WO2023013582A1 - Air-conditioning indoor unit - Google Patents

Air-conditioning indoor unit Download PDF

Info

Publication number
WO2023013582A1
WO2023013582A1 PCT/JP2022/029499 JP2022029499W WO2023013582A1 WO 2023013582 A1 WO2023013582 A1 WO 2023013582A1 JP 2022029499 W JP2022029499 W JP 2022029499W WO 2023013582 A1 WO2023013582 A1 WO 2023013582A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
indoor unit
unit
casing
electrostatic atomization
Prior art date
Application number
PCT/JP2022/029499
Other languages
French (fr)
Japanese (ja)
Inventor
幸子 松本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280054057.2A priority Critical patent/CN117769631A/en
Publication of WO2023013582A1 publication Critical patent/WO2023013582A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties

Definitions

  • Air conditioning indoor units equipped with electrostatic atomization units have been known for some time.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2014-20578
  • an electrostatic atomization unit of an air conditioner indoor unit generates liquid particles containing ions by electric discharge.
  • the electrostatic atomization unit emits liquid particles containing ions into the room through an outlet of an air conditioner indoor unit.
  • the air conditioning indoor unit described in Patent Document 1 does not have the function of taking in outside air.
  • an electrostatic atomization unit is provided in an air conditioner indoor unit that has a function of taking outside air into the room, it is necessary to take measures to prevent the electrostatic atomization unit from being damaged by the outside air.
  • the air conditioning indoor unit of the first aspect is an air conditioning indoor unit that performs indoor air conditioning, and includes a casing and an electrostatic atomization unit.
  • the casing has an air supply channel through which outside air, which is outdoor air, flows.
  • the electrostatic atomization unit is a unit that emits liquid particles containing ions by electric discharge.
  • the electrostatic atomization unit is arranged outside the air supply channel.
  • the electrostatic atomization unit is arranged outside the air supply passage through which the outside air flows, so that the change in the outside air condition, especially the high humidity outside air, is applied to the electrostatic atomization unit. The impact can be suppressed.
  • the air conditioning indoor unit according to the second aspect is the air conditioning indoor unit according to the first aspect, and the air supply passage is arranged on one end side of the casing in the longitudinal direction.
  • the electrostatic atomization unit is arranged inside the casing and on the other longitudinal end side.
  • the air conditioning indoor unit of the second aspect has a simple configuration in which the air supply passage is arranged on one end side in the longitudinal direction and the electrostatic atomization unit is arranged on the other end side, and changes in the state of the outside air are applied to the electrostatic atomization unit. The impact can be suppressed.
  • the air conditioning indoor unit according to the third aspect is the air conditioning indoor unit according to the second aspect, and includes an electrical component box arranged in the casing and extending in the longitudinal direction.
  • the electrical component box has a first electrical component room containing a first electrical circuit component driven by a voltage of less than 50 volts on one end side, and a second electrical circuit driven by a voltage of 50 volts or more on the other end side. It has a second electrical compartment that houses components.
  • the second electrical component room of the electrical component box is provided at one end in the longitudinal direction where the electrostatic atomization unit is arranged, so that the distance from the second electrical component room to the electrostatic atomization unit is increased.
  • the wiring distance can be shortened, and countermeasures against voltages of 50 volts or more can be easily taken.
  • the air conditioner indoor unit of the fourth aspect is the air conditioner indoor unit of any one of the first to third aspects, and includes a fan arranged inside the casing.
  • the casing has an air inlet for sucking room air from the room, an air outlet for blowing air into the room, and a ventilation path connecting the air inlet and the air outlet.
  • the fan generates an airflow from the suction port toward the blowout port through the ventilation passage.
  • the electrostatic atomization unit takes in air from a space other than the air passage for ejecting the liquid particles.
  • the electrostatic atomization unit takes in air for discharging the liquid particles from a space other than the ventilation passage, the influence of changes in the state of the outside air on the electrostatic atomization unit is reduced. can do.
  • the air conditioning indoor unit according to the fifth aspect is the air conditioning indoor unit according to the fourth aspect, and is provided with a heat exchanger arranged in the ventilation passage in the casing for exchanging heat between the indoor air and the outside air and the heat medium.
  • the air supply channel includes an air supply member having a blowout opening for blowing outside air, and is arranged such that the blowout opening faces the heat exchanger.
  • the outlet of the air supply member is opposed to the heat exchanger, so that it is possible to prevent problems such as dew condensation caused by outside air coming into contact with other parts of the casing. can.
  • the air conditioner indoor unit of the sixth aspect is the air conditioner indoor unit of any one of the first aspect to the fifth aspect, and includes a control device that controls the electrostatic atomization unit.
  • the controller controls the electrostatic atomization unit so as not to discharge when outside air is introduced into the room.
  • the electrostatic atomization unit is prevented from being affected by outside air when the outside air is introduced into the room by preventing discharge from occurring in the electrostatic atomization unit when the outside air is introduced into the room. can be done.
  • the air conditioner indoor unit of the seventh aspect is the air conditioner indoor unit of any one of the first to sixth aspects, and the air supply channel is a channel for supplying humidified outside air.
  • the electrostatic atomization unit is placed in a position away from the air supply passage through which the outside air flows, so that the humidity of the outside air is kept quiet. The influence on the electro-atomization unit can be suppressed.
  • FIG. 2 is a diagram for explaining a refrigerant circuit and an air flow path included in the air conditioning system of FIG. 1; (a) It is the partially broken plan view which fracture
  • FIG. 3 is a schematic cross-sectional view of the air conditioner indoor unit for explaining the arrangement position of the electrostatic atomization unit according to the embodiment; It is a front view which shows the external appearance of a humidification duct. It is a side view which shows the external appearance of a humidification duct. It is a rear view which shows the external appearance of a humidification duct.
  • FIG. 8 is a cross-sectional view of the humidifying duct cut along line II of FIG. 7; It is a schematic diagram which shows the outline
  • FIG. 2 is a schematic cross-sectional view showing the outline of the configuration of the electrostatic atomization unit; (a) It is the partially broken plan view which fracture
  • FIG. 5 is a schematic cross-sectional view of an air conditioning indoor unit for explaining the arrangement position of an electrostatic atomization unit according to a modification;
  • the air conditioning system 1 includes an air conditioning indoor unit 2 , an air conditioning outdoor unit 4 and a humidifier 6 .
  • the expressions "top”, “bottom”, “front”, and “back” shown in FIGS. 1, 2 and 6 are used to describe the direction of each arrow.
  • thick arrows indicate the flow of air.
  • the operation modes of the air conditioning system 1 include, for example, a cooling operation, a heating operation, a dehumidifying operation, a humidifying operation, an air blowing operation, a ventilation operation, and an air cleaning operation.
  • the air conditioning system 1 includes a controller 8 that controls the air conditioning indoor unit 2 and the humidifier 6, as shown in FIG.
  • the air conditioning indoor unit 2 is installed in the room RM (see FIG. 1) and performs air conditioning in the room RM (indoor). As shown in FIGS. 1 and 4 , the air conditioning indoor unit 2 is included in the air conditioner 10 of the air conditioning system 1 .
  • the air conditioner 10 includes an air conditioner indoor unit 2 and an air conditioner outdoor unit 4 .
  • the air conditioner indoor unit 2 and the air conditioner outdoor unit 4 are connected by refrigerant communication pipes 11 and 12 .
  • the air conditioning indoor unit 2 , the air conditioning outdoor unit 4 , and the refrigerant communication pipes 11 and 12 form a refrigerant circuit 13 .
  • the air conditioning system 1 can perform, for example, a cooling operation, a heating operation, a dehumidification operation, a ventilation operation, and an air cleaning operation by using the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 (air conditioner 10) without using the humidifier 6. can drive.
  • the refrigerant circuit 13 for example, the vapor compression refrigeration cycle is repeated during cooling operation, heating operation, and dehumidification operation.
  • the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 are controlled by the control unit 8 .
  • the air conditioning indoor unit 2 is attached to the wall WL of the room RM.
  • the type of the air conditioning indoor unit 2 is not limited to the type installed on the wall WL of the room RM.
  • the air conditioner indoor unit 2 may be installed, for example, on the ceiling CI or the floor FL.
  • the air conditioner indoor unit 2 has a heat exchanger 21 as shown in FIG.
  • the air conditioner indoor unit 2 performs heat exchange of the air by passing the air through the heat exchanger 21 .
  • the heat exchanger 21 has a plurality of heat transfer fins 21a and a plurality of heat transfer tubes 21b. In the heat exchanger 21, air passes between the heat transfer fins 21a. During heat exchange, the air passes through the heat transfer fins 21a and the refrigerant flows through the heat transfer tubes 21b.
  • the refrigerant flowing through the heat transfer tubes 21b is a kind of heat medium.
  • the heat transfer tube 21b is thermally connected to the plurality of heat transfer fins 21a so as to be folded back a plurality of times and penetrate each heat transfer fin 21a a plurality of times.
  • the air conditioning system 1 can perform, for example, humidification operation and ventilation operation.
  • the air-conditioning indoor unit 2 of the air-conditioning system 1 configured as described above can perform operations corresponding to, for example, cooling operation, heating operation, dehumidification operation, humidification operation, ventilation operation, ventilation operation, and air cleaning operation.
  • the humidifier 6 has an air supply/exhaust hose 68 that communicates with the room via the air conditioning indoor unit 2 .
  • the air conditioning indoor unit 2 can humidify the room by increasing the humidity in the room RM with the moisture supplied into the room RM through the air supply/exhaust hose 68 by the humidifier 6 .
  • the air conditioning indoor unit 2 can ventilate the room RM with the outside air supplied into the room RM (inside the room) through the air supply/exhaust hose 68 by the humidifier 6 .
  • the ambient air described in this disclosure is outdoor OD air.
  • the control unit 8 of the air conditioning system 1 includes a control device 81 that controls the air conditioning indoor unit 2 and an outdoor control plate 82 that controls the air conditioning outdoor unit 4 and the humidifier 6 .
  • the control device 81 and the outdoor control board 82 are controllers implemented by, for example, microcomputers.
  • the control device 81 includes a timer 81a, a control arithmetic device 81b, and a storage device 81c.
  • a processor such as a CPU or GPU can be used for the control arithmetic unit 81b.
  • the control arithmetic device 81b reads a program stored in the storage device 81c, and performs, for example, predetermined sequence processing and arithmetic processing according to this program.
  • the control arithmetic device 81b can write the arithmetic result to the storage device 81c and read the information stored in the storage device 81c according to the program.
  • the air conditioner indoor unit 2 includes an electrostatic atomization unit 75 shown in FIG.
  • the electrostatic atomization unit 75 is a device that emits liquid particles containing ions by electric discharge.
  • the electrostatic atomization unit 75 is arranged outside the air supply passage R1 shown in FIG.
  • Arranging the electrostatic atomization unit 75 outside the air supply passage R ⁇ b>1 means that the air flowing through the air supply passage R ⁇ b>1 does not flow to the electrostatic atomization unit 75 .
  • the air supply flow path R1 is a flow path through which outside air can flow.
  • Another flow path R2, which is a flow path other than the air supply flow path R1 is a flow path through which outside air does not flow.
  • the electrostatic atomization unit 75 is arranged at a place other than the air supply channel R1 and the other channel R2 that constitute the ventilation channel FP. In other words, the air does not directly flow into the electrostatic atomization unit 75 from the ventilation path FP.
  • the air conditioning indoor unit 2 includes a casing 23.
  • the casing 23 of the air conditioning indoor unit 2 described here has a frame 23f, a grille 23g, and a front panel 23p, as shown in FIG.
  • the configuration of the casing 23 of the air conditioning indoor unit 2 is not limited to the configuration described here.
  • the front panel 23p and the grille 23g may be integrated.
  • This casing 23 extends long along the longitudinal direction D1.
  • One end E1 of the casing 23 in the longitudinal direction D1 is on the left when the casing 23 is viewed from the front, and the other end E2 of the casing 23 in the longitudinal direction D1 is on the right when the casing 23 is viewed from the front.
  • the side closer to the one end E1 than the center CE in the longitudinal direction D1 of the casing 23 is called the one end side
  • the side closer to the other end E2 than the center CE is called the other end side.
  • the area between the center CE of the casing 23 and the one end E1 is the one end side
  • the area between the center CE and the other end E2 is the other end side.
  • Outside air is supplied to one end by an air supply/exhaust hose 68 .
  • one end of the casing 23 in the longitudinal direction D1 becomes the air supply passage R1.
  • the flow of outside air is indicated by a thick dashed-dotted arrow. Since the outside air is not supplied from the air supply/exhaust hose 68 to the other end side of the casing 23 in the longitudinal direction D1, this other end side becomes a flow path R2 other than the air supply flow path.
  • the air conditioning indoor unit 2 includes a heat exchanger 21, a fan 22, a casing 23, Equipped with a filter 24, a drain pan 26, a horizontal flap 27, a vertical flap (not shown), a humidification duct 28, and an electrostatic atomizer 70 (see FIG. 11) including an electrostatic atomizer unit 75.
  • the air conditioning indoor unit 2 also includes an indoor temperature sensor 31 and an indoor humidity sensor 32 .
  • the indoor temperature sensor 31 and the indoor humidity sensor 32 are connected to the controller 81 .
  • the casing 23 has a suction port 23a at its top and a blowout port 23b at its bottom.
  • the air conditioner indoor unit 2 drives the fan 22 to suck in the indoor air from the suction port 23a, and blows out the air that has passed through the heat exchanger 21 from the blowout port 23b.
  • the airflow path connecting the suction port 23a and the blowout port 23b is the ventilation path FP.
  • the fan 22 is arranged in a substantially central portion within the casing 23 in a cross-sectional view of the air conditioning indoor unit 2 (see FIG. 2).
  • a cross-flow fan is used for the fan 22 .
  • the fan 22 has blades extending along the longitudinal direction D1 and generates an air flow in a direction perpendicular to the longitudinal direction D1.
  • the heat exchanger 21 is arranged upstream of the fan 22 in the ventilation passage FP from the suction port 23a to the blowout port 23b.
  • the heat exchanger 21 has a downwardly open shape so as to cover the upper side of the fan 22 when viewed in the direction in which the heat transfer tubes 21b extend (when viewed from the side).
  • a shape is called a ⁇ shape or a C shape.
  • the heat exchanger 21 has a first heat exchange section 21F far from the wall WL and a second heat exchange section 21R close to the wall WL.
  • a drain pan 26 is arranged under the lower portion of the first heat exchange portion 21F and the lower portion of the second heat exchange portion 21R of the ⁇ -shaped or C-shaped heat exchanger 21 .
  • Condensation generated in the first heat exchange section 21 ⁇ /b>F of the heat exchanger 21 is received by the drain pan 26 arranged in the lower front portion of the heat exchanger 21 .
  • Condensation generated in the second heat exchange section 21R of the heat exchanger 21 is received by the drain pan 26 arranged in the lower rear portion of the heat exchanger 21 .
  • a horizontal flap 27 and a vertical flap are arranged at the outlet 23b.
  • the horizontal flap 27 vertically changes the direction of the air blown from the outlet 23b. Therefore, the horizontal flap 27 is configured so that the angle formed with the horizontal direction can be changed by a motor 27m.
  • the vertical flap is configured to be able to change the direction of the air blown out from the outlet 23b to the left or right.
  • the air conditioning indoor unit 2 drives, for example, a vertical flap with a motor (not shown) so as to change the angle formed with the front-rear direction.
  • An air filter 24 is arranged downstream of the suction port 23 a in the casing 23 and upstream of the heat exchanger 21 . Substantially all of the room air supplied to the heat exchanger 21 passes through the air filter 24 . Therefore, dust particles larger than the mesh of the air filter 24 are removed by the air filter 24 and do not reach the heat exchanger 21 .
  • the air conditioning indoor unit 2 includes a humidification duct 28 as an air supply member inside the casing 23 .
  • the humidification duct 28 is arranged on one end side of the casing 23 in the longitudinal direction D1 and is included in the air supply flow path R1 formed on the one end side of the casing 23 .
  • outlet opening 28a is arranged to face heat exchanger 21 (see FIG. 6). Outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the ventilation operation.
  • the humidifying operation in the humidifier 6 is stopped, and outside air is sent from the humidifier 6 through the air supply/exhaust hose 68 to the humidification duct 28 as it is.
  • Humidified outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the humidification operation.
  • humidification operation humidification operation is performed in the humidifier 6 , and humidified outside air is sent from the humidifier 6 to the humidification duct 28 through the air supply/exhaust hose 68 .
  • the humidification duct 28 is provided with a duct filter 28b. Outside air sent through the air supply/exhaust hose 68 is blown out into the casing 23 through the duct filter 28b.
  • the electrostatic atomization device 70 (see FIG. 11) including the electrostatic atomization unit 75 is arranged outside the air supply passage R1.
  • an electrostatic atomizer 70 including an electrostatic atomizer unit 75 is arranged within the casing 23 .
  • the electrostatic atomizer 70 including the electrostatic atomizer unit 75 is arranged on the other end side of the casing 23 in the longitudinal direction D1.
  • the electrostatic atomization device 70 is arranged on the other end side of the casing 23, so that the electrostatic atomization unit 75 is arranged outside the air supply passage R1. More specifically, the electrostatic atomizer 70 including the electrostatic atomizer unit 75 is arranged outside the air supply channel R1 and the other channel R2.
  • the electrostatic atomization device 70 including the electrostatic atomization unit 75 takes in air for ejecting liquid particles from a space other than the ventilation path FP.
  • an electrostatic atomizer 70 including an electrostatic atomizer unit 75 sprays liquid particles from a space IS inside the casing 23 other than the air passage FP. It takes in air to let it out.
  • This space IS is a space in the casing 23 near the other end E2.
  • the other end E2 of the casing 23 is the right side surface of the casing 23 .
  • the control device 81 arranged in the air conditioning indoor unit 2 is connected to the motor 22m of the fan 22 and the motor 27m of the horizontal flap 27, as shown in FIG.
  • the control device 81 can control the number of rotations of the motor 22m of the fan 22 and the rotation angle of the motor 27m of the horizontal flap.
  • the control device 81 is connected to an outdoor control plate 82 (see FIG. 4) arranged inside the air conditioner outdoor unit 4 .
  • the control device 81 has a timer 81a, a control arithmetic device 81b, and a storage device 81c will be described. It may be provided in place.
  • the timer 81a, the control arithmetic device 81b, and the storage device 81c may be provided on the outdoor control board 82.
  • the control device 81 can detect the temperature of the indoor air with the indoor temperature sensor 31 and the relative humidity of the indoor air with the indoor humidity sensor 32 .
  • the controller 81 can set the on/off timing of the electrostatic atomizer 70 using the timer 81a.
  • the air conditioning indoor unit 2 has an electrical component box 90 arranged in the casing 23 and extending in the longitudinal direction D1 (see FIG. 3).
  • the control device 81 is housed in the first electrical component room 91 (see FIG. 5 ) of the electrical component box 90 .
  • the first electrical equipment chamber 91 is arranged on one end side of the casing 23 .
  • the first electrical equipment compartment 91 is a space in which a first electrical circuit component driven by a voltage of less than 50 volts is accommodated.
  • the first electrical circuit component includes an electrical circuit component that constitutes the control device 81 .
  • the electrical component box 90 has a second electrical component room 92 on the other end side.
  • the second electrical equipment room 92 is a space in which second electrical circuit components driven by a voltage of 50 volts or higher are accommodated.
  • the second electrical circuitry includes electrical circuitry for powering the electrostatic atomization unit 75 .
  • the second electrical equipment chamber 92 is arranged on the other end side of the casing 23 . Since the second electrical compartment 92 is arranged on the other end side, the wiring distance from the second electrical compartment 92 to the electrostatic atomization unit 75 can be shortened.
  • the humidification duct 28 includes a blowout opening 28a, a duct filter 28b, a wide portion 28c, a connection portion 28d, and a feeder. It has an air opening 28e.
  • a supply/exhaust hose 68 is connected to the cylindrical connecting portion 28d. Outside air flows through the air supply/exhaust hose 68 from the air supply opening 28e at the tip of the connection portion 28d.
  • a wide portion 28c that is wider in the longitudinal direction D1 (horizontal direction) than the connecting portion 28d is arranged downstream of the connecting portion 28d.
  • a duct filter 28b is detachably attached to the wide portion 28c.
  • the duct filter 28b By opening the front panel 23p of the air conditioning indoor unit 2, the duct filter 28b can be pulled out from the casing 23 forward.
  • a blowout opening 28a is formed downstream of the duct filter 28b in the wide portion 28c.
  • Blow-out opening 28 a faces heat exchanger 21 .
  • the blowout opening 28a is arranged below the air filter 24, and the outside air blown out from the blowout opening 28a flows into the heat exchanger 21 without passing through the air filter 24. Since the fan 22 generates an air flow in a direction perpendicular to the longitudinal direction D1, the outside air blown out from the humidification duct 28 to one end side of the casing 23 flows through the air supply flow path R1 and then into the other flow path R2. does not flow.
  • the electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 as shown in FIG.
  • the electrostatic atomizer 70 includes, for example, a housing 71, an inlet 72a, an outlet 72b, a blower 74, and a high-voltage transformer 73.
  • the outlet 72b is connected to the ventilation path FP.
  • a portion to which the discharge port 72b is connected is, for example, a scroll portion connected to the blowout port 23b of the casing 23 in the air passage FP.
  • the intake port 72a sucks the room air from a portion other than the air passage FP in the casing 23 .
  • the electrostatic atomizer 70 includes a blower 74 in the housing 71 so that the air sucked from the suction port 72a passes through the electrostatic atomization unit 75 in the housing 71 and is discharged from the discharge port 72b. It is preferable to have However, if airflow is generated in the housing 71 without the blower 74, the blower 74 may be omitted.
  • the electrostatic atomization unit 75 converts water condensed on the discharge electrode 78 into water fine particles 77 containing ions by discharging and emits the water.
  • a high voltage is applied between the discharge electrode 78 and the counter electrode 79 by the high voltage transformer 73 in order to generate a high voltage discharge at the discharge electrode 78 . Due to the discharge phenomenon that occurs in the discharge electrode 78, the moisture on the discharge electrode 78 turns into nanometer-sized fine particles and is charged, generating electrostatic mist.
  • the electrostatic atomization unit 75 is equipped with, for example, a cooling element 76 in order to generate condensed water on the discharge electrode 78 .
  • the cooling element 76 has a heat dissipation surface 76a and a cooling surface 76b.
  • a heat dissipation portion 76c is thermally connected to the heat dissipation surface 76a.
  • a heat radiation fin for example, can be used for the heat radiation portion 76c.
  • the cooling surface 76b is thermally connected to the discharge electrode 78 via an electrical insulator (not shown).
  • the discharge electrode 78 installed upright on the cooling surface 76b is arranged at a predetermined distance from the counter electrode 40. As shown in FIG.
  • the cooling element 76 is, for example, a Peltier element.
  • a plurality of cooling elements 76 may be provided.
  • the cooling element 76 is a Peltier element
  • the cooling surface 76b absorbs heat and the heat radiation surface 76a generates heat.
  • the temperature of electrode 78 decreases.
  • the temperature of the discharge electrode 78 falls below the dew point temperature of the air sucked from the suction port 72a, dew condensation occurs on the discharge electrode 78 .
  • FIG. and a housing 47 Air Conditioner Outdoor Unit As shown in FIG. and a housing 47 .
  • Compressor 41 , four-way valve 42 , accumulator 43 , outdoor heat exchanger 44 , outdoor expansion valve 45 and outdoor fan 46 are housed in housing 47 .
  • the housing 47 has a rear opening 47a (see FIG. 4) for sucking outside air and a front opening 47b (see FIGS. 1 and 4) for blowing out air after heat exchange.
  • the rear opening 47 a is arranged on the rear side of the housing 47 .
  • the air conditioner outdoor unit 4 functions as a heat source unit that supplies thermal energy to the air conditioner indoor unit 2 .
  • the compressor 41 sucks in gas refrigerant, compresses it, and discharges it.
  • the compressor 41 is, for example, a variable capacity compressor whose operating capacity can be changed by adjusting the operating frequency of the motor 41m with an inverter. As the operating frequency increases, the operating capacity of the compressor 41 increases.
  • the four-way valve 42 has four ports. A first port P ⁇ b>1 of the four-way valve 42 is connected to a discharge port of the compressor 41 . A second port P ⁇ b>2 of the four-way valve 42 is connected to one inlet/outlet of the outdoor heat exchanger 44 . A third port P3 of the four-way valve 42 is connected to the accumulator 43 . A fourth port P4 of the four-way valve 42 is connected to one inlet/outlet of the heat exchanger 21 .
  • the accumulator 43 is connected between the third port P3 of the four-way valve 42 and the suction port of the compressor 41.
  • the outdoor heat exchanger 44 has the other inlet/outlet connected to one inlet/outlet of the outdoor expansion valve 45 .
  • the outdoor heat exchanger 44 exchanges heat between the refrigerant that has flowed into the inside from one entrance or the other entrance and the outside air.
  • the outdoor expansion valve 45 has the other inlet/outlet connected to the other inlet/outlet of the heat exchanger 21 .
  • An outdoor control plate 82 that constitutes the control unit 8 is arranged in the air conditioner outdoor unit 4 .
  • the outdoor control plate 82 is connected to the control device 81 .
  • the outdoor control plate 82 is connected to the motor 41 m of the compressor 41 , the four-way valve 42 and the motor 46 m of the outdoor fan 46 .
  • the control unit 8 can control the operating frequency of the motor 41 m of the compressor 41 , the opening degree of the four-way valve 42 , and the rotation speed of the motor 46 m of the outdoor fan 46 with the outdoor control plate 82 .
  • the refrigerant circuit 13 includes a compressor 41 , a four-way valve 42 , an accumulator 43 , an outdoor heat exchanger 44 , an outdoor expansion valve 45 and a heat exchanger 21 .
  • a refrigerant circulates in the refrigerant circuit 13 .
  • Refrigerants include, for example, fluorocarbons such as R32 refrigerant and R410 refrigerant, and carbon dioxide.
  • the refrigerant is compressed by the compressor 41 and heated, and then radiates heat in the outdoor heat exchanger 44 or the heat exchanger 21 .
  • the refrigerant is decompressed and expanded by the outdoor expansion valve 45 , and then the refrigerant absorbs heat in the heat exchanger 21 or the outdoor heat exchanger 44 .
  • the accumulator 43 gas-liquid separation of the refrigerant sucked into the compressor 41 is performed.
  • the four-way valve 42 switches the direction of refrigerant flow in the refrigerant circuit 13 .
  • the humidifier 6 of this embodiment is integrated with the air conditioner outdoor unit 4 .
  • the humidifier 6 and the air conditioner outdoor unit 4 may be configured as separable separate bodies.
  • the humidifier 6 takes in moisture from outside air.
  • the humidifier 6 can generate high-humidity air by applying the taken-in moisture to the outside air.
  • the humidifier 6 sends this high-humidity air to the air conditioner indoor unit 2 .
  • the air conditioner indoor unit 2 mixes the high-humidity air sent from the humidifier 6 with the indoor air during the humidification operation.
  • the air conditioner indoor unit 2 humidifies the room by blowing out air mixed with high-humidity air into the room RM.
  • the humidifier 6 is controlled by the controller 8 .
  • the humidifier 6 can also stop the humidification operation and send outside air to the air conditioning indoor unit 2 without humidifying.
  • the air conditioning indoor unit 2 mixes the outside air sent from the humidifier 6 with the indoor air during ventilation operation.
  • the air conditioning indoor unit 2 can supply the outside air to the room by blowing out the air mixed with the outside air into the room RM (inside the room).
  • the humidifier 6 can also stop the humidification operation and exhaust the indoor air from the air conditioning indoor unit 2 to the outdoor OD without humidifying.
  • the air conditioning indoor unit 2 can supply outside air into the room RM and exhaust indoor air in the room RM to the outside OD.
  • the humidifier 6 as shown in FIG. there is
  • the humidifier 6 also includes an air supply/exhaust hose 68 .
  • the housing 69 of the humidifier 6 is attached to the housing 47 of the air conditioner outdoor unit 4 .
  • the humidifier 6 has a housing 69 with an adsorption air outlet 69a, an adsorption air intake 69b, and a humidification air intake 69c.
  • the adsorption rotor 61 is, for example, a disk-shaped humidity control rotor having a honeycomb structure.
  • the humidity control rotor can be formed, for example, by firing an adsorbent that has the property of adsorbing moisture in the air that comes in contact with it.
  • the adsorbent of the adsorption rotor 61 has the property of desorbing the adsorbed moisture when heated.
  • unheated air passes through the adsorption rotor 61 of the honeycomb structure, moisture in the air is adsorbed on the adsorption rotor 61 .
  • moisture of the adsorption rotor 61 is imparted to the air.
  • the adsorption rotor 61 is rotated by being driven by a motor 61m.
  • the rotation speed of the adsorption rotor 61 can be changed by changing the rotation speed of the motor 61m.
  • the heater 62 is arranged between the humidifying air intake 69 c and the switching damper 63 . Outside air taken in from the humidifying air intake 69 c passes through the heater 62 and then through the adsorption rotor 61 to reach the switching damper 63 . When the air heated by the heater 62 passes through the adsorption rotor 61 , moisture is desorbed from the adsorption rotor 61 and supplied from the adsorption rotor 61 to the heated outside air.
  • the heater 62 can change its output, and the temperature of the air that has passed through the heater 62 can be changed according to the output.
  • the adsorption rotor 61 tends to desorb more moisture as the temperature of the air passing through the adsorption rotor 61 increases.
  • the amount of water added to the outside air can be adjusted.
  • the switching damper 63 has a first entrance 63a and a second entrance 63b.
  • the switching damper 63 can switch between the first inlet/outlet 63a and the second inlet/outlet 63b as the air inlet for sucking air when the air supply/exhaust fan 64 is driven.
  • the air inlet is the first inlet/outlet 63a
  • outside air flows from the humidifying air inlet 69c in the direction of the solid arrow in FIG. 1 entrance/exit 63a, air supply/exhaust fan 64, second entrance/exit 63b, duct 66, air supply/exhaust hose 68, and air conditioning indoor unit 2 in this order.
  • the air supply/exhaust fan 64 is arranged between the first entrance 63 a and the second entrance 63 b of the switching damper 63 .
  • the air supply/exhaust fan 64 generates an air flow from the first inlet/outlet 63a to the second inlet/outlet 63b or from the second inlet/outlet 63b to the first inlet/outlet 63a.
  • the air supply/exhaust fan 64 is driven by a motor 64m.
  • the air supply/exhaust hose 68 has one end connected to the duct 66 and the other end connected to the air conditioning indoor unit 2 . With such a configuration, the air supply/exhaust hose 68 and the room RM communicate with each other via the air conditioning indoor unit 2 .
  • An adsorption fan 65 is arranged in a passage leading from the adsorption air intake 69b to the adsorption air outlet 69a, and the adsorption rotor 61 is arranged so as to hang over this passage.
  • the adsorption fan 65 generates an airflow from the adsorption air intake port 69b toward the adsorption air outlet 69a, the adsorption rotor 61 adsorbs moisture from the outside air passing through the adsorption rotor 61 .
  • the suction fan 65 is driven by a motor 65m.
  • the motor 61 m of the adsorption rotor 61 , the motor 63 m of the switching damper 63 , the motor 64 m of the air supply/exhaust fan 64 and the heater 62 are connected to the outdoor control plate 82 .
  • the controller 8 can control the number of rotations of the adsorption rotor 61 , the switching of the switching damper 63 , the ON/OFF of the air supply/exhaust fan 64 and the adsorption fan 65 , and the output of the heater 62 using the outdoor control plate 82 .
  • Operation of Air Conditioning System and Air Conditioning Indoor Units include, for example, cooling operation, heating operation, dehumidification operation, humidification operation, fan operation, ventilation operation, and air cleaning operation. be. Note that a plurality of operations can be combined. For example, heating operation and humidifying operation, cooling operation and humidifying operation, air blowing operation and humidifying operation, ventilation operation and cooling operation, ventilation operation and heating operation, ventilation operation and dehumidifying operation, and ventilation operation and air blowing operation can be combined, An air cleaning operation can be further combined with those combinations.
  • the controller 81 of the control section 8 is instructed to perform the cooling operation and the target temperature from, for example, a remote controller (not shown).
  • the controller 8 switches the four-way valve 42 to the state indicated by the solid line in FIG.
  • the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the second port P2, and the refrigerant to flow between the third port P3 and the fourth port P4.
  • the four-way valve 42 during cooling operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the outdoor heat exchanger 44 .
  • the outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 .
  • the refrigerant cooled by the outdoor heat exchanger 44 is depressurized by the outdoor expansion valve 45 and flows into the heat exchanger 21 .
  • the heat exchanger 21 exchanges heat between the refrigerant and the air supplied by the fan 22 .
  • the air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air.
  • the refrigerant warmed by heat exchange in the heat exchanger 21 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 .
  • the indoor air is cooled by blowing the indoor air cooled by the heat exchanger 21 or the mixed air of the indoor air and the outdoor air from the air conditioning indoor unit 2 to the room RM.
  • the heat exchanger 21 functions as a refrigerant evaporator to cool the room RM
  • the outdoor heat exchanger 44 functions as a refrigerant radiator.
  • the controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
  • the controller 81 of the control section 8 is instructed to perform the heating operation and the target temperature from, for example, a remote controller.
  • the control unit 8 switches the four-way valve 42 to the state indicated by the dashed line in FIG.
  • the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the fourth port P4, and the refrigerant between the second port P2 and the third port P3.
  • the four-way valve 42 during heating operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the heat exchanger 21 . In the heat exchanger 21, heat is exchanged between the air supplied by the fan 22 and the refrigerant.
  • the air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air.
  • the refrigerant cooled by the heat exchanger 21 is depressurized by the outdoor expansion valve 45 and flows into the outdoor heat exchanger 44 .
  • the outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 .
  • the refrigerant warmed by heat exchange in the outdoor heat exchanger 44 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 .
  • the room is heated by blowing out the indoor air warmed by the heat exchanger 21 or the mixed air of the indoor air and the outside air from the air conditioning indoor unit 2 into the room RM.
  • the heat exchanger 21 functions as a refrigerant radiator to warm the room RM
  • the outdoor heat exchanger 44 functions as a refrigerant evaporator.
  • the controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
  • the control device 81 of the control unit 8 is instructed to operate the blowing operation from, for example, a remote controller. During the blowing operation, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . The control unit 8 also stops the operation of the humidifier 6 . In the air blowing operation, there are cases where the target air volume is instructed from the remote controller, and where the air conditioning indoor unit 2 automatically selects the target air volume.
  • the control device 81 controls the motor 22m of the fan 22 so as to achieve the target air volume.
  • control device 81 is configured so that the rotation speed can be increased in order from the LL tap, which has the lowest rotation speed, to the L tap, the M tap, and the H tap.
  • the controller 8 also stops the operation of the humidifier 6 when the air blowing operation is being performed. In the air blowing operation, the indoor air in the room RM is circulated by the air conditioning indoor unit 2 .
  • the controller 81 of the control section 8 is instructed to perform the humidification operation and the target humidity from, for example, a remote controller.
  • the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 .
  • the refrigeration cycle in the refrigerant circuit 13 is also performed at the same time as the humidification operation.
  • the control unit 8 Upon receiving the humidification operation instruction, the control unit 8 first causes the humidifier 6 to dry the air supply/exhaust hose 68 . After the air supply/exhaust hose 68 is dried, the controller 8 causes the humidifier 6 to start the humidification operation.
  • the controller 8 drives the suction fan 65 and controls the suction rotor 61 to rotate. By driving the adsorption fan 65 and passing the outside air through the adsorption rotor 61 , the adsorption rotor 61 adsorbs moisture from the outside air. Due to the rotation of the adsorption rotor 61, the location where moisture is adsorbed moves to a location through which the air heated by the heater 62 passes.
  • the air that has passed through the adsorption rotor 61 and becomes highly humid is sent to the room RM through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 by the air supply/exhaust fan 64 .
  • the control device 81 drives the fan 22 of the air conditioning indoor unit 2 to blow high-humidity air into the room RM.
  • the control unit 8 controls the air conditioning indoor unit 2, the air conditioning outdoor unit 4, and the humidifier 6 so that the humidity detected by the predetermined humidity sensor approaches the target humidity.
  • the predetermined humidity sensor is a humidity sensor provided in a flow path through which air flows in the humidifier 6 and the air conditioner indoor unit 2 .
  • the predetermined humidity sensor includes, for example, the indoor humidity sensor 32 and the humidity sensor attached to the humidification duct 28 .
  • the control device 81 of the control section 8 is instructed to perform the ventilation operation from, for example, a remote controller.
  • the humidification operation is stopped.
  • the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 .
  • the control unit 8 drives the compressor 41 to perform the refrigeration cycle in the refrigerant circuit 13 .
  • the rotation of the adsorption fan 65 and the adsorption rotor 61 is stopped.
  • the controller 8 controls the motor 64m to drive the air supply/exhaust fan 64 .
  • the controller 8 switches between the air supply state and the air exhaust state by controlling the switching damper 63 .
  • the air supply state outside air is taken in from the humidifying air intake port 69c and blown through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 into the room RM.
  • the exhaust state indoor air is exhausted from the room RM through the air conditioning indoor unit 2 and the air supply/exhaust hose 68 from the humidification air intake port 69c.
  • the control device 81 drives the fan 22 of the air conditioner indoor unit 2 to blow outside air into the room RM.
  • the humidification duct 28 functions as an air supply duct that supplies outside air that has not been humidified by the humidifier 6 as it is.
  • the air conditioning system 1 can perform an air cleaning operation using the electrostatic atomizer 70 .
  • the air cleaning operation is an operation for suppressing harmful components and/or odorous components in the air.
  • the air cleaning operation is, for example, an operation in which harmful or odorous components are suppressed with water particles (electrostatic mist) containing ions generated by the electrostatic atomizer 70 .
  • the air cleaning operation using the electrostatic atomizer 70 is performed together with other operations such as cooling operation, heating operation, dehumidifying operation, humidifying operation, blowing operation, ventilation operation, or a combination thereof.
  • the control device 81 of the air conditioner indoor unit 2 controls the electrostatic atomizer unit 75 so as not to discharge the electrostatic atomizer unit 75 when outside air is introduced into the room RM (indoor) during humidification operation or ventilation operation. control 70;
  • the air supply member is not limited to the humidification duct 28 only.
  • an air supply/exhaust device that only supplies and exhausts outside air without a humidification function may be provided outdoors.
  • an air supply duct is arranged in the casing 23 instead of the humidification duct 28 .
  • the air conditioning indoor unit 2 cannot perform the humidification operation, but can perform the ventilation operation to supply outside air to the room RM (indoor).
  • the arrangement relationship between the air supply duct and the electrostatic atomization unit 75 can be set in the same manner as the arrangement relationship between the humidification duct 28 and the electrostatic atomization unit 75 .
  • the air conditioner indoor unit 2 described above has an air supply passage R1 in the casing 23 through which outside air, which is outdoor air, flows during humidification operation or ventilation operation.
  • the electrostatic atomizer 70 and the electrostatic atomizer unit 75 are arranged outside the air supply passage R1. In other words, the air flowing through the air supply passage R1 does not flow to the electrostatic atomization device 70 and the electrostatic atomization unit 75 .
  • Room air outside the casing 23 is the air that flows into the electrostatic atomizer 70 and the electrostatic atomizer unit 75 .
  • the air supply passage R1 of the air conditioning indoor unit 2 is arranged on one end side of the casing 23 in the longitudinal direction D1.
  • the electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged inside the casing 23 and arranged on the other end side in the longitudinal direction D1. In this way, with a simple configuration in which the air supply flow path R1 is arranged on one end side in the longitudinal direction and the electrostatic atomization unit 75 is arranged on the other end side, the effect of changes in the state of the outside air on the electrostatic atomization unit 75 can be reduced. can be suppressed.
  • the electrostatic atomization unit 75 is arranged between the ventilation passage FP and the other end E2 of the casing 23, as in the above-described embodiment.
  • the use of room air entering the casing 23 from the RM is included.
  • the configuration in which the electrostatic atomization unit 75 is arranged on the other end side includes the case where the indoor air flowing through the other flow path R2 is sent to the electrostatic atomization unit 75 as in the modification B.
  • the electrical component box 90 arranged to extend in the longitudinal direction D1 in the casing 23 has a first electrical component room 91 on one end side and a second electrical component room on the other end side. has 92.
  • the second electrical component room 92 accommodates a second electrical circuit component driven by a voltage of 50 volts or higher for supplying electric power to the electrostatic atomizer 70, for example.
  • the electrostatic atomizer 70 and the electrostatic atomizer can be discharged from the second electrical equipment chamber 92 .
  • the wiring distance to the unit 75 can be shortened. As a result, it becomes easier to take measures against voltages of 50 volts or more.
  • the air guided to the electrostatic atomization unit 75 is taken in from the space between the ventilation path FP and the other end E2 of the casing 23 .
  • a space between the ventilation path FP and the other end E2 of the casing 23 is a space other than the ventilation path FP.
  • the liquid particles emitted from the electrostatic atomization unit 75 are nano-sized water particles. Since the air introduced into the electrostatic atomization unit 75 is taken in from a space other than the ventilation path FP, the outside air is not mixed with the air introduced into the electrostatic atomization unit 75, and changes in the state of the outside air are electrostatically generated. The influence on the atomization unit 75 can be reduced.
  • the blowout opening 28 a of the humidifying duct 28 or the blowout opening (not shown) of the air supply duct which is an air supply member, is arranged to face the heat exchanger 21 . Due to the configuration in which the blow-out opening 28a faces the heat exchanger 21, outside air hits other parts of the casing 23 other than the heat exchanger 21, causing problems such as dew condensation on parts other than the heat exchanger 21. can be prevented from occurring.
  • the control device 81 of the air conditioning indoor unit 2 described above performs control so that the electrostatic atomization unit 75 does not discharge when outside air is introduced into the room RM (indoor). As a result, it is possible to prevent the electrostatic atomization unit 75 from being affected by the outside air when the outside air is introduced.
  • the air supply passage R1 of the air conditioning indoor unit 2 described above is a passage for supplying humidified outside air during the humidification operation. Even when the humidified outside air flows through the air supply passage R1 in this way, the electrostatic atomization unit 75 is arranged at a position separated from the air supply passage R1 through which the outside air flows, so that the humidity of the outside air is electrostatically atomized. The influence on the unit 75 can be suppressed.
  • Air conditioner indoor unit 21 Heat exchanger 22 Fan 23 Casing 23a Suction port 23b Air outlet 28 Humidification duct (Example of air supply member) 70
  • Electrostatic atomization device 75 Electrostatic atomization unit 81 Control device 90 Electrical component box 91 First electrical component room 92 Second electrical component room R1 Air supply channel FP Ventilation channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

The present invention suppresses the influence of changes in the condition of outside air on an electrostatic atomization unit. An air-conditioning indoor unit (2) comprises a casing (23) and an electrostatic atomization unit (75). The casing (23) has an air supply channel (R1) through which outside air, which is outdoor air, flows. The electrostatic atomization unit (75) emits liquid particles containing ions generated by electrical discharge. The electrostatic atomization unit (75) is disposed outside the air supply channel (R1).

Description

空調室内機air conditioning indoor unit
 室内の空気調和を行う空調室内機に関する。  Regarding air conditioning indoor units that perform indoor air conditioning.
 従来から、静電霧化ユニットが搭載された空調室内機が知られている。例えば、特許文献1(特開2014-20578号公報)に記載されているように、空調室内機の静電霧化ユニットは、放電によってイオンを含む液体微粒子を生成する。静電霧化ユニットは、イオンを含む液体微粒子を空調室内機の吹出口を通して室内に放出する。 Air conditioning indoor units equipped with electrostatic atomization units have been known for some time. For example, as described in Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2014-20578), an electrostatic atomization unit of an air conditioner indoor unit generates liquid particles containing ions by electric discharge. The electrostatic atomization unit emits liquid particles containing ions into the room through an outlet of an air conditioner indoor unit.
 特許文献1に記載されている空調室内機は、外気を取り入れる機能を有していない。外気を室内に取り入れる機能を有する空調室内機に静電霧化ユニットを設ける場合には、静電霧化ユニットが外気によって不具合を生じないように対策を施すことが必要になる。 The air conditioning indoor unit described in Patent Document 1 does not have the function of taking in outside air. When an electrostatic atomization unit is provided in an air conditioner indoor unit that has a function of taking outside air into the room, it is necessary to take measures to prevent the electrostatic atomization unit from being damaged by the outside air.
 第1観点の空調室内機は、室内の空気調和を行う空調室内機であって、ケーシングと静電霧化ユニットとを備えている。ケーシングは、屋外の空気である外気が流れる給気流路を有する。静電霧化ユニットは、放電によるイオンを含む液体微粒子を放出するユニットである。静電霧化ユニットは、給気流路の外に配置されている。 The air conditioning indoor unit of the first aspect is an air conditioning indoor unit that performs indoor air conditioning, and includes a casing and an electrostatic atomization unit. The casing has an air supply channel through which outside air, which is outdoor air, flows. The electrostatic atomization unit is a unit that emits liquid particles containing ions by electric discharge. The electrostatic atomization unit is arranged outside the air supply channel.
 第1観点の空調室内機では、外気が流れる給気流路の外に静電霧化ユニットが配置されることで、外気の状態の変化、特に高湿度状態の外気が静電霧化ユニットに与える影響を抑制することができる。 In the air conditioner indoor unit of the first aspect, the electrostatic atomization unit is arranged outside the air supply passage through which the outside air flows, so that the change in the outside air condition, especially the high humidity outside air, is applied to the electrostatic atomization unit. The impact can be suppressed.
 第2観点の空調室内機は、第1観点の空調室内機であって、給気流路は、ケーシングの長手方向の一端側に配置されている。静電霧化ユニットは、ケーシングの中に配置され、かつ、長手方向の他端側に配置されている。 The air conditioning indoor unit according to the second aspect is the air conditioning indoor unit according to the first aspect, and the air supply passage is arranged on one end side of the casing in the longitudinal direction. The electrostatic atomization unit is arranged inside the casing and on the other longitudinal end side.
 第2観点の空調室内機では、給気流路を長手方向の一端側、静電霧化ユニットを他端側に配置するという簡単な構成で、外気の状態の変化が静電霧化ユニットに与える影響を抑制することができる。 The air conditioning indoor unit of the second aspect has a simple configuration in which the air supply passage is arranged on one end side in the longitudinal direction and the electrostatic atomization unit is arranged on the other end side, and changes in the state of the outside air are applied to the electrostatic atomization unit. The impact can be suppressed.
 第3観点の空調室内機は、第2観点の空調室内機であって、ケーシングの中に配置され、長手方向に延びている電装品箱を備えている。電装品箱は、一端側に50ボルト未満の電圧によって駆動される第1電気回路部品を収容する第1電装室を有し、他端側に50ボルト以上の電圧によって駆動される第2電気回路部品を収容する第2電装室を有する。 The air conditioning indoor unit according to the third aspect is the air conditioning indoor unit according to the second aspect, and includes an electrical component box arranged in the casing and extending in the longitudinal direction. The electrical component box has a first electrical component room containing a first electrical circuit component driven by a voltage of less than 50 volts on one end side, and a second electrical circuit driven by a voltage of 50 volts or more on the other end side. It has a second electrical compartment that houses components.
 第3観点の空調室内機では、電装品箱の第2電装室を、静電霧化ユニットが配置される長手方向の一端側に設けることで、第2電装室から静電霧化ユニットまでの配線距離を短くでき、50ボルト以上の電圧に対する対策が行い易くなる。 In the air conditioning indoor unit of the third aspect, the second electrical component room of the electrical component box is provided at one end in the longitudinal direction where the electrostatic atomization unit is arranged, so that the distance from the second electrical component room to the electrostatic atomization unit is increased. The wiring distance can be shortened, and countermeasures against voltages of 50 volts or more can be easily taken.
 第4観点の空調室内機は、第1観点から第3観点のいずれかの空調室内機であって、ケーシングの中に配置されているファンを備えている。ケーシングは、室内空気を室内から吸い込む吸込口と、室内に空気を吹き出す吹出口と、吸込口と吹出口とを繋ぐ通風路とを有している。ファンは、吸込口から通風路を通って吹出口に向かう気流を発生させる。静電霧化ユニットは、液体微粒子を放出させるための空気を通風路以外の空間から取り入れる。 The air conditioner indoor unit of the fourth aspect is the air conditioner indoor unit of any one of the first to third aspects, and includes a fan arranged inside the casing. The casing has an air inlet for sucking room air from the room, an air outlet for blowing air into the room, and a ventilation path connecting the air inlet and the air outlet. The fan generates an airflow from the suction port toward the blowout port through the ventilation passage. The electrostatic atomization unit takes in air from a space other than the air passage for ejecting the liquid particles.
 第4観点の空調室内機では、静電霧化ユニットが液体微粒子を放出させるための空気を通風路以外の空間から取り入れることから、外気の状態の変化が静電霧化ユニットに与える影響を小さくすることができる。 In the air conditioning indoor unit of the fourth aspect, since the electrostatic atomization unit takes in air for discharging the liquid particles from a space other than the ventilation passage, the influence of changes in the state of the outside air on the electrostatic atomization unit is reduced. can do.
 第5観点の空調室内機は、第4観点の空調室内機であって、ケーシングの中の通風路に配置され、室内空気及び外気と熱媒体との熱交換を行う熱交換器を備えている。給気流路は、外気を吹き出す吹出開口を有する給気部材を含み、吹出開口が熱交換器に対向するように配置されている。 The air conditioning indoor unit according to the fifth aspect is the air conditioning indoor unit according to the fourth aspect, and is provided with a heat exchanger arranged in the ventilation passage in the casing for exchanging heat between the indoor air and the outside air and the heat medium. . The air supply channel includes an air supply member having a blowout opening for blowing outside air, and is arranged such that the blowout opening faces the heat exchanger.
 第5観点の空調室内機では、熱交換器に給気部材の吹出開口が対向することで、ケーシングの中の他の部分に外気が当たって結露するなどの不具合が生じるのを防止することができる。 In the air conditioning indoor unit of the fifth aspect, the outlet of the air supply member is opposed to the heat exchanger, so that it is possible to prevent problems such as dew condensation caused by outside air coming into contact with other parts of the casing. can.
 第6観点の空調室内機は、第1観点から第5観点のいずれかの空調室内機であって、静電霧化ユニットを制御する制御装置を備えている。制御装置は、外気が室内に導入されているときは、静電霧化ユニットにおいて放電させないように制御する。 The air conditioner indoor unit of the sixth aspect is the air conditioner indoor unit of any one of the first aspect to the fifth aspect, and includes a control device that controls the electrostatic atomization unit. The controller controls the electrostatic atomization unit so as not to discharge when outside air is introduced into the room.
 第6観点の空調室内機では、外気が室内に導入されているときに、静電霧化ユニットにおいて放電させないことで、外気導入時に静電霧化ユニットが外気の影響を受けるのを防止することができる。 In the air conditioning indoor unit of the sixth aspect, the electrostatic atomization unit is prevented from being affected by outside air when the outside air is introduced into the room by preventing discharge from occurring in the electrostatic atomization unit when the outside air is introduced into the room. can be done.
 第7観点の空調室内機は、第1観点から第6観点のいずれかの空調室内機であって、給気流路は、加湿された外気を給気する流路である。 The air conditioner indoor unit of the seventh aspect is the air conditioner indoor unit of any one of the first to sixth aspects, and the air supply channel is a channel for supplying humidified outside air.
 第7観点の空調室内機では、給気流路に加湿された外気が流れる場合でも、外気が流れる給気流路から外れた位置に静電霧化ユニットが配置されることで、外気の湿度が静電霧化ユニットに与える影響を抑制することができる。 In the air conditioning indoor unit of the seventh aspect, even when humidified outside air flows through the air supply passage, the electrostatic atomization unit is placed in a position away from the air supply passage through which the outside air flows, so that the humidity of the outside air is kept quiet. The influence on the electro-atomization unit can be suppressed.
実施形態に係る空調室内機を含む空気調和機を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows the air conditioner containing the air-conditioning indoor unit which concerns on embodiment. 実施形態に係る空調室内機の断面図である。It is a sectional view of an air-conditioning indoor unit concerning an embodiment. 実施形態に係る空調室内機の分解斜視図である。It is an exploded perspective view of an air-conditioning indoor unit concerning an embodiment. 図1の空調システムが有する冷媒回路と空気流路とを説明するための図である。FIG. 2 is a diagram for explaining a refrigerant circuit and an air flow path included in the air conditioning system of FIG. 1; (a)実施形態に係る空調室内機の一部を破断した部分破断平面図である。(b)実施形態に係る空調室内機の一部を破断した部分破断正面図である。(a) It is the partially broken plan view which fracture|ruptured a part of air-conditioning indoor unit which concerns on embodiment. (b) It is the partially broken front view which fracture|ruptured a part of air-conditioning indoor unit which concerns on embodiment. 実施形態に係る静電霧化ユニットの配置位置を説明するための空調室内機の模式的な断面図である。Fig. 3 is a schematic cross-sectional view of the air conditioner indoor unit for explaining the arrangement position of the electrostatic atomization unit according to the embodiment; 加湿ダクトの外観を示す正面図である。It is a front view which shows the external appearance of a humidification duct. 加湿ダクトの外観を示す側面図である。It is a side view which shows the external appearance of a humidification duct. 加湿ダクトの外観を示す背面図である。It is a rear view which shows the external appearance of a humidification duct. 図7のI-I線で切断した加湿ダクトの断面図である。FIG. 8 is a cross-sectional view of the humidifying duct cut along line II of FIG. 7; 静電霧化装置の構成の概要を示す模式図である。It is a schematic diagram which shows the outline|summary of a structure of an electrostatic atomizer. 静電霧化ユニットの構成の概要を示す模式的な断面図である。Fig. 2 is a schematic cross-sectional view showing the outline of the configuration of the electrostatic atomization unit; (a)変形例に係る空調室内機の一部を破断した部分破断平面図である。(b)変形例に係る空調室内機の一部を破断した部分破断正面図である。(a) It is the partially broken plan view which fracture|ruptured the part of air-conditioning indoor unit which concerns on a modification. (b) It is the partially broken front view which fracture|ruptured a part of air-conditioning indoor unit which concerns on a modification. 変形例に係る静電霧化ユニットの配置位置を説明するための空調室内機の模式的な断面図である。FIG. 5 is a schematic cross-sectional view of an air conditioning indoor unit for explaining the arrangement position of an electrostatic atomization unit according to a modification;
 (1)空調システムの構成の概要
 (1-1)空調システムの全体構成の概要
 図1に示されているように、実施形態に係る空調室内機2は、空調システム1に適用されている。空調システム1は、空調室内機2と空調室外機4と加湿器6とを備えている。なお、以下の説明では、図1、図2及び図6に示されている「上」、「下」、「前」、「後」という表現を用いて、それぞれの矢印の方向を説明する場合がある。また、図4及び図6には、太い矢印で空気の流れが示されている。この空調システム1の運転モードには、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転、換気運転及び空気清浄運転がある。空調システム1は、図4に示されているように、空調室内機2及び加湿器6を制御する制御部8を備えている。
(1) Outline of Configuration of Air Conditioning System (1-1) Outline of Overall Configuration of Air Conditioning System As shown in FIG. The air conditioning system 1 includes an air conditioning indoor unit 2 , an air conditioning outdoor unit 4 and a humidifier 6 . In the following description, the expressions "top", "bottom", "front", and "back" shown in FIGS. 1, 2 and 6 are used to describe the direction of each arrow. There is Further, in FIGS. 4 and 6, thick arrows indicate the flow of air. The operation modes of the air conditioning system 1 include, for example, a cooling operation, a heating operation, a dehumidifying operation, a humidifying operation, an air blowing operation, a ventilation operation, and an air cleaning operation. The air conditioning system 1 includes a controller 8 that controls the air conditioning indoor unit 2 and the humidifier 6, as shown in FIG.
 空調室内機2は、部屋RMに対して設置され(図1参照)、部屋RMの中(室内)の空気調和を行う。図1及び図4に示されているように、空調室内機2は、空調システム1の空気調和機10に含まれている。空気調和機10は、空調室内機2と空調室外機4とを備えている。空調室内機2と空調室外機4とは、冷媒連絡管11,12で接続されている。空調室内機2と空調室外機4と冷媒連絡管11,12とは冷媒回路13を構成している。空調システム1は、加湿器6を用いなくても、空調室内機2と空調室外機4(空気調和機10)を用いることで、例えば、冷房運転、暖房運転、除湿運転、送風運転及び空気清浄運転を行うことができる。冷媒回路13では、例えば、冷房運転、暖房運転及び除湿運転の際に、蒸気圧縮式冷凍サイクルが繰り返される。空調室内機2と空調室外機4は、制御部8により制御される。 The air conditioning indoor unit 2 is installed in the room RM (see FIG. 1) and performs air conditioning in the room RM (indoor). As shown in FIGS. 1 and 4 , the air conditioning indoor unit 2 is included in the air conditioner 10 of the air conditioning system 1 . The air conditioner 10 includes an air conditioner indoor unit 2 and an air conditioner outdoor unit 4 . The air conditioner indoor unit 2 and the air conditioner outdoor unit 4 are connected by refrigerant communication pipes 11 and 12 . The air conditioning indoor unit 2 , the air conditioning outdoor unit 4 , and the refrigerant communication pipes 11 and 12 form a refrigerant circuit 13 . The air conditioning system 1 can perform, for example, a cooling operation, a heating operation, a dehumidification operation, a ventilation operation, and an air cleaning operation by using the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 (air conditioner 10) without using the humidifier 6. can drive. In the refrigerant circuit 13, for example, the vapor compression refrigeration cycle is repeated during cooling operation, heating operation, and dehumidification operation. The air conditioning indoor unit 2 and the air conditioning outdoor unit 4 are controlled by the control unit 8 .
 本実施形態では、空調室内機2が部屋RMの壁WLに取り付けられて設置される場合について説明する。しかし、空調室内機2のタイプは、部屋RMの壁WLに設置されるタイプに限られるものではない。空調室内機2は、例えば、天井CIまたは床FLに設置されるものであってもよい。 In this embodiment, the case where the air conditioning indoor unit 2 is attached to the wall WL of the room RM will be described. However, the type of the air conditioning indoor unit 2 is not limited to the type installed on the wall WL of the room RM. The air conditioner indoor unit 2 may be installed, for example, on the ceiling CI or the floor FL.
 空調室内機2は、図2に示されているように、熱交換器21を有している。空調室内機2は、熱交換器21に空気を通して空気の熱交換を行う。熱交換器21は、複数の伝熱フィン21aと複数の伝熱管21bとを有している。熱交換器21においては、複数の伝熱フィン21aの間を空気が通過する。また、熱交換の際には、複数の伝熱フィン21aの間を空気が通過すると同時に、伝熱管21bの中を冷媒が流れる。伝熱管21bの中を流れる冷媒は、熱媒体の一種である。伝熱管21bは、複数回折り返されていて各伝熱フィン21aを複数回貫通するように、複数の伝熱フィン21aと熱的に接続されている。 The air conditioner indoor unit 2 has a heat exchanger 21 as shown in FIG. The air conditioner indoor unit 2 performs heat exchange of the air by passing the air through the heat exchanger 21 . The heat exchanger 21 has a plurality of heat transfer fins 21a and a plurality of heat transfer tubes 21b. In the heat exchanger 21, air passes between the heat transfer fins 21a. During heat exchange, the air passes through the heat transfer fins 21a and the refrigerant flows through the heat transfer tubes 21b. The refrigerant flowing through the heat transfer tubes 21b is a kind of heat medium. The heat transfer tube 21b is thermally connected to the plurality of heat transfer fins 21a so as to be folded back a plurality of times and penetrate each heat transfer fin 21a a plurality of times.
 空調システム1は、空調室内機2及び空調室外機4とともに、図1及び図4に示されている加湿器6を用いることで、例えば、加湿運転及び換気運転を行うことができる。言い換えると、このような構成の空調システム1の空調室内機2は、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転、換気運転及び空気清浄運転に対応した運転ができるということである。加湿器6は、空調室内機2を介して室内に連通している給排気ホース68を有している。空調室内機2は、加湿器6により、給排気ホース68を通じて部屋RMの中(室内)に供給される水分で、室内の湿度を上げる加湿を行うことができる。また、空調室内機2は、加湿器6により、給排気ホース68を通じて部屋RMの中(室内)に供給される外気で、部屋RMの換気を行うことができる。本開示において説明する外気は、屋外ODの空気である。 By using the humidifier 6 shown in FIGS. 1 and 4 together with the air conditioning indoor unit 2 and the air conditioning outdoor unit 4, the air conditioning system 1 can perform, for example, humidification operation and ventilation operation. In other words, the air-conditioning indoor unit 2 of the air-conditioning system 1 configured as described above can perform operations corresponding to, for example, cooling operation, heating operation, dehumidification operation, humidification operation, ventilation operation, ventilation operation, and air cleaning operation. be. The humidifier 6 has an air supply/exhaust hose 68 that communicates with the room via the air conditioning indoor unit 2 . The air conditioning indoor unit 2 can humidify the room by increasing the humidity in the room RM with the moisture supplied into the room RM through the air supply/exhaust hose 68 by the humidifier 6 . In addition, the air conditioning indoor unit 2 can ventilate the room RM with the outside air supplied into the room RM (inside the room) through the air supply/exhaust hose 68 by the humidifier 6 . The ambient air described in this disclosure is outdoor OD air.
 空調システム1の制御部8は、空調室内機2を制御する制御装置81と、空調室外機4と加湿器6とを制御する室外制御板82とを含んでいる。制御装置81及び室外制御板82は、それぞれ、例えば、マイクロコンピュータにより実現されるコントローラである。例えば、制御装置81は、タイマ81aと制御演算装置81bと記憶装置81cとを備える。制御演算装置81bには、CPUまたはGPUといったプロセッサを使用できる。制御演算装置81bは、記憶装置81cに記憶されているプログラムを読み出し、このプログラムに従って、例えば所定のシーケンス処理及び演算処理を行う。さらに、制御演算装置81bは、プログラムに従って、演算結果を記憶装置81cに書き込んだり、記憶装置81cに記憶されている情報を読み出したりすることができる。 The control unit 8 of the air conditioning system 1 includes a control device 81 that controls the air conditioning indoor unit 2 and an outdoor control plate 82 that controls the air conditioning outdoor unit 4 and the humidifier 6 . The control device 81 and the outdoor control board 82 are controllers implemented by, for example, microcomputers. For example, the control device 81 includes a timer 81a, a control arithmetic device 81b, and a storage device 81c. A processor such as a CPU or GPU can be used for the control arithmetic unit 81b. The control arithmetic device 81b reads a program stored in the storage device 81c, and performs, for example, predetermined sequence processing and arithmetic processing according to this program. Furthermore, the control arithmetic device 81b can write the arithmetic result to the storage device 81c and read the information stored in the storage device 81c according to the program.
 (1-2)空調室内機の静電霧化ユニットの配置
 空調室内機2は、図4に示されている静電霧化ユニット75を備えている。静電霧化ユニット75は、放電によるイオンを含む液体微粒子を放出する装置である。静電霧化ユニット75は、図4に示されている給気流路R1の外に配置されている。静電霧化ユニット75が給気流路R1の外に配置されているというのは、言い換えると、給気流路R1を流れる空気が静電霧化ユニット75には流れないということである。給気流路R1は、外気を流すことが可能な流路である。給気流路R1以外の流路である他の流路R2は、外気が流れない流路である。静電霧化ユニット75は、通風路FPを構成する給気流路R1と他の流路R2以外の場所に配置されている。言い換えると、通風路FPから静電霧化ユニット75に直接空気が流れ込むことはないということである。
(1-2) Arrangement of Electrostatic Atomization Unit of Air Conditioner Indoor Unit The air conditioner indoor unit 2 includes an electrostatic atomization unit 75 shown in FIG. The electrostatic atomization unit 75 is a device that emits liquid particles containing ions by electric discharge. The electrostatic atomization unit 75 is arranged outside the air supply passage R1 shown in FIG. Arranging the electrostatic atomization unit 75 outside the air supply passage R<b>1 means that the air flowing through the air supply passage R<b>1 does not flow to the electrostatic atomization unit 75 . The air supply flow path R1 is a flow path through which outside air can flow. Another flow path R2, which is a flow path other than the air supply flow path R1, is a flow path through which outside air does not flow. The electrostatic atomization unit 75 is arranged at a place other than the air supply channel R1 and the other channel R2 that constitute the ventilation channel FP. In other words, the air does not directly flow into the electrostatic atomization unit 75 from the ventilation path FP.
 空調室内機2は、ケーシング23を備えている。ここで説明する空調室内機2のケーシング23は、図3に示されているように、フレーム23fとグリル23gと前面パネル23pとを有している。空調室内機2のケーシング23の構成は、ここで説明する構成には限られない。例えば、前面パネル23pとグリル23gが一体化されていてもよい。このケーシング23は、長手方向D1に沿って長く延びている。長手方向D1におけるケーシング23の一端E1は、正面からケーシング23を見て左手になり、長手方向D1におけるケーシング23の他端E2は、正面からケーシング23を見て右手になる。本開示において、ケーシング23の長手方向D1の中央CEよりも一端E1に近い側を一端側、中央CEよりも他端E2に近い側を他端側という。言い換えると、ケーシング23の中央CEと一端E1との間の領域が一端側であり、中央CEと他端E2との間の領域が他端側である。外気は、一端側に給排気ホース68によって供給される。その結果、ケーシング23の長手方向D1における一端側が給気流路R1になる。図4において、一点鎖線の太い矢印で外気の流れが示されている。ケーシング23の長手方向D1における他端側には、給排気ホース68からの外気の供給がないため、この他端側が給気流路以外の流路R2になる。 The air conditioning indoor unit 2 includes a casing 23. The casing 23 of the air conditioning indoor unit 2 described here has a frame 23f, a grille 23g, and a front panel 23p, as shown in FIG. The configuration of the casing 23 of the air conditioning indoor unit 2 is not limited to the configuration described here. For example, the front panel 23p and the grille 23g may be integrated. This casing 23 extends long along the longitudinal direction D1. One end E1 of the casing 23 in the longitudinal direction D1 is on the left when the casing 23 is viewed from the front, and the other end E2 of the casing 23 in the longitudinal direction D1 is on the right when the casing 23 is viewed from the front. In the present disclosure, the side closer to the one end E1 than the center CE in the longitudinal direction D1 of the casing 23 is called the one end side, and the side closer to the other end E2 than the center CE is called the other end side. In other words, the area between the center CE of the casing 23 and the one end E1 is the one end side, and the area between the center CE and the other end E2 is the other end side. Outside air is supplied to one end by an air supply/exhaust hose 68 . As a result, one end of the casing 23 in the longitudinal direction D1 becomes the air supply passage R1. In FIG. 4 , the flow of outside air is indicated by a thick dashed-dotted arrow. Since the outside air is not supplied from the air supply/exhaust hose 68 to the other end side of the casing 23 in the longitudinal direction D1, this other end side becomes a flow path R2 other than the air supply flow path.
 (2)詳細構成
 (2-1)空調室内機
 図2、図4及び図6に示されているように、空調室内機2は、熱交換器21と、ファン22と、ケーシング23と、エアフィルタ24と、ドレンパン26と、水平フラップ27と、垂直フラップ(図示せず)と、加湿ダクト28と、静電霧化ユニット75を含む静電霧化装置70(図11参照)とを備えている。また、空調室内機2は、室内温度センサ31と、室内湿度センサ32とを備えている。室内温度センサ31と室内湿度センサ32は、制御装置81に接続されている。
(2) Detailed configuration (2-1) Air conditioning indoor unit As shown in FIGS. 2, 4 and 6, the air conditioning indoor unit 2 includes a heat exchanger 21, a fan 22, a casing 23, Equipped with a filter 24, a drain pan 26, a horizontal flap 27, a vertical flap (not shown), a humidification duct 28, and an electrostatic atomizer 70 (see FIG. 11) including an electrostatic atomizer unit 75. there is The air conditioning indoor unit 2 also includes an indoor temperature sensor 31 and an indoor humidity sensor 32 . The indoor temperature sensor 31 and the indoor humidity sensor 32 are connected to the controller 81 .
 ケーシング23は、上部に、吸込口23aを有し、下部に、吹出口23bを有している。空調室内機2は、ファン22を駆動して、室内空気を吸込口23aから吸込み、熱交換器21を通過した空気を吹出口23bから吹き出す。ケーシング23において、吸込口23aと吹出口23bとを繋ぐ空気流路が通風路FPである。ファン22は、空調室内機2の断面視において(図2参照)、ケーシング23の中の略中央部分に配置されている。ファン22には、クロスフローファンが用いられている。ファン22は、長手方向D1に沿って羽根が延びており、長手方向D1に対して垂直な方向に空気の流れを生じさせる。 The casing 23 has a suction port 23a at its top and a blowout port 23b at its bottom. The air conditioner indoor unit 2 drives the fan 22 to suck in the indoor air from the suction port 23a, and blows out the air that has passed through the heat exchanger 21 from the blowout port 23b. In the casing 23, the airflow path connecting the suction port 23a and the blowout port 23b is the ventilation path FP. The fan 22 is arranged in a substantially central portion within the casing 23 in a cross-sectional view of the air conditioning indoor unit 2 (see FIG. 2). A cross-flow fan is used for the fan 22 . The fan 22 has blades extending along the longitudinal direction D1 and generates an air flow in a direction perpendicular to the longitudinal direction D1.
 吸込口23aから吹出口23bに向う通風路FPにおいて、ファン22の上流に熱交換器21が配置されている。熱交換器21は、伝熱管21bの延びる方向に見て(側面視において)、ファン22の上方を覆うように、下に向って開いた形状を呈する。ここでは、このような形状をΛ形状またはC字形状と呼ぶ。熱交換器21は、壁WLから遠い第1熱交換部21Fと壁WLに近い第2熱交換部21Rを有している。Λ形状またはC字形状の熱交換器21の第1熱交換部21Fの下部及び第2熱交換部21Rの下部の下に、ドレンパン26が配置されている。熱交換器21のうちの第1熱交換部21Fで発生した結露は、熱交換器21の前方下部に配置されているドレンパン26で受け止められる。熱交換器21のうちの第2熱交換部21Rで発生した結露は、熱交換器21の後方下部に配置されているドレンパン26で受け止められる。 The heat exchanger 21 is arranged upstream of the fan 22 in the ventilation passage FP from the suction port 23a to the blowout port 23b. The heat exchanger 21 has a downwardly open shape so as to cover the upper side of the fan 22 when viewed in the direction in which the heat transfer tubes 21b extend (when viewed from the side). Here, such a shape is called a Λ shape or a C shape. The heat exchanger 21 has a first heat exchange section 21F far from the wall WL and a second heat exchange section 21R close to the wall WL. A drain pan 26 is arranged under the lower portion of the first heat exchange portion 21F and the lower portion of the second heat exchange portion 21R of the Λ-shaped or C-shaped heat exchanger 21 . Condensation generated in the first heat exchange section 21</b>F of the heat exchanger 21 is received by the drain pan 26 arranged in the lower front portion of the heat exchanger 21 . Condensation generated in the second heat exchange section 21R of the heat exchanger 21 is received by the drain pan 26 arranged in the lower rear portion of the heat exchanger 21 .
 吹出口23bには、水平フラップ27及び垂直フラップが配置されている。水平フラップ27は、吹出口23bから吹出される空気の風向を上下に変更する。そのため、水平フラップ27は、モータ27mにより、水平方向とのなす角を変更することができるように構成されている。垂直フラップは、吹出口23bから吹出される空気の風向を左右に変更することができるように構成されている。空調室内機2は、例えば、垂直フラップをモータ(図示せず)で前後方向とのなす角を変更するように駆動する。 A horizontal flap 27 and a vertical flap are arranged at the outlet 23b. The horizontal flap 27 vertically changes the direction of the air blown from the outlet 23b. Therefore, the horizontal flap 27 is configured so that the angle formed with the horizontal direction can be changed by a motor 27m. The vertical flap is configured to be able to change the direction of the air blown out from the outlet 23b to the left or right. The air conditioning indoor unit 2 drives, for example, a vertical flap with a motor (not shown) so as to change the angle formed with the front-rear direction.
 ケーシング23の中の吸込口23aの下流且つ熱交換器21の上流には、エアフィルタ24が配置されている。熱交換器21に供給される室内空気は、実質的に全てエアフィルタ24を通過する。従って、エアフィルタ24の網目よりも大きな塵埃は、エアフィルタ24で除去されるので熱交換器21には到達しない。 An air filter 24 is arranged downstream of the suction port 23 a in the casing 23 and upstream of the heat exchanger 21 . Substantially all of the room air supplied to the heat exchanger 21 passes through the air filter 24 . Therefore, dust particles larger than the mesh of the air filter 24 are removed by the air filter 24 and do not reach the heat exchanger 21 .
 空調室内機2は、ケーシング23の中に、給気部材として、加湿ダクト28を備えている。図5に示されているように、加湿ダクト28は、ケーシング23の長手方向D1の一端側に配置され、ケーシング23の一端側に形成されている給気流路R1に含まれている。加湿ダクト28においては、吹出開口28aが熱交換器21に対向するように配置されている(図6参照)。空調室内機2が換気運転を行っているときには、加湿ダクト28からは、外気が吹き出される。換気運転のときには、加湿器6における加湿動作が停止されており、加湿器6から給排気ホース68を通じて加湿ダクト28に外気がそのまま送られる。空調室内機2が加湿運転を行っているときには、加湿ダクト28からは、加湿された外気が吹き出される。加湿運転のときには、加湿器6における加湿動作が行われており、加湿器6から給排気ホース68を通じて加湿ダクト28に加湿された外気が送られる。加湿ダクト28には、ダクトフィルタ28bが設けられている。給排気ホース68を通じて送られてきた外気はダクトフィルタ28bを通過してケーシング23の中に吹出される。 The air conditioning indoor unit 2 includes a humidification duct 28 as an air supply member inside the casing 23 . As shown in FIG. 5, the humidification duct 28 is arranged on one end side of the casing 23 in the longitudinal direction D1 and is included in the air supply flow path R1 formed on the one end side of the casing 23 . In humidification duct 28, outlet opening 28a is arranged to face heat exchanger 21 (see FIG. 6). Outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the ventilation operation. During the ventilation operation, the humidifying operation in the humidifier 6 is stopped, and outside air is sent from the humidifier 6 through the air supply/exhaust hose 68 to the humidification duct 28 as it is. Humidified outside air is blown out from the humidification duct 28 when the air conditioning indoor unit 2 is performing the humidification operation. During humidification operation, humidification operation is performed in the humidifier 6 , and humidified outside air is sent from the humidifier 6 to the humidification duct 28 through the air supply/exhaust hose 68 . The humidification duct 28 is provided with a duct filter 28b. Outside air sent through the air supply/exhaust hose 68 is blown out into the casing 23 through the duct filter 28b.
 静電霧化ユニット75を含む静電霧化装置70(図11参照)は、給気流路R1の外に配置される。図3乃至図6に示されている例では、静電霧化ユニット75を含む静電霧化装置70がケーシング23の中に配置されている。静電霧化ユニット75を含む静電霧化装置70は、ケーシング23の長手方向D1の他端側に配置されている。空調室内機2では、ケーシング23の他端側に静電霧化装置70が配置されることにより、静電霧化ユニット75が給気流路R1の外に配置される。さらに詳細には、静電霧化ユニット75を含む静電霧化装置70は、給気流路R1及び他の流路R2の外に配置されている。静電霧化ユニット75を含む静電霧化装置70は、液体微粒子を放出させるための空気を通風路FP以外の空間から取り入れる。この空調室内機2では、図6に示されているように、静電霧化ユニット75を含む静電霧化装置70が、ケーシング23の中の通風路FP以外の空間ISから、液体微粒子を放出させるための空気を取り入れている。この空間ISは、ケーシング23の中の他端E2の近傍の空間である。ケーシング23の他端E2は、ケーシング23の右側面である。 The electrostatic atomization device 70 (see FIG. 11) including the electrostatic atomization unit 75 is arranged outside the air supply passage R1. In the example shown in FIGS. 3-6, an electrostatic atomizer 70 including an electrostatic atomizer unit 75 is arranged within the casing 23 . The electrostatic atomizer 70 including the electrostatic atomizer unit 75 is arranged on the other end side of the casing 23 in the longitudinal direction D1. In the air conditioner indoor unit 2, the electrostatic atomization device 70 is arranged on the other end side of the casing 23, so that the electrostatic atomization unit 75 is arranged outside the air supply passage R1. More specifically, the electrostatic atomizer 70 including the electrostatic atomizer unit 75 is arranged outside the air supply channel R1 and the other channel R2. The electrostatic atomization device 70 including the electrostatic atomization unit 75 takes in air for ejecting liquid particles from a space other than the ventilation path FP. In this air conditioner indoor unit 2, as shown in FIG. 6, an electrostatic atomizer 70 including an electrostatic atomizer unit 75 sprays liquid particles from a space IS inside the casing 23 other than the air passage FP. It takes in air to let it out. This space IS is a space in the casing 23 near the other end E2. The other end E2 of the casing 23 is the right side surface of the casing 23 .
 空調室内機2の中に配置されている制御装置81は、図4に示されているように、ファン22のモータ22m及び水平フラップ27のモータ27mに接続されている。制御装置81は、ファン22のモータ22mの回転数及び水平フラップのモータ27mの回転角度を制御することができる。制御装置81は、空調室外機4の中に配置されている室外制御板82(図4参照)に接続されている。ここでは、タイマ81aと制御演算装置81bと記憶装置81cとを制御装置81が有している場合について説明するが、タイマ81aと制御演算装置81bと記憶装置81cとは、制御部8の他の箇所に設けられてもよい。例えば、タイマ81aと制御演算装置81bと記憶装置81cとは、室外制御板82に設けられてもよい。制御装置81は、室内温度センサ31により室内空気の温度を検知することができ、室内湿度センサ32により室内空気の相対湿度を検知することができる。制御装置81は、タイマ81aを使って静電霧化装置70のオンオフのタイミングを設定することができる。 The control device 81 arranged in the air conditioning indoor unit 2 is connected to the motor 22m of the fan 22 and the motor 27m of the horizontal flap 27, as shown in FIG. The control device 81 can control the number of rotations of the motor 22m of the fan 22 and the rotation angle of the motor 27m of the horizontal flap. The control device 81 is connected to an outdoor control plate 82 (see FIG. 4) arranged inside the air conditioner outdoor unit 4 . Here, a case where the control device 81 has a timer 81a, a control arithmetic device 81b, and a storage device 81c will be described. It may be provided in place. For example, the timer 81a, the control arithmetic device 81b, and the storage device 81c may be provided on the outdoor control board 82. FIG. The control device 81 can detect the temperature of the indoor air with the indoor temperature sensor 31 and the relative humidity of the indoor air with the indoor humidity sensor 32 . The controller 81 can set the on/off timing of the electrostatic atomizer 70 using the timer 81a.
 空調室内機2は、ケーシング23の中に配置され、長手方向D1に延びている電装品箱90を有している(図3参照)。空調室内機2において、制御装置81は、電装品箱90の第1電装室91(図5参照)に収納されている。第1電装室91は、ケーシング23の一端側に配置されている。第1電装室91は、50ボルト未満の電圧によって駆動される第1電気回路部品が収納されている空間である。第1電気回路部品には、制御装置81を構成している電気回路部品が含まれる。電装品箱90は、他端側に第2電装室92を有している。第2電装室92は、50ボルト以上の電圧によって駆動される第2電気回路部品が収容されている空間である。第2電気回路部品には、静電霧化ユニット75に給電するための電気回路部品が含まれる。第2電装室92は、ケーシング23の他端側に配置されている。第2電装室92が他端側に配置されているため、第2電装室92から静電霧化ユニット75までの配線距離を短くすることができる。 The air conditioning indoor unit 2 has an electrical component box 90 arranged in the casing 23 and extending in the longitudinal direction D1 (see FIG. 3). In the air conditioner indoor unit 2 , the control device 81 is housed in the first electrical component room 91 (see FIG. 5 ) of the electrical component box 90 . The first electrical equipment chamber 91 is arranged on one end side of the casing 23 . The first electrical equipment compartment 91 is a space in which a first electrical circuit component driven by a voltage of less than 50 volts is accommodated. The first electrical circuit component includes an electrical circuit component that constitutes the control device 81 . The electrical component box 90 has a second electrical component room 92 on the other end side. The second electrical equipment room 92 is a space in which second electrical circuit components driven by a voltage of 50 volts or higher are accommodated. The second electrical circuitry includes electrical circuitry for powering the electrostatic atomization unit 75 . The second electrical equipment chamber 92 is arranged on the other end side of the casing 23 . Since the second electrical compartment 92 is arranged on the other end side, the wiring distance from the second electrical compartment 92 to the electrostatic atomization unit 75 can be shortened.
 (2-1―1)加湿ダクト
 加湿ダクト28は、図7、図8、図9及び図10に示されているように、吹出開口28a、ダクトフィルタ28b、幅広部28c、接続部28d及び給気開口28eを有している。円筒状の接続部28dに給排気ホース68が接続される。接続部28dの先端の給気開口28eからは、給排気ホース68を通じて外気が流れ込む。接続部28dの下流には、接続部28dよりも長手方向D1(左右方向)に広がっている幅広部28cが配置されている。幅広部28cには、ダクトフィルタ28bが抜き差し可能に取り付けられている。空調室内機2の前面パネル23pを開けて、ダクトフィルタ28bをケーシング23から前方に向かって引き抜くことができる。幅広部28cにおいて、ダクトフィルタ28bの下流には、吹出開口28aが形成されている。吹出開口28aは、熱交換器21に対向している。本実施形態の空調室内機2では、エアフィルタ24よりも下に吹出開口28aが配置され、吹出開口28aから吹き出された外気は、エアフィルタ24を通過することなく、熱交換器21に流れ込む。ファン22が長手方向D1に対して垂直な方向に空気の流れを生じさせるため、ケーシング23の一端側に加湿ダクト28から吹出された外気は、給気流路R1を流れ、他の流路R2には流れない。
(2-1-1) Humidification Duct As shown in FIGS. 7, 8, 9 and 10, the humidification duct 28 includes a blowout opening 28a, a duct filter 28b, a wide portion 28c, a connection portion 28d, and a feeder. It has an air opening 28e. A supply/exhaust hose 68 is connected to the cylindrical connecting portion 28d. Outside air flows through the air supply/exhaust hose 68 from the air supply opening 28e at the tip of the connection portion 28d. A wide portion 28c that is wider in the longitudinal direction D1 (horizontal direction) than the connecting portion 28d is arranged downstream of the connecting portion 28d. A duct filter 28b is detachably attached to the wide portion 28c. By opening the front panel 23p of the air conditioning indoor unit 2, the duct filter 28b can be pulled out from the casing 23 forward. A blowout opening 28a is formed downstream of the duct filter 28b in the wide portion 28c. Blow-out opening 28 a faces heat exchanger 21 . In the air conditioning indoor unit 2 of the present embodiment, the blowout opening 28a is arranged below the air filter 24, and the outside air blown out from the blowout opening 28a flows into the heat exchanger 21 without passing through the air filter 24. Since the fan 22 generates an air flow in a direction perpendicular to the longitudinal direction D1, the outside air blown out from the humidification duct 28 to one end side of the casing 23 flows through the air supply flow path R1 and then into the other flow path R2. does not flow.
 (2-1―2)静電霧化装置
 静電霧化ユニット75は、図11に示されているように、静電霧化装置70の中に配置されている。静電霧化装置70は、例えば、筐体71、吸入口72a、放出口72b、送風装置74及び高圧トランス73を備えている。放出口72bは、通風路FPに接続されている。放出口72bが接続される個所は、通風路FPの中でも、例えば、ケーシング23の吹出口23bに繋がっているスクロール部である。吸入口72aは、ケーシング23の中の通風路FP以外の箇所から室内空気を吸入している。吸入口72aから吸入した空気を、筐体71の中の静電霧化ユニット75を通して、放出口72bから放出するために、静電霧化装置70は、筐体71の中に送風装置74を備えていることが好ましい。しかし、送風装置74が無くても筐体71の中に気流が生じる場合には、送風装置74を省いてもよい。
(2-1-2) Electrostatic atomization device The electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 as shown in FIG. The electrostatic atomizer 70 includes, for example, a housing 71, an inlet 72a, an outlet 72b, a blower 74, and a high-voltage transformer 73. The outlet 72b is connected to the ventilation path FP. A portion to which the discharge port 72b is connected is, for example, a scroll portion connected to the blowout port 23b of the casing 23 in the air passage FP. The intake port 72a sucks the room air from a portion other than the air passage FP in the casing 23 . The electrostatic atomizer 70 includes a blower 74 in the housing 71 so that the air sucked from the suction port 72a passes through the electrostatic atomization unit 75 in the housing 71 and is discharged from the discharge port 72b. It is preferable to have However, if airflow is generated in the housing 71 without the blower 74, the blower 74 may be omitted.
 静電霧化ユニット75は、図12に示されているように、放電電極78に結露した水分を、放電により、イオンを含む水微粒子77に変えて放出する。放電電極78で高電圧放電を発生させるために、高圧トランス73によって放電電極78と対向電極79との間に高電圧が印加される。放電電極78に生じる放電現象により、放電電極78の上の水分がナノメートルサイズの微粒子となって帯電し、静電ミストが発生する。 As shown in FIG. 12, the electrostatic atomization unit 75 converts water condensed on the discharge electrode 78 into water fine particles 77 containing ions by discharging and emits the water. A high voltage is applied between the discharge electrode 78 and the counter electrode 79 by the high voltage transformer 73 in order to generate a high voltage discharge at the discharge electrode 78 . Due to the discharge phenomenon that occurs in the discharge electrode 78, the moisture on the discharge electrode 78 turns into nanometer-sized fine particles and is charged, generating electrostatic mist.
 静電霧化ユニット75は、放電電極78に結露水を発生させるために、例えば、冷却素子76を備えている。冷却素子76は、放熱面76aと冷却面76bとを有する。放熱面76aには、例えば、放熱部76cが熱的に接続されている。放熱部76cには、例えば放熱フィンを用いることができる。冷却面76bは、電気絶縁材(図示せず)を介して放電電極78に熱的に接続されている。冷却面76bに立てて設置されている放電電極78は、対向電極40から所定距離だけ話して配置されている。冷却素子76には、例えばペルチェ素子がある。冷却素子76は複数設けられてもよい。冷却素子76がペルチェ素子である場合、ペルチェ素子に直流電流を流すと、冷却面76bで吸熱が発生し、放熱面76aで発熱が発生するので、冷却面76bに熱的に接続されている放電電極78の温度が低下する。放電電極78の温度が、吸入口72aから吸入した空気の露点温度よりも低下すると、放電電極78で結露が生じる。放電電極78を高圧トランス73のマイナス側に、対向電極79を高圧トランス73のプラス側に接続することで、水微粒子77にマイナスイオンが生じ、放電電極78で生じる静電ミストは、負に帯電する。 The electrostatic atomization unit 75 is equipped with, for example, a cooling element 76 in order to generate condensed water on the discharge electrode 78 . The cooling element 76 has a heat dissipation surface 76a and a cooling surface 76b. For example, a heat dissipation portion 76c is thermally connected to the heat dissipation surface 76a. A heat radiation fin, for example, can be used for the heat radiation portion 76c. The cooling surface 76b is thermally connected to the discharge electrode 78 via an electrical insulator (not shown). The discharge electrode 78 installed upright on the cooling surface 76b is arranged at a predetermined distance from the counter electrode 40. As shown in FIG. The cooling element 76 is, for example, a Peltier element. A plurality of cooling elements 76 may be provided. When the cooling element 76 is a Peltier element, when a direct current is passed through the Peltier element, the cooling surface 76b absorbs heat and the heat radiation surface 76a generates heat. The temperature of electrode 78 decreases. When the temperature of the discharge electrode 78 falls below the dew point temperature of the air sucked from the suction port 72a, dew condensation occurs on the discharge electrode 78 . By connecting the discharge electrode 78 to the negative side of the high-voltage transformer 73 and connecting the counter electrode 79 to the positive side of the high-voltage transformer 73, negative ions are generated in the water particles 77, and the electrostatic mist generated by the discharge electrode 78 is negatively charged. do.
 (2-2)空調室外機
 空調室外機4は、図4に示されているように、圧縮機41と四方弁42とアキュムレータ43と室外熱交換器44と室外膨張弁45と室外ファン46とハウジング47とを備えている。圧縮機41と四方弁42とアキュムレータ43と室外熱交換器44と室外膨張弁45と室外ファン46とは、ハウジング47の中に収納されている。ハウジング47は、外気を吸い込む後方開口部47a(図4参照)と、熱交換後の空気を吹き出す前方開口部47b(図1及び図4参照)とを有する。後方開口部47aは、ハウジング47の後側に配置されている。空調室外機4は、空調室内機2に熱エネルギーを供給する熱源ユニットとして機能する。
(2-2) Air Conditioner Outdoor Unit As shown in FIG. and a housing 47 . Compressor 41 , four-way valve 42 , accumulator 43 , outdoor heat exchanger 44 , outdoor expansion valve 45 and outdoor fan 46 are housed in housing 47 . The housing 47 has a rear opening 47a (see FIG. 4) for sucking outside air and a front opening 47b (see FIGS. 1 and 4) for blowing out air after heat exchange. The rear opening 47 a is arranged on the rear side of the housing 47 . The air conditioner outdoor unit 4 functions as a heat source unit that supplies thermal energy to the air conditioner indoor unit 2 .
 圧縮機41は、ガス冷媒を吸入して圧縮して吐出する。圧縮機41は、例えば、モータ41mの運転周波数をインバータにより調整することで運転容量を変更することができる可変容量圧縮機である。運転周波数が大きいほど圧縮機41の運転容量が大きくなる。四方弁42は、4つのポートを有している。四方弁42の第1ポートP1は、圧縮機41の吐出口に接続されている。四方弁42の第2ポートP2は、室外熱交換器44の一方の出入口に接続されている。四方弁42の第3ポートP3は、アキュムレータ43に接続されている。四方弁42の第4ポートP4は、熱交換器21の一方の出入口に接続されている。 The compressor 41 sucks in gas refrigerant, compresses it, and discharges it. The compressor 41 is, for example, a variable capacity compressor whose operating capacity can be changed by adjusting the operating frequency of the motor 41m with an inverter. As the operating frequency increases, the operating capacity of the compressor 41 increases. The four-way valve 42 has four ports. A first port P<b>1 of the four-way valve 42 is connected to a discharge port of the compressor 41 . A second port P<b>2 of the four-way valve 42 is connected to one inlet/outlet of the outdoor heat exchanger 44 . A third port P3 of the four-way valve 42 is connected to the accumulator 43 . A fourth port P4 of the four-way valve 42 is connected to one inlet/outlet of the heat exchanger 21 .
 アキュムレータ43は、四方弁42の第3ポートP3と圧縮機41の吸入口との間に接続されている。室外熱交換器44は、他方の出入口を室外膨張弁45の一方の出入口に接続している。室外熱交換器44は、一方の出入口または他方の出入口から内部に流入した冷媒と、外気との間で熱交換を行う。室外膨張弁45は、他方の出入口を熱交換器21の他方の出入口に接続している。 The accumulator 43 is connected between the third port P3 of the four-way valve 42 and the suction port of the compressor 41. The outdoor heat exchanger 44 has the other inlet/outlet connected to one inlet/outlet of the outdoor expansion valve 45 . The outdoor heat exchanger 44 exchanges heat between the refrigerant that has flowed into the inside from one entrance or the other entrance and the outside air. The outdoor expansion valve 45 has the other inlet/outlet connected to the other inlet/outlet of the heat exchanger 21 .
 空調室外機4の中には、制御部8を構成している室外制御板82が配置されている。室外制御板82は、制御装置81に接続されている。室外制御板82は、圧縮機41のモータ41m、四方弁42及び室外ファン46のモータ46mに接続されている。制御部8は、室外制御板82により、圧縮機41のモータ41mの運転周波数、四方弁42の開度及び室外ファン46のモータ46mの回転数を制御することができる。 An outdoor control plate 82 that constitutes the control unit 8 is arranged in the air conditioner outdoor unit 4 . The outdoor control plate 82 is connected to the control device 81 . The outdoor control plate 82 is connected to the motor 41 m of the compressor 41 , the four-way valve 42 and the motor 46 m of the outdoor fan 46 . The control unit 8 can control the operating frequency of the motor 41 m of the compressor 41 , the opening degree of the four-way valve 42 , and the rotation speed of the motor 46 m of the outdoor fan 46 with the outdoor control plate 82 .
 冷媒回路13には、圧縮機41と、四方弁42と、アキュムレータ43と、室外熱交換器44と、室外膨張弁45と、熱交換器21とが含まれている。冷媒回路13には、冷媒が循環している。冷媒としては、例えば、R32冷媒及びR410冷媒などのフロン類、並びに二酸化炭素などがある。蒸気圧縮式冷凍サイクルでは、冷媒が圧縮機41で圧縮されて昇温され、その後、室外熱交換器44または熱交換器21で冷媒が放熱する。また、蒸気圧縮式冷凍サイクルでは、室外膨張弁45で冷媒が減圧膨張され、その後、熱交換器21または室外熱交換器44で冷媒が吸熱する。アキュムレータ43では、圧縮機41に吸入される冷媒の気液分離が行われる。四方弁42は、冷媒回路13における冷媒の流れの向きを切り換える。 The refrigerant circuit 13 includes a compressor 41 , a four-way valve 42 , an accumulator 43 , an outdoor heat exchanger 44 , an outdoor expansion valve 45 and a heat exchanger 21 . A refrigerant circulates in the refrigerant circuit 13 . Refrigerants include, for example, fluorocarbons such as R32 refrigerant and R410 refrigerant, and carbon dioxide. In the vapor compression refrigerating cycle, the refrigerant is compressed by the compressor 41 and heated, and then radiates heat in the outdoor heat exchanger 44 or the heat exchanger 21 . Also, in the vapor compression refrigeration cycle, the refrigerant is decompressed and expanded by the outdoor expansion valve 45 , and then the refrigerant absorbs heat in the heat exchanger 21 or the outdoor heat exchanger 44 . In the accumulator 43, gas-liquid separation of the refrigerant sucked into the compressor 41 is performed. The four-way valve 42 switches the direction of refrigerant flow in the refrigerant circuit 13 .
 (2-3)加湿器6
 本実施形態の加湿器6は、空調室外機4と一体化されている。しかし、加湿器6と空調室外機4は分離可能な別体として構成されていてもよい。加湿器6は、外気から水分を取り入れる。加湿器6は、取り入れた水分を外気に付与することで高湿度の空気を生成することができる。加湿器6は、この高湿度の空気を空調室内機2に送る。空調室内機2は、加湿運転時に、加湿器6から送られてきた高湿度の空気と室内空気とを混合する。空調室内機2は、高湿度の空気が混合された空気を部屋RMの中(室内)に吹き出すことで、室内を加湿する。加湿器6は、制御部8により制御される。
(2-3) Humidifier 6
The humidifier 6 of this embodiment is integrated with the air conditioner outdoor unit 4 . However, the humidifier 6 and the air conditioner outdoor unit 4 may be configured as separable separate bodies. The humidifier 6 takes in moisture from outside air. The humidifier 6 can generate high-humidity air by applying the taken-in moisture to the outside air. The humidifier 6 sends this high-humidity air to the air conditioner indoor unit 2 . The air conditioner indoor unit 2 mixes the high-humidity air sent from the humidifier 6 with the indoor air during the humidification operation. The air conditioner indoor unit 2 humidifies the room by blowing out air mixed with high-humidity air into the room RM. The humidifier 6 is controlled by the controller 8 .
 加湿器6は、加湿動作を停止して、加湿を行わずに外気を空調室内機2に送ることもできる。空調室内機2は、換気運転時に、加湿器6から送られてきた外気と室内空気とを混合する。空調室内機2は、外気が混合された空気を部屋RMの中(室内)に吹き出すことで、外気を室内に給気することができる。また、加湿器6は、加湿動作を停止して、加湿を行わずに空調室内機2から屋外ODに室内空気を排気することもできる。換気運転では、空調室内機2は、外気を部屋RMの中に供給したり、部屋RMの中の室内空気を屋外ODに排気したりすることができる。 The humidifier 6 can also stop the humidification operation and send outside air to the air conditioning indoor unit 2 without humidifying. The air conditioning indoor unit 2 mixes the outside air sent from the humidifier 6 with the indoor air during ventilation operation. The air conditioning indoor unit 2 can supply the outside air to the room by blowing out the air mixed with the outside air into the room RM (inside the room). The humidifier 6 can also stop the humidification operation and exhaust the indoor air from the air conditioning indoor unit 2 to the outdoor OD without humidifying. In the ventilation operation, the air conditioning indoor unit 2 can supply outside air into the room RM and exhaust indoor air in the room RM to the outside OD.
 加湿器6は、図4に示されているように、吸着ロータ61と、ヒータ62と、切換ダンパ63と、給排気ファン64と、吸着ファン65と、ダクト66と、ハウジング69とを備えている。また、加湿器6は、給排気ホース68を備えている。図1及び図4に示されているように、加湿器6のハウジング69は、空調室外機4のハウジング47に取り付けられている。加湿器6は、ハウジング69に、吸着用空気吹出口69aと吸着用空気取入口69bと加湿用空気取入口69cとを有している。 The humidifier 6, as shown in FIG. there is The humidifier 6 also includes an air supply/exhaust hose 68 . As shown in FIGS. 1 and 4 , the housing 69 of the humidifier 6 is attached to the housing 47 of the air conditioner outdoor unit 4 . The humidifier 6 has a housing 69 with an adsorption air outlet 69a, an adsorption air intake 69b, and a humidification air intake 69c.
 吸着ロータ61は、例えば、ハニカム構造を持つ円盤状の調湿用ロータである。調湿用ロータは、例えば、接触する空気中の水分を吸着する性質を有している吸着剤を焼成することにより形成できる。吸着ロータ61の吸着剤は、加熱されることによって吸着した水分を脱離するという性質を有している。ハニカム構造の吸着ロータ61を加熱されてない空気が通過するときには吸着ロータ61に空気の水分が吸着される。ハニカム構造の吸着ロータ61を加熱された空気が通過するときには吸着ロータ61の水分が空気に付与される。吸着ロータ61は、モータ61mにより駆動されて回転する。吸着ロータ61の回転数は、モータ61mの回転数を変えることにより変更することができる。 The adsorption rotor 61 is, for example, a disk-shaped humidity control rotor having a honeycomb structure. The humidity control rotor can be formed, for example, by firing an adsorbent that has the property of adsorbing moisture in the air that comes in contact with it. The adsorbent of the adsorption rotor 61 has the property of desorbing the adsorbed moisture when heated. When unheated air passes through the adsorption rotor 61 of the honeycomb structure, moisture in the air is adsorbed on the adsorption rotor 61 . When the heated air passes through the adsorption rotor 61 of the honeycomb structure, moisture of the adsorption rotor 61 is imparted to the air. The adsorption rotor 61 is rotated by being driven by a motor 61m. The rotation speed of the adsorption rotor 61 can be changed by changing the rotation speed of the motor 61m.
 ヒータ62は、加湿用空気取入口69cと切換ダンパ63との間に配置されている。加湿用空気取入口69cから取り入れられた外気は、ヒータ62を通過した後、さらに吸着ロータ61を通過して切換ダンパ63に到達する。ヒータ62で加熱された空気が吸着ロータ61を通過する際に、吸着ロータ61から水分が脱離して、吸着ロータ61から加熱された外気に水分が供給される。ヒータ62は、出力を変化させることができ、ヒータ62を通過した空気の温度を出力に応じて変化させることができる。吸着ロータ61は、特定の温度範囲内では、吸着ロータ61を通過する空気の温度が高いほど脱離する水分量が多くなる傾向がある。ヒータ62の温度及び吸着ロータ61の回転数を変更することで、外気に付与される水分量を調節することができる。 The heater 62 is arranged between the humidifying air intake 69 c and the switching damper 63 . Outside air taken in from the humidifying air intake 69 c passes through the heater 62 and then through the adsorption rotor 61 to reach the switching damper 63 . When the air heated by the heater 62 passes through the adsorption rotor 61 , moisture is desorbed from the adsorption rotor 61 and supplied from the adsorption rotor 61 to the heated outside air. The heater 62 can change its output, and the temperature of the air that has passed through the heater 62 can be changed according to the output. Within a specific temperature range, the adsorption rotor 61 tends to desorb more moisture as the temperature of the air passing through the adsorption rotor 61 increases. By changing the temperature of the heater 62 and the number of rotations of the adsorption rotor 61, the amount of water added to the outside air can be adjusted.
 切換ダンパ63は、第1出入口63aと第2出入口63bとを持っている。切換ダンパ63は、給排気ファン64が駆動しているときに空気を吸い込む空気の入口を、第1出入口63aとするか又は第2出入口63bとするかを切り換えることができる。空気の入口を第1出入口63aとする場合には、図4に実線で示された矢印の向きに、外気が、加湿用空気取入口69cから、吸着ロータ61、ヒータ62、吸着ロータ61、第1出入口63a、給排気ファン64、第2出入口63b、ダクト66、給排気ホース68、空調室内機2の順に流れる。空気の入口を第2出入口63bとするように切り換えると、逆に、図4に破線で示された矢印の向きに、空調室内機2から、給排気ホース68、ダクト66、第2出入口63b、給排気ファン64、第1出入口63a、吸着ロータ61、ヒータ62、吸着ロータ61、加湿用空気取入口69cの順に空気が流れる。切換ダンパ63の切り換えは、モータ63mにより行われる。 The switching damper 63 has a first entrance 63a and a second entrance 63b. The switching damper 63 can switch between the first inlet/outlet 63a and the second inlet/outlet 63b as the air inlet for sucking air when the air supply/exhaust fan 64 is driven. When the air inlet is the first inlet/outlet 63a, outside air flows from the humidifying air inlet 69c in the direction of the solid arrow in FIG. 1 entrance/exit 63a, air supply/exhaust fan 64, second entrance/exit 63b, duct 66, air supply/exhaust hose 68, and air conditioning indoor unit 2 in this order. When the air inlet is switched to the second inlet/outlet 63b, conversely, the supply/exhaust hose 68, the duct 66, the second inlet/outlet 63b, Air flows through the supply/exhaust fan 64, the first inlet/outlet 63a, the adsorption rotor 61, the heater 62, the adsorption rotor 61, and the humidification air intake 69c in this order. The switching of the switching damper 63 is performed by a motor 63m.
 給排気ファン64は、切換ダンパ63の第1出入口63aと第2出入口63bとの間に配置されている。給排気ファン64は、第1出入口63aから第2出入口63bまたは第2出入口63bから第1出入口63aに向う空気の流れを発生させる。給排気ファン64は、モータ64mにより駆動される。給排気ホース68は、一方端をダクト66に接続し、他方端を空調室内機2に接続している。このような構成により、給排気ホース68と部屋RMとは空調室内機2を介して連通している。 The air supply/exhaust fan 64 is arranged between the first entrance 63 a and the second entrance 63 b of the switching damper 63 . The air supply/exhaust fan 64 generates an air flow from the first inlet/outlet 63a to the second inlet/outlet 63b or from the second inlet/outlet 63b to the first inlet/outlet 63a. The air supply/exhaust fan 64 is driven by a motor 64m. The air supply/exhaust hose 68 has one end connected to the duct 66 and the other end connected to the air conditioning indoor unit 2 . With such a configuration, the air supply/exhaust hose 68 and the room RM communicate with each other via the air conditioning indoor unit 2 .
 吸着用空気取入口69bから吸着用空気吹出口69aに続く通路に吸着ファン65が配置され、この通路に掛かるように吸着ロータ61が配置されている。吸着ファン65により吸着用空気取入口69bから吸着用空気吹出口69aに向う気流が発生すると、吸着ロータ61を通過する外気から吸着ロータ61への水分の吸着が生じる。吸着ファン65は、モータ65mにより駆動される。 An adsorption fan 65 is arranged in a passage leading from the adsorption air intake 69b to the adsorption air outlet 69a, and the adsorption rotor 61 is arranged so as to hang over this passage. When the adsorption fan 65 generates an airflow from the adsorption air intake port 69b toward the adsorption air outlet 69a, the adsorption rotor 61 adsorbs moisture from the outside air passing through the adsorption rotor 61 . The suction fan 65 is driven by a motor 65m.
 吸着ロータ61のモータ61m、切換ダンパ63のモータ63m、給排気ファン64のモータ64m及びヒータ62は、室外制御板82に接続されている。制御部8は、室外制御板82により、吸着ロータ61の回転数、切換ダンパ63の切り換え、給排気ファン64及び吸着ファン65のオンオフ、及びヒータ62の出力を制御することができる。 The motor 61 m of the adsorption rotor 61 , the motor 63 m of the switching damper 63 , the motor 64 m of the air supply/exhaust fan 64 and the heater 62 are connected to the outdoor control plate 82 . The controller 8 can control the number of rotations of the adsorption rotor 61 , the switching of the switching damper 63 , the ON/OFF of the air supply/exhaust fan 64 and the adsorption fan 65 , and the output of the heater 62 using the outdoor control plate 82 .
 (3)空調システム及び空調室内機の動作
 (3-1)概要
 空調システム1の運転モードには、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転、換気運転及び空気清浄運転がある。なお、複数の運転を組み合わせることができる。例えば、暖房運転と加湿運転、冷房運転と加湿運転、送風運転と加湿運転、換気運転と冷房運転、換気運転と暖房運転、換気運転と除湿運転、及び換気運転と送風運転を組み合わせることができ、それらの組合せにさらに空気清浄運転を組み合わせることができる。
(3) Operation of Air Conditioning System and Air Conditioning Indoor Units (3-1) Overview Operation modes of the air conditioning system 1 include, for example, cooling operation, heating operation, dehumidification operation, humidification operation, fan operation, ventilation operation, and air cleaning operation. be. Note that a plurality of operations can be combined. For example, heating operation and humidifying operation, cooling operation and humidifying operation, air blowing operation and humidifying operation, ventilation operation and cooling operation, ventilation operation and heating operation, ventilation operation and dehumidifying operation, and ventilation operation and air blowing operation can be combined, An air cleaning operation can be further combined with those combinations.
 (3-2)冷房運転
 冷房運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラ(図示せず)から冷房運転が指示されるとともに目標温度が指示される。冷房運転時に、制御部8は、四方弁42を、図4において実線で示されている状態に切り換える。冷房運転時に、このように切り換えられた四方弁42は、第1ポートP1と第2ポートP2の間で冷媒を流し、第3ポートP3と第4ポートP4の間で冷媒を流す。冷房運転時の四方弁42は、圧縮機41から吐出される高温高圧のガス冷媒を室外熱交換器44に流す。室外熱交換器44では、冷媒と、室外ファン46により供給される外気との間で熱交換が行われる。室外熱交換器44で冷やされた冷媒は、室外膨張弁45で減圧されて熱交換器21に流れ込む。熱交換器21では、冷媒とファン22により供給される空気との間で熱交換が行われる。ファン22により供給される空気には、室内空気のみの場合と、室内空気と外気の場合とがある。熱交換器21での熱交換により温められた冷媒は、四方弁42及びアキュムレータ43を経由して、圧縮機41に吸入される。熱交換器21で冷やされた室内空気或いは室内空気と外気の混合空気が空調室内機2から部屋RMに吹出されることで、室内の冷房が行われる。この空気調和機10では、冷房運転において、熱交換器21が冷媒の蒸発器として機能して部屋RMを冷やし、室外熱交換器44が冷媒の放熱器として機能する。制御部8は、室内温度センサ31で検出した温度を目標温度に近づけるように空調室内機2と空調室外機4を制御する。
(3-2) Cooling Operation Before starting the cooling operation, the controller 81 of the control section 8 is instructed to perform the cooling operation and the target temperature from, for example, a remote controller (not shown). During cooling operation, the controller 8 switches the four-way valve 42 to the state indicated by the solid line in FIG. During cooling operation, the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the second port P2, and the refrigerant to flow between the third port P3 and the fourth port P4. The four-way valve 42 during cooling operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the outdoor heat exchanger 44 . The outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 . The refrigerant cooled by the outdoor heat exchanger 44 is depressurized by the outdoor expansion valve 45 and flows into the heat exchanger 21 . The heat exchanger 21 exchanges heat between the refrigerant and the air supplied by the fan 22 . The air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air. The refrigerant warmed by heat exchange in the heat exchanger 21 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 . The indoor air is cooled by blowing the indoor air cooled by the heat exchanger 21 or the mixed air of the indoor air and the outdoor air from the air conditioning indoor unit 2 to the room RM. In the air conditioner 10, in the cooling operation, the heat exchanger 21 functions as a refrigerant evaporator to cool the room RM, and the outdoor heat exchanger 44 functions as a refrigerant radiator. The controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
 (3-3)暖房運転
 暖房運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから暖房運転が指示されるとともに目標温度が指示される。暖房運転時に、制御部8は、四方弁42を、図4において破線で示されている状態に切り換える。暖房運転時に、このように切り換えられた四方弁42は、第1ポートP1と第4ポートP4の間で冷媒を流し、第2ポートP2と第3ポートP3の間で冷媒を流す。暖房運転時の四方弁42は、圧縮機41から吐出される高温高圧のガス冷媒を熱交換器21に流す。熱交換器21では、ファン22により供給される空気と冷媒との間で熱交換が行われる。ファン22により供給される空気には、室内空気のみの場合と、室内空気と外気の場合とがある。熱交換器21で冷やされた冷媒は、室外膨張弁45で減圧されて室外熱交換器44に流れ込む。室外熱交換器44では、冷媒と室外ファン46により供給される外気との間で熱交換が行われる。室外熱交換器44での熱交換により温められた冷媒は、四方弁42及びアキュムレータ43を経由して、圧縮機41に吸入される。熱交換器21で温められた室内空気或いは室内空気と外気の混合空気が空調室内機2から部屋RMに吹出されることで、室内の暖房が行われる。この空気調和機10では、暖房運転においては、熱交換器21が冷媒の放熱器として機能して部屋RMを温め、室外熱交換器44が冷媒の蒸発器として機能する。制御部8は、室内温度センサ31で検出した温度を目標温度に近づけるように空調室内機2と空調室外機4を制御する。
(3-3) Heating Operation Before starting the heating operation, the controller 81 of the control section 8 is instructed to perform the heating operation and the target temperature from, for example, a remote controller. During heating operation, the control unit 8 switches the four-way valve 42 to the state indicated by the dashed line in FIG. During heating operation, the four-way valve 42 switched in this way allows the refrigerant to flow between the first port P1 and the fourth port P4, and the refrigerant between the second port P2 and the third port P3. The four-way valve 42 during heating operation allows the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 to flow to the heat exchanger 21 . In the heat exchanger 21, heat is exchanged between the air supplied by the fan 22 and the refrigerant. The air supplied by the fan 22 may be indoor air alone or indoor air and outdoor air. The refrigerant cooled by the heat exchanger 21 is depressurized by the outdoor expansion valve 45 and flows into the outdoor heat exchanger 44 . The outdoor heat exchanger 44 exchanges heat between the refrigerant and the outside air supplied by the outdoor fan 46 . The refrigerant warmed by heat exchange in the outdoor heat exchanger 44 is sucked into the compressor 41 via the four-way valve 42 and the accumulator 43 . The room is heated by blowing out the indoor air warmed by the heat exchanger 21 or the mixed air of the indoor air and the outside air from the air conditioning indoor unit 2 into the room RM. In the air conditioner 10, in the heating operation, the heat exchanger 21 functions as a refrigerant radiator to warm the room RM, and the outdoor heat exchanger 44 functions as a refrigerant evaporator. The controller 8 controls the air conditioning indoor unit 2 and the air conditioning outdoor unit 4 so that the temperature detected by the indoor temperature sensor 31 approaches the target temperature.
 (3-4)送風運転
 送風運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから送風運転が指示される。送風運転時には、制御部8が、圧縮機41を停止させ、冷媒回路13における冷凍サイクルを停止させる。また、制御部8は、加湿器6の動作も停止させる。送風運転では、リモートコントローラから目標風量が指示される場合と、空調室内機2に目標風量を自動で選択させる場合がある。制御装置81は、目標風量になるように、ファン22のモータ22mを制御する。例えば、制御装置81は、最も回転数の小さいLLタップから、Lタップ、Mタップ、Hタップの順に回転数を大きくすることができるように構成されている。送風運転の身を行っている場合に、制御部8は、加湿器6の動作も停止させる。送風運転では、部屋RMの中の室内空気が空調室内機2により循環する。
(3-4) Blowing operation Before starting the blowing operation, the control device 81 of the control unit 8 is instructed to operate the blowing operation from, for example, a remote controller. During the blowing operation, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . The control unit 8 also stops the operation of the humidifier 6 . In the air blowing operation, there are cases where the target air volume is instructed from the remote controller, and where the air conditioning indoor unit 2 automatically selects the target air volume. The control device 81 controls the motor 22m of the fan 22 so as to achieve the target air volume. For example, the control device 81 is configured so that the rotation speed can be increased in order from the LL tap, which has the lowest rotation speed, to the L tap, the M tap, and the H tap. The controller 8 also stops the operation of the humidifier 6 when the air blowing operation is being performed. In the air blowing operation, the indoor air in the room RM is circulated by the air conditioning indoor unit 2 .
 (3-5)加湿運転
 加湿運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから加湿運転が指示されるとともに目標湿度が指示される。加湿のみを行う加湿運転時には、制御部8が、圧縮機41を停止させ、冷媒回路13における冷凍サイクルを停止させる。しかし、例えば、加湿暖房運転では、冷媒回路13における冷凍サイクルも加湿運転と同時に実施される。
(3-5) Humidification Operation Before the humidification operation is started, the controller 81 of the control section 8 is instructed to perform the humidification operation and the target humidity from, for example, a remote controller. During humidification operation in which only humidification is performed, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . However, for example, in the humidification/heating operation, the refrigeration cycle in the refrigerant circuit 13 is also performed at the same time as the humidification operation.
 制御部8は、加湿運転の指示を受けると、まず、加湿器6に給排気ホース68の乾燥を行わせる。制御部8は、給排気ホース68の乾燥後、加湿器6に加湿動作が開始される。制御部8は、吸着ファン65を駆動させ且つ吸着ロータ61を回転させるように制御する。吸着ファン65の駆動によって吸着ロータ61を外気が通過することで、吸着ロータ61には、外気から水分が吸着する。吸着ロータ61の回転により、水分が吸着した箇所が、ヒータ62によって加熱された空気の通過する場所に移動する。その結果、水分が吸着した箇所から加熱された空気へと水分の脱離が生じる。吸着ロータ61を通過して高湿度になった空気が、給排気ファン64により、給排気ホース68及び空調室内機2を通して部屋RMに送られる。加湿運転において、制御装置81は、高湿度の空気を部屋RMの中に吹出させるために、空調室内機2のファン22を駆動させる。制御部8は、所定の湿度センサで検出した湿度を目標湿度に近づけるように空調室内機2と空調室外機4と加湿器6を制御する。所定の湿度センサは、加湿器6及び空調室内機2において空気が流れる流路に設けられている湿度センサである。所定の湿度センサには、例えば、室内湿度センサ32、加湿ダクト28に取り付けられた湿度センサがある。 Upon receiving the humidification operation instruction, the control unit 8 first causes the humidifier 6 to dry the air supply/exhaust hose 68 . After the air supply/exhaust hose 68 is dried, the controller 8 causes the humidifier 6 to start the humidification operation. The controller 8 drives the suction fan 65 and controls the suction rotor 61 to rotate. By driving the adsorption fan 65 and passing the outside air through the adsorption rotor 61 , the adsorption rotor 61 adsorbs moisture from the outside air. Due to the rotation of the adsorption rotor 61, the location where moisture is adsorbed moves to a location through which the air heated by the heater 62 passes. As a result, desorption of moisture occurs from the location where moisture has been adsorbed to the heated air. The air that has passed through the adsorption rotor 61 and becomes highly humid is sent to the room RM through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 by the air supply/exhaust fan 64 . In the humidification operation, the control device 81 drives the fan 22 of the air conditioning indoor unit 2 to blow high-humidity air into the room RM. The control unit 8 controls the air conditioning indoor unit 2, the air conditioning outdoor unit 4, and the humidifier 6 so that the humidity detected by the predetermined humidity sensor approaches the target humidity. The predetermined humidity sensor is a humidity sensor provided in a flow path through which air flows in the humidifier 6 and the air conditioner indoor unit 2 . The predetermined humidity sensor includes, for example, the indoor humidity sensor 32 and the humidity sensor attached to the humidification duct 28 .
 (3-6)換気運転
 換気運転の開始前に、制御部8の制御装置81には、例えば、リモートコントローラから換気運転が指示される。換気運転時には、加湿運転が停止される。また、換気運転のみを行う場合には、制御部8が、圧縮機41を停止させ、冷媒回路13における冷凍サイクルを停止させる。ただし、例えば、換気しつつ冷房する場合及び換気しつつ暖房する場合には、制御部8は、圧縮機41を駆動して、冷媒回路13における冷凍サイクルを実施する。加湿運転を停止するため、吸着ファン65及び吸着ロータ61の回転が停止される。換気運転では、制御部8は、給排気ファン64を駆動するようにモータ64mを制御する。また、換気運転では、制御部8は、切換ダンパ63を制御することにより、給気状態と排気状態とを切り換える。給気状態においては、外気が、加湿用空気取入口69cから取り入れられ、給排気ホース68及び空調室内機2を通して部屋RMに吹出される。排気状態においては、室内空気が、部屋RMから空調室内機2及び給排気ホース68を通して加湿用空気取入口69cから排気される。換気運転において、制御装置81は、外気を部屋RMの中に吹出させるために、空調室内機2のファン22を駆動させる。換気運転の給気時において、加湿ダクト28は、加湿器6による加湿を受けていない外気をそのまま給気する給気ダクトとして機能する。
(3-6) Ventilation Operation Before starting the ventilation operation, the control device 81 of the control section 8 is instructed to perform the ventilation operation from, for example, a remote controller. During the ventilation operation, the humidification operation is stopped. Further, when performing only the ventilation operation, the control unit 8 stops the compressor 41 and stops the refrigeration cycle in the refrigerant circuit 13 . However, for example, when cooling while ventilating or when heating while ventilating, the control unit 8 drives the compressor 41 to perform the refrigeration cycle in the refrigerant circuit 13 . In order to stop the humidification operation, the rotation of the adsorption fan 65 and the adsorption rotor 61 is stopped. In the ventilation operation, the controller 8 controls the motor 64m to drive the air supply/exhaust fan 64 . In the ventilation operation, the controller 8 switches between the air supply state and the air exhaust state by controlling the switching damper 63 . In the air supply state, outside air is taken in from the humidifying air intake port 69c and blown through the air supply/exhaust hose 68 and the air conditioning indoor unit 2 into the room RM. In the exhaust state, indoor air is exhausted from the room RM through the air conditioning indoor unit 2 and the air supply/exhaust hose 68 from the humidification air intake port 69c. In the ventilation operation, the control device 81 drives the fan 22 of the air conditioner indoor unit 2 to blow outside air into the room RM. During air supply in the ventilation operation, the humidification duct 28 functions as an air supply duct that supplies outside air that has not been humidified by the humidifier 6 as it is.
 (3-7)空気清浄運転
 空調システム1は、静電霧化装置70を用いて空気清浄運転を行うことができる。ここで、空気清浄運転とは、空気中の有害成分及び/または臭気成分を抑制する運転である。空気清浄運転は、例えば、静電霧化装置70が発生するイオンを含む水微粒子(静電ミスト)で有害成分または臭気成分を抑える運転である。静電霧化装置70を用いる空気清浄運転は、他の運転、例えば、冷房運転、暖房運転、除湿運転、加湿運転、送風運転もしくは換気運転またはそれらを組み合わせた運転とともに行われる。
(3-7) Air Cleaning Operation The air conditioning system 1 can perform an air cleaning operation using the electrostatic atomizer 70 . Here, the air cleaning operation is an operation for suppressing harmful components and/or odorous components in the air. The air cleaning operation is, for example, an operation in which harmful or odorous components are suppressed with water particles (electrostatic mist) containing ions generated by the electrostatic atomizer 70 . The air cleaning operation using the electrostatic atomizer 70 is performed together with other operations such as cooling operation, heating operation, dehumidifying operation, humidifying operation, blowing operation, ventilation operation, or a combination thereof.
 空調室内機2の制御装置81は、加湿運転時または換気運転時において、外気が部屋RM(室内)に導入されているときは、静電霧化ユニット75において放電させないように静電霧化装置70を制御する。 The control device 81 of the air conditioner indoor unit 2 controls the electrostatic atomizer unit 75 so as not to discharge the electrostatic atomizer unit 75 when outside air is introduced into the room RM (indoor) during humidification operation or ventilation operation. control 70;
 (4)変形例
 (4-1)変形例A
 上記実施形態では、静電霧化装置70及び静電霧化ユニット75がケーシング23の中に配置される場合について説明した。しかし、静電霧化装置70及び静電霧化ユニット75は、ケーシング23の外に配置されてもよい。
(4) Modification (4-1) Modification A
In the above embodiment, the case where the electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged inside the casing 23 has been described. However, the electrostatic atomizer 70 and the electrostatic atomizer unit 75 may be arranged outside the casing 23 .
 (4-2)変形例B
 上記実施形態では、静電霧化装置70及び静電霧化ユニット75は、通風路FP(給気流路R1及び他の流路R2)の外から空気を取り入れる場合について説明した。しかし、静電霧化装置70及び静電霧化ユニット75に送り込む空気は、図13及び図14に示されているように、他の流路R2から取り入れられてもよい。例えば、静電霧化装置70の吸入口72aは、エアフィルタ24の下流且つ熱交換器21の上流の他の流路R2に接続され。静電霧化装置70の放出口72bは、例えば、ケーシング23の吹出口23bに繋がっているスクロール部(通風路FPの一部)に接続されている。
(4-2) Modification B
In the above embodiment, the case where the electrostatic atomizer 70 and the electrostatic atomizer unit 75 take in air from outside the ventilation path FP (the air supply path R1 and the other flow path R2) has been described. However, the air sent to the electrostatic atomizer 70 and the electrostatic atomizer unit 75 may be taken in from another flow path R2, as shown in FIGS. 13 and 14. FIG. For example, the suction port 72 a of the electrostatic atomizer 70 is connected to another flow path R<b>2 downstream of the air filter 24 and upstream of the heat exchanger 21 . The discharge port 72b of the electrostatic atomizer 70 is connected to, for example, a scroll portion (a part of the air passage FP) that is connected to the blowout port 23b of the casing 23 .
 (4-3)変形例C
 上記実施形態では、静電霧化ユニット75が静電霧化装置70の中に配置され、送風装置74で静電ミストをケーシング23の吹出口23bから吹き出させる場合について説明した。しかし、送風装置74を省いてもよい。例えば、他の流路R2の空気の流れの中に静電霧化ユニット75を位置させることにより、送風装置74を省いてもよい。
(4-3) Modification C
In the above embodiment, the case where the electrostatic atomization unit 75 is arranged in the electrostatic atomization device 70 and the blower device 74 blows the electrostatic mist from the outlet 23b of the casing 23 has been described. However, the blower 74 may be omitted. For example, the air blower 74 may be omitted by positioning the electrostatic atomization unit 75 in the air flow of the other flow path R2.
 (4-4)変形例D
 上記実施形態では、加湿ダクト28の吹出開口28aから熱交換器21に向けて外気を吹き出さす場合について説明した。しかし、加湿ダクト28から外気を吹き出す方向は熱交換器21に向かう方向には限られない。例えば、図13に示されているように、加湿ダクト28から熱交換器21に向かう方向に対して直交する方向に外気を吹き出してもよい。
(4-4) Modification D
In the above-described embodiment, the case where outside air is blown out from the blowout opening 28a of the humidification duct 28 toward the heat exchanger 21 has been described. However, the direction in which outside air is blown out from the humidification duct 28 is not limited to the direction toward the heat exchanger 21 . For example, as shown in FIG. 13 , outside air may be blown out in a direction perpendicular to the direction toward the heat exchanger 21 from the humidification duct 28 .
 (4-5)変形例E
 上記実施形態では、給気部材として、加湿ダクト28を用いる場合について説明した。しかし、給気部材は、加湿ダクト28だけには限られない。例えば、加湿器6に代えて、加湿機能の無い外気の給排気のみを行う給排気装置が屋外に設けられてもよい。給排気装置が設置される場合には、加湿ダクト28に変えて給気ダクトがケーシング23の中に配置される。そのように構成された場合には、空調室内機2は、加湿運転を行うことができないが、換気運転を行い、外気を部屋RM(室内)に供給することができる。給気ダクトと静電霧化ユニット75との配置関係は、加湿ダクト28と静電霧化ユニット75との配置関係と同様に設定することができる。
(4-5) Modification E
In the above embodiment, the case of using the humidifying duct 28 as the air supply member has been described. However, the air supply member is not limited to the humidification duct 28 only. For example, instead of the humidifier 6, an air supply/exhaust device that only supplies and exhausts outside air without a humidification function may be provided outdoors. When an air supply/exhaust device is installed, an air supply duct is arranged in the casing 23 instead of the humidification duct 28 . In such a configuration, the air conditioning indoor unit 2 cannot perform the humidification operation, but can perform the ventilation operation to supply outside air to the room RM (indoor). The arrangement relationship between the air supply duct and the electrostatic atomization unit 75 can be set in the same manner as the arrangement relationship between the humidification duct 28 and the electrostatic atomization unit 75 .
 (5)特徴
 (5-1)
 上述の空調室内機2は、ケーシング23の中に、加湿運転時または換気運転時に、屋外の空気である外気が流れる給気流路R1を有している。静電霧化装置70及び静電霧化ユニット75は、給気流路R1の外に配置されている。言い換えると、給気流路R1を流れる空気は、静電霧化装置70及び静電霧化ユニット75には流れない。通風路FPを通らずに部屋RMからケーシング23の中に入ってくる室内空気、他の流路R2から供給される室内空気、または静電霧化装置70がケーシング23の外に配置されるときにはケーシング23の外の室内空気が、静電霧化装置70及び静電霧化ユニット75に流れ込む空気である。このような構成の静電霧化装置70及び静電霧化ユニット75には、加湿運転時または換気運転時であっても、外気が流れ込まない。そのため、外気が流れる給気流路R1の外に静電霧化ユニット75が配置されることで、外気の状態の変化、特に高湿度状態の外気が静電霧化ユニット75に与える影響を抑制することができる。
(5) Features (5-1)
The air conditioner indoor unit 2 described above has an air supply passage R1 in the casing 23 through which outside air, which is outdoor air, flows during humidification operation or ventilation operation. The electrostatic atomizer 70 and the electrostatic atomizer unit 75 are arranged outside the air supply passage R1. In other words, the air flowing through the air supply passage R1 does not flow to the electrostatic atomization device 70 and the electrostatic atomization unit 75 . Room air that enters the casing 23 from the room RM without passing through the ventilation path FP, room air that is supplied from another flow path R2, or when the electrostatic atomizer 70 is arranged outside the casing 23 Room air outside the casing 23 is the air that flows into the electrostatic atomizer 70 and the electrostatic atomizer unit 75 . Outside air does not flow into the electrostatic atomization device 70 and the electrostatic atomization unit 75 configured in this manner even during the humidification operation or the ventilation operation. Therefore, by arranging the electrostatic atomization unit 75 outside the air supply passage R1 through which the outside air flows, it is possible to suppress changes in the state of the outside air, particularly the influence of the outside air in a high humidity state on the electrostatic atomization unit 75. be able to.
 (5-2)
 空調室内機2の給気流路R1は、ケーシング23の長手方向D1の一端側に配置されている。静電霧化装置70及び静電霧化ユニット75は、ケーシング23の中に配置され、かつ、長手方向D1の他端側に配置されている。このように、給気流路R1を長手方向の一端側、静電霧化ユニット75を他端側に配置するという簡単な構成で、外気の状態の変化が静電霧化ユニット75に与える影響を抑制することができる。静電霧化ユニット75を他端側に配置する構成には、上記実施形態のように、静電霧化ユニット75を通風路FPとケーシング23の他端E2との間に配置して、部屋RMからケーシング23の中に流入する室内空気を用いる場合が含まれる。また、静電霧化ユニット75を他端側に配置する構成には、変形例Bのように、静電霧化ユニット75に他の流路R2を流れる室内空気を送り込む場合が含まれる。
(5-2)
The air supply passage R1 of the air conditioning indoor unit 2 is arranged on one end side of the casing 23 in the longitudinal direction D1. The electrostatic atomization device 70 and the electrostatic atomization unit 75 are arranged inside the casing 23 and arranged on the other end side in the longitudinal direction D1. In this way, with a simple configuration in which the air supply flow path R1 is arranged on one end side in the longitudinal direction and the electrostatic atomization unit 75 is arranged on the other end side, the effect of changes in the state of the outside air on the electrostatic atomization unit 75 can be reduced. can be suppressed. As for the configuration in which the electrostatic atomization unit 75 is arranged on the other end side, the electrostatic atomization unit 75 is arranged between the ventilation passage FP and the other end E2 of the casing 23, as in the above-described embodiment. The use of room air entering the casing 23 from the RM is included. Further, the configuration in which the electrostatic atomization unit 75 is arranged on the other end side includes the case where the indoor air flowing through the other flow path R2 is sent to the electrostatic atomization unit 75 as in the modification B.
 (5-3)
 上述の空調室内機2では、ケーシング23の中に長手方向D1に延びるように配置されている電装品箱90は、一端側に第1電装室91を有し、他端側に第2電装室92を有している。第2電装室92には、例えば静電霧化装置70に電力を供給するための50ボルト以上の電圧によって駆動される第2電気回路部品が収容されている。このような第2電装室92を、静電霧化ユニット75が配置される長手方向D1の一端側に設けることで、例えば、第2電装室92から静電霧化装置70及び静電霧化ユニット75までの配線距離を短くできる。その結果、50ボルト以上の電圧に対する対策が行い易くなる。
(5-3)
In the air conditioner indoor unit 2 described above, the electrical component box 90 arranged to extend in the longitudinal direction D1 in the casing 23 has a first electrical component room 91 on one end side and a second electrical component room on the other end side. has 92. The second electrical component room 92 accommodates a second electrical circuit component driven by a voltage of 50 volts or higher for supplying electric power to the electrostatic atomizer 70, for example. By providing such a second electrical equipment chamber 92 on one end side of the longitudinal direction D1 in which the electrostatic atomization unit 75 is arranged, for example, the electrostatic atomizer 70 and the electrostatic atomizer can be discharged from the second electrical equipment chamber 92 . The wiring distance to the unit 75 can be shortened. As a result, it becomes easier to take measures against voltages of 50 volts or more.
 (5-4)
 上述の空調室内機2では、静電霧化ユニット75に導かれる空気は、通風路FPとケーシング23の他端E2の間の空間から取り入れられる。通風路FPとケーシング23の他端E2の間の空間が、通風路FP以外の空間である。上述の空調室内機2において、静電霧化ユニット75から放出される液体微粒子は、ナノサイズの水の微粒子である。静電霧化ユニット75に導入される空気が通風路FP以外の空間から取り入れることから、静電霧化ユニット75に導入される空気に外気が混じっておらず、外気の状態の変化が静電霧化ユニット75に与える影響を小さくすることができる。
(5-4)
In the air conditioner indoor unit 2 described above, the air guided to the electrostatic atomization unit 75 is taken in from the space between the ventilation path FP and the other end E2 of the casing 23 . A space between the ventilation path FP and the other end E2 of the casing 23 is a space other than the ventilation path FP. In the air conditioner indoor unit 2 described above, the liquid particles emitted from the electrostatic atomization unit 75 are nano-sized water particles. Since the air introduced into the electrostatic atomization unit 75 is taken in from a space other than the ventilation path FP, the outside air is not mixed with the air introduced into the electrostatic atomization unit 75, and changes in the state of the outside air are electrostatically generated. The influence on the atomization unit 75 can be reduced.
 (5-5)
 上述の空調室内機2において、給気部材である加湿ダクト28の吹出開口28aまたは給気ダクトの吹出開口(図示せず)が熱交換器21に対向するように配置される。熱交換器21に吹出開口28aが対向するような構成により、ケーシング23の中の熱交換器21以外の他の部分に外気が当たって、熱交換器21以外の部分に結露が生じるなどの不具合の発生を防止することができる。
(5-5)
In the air conditioning indoor unit 2 described above, the blowout opening 28 a of the humidifying duct 28 or the blowout opening (not shown) of the air supply duct, which is an air supply member, is arranged to face the heat exchanger 21 . Due to the configuration in which the blow-out opening 28a faces the heat exchanger 21, outside air hits other parts of the casing 23 other than the heat exchanger 21, causing problems such as dew condensation on parts other than the heat exchanger 21. can be prevented from occurring.
 (5-6)
 上述の空調室内機2の制御装置81は、外気が部屋RM(室内)に導入されているときは、静電霧化ユニット75において放電させないような制御を行っている。その結果、外気導入時に静電霧化ユニット75が外気の影響を受けるのを防止することができる。
(5-6)
The control device 81 of the air conditioning indoor unit 2 described above performs control so that the electrostatic atomization unit 75 does not discharge when outside air is introduced into the room RM (indoor). As a result, it is possible to prevent the electrostatic atomization unit 75 from being affected by the outside air when the outside air is introduced.
 (5-7)
 上述の空調室内機2の給気流路R1は、加湿運転時に、加湿された外気を給気する流路である。このように給気流路R1に加湿された外気が流れる場合でも、外気が流れる給気流路R1から外れた位置に静電霧化ユニット75が配置されることで、外気の湿度が静電霧化ユニット75に与える影響を抑制することができる。
(5-7)
The air supply passage R1 of the air conditioning indoor unit 2 described above is a passage for supplying humidified outside air during the humidification operation. Even when the humidified outside air flows through the air supply passage R1 in this way, the electrostatic atomization unit 75 is arranged at a position separated from the air supply passage R1 through which the outside air flows, so that the humidity of the outside air is electrostatically atomized. The influence on the unit 75 can be suppressed.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
 2 空調室内機
 21 熱交換器
 22 ファン
 23 ケーシング
 23a 吸込口
 23b 吹出口
 28 加湿ダクト (給気部材の例)
 70 静電霧化装置
 75 静電霧化ユニット
 81 制御装置
 90 電装品箱
 91 第1電装室
 92 第2電装室
 R1 給気流路
 FP 通風路
2 Air conditioner indoor unit 21 Heat exchanger 22 Fan 23 Casing 23a Suction port 23b Air outlet 28 Humidification duct (Example of air supply member)
70 Electrostatic atomization device 75 Electrostatic atomization unit 81 Control device 90 Electrical component box 91 First electrical component room 92 Second electrical component room R1 Air supply channel FP Ventilation channel
特開2014-20578号公報JP 2014-20578 A

Claims (7)

  1.  室内の空気調和を行う空調室内機(2)であって、
     屋外の空気である外気が流れる給気流路(R1)を有するケーシング(23)と、
     放電によるイオンを含む液体微粒子を放出する静電霧化ユニット(75)と、
    を備え、
     前記静電霧化ユニットは、前記給気流路の外に配置されている、空調室内機(2)。
    An air conditioning indoor unit (2) that performs indoor air conditioning,
    A casing (23) having an air supply passage (R1) through which outside air, which is outdoor air, flows;
    an electrostatic atomization unit (75) that emits liquid particles containing ions by electric discharge;
    with
    The air conditioner indoor unit (2), wherein the electrostatic atomization unit is arranged outside the air supply passage.
  2.  前記給気流路は、前記ケーシングの長手方向の一端側に配置され、
     前記静電霧化ユニットは、前記ケーシングの中に配置され、かつ、前記長手方向の他端側に配置されている、
    請求項1に記載の空調室内機(2)。
    The air supply channel is arranged on one end side in the longitudinal direction of the casing,
    The electrostatic atomization unit is arranged inside the casing and on the other end side in the longitudinal direction,
    The air conditioning indoor unit (2) according to claim 1.
  3.  前記ケーシングの中に配置され、前記長手方向に延びている電装品箱(90)を備え、
     前記電装品箱は、前記一端側に50ボルト未満の電圧によって駆動される第1電気回路部品を収容する第1電装室(91)を有し、前記他端側に50ボルト以上の電圧によって駆動される第2電気回路部品を収容する第2電装室(92)を有する、
    請求項2に記載の空調室内機(2)。
    an electrical component box (90) disposed within said casing and extending in said longitudinal direction;
    The electrical component box has a first electrical component room (91) for housing a first electrical circuit component driven by a voltage of less than 50 volts on the one end side, and a voltage of 50 volts or more on the other end side. has a second electrical compartment (92) that houses a second electrical circuit component that is
    The air conditioning indoor unit (2) according to claim 2.
  4.  前記ケーシングの中に配置されているファン(22)を備え、
     前記ケーシングは、室内空気を前記室内から吸い込む吸込口(23a)と、前記室内に空気を吹き出す吹出口(23b)と、前記吸込口と前記吹出口とを繋ぐ通風路(FP)とを有し、
     前記ファンは、前記吸込口から前記通風路を通って前記吹出口に向かう気流を発生させ、
     前記静電霧化ユニットは、前記液体微粒子を放出させるための空気を前記通風路以外の空間から取り入れる、
    請求項1から3のいずれか一項に記載の空調室内機(2)。
    a fan (22) positioned within the casing;
    The casing has a suction port (23a) for sucking room air from the room, a blowout port (23b) for blowing air into the room, and a ventilation path (FP) connecting the suction port and the blowout port. ,
    The fan generates an airflow from the suction port toward the outlet through the ventilation passage,
    The electrostatic atomization unit takes in air for discharging the liquid particles from a space other than the air passage.
    The air conditioning indoor unit (2) according to any one of claims 1 to 3.
  5.  前記ケーシングの中の前記通風路に配置され、前記室内空気及び前記外気と熱媒体との熱交換を行う熱交換器(21)を備え、
     前記給気流路は、前記外気を吹き出す吹出開口を有する給気部材を含み、前記吹出開口が前記熱交換器に対向するように配置されている、
    請求項4に記載の空調室内機(2)。
    A heat exchanger (21) arranged in the ventilation passage in the casing for exchanging heat between the indoor air and the outside air and a heat medium,
    The air supply channel includes an air supply member having a blowout opening for blowing out the outside air, and the blowout opening is arranged to face the heat exchanger.
    The air conditioning indoor unit (2) according to claim 4.
  6.  前記静電霧化ユニットを制御する制御装置(81)を備え、
     前記制御装置は、前記外気が前記室内に導入されているときは、前記静電霧化ユニットにおいて放電させないように制御する、
    請求項1から5のいずれか一項に記載の空調室内機(2)。
    A control device (81) for controlling the electrostatic atomization unit,
    The control device controls the electrostatic atomization unit so as not to discharge when the outside air is introduced into the room.
    Air conditioning indoor unit (2) according to any one of claims 1 to 5.
  7.  前記給気流路は、加湿された前記外気を給気する流路である、
    請求項1から6のいずれか一項に記載の空調室内機(2)。
    The air supply channel is a channel for supplying the humidified outside air,
    Air conditioning indoor unit (2) according to any one of claims 1 to 6.
PCT/JP2022/029499 2021-08-06 2022-08-01 Air-conditioning indoor unit WO2023013582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280054057.2A CN117769631A (en) 2021-08-06 2022-08-01 Indoor unit of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021130223A JP7168891B1 (en) 2021-08-06 2021-08-06 air conditioning indoor unit
JP2021-130223 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013582A1 true WO2023013582A1 (en) 2023-02-09

Family

ID=83995253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029499 WO2023013582A1 (en) 2021-08-06 2022-08-01 Air-conditioning indoor unit

Country Status (3)

Country Link
JP (2) JP7168891B1 (en)
CN (1) CN117769631A (en)
WO (1) WO2023013582A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101140A (en) * 2005-10-07 2007-04-19 Daikin Ind Ltd Air conditioner
JP2008037247A (en) * 2006-08-04 2008-02-21 Matsushita Electric Works Ltd Electrostatic atomization device for vehicle
JP2010002076A (en) * 2008-06-18 2010-01-07 Daikin Ind Ltd Ceiling-embedded air conditioning indoor unit
JP2010065893A (en) * 2008-09-09 2010-03-25 Daikin Ind Ltd Indoor unit of air conditioning device
JP2011242069A (en) * 2010-05-19 2011-12-01 Panasonic Corp Ventilator
JP2014020578A (en) * 2012-07-12 2014-02-03 Panasonic Corp Air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719118B2 (en) * 2000-09-12 2005-11-24 ダイキン工業株式会社 Air conditioner
JP2002089897A (en) * 2000-09-12 2002-03-27 Daikin Ind Ltd Air conditioner
JP4366405B2 (en) * 2007-01-31 2009-11-18 日立アプライアンス株式会社 Air conditioner
JP2009276017A (en) * 2008-05-16 2009-11-26 Panasonic Corp Air conditioner
JP6922954B2 (en) * 2019-09-02 2021-08-18 ダイキン工業株式会社 Air conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101140A (en) * 2005-10-07 2007-04-19 Daikin Ind Ltd Air conditioner
JP2008037247A (en) * 2006-08-04 2008-02-21 Matsushita Electric Works Ltd Electrostatic atomization device for vehicle
JP2010002076A (en) * 2008-06-18 2010-01-07 Daikin Ind Ltd Ceiling-embedded air conditioning indoor unit
JP2010065893A (en) * 2008-09-09 2010-03-25 Daikin Ind Ltd Indoor unit of air conditioning device
JP2011242069A (en) * 2010-05-19 2011-12-01 Panasonic Corp Ventilator
JP2014020578A (en) * 2012-07-12 2014-02-03 Panasonic Corp Air conditioner

Also Published As

Publication number Publication date
JP2023024123A (en) 2023-02-16
CN117769631A (en) 2024-03-26
JP7168891B1 (en) 2022-11-10
JP2023024426A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP4360434B2 (en) Air conditioner
JP6922954B2 (en) Air conditioning system
ES2784541T3 (en) Humidity adjustment device
US20220268460A1 (en) Air conditioning system
JP2004225945A (en) Air conditioner and control method of air conditioner
KR100545074B1 (en) Air conditioner
JP2002089902A (en) Air conditioner
JP7148808B2 (en) air conditioning system
JP7168891B1 (en) air conditioning indoor unit
KR100569548B1 (en) Air conditioner
JP2005055028A (en) Air conditioning system
JP7223082B1 (en) air conditioning indoor unit
WO2023013583A1 (en) Air-conditioning indoor unit
JP2024038876A (en) air conditioner
JP2024038875A (en) air conditioner
JP3249466B2 (en) Humidification, ventilation and dehumidification units and air conditioners
WO2022270514A1 (en) Air-conditioning device
WO2023032397A1 (en) Air conditioner
WO2022270513A1 (en) Air-conditioning device
CN110476019B (en) Humidity control unit
JP4135025B2 (en) Humidity control unit
JP2023003368A (en) Air-conditioner
JP2012177510A (en) Humidity control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE