WO2023013454A1 - Reluctance motor - Google Patents

Reluctance motor Download PDF

Info

Publication number
WO2023013454A1
WO2023013454A1 PCT/JP2022/028604 JP2022028604W WO2023013454A1 WO 2023013454 A1 WO2023013454 A1 WO 2023013454A1 JP 2022028604 W JP2022028604 W JP 2022028604W WO 2023013454 A1 WO2023013454 A1 WO 2023013454A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
salient poles
phase
stator
excitation
Prior art date
Application number
PCT/JP2022/028604
Other languages
French (fr)
Japanese (ja)
Inventor
三四郎 荻野
據義 内川
嘉也 横尾
茂人 大内
健一 深津
Original Assignee
株式会社ゲネシス・ラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ゲネシス・ラボ filed Critical 株式会社ゲネシス・ラボ
Priority to JP2022563339A priority Critical patent/JP7197960B1/en
Publication of WO2023013454A1 publication Critical patent/WO2023013454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to reluctance motors.
  • a switched reluctance motor (hereinafter referred to as an SR motor) is known.
  • Ogino et al. the inventors of the present invention, have proposed, as a reluctance motor, a hybrid reluctance motor in which a coil and a permanent magnet are provided at the magnetic poles of a stator (Patent Documents 1 and 2).
  • the proposed hybrid SR motor is a reluctance motor in which permanent magnets are arranged in gaps between adjacent magnetic poles of the stator.
  • This hybrid type SR motor is driven by a DC pulse current, and has the advantage that it can be controlled digitally and the control circuit can be composed of a digital circuit.
  • expensive permanent magnets are not used in the rotor, there is an advantage that the cost can be reduced and high torque can be output.
  • the above-mentioned hybrid SR motor is a motor that can achieve high efficiency (high torque) by making good use of the magnetic flux of the permanent magnet and the magnetic flux excited by the coil.
  • the present invention has been made in view of this problem, and its object is to provide an SR motor with even higher efficiency.
  • a magnet is arranged in a gap between the tips of a plurality of salient poles made of a magnetic member so as to be in contact with the lateral parts of the tips, and the salient poles and a rotor having projections provided facing the salient poles, wherein the length of the projections of the rotor in the circumferential direction is equal to the The circumferential length of the magnet of the stator and the circumferential length of the salient pole facing the rotor are equal, and the horizontal portion of the salient pole where the magnet is arranged is the base side where the winding is applied. It has a thicker jaw, the ratio of the number of salient poles of the stator to the number of protrusions of the rotor is 4:3, and the number of drive phases is four.
  • the ratio of the circumferential width on the rotor side to the circumferential width on the base side of the jaw is 1:1, Preferably, the radial length of the jaws is approximately 0.25 with respect to the radial length of the salient poles.
  • the number of salient poles of the stator is 12 and the number of projections of the rotor is 9.
  • the salient poles of the stator are excited by four-phase excitation currents, and the salient poles of one phase are excited in the first half of the excitation time of the salient poles. is excited by overlapping excitation of one adjacent salient pole, during the second half of the excitation time, it is excited by overlapping excitation of the other adjacent salient pole, and during the middle of the excitation time, excitation of both adjacent salient poles is preferably excited independently without overlapping with .
  • FIG. 1 is a plan view of a stator core portion and a rotor core portion of a reluctance motor according to a first embodiment of the present invention
  • FIG. FIG. 4 is a plan view showing the shape of salient poles of the stator
  • FIG. 4 is a diagram showing a magnetic path when the rotor is at 0°; It is a figure which shows the magnetic path in the state where the rotor rotated 5 degrees. It is a figure which shows the magnetic path in the state where the rotor rotated 10 degrees. It is a figure which shows the magnetic path in the state which the rotor rotated 15 degrees. It is a figure which shows the magnetic path in the state where the rotor rotated 20 degrees.
  • FIG. 4 is a time chart showing excitation pulses in the first embodiment; It is a figure which shows the magnetic path in the state which the rotor rotated 17.5 degrees.
  • FIG. 10 is a diagram showing a part of the magnetic path of FIG. 9 as a schematic diagram; It is a figure which shows the magnetic path in the state which the rotor rotated 16 degrees. It is a figure which shows the magnetic path in the state which the rotor rotated 19 degrees.
  • FIG. 8 is a diagram showing the magnetic path of the reluctance motor according to the second embodiment of the present invention, and showing the magnetic path when the rotor is rotated by 0°; It is a figure which shows the magnetic path in the state which the rotor rotated 7.5 degrees.
  • FIG. 19 is a diagram showing the magnetic path of FIG. 18 as a magnetic circuit
  • FIG. 19 is a diagram showing the positional relationship and magnetic path between the salient poles and the rotor of the conventional SR motor corresponding to FIG. 18
  • 21 is a diagram showing the magnetic path of FIG. 20 as a magnetic circuit
  • FIG. It is an example of calculating the torque of the HBSR motor of the second embodiment and the torque of the conventional SR motor by magnetic circuit analysis.
  • FIG. 1 shows a cross section of a reluctance motor according to a first embodiment of the invention.
  • the reluctance motor of the first embodiment applies an SR motor and a hybrid magnet, and is hereinafter referred to as an HBSR motor.
  • This HBSR motor has a stator 1 and a rotor 2 .
  • the HBSR motor of the first embodiment is an example in which the stator 1 has 12 salient poles (teeth) and the rotor 2 has 9 protrusions (teeth).
  • the stator 1 includes 12 salient poles 11a to 11l, 12 magnets 12a to 12l arranged in gaps between the lateral portions of the tips of the salient poles 11a to 11l and the lateral portions of the adjacent salient poles. It has 12 windings 13a-13l which are installed by winding coils around the root sides of the salient poles 11a-11l. Roots of the respective salient poles 11a to 11l are connected in the circumferential direction by a connecting portion 14 corresponding to the back yoke.
  • salient poles 11a to 11l, magnets 12a to 12l, and windings 13a to 13l will be referred to as salient poles 11, magnets 12, and windings 13, respectively, when specific salient poles, magnets, and windings are not meant. called.
  • the stator material forming the salient poles 11 of the stator 1 is made of a soft magnetic material with a high magnetic permeability.
  • a material in which soft iron thin plates with extremely high saturation magnetic flux density are laminated is used.
  • the magnet 12 has an inverted trapezoidal or rectangular shape in which the radial length of the surface facing the rotor 2 is the same as or slightly smaller than the radial length of the tip of the salient pole 11 .
  • the magnets 12 are made of neodymium and have a high residual magnetic flux density. It is arranged so as to be in contact with the lateral part. That is, when looking at one salient pole 11a, between the salient poles 11b and 11l on both sides thereof, N is on the own pole side and S on the other pole side. A magnet that is magnetized is provided so that S is on the other pole side and N is on the other pole side.
  • each magnet 12 in the circumferential direction of the motor (the distance between adjacent salient poles) is equal to the length of the tip of the salient pole 11 in the circumferential direction.
  • the magnet 12 is fixed by adhering it to the salient pole 11 with an adhesive or the like.
  • a permanent magnet such as a samarium-cobalt magnet or ferrite can also be used as the magnet 12 .
  • the windings 13 are formed by winding coils in the same direction from the coupling portion 14 side of the stator 1 toward the tip of the salient poles 11 .
  • the number of turns of the coil is about 100-200.
  • the winding direction of the coil the coil may be wound from the distal end side of the salient pole 11 toward the connecting portion 14 side.
  • the winding method is preferably aligned winding, but other winding methods may be used. Alternatively, the winding directions may alternately differ so that the magnetic poles are reversed for each adjacent salient pole when the same phase excitation pulse current is applied.
  • the rotor 2 has nine protrusions 21a to 21i.
  • the center also has the rotation axis 23 of the motor.
  • any one of the projections 21a to 21i will be used when an individual projection 21 is designated.
  • the projecting portion 21 serves as a pole tooth, and by facing the salient pole 11, provides a stable point for the flow of magnetic flux.
  • the circumferential length of each protrusion 21 has a size that covers a mechanical angle of 15 degrees, and is substantially equal to the circumferential length of each magnet 12 and salient pole 11 of the stator 1 facing each other. ing.
  • a magnetic material with a high saturation magnetic flux density is used as the iron core material of the rotor 2 .
  • a lamination of thin silicon steel plates is used.
  • Other soft magnetic materials such as soft iron and permalloy may also be used.
  • the jaw part 112 has a shape in which the width of the lateral part of the tip of the salient pole 11 facing the rotor 2 where the magnet is arranged is wider than the part around which the winding 13 is wound.
  • the ratio of the width of the tip portion to the width of the base portion connected to the connecting portion 14 is 1 when the stator has 12 salient poles 11 and the rotor has 9 protrusions 21. : 0.8 to 1:0.66.
  • the ratio of the radial length C of the jaw 112 to the length D of the base side where the winding is applied is about 1 when the number of salient poles of the stator is 12 and the number of projections of the rotor is 9. : about 4.
  • the length of D decreases and the radial length of the magnets 12 also decreases, but the amount of magnets as a whole does not decrease.
  • each magnet 12 forms a closed magnetic path from the salient poles 11 of the stator through the connecting portion 14 .
  • the SBSR motor is characterized in that the main magnetic path formed by the excited salient poles 11 and the magnetic paths formed by the respective magnets cooperate to give the rotor 2 a rotational motion.
  • FIG. 3 to 7 show magnetic paths formed by the stator 1 and the rotor 2 in the rotating state (shifted state) of the rotor of the HBSR motor according to the first embodiment, and FIG. The operation will be described with reference to time charts of exciting pulse currents for the poles 11a to 11l. In order to show the magnetic path, the winding portion is omitted in the drawing.
  • FIG. 3 is the pulse waveform of FIG. 8 and explains the magnetic path formed by the rotor 2 and the stator 1 in the state shown at 0°.
  • the electromagnets of the salient poles 11 are excited in phases A and B, and the magnetic path formed by the phases A and B becomes the main magnetic path.
  • the direction of the magnetic force line is a closed magnetic path that passes through the rotor 2 from the A-phase salient pole 11 through the air gap, returns to the B-phase salient pole 11, passes through the connecting portion 14, and returns to the A-phase salient pole 11. is generating
  • This main closed magnetic circuit is represented by a thick line in FIG.
  • the C phase and D phase are not excited, but the magnet 12 is inserted between the salient poles 11, and the magnetic force line of the magnet (magnet between D and C) 21, a closed magnetic path is formed within the stator 1 without facing the rotor 2 because there is an air gap between them.
  • the closed magnetic circuit formed by the magnets of this non-excited phase is represented by a thin line in FIG.
  • FIG. 4 shows the magnetic path formed by the rotor 2 and stator 1 in the state of 5° in FIG.
  • the rotor 2 has rotated 5° clockwise.
  • the energized salient poles 11 are the same as at 0°, that is, the A phase and the B phase, so the direction of the magnetic lines of force is the same as at 0°, and the magnetic lines of force of the magnet 12 are also the same.
  • FIG. 5 shows the magnetic path formed by the rotor 2 and stator 1 in the state of 10° in FIG.
  • the rotor 2 has rotated 10 degrees from the position of 0 degrees, and at this time, the electromagnets of the salient poles 11 are excited in phases A and D, as shown by the pulse waveforms in FIG.
  • the main magnetic path forms a closed magnetic path from the A-phase salient pole 11 through the rotor 2, into the D-phase salient pole 11, and back to the A-phase salient pole 11 through the connecting portion 14. are doing.
  • FIG. 6 shows the magnetic path formed by the rotor 2 and stator 1 in the state indicated by 15° in FIG.
  • the electromagnets of the salient poles 11 are excited in the A phase and the D phase, and the projections 21 of the rotor 2 face the salient poles 11 excited by the A phase among the salient poles 11 of the stator 1.
  • the lines of magnetic force of the magnets 12 do not face the rotor 2 and form a closed magnetic path within the stator 1 .
  • FIG. 7 shows the magnetic path formed by the rotor 2 and stator 1 in the state of 20° in FIG.
  • the electromagnet of the salient pole 11 is excited by the D-phase and the C-phase, and the magnetic line of force of the main magnetic path extends from the salient pole 11 of the C-phase through the air gap with the rotor 2 to the salient pole of the D-phase. 11 and returns to the salient pole 11 of the C phase.
  • Magnetic lines of force formed by the magnets of the non-excited A-phase salient poles 11 and the B-phase salient poles 11 form a closed magnetic circuit within the stator 1 .
  • FIG. 8 shows a time chart of the excitation pulse current.
  • the excitation pulse current shown in FIG. 8 is such that a reverse-phase current flows through the winding 13 alternately in the A, B, C, and D phases.
  • This is an example of an excitation pulse current when the windings 13 of the salient poles 11 are wound in the same direction. alternately with different magnetic poles.
  • the excitation pulse current in FIG. 8 becomes the same excitation if the excitation pulse current has the same phase.
  • the excitation ON time of each phase is 15°, and the excitation OFF time is 25°. Dividing the 15° excitation ON time into front, middle, and back by 5°, the front 5° is two-phase excitation, the middle 5° is one-phase excitation, and the rear 5° is two-phase excitation.
  • the D phase it overlaps with the A phase for the front 5°, overlaps with the C phase for the rear 5°, but overlaps with any phase for the middle 5°. not.
  • the 5° interval is located between the timing when the excitation of the A phase is turned off and the timing when the excitation of the C phase is turned on. At this timing, two-phase excitation of 5 degrees forward and 5 degrees backward is one-phase excitation, so the current flows twice as much in the windings. In other words, the current that has flowed in two phases until then becomes one phase, so that twice the current flows in one phase during the middle 5° period.
  • FIG. 9 shows the magnetic path at 17.5° rotation. Since phases A, B, and C are not excited, the behavior of the magnetic lines of force of the magnets differs from that in the case of two-phase excitation shown in FIGS. Regarding the A phase, the N pole of the magnet between AB (referred to as AcwN because it is in the rotating direction) passes through the S pole of the magnet between AB (referred to as BccwS because it is in the opposite direction of rotation) and the connecting portion 14 to form a closed magnetic path.
  • AcwN the N pole of the magnet between AB
  • BccwS because it is in the opposite direction of rotation
  • AccwN passes from the jaw through the air gap to the projection 21 of the rotor 2, forms a closed magnetic path with DcwS, joins the D-phase electromagnet in the excitation ON state, passes through the connecting portion 14, and passes through the B-phase.
  • BccwS and a closed magnetic circuit are formed.
  • CcwN forms a closed magnetic circuit with BcwS through the connecting portion 14 .
  • CccwN passes from the jaw through the air gap to the protrusion 21 of the rotor, forms a closed magnetic path with DccwS, joins the D-phase electromagnet in the excitation ON state, passes through the connecting portion 14, and passes through the B-phase BcwS. and form a closed magnetic circuit.
  • the protrusion 21 of the rotor 2 has not yet reached the C-phase salient pole by about 2.5°. Since the D-phase is in an excited state, the A-phase magnet AccwN and the C-phase magnet CccwN are forcibly attracted to the D-phase. At this time, in the positional relationship between the A phase and the rotor 2, the normal vector is strong and the tangential vector is weak. Also from the relationship, the sum with the tangent vector of the C phase makes the tangent vector in the rotational direction stronger than the tangent vector acting as a brake of the A phase.
  • the magnetic path at 16° before the 17.5° rotation and at 19° after the rotation will be examined.
  • the state of 16° is the state immediately after the excitation of the A phase is turned off, and the state of 19° is the state immediately before the excitation of the C phase is turned on.
  • the A-phase at 16° is forcibly passed through the rotor 2 through the air gap by the inflow of magnetic lines of force due to the excitation of the D-phase, and forms a closed magnetic circuit with DcwS and DccwS.
  • the cw tangent vector of the D phase is stronger than the ccw tangent vector of the A phase.
  • FIG. 11 shows the magnetic path at 16°.
  • the positional relationship between the A phase and the rotor 2 is a 4° ccw tangent vector
  • the positional relationship between the D phase and the rotor 2 is a 6° cw tangent vector.
  • CccwN can sufficiently form a closed magnetic circuit with DcwS.
  • the cw tangent vector becomes stronger due to the positional relationship between the D phase, the A phase, and the C phase, and the magnetic path is strengthened.
  • FIG. 12 shows the magnetic path at 19°.
  • the excitation timings do not overlap during 5° of the 15° of the excitation on timing of one phase, but the excitation timings of the B and C phases of the 15° of the excitation timing are off. It is believed that the magnetic field lines of the magnet strengthen the main magnetic path.
  • the number of salient poles of the stator is 12 and the number of projections of the rotor 2 is 9, and the excitation pulse current of four phases is A, B, C, and D, two phases each, for a period of 5°, By overlapping, only one phase is excited during the intermediate 5° period, and by controlling the drive timing at 15° excitation ON and 25° excitation OFF, it is possible to drive with a strengthened magnetic path, high torque output, Highly efficient output is now possible.
  • the second embodiment is an SR motor in which the stator 1 has eight salient poles 11 and the rotor has six protrusions, and is driven and controlled in four phases.
  • FIG. 13 to 16 show magnetic circuits in the rotating state of the rotor of an SR motor in which the stator 1 has eight salient poles and the rotor 2 has six projections.
  • 14 shows magnetic lines of force at 7.5°, FIG. 15 at 15°, and FIG. 16 at 22.5°.
  • FIG. 17 shows a time chart of excitation pulses in this second embodiment.
  • the circumferential length of the rotor projections 21 is equal to the circumferential length of the stator magnets, and the rotation angle is 22. .5°.
  • the excitation pulse current has an excitation ON time of 22.5° and an excitation OFF time of 37.5°. Also in this embodiment, the former 1/3 of the excitation ON time is 2-phase excitation, the middle 1/3 is 1-phase excitation, and the latter 1/3 is 2-phase excitation, thereby strengthening the magnetic path.
  • the circumferential length of the protrusions 21 is the length of the magnets 12 of the stator 1 in the circumferential direction. It is equal to the length of the tip in the circumferential direction, and the rotation angle is 45°.
  • FIG. 18 schematically shows the positional relationship and the magnetic path in a state where the protruding portion 21 of the rotor 2 rotates slightly (x minutes) from FIG. It is a figure represented in .
  • the direction of the arrow is the direction of the lines of magnetic force.
  • a characteristic feature is that the lines of magnetic force from the protrusions 21 of the rotor 2 to the salient poles 11 and from the salient poles 11 to the protrusions 21 are partially fan-shaped.
  • FIG. 19 is a diagram representing the magnetic path of FIG. 18 as a magnetic circuit.
  • R is the magnetic resistance
  • ⁇ 1 is the magnetic flux density of the electromagnet
  • ⁇ 2 is the magnetic flux density of the rotor
  • R1 is the magnetic resistance of the electromagnet
  • R2 is the magnetic resistance of the salient pole 11
  • R3 is the connecting portion.
  • R4 is the magnetic resistance of the rotor 2;
  • R0 is the magnetic resistance of the protrusion 21;
  • Rn is the magnetic resistance of the permanent magnet; It is the attractive force (magnetomotive force) of the magnet.
  • the magnetic resistance from the projection 21 to the salient pole 11 is divided into three, R01 is the magnetic resistance going perpendicularly from the projection 21 to the salient pole 11, and R0H1 and R0H2 are the fan-shaped magnetic resistances.
  • the magnetoresistance on the salient pole side is represented by xR2a, and the magnetoresistance on the fan-shaped side is represented by (1-x)R2a and R2b.
  • Equation (2) ⁇ 2H
  • SOH represents the cross-sectional area on which the sector-shaped magnetic lines of force act.
  • the attractive force of the motor until the protrusion 21 of the rotor 2 overlaps the salient pole 11 is calculated. It generates twice as much torque, indicating that high torque output and high efficiency output are possible.

Abstract

Provided is a highly efficient hybrid SR motor. This reluctance motor has: a stator in which magnets are disposed in gaps where the ends of a plurality of salient poles comprising a magnetic member are adjacent to each other, so as to make contact with the lateral portions of the ends and which has windings for exciting the salient poles; and a rotor which is provided facing the salient poles and has projection portions. The length of a rotor projection in the circumferential direction is equal to the length of the opposing magnets and projections in the circumferential direction. The salient poles have jaw portions formed such that the lateral portions where the magnets are disposed are thicker than the base side where the windings are wound. The ratio between the number of salient poles of the stator and the number of projection portions of the rotor is 4 : 3. The reluctance motor is driven by four-phase drive currents.

Description

リラクタンスモータreluctance motor
 本発明は、リラクタンスモータに関する。 The present invention relates to reluctance motors.
 スイッチドリラクタンスモータ(以下SRモータという)が知られている。本願発明の発明者の荻野らは、リラクタンスモータとして、ステータの磁極にコイルと永久磁石とを備えたハイブリッド型リラクタンスモータを提案している(特許文献1、特許文献2)。提案するハイブリッド型SRモータは、ステータの磁極と磁極との隣接する隙間に永久磁石を配置したリラクタンスモータである。このハイブリッド型SRモータは、直流のパルス電流によって駆動させるもので、制御をディジタルで行うことができ、制御回路をディジタル回路で構成することができる利点がある。また、ロータに高価な永久磁石を使用することないので安価にでき、高トルク出力ができる利点がある。 A switched reluctance motor (hereinafter referred to as an SR motor) is known. Ogino et al., the inventors of the present invention, have proposed, as a reluctance motor, a hybrid reluctance motor in which a coil and a permanent magnet are provided at the magnetic poles of a stator (Patent Documents 1 and 2). The proposed hybrid SR motor is a reluctance motor in which permanent magnets are arranged in gaps between adjacent magnetic poles of the stator. This hybrid type SR motor is driven by a DC pulse current, and has the advantage that it can be controlled digitally and the control circuit can be composed of a digital circuit. In addition, since expensive permanent magnets are not used in the rotor, there is an advantage that the cost can be reduced and high torque can be output.
特開2003-17314号公報JP-A-2003-17314 特許第4383058号公報Japanese Patent No. 4383058
 上記のハイブリッド型SRモータは、永久磁石の磁束とコイルによって励磁された磁束をうまく利用して高効率(高トルク)を実現できるモータであるが、さらなる高効率のSRモータの実現が求められている。 The above-mentioned hybrid SR motor is a motor that can achieve high efficiency (high torque) by making good use of the magnetic flux of the permanent magnet and the magnetic flux excited by the coil. there is
 本発明は、かかる問題に鑑みてなされたものであり、その目的とするところは、さらに高効率なSRモータを提供しようとするものである。 The present invention has been made in view of this problem, and its object is to provide an SR motor with even higher efficiency.
 上記課題を解決するために、本発明の第1の観点によると、磁性部材からなる複数の突極の先端が隣接する隙間に磁石を前記先端の横部に接するように配置し、前記突極を励磁するための巻線を有するステータと、前記突極に対向して設けられる突起部を有するロータとを有するリラクタンスモータであって、前記ロータの前記突起部の周方向の長さは、前記ステータの前記磁石の周方向の長さおよび前記突極のロータに対向する周方向の長さと等しく、前記突極は、前記磁石が配置された横部が、前記巻線が施される基部側より太く形成された顎部を有し、前記ステータの突極数と前記ロータの突起部数の比は、4:3であり、駆動相数が4である、ことを特徴とする。 In order to solve the above problems, according to a first aspect of the present invention, a magnet is arranged in a gap between the tips of a plurality of salient poles made of a magnetic member so as to be in contact with the lateral parts of the tips, and the salient poles and a rotor having projections provided facing the salient poles, wherein the length of the projections of the rotor in the circumferential direction is equal to the The circumferential length of the magnet of the stator and the circumferential length of the salient pole facing the rotor are equal, and the horizontal portion of the salient pole where the magnet is arranged is the base side where the winding is applied. It has a thicker jaw, the ratio of the number of salient poles of the stator to the number of protrusions of the rotor is 4:3, and the number of drive phases is four.
 また、本発明の他の側面は、上述の発明に加えて更に、前記顎部は、ロータ側の周方向の幅と、基部側の周方向の幅との比は、1対1であり、前記顎部の径方向の長さは、前記突極の径方向の長に対して、ほぼ、0.25である、ことが好ましい。 According to another aspect of the present invention, in addition to the above-described invention, the ratio of the circumferential width on the rotor side to the circumferential width on the base side of the jaw is 1:1, Preferably, the radial length of the jaws is approximately 0.25 with respect to the radial length of the salient poles.
 また、本発明の他の側面は、上述の発明に加えて更に、前記ステータの突極数は12であり、前記ロータの突起部数は9である、ことが好ましい。 Further, in another aspect of the present invention, in addition to the above invention, it is preferable that the number of salient poles of the stator is 12 and the number of projections of the rotor is 9.
 また、本発明の他の側面は、上述の発明に加えて更に、前記ステータの突極は、4相の励磁電流により励磁され、一つの相の突極は、当該突極の励磁時間の前半は、隣接する一方の突極の励磁と重複して励磁され、励磁時間の後半は、隣接する他方の突極の励磁と重複して励磁され、励磁時間の中間は、両隣の突極の励磁とは重複せずに単独に励磁される、ことが好ましい。 In another aspect of the present invention, in addition to the above-described invention, the salient poles of the stator are excited by four-phase excitation currents, and the salient poles of one phase are excited in the first half of the excitation time of the salient poles. is excited by overlapping excitation of one adjacent salient pole, during the second half of the excitation time, it is excited by overlapping excitation of the other adjacent salient pole, and during the middle of the excitation time, excitation of both adjacent salient poles is preferably excited independently without overlapping with .
 本発明によると、従来のSRモータに比較して、5から6倍以上の高トルク出力が期待できる高効率なリラクタンスモータを提供することが可能である。 According to the present invention, it is possible to provide a highly efficient reluctance motor that can be expected to produce a torque output that is 5 to 6 times higher than that of a conventional SR motor.
本発明の第1の実施の形態に係るリラクタンスモータのステータ鉄心部分とロータ鉄心部分の平面図である。1 is a plan view of a stator core portion and a rotor core portion of a reluctance motor according to a first embodiment of the present invention; FIG. ステータの突極の形状を示す平面図である。FIG. 4 is a plan view showing the shape of salient poles of the stator; ロータが0°の状態の磁路を示す図である。FIG. 4 is a diagram showing a magnetic path when the rotor is at 0°; ロータが5°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state where the rotor rotated 5 degrees. ロータが10°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state where the rotor rotated 10 degrees. ロータが15°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 15 degrees. ロータが20°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state where the rotor rotated 20 degrees. 第1の実施の形態の励磁パルスを示すタイムチャートである。4 is a time chart showing excitation pulses in the first embodiment; ロータが17.5°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 17.5 degrees. 図9の一部の磁路を摸式図として示す図である。FIG. 10 is a diagram showing a part of the magnetic path of FIG. 9 as a schematic diagram; ロータが16°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 16 degrees. ロータが19°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 19 degrees. 本発明の第2の実施の形態に係るリラクタンスモータの磁路を示す図であり、ロータが0°回転した状態の磁路を示す図である。FIG. 8 is a diagram showing the magnetic path of the reluctance motor according to the second embodiment of the present invention, and showing the magnetic path when the rotor is rotated by 0°; ロータが7.5°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 7.5 degrees. ロータが15°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 15 degrees. ロータが22.5°回転した状態の磁路を示す図である。It is a figure which shows the magnetic path in the state which the rotor rotated 22.5 degrees. 第2の実施の形態の励磁パルスを示すタイムチャートである。9 is a time chart showing excitation pulses in the second embodiment; 図16からロータが少し回転した位置でのB相、C相の突極とロータとの位置関係と磁路を示す図である。17 is a diagram showing the positional relationship between salient poles of B-phase and C-phase and the rotor and magnetic paths at a position where the rotor is slightly rotated from FIG. 16; FIG. 図18の磁路を磁気回路として表した図である。19 is a diagram showing the magnetic path of FIG. 18 as a magnetic circuit; FIG. 図18に対応する従来のSRモータの突極とロータの位置関係と磁路を示す図である。FIG. 19 is a diagram showing the positional relationship and magnetic path between the salient poles and the rotor of the conventional SR motor corresponding to FIG. 18; 図20の磁路を磁気回路として表した図である。21 is a diagram showing the magnetic path of FIG. 20 as a magnetic circuit; FIG. 磁気回路解析で第2の実施形態のHBSRモータのトルクと従来のSRモータのトルクとを計算した例である。It is an example of calculating the torque of the HBSR motor of the second embodiment and the torque of the conventional SR motor by magnetic circuit analysis.
 以下図面を参照して、本発明の実施の形態を説明する。
 図1は、本発明の第1の実施の形態のリラクタンスモータの断面を表したものである。この第1の実施の形態のリラクタンスモータは、SRモータとハイブリッド型磁石を応用したもので、以下HBSRモータと称する。このHBSRモータは、ステータ1とロータ2とを有している。この第1の実施形態のHBSRモータは、ステータ1が、12個の突極(ティース)、ロータ2が、9個の突起部(ティース)を有する例である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a cross section of a reluctance motor according to a first embodiment of the invention. The reluctance motor of the first embodiment applies an SR motor and a hybrid magnet, and is hereinafter referred to as an HBSR motor. This HBSR motor has a stator 1 and a rotor 2 . The HBSR motor of the first embodiment is an example in which the stator 1 has 12 salient poles (teeth) and the rotor 2 has 9 protrusions (teeth).
 ステータ1は、12個の突極11a~11lと、各突極11a~11lの先端の横部と隣接する突極の横部との隙間に配置される12個の磁石12a~12lと、各突極11a~11lの根元側にコイルを巻くことで設置される12個の巻線13a~13lとを有している。そして、各突極11a~11lの根元は、バックヨークに当たる連結部14により周方向に連結されている。以下、突極11a~11l、磁石12a~12l、巻線13a~13lのそれぞれについて、特定の突極、磁石、および巻線を意味しないときは、突極11、磁石12、および巻線13と称する。 The stator 1 includes 12 salient poles 11a to 11l, 12 magnets 12a to 12l arranged in gaps between the lateral portions of the tips of the salient poles 11a to 11l and the lateral portions of the adjacent salient poles. It has 12 windings 13a-13l which are installed by winding coils around the root sides of the salient poles 11a-11l. Roots of the respective salient poles 11a to 11l are connected in the circumferential direction by a connecting portion 14 corresponding to the back yoke. Hereinafter, salient poles 11a to 11l, magnets 12a to 12l, and windings 13a to 13l will be referred to as salient poles 11, magnets 12, and windings 13, respectively, when specific salient poles, magnets, and windings are not meant. called.
 ステータ1の突極11を形成するステータ素材は、高透磁率材料の軟磁性材料からなる。例えば、飽和磁束密度が極めて高い軟鉄の薄板が積層された材料などが使用される。 The stator material forming the salient poles 11 of the stator 1 is made of a soft magnetic material with a high magnetic permeability. For example, a material in which soft iron thin plates with extremely high saturation magnetic flux density are laminated is used.
 磁石12は、ロータ2に対向する面の径方向の長さが、突極11の先端の径方向長さと同一または若干小さくされた逆台形あるいは矩形の形状としている。また、この磁石12は、ネオジウムを使用した残留磁束密度が高い希土類磁石で、隣り合う磁石12の対向する磁極が同極となるように着磁されており、その磁極が突極11の先端の横部に接するように配置されている。すなわち、一つの突極11aについてみるに、その両隣の突極11b、11lとの間では、自極側がN、他極側がSとなるように、逆に隣の突極11bは、自極側がS、他極側がNとなるように、着磁された磁石が設けられている。各磁石12のモータの周方向の長さ(隣接する突極との距離になる)は、突極11の先端の周方向の長さと等しく構成されている。磁石12の固定は、接着剤などで突極11に接着させている。なお、磁石12としては、ネオジウム磁石以外の、サマリウムコバルト磁石やフェライト等の永久磁石を用いることもできる。 The magnet 12 has an inverted trapezoidal or rectangular shape in which the radial length of the surface facing the rotor 2 is the same as or slightly smaller than the radial length of the tip of the salient pole 11 . The magnets 12 are made of neodymium and have a high residual magnetic flux density. It is arranged so as to be in contact with the lateral part. That is, when looking at one salient pole 11a, between the salient poles 11b and 11l on both sides thereof, N is on the own pole side and S on the other pole side. A magnet that is magnetized is provided so that S is on the other pole side and N is on the other pole side. The length of each magnet 12 in the circumferential direction of the motor (the distance between adjacent salient poles) is equal to the length of the tip of the salient pole 11 in the circumferential direction. The magnet 12 is fixed by adhering it to the salient pole 11 with an adhesive or the like. In addition to the neodymium magnet, a permanent magnet such as a samarium-cobalt magnet or ferrite can also be used as the magnet 12 .
 巻線13は、それぞれ、ステータ1の連結部14側からは突極11の先端に向かって同一方向にコイルが巻かれることで形成される。コイルのターン数は、100~200程度とされる。コイルの巻き方向は、突極11の先端側を起点として連結部14側に向けて巻くようにしてもよい。巻き方は、整列巻きが好ましいが、他の巻き方であってもよい。また、同相の励磁パルス電流を流した場合に、隣接する突極ごとに磁極が逆転するように、交互に巻線方向が異なるようにしてもよい。 The windings 13 are formed by winding coils in the same direction from the coupling portion 14 side of the stator 1 toward the tip of the salient poles 11 . The number of turns of the coil is about 100-200. As for the winding direction of the coil, the coil may be wound from the distal end side of the salient pole 11 toward the connecting portion 14 side. The winding method is preferably aligned winding, but other winding methods may be used. Alternatively, the winding directions may alternately differ so that the magnetic poles are reversed for each adjacent salient pole when the same phase excitation pulse current is applied.
 ロータ2は、9個の突起部21a~21iを有している。また、中心は、モータの回転軸23を有している。なお、以下では、突起部21について個別のものを指示する場合は、突起部21a~21iのいずれかの符号を利用することとする。この突起部21は、極歯となるもので、突極11と対向することで、磁束の流れに安定点をもたらすものである。各突起部21の周方向の長さは、機械的角度で15度の範囲にわたる大きさとなっており、対向するステータ1の各磁石12、突極11の周方向の長さとほぼ等しいものとなっている。 The rotor 2 has nine protrusions 21a to 21i. The center also has the rotation axis 23 of the motor. In the following description, any one of the projections 21a to 21i will be used when an individual projection 21 is designated. The projecting portion 21 serves as a pole tooth, and by facing the salient pole 11, provides a stable point for the flow of magnetic flux. The circumferential length of each protrusion 21 has a size that covers a mechanical angle of 15 degrees, and is substantially equal to the circumferential length of each magnet 12 and salient pole 11 of the stator 1 facing each other. ing.
 ロータ2の鉄心材料としては、飽和磁束密度が大きい磁性材料が使用される。たとえば、珪素鋼板の薄板を積層したものが使用される。また、軟鉄やパーマロイ等他の軟磁性材料としてもよい。 A magnetic material with a high saturation magnetic flux density is used as the iron core material of the rotor 2 . For example, a lamination of thin silicon steel plates is used. Other soft magnetic materials such as soft iron and permalloy may also be used.
 ここで、図2に一つの突極11の形状を示して、ステータ1の一つの突極11の形状を示して、顎部112を説明する。顎部112は、突極11のロータ2に対向する先端部分の磁石が配置される横部が、巻線13が巻かれる部分より幅が太くなっている形状を示す。この先端部分の幅と、連結部14に連結される基部側の幅との比は、ステータの突極11が12個、ロータの突起部21が9個の場合、A対Bの比が1:0.8~1:0.66である。また、顎部112の径方向の長さCと巻線が施される基部側の長さDとの比は、このステータの突極数が12、ロータの突起数が9の場合、約1:4程度である。ステータの突極数が増えると、Dの長さが小さくなり、磁石12の径方向の長さも短くなるが、全体としての磁石の量は減らない。 Here, the shape of one salient pole 11 of the stator 1 is shown in FIG. 2, and the jaw portion 112 will be explained. The jaw part 112 has a shape in which the width of the lateral part of the tip of the salient pole 11 facing the rotor 2 where the magnet is arranged is wider than the part around which the winding 13 is wound. The ratio of the width of the tip portion to the width of the base portion connected to the connecting portion 14 is 1 when the stator has 12 salient poles 11 and the rotor has 9 protrusions 21. : 0.8 to 1:0.66. Further, the ratio of the radial length C of the jaw 112 to the length D of the base side where the winding is applied is about 1 when the number of salient poles of the stator is 12 and the number of projections of the rotor is 9. : about 4. As the number of salient poles of the stator increases, the length of D decreases and the radial length of the magnets 12 also decreases, but the amount of magnets as a whole does not decrease.
 ここで、ステータの突極11が励磁されていない状態では、各磁石12により、ステータの突極11から連結部14を通った閉磁路を形成している。SBSRモータは、励磁された突極11が形成するメインの磁路と、各磁石が形成する磁路とが協働してロータ2に回転動作を与えるところに特徴がある。 Here, when the salient poles 11 of the stator are not excited, each magnet 12 forms a closed magnetic path from the salient poles 11 of the stator through the connecting portion 14 . The SBSR motor is characterized in that the main magnetic path formed by the excited salient poles 11 and the magnetic paths formed by the respective magnets cooperate to give the rotor 2 a rotational motion.
 以下、図3から図7に、第1の実施の形態のHBSRモータのロータの回転状態(シフト状態)で形成されたステータ1とロータ2とがなす磁路を示し、図8にステータの突極11a~11lに対する励磁パルス電流のタイムチャートを示して動作を説明する。なお、磁路を示すため、図面では巻線の部分は省略している。 3 to 7 show magnetic paths formed by the stator 1 and the rotor 2 in the rotating state (shifted state) of the rotor of the HBSR motor according to the first embodiment, and FIG. The operation will be described with reference to time charts of exciting pulse currents for the poles 11a to 11l. In order to show the magnetic path, the winding portion is omitted in the drawing.
 図3は、図8のパルス波形で、0°で示す状態でのロータ2とステータ1とが構成する磁路を説明するものである。このとき、突極11の電磁石は、A相とB相とが励磁されており、A相とB相が作る磁路がメインの磁路になる。磁力線の方向は、A相の突極11からエアギャップを介してロータ2を通過して、B相の突極11に戻り、連結部14を通って、A相の突極11に戻る閉磁路を生成している。このメインの閉磁路を図3では、太線で表す。ここで、C相、D相は励磁されていないが、突極11間に磁石12が挿入されており、その磁石(D-C間の磁石)の磁力線は、突極11とロータ2の突起21との間には、エアギャップがあるので、ロータ2には向かわずに、ステータ1内で閉磁路を形成している。この励磁されていない相の磁石が作る閉磁路を図3では、細い線で表す。 FIG. 3 is the pulse waveform of FIG. 8 and explains the magnetic path formed by the rotor 2 and the stator 1 in the state shown at 0°. At this time, the electromagnets of the salient poles 11 are excited in phases A and B, and the magnetic path formed by the phases A and B becomes the main magnetic path. The direction of the magnetic force line is a closed magnetic path that passes through the rotor 2 from the A-phase salient pole 11 through the air gap, returns to the B-phase salient pole 11, passes through the connecting portion 14, and returns to the A-phase salient pole 11. is generating This main closed magnetic circuit is represented by a thick line in FIG. Here, the C phase and D phase are not excited, but the magnet 12 is inserted between the salient poles 11, and the magnetic force line of the magnet (magnet between D and C) 21, a closed magnetic path is formed within the stator 1 without facing the rotor 2 because there is an air gap between them. The closed magnetic circuit formed by the magnets of this non-excited phase is represented by a thin line in FIG.
 図4は、図8で5°の状態のロータ2とステータ1とがなす磁路を示すものである。ロータ2は、5°時計周りに回転している。励磁されている突極11は、0°の時と同じで、A相とB相であるので、磁力線の方向は、0°と同じであり、磁石12の磁力線も同じである。 FIG. 4 shows the magnetic path formed by the rotor 2 and stator 1 in the state of 5° in FIG. The rotor 2 has rotated 5° clockwise. The energized salient poles 11 are the same as at 0°, that is, the A phase and the B phase, so the direction of the magnetic lines of force is the same as at 0°, and the magnetic lines of force of the magnet 12 are also the same.
 図5は、図8で10°の状態のロータ2とステータ1とがなす磁路を示すものである。ロータ2は0°の位置から10°回転しており、このときは、図8のパルス波形が示すように、突極11の電磁石は、A相とD相とが励磁されている。この状態では、メインの磁路は、A相の突極11からロータ2を通って、D相の突極11へ入り、連結部14を通ってA相の突極11へ戻る閉磁路を形成している。 FIG. 5 shows the magnetic path formed by the rotor 2 and stator 1 in the state of 10° in FIG. The rotor 2 has rotated 10 degrees from the position of 0 degrees, and at this time, the electromagnets of the salient poles 11 are excited in phases A and D, as shown by the pulse waveforms in FIG. In this state, the main magnetic path forms a closed magnetic path from the A-phase salient pole 11 through the rotor 2, into the D-phase salient pole 11, and back to the A-phase salient pole 11 through the connecting portion 14. are doing.
 図6は、図8で、15°で示す状態のロータ2とステータ1とがなす磁路を示している。このとき、突極11の電磁石は、A相とD相とが励磁されており、ロータ2の突起21は、ステータ1の突極11のうち、A相で励磁された突極11に正対している。このときは、メインの磁路の磁力線は、図6に示すように、A相の突極11からロータ2の突起21とのエアギャップを介してロータ2を通過し、D相の突極11に戻り、連結部14を通って、A相の突極11と閉磁路を形成する。また、励磁していないB相の突極とC相の突極では、磁石12の磁力線は、ロータ2に向かわずにステータ1内で閉磁路を形成している。 FIG. 6 shows the magnetic path formed by the rotor 2 and stator 1 in the state indicated by 15° in FIG. At this time, the electromagnets of the salient poles 11 are excited in the A phase and the D phase, and the projections 21 of the rotor 2 face the salient poles 11 excited by the A phase among the salient poles 11 of the stator 1. ing. At this time, as shown in FIG. , and forms a closed magnetic circuit with the A-phase salient pole 11 through the connecting portion 14 . In addition, in the non-excited B-phase salient poles and C-phase salient poles, the lines of magnetic force of the magnets 12 do not face the rotor 2 and form a closed magnetic path within the stator 1 .
 図7は、図8で、20°の状態のロータ2とステータ1とがなす磁路を示している。このとき、突極11の電磁石は、D相とC相が励磁しており、メインの磁路の磁力線は、C相の突極11からロータ2とのエアギャップを介してD相の突極11に入り,C相の突極11に戻る閉磁路を形成している。励磁していないA相の突極11とB相の突極11の磁石が作る磁力線は、ステータ1内で閉磁路を形成している。 FIG. 7 shows the magnetic path formed by the rotor 2 and stator 1 in the state of 20° in FIG. At this time, the electromagnet of the salient pole 11 is excited by the D-phase and the C-phase, and the magnetic line of force of the main magnetic path extends from the salient pole 11 of the C-phase through the air gap with the rotor 2 to the salient pole of the D-phase. 11 and returns to the salient pole 11 of the C phase. Magnetic lines of force formed by the magnets of the non-excited A-phase salient poles 11 and the B-phase salient poles 11 form a closed magnetic circuit within the stator 1 .
 ここで、本実施の形態での電磁石の励磁タイミング制御による磁路強化を説明する。
 図8は、励磁パルス電流のタイムチャートを示す。この図8に示す励磁パルス電流は、A、B、C、D相が交互に逆相の電流が巻線13に流れるものとなっている。これは、各突極11の巻線13が同一方向に巻かれている場合の励磁パルス電流の例であり、励磁パルスで励磁されると、突極11の先端は、N、S、・・と交互に異なる磁極に励磁される。なお、巻線方向が交互に異なる方向に巻かれている場合は、図8の励磁パルス電流は、同相の励磁パルス電流であれば同じ励磁となる。
Here, the strengthening of the magnetic path by controlling the excitation timing of the electromagnet in this embodiment will be described.
FIG. 8 shows a time chart of the excitation pulse current. The excitation pulse current shown in FIG. 8 is such that a reverse-phase current flows through the winding 13 alternately in the A, B, C, and D phases. This is an example of an excitation pulse current when the windings 13 of the salient poles 11 are wound in the same direction. alternately with different magnetic poles. When the winding direction is alternately wound in different directions, the excitation pulse current in FIG. 8 becomes the same excitation if the excitation pulse current has the same phase.
 図8の励磁タイミングのタイムチャートが示すように、各相の励磁オン時間は、15°、励磁オフ時間は、25°となっている。励磁オン時間の15°を5°ずつ前中後に分けてみていくと、前5°は、2相励磁、中5°は1相励磁、後5°は2相励磁になっている。 As shown in the excitation timing time chart of FIG. 8, the excitation ON time of each phase is 15°, and the excitation OFF time is 25°. Dividing the 15° excitation ON time into front, middle, and back by 5°, the front 5° is two-phase excitation, the middle 5° is one-phase excitation, and the rear 5° is two-phase excitation.
 D相についてみると、前5°の間は、A相とオーバーラップし、後5°の間は、C相とオーバーラップしているが、中5°の間は、どこの相ともオーバーラップしていない。この中5°の間は、A相が励磁オフとなったタイミングと、C相が励磁オンになったタイミングの間に位置する。このタイミングでは、前5°、後5°の2相励磁に対して、1相励磁なので、巻線には2倍の電流が流れる。すなわち、それまで、2相に流れていた電流が1相になることで、中5°の期間は、1相に2倍の電流が流れる込むことになる。 Regarding the D phase, it overlaps with the A phase for the front 5°, overlaps with the C phase for the rear 5°, but overlaps with any phase for the middle 5°. not. The 5° interval is located between the timing when the excitation of the A phase is turned off and the timing when the excitation of the C phase is turned on. At this timing, two-phase excitation of 5 degrees forward and 5 degrees backward is one-phase excitation, so the current flows twice as much in the windings. In other words, the current that has flowed in two phases until then becomes one phase, so that twice the current flows in one phase during the middle 5° period.
 このときの磁路の様子を説明する。図9は、17.5°の回転状態での磁路を示す。A相,B相,C相は、励磁オフなので、磁石の磁力線のふるまいが図3から図7の2相励磁の場合と異なっている。A相については、AB間の磁石のN極(回転方向であるのでAcwNと称する)は、AB間の磁石のS極(反回転方向なのでBccwSと称する)と連結部14を通って閉磁路を構成する。AccwNは、顎部からエアギャップを介してロータ2の突起部21を通り、DcwSと閉磁路を構成すると同時に、励磁オン状態のD相の電磁石と合流し、連結部14を通り、B相のBccwSと閉磁路を構成する。CcwNは、連結部14を通って、BcwSと閉磁路を構成する。CccwNは、顎部からエアギャップを介してロータの突起部21を通り、DccwSと閉磁路を構成すると同時に、励磁オン状態のD相の電磁石と合流し、連結部14を通り,B相のBcwSと閉磁路を構成する。 I will explain the state of the magnetic path at this time. FIG. 9 shows the magnetic path at 17.5° rotation. Since phases A, B, and C are not excited, the behavior of the magnetic lines of force of the magnets differs from that in the case of two-phase excitation shown in FIGS. Regarding the A phase, the N pole of the magnet between AB (referred to as AcwN because it is in the rotating direction) passes through the S pole of the magnet between AB (referred to as BccwS because it is in the opposite direction of rotation) and the connecting portion 14 to form a closed magnetic path. Configure. AccwN passes from the jaw through the air gap to the projection 21 of the rotor 2, forms a closed magnetic path with DcwS, joins the D-phase electromagnet in the excitation ON state, passes through the connecting portion 14, and passes through the B-phase. BccwS and a closed magnetic circuit are formed. CcwN forms a closed magnetic circuit with BcwS through the connecting portion 14 . CccwN passes from the jaw through the air gap to the protrusion 21 of the rotor, forms a closed magnetic path with DccwS, joins the D-phase electromagnet in the excitation ON state, passes through the connecting portion 14, and passes through the B-phase BcwS. and form a closed magnetic circuit.
 ここで、ロータ2の突起部21は、まだC相の突極に、約2.5°届いていない。D相が励磁状態であるため、A相の磁石AccwNとC相の磁石CccwNは、強制的にD相に引き込まれることになる。このとき、A相とロータ2の位置関係では、法線ベクトルが強く、接線ベクトルは弱いの対して、C相とロータ2の位置関係では、法線ベクトルではなく、D相とロータ2の位置関係からしても、C相の接線ベクトルとの和により、A相のブレーキ役となる接線ベクトルよりも回転方向の接線ベクトルが強くなる。また、ステータの突極は、顎部があることで、AccwNとCccwNは、それぞれ対向するAcwNとCcwNに引きずられることがないので、その磁力線は、連結部14を通って閉磁路を構成することはない。このときの磁路を図10に模式図として示す。 Here, the protrusion 21 of the rotor 2 has not yet reached the C-phase salient pole by about 2.5°. Since the D-phase is in an excited state, the A-phase magnet AccwN and the C-phase magnet CccwN are forcibly attracted to the D-phase. At this time, in the positional relationship between the A phase and the rotor 2, the normal vector is strong and the tangential vector is weak. Also from the relationship, the sum with the tangent vector of the C phase makes the tangent vector in the rotational direction stronger than the tangent vector acting as a brake of the A phase. In addition, since the salient poles of the stator have jaws, AccwN and CccwN are not dragged by the facing AcwN and CcwN, respectively, so that the magnetic lines of force pass through the connecting portion 14 to form a closed magnetic path. no. The magnetic path at this time is shown in FIG. 10 as a schematic diagram.
 さらに、上記17.5°回転する前の16°、回転した後の19°のときの磁路について検討する。
 16°の状態は、A相が、励磁オフになった直後の状態で、19°は、C相が励磁オンになる直前の状態である。16°でのA相は、D相の励磁による磁力線の流れ込みによって、AccwNとAcwNは、それぞれ強制的にエアギャップを介して、ロータ2を通り、DcwSおよびDccwSと閉磁路を構成する。このときのステータ1とロータ2の位置関係においては、A相のccw接線ベクトルよりもD相のcw接線ベクトルの方が強くなる。この16°のときの磁路を図11に示す。
Further, the magnetic path at 16° before the 17.5° rotation and at 19° after the rotation will be examined.
The state of 16° is the state immediately after the excitation of the A phase is turned off, and the state of 19° is the state immediately before the excitation of the C phase is turned on. The A-phase at 16° is forcibly passed through the rotor 2 through the air gap by the inflow of magnetic lines of force due to the excitation of the D-phase, and forms a closed magnetic circuit with DcwS and DccwS. In the positional relationship between the stator 1 and the rotor 2 at this time, the cw tangent vector of the D phase is stronger than the ccw tangent vector of the A phase. FIG. 11 shows the magnetic path at 16°.
 19°では、A相とロータ2との位置関係は、4°のccw接線ベクトルで、D相とロータ2の位置関係は、6°のcw接線ベクトルになる。C相とロータ2の位置関係は、1°ロータ2に届いていないが、十分にCccwNは、DcwSと閉磁路を構成できる。これにより、19°においても、D相とA相、C相の位置関係により、cw接線ベクトルの方が強くなり、磁路が強化される。この19°の時の磁路を図12に示す。 At 19°, the positional relationship between the A phase and the rotor 2 is a 4° ccw tangent vector, and the positional relationship between the D phase and the rotor 2 is a 6° cw tangent vector. Although the positional relationship between the C-phase and the rotor 2 does not reach the rotor 2 by 1°, CccwN can sufficiently form a closed magnetic circuit with DcwS. As a result, even at 19°, the cw tangent vector becomes stronger due to the positional relationship between the D phase, the A phase, and the C phase, and the magnetic path is strengthened. FIG. 12 shows the magnetic path at 19°.
 このように、一つの相の励磁オンタイミングの15°のうち、5°のタイミング間は、励磁タイミングはオーバーラップしていないが、励磁タイミング15°のうち、励磁タイミングオフのB相、C相の磁石の磁力線がメインの磁路を強化すると考えられる。 In this way, the excitation timings do not overlap during 5° of the 15° of the excitation on timing of one phase, but the excitation timings of the B and C phases of the 15° of the excitation timing are off. It is believed that the magnetic field lines of the magnet strengthen the main magnetic path.
 以上説明したように、ステータの突極数が12個、ロータ2の突起数が9個で、4相の励磁パルス電流で、A、B、C、Dと2相ずつ、5°の期間、オーバーラッピングし、中間の5°の期間では1相のみの励磁とし、15°励磁オン、25°励磁オフで駆動タイミング制御をすることで、磁路強化がされた駆動ができ、高トルク出力、高効率の出力が可能となった。 As described above, the number of salient poles of the stator is 12 and the number of projections of the rotor 2 is 9, and the excitation pulse current of four phases is A, B, C, and D, two phases each, for a period of 5°, By overlapping, only one phase is excited during the intermediate 5° period, and by controlling the drive timing at 15° excitation ON and 25° excitation OFF, it is possible to drive with a strengthened magnetic path, high torque output, Highly efficient output is now possible.
 つぎに、本発明の第2の実施の形態を説明する。
 第2の実施の形態は、ステータ1の突極11の突極数が8個、ロータの突起部数が6個のSRモータであり、これを4相で駆動制御するものである。
Next, a second embodiment of the invention will be described.
The second embodiment is an SR motor in which the stator 1 has eight salient poles 11 and the rotor has six protrusions, and is driven and controlled in four phases.
 図13~図16は、ステータ1の突極数が8個、ロータ2の突起部数が6個のSRモータのロータの回転状態における磁気回路を示すものであり、図13は、0°、図14は、7.5°、図15は、15°、図16は、22.5°の時の磁力線を示すものである。そして、図17は、この第2の実施の形態における励磁パルスのタイムチャートを示す。 13 to 16 show magnetic circuits in the rotating state of the rotor of an SR motor in which the stator 1 has eight salient poles and the rotor 2 has six projections. 14 shows magnetic lines of force at 7.5°, FIG. 15 at 15°, and FIG. 16 at 22.5°. FIG. 17 shows a time chart of excitation pulses in this second embodiment.
 この、ステータ1の突極数が8、ロータ2の突起部数が6の場合、ロータの突起部21の周方向の長さは、ステータの磁石の周方向の長さに等しく、回転角度で22.5°である。そして、励磁パルス電流の励磁オン時間は、22.5°、励磁オフ時間は、37.5°になる。
 この実施の形態においても、励磁オン時間の前半1/3は、2相励磁、中間の1/3は、1相励磁、後半の1/3は2相励磁となり、磁路強化が行われる。
When the stator 1 has 8 salient poles and the rotor 2 has 6 projections, the circumferential length of the rotor projections 21 is equal to the circumferential length of the stator magnets, and the rotation angle is 22. .5°. The excitation pulse current has an excitation ON time of 22.5° and an excitation OFF time of 37.5°.
Also in this embodiment, the former 1/3 of the excitation ON time is 2-phase excitation, the middle 1/3 is 1-phase excitation, and the latter 1/3 is 2-phase excitation, thereby strengthening the magnetic path.
 さらに、ステータ1の突極数が4、ロータ2の突起部数が3の場合には、突起部21の周方向の長さは、ステータ1の磁石12の周方向の長さ、突極11の先端の周方向の長さに等しく、回転角度で45°になる。 Furthermore, when the stator 1 has four salient poles and the rotor 2 has three protrusions, the circumferential length of the protrusions 21 is the length of the magnets 12 of the stator 1 in the circumferential direction. It is equal to the length of the tip in the circumferential direction, and the rotation angle is 45°.
 上述のように、4相駆動の場合、ステータ1の突極数12、ロータ2の突起部数が9では、メインの磁路は、3つであるが、突極数が4、突起部数が3の場合には、メインの磁路は、1つ、突極数が8、突起部数が6の場合は、メインの磁路は2である。突極数が16、突起部数が12の場合は、メインの磁路数は4と増加する。 As described above, in the case of four-phase drive, when the stator 1 has 12 salient poles and the rotor 2 has 9 protrusions, there are three main magnetic paths. In the case of , there is one main magnetic path, and in the case of eight salient poles and six projections, there are two main magnetic paths. When the number of salient poles is 16 and the number of protrusions is 12, the number of main magnetic paths increases to 4.
 図16の22.5°からロータ2が若干回転(x)した状態の時の磁気回路の解析例を説明する。図18は、図16からロータ2の突起部21が若干回転(x分)して、ステータ1のB相とC相の突極11と一部重なった状態の位置関係と磁路を模式的に表した図である。矢印方向が磁力線の方向になる。特徴的なことは、ロータ2の突起部21から突極11、突極11から突起部21への磁力線が一部扇形に向かうようになっていることである。 An analysis example of the magnetic circuit when the rotor 2 is slightly rotated (x) from 22.5° in FIG. 16 will be described. FIG. 18 schematically shows the positional relationship and the magnetic path in a state where the protruding portion 21 of the rotor 2 rotates slightly (x minutes) from FIG. It is a figure represented in . The direction of the arrow is the direction of the lines of magnetic force. A characteristic feature is that the lines of magnetic force from the protrusions 21 of the rotor 2 to the salient poles 11 and from the salient poles 11 to the protrusions 21 are partially fan-shaped.
 図19は、図18の磁路を磁気回路として表した図である。ここで、Rは、磁気抵抗であり、φ1は、電磁石の磁束密度、φ2は、ロータの磁束密度、R1は、電磁石の磁気抵抗、R2は、突極11の磁気抵抗、R3は、連結部14の磁気抵抗、R4はロータ2の磁気抵抗、R0は、突起部21の磁気抵抗、Rnは、永久磁石の磁気抵抗、F1、F2は、電磁石の吸引力(起磁力)、Fnは、永久磁石の吸引力(起磁力)である。この磁気回路では、突起部21から突極11への磁気抵抗を、3つに分け、突起部21から突極11へ垂直にいく磁気抵抗をR01、扇形の磁気抵抗をR0H1、R0H2、対応する突極側の磁気抵抗をxR2a、扇形の磁気抵抗を(1-x)R2a、R2bとして表している。 FIG. 19 is a diagram representing the magnetic path of FIG. 18 as a magnetic circuit. Here, R is the magnetic resistance, φ1 is the magnetic flux density of the electromagnet, φ2 is the magnetic flux density of the rotor, R1 is the magnetic resistance of the electromagnet, R2 is the magnetic resistance of the salient pole 11, and R3 is the connecting portion. R4 is the magnetic resistance of the rotor 2; R0 is the magnetic resistance of the protrusion 21; Rn is the magnetic resistance of the permanent magnet; It is the attractive force (magnetomotive force) of the magnet. In this magnetic circuit, the magnetic resistance from the projection 21 to the salient pole 11 is divided into three, R01 is the magnetic resistance going perpendicularly from the projection 21 to the salient pole 11, and R0H1 and R0H2 are the fan-shaped magnetic resistances. The magnetoresistance on the salient pole side is represented by xR2a, and the magnetoresistance on the fan-shaped side is represented by (1-x)R2a and R2b.
 この図19に示す磁気回路を数式で表現すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000001
When the magnetic circuit shown in FIG. 19 is expressed by a formula, it is as follows.
Figure JPOXMLDOC01-appb-M000001
 また、従来のSRモータについて、ロータと磁極の位置関係であるときの磁路は、図20のように表され、その磁気回路は、図21に表される。 Also, for a conventional SR motor, the magnetic path when the positional relationship between the rotor and the magnetic poles is as shown in FIG. 20, and the magnetic circuit is shown in FIG.
 ここで、ロータ2の回転に働く磁力線(扇形の磁力線の部分)をφ2Hとして求めると、φ2Hは、数2のように表現される。
Figure JPOXMLDOC01-appb-M000002
Here, when the magnetic lines of force acting on the rotation of the rotor 2 (portion of the sector-shaped magnetic lines of force) are obtained as φ2H, φ2H is expressed as in Equation (2).
Figure JPOXMLDOC01-appb-M000002
 図18のHBSRモータの吸引力FHBSRは、数式中のa、bについて、a=1.35、b=5として求めると、数3のように表される。ここで、SOHは扇形の磁力線が働く断面積を表す。
Figure JPOXMLDOC01-appb-M000003
The attraction force F HBSR of the HBSR motor shown in FIG. Here, SOH represents the cross-sectional area on which the sector-shaped magnetic lines of force act.
Figure JPOXMLDOC01-appb-M000003
 図20のSRモータのφ22と、吸引力FSRとは、以下のように表される。
Figure JPOXMLDOC01-appb-M000004
φ22 of the SR motor in FIG. 20 and the attraction force F SR are expressed as follows.
Figure JPOXMLDOC01-appb-M000004
 そして、連結部14の径を93mm、ロータ2の突起部21までの径を45.8mm、ロータ2の突起部21のない部分の径を35.6mm、突極11の周方向の長さを6mmとして、ロータ2の突起部21が突極11に重なるまでのモータの吸引力を計算すると、図22のようになり、比較すると、本実施形態のHBSRモータの吸引力は少なくとも従来のSRモータの4倍のトルクが発生し、高トルク出力、高効率の出力が可能であることを示している。 Assuming that the diameter of the connecting portion 14 is 93 mm, the diameter of the rotor 2 to the protruding portion 21 is 45.8 mm, the diameter of the portion of the rotor 2 without the protruding portion 21 is 35.6 mm, and the circumferential length of the salient poles 11 is 6 mm. 22, the attractive force of the motor until the protrusion 21 of the rotor 2 overlaps the salient pole 11 is calculated. It generates twice as much torque, indicating that high torque output and high efficiency output are possible.
 1  ステータ
 11 突極
 12 磁石
 13 巻線
 14 連結部
 2  ロータ
 21 突起部
 23 回転軸

 
REFERENCE SIGNS LIST 1 stator 11 salient pole 12 magnet 13 winding 14 connecting portion 2 rotor 21 protrusion 23 rotating shaft

Claims (4)

  1.  磁性部材からなる複数の突極の先端が隣接する隙間に磁石を前記先端の横部に接するように配置し、前記突極を励磁するための巻線を有するステータと、
     前記突極に対向して設けられる突起部を有するロータと
     を有するリラクタンスモータであって、
     前記ロータの前記突起部の周方向の長さは、前記ステータの前記磁石の周方向の長さおよび前記突極のロータに対向する周方向の長さと等しく、
     前記突極は、前記磁石が配置された横部が、前記巻線が施される基部側より太く形成された顎部を有し、
     前記ステータの突極数と前記ロータの突起部数の比は、4:3であり、
     駆動相数が4である、
     ことを特徴とするリラクタンスモータ。
    a stator having windings for exciting the salient poles, in which magnets are arranged in gaps between the tips of a plurality of salient poles made of a magnetic member so as to be in contact with lateral portions of the tips;
    A reluctance motor comprising: a rotor having protrusions provided facing the salient poles,
    the circumferential length of the protrusion of the rotor is equal to the circumferential length of the magnet of the stator and the circumferential length of the salient pole facing the rotor;
    The salient pole has a jaw portion in which a horizontal portion on which the magnet is arranged is thicker than a base portion on which the winding is applied,
    a ratio of the number of salient poles of the stator to the number of protrusions of the rotor is 4:3;
    The number of drive phases is 4,
    A reluctance motor characterized by:
  2.  請求項1に記載のリラクタンスモータであって、
     前記突極のロータ側の先端部の周方向の太さが、基部側の周方向の太さとの比は、1対0.6であり、
     前記顎部の径方向の長さは、前記突極の径方向の長に対して、ほぼ、0.25である、
     ことを特徴とするリラクタンスモータ。
    A reluctance motor according to claim 1,
    The ratio of the circumferential thickness of the rotor-side tip portion of the salient pole to the circumferential thickness of the base portion is 1:0.6,
    the radial length of the jaws is approximately 0.25 with respect to the radial length of the salient poles;
    A reluctance motor characterized by:
  3.  請求項1または2に記載のリラクタンスモータであって、
     前記ステータの突極数は12であり、前記ロータの突起部数は9である、
     ことを特徴とするリラクタンスモータ。
    A reluctance motor according to claim 1 or 2,
    The number of salient poles of the stator is 12, and the number of protrusions of the rotor is 9.
    A reluctance motor characterized by:
  4.  請求項1~3のいずれか1項記載のリラクタンスモータであって、
     前記ステータの前記突極は、4相の励磁電流により励磁され、
     一つの相の突極は、当該突極の励磁時間の前半は、隣接する一方の前記突極の励磁と重複して励磁され、励磁時間の後半は、隣接する他方の前記突極の励磁と重複して励磁され、励磁時間の中間は、両隣の前記突極の励磁とは重複せずに単独に励磁される、
     ことを特徴とするリラクタンスモータ。
    A reluctance motor according to any one of claims 1 to 3,
    The salient poles of the stator are excited by a four-phase excitation current,
    The salient poles of one phase are excited together with the excitation of the adjacent salient pole in the first half of the excitation time of the salient pole, and are excited together with the excitation of the other adjacent salient pole in the second half of the excitation time. Excited in duplicate, and in the middle of the excitation time, it is excited independently without overlapping with the excitation of the salient poles on both sides,
    A reluctance motor characterized by:
PCT/JP2022/028604 2021-08-02 2022-07-25 Reluctance motor WO2023013454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022563339A JP7197960B1 (en) 2021-08-02 2022-07-25 reluctance motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021126683 2021-08-02
JP2021-126683 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023013454A1 true WO2023013454A1 (en) 2023-02-09

Family

ID=85155650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028604 WO2023013454A1 (en) 2021-08-02 2022-07-25 Reluctance motor

Country Status (1)

Country Link
WO (1) WO2023013454A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136150A (en) * 2009-03-23 2009-06-18 Genesis:Kk Reluctance motor
JP2013081350A (en) * 2011-09-30 2013-05-02 Samsung Electro-Mechanics Co Ltd Switched reluctance motor
JP2016013050A (en) * 2014-06-02 2016-01-21 株式会社小松製作所 Rotary electric machine and controller of the same
JP2018011396A (en) * 2016-07-12 2018-01-18 株式会社豊田自動織機 Rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136150A (en) * 2009-03-23 2009-06-18 Genesis:Kk Reluctance motor
JP2013081350A (en) * 2011-09-30 2013-05-02 Samsung Electro-Mechanics Co Ltd Switched reluctance motor
JP2016013050A (en) * 2014-06-02 2016-01-21 株式会社小松製作所 Rotary electric machine and controller of the same
JP2018011396A (en) * 2016-07-12 2018-01-18 株式会社豊田自動織機 Rotary electric machine

Similar Documents

Publication Publication Date Title
JP3071064B2 (en) Permanent magnet type stepping motor
JPS6122476Y2 (en)
JP5232147B2 (en) Stator for drive motor
KR20130118750A (en) Rotor and motor
JP2010500860A5 (en)
TW201112583A (en) Permanent magnet type synchronous motor
JP2012501622A (en) Permanent magnet type stepping motor
JP7197960B1 (en) reluctance motor
WO2023013454A1 (en) Reluctance motor
WO2005022730A1 (en) Electromagnetic actuator
JP2698801B2 (en) Rotating magnetic field type motor
JPH08126279A (en) Brushless dc motor
JP2016144336A (en) Stepping motor and clock
JP3720417B2 (en) Magnet motor
JP6452112B2 (en) Reluctance motor
JPS5822938B2 (en) Reversible rotary motor
JP2005124335A (en) Switched reluctance motor and control method therefor
JP3415816B2 (en) Pulse motor and motor with gear
WO2005069466A1 (en) Stepping motor
KR102622640B1 (en) Magnetic device of double spoke type rotor
JPS63198559A (en) Rotor magnet for motor
JPH0732577B2 (en) Rotary actuator for multi-position control
JPH07118895B2 (en) Rotating electric machine
JPH033456B2 (en)
JP3045935B2 (en) Permanent magnet type stepping motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022563339

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE