 4) for blowing out air after heat exchange. The rear opening 47 a is arranged on the rear side of the housing 47 . The air conditioner outdoor unit 4 functions as a heat source unit that supplies thermal energy to the air conditioner indoor unit 2 .
 圧縮機41は、ガス冷媒を吸入して圧縮して吐出する。圧縮機41は、例えば、モータ41mの運転周波数をインバータにより調整することで運転容量を変更することができる可変容量圧縮機である。運転周波数が大きいほど圧縮機41の運転容量が大きくなる。四方弁42は、4つのポートを有している。四方弁42の第1ポートP1は、圧縮機41の吐出口に接続されている。四方弁42の第2ポートP2は、室外熱交換器44の一方の出入口に接続されている。四方弁42の第3ポートP3は、アキュムレータ43に接続されている。四方弁42の第4ポートP4は、熱交換器21の一方の出入口に接続されている。 The compressor 41 sucks in gas refrigerant, compresses it, and discharges it. The compressor 41 is, for example, a variable capacity compressor whose operating capacity can be changed by adjusting the operating frequency of the motor 41m with an inverter. As the operating frequency increases, the operating capacity of the compressor 41 increases. The four-way valve 42 has four ports. A first port P<b>1 of the four-way valve 42 is connected to a discharge port of the compressor 41 . A second port P<b>2 of the four-way valve 42 is connected to one inlet/outlet of the outdoor heat exchanger 44 . A third port P3 of the four-way valve 42 is connected to the accumulator 43 . A fourth port P4 of the four-way valve 42 is connected to one inlet/outlet of the heat exchanger 21 .
 アキュムレータ43は、四方弁42の第3ポートP3と圧縮機41の吸入口との間に接続されている。室外熱交換器44は、他方の出入口を室外膨張弁45の一方の出入口に接続している。室外熱交換器44は、一方の出入口または他方の出入口から内部に流入した冷媒と、外気との間で熱交換を行う。室外膨張弁45は、他方の出入口を熱交換器21の他方の出入口に接続している。 The accumulator 43 is connected between the third port P3 of the four-way valve 42 and the suction port of the compressor 41. The outdoor heat exchanger 44 has the other inlet/outlet connected to one inlet/outlet of the outdoor expansion valve 45 . The outdoor heat exchanger 44 exchanges heat between the refrigerant that has flowed into the inside from one entrance or the other entrance and the outside air. The outdoor expansion valve 45 has the other inlet/outlet connected to the other inlet/outlet of the heat exchanger 21 .
 空調室外機4の中には、制御部8を構成している室外制御板82が配置されている。室外制御板82は、制御装置81に接続されている。室外制御板82は、圧縮機41のモータ41m、四方弁42及び室外ファン46のモータ46mに接続されている。制御部8は、室外制御板82により、圧縮機41のモータ41mの運転周波数、四方弁42の開度及び室外ファン46のモータ46mの回転数を制御することができる。 An outdoor control plate 82 that constitutes the control unit 8 is arranged in the air conditioner outdoor unit 4 . The outdoor control plate 82 is connected to the control device 81 . The outdoor control plate 82 is connected to the motor 41 m of the compressor 41 , the four-way valve 42 and the motor 46 m of the outdoor fan 46 . The control unit 8 can control the operating frequency of the motor 41 m of the compressor 41 , the opening degree of the four-way valve 42 , and the rotation speed of the motor 46 m of the outdoor fan 46 with the outdoor control plate 82 .
 冷媒回路13には、圧縮機41と、四方弁42と、アキュムレータ43と、室外熱交換器44と、室外膨張弁45と、熱交換器21とが含まれている。冷媒回路13には、冷媒が循環している。冷媒としては、例えば、R32冷媒及びR410冷媒などのフロン類、並びに二酸化炭素などがある。蒸気圧縮式冷凍サイクルでは、冷媒が圧縮機41で圧縮されて昇温され、その後、室外熱交換器44または熱交換器21で冷媒が放熱する。また、蒸気圧縮式冷凍サイクルでは、室外膨張弁45で冷媒が減圧膨張され、その後、熱交換器21または室外熱交換器44で冷媒が吸熱する。アキュムレータ43では、圧縮機41に吸入される冷媒の気液分離が行われる。四方弁42は、冷媒回路13における冷媒の流れの向きを切り換える。 The refrigerant circuit 13 includes a compressor 41 , a four-way valve 42 , an accumulator 43 , an outdoor heat exchanger 44 , an outdoor expansion valve 45 and a heat exchanger 21 . A refrigerant circulates in the refrigerant circuit 13 . Refrigerants include, for example, fluorocarbons such as R32 refrigerant and R410 refrigerant, and carbon dioxide. In the vapor compression refrigerating cycle, the refrigerant is compressed by the compressor 41 and heated, and then radiates heat in the outdoor heat exchanger 44 or the heat exchanger 21 . Also, in the vapor compression refrigeration cycle, the refrigerant is decompressed and expanded by the outdoor expansion valve 45 , and then the refrigerant absorbs heat in the heat exchanger 21 or the outdoor heat exchanger 44 . In the accumulator 43, gas-liquid separation of the refrigerant sucked into the compressor 41 is performed. The four-way valve 42 switches the direction of refrigerant flow in the refrigerant circuit 13 .
 (2-3)加湿器6
 本実施形態の加湿器6は、空調室外機4と一体化されている。しかし、加湿器6と空調室外機4は分離可能な別体として構成されていてもよい。加湿器6は、外気から水分を取り入れる。加湿器6は、取り入れた水分を外気に付与することで高湿度の空気を生成することができる。加湿器6は、この高湿度の空気を空調室内機2に送る。空調室内機2は、加湿運転時に、加湿器6から送られてきた高湿度の空気と室内空気とを混合する。空調室内機2は、高湿度の空気が混合された空気を部屋RMの中(室内)に吹き出すことで、室内を加湿する。加湿器6は、制御部8により制御される。
(2-3) Humidifier 6
The humidifier 6 of this embodiment is integrated with the air conditioner outdoor unit 4 . However, the humidifier 6 and the air conditioner outdoor unit 4 may be configured as separable separate bodies. The humidifier 6 takes in moisture from outside air. The humidifier 6 can generate high-humidity air by applying the taken-in moisture to the outside air. The humidifier 6 sends this high-humidity air to the air conditioner indoor unit 2 . The air conditioner indoor unit 2 mixes the high-humidity air sent from the humidifier 6 with the indoor air during the humidification operation. The air conditioner indoor unit 2 humidifies the room by blowing out air mixed with high-humidity air into the room RM. The humidifier 6 is controlled by the controller 8 .
 加湿器6は、加湿動作を停止して、加湿を行わずに外気を空調室内機2に送ることもできる。空調室内機2は、換気運転時に、加湿器6から送られてきた外気と室内空気とを混合する。空調室内機2は、外気が混合された空気を部屋RMの中(室内)に吹き出すことで、外気を室内に給気することができる。また、加湿器6は、加湿動作を停止して、加湿を行わずに空調室内機2から屋外ODに室内空気を排気することもできる。換気運転では、空調室内機2は、外気を部屋RMの中に供給したり、部屋RMの中の室内空気を屋外ODに排気したりすることができる。 The humidifier 6 can also stop the humidification operation and send outside air to the air conditioning indoor unit 2 without humidifying. The air conditioning indoor unit 2 mixes the outside air sent from the humidifier 6 with the indoor air during ventilation operation. The air conditioning indoor unit 2 can supply the outside air to the room by blowing out the air mixed with the outside air into the room RM (inside the room). The humidifier 6 can also stop the humidification operation and exhaust the indoor air from the air conditioning indoor unit 2 to the outdoor OD without humidifying. In the ventilation operation, the air conditioning indoor unit 2 can supply outside air into the room RM and exhaust indoor air in the room RM to the outside OD.
 加湿器6は、図4に示されているように、吸着ロータ61と、ヒータ62と、切換ダンパ63と、給排気ファン64と、吸着ファン65と、ダクト66と、ハウジング69とを備えている。また、加湿器6は、給排気ホース68を備えている。図1及び図4に示されているように、加湿器6のハウジング69は、空調室外機4のハウジング47に取り付けられている。加湿器6は、ハウジング69に、吸着用空気吹出口69aと吸着用空気取入口69bと加湿用空気取入口69cとを有している。 The humidifier 6, as shown in FIG. there is The humidifier 6 also includes an air supply/exhaust hose 68 . As shown in FIGS. 1 and 4 , the housing 69 of the humidifier 6 is attached to the housing 47 of the air conditioner outdoor unit 4 . The humidifier 6 has a housing 69 with an adsorption air outlet 69a, an adsorption air intake 69b, and a humidification air intake 69c.
 吸着ロータ61は、例えば、ハニカム構造を持つ円盤状の調湿用ロータである。調湿用ロータは、例えば、接触する空気中の水分を吸着する性質を有している吸着剤を焼成することにより形成できる。吸着ロータ61の吸着剤は、加熱されることによって吸着した水分を脱離するという性質を有している。ハニカム構造の吸着ロータ61を加熱されてない空気が通過するときには吸着ロータ61に空気の水分が吸着される。ハニカム構造の吸着ロータ61を加熱された空気が通過するときには吸着ロータ61の水分が空気に付与される。吸着ロータ61は、モータ61mにより駆動されて回転する。吸着ロータ61の回転数は、モータ61mの回転数を変えることにより変更することができる。 The adsorption rotor 61 is, for example, a disk-shaped humidity control rotor having a honeycomb structure. The humidity control rotor can be formed, for example, by firing an adsorbent that has the property of adsorbing moisture in the air that comes in contact with it. The adsorbent of the adsorption rotor 61 has the property of desorbing the adsorbed moisture when heated. When unheated air passes through the adsorption rotor 61 of the honeycomb structure, moisture in the air is adsorbed on the adsorption rotor 61 . When the heated air passes through the adsorption rotor 61 of the honeycomb structure, moisture of the adsorption rotor 61 is imparted to the air. The adsorption rotor 61 is rotated by being driven by a motor 61m. The rotation speed of the adsorption rotor 61 can be changed by changing the rotation speed of the motor 61m.
 ヒータ62は、加湿用空気取入口69cと切換ダンパ63との間に配置されている。加湿用空気取入口69cから取り入れられた外気は、ヒータ62を通過した後、さらに吸着ロータ61を通過して切換ダンパ63に到達する。ヒータ62で加熱された空気が吸着ロータ61を通過する際に、吸着ロータ61から水分が脱離して、吸着ロータ61から加熱された外気に水分が供給される。ヒータ62は、出力を変化させることができ、ヒータ62を通過した空気の温度を出力に応じて変化させることができる。吸着ロータ61は、特定の温度範囲内では、吸着ロータ61を通過する空気の温度が高いほど脱離する水分量が多くなる傾向がある。ヒータ62の温度及び吸着ロータ61の回転数を変更することで、外気に付与される水分量を調節することができる。 The heater 62 is arranged between the humidifying air intake 69 c and the switching damper 63 . Outside air taken in from the humidifying air intake 69 c passes through the heater 62 and then through the adsorption rotor 61 to reach the switching damper 63 . When the air heated by the heater 62 passes through the adsorption rotor 61 , moisture is desorbed from the adsorption rotor 61 and supplied from the adsorption rotor 61 to the heated outside air. The heater 62 can change its output, and the temperature of the air that has passed through the heater 62 can be changed according to the output. Within a specific temperature range, the adsorption rotor 61 tends to desorb more moisture as the temperature of the air passing through the adsorption rotor 61 increases. By changing the temperature of the heater 62 and the number of rotations of the adsorption rotor 61, the amount of water added to the outside air can be adjusted.
 切換ダンパ63は、第1出入口63aと第2出入口63bとを持っている。切換ダンパ63は、給排気ファン64が駆動しているときに空気を吸い込む空気の入口を、第1出入口63aとするか又は第2出入口63bとするかを切り換えることができる。空気の入口を第1出入口63aとする場合には、図4に実線で示された矢印の向きに、外気が、加湿用空気取入口69cから、吸着ロータ61、ヒータ62、吸着ロータ61、第1出入口63a、給排気ファン64、第2出入口63b、ダクト66、給排気ホース68、空調室内機2の順に流れる。空気の入口を第2出入口63bとするように切り換えると、逆に、図4に破線で示された矢印の向きに、空調室内機2から、給排気ホース68、ダクト66、第2出入口63b、給排気ファン64、第1出入口63a、吸着ロータ61、ヒータ62、吸着ロータ61、加湿用空気取入口69cの順に空気が流れる。切換ダンパ63の切り換えは、モータ63mにより行われる。 The switching damper 63 has a first entrance 63a and a second entrance 63b. The switching damper 63 can switch between the first inlet/outlet 63a and the second inlet/outlet 63b as the air inlet for sucking air when the air supply/exhaust fan 64 is driven. When the air inlet is the first inlet/outlet 63a, outside air flows from the humidifying air inlet 69c in the direction of the solid arrow in FIG. 1 entrance/exit 63a, air supply/exhaust fan 64, second entrance/exit 63b, duct 66, air supply/exhaust hose 68, and air conditioning indoor unit 2 in this order. When the air inlet is switched to the second inlet/outlet 63b, conversely, the supply/exhaust hose 68, the duct 66, the second inlet/outlet 63b, Air flows through the supply/exhaust fan 64, the first inlet/outlet 63a, the adsorption rotor 61, the heater 62, the adsorption rotor 61, and the humidification air intake 69c in this order. The switching of the switching damper 63 is performed by a motor 63m.
 給排気ファン64は、切換ダンパ63の第1出入口63aと第2出入口63bとの間に配置されている。給排気ファン64は、第1出入口63aから第2出入口63bまたは第2出入口63bから第1出入口63aに向う空気の流れを発生させる。給排気ファン64は、モータ64mにより駆動される。給排気ホース68は、一方端をダクト66に接続し、他方端を空調室内機2に接続している。このような構成により、給排気ホース68と部屋RMとは空調室内機2を介して連通している。 The air supply/exhaust fan 64 is arranged between the first entrance 63 a and the second entrance 63 b of the switching damper 63 . The air supply/exhaust fan 64 generates an air flow from the first inlet/outlet 63a to the second inlet/outlet 63b or from the second inlet/outlet 63b to the first inlet/outlet 63a. The air supply/exhaust fan 64 is driven by a motor 64m. The air supply/exhaust hose 68 has one end connected to the duct 66 and the other end connected to the air conditioning indoor unit 2 . With such a configuration, the air supply/exhaust hose 68 and the room RM communicate with each other via the air conditioning indoor unit 2 .
 吸着用空気取入口69bから吸着用空気吹出口69aに続く通路に吸着ファン65が配置され、この通路に掛かるように吸着ロータ61が配置されている。吸着ファン65により吸着用空気取入口69bから吸着用空気吹出口69aに向う気流が発生すると、吸着ロータ61を通過する外気から吸着ロータ61への水分の吸着が生じる。吸着ファン65は、モータ65mにより駆動される。 An adsorption fan 65 is arranged in a passage leading from the adsorption air intake 69b to the adsorption air outlet 69a, and the adsorption rotor 61 is arranged so as to hang over this passage. When the adsorption fan 65 generates an airflow from the adsorption air intake port 69b toward the adsorption air outlet 69a, the adsorption rotor 61 adsorbs moisture from the outside air passing through the adsorption rotor 61 . The suction fan 65 is driven by a motor 65m.
 吸着ロータ61のモータ61m、切換ダンパ63のモータ63m、給排気ファン64のモータ64m及びヒータ62は、室外制御板82に接続されている。制御部8は、室外制御板82により、吸着ロータ61の回転数、切換ダンパ63の切り換え、給排気ファン64及び吸着ファン65のオンオフ、及びヒータ62の出力を制御することができる。 The motor 61 m of the adsorption rotor 61 , the motor 63 m of the switching damper 63 , the motor 64 m of the air supply/exhaust fan 64 and the heater 62 are connected to the outdoor control plate 82 . The controller 8 can control the number of rotations of the adsorption rotor 61 , the switching of the switching damper 63 , the ON/OFF of the air supply/exhaust fan 64 and the adsorption fan 65 , and the output of the heater 62 using the outdoor control plate 82 .
 (3)空調システム及び空調室内機の動作
 (3-1)概要
 空調システム1の運転モードには、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転、換気運転及び空気清浄運転がある。なお、複数の運転を組み合わせることができる。例えば、暖房運転と加湿運転、冷房運転と加湿運転、送風運転と加湿運転、換気運転と冷房運転、換気運転と暖房運転、換気運転と除湿運転、及び換気運転と送風運転を組み合わせることができる。また、加湿運転、暖房運転と加湿運転、冷房運転と加湿運転、送風運転と加湿運転に対し、さらに空気清浄運転を組み合わせることができる。
(3) Operation of Air Conditioning System and Air Conditioning Indoor Units (3-1) Overview Operation modes of the air conditioning system 1 include, for example, cooling operation, heating operation, dehumidification operation, humidification operation, fan operation, ventilation operation, and air cleaning operation. be. Note that a plurality of operations can be combined. For example, heating operation and humidifying operation, cooling operation and humidifying operation, air blowing operation and humidifying operation, ventilation operation and cooling operation, ventilation operation and heating operation, ventilation operation and dehumidifying operation, and ventilation operation and air blowing operation can be combined. In addition, the humidifying operation, the heating operation and the humidifying operation, the cooling operation and the humidifying operation, and the blowing operation and the humidifying operation can be combined with the air cleaning operation.
 (3-2)冷房運転
 冷房運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラ(図示せず)から冷房運転が指示されるとともに目標温度が指示される。冷房運転時に、制御部8は、四方弁42を、図4において実線で示されている状態に切り換える。冷房運転時に、このように切り換えられた四方弁42は、第1ポートP1と第2ポートP2の間で冷媒を流し、第3ポートP3と第4ポートP4の間で冷媒を流す。冷房運転時の四方弁42は、圧縮機41から吐出される高温高圧のガス冷媒を室外熱交換器44に流す。室外熱交換器44では、冷媒と、室外ファン46により供給される外気との間で熱交換が行われる。室外熱交換器44で冷やされた冷媒は、室外膨張弁45で減圧されて熱交換器21に流れ込む。熱交換器21では、冷媒とファン22により供給される空気との間で熱交換が行われる。ファン22により供給される空気には、室内空気のみの場合と、室内空気と外気の場合とがある。熱交換器21での熱交換により温められた冷媒は、四方弁42及びアキュムレータ43を経由して、圧縮機41に吸入される。熱交換器21で冷やされた室内空気或いは室内空気と外気の混合空気が空調室内機2から部屋RMに吹出されることで、室内の冷房が行われる。この空気調和機10では、冷房運転において、熱交換器21が冷媒の蒸発器として機能して部屋RMを冷やし、室外熱交換器44が冷媒の放熱器として機能する。制御部8は、室内温度センサ31で検出した温度を目標温度に近づけるように空調室内機2と空調室外機4を制御する。
(3-2) Cooling Operation Before starting the cooling operation, the controller 81 of the control section 8 is instructed to perform the cooling operation and the target temperature from, for example, a remote controller (not shown). During cooling operation, the controller 8 switches the four-way valve 42 to the state indicated by the solid line in FIG. During cooling operation, the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the second port P2, and the refrigerant to flow between the third port P3 and the fourth port P4. The four-way valve 42 during cooling operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the outdoor heat exchanger 44 . The outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 . The refrigerant cooled by the outdoor heat exchanger 44 is depressurized by the outdoor expansion valve 45 and flows into the heat exchanger 21 . The heat exchanger 21 exchanges heat between the refrigerant and the air supplied by the fan 22 . The air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air. The refrigerant warmed by heat exchange in the heat exchanger 21 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 . The indoor air is cooled by blowing the indoor air cooled by the heat exchanger 21 or the mixed air of the indoor air and the outdoor air from the air conditioning indoor unit 2 to the room RM. In the air conditioner 10, in the cooling operation, the heat exchanger 21 functions as a refrigerant evaporator to cool the room RM, and the outdoor heat exchanger 44 functions as a refrigerant radiator. The controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
 (3-3)暖房運転
 暖房運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから暖房運転が指示されるとともに目標温度が指示される。暖房運転時に、制御部8は、四方弁42を、図4において破線で示されている状態に切り換える。暖房運転時に、このように切り換えられた四方弁42は、第1ポートP1と第4ポートP4の間で冷媒を流し、第2ポートP2と第3ポートP3の間で冷媒を流す。暖房運転時の四方弁42は、圧縮機41から吐出される高温高圧のガス冷媒を熱交換器21に流す。熱交換器21では、ファン22により供給される空気と冷媒との間で熱交換が行われる。ファン22により供給される空気には、室内空気のみの場合と、室内空気と外気の場合とがある。熱交換器21で冷やされた冷媒は、室外膨張弁45で減圧されて室外熱交換器44に流れ込む。室外熱交換器44では、冷媒と室外ファン46により供給される外気との間で熱交換が行われる。室外熱交換器44での熱交換により温められた冷媒は、四方弁42及びアキュムレータ43を経由して、圧縮機41に吸入される。熱交換器21で温められた室内空気或いは室内空気と外気の混合空気が空調室内機2から部屋RMに吹出されることで、室内の暖房が行われる。この空気調和機10では、暖房運転においては、熱交換器21が冷媒の放熱器として機能して部屋RMを温め、室外熱交換器44が冷媒の蒸発器として機能する。制御部8は、室内温度センサ31で検出した温度を目標温度に近づけるように空調室内機2と空調室外機4を制御する。
(3-3) Heating Operation Before starting the heating operation, the controller 81 of the control section 8 is instructed to perform the heating operation and the target temperature from, for example, a remote controller. During heating operation, the control unit 8 switches the four-way valve 42 to the state indicated by the dashed line in FIG. During heating operation, the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the fourth port P4, and the refrigerant between the second port P2 and the third port P3. The four-way valve 42 during heating operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the heat exchanger 21 . In the heat exchanger 21, heat is exchanged between the air supplied by the fan 22 and the refrigerant. The air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air. The refrigerant cooled by the heat exchanger 21 is depressurized by the outdoor expansion valve 45 and flows into the outdoor heat exchanger 44 . The outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 . The refrigerant warmed by heat exchange in the outdoor heat exchanger 44 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 . The room is heated by blowing out the indoor air warmed by the heat exchanger 21 or the mixed air of the indoor air and the outside air from the air conditioning indoor unit 2 into the room RM. In the air conditioner 10, in the heating operation, the heat exchanger 21 functions as a refrigerant radiator to warm the room RM, and the outdoor heat exchanger 44 functions as a refrigerant evaporator. The controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
 (3-4)送風運転
 送風運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから送風運転が指示される。送風運転時には、制御部8が、圧縮機41を停止させ、冷媒回路13における冷凍サイクルを停止させる。また、制御部8は、加湿器6の動作も停止させる。送風運転では、リモートコントローラから目標風量が指示される場合と、空調室内機2に目標風量を自動で選択させる場合がある。制御装置81は、目標風量になるように、ファン22のモータ22mを制御する。例えば、制御装置81は、最も回転数の小さいLLタップから、Lタップ、Mタップ、Hタップの順に回転数を大きくすることができるように構成されている。送風運転の身を行っている場合に、制御部8は、加湿器6の動作も停止させる。送風運転では、部屋RMの中の室内空気が空調室内機2により循環する。
(3-4) Blowing operation Before starting the blowing operation, the control device 81 of the control unit 8 is instructed to operate the blowing operation from, for example, a remote controller. During the blowing operation, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . The control unit 8 also stops the operation of the humidifier 6 . In the air blowing operation, there are cases where the target air volume is instructed from the remote controller, and where the air conditioning indoor unit 2 automatically selects the target air volume. The control device 81 controls the motor 22m of the fan 22 so as to achieve the target air volume. For example, the control device 81 is configured so that the rotation speed can be increased in order from the LL tap, which has the lowest rotation speed, to the L tap, the M tap, and the H tap. The controller 8 also stops the operation of the humidifier 6 when the air blowing operation is being performed. In the air blowing operation, the indoor air in the room RM is circulated by the air conditioning indoor unit 2 .
 (3-5)加湿運転
 加湿運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから加湿運転が指示されるとともに目標湿度が指示される。加湿のみを行う加湿運転時には、制御部8が、圧縮機41を停止させ、冷媒回路13における冷凍サイクルを停止させる。しかし、例えば、加湿暖房運転では、冷媒回路13における冷凍サイクルも加湿運転と同時に実施される。
(3-5) Humidification Operation Before the humidification operation is started, the controller 81 of the control section 8 is instructed to perform the humidification operation and the target humidity from, for example, a remote controller. During humidification operation in which only humidification is performed, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . However, for example, in the humidification/heating operation, the refrigeration cycle in the refrigerant circuit 13 is also performed at the same time as the humidification operation.
 制御部8は、加湿運転の指示を受けると、まず、加湿器6に給排気ホース68の乾燥を行わせる。制御部8は、給排気ホース68の乾燥後、加湿器6に加湿動作が開始される。制御部8は、吸着ファン65を駆動させ且つ吸着ロータ61を回転させるように制御する。吸着ファン65の駆動によって吸着ロータ61を外気が通過することで、吸着ロータ61には、外気から水分が吸着する。吸着ロータ61の回転により、水分が吸着した箇所が、ヒータ62によって加熱された空気の通過する場所に移動する。その結果、水分が吸着した箇所から加熱された空気へと水分の脱離が生じる。吸着ロータ61を通過して高湿度になった空気が、給排気ファン64により、給排気ホース68及び空調室内機2を通して部屋RMに送られる。加湿運転において、制御装置81は、高湿度の空気を部屋RMの中に吹出させるために、空調室内機2のファン22を駆動させる。制御部8は、所定の湿度センサで検出した湿度を目標湿度に近づけるように空調室内機2と空調室外機4と加湿器6を制御する。所定の湿度センサは、加湿器6及び空調室内機2において空気が流れる流路に設けられている湿度センサである。所定の湿度センサには、例えば、室内湿度センサ32、加湿ダクト28に取り付けられた湿度センサがある。 Upon receiving the humidification operation instruction, the control unit 8 first causes the humidifier 6 to dry the air supply/exhaust hose 68 . After the air supply/exhaust hose 68 is dried, the controller 8 causes the humidifier 6 to start the humidification operation. The controller 8 drives the suction fan 65 and controls the suction rotor 61 to rotate. By driving the adsorption fan 65 and passing the outside air through the adsorption rotor 61 , the adsorption rotor 61 adsorbs moisture from the outside air. Due to the rotation of the adsorption rotor 61, the location where moisture is adsorbed moves to a location through which the air heated by the heater 62 passes. As a result, desorption of moisture occurs from the location where moisture has been adsorbed to the heated air. The air that has passed through the adsorption rotor 61 and becomes highly humid is sent to the room RM through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 by the air supply/exhaust fan 64 . In the humidification operation, the control device 81 drives the fan 22 of the air conditioner indoor unit 2 in order to blow high-humidity air into the room RM. The control unit 8 controls the air conditioning indoor unit 2, the air conditioning outdoor unit 4, and the humidifier 6 so that the humidity detected by the predetermined humidity sensor approaches the target humidity. The predetermined humidity sensor is a humidity sensor provided in a flow path through which air flows in the humidifier 6 and the air conditioner indoor unit 2 . Predetermined humidity sensors include, for example, the room humidity sensor 32 and the humidity sensor attached to the humidification duct 28 .
 (3-6)換気運転
 換気運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから換気運転が指示される。換気運転時には、加湿運転が停止される。また、換気運転のみを行う場合には、制御部8が、圧縮機41を停止させ、冷媒回路13における冷凍サイクルを停止させる。ただし、例えば、換気しつつ冷房する場合及び換気しつつ暖房する場合には、制御部8は、圧縮機41を駆動して、冷媒回路13における冷凍サイクルを実施する。加湿運転を停止するため、吸着ファン65及び吸着ロータ61の回転が停止される。換気運転では、制御部8は、給排気ファン64を駆動するようにモータ64mを制御する。また、換気運転では、制御部8は、切換ダンパ63を制御することにより、給気状態と排気状態とを切り換える。給気状態においては、外気が、加湿用空気取入口69cから取り入れられ、給排気ホース68及び空調室内機2を通して部屋RMに吹出される。排気状態においては、室内空気が、部屋RMから空調室内機2及び給排気ホース68を通して加湿用空気取入口69cから排気される。換気運転において、制御装置81は、外気を部屋RMの中に吹出させるために、空調室内機2のファン22を駆動させる。換気運転の給気時において、加湿ダクト28は、加湿器6による加湿を受けていない外気をそのまま給気する給気ダクトとして機能する。
(3-6) Ventilation Operation Before starting the ventilation operation, the control device 81 of the control section 8 is instructed to perform the ventilation operation from, for example, a remote controller. During the ventilation operation, the humidification operation is stopped. Further, when performing only the ventilation operation, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . However, for example, when cooling while ventilating or when heating while ventilating, the control unit 8 drives the compressor 41 to perform the refrigeration cycle in the refrigerant circuit 13 . In order to stop the humidification operation, the rotation of the adsorption fan 65 and the adsorption rotor 61 is stopped. In the ventilation operation, the controller 8 controls the motor 64m to drive the air supply/exhaust fan 64 . In the ventilation operation, the controller 8 switches between the air supply state and the air exhaust state by controlling the switching damper 63 . In the air supply state, outside air is taken in from the humidifying air intake port 69c and blown through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 into the room RM. In the exhaust state, indoor air is exhausted from the room RM through the air conditioning indoor unit 2 and the air supply/exhaust hose 68 from the humidification air intake port 69c. In the ventilation operation, the control device 81 drives the fan 22 of the air conditioner indoor unit 2 to blow outside air into the room RM. During air supply in the ventilation operation, the humidification duct 28 functions as an air supply duct that supplies outside air that has not been humidified by the humidifier 6 as it is.
 (3-7)空気清浄運転
 空調システム1は、静電霧化装置70を用いて空気清浄運転を行うことができる。ここで、空気清浄運転とは、空気中の有害成分及び/または臭気成分を抑制する運転である。空気清浄運転は、例えば、静電霧化装置70が発生するイオンを含む水微粒子(静電ミスト)で有害成分または臭気成分を抑える運転である。静電霧化装置70を用いる空気清浄運転は、加湿運転または換気運転とともに行われる。
(3-7) Air Cleaning Operation The air conditioning system 1 can perform an air cleaning operation using the electrostatic atomizer 70 . Here, the air cleaning operation is an operation for suppressing harmful components and/or odorous components in the air. The air cleaning operation is, for example, an operation in which harmful or odorous components are suppressed with water particles (electrostatic mist) containing ions generated by the electrostatic atomizer 70 . Air cleaning operation using the electrostatic atomizer 70 is performed together with humidification operation or ventilation operation.
 (3-7-1)空気清浄運転と加湿運転を行う場合
 空調室内機2の制御装置81は、加湿運転時において、外気が部屋RM(室内)に導入されているときに、静電霧化ユニット75を動作させるように静電霧化装置70を制御する。制御装置81は、例えば、図13に示されているフローに沿って静電霧化装置70を制御する。制御装置81は、リモートコントローラ(図示せず)などにより指示された空調室内機2の運転モードが静電霧化ユニット75を作動させることができる運転モードが否かを判断する(ステップST1)。例えば、指示された運転モードが、加湿運転と空気清浄運転を行うモードである場合(ステップST1のYes)には、加湿器6による加湿が行われているか否かを判断する(ステップST2)。制御部8の制御装置81は、加湿器6を制御している制御部8の室外制御板82に接続されているため、加湿器6による加湿に関する情報を室外制御板82から受け取ることができる。加湿器6による加湿が行われている場合(ステップST2のYes)には、制御装置81は、静電霧化ユニット75で放電を行わせるように制御する(ステップST3)。加湿器6による加湿が行われていない場合(ステップST2のNo)には、制御装置81は、静電霧化ユニット75で放電を行わせないように制御する(ステップST4)。
(3-7-1) Air Purification Operation and Humidification Operation The control device 81 of the air conditioning indoor unit 2 performs electrostatic atomization when outside air is introduced into the room RM (indoor) during humidification operation. Control the electrostatic atomizer 70 to operate the unit 75 . The controller 81 controls the electrostatic atomizer 70 according to the flow shown in FIG. 13, for example. The control device 81 determines whether or not the operation mode of the air conditioning indoor unit 2 instructed by a remote controller (not shown) or the like is an operation mode in which the electrostatic atomization unit 75 can be operated (step ST1). For example, when the instructed operation mode is a mode in which humidification operation and air cleaning operation are performed (Yes in step ST1), it is determined whether or not humidification is being performed by the humidifier 6 (step ST2). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, it can receive information on humidification by the humidifier 6 from the outdoor control plate 82. When humidification is being performed by the humidifier 6 (Yes in step ST2), the control device 81 controls the electrostatic atomization unit 75 to discharge (step ST3). When humidification by the humidifier 6 is not performed (No in step ST2), the control device 81 controls the electrostatic atomization unit 75 so as not to discharge (step ST4).
 空気清浄運転と加湿運転を行っているときに運転モードが変更さるか否かを判断する(ステップST5)。運転モードが変更されたときには(ステップST5のYes)、変更後の運転モードが静電霧化ユニット75を作動させることができる運転モードか否かの判断(ステップST1)に戻る。運転モードの変更がないと判断されたときには(ステップST5のNo)、運転を終了する指示があったか否かを判断する(ステップST6)。運転を終了する指示が無かった場合には(ステップST6のNo)、フローの最初(ステップST1)に戻る。運転終了の指示があれば(ステップST6のYes)、図13に示されている制御フローを終了する。 It is determined whether or not the operation mode will be changed while the air cleaning operation and the humidification operation are being performed (step ST5). When the operation mode has been changed (Yes in step ST5), the process returns to the determination (step ST1) of whether or not the changed operation mode is an operation mode in which the electrostatic atomization unit 75 can be operated. When it is determined that the operation mode has not been changed (No in step ST5), it is determined whether or not there is an instruction to end the operation (step ST6). If there is no instruction to end the operation (No in step ST6), the process returns to the beginning of the flow (step ST1). If there is an instruction to end the operation (Yes in step ST6), the control flow shown in FIG. 13 ends.
 (3-7-2)空気清浄運転と換気運転の給気を行う場合
 空調室内機2の制御装置81は、換気運転の給気時において、外気が部屋RM(室内)に導入されているときに、静電霧化ユニット75を動作させるように静電霧化装置70を制御する。このとき、制御装置81は、例えば、図14に示されているフローに沿って静電霧化装置70を制御する。制御装置81は、リモートコントローラ(図示せず)などにより指示された空調室内機2の運転モードが静電霧化ユニット75を作動させることができる運転モードが否かを判断する(ステップST1)。例えば、指示された運転モードが、換気運転と空気清浄運転を行うモードである場合(ステップST1のYes)には、加湿器6による換気運転の給気が行われているか否かを判断する(ステップST22)。制御部8の制御装置81は、加湿器6を制御している制御部8の室外制御板82に接続されているため、加湿器6による給気に関する情報を室外制御板82から受け取ることができる。加湿器6による加湿が行われている場合(ステップST22のYes)には、制御装置81は、静電霧化ユニット75で放電を行わせるように制御する(ステップST3)。外気に対して更に加湿した空気を静電霧化ユニットに誘導することができ、外気の湿度が低い場合であっても水微粒子の発生効率を高めることができる。加湿器6による加湿が行われていない場合(ステップST22のNo)には、制御装置81は、静電霧化ユニット75で放電を行わせないように制御する(ステップST4)。ステップST3及びステップST4以降のステップは、図13に示されているフローと同じであるので説明を省略する。
(3-7-2) When Air Purifying Operation and Air Supply in Ventilation Operation are Performed The controller 81 of the air conditioning indoor unit 2 operates when outside air is being introduced into the room RM (indoor) during air supply in the ventilation operation. First, the electrostatic atomizer 70 is controlled to operate the electrostatic atomizer unit 75 . At this time, the controller 81 controls the electrostatic atomizer 70 according to the flow shown in FIG. 14, for example. The control device 81 determines whether or not the operation mode of the air conditioning indoor unit 2 instructed by a remote controller (not shown) or the like is an operation mode in which the electrostatic atomization unit 75 can be operated (step ST1). For example, when the instructed operation mode is a mode in which the ventilation operation and the air cleaning operation are performed (Yes in step ST1), it is determined whether or not the humidifier 6 is supplying air for the ventilation operation ( step ST22). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, information regarding air supply by the humidifier 6 can be received from the outdoor control plate 82. . When humidification is being performed by the humidifier 6 (Yes in step ST22), the control device 81 controls the electrostatic atomization unit 75 to discharge (step ST3). Air that is more humid than outside air can be guided to the electrostatic atomization unit, and the efficiency of generating water particles can be increased even when the humidity of the outside air is low. When humidification by the humidifier 6 is not performed (No in step ST22), the control device 81 controls the electrostatic atomization unit 75 so as not to discharge (step ST4). Since the steps after step ST3 and step ST4 are the same as the flow shown in FIG. 13, description thereof is omitted.
 (4)変形例
 (4-1)変形例A
 上記実施形態では、静電霧化装置70を加湿ダクト28の表面に取り付ける場合を説明したが、静電霧化装置70は、加湿ダクト28から離して取り付けてもよい。例えば、図15に示されているように、加湿ダクト28の吹出開口28aが熱交換器21に対向している場合に、静電霧化装置70は、加湿ダクト28の吹出開口28aと熱交換器21との間に配置されてもよい。このような構成にすることで、静電霧化装置70及び静電霧化ユニット75は、加湿ダクト28の吹出開口28aの下流に配置される。図15に示されているように、加湿ダクト28の吹出開口28aの下流に静電霧化装置70及び静電霧化ユニット75が配置されている場合、ダクトフィルタ28bが加湿ダクト28の吹出開口28aの近傍に配置されることが好ましい。また、静電霧化装置70は、加湿ダクト28から離して、加湿ダクト28と並べて取り付けられてもよい。
(4) Modification (4-1) Modification A
Although the case where the electrostatic atomizer 70 is attached to the surface of the humidification duct 28 has been described in the above embodiment, the electrostatic atomizer 70 may be attached separately from the humidification duct 28 . For example, as shown in FIG. 15, when the outlet opening 28a of the humidification duct 28 faces the heat exchanger 21, the electrostatic atomizer 70 exchanges heat with the outlet opening 28a of the humidification duct 28. It may be arranged between the container 21 . With such a configuration, the electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged downstream of the blowout opening 28 a of the humidification duct 28 . As shown in FIG. 15, when the electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged downstream of the blowout opening 28a of the humidification duct 28, the duct filter 28b closes to the blowout opening of the humidification duct 28. It is preferably located in the vicinity of 28a. Also, the electrostatic atomizer 70 may be attached side by side with the humidifying duct 28 away from the humidifying duct 28 .
 (4-2)変形例B
 上記実施形態では、静電霧化ユニット75を、給気部材の出口である加湿ダクト28の吹出開口28aの近傍に配置する場合について説明した。しかし、静電霧化ユニット75は、図16に示されているように、給気部材である加湿ダクト28のバイパス経路R3に配置されてもよい。静電霧化装置70の筐体71が、加湿ダクト28の幅広部28cから離れ且つ並んで配置されている。筐体71と幅広部28cとは、筒体を介して連通しており、この筒体が静電霧化装置70の吸入口72aになっている。吸入口72aは、ダクトフィルタ(図15では図示せず)の下流に設けられている。放出口72bは、加湿ダクト28の吹出開口28aとは別に設けられている。吹出開口28aから空気が吹き出されるのと同様に放出口72bからも空気が吹き出される。そのため、図16に示されている静電霧化装置70では、送風装置74が設けられていない。なお、図16では、ダクトフィルタの記載が省略されているが、図16に示された加湿ダクト28の形態においても、静電霧化装置70及び静電霧化ユニット75の上流にダクトフィルタが配置される。
(4-2) Modification B
In the above embodiment, the electrostatic atomization unit 75 is arranged in the vicinity of the blowout opening 28a of the humidification duct 28, which is the outlet of the air supply member. However, the electrostatic atomization unit 75 may be arranged in the bypass route R3 of the humidification duct 28, which is the air supply member, as shown in FIG. A housing 71 of the electrostatic atomizer 70 is arranged side by side with a distance from the wide portion 28c of the humidification duct 28 . The housing 71 and the wide portion 28c communicate with each other through a cylinder, and this cylinder forms an inlet 72a of the electrostatic atomizer 70. As shown in FIG. The intake port 72a is provided downstream of a duct filter (not shown in FIG. 15). The discharge port 72b is provided separately from the blowout opening 28a of the humidification duct 28. As shown in FIG. Air is blown out from the outlet 72b in the same manner as the air is blown out from the blow-out opening 28a. Therefore, the air blower 74 is not provided in the electrostatic atomizer 70 shown in FIG. Although the illustration of the duct filter is omitted in FIG. 16, even in the form of the humidifying duct 28 shown in FIG. placed.
 (4-3)変形例C
 上記実施形態では、静電霧化ユニット75を、給気部材の出口である加湿ダクト28の吹出開口28aの近傍に配置する場合について説明した。しかし、静電霧化ユニット75は、図17及び図18に示されているように、給気部材である加湿ダクト28の内部空間IN1に配置されてもよい。内部空間IN1は、加湿ダクト28の幅広部28cの中の空間である。静電霧化ユニット75は、筐体71の無い状態で、直接内部空間IN1に配置され、送風装置74も省かれている。加湿ダクト28の中に気流が生じるので、筐体71及び送風装置74を省いて、静電霧化ユニット75が加湿ダクト28の中に直に取り付けられても静電霧化装置として機能する。なお、図17及び図18において、高圧トランス73の図示は省かれているが、高圧トランス73は、加湿ダクト28の外に配置されることが好ましい。静電霧化ユニット75は、ダクトフィルタ28bの下流に配置されている。静電霧化ユニット75から放出される水微粒子は、加湿ダクト28の吹出開口28aからケーシング23の中に放出される。水微粒子の数を減らさないために、水微粒子はエアフィルタ24の下流から放出されることが好ましい。なお、給気湿度センサ33は、図17及び図18に示されているように、加湿ダクト28の内部空間IN1に配置されてもよく、あるいは接続部28dの中の流路に配置されてもよい。
(4-3) Modification C
In the above embodiment, the electrostatic atomization unit 75 is arranged in the vicinity of the blowout opening 28a of the humidification duct 28, which is the outlet of the air supply member. However, as shown in FIGS. 17 and 18, the electrostatic atomization unit 75 may be arranged in the internal space IN1 of the humidification duct 28, which is the air supply member. The internal space IN1 is a space inside the wide portion 28c of the humidifying duct 28. As shown in FIG. The electrostatic atomization unit 75 is arranged directly in the internal space IN1 without the housing 71, and the air blower 74 is also omitted. Since an air current is generated in the humidifying duct 28, the electrostatic atomizing unit 75 can function as an electrostatic atomizing device even if the housing 71 and the air blower 74 are omitted and the electrostatic atomizing unit 75 is installed directly in the humidifying duct 28. 17 and 18, the illustration of the high-voltage transformer 73 is omitted, but the high-voltage transformer 73 is preferably arranged outside the humidification duct 28. As shown in FIG. The electrostatic atomization unit 75 is arranged downstream of the duct filter 28b. Water particles emitted from the electrostatic atomization unit 75 are emitted into the casing 23 from the blowout opening 28 a of the humidification duct 28 . The water particles are preferably emitted downstream of the air filter 24 so as not to reduce the number of water particles. The supply air humidity sensor 33 may be arranged in the internal space IN1 of the humidifying duct 28 as shown in FIGS. good.
 (4-4)変形例D
 上記実施形態では、給気部材として、加湿ダクト28を用いる場合について説明した。しかし、給気部材は、加湿ダクト28だけには限られない。例えば、加湿器6に代えて、加湿機能の無い外気の給排気のみを行う給排気装置が屋外に設けられてもよい。給排気装置が設置される場合には、加湿ダクト28に変えて給気ダクトがケーシング23の中に配置される。そのように構成された場合には、空調室内機2は、加湿運転を行うことができないが、換気運転を行い、外気を部屋RM(室内)に供給することができる。給気ダクトと静電霧化ユニット75との配置関係は、加湿ダクト28と静電霧化ユニット75との配置関係と同様に設定することができる。
(4-4) Modification D
In the above embodiment, the case of using the humidifying duct 28 as the air supply member has been described. However, the air supply member is not limited to the humidification duct 28 only. For example, instead of the humidifier 6, an air supply/exhaust device that only supplies and exhausts outside air without a humidification function may be provided outdoors. When an air supply/exhaust device is installed, an air supply duct is arranged in the casing 23 instead of the humidification duct 28 . In such a configuration, the air conditioning indoor unit 2 cannot perform the humidification operation, but can perform the ventilation operation to supply outside air to the room RM (indoor). The arrangement relationship between the air supply duct and the electrostatic atomization unit 75 can be set in the same manner as the arrangement relationship between the humidification duct 28 and the electrostatic atomization unit 75 .
 (4-5)変形例E
 上記実施形態では、静電霧化装置70を加湿ダクト28の表面に取り付ける場合を説明したが、静電霧化装置70は、加湿ダクト28の吹出開口28aを覆うように取り付けてもよい。例えば、図19に示されているように、加湿ダクト28の吹出開口28aが熱交換器21に対向している場合に、静電霧化装置70は、加湿ダクト28の吹出開口28aと熱交換器21との間であって、吹出開口28aを覆う位置に配置されてもよい。このような構成にすることで、静電霧化装置70及び静電霧化ユニット75は、加湿ダクト28の吹出開口28aの下流に配置される。
(4-5) Modification E
Although the case where the electrostatic atomizer 70 is attached to the surface of the humidification duct 28 is described in the above embodiment, the electrostatic atomizer 70 may be attached so as to cover the blowout opening 28a of the humidification duct 28 . For example, as shown in FIG. 19, when the outlet opening 28a of the humidification duct 28 faces the heat exchanger 21, the electrostatic atomizer 70 exchanges heat with the outlet opening 28a of the humidification duct 28. It may be arranged at a position between the container 21 and covering the blowout opening 28a. With such a configuration, the electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged downstream of the blowout opening 28 a of the humidification duct 28 .
 また、静電霧化装置70は、図16乃至図18に示されている加湿ダクト28の吹出開口28aを覆うように取り付けられてもよい。図16乃至図18に示されている吹出開口28aを覆う位置に静電霧化装置70が取り付けられる場合には、ケーシング23の長手方向D1に沿って加湿ダクト28と静電霧化装置70が隣接して配置される。 Also, the electrostatic atomizer 70 may be attached so as to cover the blowout opening 28a of the humidification duct 28 shown in FIGS. When the electrostatic atomizer 70 is attached to the position covering the blow-out opening 28a shown in FIGS. placed adjacent to each other.
 静電霧化装置70が吹出開口28aを覆うように取り付けられる場合には、加湿ダクト28に生じる気流により、静電霧化装置70の中にも気流を発生させることができるので、送風装置74を省いてもよい。なお、ダクトフィルタ28bは、静電霧化装置70の上流側に配置されることが好ましい。例えば、ダクトフィルタ28bは、吹出開口28aに取り付けられてもよい。 When the electrostatic atomizer 70 is attached so as to cover the blowout opening 28a, the airflow generated in the humidification duct 28 can also generate an airflow inside the electrostatic atomizer 70. can be omitted. It should be noted that the duct filter 28b is preferably arranged upstream of the electrostatic atomizer 70 . For example, duct filter 28b may be attached to outlet opening 28a.
 (4-6)変形例F
 上記実施形態では、図13を用いて説明したように、加湿器6による加湿が行われている期間に静電霧化ユニット75の放電(作動)が行われるように、制御装置81が制御する場合について説明した。しかし、加湿運転と空気清浄運転が行われる場合、静電霧化ユニット75の放電(作動)が行われるように制御装置81が制御する期間は、加湿器6による部屋RMへの加湿が終了してから所定時間以内であってもよい。所定時間の情報は、例えば記憶装置81cに記憶されている。制御装置81は、所定時間をカウントするときには、例えば記憶装置81cから読み出した所定時間を、タイマ81aを用いてカウントする。加湿器6による加湿が終了した後もしばらくケーシング23の中は湿度の高い状態が続くので、例えば、加湿運転が終了してから数分の間、静電霧化ユニット75を作動させて放電を行わせるように構成してもよい。なお、所定時間は、加湿された空気の湿度に応じて異なるものであってもよく、加湿された空気の湿度が高ければ、加湿された空気の湿度が低い場合よりも、所定時間が短く設定されてもよい。このような制御では、例えば図20に示されているように、図13のステップST2で行っていた加湿が行われているか否かの判断を、加湿終了後の所定時間以内か否かの判断(ステップST12)に置き換えればよい。制御部8の制御装置81は、加湿器6を制御している制御部8の室外制御板82に接続されているため、加湿器6による加湿に関する情報を室外制御板82から受け取ることができる。制御装置81は、加湿器6が加湿を終了してからタイマ81aにより所定時間をカウントする。図20におけるステップST12以外のステップは、図13におけるステップST2以外のステップと同様であるので説明を省略する。
(4-6) Modification F
In the above embodiment, as described with reference to FIG. 13, the controller 81 controls the electrostatic atomization unit 75 to discharge (activate) while the humidifier 6 is performing humidification. explained the case. However, when the humidification operation and the air cleaning operation are performed, the humidification of the room RM by the humidifier 6 is completed during the period when the control device 81 controls discharge (operation) of the electrostatic atomization unit 75. It may be within a predetermined period of time. Information on the predetermined time is stored in the storage device 81c, for example. When counting the predetermined time, the control device 81 uses the timer 81a to count the predetermined time read from the storage device 81c, for example. Even after the humidification by the humidifier 6 is finished, the casing 23 remains in a high humidity state for a while. Therefore, for example, for several minutes after the humidification operation is finished, the electrostatic atomization unit 75 is operated to discharge electricity. It may be configured to allow Note that the predetermined time may vary depending on the humidity of the humidified air. If the humidity of the humidified air is high, the predetermined time is set shorter than when the humidity of the humidified air is low. may be In such control, for example, as shown in FIG. 20, the determination of whether or not humidification is being performed, which was performed in step ST2 of FIG. (step ST12). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, it can receive information on humidification by the humidifier 6 from the outdoor control plate 82. The control device 81 counts a predetermined time by the timer 81a after the humidifier 6 finishes humidification. The steps other than step ST12 in FIG. 20 are the same as the steps other than step ST2 in FIG. 13, so description thereof will be omitted.
 (4-7)変形例G
 上記実施形態では、加湿器6による加湿が行われている期間に静電霧化ユニット75の放電(作動)が行われるように、制御装置81が制御する場合について説明した(図13参照)。しかし、換気運転と空気清浄運転が行われる場合、静電霧化ユニット75の放電(作動)が行われるように制御装置81が制御する期間は、加湿器6による部屋RMへの給気が終了してから所定時間以内であってもよい。加湿器6による給気が終了した後もしばらくケーシング23の中は湿度の高い状態が続く場合があるので、例えば、換気運転の給気が終了してから数分の間、静電霧化ユニット75を作動させて放電を行わせるように構成してもよい。このような制御では、例えば図21に示されているように、図13のステップST2で行っていた加湿が行われているか否かの判断を、給気終了後の所定時間以内か否かの判断(ステップST32)に置き換えればよい。制御部8の制御装置81は、加湿器6を制御している制御部8の室外制御板82に接続されているため、加湿器6による給気に関する情報を室外制御板82から受け取ることができる。制御装置81は、加湿器6が給気を終了してからタイマ81aにより所定時間をカウントする。なお、静電霧化ユニット75を動作させる場合に、制御部8は、給気後に排気を行わせないようにする。図21におけるステップST32以外のステップは、図13におけるステップST2以外のステップと同様であるので説明を省略する。
(4-7) Modification G
In the above embodiment, the case where the control device 81 performs control such that the electrostatic atomization unit 75 is discharged (actuated) while humidification is being performed by the humidifier 6 has been described (see FIG. 13). However, when the ventilation operation and the air cleaning operation are performed, the supply of air to the room RM by the humidifier 6 ends during the period when the control device 81 controls discharge (operation) of the electrostatic atomization unit 75. It may be within a predetermined period of time. Even after the air supply by the humidifier 6 is finished, the inside of the casing 23 may remain in a high humidity state for a while. 75 may be actuated to cause discharge. In such control, for example, as shown in FIG. 21, the determination of whether or not humidification is being performed, which was performed in step ST2 of FIG. It may be replaced with judgment (step ST32). Since the control device 81 of the control unit 8 is connected to the outdoor control plate 82 of the control unit 8 that controls the humidifier 6, information regarding air supply by the humidifier 6 can be received from the outdoor control plate 82. . The control device 81 counts a predetermined time by the timer 81a after the humidifier 6 ends air supply. Note that when the electrostatic atomization unit 75 is operated, the control section 8 prevents air from being exhausted after being supplied. The steps other than step ST32 in FIG. 21 are the same as the steps other than step ST2 in FIG. 13, so description thereof will be omitted.
 (4-8)変形例H
 上記実施形態では、静電霧化ユニット75の放電を行うか否かの判断に、給気湿度センサ33の測定結果が用いられていない。しかし、静電霧化ユニット75の放電を行うか否かの判断に、給気湿度センサ33の測定結果を用いてもよい。単に加湿または給気が行われているか否かだけで判断するのではなく、例えば、給気湿度センサ33の測定結果を用い、相対湿度が所定値以上の給気が行われているか否かで判断してもよい。また、外気の室内への供給が終了してから所定時間以内か否かだけで判断するのではなく、例えば、給気湿度センサ33の測定結果を用い、相対湿度が所定値以上の給気が終了してから所定時間以内であるか否かで判断してもよい。
(4-8) Modification H
In the above embodiment, the measurement result of the supplied air humidity sensor 33 is not used for determining whether or not to discharge the electrostatic atomization unit 75 . However, the measurement result of the supplied air humidity sensor 33 may be used to determine whether or not to discharge the electrostatic atomization unit 75 . Rather than simply determining whether humidification or air is being supplied, for example, the measurement result of the supply air humidity sensor 33 is used to determine whether air is being supplied with a relative humidity equal to or higher than a predetermined value. You can judge. In addition, instead of determining whether it is within a predetermined time after the supply of outside air to the room ends, for example, using the measurement result of the supply air humidity sensor 33, the relative humidity of the supply air with a predetermined value or more It may be determined whether or not it is within a predetermined time after the end.
 (5)特徴
 (5-1)
 上述の空調室内機2では、ケーシング23の中に、給気部材である加湿ダクト28または給気ダクトが配置されている。給気ダクトは、例えば、換気運転時に、加湿されていない外気を給気するためのダクトである。加湿器6が加湿を停止して給気を行っているときの加湿ダクト28は、給気ダクトとみなすことができる。加湿ダクト28または給気ダクトから屋外ODの空気である外気が室内である部屋RMに供給される。静電霧化ユニット75は、加湿ダクト28の内部空間IN1、加湿ダクト28のバイパス経路R3または加湿ダクト28の吹出開口28aの近傍に配置されている。加湿ダクト28の内部空間IN1は、給気部材の内部空間の例である。給気部材の内部空間の他の例として、加湿されていない外気を給気するための給気ダクトの内部空間がある。加湿ダクト28のバイパス経路R3は、給気部材のバイパス経路の例である。給気部材のバイパス経路の他の例として、前述の給気ダクトのバイパス経路がある。加湿ダクト28の吹出開口28aは、給気部材の出口の例である。給気部材の出口の他の例として、前述の給気ダクトの出口がある。このような構成により、外気に含まれる湿気を使って静電霧化ユニット75で結露させ易くなり、イオンを含む水微粒子の発生効率が良くなる。
(5) Features (5-1)
In the air conditioning indoor unit 2 described above, a humidification duct 28 or an air supply duct, which is an air supply member, is arranged in the casing 23 . The air supply duct is, for example, a duct for supplying non-humidified outside air during ventilation operation. The humidification duct 28 when the humidifier 6 stops humidification and supplies air can be regarded as an air supply duct. Outside air, which is outdoor OD air, is supplied from the humidification duct 28 or the supply air duct to the room RM, which is an indoor room. The electrostatic atomization unit 75 is arranged in the vicinity of the inner space IN1 of the humidification duct 28, the bypass route R3 of the humidification duct 28, or the outlet opening 28a of the humidification duct 28. The internal space IN1 of the humidifying duct 28 is an example of the internal space of the air supply member. Another example of the internal space of the air supply member is the internal space of an air supply duct for supplying non-humidified outside air. A bypass route R3 of the humidification duct 28 is an example of a bypass route of the air supply member. Another example of the bypass path of the air supply member is the bypass path of the air supply duct described above. The blowout opening 28a of the humidification duct 28 is an example of the outlet of the air supply member. Another example of the outlet of the air supply member is the outlet of the aforementioned air supply duct. With such a configuration, moisture contained in the outside air is used to easily cause condensation in the electrostatic atomization unit 75, and the generation efficiency of water particles containing ions is improved.
 (5-2)
 静電霧化ユニット75は、加湿ダクト28の吹出開口28aから100mm以内に配置されている。あるいは給気ダクトの出口から100mm以内に配置される。このように吹出開口28aまたは給気ダクトの出口の近くに配置されることで、給気部材の出口から吹き出される外気を多く含む空気を静電霧化ユニット75に導くことができる。その結果、静電霧化ユニット75で結露させることが容易になる。
(5-2)
The electrostatic atomization unit 75 is arranged within 100 mm from the blowout opening 28 a of the humidification duct 28 . Alternatively, it is arranged within 100 mm from the outlet of the supply air duct. By arranging the air outlet 28a or near the outlet of the air supply duct in this way, air containing a large amount of outside air blown from the outlet of the air supply member can be guided to the electrostatic atomization unit 75 . As a result, dew condensation in the electrostatic atomization unit 75 is facilitated.
 (5-3)
 静電霧化ユニット75が熱交換器21の上流に配置されているので、熱交換器21を通過する前の外気を静電霧化ユニット75に取り入れることができる。その結果、静電霧化ユニット75に取り入れる空気の絶対湿度が低下するのを防止することができる。
(5-3)
Since the electrostatic atomization unit 75 is arranged upstream of the heat exchanger 21 , outside air before passing through the heat exchanger 21 can be taken into the electrostatic atomization unit 75 . As a result, it is possible to prevent the absolute humidity of the air taken into the electrostatic atomization unit 75 from decreasing.
 (5-4)
 上述の空調室内機2の加湿ダクト28は、加湿された外気を給気する流路として機能することから、外気が乾燥している場合に静電霧化ユニット75に取り入れる空気の湿度を高めることができる。
(5-4)
Since the humidifying duct 28 of the air conditioning indoor unit 2 described above functions as a flow path for supplying humidified outside air, it is possible to increase the humidity of the air taken into the electrostatic atomization unit 75 when the outside air is dry. can be done.
 (5-5)
 外気が室内に供給されているときに、制御装置81が、静電霧化ユニット75を作動させる構成の場合には、静電霧化ユニット75の作動時に、静電霧化ユニット75に外気を取り入れることができる。このように、静電霧化ユニット75に外気を取り入れることで、水微粒子の高い発生効率を維持し易くなる。
(5-5)
In the case where the control device 81 is configured to operate the electrostatic atomization unit 75 when outside air is supplied to the room, outside air is supplied to the electrostatic atomization unit 75 when the electrostatic atomization unit 75 is operating. can be taken in. By taking outside air into the electrostatic atomization unit 75 in this way, it becomes easier to maintain a high generation efficiency of water particles.
 (5-6)
 図20を用いて説明したように、加湿器が加湿を終了してから所定時間以内に、静電霧化ユニット75を制御装置81が作動させる場合は、外気を多く含む空気を静電霧化ユニット75が取り入れることが容易になる。外気をさらに加湿した空気を静電霧化ユニット75が取り入れることで、外気の湿度が低い場合であっても、水微粒子の発生効率を高めることができる。
(5-6)
As described with reference to FIG. 20, when the controller 81 operates the electrostatic atomization unit 75 within a predetermined time after the humidifier finishes humidification, the air containing a large amount of outside air is electrostatically atomized. It becomes easier for the unit 75 to incorporate. Since the electrostatic atomization unit 75 takes in air that has been further humidified from the outside air, the efficiency of generating water particles can be increased even when the humidity of the outside air is low.
 (5-7)
 上述の空調室内機2は、静電霧化ユニット75に取り入れられる外気が通過する給気フィルタであるダクトフィルタ28bを備えている。ダクトフィルタ28bを備える空調室内機2では、外気に混じって例えば花粉などの微粒子が静電霧化ユニット75に取り込まれるのを給気フィルタで防ぐことができる。ダクトフィルタ28bを備える空調室内機2は、微粒子によって放電に異常が発生するのを抑制することができる。
(5-7)
The air conditioning indoor unit 2 described above includes a duct filter 28b, which is an air supply filter through which outside air taken into the electrostatic atomization unit 75 passes. In the air conditioning indoor unit 2 provided with the duct filter 28 b , the air supply filter can prevent fine particles such as pollen from being mixed with the outside air and being taken into the electrostatic atomization unit 75 . The air conditioning indoor unit 2 provided with the duct filter 28b can suppress the occurrence of abnormal discharge due to fine particles.
 (5-8)
 加湿ダクト28の吹出開口28aまたは給気ダクトの出口の下流に静電霧化ユニット75が配置されている場合、図15に示されているように、ダクトフィルタ28bが加湿ダクト28の吹出開口28aまたは給気ダクトの出口の近傍に配置される場合がある。このような場合、ダクトフィルタ28bを小型化することができ、ダクトフィルタ28bによって空気調和の効率が低下するのを防止することができる。
(5-8)
When the electrostatic atomization unit 75 is arranged downstream of the blowout opening 28a of the humidification duct 28 or the outlet of the air supply duct, the duct filter 28b is positioned at the blowout opening 28a of the humidification duct 28, as shown in FIG. Or it may be located near the outlet of the supply air duct. In such a case, the size of the duct filter 28b can be reduced, and it is possible to prevent the duct filter 28b from lowering the efficiency of air conditioning.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
 2 空調室内機
 4 空調室外機
 6 加湿器
 10 空気調和機
 21 熱交換器
 23 ケーシング
 28 加湿ダクト (給気部材の例)
 28b ダクトフィルタ (給気フィルタの例)
 61 吸着ロータ
 62 ヒータ
 75 静電霧化ユニット
 81 制御装置
 IN1 内部空間
 R3 バイパス経路
2 air conditioner indoor unit 4 air conditioner outdoor unit 6 humidifier 10 air conditioner 21 heat exchanger 23 casing 28 humidification duct (example of air supply member)
28b Duct filter (Example of supply air filter)
61 adsorption rotor 62 heater 75 electrostatic atomization unit 81 control device IN1 internal space R3 bypass route
特開2014-20578号公報JP 2014-20578 A

Claims (8)

  1.  室内の空気調和を行う空調室内機(2)であって、
     ケーシング(23)と、
     前記ケーシングの中に配置され、屋外の空気である外気を加湿して前記室内に供給するための出口を有する加湿ダクト(28)と、
     前記ケーシングの中に配置され、放電によるイオンを含む液体微粒子を放出する静電霧化ユニット(75)と、
     前記静電霧化ユニットを制御する制御装置(81)と
    を備え、
     前記制御装置は、加湿運転時において、前記外気が前記加湿ダクトを介して前記室内に供給されているときに、または前記外気の前記室内への供給が終了してから所定時間以内に、前記静電霧化ユニットを作動させる、空調室内機(2)。
    An air conditioning indoor unit (2) that performs indoor air conditioning,
    a casing (23);
    a humidification duct (28) disposed in the casing and having an outlet for humidifying outside air, which is outdoor air, and supplying it to the room;
    an electrostatic atomization unit (75) disposed in the casing for emitting liquid particles containing ions by electrical discharge;
    A control device (81) that controls the electrostatic atomization unit,
    During the humidification operation, the control device controls the quiet air while the outside air is being supplied into the room through the humidification duct, or within a predetermined time after the supply of the outside air to the room ends. An air conditioning indoor unit (2) that operates an electro-atomization unit.
  2.  前記静電霧化ユニットは、前記加湿ダクトの前記出口から100mm以内に配置されている、
    請求項1に記載の空調室内機(2)。
    The electrostatic atomization unit is arranged within 100 mm from the outlet of the humidification duct,
    The air conditioning indoor unit (2) according to claim 1.
  3.  前記ケーシングの中に配置され、室内空気及び前記外気と熱媒体との熱交換を行う熱交換器(21)を備え、
     前記静電霧化ユニットは、前記熱交換器の上流に配置されている、
    請求項1または請求項2に記載の空調室内機(2)。
    A heat exchanger (21) arranged in the casing for exchanging heat between the indoor air and the outdoor air and a heat medium,
    The electrostatic atomization unit is arranged upstream of the heat exchanger,
    The air conditioning indoor unit (2) according to claim 1 or claim 2.
  4.  前記ケーシングの中に配置され、室内空気及び前記外気と熱媒体との熱交換を行う熱交換器(21)を備え、
     前記加湿ダクトは、前記出口が前記熱交換器に対向するように配置されている、
    請求項1から3のいずれか一項に記載の空調室内機(2)。
    A heat exchanger (21) arranged in the casing for exchanging heat between the indoor air and the outdoor air and a heat medium,
    The humidification duct is arranged such that the outlet faces the heat exchanger,
    The air conditioning indoor unit (2) according to any one of claims 1 to 3.
  5.  前記静電霧化ユニットに取り入れられる前記外気が通過する給気フィルタ(28b)を備える、
    請求項1から4のいずれか一項に記載の空調室内機(2)。
    An air supply filter (28b) through which the outside air taken into the electrostatic atomization unit passes,
    Air conditioning indoor unit (2) according to any one of claims 1 to 4.
  6.  前記静電霧化ユニットは、前記加湿ダクトの前記出口の下流に配置され、
     前記給気フィルタは、前記加湿ダクトの前記出口の近傍に配置されている、
    請求項5に記載の空調室内機(2)。
    The electrostatic atomization unit is arranged downstream of the outlet of the humidification duct,
    The air supply filter is arranged near the outlet of the humidification duct,
    The air conditioning indoor unit (2) according to claim 5.
  7.  請求項1から6のいずれかに記載の空調室内機と、
     前記空調室内機に接続され、前記空調室内機とともに蒸気圧縮式冷凍サイクルを実施する冷媒回路を構成する空調室外機(4)と、
     前記空調室外機と一体化され、前記加湿ダクトで供給される前記外気を加湿する加湿器(6)と
    を備える、空気調和機(10)。
    The air conditioning indoor unit according to any one of claims 1 to 6;
    an air conditioner outdoor unit (4) connected to the air conditioner indoor unit and forming a refrigerant circuit that implements a vapor compression refrigeration cycle together with the air conditioner indoor unit;
    An air conditioner (10) comprising: a humidifier (6) that is integrated with the air conditioner outdoor unit and humidifies the outside air supplied through the humidification duct.
  8.  請求項1から6のいずれかに記載の空調室内機と、
    前記加湿ダクトで供給される前記外気を加湿する加湿器(6)と
    を備え、
     前記加湿器は、前記外気の水分を吸着する吸着ロータ(61)と前記吸着ロータから水分を脱離させるためのヒータ(62)とを有し、前記吸着ロータと前記ヒータによって前記加湿ダクトで供給される前記外気に水分を付与する、空気調和機(10)。
    The air conditioning indoor unit according to any one of claims 1 to 6;
    A humidifier (6) that humidifies the outside air supplied by the humidification duct,
    The humidifier has an adsorption rotor (61) for adsorbing moisture in the outside air and a heater (62) for desorbing moisture from the adsorption rotor. An air conditioner (10) that imparts moisture to the outside air.
PCT/JP2022/029501 2021-08-06 2022-08-01 Air-conditioning indoor unit and air conditioner WO2023013584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280054129.3A CN117836568A (en) 2021-08-06 2022-08-01 Air conditioner indoor unit and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130224 2021-08-06
JP2021130224A JP7397027B2 (en) 2021-08-06 2021-08-06 air conditioning indoor unit

Publications (1)

Publication Number Publication Date
WO2023013584A1 true WO2023013584A1 (en) 2023-02-09

Family

ID=85154761

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/029501 WO2023013584A1 (en) 2021-08-06 2022-08-01 Air-conditioning indoor unit and air conditioner
PCT/JP2022/029500 WO2023013583A1 (en) 2021-08-06 2022-08-01 Air-conditioning indoor unit

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029500 WO2023013583A1 (en) 2021-08-06 2022-08-01 Air-conditioning indoor unit

Country Status (3)

Country Link
JP (2) JP7397027B2 (en)
CN (2) CN117813469A (en)
WO (2) WO2023013584A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300130A (en) * 1988-05-30 1989-12-04 Toshiba Corp Air conditioner
JP2008145082A (en) * 2006-12-12 2008-06-26 Daikin Ind Ltd Air distribution duct and air conditioner provided with the same
JP2008185289A (en) * 2007-01-31 2008-08-14 Hitachi Appliances Inc Air conditioner
JP2009168425A (en) * 2007-12-21 2009-07-30 Panasonic Corp Air conditioner
JP2010121882A (en) * 2008-11-20 2010-06-03 Daikin Ind Ltd Air conditioner
CN202973364U (en) * 2012-12-21 2013-06-05 珠海格力电器股份有限公司 Air conditioner and indoor unit thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089897A (en) * 2000-09-12 2002-03-27 Daikin Ind Ltd Air conditioner
JP3719118B2 (en) * 2000-09-12 2005-11-24 ダイキン工業株式会社 Air conditioner
JP4872746B2 (en) * 2007-03-27 2012-02-08 パナソニック電工株式会社 Humidifier
JP5089424B2 (en) * 2007-12-21 2012-12-05 パナソニック株式会社 Air conditioner
JP2010025384A (en) * 2008-07-16 2010-02-04 Daikin Ind Ltd Humidity controller
JP2013079755A (en) * 2011-10-03 2013-05-02 Sharp Corp Ion delivery device and air conditioner with the same
JP2014163561A (en) 2013-02-22 2014-09-08 Daikin Ind Ltd Air conditioner
JP2016044877A (en) * 2014-08-22 2016-04-04 株式会社Lixil Ventilation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300130A (en) * 1988-05-30 1989-12-04 Toshiba Corp Air conditioner
JP2008145082A (en) * 2006-12-12 2008-06-26 Daikin Ind Ltd Air distribution duct and air conditioner provided with the same
JP2008185289A (en) * 2007-01-31 2008-08-14 Hitachi Appliances Inc Air conditioner
JP2009168425A (en) * 2007-12-21 2009-07-30 Panasonic Corp Air conditioner
JP2010121882A (en) * 2008-11-20 2010-06-03 Daikin Ind Ltd Air conditioner
CN202973364U (en) * 2012-12-21 2013-06-05 珠海格力电器股份有限公司 Air conditioner and indoor unit thereof

Also Published As

Publication number Publication date
JP2023024252A (en) 2023-02-16
CN117813469A (en) 2024-04-02
WO2023013583A1 (en) 2023-02-09
CN117836568A (en) 2024-04-05
JP7397027B2 (en) 2023-12-12
JP2023024124A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP6922954B2 (en) Air conditioning system
JP4360434B2 (en) Air conditioner
US20220268460A1 (en) Air conditioning system
JP2004225945A (en) Air conditioner and control method of air conditioner
JP7148808B2 (en) air conditioning system
JP2002089902A (en) Air conditioner
WO2023013584A1 (en) Air-conditioning indoor unit and air conditioner
JP7223082B1 (en) air conditioning indoor unit
KR100569548B1 (en) Air conditioner
JP7168891B1 (en) air conditioning indoor unit
JP2024038876A (en) air conditioner
JP2024038875A (en) air conditioner
WO2023032397A1 (en) Air conditioner
WO2023032731A1 (en) Air conditioning system
JP5071566B2 (en) Humidity control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280054129.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE