WO2023013508A1 - Vehicle wheel bearing device - Google Patents

Vehicle wheel bearing device Download PDF

Info

Publication number
WO2023013508A1
WO2023013508A1 PCT/JP2022/029031 JP2022029031W WO2023013508A1 WO 2023013508 A1 WO2023013508 A1 WO 2023013508A1 JP 2022029031 W JP2022029031 W JP 2022029031W WO 2023013508 A1 WO2023013508 A1 WO 2023013508A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing device
wheel bearing
annular portion
annular
retainer
Prior art date
Application number
PCT/JP2022/029031
Other languages
French (fr)
Japanese (ja)
Inventor
大介 仲
将治 勝部
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021129989A external-priority patent/JP2023023984A/en
Priority claimed from JP2021135229A external-priority patent/JP2023029118A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023013508A1 publication Critical patent/WO2023013508A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a wheel bearing device.
  • a wheel bearing device that rotatably supports a wheel in a suspension system of an automobile or the like.
  • an inner member including a hub wheel is rotatably supported by an outer member via a plurality of rolling elements (here, balls).
  • the plurality of balls are evenly distributed in the circumferential direction by the retainer and held in a state in which contact between adjacent balls is prevented.
  • the thickness of the columns in the cage is reduced in the circumferential direction, and notches are formed in the portions where the adjacent balls are closest to each other. ing. In other words, adjacent balls do not have a pillar portion intervening in their closest portions.
  • the retainer has a structure in which the number of balls that can be incorporated is increased by shortening the distance between the balls in the circumferential direction.
  • the column portion is bifurcated into two on the inner diameter side and the outer diameter side by the notch.
  • the axial length a1 of the column on the inner diameter side is the axial length a1 to the center position of the ball. It is almost the same as the directional length b1.
  • the axial length a2 of the pillar on the inner diameter side is the axis to the center position of the ball. longer than the directional length b2.
  • an object of the present invention is to provide a bearing device for a wheel that can improve the filling property of the resin in the injection molding of the retainer and can suppress the increase of the bearing torque.
  • the first invention comprises an outer member having a double-row outer raceway surface formed on the inner circumference thereof, and an inner member having a double-row inner raceway surface facing the double-row outer raceway surface.
  • a double-row rolling element rotatably interposed between the raceway surfaces of the outer member and the inner member; an annular portion formed in an annular shape; a plurality of pillars extending in the axial direction at intervals of , and the adjacent pillars and the annular portion form a pocket having a curved surface along the outer peripheral surface of the rolling element, and the pocket includes the rolling element and a resin retainer that holds the pillar, wherein the pillar is branched into an inner diameter side and an outer diameter side by a notch, wherein the pillar is axially opposite to the pillar Starting from the end of the annular portion on the inner diameter side, the axial length of the column portion on the inner diameter side is shorter than the axial length to the center position of the rolling element, and the annular portion of the cutout
  • the ability to fill the column with the resin is improved, and the shear resistance of the grease between the ball and the column is reduced. Therefore, it is possible to improve the filling property of the resin in the injection molding of the retainer and to suppress the increase in the bearing torque.
  • FIG. 4 is an enlarged cross-sectional view showing the configuration of balls and a retainer; The top view which shows the whole structure of a retainer. Sectional drawing which shows the whole structure of a retainer.
  • FIG. 4 is an enlarged cross-sectional view showing the axial length of a column portion on the inner diameter side; The enlarged perspective view which shows the position of a gate part and a weld.
  • FIG. 7A is an enlarged cross-sectional view showing the axial length of an inner diameter-side column in a conventional cage
  • FIG. 7B is an enlarged cross-sectional view showing the axial length of an inner diameter-side column in a conventional cage.
  • FIG. 4 is an enlarged cross-sectional view showing the configuration of balls and a retainer; The top view which shows the whole structure of a retainer. Sectional drawing which shows the whole structure of a retainer.
  • FIG. 4 is an enlarged cross-sectional view showing the axial length of the inner diameter side end of the retainer; The enlarged perspective view which shows the structure of a column part.
  • a wheel bearing device 1 which is one embodiment of the wheel bearing device according to the present invention, will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 A wheel bearing device 1, which is one embodiment of the wheel bearing device according to the present invention, will be described below with reference to FIGS. 1 and 2.
  • a wheel bearing device 1 rotatably supports a wheel in a suspension system of a vehicle such as an automobile.
  • a wheel bearing device 1 includes an outer ring 2 as an outer member, a hub ring 3 as an inner member, an inner ring 4, two inner ball rows 5 as rolling rows, an outer ball row 6, and a sealing member.
  • An inner side seal member 9 and an outer side seal member 10 are provided.
  • the inner side refers to the vehicle body side of the wheel bearing device 1 when the wheel bearing device 1 is attached to the vehicle body
  • the outer side refers to the wheel bearing device 1 attached to the vehicle body. 1 shows the wheel side of the wheel bearing device 1 when it is closed.
  • the direction parallel to the rotation axis of the wheel bearing device 1 is the "axial direction”
  • the direction orthogonal to the rotation axis of the wheel bearing device 1 is the “radial direction”
  • the rotation axis of the wheel bearing device 1 is the center.
  • a direction along the arc is referred to as a “circumferential direction”.
  • the side away from the inside of the bearing along the rotation axis is referred to as “axial outside”
  • the side closer to the inside of the bearing along the rotation axis is referred to as "axial inside”.
  • the outer ring 2 supports the hub wheel 3 and the inner ring 4 via the inner ball row 5 and the outer ball row 6 .
  • the outer ring 2 is formed in a substantially cylindrical shape.
  • An inner-side opening 2a into which an inner-side seal member 9 can be fitted is formed at the inner-side end of the outer ring 2 .
  • An outer-side opening 2b into which an outer-side sealing member 10 can be fitted is formed at the outer-side end of the outer ring 2 .
  • the inner diameter surface of the outer ring 2 is provided with an inner side raceway surface 2c and an outer side raceway surface 2d.
  • An outer peripheral surface of the outer ring 2 is integrally formed with a vehicle body attachment flange 2e for attachment to a knuckle of a suspension system.
  • the hub wheel 3 rotatably supports the wheels of the vehicle.
  • the hub wheel 3 is formed in a cylindrical shape.
  • a small-diameter stepped portion 3a having a reduced diameter is formed on the outer peripheral surface of the inner side end portion of the hub wheel 3 .
  • a wheel mounting flange 3b for mounting a wheel is integrally formed on the outer side end of the hub wheel 3.
  • Hub bolts 3d are inserted through the wheel mounting flange 3b at equidistant positions on the circumference.
  • the hub wheel 3 is arranged such that the outer side inner raceway surface 3c faces the outer side raceway surface 2d of the outer ring 2 .
  • the hub wheel 3 has an inner ring 4 fitted to a small-diameter stepped portion 3a.
  • the inner ring 4 applies preload to the inner ball row 5 and the outer ball row 6 .
  • An annular inner raceway surface 4 a is formed in the circumferential direction on the outer peripheral surface of the inner ring 4 .
  • the inner ring 4 is fixed to the inner end of the hub wheel 3 by caulking.
  • the inner raceway surface 4 a is formed by the inner ring 4 on the inner side of the hub wheel 3 .
  • the inner race 4 is arranged such that its inner raceway surface 4a faces the inner side outer raceway surface 2c of the outer race 2 .
  • the inner ball row 5 is rotatably interposed between the inner raceway surface 4a of the inner ring 4 and the outer raceway surface 2c of the outer ring 2 on the inner side.
  • the outer-side ball train 6 is rotatably interposed between the inner raceway surface 3c of the hub wheel 3 and the outer-side raceway surface 2d of the outer ring 2 .
  • the cage 7 holds the balls 8.
  • the retainer 7 is made of synthetic resin such as polyamide 46 (PA46), polyamide 66 (PA66), polyamide 9T (PA9T), polyetheretherketone (PEEK), polyphenylene sulfide ( PPS), etc. Further, as a reinforcing material, glass fiber, carbon fiber, or the like may be contained in the resin.
  • the retainer 7 has an annular ring portion 7a and a plurality of column portions 7b.
  • the column portion 7b extends axially outward from the annular portion 7a.
  • the pillars 7b are arranged at regular intervals along the circumferential direction of the annular portion 7a.
  • Pockets Pt for independently holding balls 8 are formed in cage 7 between adjacent pillars 7b at regular intervals (see FIG. 3).
  • the ball 8 is composed of a steel ball or the like made of high-carbon chromium bearing steel SUJ2. A plurality of balls 8 are rotatably held in pockets Pt of retainer 7 .
  • the inner side seal member 9 closes the gap between the inner side opening 2 a of the outer ring 2 and the inner ring 4 .
  • the inner side seal member 9 is composed of, for example, a two-side lip type pack seal that brings two seal lips into contact with each other.
  • the inner side seal member 9 includes a substantially cylindrical seal plate and a substantially cylindrical slinger.
  • the outer-side sealing member 10 closes the gap between the outer-side opening 2b of the outer ring 2 and the hub wheel 3.
  • the outer-side seal member 10 has a plurality of seal lips made of a synthetic rubber such as NBR (acrylonitrile-butadiene rubber) fixed to a substantially cylindrical core made of a steel plate made of the same material as the seal plate.
  • NBR acrylonitrile-butadiene rubber
  • FIG. 1 the retainer 7 according to the first embodiment will be described in detail with reference to FIGS. 2 to 4.
  • FIG. 2 is a diagrammatic representation of the retainer 7 according to the first embodiment.
  • the annular portion 7a is located axially inward of the center position P1 of the ball 8.
  • the column portions 7b are provided on the inner diameter side and the outer diameter side of the ring portion 7a, respectively.
  • the column portion 7c on the inner diameter side extends axially from the annular portion 7a.
  • the column portion 7d on the outer diameter side includes a first portion 7f that extends from the annular portion 7a so as to be inclined away from the outer peripheral surface of the annular portion 7a toward the outer diameter side, and a first portion 7f that extends along the axial direction from the first portion 7f. and a second portion 7g extending along the length thereof.
  • the axial end face S1 of the inner diameter side column portion 7c is formed closer to the annular portion 7a than the axial end face S2 of the outer diameter side column portion 7d. That is, the pillar portion 7c on the inner diameter side is formed to be shorter in the axial direction than the pillar portion 7d on the outer diameter side.
  • a curved surface along the outer peripheral surface of the ball 8 is formed in a portion composed of the annular portion 7a side of the opposing side surface of the adjacent column portion 7b and the annular portion 7a therebetween.
  • 7e is formed in a substantially hemispherical shape with the annular portion 7a as the bottom.
  • a guide surface 7h extending straight in the axial direction from the edge of the semispherical curved surface 7e toward the tip of the column portion 7b is formed on the column portion 7d on the outer diameter side (see FIG. 6).
  • the guide surface 7h is configured to guide the ball 8 from the tip of the column portion 7b to the space surrounded by the curved surface 7e.
  • pockets Pt for holding the balls 8 are formed at regular intervals in the retainer 7 from the curved surfaces 7e and the guide surfaces 7h between the adjacent pillars 7b.
  • the minimum distance between adjacent balls 8 on the pitch circle PCD is regulated by the balls 8 coming into contact with the inner surface of the column portion 7b.
  • the thickness of the pillar portion 7b is the thinnest on the pitch circle PCD, and gradually increases toward the inner diameter side and the outer diameter side thereof.
  • the curved surface 7e of the column portion 7b is curved with the substantially central portion of the adjacent column portion 7b as the bottom.
  • the interval between the adjacent column portions 7b is formed such that the interval Wi between the inner diameter side end portions and the interval Wo between the radial outer end portions are smaller than the interval Wc between the radial centers.
  • the column portion 7b restricts the movement of the ball 8 arranged inside the pocket Pt to the radially inner side and the radially outer side.
  • Claw portions 7j projecting toward the adjacent column portions 7b on both sides in the circumferential direction are formed at the tip portions of the column portions 7d on the outer diameter side (see FIG. 6).
  • a notch portion 7k having a curved surface with a predetermined radius is formed at substantially the central portion of the radial width of the column portion 7b.
  • the notch portion 7k branches off the inner diameter side column portion 7c and the outer diameter side column portion 7d, and is formed by removing a member in the substantially central portion of the radial width of the column portion 5b.
  • the notch portion 7k is formed so as to remove a portion that does not have the required strength around the portion where the thickness of the column portion 7b is the thinnest due to the curved surface 7e and the guide surface 7h (see FIG. 6). It is The shape of the notch portion 7k is not particularly limited.
  • the facing surfaces of the inner diameter side column portion 7c and the outer diameter side column portion 7d extend in parallel. It may be formed by removing the member of the column portion 5b as shown in FIG.
  • An end position P2 of the notch portion 7k on the side of the ring portion 5a is positioned closer to the ring portion 7a than the center position P1 of the ball 8 is.
  • the center position P1 of the ball 8 is positioned within the range of the radial width W (see FIG. 5) of the notch portion 7k. That is, the column portion 7b is formed so as not to overlap the center position P1 of the ball 8 in the circumferential direction. With this configuration, the retainer 7 can reduce the intervals between the balls 8 and increase the number of balls 8 to be retained.
  • the retainer 7 is bifurcated into a column portion 7c on the inner diameter side and a column portion 7d on the outer diameter side by a notch portion 7k.
  • the column portion 7c on the inner diameter side is formed such that its axial length a is shorter than the axial length b up to the center position P1 of the ball 8.
  • the inner diameter side column portion 7c is formed such that its axial length a is longer than the axial length c up to the end position P2 of the notch portion 7k on the annular portion 5a side.
  • the axial length a of the pillar 7c on the inner diameter side is shorter than the axial length b up to the center position P1 of the ball 8, and the length up to the end position P2 of the notch 7k on the side of the annular portion 5a. longer than the axial length c.
  • the axial length of the column portion 7d on the outer diameter side is formed to be longer than the axial length b to the center position P1 of the ball 8. As shown in FIG. As a result, the pillar portion 7d on the outer diameter side restricts the movement of the ball 8 in the axial direction by means of the pawl portion 7j (see FIG. 6).
  • the axial length a of the inner diameter side column portion 7c is formed to be shorter than in the conventional case, so that the column portion 7b can be filled with resin more easily.
  • the shear resistance of the grease between the column portion 7b and the balls 8 is reduced by reducing the approaching area of the balls 8 and the retainer 7. As shown in FIG. Therefore, it is possible to improve the filling property of the resin in the injection molding of the retainer 7 and suppress the increase of the bearing torque.
  • the fillability of the resin into the column portion 7b is improved, the moldability of the retainer 7 is improved, and the strength of the retainer 7 can be ensured.
  • the axial length a of the pillar portion 7c on the inner diameter side is formed shorter than the conventional one, the weight of the retainer 7 can be reduced.
  • the retainer 7 is a resin injection molded body.
  • the retainer 7 is injected with resin from the gate of the mold into the mold during injection molding.
  • the retainer 7 has a gate portion 7m, and the gate portion 7m is positioned at a location corresponding to the gate of the mold.
  • the retainer 7 has a weld 7n formed by merging the resin filled from the gate portion 7m.
  • the gate portion 7m is provided on the inner diameter surface of the annular portion 7a and is positioned on the extension of the inner diameter side column portion 7c in the axial direction. That is, the gate portion 7m is provided on the annular portion 7a and positioned on the extension of the column portion 7b in the axial direction. Also, the weld 7n is positioned between the column portions 7b.
  • the gate portions 7m are provided at several locations, and the number of the gate portions to be provided is determined according to the retainer 7. As shown in FIG. Note that the weld 7n has a lower strength than other portions where the weld 7n is not formed. Since the number of welds 7n formed increases according to the number of gate portions 7m, it is preferable to minimize the number of gate portions 7m to the extent that the resin can be filled.
  • the gate portion 7m filled with resin is provided in the annular portion 7a and positioned on the extension of the column portion 7b in the axial direction. Fillability can be improved. In addition, the formability of the retainer 7 can be improved by avoiding the formation of the weld 7n in the column portion 7b.
  • the kinematic viscosity of the grease is preferably 30 mm 2 /s to 200 mm 2 /s. If the kinematic viscosity of the grease is too low, the formation of the oil film will be insufficient, possibly damaging the cage 7 and the like. On the other hand, if the kinematic viscosity of the grease is too high, the viscous resistance increases, resulting in an increase in temperature and friction loss. In the wheel bearing device 1, the kinematic viscosity of the grease is optimized by setting the kinematic viscosity to 30 mm 2 /s to 200 mm 2 /s as described above.
  • a pocket clearance e is provided between the pocket Pt and the ball 8 .
  • the pocket clearance e is preferably 0.05 mm to 0.45 mm.
  • the retainer 7 can move freely with respect to the balls 8 within the range of the pocket clearance e. If the pocket clearance e is too small, the pocket Pt and the ball 8 may interfere with each other and be damaged. On the other hand, if the pocket clearance e is too large, the ball 8 will rattle in the pocket Pt, degrading the acoustic characteristics.
  • the pocket clearance e is optimized by setting the pocket clearance e to 0.05 mm to 0.45 mm as described above.
  • the annular portion 7A is located axially inside the center position P1 of the ball 8.
  • the column portion 7B does not branch to the inner diameter side of the circular ring portion 7A, but extends from the circular ring portion 7A so as to be away from the outer diameter surface 7Q of the circular ring portion 7A. It extends along the axial direction from the portion that extends along the axial direction.
  • a curved surface along the outer peripheral surface of the ball 8 is formed in a portion composed of the annular portion 7A side of the opposing side surfaces of the adjacent columnar portions 7B and the annular portion 7A therebetween.
  • 7C is formed in a substantially hemispherical shape with the annular portion 7A as the bottom.
  • the column portion 7B is formed with a guide surface 7D extending straight in the axial direction from the edge of the hemispherical curved surface 7C toward the tip of the column portion 7B (see FIG. 13).
  • the guide surface 7D is configured to guide the ball 8 from the tip of the column portion 7B to the space surrounded by the curved surface 7C.
  • pockets Pt for holding the balls 8 are formed at equal intervals in the retainer 70 from the curved surfaces 7C and the guide surfaces 7D between the adjacent pillars 7B.
  • the minimum distance between adjacent balls 8 on the pitch circle PCD is regulated by the balls 8 coming into contact with the inner surface of the column portion 7B.
  • the thickness of the column portion 7B is the thinnest on the pitch circle PCD, and gradually increases toward the inner diameter side and the outer diameter side thereof.
  • the curved surface 7C of the column portion 7B is curved with the substantially central portion of the adjacent column portion 7B as the bottom.
  • the interval between the adjacent pillars 7B is formed such that the interval Wi between the inner diameter side ends and the interval Wo between the radially outer ends are smaller than the interval Wc between the radial centers.
  • the column portion 7B restricts the movement of the ball 8 arranged inside the pocket Pt to the radially inner side and the radially outer side.
  • Claw portions 7E projecting toward adjacent column portions 7B on both sides in the circumferential direction are formed at the tip portions of the column portions 7B (see FIG. 13).
  • the column portion 7B has a root portion 7F extending axially outward from the annular portion 7A, and branch portions 7G extending axially outward from the outer diameter side of the root portion 7F. . Moreover, the branch portion 7G extends on the outer diameter side of the annular portion 7A. That is, there is no branch portion 7G on the inner diameter side of the ring portion 7A.
  • the root portion 7F holds the ball 8 on the base end side of the column portion 7B.
  • the root portion 7F has an inner diameter surface 7H and an inclined surface 7J.
  • the inner diameter surface 7H is formed to extend axially outward from the inner diameter surface 7K of the annular portion 7A.
  • the inclined surface 7J is formed so as to extend from the inner diameter surface 7H so as to be inclined away from the inner diameter surface 7H, and is connected to the branch portion 7G (curved surface 7M).
  • the branch portion 7G holds the ball 8 on the tip side of the column portion 7B.
  • the branch portion 7G is formed only on the outer diameter side of the root portion 7F. Specifically, the radial center line L of the branch portion 7G is located on the outer diameter side of the outer diameter surface 7Q of the annular portion 7A.
  • the branch portion 7G has a curved surface 7M, an inner diameter surface 7N, and an axial end surface S.
  • the curved surface 7M is formed extending from the inclined surface 7J in an arcuate cross-section.
  • the inner diameter surface 7N is formed so as to extend axially from the curved surface 7M toward the axial end surface S of the column portion 7B.
  • the column portion 7B has a configuration in which the branch portion extending in the axial direction is not formed on the inner diameter side of the root portion 7F.
  • the radial center line L is a line parallel to the axial direction and passes through the radial center of the axial end surface S.
  • the inner diameter surface 7N is located on the outer diameter side of the center position P1 of the ball 8.
  • the inclined surface 7J is positioned closer to the annular portion 7A than the center position P1 of the ball 8.
  • the column portion 7B is formed so as not to overlap the center position P1 of the ball 8 in the circumferential direction.
  • the retainer 70 can reduce the intervals between the balls 8 and increase the number of balls 8 to be retained.
  • the shapes of the surfaces of the root portion 7F and the branch portions 7G can be appropriately changed in design.
  • the inclined surface 7J is illustrated as extending straight, it may be bent or curved.
  • the retainer 70 has an axial length f up to the tip position P3, which is an axial length g up to the base end position of the branch portion 7G (an axial length g up to the base end position P4 of the curved surface 7M). length). Further, the retainer 70 is formed such that the axial length f up to the tip position P3 is longer than the axial length h up to the tip position P5 on the inner diameter surface 7K of the annular portion 7A. That is, the axial length f to the tip position P3 is shorter than the axial length g to the base end position of the branch portion 7G, and the axial length to the tip position P5 on the inner diameter surface 7K of the annular portion 7A. longer than h.
  • the column portion 7B is formed so that the axial length to the axial end face S is longer than the axial length to the center position P1 of the ball 8 .
  • the column portion 7B restricts axial movement of the ball 8 by means of the pawl portion 7E (see FIG. 13).
  • the branch portion extending in the axial direction is not formed on the inner diameter side of the root portion 7F, the filling property of the resin on the inner diameter side of the retainer 70 is improved.
  • the shear resistance of the grease between the column portion 7B and the balls 8 is reduced by reducing the approaching area between the balls 8 and the retainer 70 . Therefore, it is possible to improve the filling property of the resin in the injection molding of the retainer 70 and suppress the increase of the bearing torque.
  • the filling property of the resin to the inner diameter side of the retainer 70 is improved, the moldability of the retainer 70 is improved and the strength of the retainer 70 can be ensured.
  • the branch portion extending in the axial direction is not formed on the inner diameter side of the root portion 7F, the weight of the retainer 70 can be reduced.
  • FIG. 9 is a diagrammatic representation of the wheel bearing device 1A according to the second embodiment.
  • the kinematic viscosity of the grease is preferably 30 mm 2 /s to 200 mm 2 /s. If the kinematic viscosity of the grease is too low, the formation of the oil film will be insufficient, possibly damaging the retainer 70 and the like. On the other hand, if the kinematic viscosity of the grease is too high, the viscous resistance increases, resulting in an increase in temperature and friction loss. In the wheel bearing device 1A, the kinematic viscosity of the grease is optimized by setting the kinematic viscosity to 30 mm 2 /s to 200 mm 2 /s as described above.
  • a pocket clearance j is provided between the pocket Pt and the ball 8 .
  • the pocket clearance j is preferably 0.05 mm to 0.45 mm.
  • the cage 70 can move freely with respect to the balls 8 within the range of the pocket clearance j. If the pocket clearance j is too small, the pocket Pt and the ball 8 may interfere with each other and be damaged. On the other hand, if the pocket clearance j is too large, the ball 8 will rattle in the pocket Pt, degrading the acoustic characteristics.
  • the pocket clearance j is optimized by setting the pocket clearance j to 0.05 mm to 0.45 mm as described above.
  • the retainer 70 is a resin injection molded body.
  • the retainer 70 is injected with resin from the gate of the mold into the mold during injection molding.
  • the retainer 70 has a gate portion 7R, and the gate portion 7R is positioned at a location corresponding to the gate of the mold.
  • the retainer 70 has a weld 7S formed by merging the resin filled from the gate portion 7R.
  • the gate portion 7R is provided on the inner diameter surface 7K of the annular portion 7A and positioned on the extension of the column portion 7B in the axial direction. Also, the weld 7S is positioned between the pillars 7B.
  • the gate portions 7R are provided at several locations, and the number of the gate portions to be provided is determined according to the retainer 70. As shown in FIG. Note that the weld 7S has a lower strength than other portions where the weld 7S is not formed. Since the number of welds 7S to be formed increases according to the number of gate portions 7R installed, it is preferable to minimize the number of gate portions 7R to be installed within a range in which the resin can be filled.
  • the gate portion 7R filled with resin is provided in the annular portion 7A and positioned on the extension of the column portion 7B in the axial direction. Fillability can be improved. Also, by preventing the formation of the weld 7S in the column portion 7B, the moldability of the retainer 70 can be improved.
  • the wheel bearing device 1, 1A is configured as a wheel bearing device having a third-generation structure in which the inner raceway surface 3c is directly formed on the outer periphery of the hub wheel 3, but is limited to this.
  • the present invention can be used for wheel bearing devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided is a vehicle wheel bearing device with which the ease of filling an injection molding of a holder with a resin is improved, and with which any increase in bearing torque can be minimized. A vehicle wheel bearing device 1 comprising a plastic holder 7 which has a ring portion 7a formed in an annular shape and a plurality of column parts 7b axially extending from the ring portion 7a at regular intervals in the circumferential direction, and in which pockets Pt having curved surfaces 7e following the outer peripheral surfaces of rolling elements (balls 8) are formed by adjacent column parts 7b and the annular portion 7a, the rolling elements (8) being held in the pockets, and the column parts 7b being formed branching into inner-diameter sides and outer-diameter sides due to cut-away parts 7k, wherein, starting from an end part 7p of the ring portion 7a on the side axially opposite of the column parts 7b, the axial length a of each column part 7c on the inner-diameter side is less than the axial length b up to a center position P1 of the rolling element (8), and is greater than the axial length c up to an end part position P2 on the ring-portion 7a side of the cut-away part 7k.

Description

車輪用軸受装置Wheel bearing device
 本発明は、車輪用軸受装置に関する。 The present invention relates to a wheel bearing device.
 従来、自動車等の懸架装置において車輪を回転自在に支持する車輪用軸受装置が知られている。車輪用軸受装置は、複数の転動体(ここでは、ボール)を介してハブ輪を含む内方部材が外方部材に回転自在に支持されている。複数のボールは、保持器によって周方向に等配されるとともに、隣り合うボール同士の接触が防止された状態で保持されている。 Conventionally, a wheel bearing device that rotatably supports a wheel in a suspension system of an automobile or the like is known. In a wheel bearing device, an inner member including a hub wheel is rotatably supported by an outer member via a plurality of rolling elements (here, balls). The plurality of balls are evenly distributed in the circumferential direction by the retainer and held in a state in which contact between adjacent balls is prevented.
 このような車輪用軸受装置において、隣り合うボール同士を仕切っている保持器の柱部の周方向の厚さを薄くするとともに、柱部に切り欠き部を形成してボールの個数を増やすことで、保持器を強度不足の問題ないものとしつつ、軸受寿命の増大を可能としたものが知られている。例えば、特許文献1及び特許文献2に記載の如くである。 In such a wheel bearing device, it is possible to increase the number of balls by reducing the thickness in the circumferential direction of the column portion of the retainer that separates the adjacent balls and by forming a notch portion in the column portion. , which makes it possible to increase the service life of the bearing while making the retainer free from the problem of insufficient strength. For example, it is as described in Patent Document 1 and Patent Document 2.
 特許文献1及び特許文献2に記載の保持器には、保持器のうち柱部の周方向の厚さを薄くするとともに、隣り合うボール同士が最も近接している部分に切り欠き部が形成されている。つまり、隣り合うボール同士は、最も近接している部分に柱部が介在していない。これにより、保持器は、周方向のボール間距離を短くすることで、組み込めるボール数を増やした構造となっている。 In the cages disclosed in Patent Documents 1 and 2, the thickness of the columns in the cage is reduced in the circumferential direction, and notches are formed in the portions where the adjacent balls are closest to each other. ing. In other words, adjacent balls do not have a pillar portion intervening in their closest portions. As a result, the retainer has a structure in which the number of balls that can be incorporated is increased by shortening the distance between the balls in the circumferential direction.
欧州特許出願公開第0592839号明細書EP-A-0592839 特開2005-180630号公報Japanese Patent Application Laid-Open No. 2005-180630
 上記特許文献1及び特許文献2に記載の保持器において、柱部は、切り欠き部によって内径側と外径側の二股に分岐している。特許文献1において、図7Aに示すように、柱部と軸方向反対側の円環部の端部を始点として、内径側の柱部の軸方向長さa1は、ボールの中心位置までの軸方向長さb1とほぼ同じである。特許文献2において、図7Bに示すように、柱部と軸方向反対側の円環部の端部を始点として、内径側の柱部の軸方向長さa2は、ボールの中心位置までの軸方向長さb2よりも長い。このような内径側の柱部の形状は、保持器の射出形成時に、柱部の先端まで樹脂が到達しないことによる樹脂の充填不良が懸念され、保持器の品質が安定しない可能性がある。 In the retainers described in Patent Documents 1 and 2, the column portion is bifurcated into two on the inner diameter side and the outer diameter side by the notch. In Patent Document 1, as shown in FIG. 7A, starting from the end of the annular portion on the opposite side of the axial direction from the column, the axial length a1 of the column on the inner diameter side is the axial length a1 to the center position of the ball. It is almost the same as the directional length b1. In Patent Literature 2, as shown in FIG. 7B, starting from the end of the annular portion on the opposite side of the axial direction from the pillar, the axial length a2 of the pillar on the inner diameter side is the axis to the center position of the ball. longer than the directional length b2. Such a shape of the pillars on the inner diameter side raises concerns that the resin may not reach the tips of the pillars during injection molding of the cage, resulting in insufficient resin filling, and the quality of the cage may be unstable.
 また、近年の車両の低燃費化に伴い、車輪用軸受装置にも低トルク化が求められている。保持器においては、車輪用軸受装置の回転時に保持器とボールとの間でグリースのせん断抵抗が発生し、軸受トルクの増加に繋がるため、改善が求められている。 In addition, with the recent trend toward lower fuel consumption of vehicles, lower torque is required for wheel bearing devices. In the retainer, shear resistance of the grease occurs between the retainer and the balls when the wheel bearing device rotates, leading to an increase in bearing torque. Therefore, improvement is desired.
 そこで、本発明においては、保持器の射出成形における樹脂の充填性を向上させるとともに、軸受トルクの増加を抑制できる車輪用軸受装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a bearing device for a wheel that can improve the filling property of the resin in the injection molding of the retainer and can suppress the increase of the bearing torque.
 即ち、第一の発明は、内周に複列の外側軌道面が形成された外方部材と、前記複列の外側軌道面に対向する複列の内側軌道面が形成された内方部材と、前記外方部材と前記内方部材との両軌道面間に転動自在に介装された複列の転動体と、環状に形成される円環部と前記円環部から周方向に一定の間隔で軸方向に延びる複数の柱部とを有し、隣り合う前記柱部と前記円環部とによって前記転動体の外周面に沿う曲面を有するポケットが形成され、前記ポケットに前記転動体を保持する樹脂製の保持器と、を備え、前記柱部が切り欠き部によって内径側と外径側とに分岐して形成される車輪用軸受装置であって、前記柱部と軸方向反対側の前記円環部の端部を始点として、前記内径側の柱部の軸方向長さは、前記転動体の中心位置までの軸方向長さよりも短く、前記切り欠き部の前記円環部側の端部位置までの軸方向長さよりも長い、としたものである。 That is, the first invention comprises an outer member having a double-row outer raceway surface formed on the inner circumference thereof, and an inner member having a double-row inner raceway surface facing the double-row outer raceway surface. , a double-row rolling element rotatably interposed between the raceway surfaces of the outer member and the inner member; an annular portion formed in an annular shape; a plurality of pillars extending in the axial direction at intervals of , and the adjacent pillars and the annular portion form a pocket having a curved surface along the outer peripheral surface of the rolling element, and the pocket includes the rolling element and a resin retainer that holds the pillar, wherein the pillar is branched into an inner diameter side and an outer diameter side by a notch, wherein the pillar is axially opposite to the pillar Starting from the end of the annular portion on the inner diameter side, the axial length of the column portion on the inner diameter side is shorter than the axial length to the center position of the rolling element, and the annular portion of the cutout portion It is longer than the axial length to the end position of the side.
 本発明の効果として、以下に示すような効果を奏する。 The effects of the present invention are as follows.
 即ち、第一の発明によれば、柱部への樹脂の充填性が向上するとともに、ボールと柱部との間におけるグリースのせん断抵抗が減少する。従って、保持器の射出成形における樹脂の充填性を向上させるとともに、軸受トルクの増加を抑制できる。 That is, according to the first invention, the ability to fill the column with the resin is improved, and the shear resistance of the grease between the ball and the column is reduced. Therefore, it is possible to improve the filling property of the resin in the injection molding of the retainer and to suppress the increase in the bearing torque.
車輪用軸受装置の全体構成を示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the whole structure of a wheel bearing apparatus. ボールと保持器の構成を示す拡大断面図。FIG. 4 is an enlarged cross-sectional view showing the configuration of balls and a retainer; 保持器の全体構成を示す平面図。The top view which shows the whole structure of a retainer. 保持器の全体構成を示す断面図。Sectional drawing which shows the whole structure of a retainer. 内径側の柱部の軸方向長さを示す拡大断面図。FIG. 4 is an enlarged cross-sectional view showing the axial length of a column portion on the inner diameter side; ゲート部とウエルドの位置を示す拡大斜視図。The enlarged perspective view which shows the position of a gate part and a weld. 図7Aは、従来の保持器における内径側の柱部の軸方向長さを示す拡大断面図であり、図7Bは、従来の保持器における内径側の柱部の軸方向長さを示す拡大断面図。FIG. 7A is an enlarged cross-sectional view showing the axial length of an inner diameter-side column in a conventional cage, and FIG. 7B is an enlarged cross-sectional view showing the axial length of an inner diameter-side column in a conventional cage. figure. 車輪用軸受装置の全体構成を示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the whole structure of a wheel bearing apparatus. ボールと保持器の構成を示す拡大断面図。FIG. 4 is an enlarged cross-sectional view showing the configuration of balls and a retainer; 保持器の全体構成を示す平面図。The top view which shows the whole structure of a retainer. 保持器の全体構成を示す断面図。Sectional drawing which shows the whole structure of a retainer. 保持器の内径側端部の軸方向長さを示す拡大断面図。FIG. 4 is an enlarged cross-sectional view showing the axial length of the inner diameter side end of the retainer; 柱部の構成を示す拡大斜視図。The enlarged perspective view which shows the structure of a column part.
 以下に、図1及び図2を用いて、本発明に係る車輪用軸受装置の一実施形態である車輪用軸受装置1について説明する。 A wheel bearing device 1, which is one embodiment of the wheel bearing device according to the present invention, will be described below with reference to FIGS. 1 and 2. FIG.
 図1に示すように、車輪用軸受装置1は、自動車等の車両の懸架装置において車輪を回転自在に支持するものである。車輪用軸受装置1は、外方部材である外輪2、内方部材であるハブ輪3、内輪4、転動列である二列のインナー側ボール列5、アウター側ボール列6、シール部材であるインナー側シール部材9、シール部材であるアウター側シール部材10を具備する。ここで、本明細書において、インナー側とは、車輪用軸受装置1を車体に取り付けた際の車輪用軸受装置1の車体側を表し、アウター側とは、車輪用軸受装置1を車体に取り付けた際の車輪用軸受装置1の車輪側を表す。また、車輪用軸受装置1の回転軸と平行な方向を「軸方向」、車輪用軸受装置1の回転軸に直交する方向を「径方向」、車輪用軸受装置1の回転軸を中心とする円弧に沿う方向を「周方向」と表す。また、回転軸に沿って軸受内部から遠ざかる側を「軸方向外側」、回転軸に沿って軸受内部に近づく側を「軸方向内側」と表す。 As shown in FIG. 1, a wheel bearing device 1 rotatably supports a wheel in a suspension system of a vehicle such as an automobile. A wheel bearing device 1 includes an outer ring 2 as an outer member, a hub ring 3 as an inner member, an inner ring 4, two inner ball rows 5 as rolling rows, an outer ball row 6, and a sealing member. An inner side seal member 9 and an outer side seal member 10 are provided. Here, in this specification, the inner side refers to the vehicle body side of the wheel bearing device 1 when the wheel bearing device 1 is attached to the vehicle body, and the outer side refers to the wheel bearing device 1 attached to the vehicle body. 1 shows the wheel side of the wheel bearing device 1 when it is closed. Further, the direction parallel to the rotation axis of the wheel bearing device 1 is the "axial direction", the direction orthogonal to the rotation axis of the wheel bearing device 1 is the "radial direction", and the rotation axis of the wheel bearing device 1 is the center. A direction along the arc is referred to as a “circumferential direction”. In addition, the side away from the inside of the bearing along the rotation axis is referred to as "axial outside", and the side closer to the inside of the bearing along the rotation axis is referred to as "axial inside".
 外輪2は、インナー側ボール列5及びアウター側ボール列6を介してハブ輪3と内輪4を支持するものである。外輪2は、略円筒状に形成されている。外輪2のインナー側端部には、インナー側シール部材9が嵌合可能なインナー側開口部2aが形成されている。外輪2のアウター側端部には、アウター側シール部材10が嵌合可能なアウター側開口部2bが形成されている。 The outer ring 2 supports the hub wheel 3 and the inner ring 4 via the inner ball row 5 and the outer ball row 6 . The outer ring 2 is formed in a substantially cylindrical shape. An inner-side opening 2a into which an inner-side seal member 9 can be fitted is formed at the inner-side end of the outer ring 2 . An outer-side opening 2b into which an outer-side sealing member 10 can be fitted is formed at the outer-side end of the outer ring 2 .
 外輪2の内径面には、インナー側の外側軌道面2cとアウター側の外側軌道面2dとが設けられている。外輪2の外周面には、懸架装置のナックルに取り付けるための車体取り付けフランジ2eが一体に形成されている。 The inner diameter surface of the outer ring 2 is provided with an inner side raceway surface 2c and an outer side raceway surface 2d. An outer peripheral surface of the outer ring 2 is integrally formed with a vehicle body attachment flange 2e for attachment to a knuckle of a suspension system.
 ハブ輪3は、車両の車輪を回転自在に支持するものである。ハブ輪3は、円柱状に形成されている。ハブ輪3のインナー側端部には、外周面に縮径された小径段部3aが形成されている。ハブ輪3のアウター側端部には、車輪を取り付けるための車輪取り付けフランジ3bが一体的に形成されている。車輪取り付けフランジ3bには、円周等配位置にハブボルト3dが挿通されている。また、ハブ輪3は、アウター側の内側軌道面3cが外輪2のアウター側の外側軌道面2dに対向するように配置されている。ハブ輪3には、小径段部3aに内輪4が嵌合されている。 The hub wheel 3 rotatably supports the wheels of the vehicle. The hub wheel 3 is formed in a cylindrical shape. A small-diameter stepped portion 3a having a reduced diameter is formed on the outer peripheral surface of the inner side end portion of the hub wheel 3 . A wheel mounting flange 3b for mounting a wheel is integrally formed on the outer side end of the hub wheel 3. As shown in FIG. Hub bolts 3d are inserted through the wheel mounting flange 3b at equidistant positions on the circumference. Further, the hub wheel 3 is arranged such that the outer side inner raceway surface 3c faces the outer side raceway surface 2d of the outer ring 2 . The hub wheel 3 has an inner ring 4 fitted to a small-diameter stepped portion 3a.
 内輪4は、インナー側ボール列5とアウター側ボール列6とに予圧を与えるものである。内輪4の外周面には、周方向に環状の内側軌道面4aが形成されている。内輪4は、かしめによりハブ輪3のインナー側端部に固定されている。つまり、ハブ輪3のインナー側には、内輪4によって内側軌道面4aが構成されている。内輪4は、その内側軌道面4aが外輪2のインナー側の外側軌道面2cに対向するように配置されている。 The inner ring 4 applies preload to the inner ball row 5 and the outer ball row 6 . An annular inner raceway surface 4 a is formed in the circumferential direction on the outer peripheral surface of the inner ring 4 . The inner ring 4 is fixed to the inner end of the hub wheel 3 by caulking. In other words, the inner raceway surface 4 a is formed by the inner ring 4 on the inner side of the hub wheel 3 . The inner race 4 is arranged such that its inner raceway surface 4a faces the inner side outer raceway surface 2c of the outer race 2 .
 インナー側ボール列5とアウター側ボール列6とは、転動体である複数のボール8が樹脂製の保持器7によって環状に保持されている。インナー側ボール列5は、内輪4の内側軌道面4aと、外輪2のインナー側の外側軌道面2cとの間に転動自在に介装されている。アウター側ボール列6は、ハブ輪3の内側軌道面3cと、外輪2のアウター側の外側軌道面2dとの間に転動自在に介装されている。 In the inner ball row 5 and the outer ball row 6, a plurality of balls 8, which are rolling elements, are annularly held by a retainer 7 made of resin. The inner ball row 5 is rotatably interposed between the inner raceway surface 4a of the inner ring 4 and the outer raceway surface 2c of the outer ring 2 on the inner side. The outer-side ball train 6 is rotatably interposed between the inner raceway surface 3c of the hub wheel 3 and the outer-side raceway surface 2d of the outer ring 2 .
 保持器7は、ボール8を保持するものである。保持器7は、耐油性、耐摩耗性、潤滑性に優れた合成樹脂であるポリアミド46(PA46)、ポリアミド66(PA66)、ポリアミド9T(PA9T)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)等から構成されている。また、補強材として、樹脂の中にグラスファイバ又はカーボンファイバ等が含まれていてもよい。 The cage 7 holds the balls 8. The retainer 7 is made of synthetic resin such as polyamide 46 (PA46), polyamide 66 (PA66), polyamide 9T (PA9T), polyetheretherketone (PEEK), polyphenylene sulfide ( PPS), etc. Further, as a reinforcing material, glass fiber, carbon fiber, or the like may be contained in the resin.
 図2に示すように、保持器7は、環状の円環部7aと複数の柱部7bとを有している。柱部7bは、円環部7aから軸方向外側に延びている。柱部7bは、円環部7aの周方向に沿って等間隔に配置されている。保持器7には、ボール8を独立して保持するポケットPtが隣り合う柱部7bの間に等間隔で形成されている(図3参照)。 As shown in FIG. 2, the retainer 7 has an annular ring portion 7a and a plurality of column portions 7b. The column portion 7b extends axially outward from the annular portion 7a. The pillars 7b are arranged at regular intervals along the circumferential direction of the annular portion 7a. Pockets Pt for independently holding balls 8 are formed in cage 7 between adjacent pillars 7b at regular intervals (see FIG. 3).
 ボール8は、高炭素クロム軸受鋼SUJ2からなる鋼球等から構成されている。複数のボール8は、保持器7のポケットPtに回転自在に保持されている。 The ball 8 is composed of a steel ball or the like made of high-carbon chromium bearing steel SUJ2. A plurality of balls 8 are rotatably held in pockets Pt of retainer 7 .
 図1に示すように、インナー側シール部材9は、外輪2のインナー側開口部2aと内輪4との隙間を塞ぐものである。インナー側シール部材9は、例えば二枚のシールリップを接触させる2サイドリップタイプのパックシールから構成されている。インナー側シール部材9は、略円筒状のシール板と略円筒状のスリンガとを具備する。 As shown in FIG. 1 , the inner side seal member 9 closes the gap between the inner side opening 2 a of the outer ring 2 and the inner ring 4 . The inner side seal member 9 is composed of, for example, a two-side lip type pack seal that brings two seal lips into contact with each other. The inner side seal member 9 includes a substantially cylindrical seal plate and a substantially cylindrical slinger.
 アウター側シール部材10は、外輪2のアウター側開口部2bとハブ輪3との隙間を塞ぐものである。アウター側シール部材10は、シール板と同じ材質の鋼板を略円筒状に形成された芯金に例えばNBR(アクリロニトリル-ブタジエンゴム)等の合成ゴムからなる複数のシールリップが固着されている。 The outer-side sealing member 10 closes the gap between the outer-side opening 2b of the outer ring 2 and the hub wheel 3. The outer-side seal member 10 has a plurality of seal lips made of a synthetic rubber such as NBR (acrylonitrile-butadiene rubber) fixed to a substantially cylindrical core made of a steel plate made of the same material as the seal plate.
 次に、図2から図4を用いて、第一実施形態に係る保持器7について詳しく説明する。 Next, the retainer 7 according to the first embodiment will be described in detail with reference to FIGS. 2 to 4. FIG.
 図2に示すように、円環部7aは、ボール8の中心位置P1よりも軸方向内側に位置している。柱部7bは、円環部7aの内径側と外径側とにそれぞれ設けられている。内径側の柱部7cは、円環部7aから軸方向に沿って延びている。外径側の柱部7dは、円環部7aから当該円環部7aの外周面よりも外径側に離れるように傾斜して延びる第1部分7fと、第1部分7fから軸方向に沿って延びる第2部分7gとを有している。 As shown in FIG. 2, the annular portion 7a is located axially inward of the center position P1 of the ball 8. As shown in FIG. The column portions 7b are provided on the inner diameter side and the outer diameter side of the ring portion 7a, respectively. The column portion 7c on the inner diameter side extends axially from the annular portion 7a. The column portion 7d on the outer diameter side includes a first portion 7f that extends from the annular portion 7a so as to be inclined away from the outer peripheral surface of the annular portion 7a toward the outer diameter side, and a first portion 7f that extends along the axial direction from the first portion 7f. and a second portion 7g extending along the length thereof.
 内径側の柱部7cの軸方向端面S1は、外径側の柱部7dの軸方向端面S2よりも円環部7a側に形成されている。つまり、内径側の柱部7cは、外径側の柱部7dよりも軸方向に短く形成されている。 The axial end face S1 of the inner diameter side column portion 7c is formed closer to the annular portion 7a than the axial end face S2 of the outer diameter side column portion 7d. That is, the pillar portion 7c on the inner diameter side is formed to be shorter in the axial direction than the pillar portion 7d on the outer diameter side.
 図3及び図4に示すように、隣り合う柱部7bの対向する側面の円環部7a側と、その間の円環部7aとから構成される部分には、ボール8の外周面に沿う曲面7eが円環部7aを底部とする略半球状に形成されている。また、外径側の柱部7dには、半球状の曲面7eの縁から柱部7bの先端に向かって軸方向にストレートに延びる案内面7hが形成されている(図6参照)。案内面7hは、ボール8を柱部7bの先端から曲面7eに囲まれ
た空間に導くように構成されている。これにより、保持器7には、隣り合う柱部7bの間に曲面7eと案内面7hとからボール8を保持するポケットPtが等間隔に形成されている。
As shown in FIGS. 3 and 4, a curved surface along the outer peripheral surface of the ball 8 is formed in a portion composed of the annular portion 7a side of the opposing side surface of the adjacent column portion 7b and the annular portion 7a therebetween. 7e is formed in a substantially hemispherical shape with the annular portion 7a as the bottom. Further, a guide surface 7h extending straight in the axial direction from the edge of the semispherical curved surface 7e toward the tip of the column portion 7b is formed on the column portion 7d on the outer diameter side (see FIG. 6). The guide surface 7h is configured to guide the ball 8 from the tip of the column portion 7b to the space surrounded by the curved surface 7e. As a result, pockets Pt for holding the balls 8 are formed at regular intervals in the retainer 7 from the curved surfaces 7e and the guide surfaces 7h between the adjacent pillars 7b.
 ボール8が柱部7bの内面に接することで、ピッチ円PCD上における隣り合うボール8間の最小間隔が規制される。柱部7bの厚さは、ピッチ円PCD上で最も薄く、それよりも内径側及び外径側に離れるにしたがい、次第に厚くなっている。 The minimum distance between adjacent balls 8 on the pitch circle PCD is regulated by the balls 8 coming into contact with the inner surface of the column portion 7b. The thickness of the pillar portion 7b is the thinnest on the pitch circle PCD, and gradually increases toward the inner diameter side and the outer diameter side thereof.
 柱部7bの曲面7eは、隣り合う柱部7bの略中央部分を底として湾曲している。隣り合う柱部7b同士の間隔は、内径側端部同士の間隔Wiと径方向外側端同士の間隔Woとが径方向略中央同士の間隔Wcよりも小さくなるように形成されている。これにより、柱部7bは、ポケットPtの内部に配置されているボール8の径方向内側及び径方向外側への移動を規制している。外径側の柱部7dの先端部分には、周方向の両側に隣接する柱部7bに向かって突出している爪部7jがそれぞれ形成されている(図6参照)。 The curved surface 7e of the column portion 7b is curved with the substantially central portion of the adjacent column portion 7b as the bottom. The interval between the adjacent column portions 7b is formed such that the interval Wi between the inner diameter side end portions and the interval Wo between the radial outer end portions are smaller than the interval Wc between the radial centers. Thereby, the column portion 7b restricts the movement of the ball 8 arranged inside the pocket Pt to the radially inner side and the radially outer side. Claw portions 7j projecting toward the adjacent column portions 7b on both sides in the circumferential direction are formed at the tip portions of the column portions 7d on the outer diameter side (see FIG. 6).
 図2に示すように、柱部7bの径方向幅の略中央部分には、所定半径の曲面を有する切り欠き部7kが形成されている。切り欠き部7kは、内径側の柱部7cと外径側の柱部7dとを分岐させるものであり、柱部5bの径方向幅の略中央部分における部材を除去して形成されている。例えば、切り欠き部7kは、曲面7e及び案内面7h(図6参照)によって柱部7bの厚さが最も薄くなる部分を中心に、必要な強度を有していない部分を除去するように形成されている。なお、切り欠き部7kの形状は特に限定されるものではなく、内径側の柱部7cの先端部において、内径側の柱部7cと外径側の柱部7dの対向する面が平行に延びるように、柱部5bの部材を除去して形成されてもよい。切り欠き部7kの円環部5a側の端部位置P2は、ボール8の中心位置P1よりも円環部7a側に位置している。また、切り欠き部7kの径方向幅W(図5参照)の範囲内にボール8の中心位置P1が位置している。つまり、柱部7bは、ボール8の中心位置P1と周方向に重ならないように形成されている。このように構成することで、保持器7は、ボール8の間隔が小さくなり、保持するボール8の個数を増やすことができる。 As shown in FIG. 2, a notch portion 7k having a curved surface with a predetermined radius is formed at substantially the central portion of the radial width of the column portion 7b. The notch portion 7k branches off the inner diameter side column portion 7c and the outer diameter side column portion 7d, and is formed by removing a member in the substantially central portion of the radial width of the column portion 5b. For example, the notch portion 7k is formed so as to remove a portion that does not have the required strength around the portion where the thickness of the column portion 7b is the thinnest due to the curved surface 7e and the guide surface 7h (see FIG. 6). It is The shape of the notch portion 7k is not particularly limited. At the tip of the inner diameter side column portion 7c, the facing surfaces of the inner diameter side column portion 7c and the outer diameter side column portion 7d extend in parallel. It may be formed by removing the member of the column portion 5b as shown in FIG. An end position P2 of the notch portion 7k on the side of the ring portion 5a is positioned closer to the ring portion 7a than the center position P1 of the ball 8 is. Further, the center position P1 of the ball 8 is positioned within the range of the radial width W (see FIG. 5) of the notch portion 7k. That is, the column portion 7b is formed so as not to overlap the center position P1 of the ball 8 in the circumferential direction. With this configuration, the retainer 7 can reduce the intervals between the balls 8 and increase the number of balls 8 to be retained.
 次に、図5及び図6を用いて、第一実施形態に係る車輪用軸受装置1の特徴点とその効果について説明する。以下において、軸方向長さは、柱部7cと軸方向反対側の円環部7aの端部7pを始点として説明する。 Next, using FIGS. 5 and 6, the features and effects of the wheel bearing device 1 according to the first embodiment will be described. Hereinafter, the axial length will be described with the end portion 7p of the annular portion 7a on the opposite side of the column portion 7c in the axial direction as the starting point.
 図5に示すように、保持器7は、切り欠き部7kによって内径側の柱部7cと外径側の柱部7dとに二股に分岐されている。内径側の柱部7cは、その軸方向長さaが、ボール8の中心位置P1までの軸方向長さbよりも短く形成されている。また、内径側の柱部7cは、その軸方向長さaが、切り欠き部7kの円環部5a側の端部位置P2までの軸方向長さcよりも長く形成されている。つまり、内径側の柱部7cの軸方向長さaは、ボール8の中心位置P1までの軸方向長さbよりも短く、切り欠き部7kの円環部5a側の端部位置P2までの軸方向長さcよりも長い。 As shown in FIG. 5, the retainer 7 is bifurcated into a column portion 7c on the inner diameter side and a column portion 7d on the outer diameter side by a notch portion 7k. The column portion 7c on the inner diameter side is formed such that its axial length a is shorter than the axial length b up to the center position P1 of the ball 8. As shown in FIG. Further, the inner diameter side column portion 7c is formed such that its axial length a is longer than the axial length c up to the end position P2 of the notch portion 7k on the annular portion 5a side. That is, the axial length a of the pillar 7c on the inner diameter side is shorter than the axial length b up to the center position P1 of the ball 8, and the length up to the end position P2 of the notch 7k on the side of the annular portion 5a. longer than the axial length c.
 なお、外径側の柱部7dは、その軸方向長さが、ボール8の中心位置P1までの軸方向長さbよりも長く形成されている。これにより、外径側の柱部7dは、爪部7jによってボール8の軸方向への移動を規制している(図6参照)。 In addition, the axial length of the column portion 7d on the outer diameter side is formed to be longer than the axial length b to the center position P1 of the ball 8. As shown in FIG. As a result, the pillar portion 7d on the outer diameter side restricts the movement of the ball 8 in the axial direction by means of the pawl portion 7j (see FIG. 6).
 このように、車輪用軸受装置1において、内径側の柱部7cの軸方向長さaが従来よりも短く形成されているため、柱部7bへの樹脂の充填性が向上する。また、ボール8と保持器7の接近面積が減少することにより、柱部7bとボール8との間におけるグリースのせん断抵抗が減少する。従って、保持器7の射出成形における樹脂の充填性を向上させるとともに、軸受トルクの増加を抑制できる。また、柱部7bへの樹脂の充填性が向上するため、保持器7の成形性が向上するとともに、保持器7の強度を確保できる。また、内径側の柱部7cの軸方向長さaが従来よりも短く形成されるため、保持器7の軽量化が可能となる。 As described above, in the wheel bearing device 1, the axial length a of the inner diameter side column portion 7c is formed to be shorter than in the conventional case, so that the column portion 7b can be filled with resin more easily. In addition, the shear resistance of the grease between the column portion 7b and the balls 8 is reduced by reducing the approaching area of the balls 8 and the retainer 7. As shown in FIG. Therefore, it is possible to improve the filling property of the resin in the injection molding of the retainer 7 and suppress the increase of the bearing torque. In addition, since the fillability of the resin into the column portion 7b is improved, the moldability of the retainer 7 is improved, and the strength of the retainer 7 can be ensured. In addition, since the axial length a of the pillar portion 7c on the inner diameter side is formed shorter than the conventional one, the weight of the retainer 7 can be reduced.
 保持器7は、樹脂の射出成形体である。保持器7は、射出形成時に金型のゲートから当該金型内に樹脂が注入される。保持器7は、ゲート部7mを有し、金型のゲートに対応する箇所にゲート部7mが位置する。保持器7は、ゲート部7mから充填された樹脂が合流して形成されたウエルド7nを有している。 The retainer 7 is a resin injection molded body. The retainer 7 is injected with resin from the gate of the mold into the mold during injection molding. The retainer 7 has a gate portion 7m, and the gate portion 7m is positioned at a location corresponding to the gate of the mold. The retainer 7 has a weld 7n formed by merging the resin filled from the gate portion 7m.
 図6に示すように、ゲート部7mは、円環部7aの内径面に設けられ、内径側の柱部7cの軸方向の延長上に位置している。つまり、ゲート部7mは、円環部7aに設けられ、柱部7bの軸方向の延長上に位置している。また、ウエルド7nは、柱部7b同士の中間に位置している。ゲート部7mは、数箇所に設けられ、その設置数は保持器7に応じて定まっている。なお、ウエルド7nは、ウエルド7nが形成されていない他の部分よりも低強度となっている。ゲート部7mの設置数に応じてウエルド7nの形成数が増加するため、樹脂の充填が可能な範囲でゲート部7mの設置数を最小にすることが好ましい。 As shown in FIG. 6, the gate portion 7m is provided on the inner diameter surface of the annular portion 7a and is positioned on the extension of the inner diameter side column portion 7c in the axial direction. That is, the gate portion 7m is provided on the annular portion 7a and positioned on the extension of the column portion 7b in the axial direction. Also, the weld 7n is positioned between the column portions 7b. The gate portions 7m are provided at several locations, and the number of the gate portions to be provided is determined according to the retainer 7. As shown in FIG. Note that the weld 7n has a lower strength than other portions where the weld 7n is not formed. Since the number of welds 7n formed increases according to the number of gate portions 7m, it is preferable to minimize the number of gate portions 7m to the extent that the resin can be filled.
 このように、車輪用軸受装置1において、樹脂が充填されるゲート部7mが、円環部7aに設けられ、柱部7bの軸方向の延長上に位置するため、柱部7bへの樹脂の充填性を向上できる。また、柱部7bにウエルド7nが形成されないようにすることにより、保持器7の成形性を向上できる。 As described above, in the wheel bearing device 1, the gate portion 7m filled with resin is provided in the annular portion 7a and positioned on the extension of the column portion 7b in the axial direction. Fillability can be improved. In addition, the formability of the retainer 7 can be improved by avoiding the formation of the weld 7n in the column portion 7b.
 次に、図2を用いて、車輪用軸受装置1の他の特徴点とその効果について説明する。 Next, other features and effects of the wheel bearing device 1 will be described with reference to FIG.
 車輪用軸受装置1は、ボール8が設けられた軸受内部にグリースが封入されている。グリースの動粘度は、30mm/s~200mm/sが好ましい。グリースの動粘度が低すぎると、油膜形成が不十分となり、保持器7等が損傷するおそれがある。一方、グリースの動粘度が高すぎると、粘性抵抗が大きくなり温度上昇や摩擦損失が増大する。車輪用軸受装置1において、上記のように動粘度を30mm/s~200mm/sとすることにより、グリースの動粘度が最適化される。 In the wheel bearing device 1, grease is sealed inside the bearing in which the balls 8 are provided. The kinematic viscosity of the grease is preferably 30 mm 2 /s to 200 mm 2 /s. If the kinematic viscosity of the grease is too low, the formation of the oil film will be insufficient, possibly damaging the cage 7 and the like. On the other hand, if the kinematic viscosity of the grease is too high, the viscous resistance increases, resulting in an increase in temperature and friction loss. In the wheel bearing device 1, the kinematic viscosity of the grease is optimized by setting the kinematic viscosity to 30 mm 2 /s to 200 mm 2 /s as described above.
 また、ポケットPtとボール8との間にポケットすきまeが設けられている。ポケットすきまeは、0.05mm~0.45mmが好ましい。保持器7は、ポケットすきまeの範囲内でボール8に対して自由に移動することができる。ポケットすきまeが小さすぎると、ポケットPtとボール8が互いに干渉し、損傷するおそれがある。一方、ポケットすきまeが大きすぎると、ポケットPt内でボール8のガタツキが発生して音響特性が悪化する。車輪用軸受装置1において、上記のようにポケットすきまeを0.05mm~0.45mmとすることにより、ポケットすきまeが最適化される。 A pocket clearance e is provided between the pocket Pt and the ball 8 . The pocket clearance e is preferably 0.05 mm to 0.45 mm. The retainer 7 can move freely with respect to the balls 8 within the range of the pocket clearance e. If the pocket clearance e is too small, the pocket Pt and the ball 8 may interfere with each other and be damaged. On the other hand, if the pocket clearance e is too large, the ball 8 will rattle in the pocket Pt, degrading the acoustic characteristics. In the wheel bearing device 1, the pocket clearance e is optimized by setting the pocket clearance e to 0.05 mm to 0.45 mm as described above.
 次に、図8から図11を用いて、第二実施形態に係る保持器70について詳しく説明する。以下では、第一実施形態に係る車輪用軸受装置1、保持器7と比較して異なる部分を説明する。 Next, the retainer 70 according to the second embodiment will be described in detail with reference to FIGS. 8 to 11. FIG. In the following, parts that are different from the wheel bearing device 1 and the retainer 7 according to the first embodiment will be described.
 図9に示すように、円環部7Aは、ボール8の中心位置P1よりも軸方向内側に位置している。柱部7Bは、円環部7Aの内径側に分岐することなく、円環部7Aから当該円環部7Aの外径面7Qよりも外径側に離れるように傾斜して延びており、傾斜して延びた部分から軸方向に沿って延びている。 As shown in FIG. 9, the annular portion 7A is located axially inside the center position P1 of the ball 8. As shown in FIG. The column portion 7B does not branch to the inner diameter side of the circular ring portion 7A, but extends from the circular ring portion 7A so as to be away from the outer diameter surface 7Q of the circular ring portion 7A. It extends along the axial direction from the portion that extends along the axial direction.
 図10及び図11に示すように、隣り合う柱部7Bの対向する側面の円環部7A側と、その間の円環部7Aとから構成される部分には、ボール8の外周面に沿う曲面7Cが円環部7Aを底部とする略半球状に形成されている。また、柱部7Bには、半球状の曲面7Cの縁から柱部7Bの先端に向かって軸方向にストレートに延びる案内面7Dが形成されている(図13参照)。案内面7Dは、ボール8を柱部7Bの先端から曲面7Cに囲まれた空間に導くように構成されている。これにより、保持器70には、隣り合う柱部7Bの間に曲面7Cと案内面7Dとからボール8を保持するポケットPtが等間隔に形成されている。 As shown in FIGS. 10 and 11 , a curved surface along the outer peripheral surface of the ball 8 is formed in a portion composed of the annular portion 7A side of the opposing side surfaces of the adjacent columnar portions 7B and the annular portion 7A therebetween. 7C is formed in a substantially hemispherical shape with the annular portion 7A as the bottom. Further, the column portion 7B is formed with a guide surface 7D extending straight in the axial direction from the edge of the hemispherical curved surface 7C toward the tip of the column portion 7B (see FIG. 13). The guide surface 7D is configured to guide the ball 8 from the tip of the column portion 7B to the space surrounded by the curved surface 7C. Thus, pockets Pt for holding the balls 8 are formed at equal intervals in the retainer 70 from the curved surfaces 7C and the guide surfaces 7D between the adjacent pillars 7B.
 ボール8が柱部7Bの内面に接することで、ピッチ円PCD上における隣り合うボール8間の最小間隔が規制される。柱部7Bの厚さは、ピッチ円PCD上で最も薄く、それよりも内径側及び外径側に離れるにしたがい、次第に厚くなっている。 The minimum distance between adjacent balls 8 on the pitch circle PCD is regulated by the balls 8 coming into contact with the inner surface of the column portion 7B. The thickness of the column portion 7B is the thinnest on the pitch circle PCD, and gradually increases toward the inner diameter side and the outer diameter side thereof.
 柱部7Bの曲面7Cは、隣り合う柱部7Bの略中央部分を底として湾曲している。隣り合う柱部7B同士の間隔は、内径側端部同士の間隔Wiと径方向外側端同士の間隔Woとが径方向略中央同士の間隔Wcよりも小さくなるように形成されている。これにより、柱部7Bは、ポケットPtの内部に配置されているボール8の径方向内側及び径方向外側への移動を規制している。柱部7Bの先端部分には、周方向の両側に隣接する柱部7Bに向かって突出している爪部7Eがそれぞれ形成されている(図13参照)。 The curved surface 7C of the column portion 7B is curved with the substantially central portion of the adjacent column portion 7B as the bottom. The interval between the adjacent pillars 7B is formed such that the interval Wi between the inner diameter side ends and the interval Wo between the radially outer ends are smaller than the interval Wc between the radial centers. Thereby, the column portion 7B restricts the movement of the ball 8 arranged inside the pocket Pt to the radially inner side and the radially outer side. Claw portions 7E projecting toward adjacent column portions 7B on both sides in the circumferential direction are formed at the tip portions of the column portions 7B (see FIG. 13).
 図9に示すように、柱部7Bは、円環部7Aから軸方向外側に延びる根元部7Fと、根元部7Fの外径側から軸方向外側に延びる枝部7Gと、を有している。また、枝部7Gは、円環部7Aの外径側において延びている。つまりは、円環部7Aの内径側には枝部7Gはない。 As shown in FIG. 9, the column portion 7B has a root portion 7F extending axially outward from the annular portion 7A, and branch portions 7G extending axially outward from the outer diameter side of the root portion 7F. . Moreover, the branch portion 7G extends on the outer diameter side of the annular portion 7A. That is, there is no branch portion 7G on the inner diameter side of the ring portion 7A.
 根元部7Fは、柱部7Bの基端側においてボール8を保持するものである。根元部7Fは、内径面7Hと傾斜面7Jとを有している。内径面7Hは、円環部7Aの内径面7Kから軸方向外側に延びて形成されている。傾斜面7Jは、内径面7Hから外径側に離れるように傾斜して延びて形成され、枝部7G(曲面7M)に繋がっている。 The root portion 7F holds the ball 8 on the base end side of the column portion 7B. The root portion 7F has an inner diameter surface 7H and an inclined surface 7J. The inner diameter surface 7H is formed to extend axially outward from the inner diameter surface 7K of the annular portion 7A. The inclined surface 7J is formed so as to extend from the inner diameter surface 7H so as to be inclined away from the inner diameter surface 7H, and is connected to the branch portion 7G (curved surface 7M).
 枝部7Gは、柱部7Bの先端側においてボール8を保持するものである。枝部7Gは、根元部7Fの外径側にのみ形成される。具体的には、枝部7Gの径方向中心線Lは、円環部7Aの外径面7Qよりも外径側に位置している。枝部7Gは、曲面7Mと内径面7Nと軸方向端面Sとを有している。曲面7Mは、傾斜面7Jから断面円弧状に延びて形成されている。内径面7Nは、曲面7Mから柱部7Bの軸方向端面Sに向かって軸方向に延びて形成されている。このように、柱部7Bは、軸方向に延びる枝部が根元部7Fの内径側に形成されない構成となっている。なお、径方向中心線Lは、軸方向と平行な線であり、軸方向端面Sの径方向中心を通っている。 The branch portion 7G holds the ball 8 on the tip side of the column portion 7B. The branch portion 7G is formed only on the outer diameter side of the root portion 7F. Specifically, the radial center line L of the branch portion 7G is located on the outer diameter side of the outer diameter surface 7Q of the annular portion 7A. The branch portion 7G has a curved surface 7M, an inner diameter surface 7N, and an axial end surface S. The curved surface 7M is formed extending from the inclined surface 7J in an arcuate cross-section. The inner diameter surface 7N is formed so as to extend axially from the curved surface 7M toward the axial end surface S of the column portion 7B. In this manner, the column portion 7B has a configuration in which the branch portion extending in the axial direction is not formed on the inner diameter side of the root portion 7F. Note that the radial center line L is a line parallel to the axial direction and passes through the radial center of the axial end surface S.
 内径面7Nは、ボール8の中心位置P1よりも外径側に位置している。また、傾斜面7Jは、ボール8の中心位置P1よりも円環部7A側に位置している。つまり、柱部7Bは、ボール8の中心位置P1と周方向に重ならないように形成されている。このように構成することで、保持器70は、ボール8の間隔が小さくなり、保持するボール8の個数を増やすことができる。なお、根元部7Fと枝部7Gとが有する面の形状は、適宜に設計変更可能である。例えば、傾斜面7Jは、ストレートに延びる形状を図示したが、折れ曲がった形状や湾曲した形状等であってもよい。 The inner diameter surface 7N is located on the outer diameter side of the center position P1 of the ball 8. In addition, the inclined surface 7J is positioned closer to the annular portion 7A than the center position P1 of the ball 8. As shown in FIG. That is, the column portion 7B is formed so as not to overlap the center position P1 of the ball 8 in the circumferential direction. With this configuration, the retainer 70 can reduce the intervals between the balls 8 and increase the number of balls 8 to be retained. The shapes of the surfaces of the root portion 7F and the branch portions 7G can be appropriately changed in design. For example, although the inclined surface 7J is illustrated as extending straight, it may be bent or curved.
 次に、図12及び図13を用いて、根元部7Fの内径面7Hにおける先端位置P3までの軸方向長さについて詳しく説明する。以下において、軸方向長さは、根元部7Fと軸方向反対側の円環部7Aの端部7Pを始点として説明する。 Next, the axial length to the tip position P3 on the inner diameter surface 7H of the root portion 7F will be described in detail with reference to FIGS. Hereinafter, the axial length will be described with the end portion 7P of the annular portion 7A on the opposite side in the axial direction from the root portion 7F as the starting point.
 図12に示すように、保持器70は、先端位置P3までの軸方向長さfが、枝部7Gの基端位置までの軸方向長さg(曲面7Mの基端位置P4までの軸方向長さ)よりも短く形成されている。また、保持器70は、先端位置P3までの軸方向長さfが、円環部7Aの内径面7Kにおける先端位置P5までの軸方向長さhよりも長く形成されている。つまり、先端位置P3までの軸方向長さfは、枝部7Gの基端位置までの軸方向長さgよりも短く、円環部7Aの内径面7Kにおける先端位置P5までの軸方向長さhよりも長い。 As shown in FIG. 12, the retainer 70 has an axial length f up to the tip position P3, which is an axial length g up to the base end position of the branch portion 7G (an axial length g up to the base end position P4 of the curved surface 7M). length). Further, the retainer 70 is formed such that the axial length f up to the tip position P3 is longer than the axial length h up to the tip position P5 on the inner diameter surface 7K of the annular portion 7A. That is, the axial length f to the tip position P3 is shorter than the axial length g to the base end position of the branch portion 7G, and the axial length to the tip position P5 on the inner diameter surface 7K of the annular portion 7A. longer than h.
 なお、柱部7Bは、軸方向端面Sまでの軸方向長さが、ボール8の中心位置P1までの軸方向長さよりも長く形成されている。これにより、柱部7Bは、爪部7Eによってボール8の軸方向への移動を規制している(図13参照)。 The column portion 7B is formed so that the axial length to the axial end face S is longer than the axial length to the center position P1 of the ball 8 . Thus, the column portion 7B restricts axial movement of the ball 8 by means of the pawl portion 7E (see FIG. 13).
 このように、車輪用軸受装置1Aにおいて、軸方向に延びる枝部が根元部7Fの内径側に形成されないため、保持器70の内径側における樹脂の充填性が向上する。また、ボール8と保持器70の接近面積が減少することにより、柱部7Bとボール8との間におけるグリースのせん断抵抗が減少する。従って、保持器70の射出成形における樹脂の充填性を向上させるとともに、軸受トルクの増加を抑制できる。また、保持器70の内径側への樹脂の充填性が向上するため、保持器70の成形性が向上するとともに、保持器70の強度を確保できる。また、軸方向に延びる枝部が根元部7Fの内径側に形成されないため、保持器70の軽量化が可能となる。 As described above, in the wheel bearing device 1A, since the branch portion extending in the axial direction is not formed on the inner diameter side of the root portion 7F, the filling property of the resin on the inner diameter side of the retainer 70 is improved. In addition, the shear resistance of the grease between the column portion 7B and the balls 8 is reduced by reducing the approaching area between the balls 8 and the retainer 70 . Therefore, it is possible to improve the filling property of the resin in the injection molding of the retainer 70 and suppress the increase of the bearing torque. In addition, since the filling property of the resin to the inner diameter side of the retainer 70 is improved, the moldability of the retainer 70 is improved and the strength of the retainer 70 can be ensured. Moreover, since the branch portion extending in the axial direction is not formed on the inner diameter side of the root portion 7F, the weight of the retainer 70 can be reduced.
 次に、図9及び図13を用いて、第二実施形態に係る車輪用軸受装置1Aの他の特徴点とその効果について説明する。 Next, other features and effects of the wheel bearing device 1A according to the second embodiment will be described with reference to FIGS. 9 and 13. FIG.
 車輪用軸受装置1Aは、ボール8が設けられた軸受内部にグリースが封入されている。グリースの動粘度は、30mm/s~200mm/sが好ましい。グリースの動粘度が低すぎると、油膜形成が不十分となり、保持器70等が損傷するおそれがある。一方、グリースの動粘度が高すぎると、粘性抵抗が大きくなり温度上昇や摩擦損失が増大する。車輪用軸受装置1Aにおいて、上記のように動粘度を30mm/s~200mm/sとすることにより、グリースの動粘度が最適化される。 In the wheel bearing device 1A, grease is sealed inside the bearing in which the balls 8 are provided. The kinematic viscosity of the grease is preferably 30 mm 2 /s to 200 mm 2 /s. If the kinematic viscosity of the grease is too low, the formation of the oil film will be insufficient, possibly damaging the retainer 70 and the like. On the other hand, if the kinematic viscosity of the grease is too high, the viscous resistance increases, resulting in an increase in temperature and friction loss. In the wheel bearing device 1A, the kinematic viscosity of the grease is optimized by setting the kinematic viscosity to 30 mm 2 /s to 200 mm 2 /s as described above.
 また、ポケットPtとボール8との間にポケットすきまjが設けられている。ポケットすきまjは、0.05mm~0.45mmが好ましい。保持器70は、ポケットすきまjの範囲内でボール8に対して自由に移動することができる。ポケットすきまjが小さすぎると、ポケットPtとボール8が互いに干渉し、損傷するおそれがある。一方、ポケットすきまjが大きすぎると、ポケットPt内でボール8のガタツキが発生して音響特性が悪化する。車輪用軸受装置1Aにおいて、上記のようにポケットすきまjを0.05mm~0.45mmとすることにより、ポケットすきまjが最適化される。 Also, a pocket clearance j is provided between the pocket Pt and the ball 8 . The pocket clearance j is preferably 0.05 mm to 0.45 mm. The cage 70 can move freely with respect to the balls 8 within the range of the pocket clearance j. If the pocket clearance j is too small, the pocket Pt and the ball 8 may interfere with each other and be damaged. On the other hand, if the pocket clearance j is too large, the ball 8 will rattle in the pocket Pt, degrading the acoustic characteristics. In the wheel bearing device 1A, the pocket clearance j is optimized by setting the pocket clearance j to 0.05 mm to 0.45 mm as described above.
 また、保持器70は、樹脂の射出成形体である。保持器70は、射出形成時に金型のゲートから当該金型内に樹脂が注入される。保持器70は、ゲート部7Rを有し、金型のゲートに対応する箇所にゲート部7Rが位置する。保持器70は、ゲート部7Rから充填された樹脂が合流して形成されたウエルド7Sを有している。 Also, the retainer 70 is a resin injection molded body. The retainer 70 is injected with resin from the gate of the mold into the mold during injection molding. The retainer 70 has a gate portion 7R, and the gate portion 7R is positioned at a location corresponding to the gate of the mold. The retainer 70 has a weld 7S formed by merging the resin filled from the gate portion 7R.
 図13に示すように、ゲート部7Rは、円環部7Aの内径面7Kに設けられ、柱部7Bの軸方向の延長上に位置している。また、ウエルド7Sは、柱部7B同士の中間に位置している。ゲート部7Rは、数箇所に設けられ、その設置数は保持器70に応じて定まっている。なお、ウエルド7Sは、ウエルド7Sが形成されていない他の部分よりも低強度となっている。ゲート部7Rの設置数に応じてウエルド7Sの形成数が増加するため、樹脂の充填が可能な範囲でゲート部7Rの設置数を最小にすることが好ましい。 As shown in FIG. 13, the gate portion 7R is provided on the inner diameter surface 7K of the annular portion 7A and positioned on the extension of the column portion 7B in the axial direction. Also, the weld 7S is positioned between the pillars 7B. The gate portions 7R are provided at several locations, and the number of the gate portions to be provided is determined according to the retainer 70. As shown in FIG. Note that the weld 7S has a lower strength than other portions where the weld 7S is not formed. Since the number of welds 7S to be formed increases according to the number of gate portions 7R installed, it is preferable to minimize the number of gate portions 7R to be installed within a range in which the resin can be filled.
 このように、車輪用軸受装置1Aにおいて、樹脂が充填されるゲート部7Rが、円環部7Aに設けられ、柱部7Bの軸方向の延長上に位置するため、柱部7Bへの樹脂の充填性を向上できる。また、柱部7Bにウエルド7Sが形成されないようにすることにより、保持器70の成形性を向上できる。 As described above, in the wheel bearing device 1A, the gate portion 7R filled with resin is provided in the annular portion 7A and positioned on the extension of the column portion 7B in the axial direction. Fillability can be improved. Also, by preventing the formation of the weld 7S in the column portion 7B, the moldability of the retainer 70 can be improved.
 以上、本発明の実施形態について説明を行ったが、本発明はこうした実施形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、更に種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、更に特許請求の範囲に記載の均等の意味、及び範囲内のすべての変更を含む。また、本実施形態において、車輪用軸受装置1、1Aは、ハブ輪3の外周に内側軌道面3cが直接形成されている第3世代構造の車輪用軸受装置として構成されているがこれに限定するものではなく、ハブ輪に一対の内輪が圧入固定された第2世代構造、又は、ナックルとハブ輪との間に複列のアンギュラ玉軸受を嵌合させた第1世代構造であってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments at all, but is merely an example, and further various forms are possible without departing from the scope of the present invention. The scope of the present invention is indicated by the description of the claims, and includes all changes within the meaning and range of equivalents described in the claims. In the present embodiment, the wheel bearing device 1, 1A is configured as a wheel bearing device having a third-generation structure in which the inner raceway surface 3c is directly formed on the outer periphery of the hub wheel 3, but is limited to this. However, even if it is a second generation structure in which a pair of inner rings are press-fitted and fixed to the hub ring, or a first generation structure in which a double row angular contact ball bearing is fitted between the knuckle and the hub ring, good.
 本発明は、車輪用軸受装置に利用可能である。 The present invention can be used for wheel bearing devices.
  1    車輪用軸受装置
  1A   車輪用軸受装置
  2    外輪(外方部材)
  2c   外側軌道面
  2d   外側軌道面
  3    ハブ輪(内方部材)
  3c   内側軌道面
  4    内輪(内方部材)
  4a   内側軌道面
  5    インナー側ボール列
  6    アウター側ボール列
  7    保持器
  7a   円環部
  7b   柱部
  7c   内径側の柱部
  7d   外径側の柱部
  7e   転動体の外周面に沿う曲面
  7m   ゲート部
  7n   ウエルド
  7p   柱部と軸方向反対側の円環部の端部
  70   保持器
  7A   円環部
  7B   柱部
  7F   根元部
  7G   枝部
  7H   根元部の内径面
  7J   根元部の傾斜面
  7K   円環部の内径面
  7N   枝部の内径面
  7P   根元部と軸方向反対側の円環部の端部
  7Q   円環部の外径面
  7R   ゲート部
  7S   ウエルド
  8    ボール(転動体)
  a    内径側の柱部の軸方向長さ
  b    転動体の中心位置までの軸方向長さ
  c    切り欠き部の円環部側の端部位置までの軸方向長さ
  e    ポケットすきま
  f    根元部の内径面における先端位置までの軸方向長さ
  g    枝部の基端位置までの軸方向長さ
  h    円環部の内径面における先端位置までの軸方向長さ
  j    ポケットすきま
  L    径方向中心線
  P1   ボールの中心位置
  P2   切り欠き部の円環部側の端部位置
  P3   根元部の内径面の先端位置
  P5   円環部の内径面における先端位置
  Pt   ポケット
  W    切り欠き部の径方向幅 
1 wheel bearing device 1A wheel bearing device 2 outer ring (outer member)
2c outer raceway surface 2d outer raceway surface 3 hub ring (inner member)
3c inner raceway surface 4 inner ring (inner member)
4a inner raceway surface 5 inner ball row 6 outer ball row 7 retainer 7a annular portion 7b column portion 7c inner diameter column portion 7d outer diameter column portion 7e curved surface along the outer peripheral surface of the rolling element 7m gate portion 7n Weld 7p Annular end on opposite side of column 70 Retainer 7A Annular 7B Column 7F Root 7G Branch 7H Inner diameter surface of root 7J Inclined surface of root 7K Inner diameter of annular Surface 7N Inner diameter surface of the branch portion 7P End portion of the annular portion on the opposite side of the root portion in the axial direction 7Q Outer diameter surface of the annular portion 7R Gate portion 7S Weld 8 Ball (rolling element)
a Axial length of the column on the inner diameter side b Axial length to the center of the rolling element c Axial length to the end of the notch on the annular side e Pocket clearance f Inner diameter of the root Axial length to the tip position on the surface g Axial length to the base end position of the branch h Axial length to the tip position on the inner diameter surface of the annular part j Pocket clearance L Radial centerline P1 Ball Center position P2 Edge position of the notch on the annular side P3 Tip position of the inner diameter surface of the root P5 Tip position of the inner diameter surface of the annular portion Pt Pocket W Radial width of the notch

Claims (16)

  1.  内周に複列の外側軌道面が形成された外方部材と、
     前記複列の外側軌道面に対向する複列の内側軌道面が形成された内方部材と、
     前記外方部材と前記内方部材との両軌道面間に転動自在に介装された複列の転動体と、
     環状に形成される円環部と前記円環部から周方向に一定の間隔で軸方向に延びる複数の柱部とを有し、隣り合う前記柱部と前記円環部とによって前記転動体の外周面に沿う曲面を有するポケットが形成され、前記ポケットに前記転動体を保持する樹脂製の保持器と、を備え、前記柱部が切り欠き部によって内径側と外径側とに分岐して形成される車輪用軸受装置であって、
     前記柱部と軸方向反対側の前記円環部の端部を始点として、前記内径側の柱部の軸方向長さは、前記転動体の中心位置までの軸方向長さよりも短く、前記切り欠き部の前記円環部側の端部位置までの軸方向長さよりも長い、ことを特徴とする車輪用軸受装置。
    an outer member having a double-row outer raceway surface formed on the inner circumference;
    an inner member formed with double-row inner raceway surfaces facing the double-row outer raceway surfaces;
    a double-row rolling element rollably interposed between the raceway surfaces of the outer member and the inner member;
    An annular portion formed in an annular shape and a plurality of pillars extending axially from the annular portion at regular intervals in the circumferential direction, and the adjacent pillars and the annular portion form the rolling element. A pocket having a curved surface along the outer peripheral surface is formed, the pocket is provided with a resin retainer that retains the rolling element, and the column portion is branched into an inner diameter side and an outer diameter side by a notch portion. A wheel bearing device formed comprising:
    Starting from the end of the annular portion axially opposite to the column portion, the axial length of the column portion on the inner diameter side is shorter than the axial length to the center position of the rolling element. A wheel bearing device, wherein the axial length of the notched portion to the end position on the annular portion side is longer than that of the notched portion.
  2.  前記切り欠き部の前記円環部側の端部位置は、前記転動体の中心位置よりも前記円環部側に位置している、ことを特徴とする請求項1に記載の車輪用軸受装置。 2. The wheel bearing device according to claim 1, wherein an end position of the cutout portion on the annular portion side is located closer to the annular portion side than a center position of the rolling element. .
  3.  前記切り欠き部の径方向幅の範囲内に前記転動体の中心位置が位置している、ことを特徴とする請求項1又は請求項2に記載の車輪用軸受装置。 The wheel bearing device according to claim 1 or 2, characterized in that the center position of the rolling element is positioned within the range of the radial width of the notch portion.
  4.  前記保持器は、ゲート部を有する射出成形体であり、前記ゲート部は、射出形成時に樹脂が注入される金型のゲートと対応して位置しており、
     前記ゲート部は、前記円環部に設けられ、前記柱部の軸方向の延長上に位置する、ことを特徴とする請求項1から請求項3のいずれか一項に記載の車輪用軸受装置。
    The retainer is an injection molded body having a gate portion, and the gate portion is positioned corresponding to a gate of a mold into which resin is injected during injection molding,
    The wheel bearing device according to any one of claims 1 to 3, wherein the gate portion is provided on the annular portion and positioned on an extension of the column portion in the axial direction. .
  5.  前記保持器は、前記ゲート部から充填された前記樹脂が合流することにより形成されたウエルドを有し、
     前記ウエルドは、前記柱部同士の中間に位置する、ことを特徴とする請求項4に記載の車輪用軸受装置。
    The retainer has a weld formed by joining the resin filled from the gate portion,
    5. The wheel bearing device according to claim 4, wherein the weld is positioned between the columns.
  6.  前記転動体が配された軸受内部にグリースが封入されており、
     前記グリースは、動粘度が30mm/s~200mm/sである、ことを特徴とする請求項1から請求項5のいずれか一項に記載の車輪用軸受装置。
    Grease is sealed inside the bearing in which the rolling elements are arranged,
    The wheel bearing device according to any one of claims 1 to 5, wherein the grease has a kinematic viscosity of 30 mm 2 /s to 200 mm 2 /s.
  7.  前記転動体と前記ポケットとの間のポケットすきまは、0.05mm~0.45mmである、ことを特徴とする請求項1から請求項6のいずれか一項に記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 6, characterized in that the pocket clearance between the rolling element and the pocket is 0.05 mm to 0.45 mm.
  8.  内周に複列の外側軌道面が形成された外方部材と、
     前記複列の外側軌道面に対向する複列の内側軌道面が形成された内方部材と、
     前記外方部材と前記内方部材との両軌道面間に転動自在に介装された複列の転動体と、
     環状に形成される円環部と前記円環部から周方向に一定の間隔で軸方向に延びる複数の柱部とを有し、隣り合う前記柱部と前記円環部とによって前記転動体の外周面に沿う曲面を有するポケットが形成され、前記ポケットに前記転動体を保持する樹脂製の保持器と、を備える車輪用軸受装置であって、
     前記柱部は、前記円環部から軸方向に延びる根元部と、前記根元部から軸方向に延びる枝部と、を有し、前記枝部は、前記根元部の外径側にのみ形成される、ことを特徴とする車輪用軸受装置。
    an outer member having a double-row outer raceway surface formed on the inner circumference;
    an inner member formed with double-row inner raceway surfaces facing the double-row outer raceway surfaces;
    a double-row rolling element rollably interposed between the raceway surfaces of the outer member and the inner member;
    An annular portion formed in an annular shape and a plurality of pillars extending axially from the annular portion at regular intervals in the circumferential direction, and the adjacent pillars and the annular portion form the rolling element. A wheel bearing device comprising: a pocket having a curved surface along an outer peripheral surface; and a resin retainer for holding the rolling element in the pocket,
    The column portion has a root portion extending axially from the annular portion and branch portions extending axially from the root portion, and the branch portions are formed only on the outer diameter side of the root portion. A wheel bearing device characterized by:
  9.  前記枝部の径方向中心線は、前記円環部の外径面よりも外径側に位置する、ことを特徴とする請求項8に記載の車輪用軸受装置。 The wheel bearing device according to claim 8, wherein the radial center line of the branch portion is located on the outer diameter side of the outer diameter surface of the annular portion.
  10.  前記根元部は、前記円環部の内径面から軸方向に延びる前記根元部の内径面を有し、
     前記根元部と軸方向反対側の前記円環部の端部を始点として、前記根元部の内径面における先端位置までの軸方向長さは、前記枝部の基端位置までの軸方向長さよりも短く、前記円環部の内径面における先端位置までの軸方向長さよりも長い、ことを特徴とする請求項8又は請求項9に記載の車輪用軸受装置。
    the root portion has an inner diameter surface of the root portion extending in the axial direction from the inner diameter surface of the annular portion;
    Starting from the end of the annular portion axially opposite to the root portion, the axial length to the tip position on the inner diameter surface of the root portion is greater than the axial length to the base end position of the branch portion. 10. The wheel bearing device according to claim 8, wherein the length in the axial direction to the tip position on the inner diameter surface of the annular portion is shorter than the length in the axial direction.
  11.  前記枝部の内径面は、前記転動体の中心位置よりも外径側に位置する、ことを特徴とする請求項8から請求項10のいずれか一項に記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 8 to 10, wherein the inner diameter surface of the branch portion is located on the outer diameter side of the center position of the rolling element.
  12.  前記根元部は、当該根元部の内径側において前記枝部に繋がる傾斜面を有し、
     前記根元部の傾斜面は、前記転動体の中心位置よりも前記円環部側に位置する、ことを特徴とする請求項8から請求項11のいずれか一項に記載の車輪用軸受装置。
    The root portion has an inclined surface connected to the branch portion on the inner diameter side of the root portion,
    The wheel bearing device according to any one of claims 8 to 11, wherein the inclined surface of the root portion is located closer to the annular portion than the center position of the rolling element.
  13.  前記転動体が配された軸受内部にグリースが封入されており、
     前記グリースは、動粘度が30mm/s~200mm/sである、ことを特徴とする請求項8から請求項12のいずれか一項に記載の車輪用軸受装置。
    Grease is sealed inside the bearing in which the rolling elements are arranged,
    The wheel bearing device according to any one of claims 8 to 12, wherein the grease has a kinematic viscosity of 30 mm 2 /s to 200 mm 2 /s.
  14.  前記転動体と前記ポケットとの間のポケットすきまは、0.05mm~0.45mmである、ことを特徴とする請求項8から請求項13のいずれか一項に記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 8 to 13, characterized in that the pocket clearance between the rolling element and the pocket is 0.05 mm to 0.45 mm.
  15.  前記保持器は、ゲート部を有する射出成形体であり、前記ゲート部は、射出形成時に樹脂が注入される金型のゲートと対応して位置しており、
     前記ゲート部は、前記円環部に設けられ、前記柱部の軸方向の延長上に位置する、ことを特徴とする請求項8から請求項14のいずれか一項に記載の車輪用軸受装置。
    The retainer is an injection molded body having a gate portion, and the gate portion is positioned corresponding to a gate of a mold into which resin is injected during injection molding,
    15. The wheel bearing device according to any one of claims 8 to 14, wherein the gate portion is provided on the annular portion and positioned on an extension of the column portion in the axial direction. .
  16.  前記保持器は、前記ゲート部から充填された前記樹脂が合流することにより形成されたウエルドを有し、
     前記ウエルドは、前記柱部同士の中間に位置する、ことを特徴とする請求項15に記載の車輪用軸受装置。 
    The retainer has a weld formed by joining the resin filled from the gate portion,
    16. The wheel bearing device according to claim 15, wherein the weld is positioned between the columns.
PCT/JP2022/029031 2021-08-06 2022-07-27 Vehicle wheel bearing device WO2023013508A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-129989 2021-08-06
JP2021129989A JP2023023984A (en) 2021-08-06 2021-08-06 Bearing device for wheel
JP2021135229A JP2023029118A (en) 2021-08-20 2021-08-20 Wheel bearing device
JP2021-135229 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023013508A1 true WO2023013508A1 (en) 2023-02-09

Family

ID=85154524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029031 WO2023013508A1 (en) 2021-08-06 2022-07-27 Vehicle wheel bearing device

Country Status (1)

Country Link
WO (1) WO2023013508A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387041A (en) * 1994-05-02 1995-02-07 General Motors Corporation Close packed plastic bearing ball separator
JP2011202710A (en) * 2010-03-25 2011-10-13 Nsk Ltd Lubricant filling method
JP2012167683A (en) * 2011-02-09 2012-09-06 Jtekt Corp Rolling bearing device for wheel
JP2017026076A (en) * 2015-07-24 2017-02-02 株式会社ジェイテクト Ball bearing
JP2019173831A (en) * 2018-03-28 2019-10-10 中西金属工業株式会社 Resin cage and process of manufacture of resin cage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387041A (en) * 1994-05-02 1995-02-07 General Motors Corporation Close packed plastic bearing ball separator
JP2011202710A (en) * 2010-03-25 2011-10-13 Nsk Ltd Lubricant filling method
JP2012167683A (en) * 2011-02-09 2012-09-06 Jtekt Corp Rolling bearing device for wheel
JP2017026076A (en) * 2015-07-24 2017-02-02 株式会社ジェイテクト Ball bearing
JP2019173831A (en) * 2018-03-28 2019-10-10 中西金属工業株式会社 Resin cage and process of manufacture of resin cage

Similar Documents

Publication Publication Date Title
CN106080030B (en) Bearing unit-hub flange assembly process
US9841058B2 (en) Assembly procedure of a bearing unit—hub flange
WO2020054758A1 (en) Vehicle wheel bearing device
JP2000065049A5 (en)
WO2023013508A1 (en) Vehicle wheel bearing device
JP2008014428A (en) Wheel bearing device
JP4244955B2 (en) Assembly method for automotive hub unit
JP2008095766A (en) Wheel bearing
JP2023029118A (en) Wheel bearing device
JP2023023984A (en) Bearing device for wheel
JP7261599B2 (en) Wheel bearing device
JP7491050B2 (en) Wheel bearing device
WO2019189421A1 (en) Bearing device for wheels
WO2023139998A1 (en) Retainer for bearing device for wheel and bearing device for wheel provided with same
JP7327103B2 (en) Cages for angular contact ball bearings and angular contact ball bearings
WO2024053511A1 (en) Wheel bearing device
CN110778601A (en) Bearing device for vehicle
WO2023132196A1 (en) Angular ball bearing cage and angular ball bearing
JP2023037319A (en) Holder for bearing device and bearing device for wheel comprising the same
JP2008128421A (en) Double row rolling bearing
JP2018123958A (en) Bearing device for wheel
JP2023075627A (en) Retainer for angular contact ball bearing and angular contact ball bearing
JP2024089974A (en) Wheel bearing device
JP2024035869A (en) Retainer for angular ball bearing and hub unit bearing
JP2007315469A (en) Hub unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE