WO2023013436A1 - Prediction method, prediction program, prediction device, learning method, learning program, and learning device - Google Patents

Prediction method, prediction program, prediction device, learning method, learning program, and learning device Download PDF

Info

Publication number
WO2023013436A1
WO2023013436A1 PCT/JP2022/028438 JP2022028438W WO2023013436A1 WO 2023013436 A1 WO2023013436 A1 WO 2023013436A1 JP 2022028438 W JP2022028438 W JP 2022028438W WO 2023013436 A1 WO2023013436 A1 WO 2023013436A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching rate
prediction
model
etching
film
Prior art date
Application number
PCT/JP2022/028438
Other languages
French (fr)
Japanese (ja)
Inventor
倫太郎 樋口
光則 中森
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2023540254A priority Critical patent/JPWO2023013436A1/ja
Publication of WO2023013436A1 publication Critical patent/WO2023013436A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present disclosure relates to a prediction method, a prediction program, a prediction device, a learning method, a learning program, and a learning device.
  • chemical liquid screening is performed to understand the etching characteristics of unknown film types. According to chemical liquid screening, it is possible to grasp which chemical liquid is used and under what conditions to perform etching appropriately.
  • the present disclosure provides a prediction method, a prediction program, a prediction device, a learning method, a learning program, and a learning device that can efficiently predict etching conditions.
  • a prediction method is a prediction method executed by a computer, and uses a model that outputs an etching rate based on feature amounts related to a film and a chemical solution in etching a substrate to estimate an etching rate for input conditions. and a providing step of providing the etch rate predicted by the predicting step.
  • etching conditions can be predicted efficiently.
  • FIG. 1 is a diagram explaining a model.
  • FIG. 2 is a block diagram showing a configuration example of the learning device according to the embodiment.
  • FIG. 3 is a flowchart showing the flow of learning processing for the first model.
  • FIG. 4 is a flowchart showing the flow of learning processing for the second model.
  • FIG. 5 is a block diagram illustrating a configuration example of a prediction device according to the embodiment;
  • FIG. 6 is a flowchart showing the flow of prediction processing using the first model.
  • FIG. 7 is a flowchart showing the flow of prediction processing using the second model.
  • FIG. 8 is a flowchart showing the flow of search processing.
  • FIG. 9 is a diagram showing an example of experimental data.
  • FIG. 10 is a diagram showing an example of experimental data.
  • FIG. 11 is a diagram illustrating a method of calculating activation energy.
  • FIG. 12 is a diagram illustrating an example of a computer that executes programs.
  • the etching rate varies depending on the film and chemical conditions. Conversely, in order to perform etching at a desired etching rate, it is necessary to set conditions suitable for the etching rate.
  • the learning device of the embodiment generates a model representing the relationship between various conditions and the etching rate using a machine learning technique. Furthermore, the prediction device of the embodiment uses the generated model to predict the etching rate or various conditions other than the etching rate.
  • FIG. 1 is a diagram explaining a model.
  • an experimental data DB 121 is created by accumulating the results of etching experiments.
  • the experimental data DB 121 includes film types, deposition conditions, chemical liquid types, processing conditions, and etching rates (ER).
  • the first model is generated by learning the experimental data DB 121.
  • X is a condition group included in the experimental data DB 121 and is a feature amount of the first model.
  • an experimental data DB 121a is obtained.
  • the second model is generated by learning the experimental data DB 121a.
  • the model may be a linear or nonlinear regression model.
  • the first model is a regression model with X as an explanatory variable and ER as an objective variable.
  • the second model is a regression model with Y and Z as explanatory variables and ER as an objective variable.
  • explanatory variables may be referred to as feature quantities.
  • X, Y and Z may be vectors.
  • each of the film types, deposition conditions, chemical liquid types, processing conditions, material physical properties, and chemical liquid physical properties shown in FIG. 1 may include a plurality of feature quantities.
  • processing conditions may include temperature and processing time.
  • each feature amount may be a qualitative variable or a quantitative variable.
  • film type, chemical liquid type, etc. may be qualitative variables.
  • the film formation conditions and processing conditions may include quantitative variables such as temperature and concentration.
  • the material physical properties and chemical liquid physical properties may include quantitative variables.
  • the learning device generates the model.
  • the prediction device performs prediction processing using the model generated by the learning device.
  • the learning device and the prediction device may be realized by the same device.
  • FIG. 2 is a block diagram showing a configuration example of the learning device according to the embodiment.
  • the learning device 10 has an I/F (interface) section 11, a storage section 12 and a control section 13.
  • the I/F unit 11 is an interface for exchanging data between other devices.
  • the I/F unit 11 is a NIC (Network Interface Card).
  • the I/F section 11 may be connected to input/output devices such as a mouse, keyboard, display, and speaker.
  • the storage unit 12 is implemented by, for example, a RAM (Random Access Memory), a semiconductor memory device such as flash memory, or a storage device such as a hard disk or optical disk.
  • a RAM Random Access Memory
  • semiconductor memory device such as flash memory
  • storage device such as a hard disk or optical disk.
  • the storage unit 12 stores an experimental data DB 121, material information 122, chemical solution information 123, and model information 124.
  • the experimental data DB 121 is a database created by accumulating the results of etching experiments, as explained in FIG.
  • the material information 122 is information that associates the film type with the material properties of the film.
  • Material physical properties include, for example, atomic composition, crystallinity, binding energy, and the like.
  • the crystallinity is, for example, a value indicating whether the film is crystalline or amorphous.
  • the crystallinity may also be an index related to the crystal structure of the film, such as plane orientation and defect density.
  • the chemical liquid information 123 is information that associates chemical liquid types and chemical liquid physical properties.
  • Chemical properties include, for example, ORP (Oxidation-Reduction Potential), pH, dielectric constant, and the like.
  • the physical properties of the material information 122 and the chemical information 123 may be measured values or information obtained from literature or the like.
  • the model information 124 is information for constructing a model.
  • the model information 124 is generated and updated by learning processing executed by the learning device 10 .
  • model information 124 is assumed to be parameters such as coefficients of the first model and the second model shown in FIG.
  • the control unit 13 can execute programs stored in an internal storage device using the RAM as a work area, for example, by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by a CPU (Central Processing Unit), MPU (
  • control unit 13 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the control unit 13 has an acquisition unit 131, a prediction unit 132, and an update unit 133. Note that the internal configuration of the control unit 13 is not limited to the configuration described here, and may be another configuration as long as it performs the information processing described later.
  • the acquisition unit 131 acquires a value indicating the physical properties of the film and a value indicating the physical properties of the chemical solution based on the type of film and the type of chemical solution included in the input conditions.
  • the acquisition unit 131 acquires the material properties corresponding to the film type in the experimental data DB 121 from the material information 122 . Further, the acquisition unit 131 acquires the chemical solution physical properties corresponding to the chemical solution type in the experimental data DB 121 from the chemical solution information 123 .
  • the material properties are an example of values that indicate the physical properties of the film.
  • the physical properties of the chemical solution are examples of values indicating the physical properties of the chemical solution.
  • the acquisition unit 131 can obtain the experimental data DB 121a by adding the physical properties of the material and the physical properties of the chemical solution to the experimental data DB 121. As described with reference to FIG. 1, the experimental data DB 121a is used for learning the second model.
  • the prediction unit 132 predicts the etching rate for the input conditions by using a model that outputs the etching rate based on the feature values related to the film and the chemical solution in the etching of the substrate.
  • the first model and the second model are examples of models that output the etching rate based on the feature values related to the film and the chemical liquid in the etching of the substrate.
  • the update unit 133 updates the parameters of the model so that the difference between the ER predicted by the prediction unit 132 and the correct ER is reduced. For example, the updating unit 133 updates the coefficients of the regression model using the method of least squares. The updating unit 133 updates the model information 124 .
  • the prediction unit 132 inputs the film type, film formation conditions, chemical liquid type, and processing conditions of the experimental data DB 121 into the first model, and outputs ER. Then, the updating unit 133 updates the parameters of the first model so that the difference between the ER output by the first model and the ER of the experimental data DB 121 becomes smaller.
  • the learning device 10 can obtain a regression model such as formula (1) as the first model.
  • x n (n is a positive integer) is a feature amount.
  • the coefficient of xn is a parameter obtained by learning processing and included in the model information 124 .
  • x 1 , x 2 , and x 3 are feature quantities corresponding to film type, film formation conditions, and chemical solution temperature (one of processing conditions), respectively.
  • the prediction unit 132 inputs the physical properties of the material and the physical properties of the liquid medicine of the experimental data DB 121a into the second model, and outputs the ER. Then, the update unit 133 updates the parameters of the second model so that the difference between the ER output by the second model and the ER of the experimental data DB 121a is reduced.
  • the learning device 10 can obtain a regression model such as Equation (2) as the second model.
  • y n and z n (n is a positive integer) in equation (2) are feature quantities.
  • the coefficients of y n and z n in equation (2) are parameters obtained by learning processing and included in the model information 124 .
  • y 1 and y 2 are feature quantities corresponding to material properties.
  • z 1 and z 2 in the formula (2) are feature quantities corresponding to chemical liquid physical properties.
  • the learning device 10 may generate a nonlinear regression model. Further, the learning device 10 may further update the model information 124 when the experimental data DB 121 is changed.
  • FIG. 3 is a flowchart showing the flow of learning processing for the first model.
  • FIG. 4 is a flowchart showing the flow of learning processing for the second model.
  • the learning device 10 first inputs the feature amount obtained from the experimental data into the first model to predict the etching rate (step S101).
  • the learning device 10 updates the parameters of the first model so that the predicted etching rate approaches the correct etching rate (step S102).
  • the learning device 10 first acquires material properties corresponding to the type of film and chemical liquid properties corresponding to the type of chemical liquid (step S111).
  • the learning device 10 inputs the feature quantity including the physical properties of the material and the physical properties of the chemical solution into the second model to predict the etching rate (step S112).
  • the learning device 10 updates the parameters of the second model so that the predicted etching rate approaches the correct etching rate (step S113).
  • FIG. 5 is a block diagram illustrating a configuration example of a prediction device according to the embodiment.
  • the prediction device 20 has an I/F section 21, a storage section 22 and a control section 23.
  • the I/F unit 21 is an interface for exchanging data between other devices.
  • the I/F unit 21 is a NIC.
  • the I/F section 21 may be connected to input/output devices such as a mouse, keyboard, display, and speaker.
  • the storage unit 22 is realized by, for example, a semiconductor memory device such as a RAM, a flash memory, or a storage device such as a hard disk or an optical disk.
  • the storage unit 22 stores an experimental data DB 121, material information 221, chemical solution information 222, and model information 223.
  • the material information 221 and the chemical information 222 are the same information as the material information 122 and the chemical information 123 of the learning device 10, respectively.
  • the model information 223 is information for constructing a learned model.
  • the model information 223 is information similar to the model information 124 of the learning device 10 . However, it is assumed that the model information 223 has been updated (or generated) by the learning device 10 .
  • model information 223 is assumed to be parameters such as coefficients of the first model and the second model shown in FIG.
  • the control unit 23 is realized, for example, by executing a program stored in an internal storage device using a RAM as a work area by a CPU, MPU, GPU, or the like.
  • control unit 23 may be realized by an integrated circuit such as ASIC and FPGA, for example.
  • the control unit 23 has an acquisition unit 231 , a prediction unit 232 , a search unit 233 and a provision unit 234 . Note that the internal configuration of the control unit 23 is not limited to the configuration described here, and may be another configuration as long as it performs the information processing described later.
  • the acquisition unit 231 acquires a value indicating the physical properties of the film and a value indicating the physical properties of the chemical solution based on the type of film and the type of chemical solution included in the input conditions.
  • the prediction device 20 accepts input of some feature amounts as input conditions. Also, the prediction device 20 may receive input of information for specifying a part of the feature amount.
  • the acquisition unit 231 acquires material properties corresponding to the film type from the material information 221. Further, for example, when a chemical liquid type is input to the prediction device 20 , the acquisition unit 231 acquires chemical liquid properties corresponding to the chemical liquid type from the chemical liquid information 222 .
  • the prediction unit 232 predicts the etching rate for the input conditions by using a model that outputs the etching rate based on the feature values related to the film and the chemical solution in the etching of the substrate.
  • the prediction unit 232 predicts the etching rate using a first model that outputs the etching rate based on feature amounts including film type, film deposition conditions, chemical liquid type, and etching processing conditions.
  • the prediction unit 232 predicts the etching rate using a second model that outputs the etching rate based on the feature amount including the values indicating the physical properties of the material and the physical properties of the chemical solution.
  • the search unit 233 searches for feature amounts related to the film and the chemical based on the designated etching rate. Thereby, the prediction device 20 can predict not only the etching rate but also other feature quantities.
  • the search unit 233 uses the first model to search for at least one of the film type, film formation conditions, chemical liquid type, and processing conditions from the etching rate, and outputs the search results as recommended conditions.
  • the searching unit 233 searches for at least one of material properties and chemical liquid properties from the etching rate using the second model, and outputs the search results as recommended conditions.
  • the search unit 233 searches for the chemical liquid type or the chemical liquid physical properties from the etching rate and film-related conditions (film type, film formation conditions, material physical properties, etc.) using the second model, and the search result is used as a valid method. Output as a drug solution candidate.
  • the provision unit 234 provides the etching rate predicted by the prediction unit 232. Also, the providing unit 234 provides the feature amount (search result) searched by the searching unit 233 .
  • the provision unit 234 outputs the prediction result and the search result in a predetermined data format such as text, voice, and image via the I/F unit 21.
  • the providing unit 234 may transmit the etching rate or the search result to the external device via the network connected to the I/F unit 21. Further, for example, the providing unit 234 may cause the display unit connected to the I/F unit 21 to display the etching rate or the search result.
  • FIG. 6 is a flowchart showing the flow of prediction processing using the first model.
  • FIG. 7 is a flowchart showing the flow of prediction processing using the second model.
  • FIG. 8 is a flowchart showing the flow of search processing.
  • the prediction device 20 inputs the feature amount obtained from the input conditions to the first model to predict the etching rate (step S201).
  • the prediction device 20 provides the predicted etching rate (step S202).
  • the prediction device 20 acquires material properties according to the type of film and chemical properties according to the type of chemical (step S211).
  • the prediction device 20 inputs the feature amount including the physical properties of the material and the physical properties of the chemical solution into the second model to predict the etching rate (step S212).
  • the prediction device 20 provides the predicted etching rate (step S213).
  • the prediction device 20 uses the second model to search for the feature amount related to the chemical solution from the input conditions and etching rate related to the film (step S221).
  • the prediction device 20 provides the searched feature amount (step S222).
  • Example 1 A specific example of the etching rate prediction process and search process will be described with reference to FIG.
  • FIG. 9 is a diagram showing an example of experimental data.
  • “Film” in Fig. 9 is the type of film.
  • “Depo” in FIG. 9 is a film forming condition.
  • “Chem_1”, “Chem_2”, “Chem_1_vol ratio”, “Chem_2_vol ratio” and “Chem_1_vconc (vol%)” in Fig. 9 are chemical types.
  • “Temp (deg.C)” and “Process time (min)” in FIG. 9 are processing conditions.
  • the learning device 10 generates a regression model like Equation (3) from the experimental data shown in FIG.
  • x n (n is a positive integer) is a feature amount.
  • x 1 , x 2 , and x 3 are respectively “Chem_1_vconc (vol%)” (HF concentration), “Temp (deg.C)” (temperature), “Process time (min)” (processing time). It is also assumed that xn is normalized to be in the range of 0 to 1.
  • the learning device 10 can generate a regression model using some feature amounts of experimental data after performing feature selection by a predetermined method.
  • the etching rate can be predicted from the input conditions, and each condition can be searched based on the etching rate.
  • Example 2 A specific example of the etching rate prediction process for a new film will be described with reference to FIG.
  • FIG. 10 is a diagram showing an example of experimental data.
  • “Film” in Fig. 10 is the type of film.
  • “Depo” and “Depo_temp (deg.C)” in FIG. 10 are film forming conditions.
  • “Chem_1”, “Chem_2”, “Chem_1_vol ratio”, “Chem_2_vol ratio”, and “Chem_1_vconc (vol%)” in Fig. 10 are chemical liquid types.
  • “Temp (deg.C)” in FIG. 10 is a processing condition.
  • the learning device 10 generates a regression model like Equation (4) from the experimental data shown in FIG.
  • x n (n is a positive integer) is a feature amount.
  • x 1 and x 2 respectively correspond to "Depo_temp (deg.C)” (film formation temperature) and “Chem_1_vconc (vol%)” (HF concentration) in FIG. It is also assumed that xn is normalized to be in the range of 0 to 1.
  • the etching rate can be predicted even when the film formation temperature of the input condition does not exist in the experimental data (new film).
  • the providing unit 234 can provide the activation energy calculated from the relationship between the input processing temperature and the etching rate predicted by the prediction unit 232 .
  • a method for calculating the activation energy will be described with reference to FIG.
  • FIG. 11 is a diagram illustrating a method of calculating activation energy.
  • the providing unit 234 plots the reaction (etching) rate constant ln k based on the predicted etching rate or the experimental data etching rate and the reciprocal of the etching processing temperature T.
  • the providing unit 234 can calculate the activation energy Ea from the slope of the straight line 301 obtained by approximating the plotted points by the formula (5).
  • a of (5) Formula is a constant and R is a gas constant.
  • the prediction device 20 can provide not only the etching rate but also the activation energy.
  • the prediction unit 132 of the learning device 10 uses a model that outputs an etching rate based on feature amounts related to a film and a chemical solution in substrate etching, and uses a model that outputs an etching rate for an input input condition. Predict rates.
  • the updating unit 133 also updates the parameters of the model so that the difference between the etching rate predicted by the prediction unit 132 and the correct etching rate becomes smaller. As a result, according to the embodiment, it is possible to obtain a model that can efficiently predict etching conditions.
  • the prediction unit 232 of the prediction device 20 of the embodiment predicts the etching rate for the inputted input conditions using a model that outputs the etching rate based on the feature values of the film and the chemical solution in the etching of the substrate. Also, the providing unit 234 provides the etching rate predicted by the predicting unit 232 . As a result, according to the embodiment, etching conditions can be predicted efficiently.
  • the prediction unit 232 of the prediction device 20 of the embodiment estimates the etching rate using a model that outputs the etching rate based on feature amounts including film type, film deposition conditions, chemical liquid type, and etching processing conditions. Predict. As a result, according to the embodiment, it is possible to easily predict the etching rate using feature amounts similar to experimental data.
  • the prediction unit 232 of the prediction device 20 of the embodiment predicts the etching rate using a model that outputs the etching rate based on the feature amount including the value indicating the physical properties of the film and the value indicating the physical properties of the chemical solution. As a result, according to the embodiment, it is possible to predict the etching rate with high accuracy using the feature values relating to the physical properties of the film and the chemical solution.
  • the acquisition unit 231 of the prediction device 20 of the embodiment acquires a value indicating the physical properties of the film and a value indicating the physical properties of the chemical solution based on the type of film and the type of chemical solution included in the input conditions.
  • the prediction unit 232 uses a model to predict the etching rate for the value acquired by the acquisition unit 231 . As a result, according to the embodiment, it is possible to automatically acquire the feature values relating to the physical properties of the film and the chemical solution.
  • the search unit 233 of the prediction device 20 of the embodiment uses the model to search for feature amounts related to the film and the chemical based on the designated etching rate. Also, the providing unit 234 provides the feature amount searched by the searching unit 233 . As a result, according to the embodiment, conditions other than the etching rate can be obtained by searching.
  • the prediction unit 232 of the prediction device 20 of the embodiment predicts the etching rate for the input processing temperature using a model that outputs the etching rate based on the feature amount including the etching processing temperature.
  • the providing unit 234 also provides the activation energy calculated from the relationship between the input processing temperature and the etching rate predicted by the prediction unit 232 . As a result, according to the embodiment, it is possible to provide analysis results from a viewpoint different from the etching rate.
  • FIG. 12 is a diagram illustrating an example of a computer that executes programs.
  • the computer 1000 has a computer 1010 that executes various arithmetic processes, an input device 1020 that receives data input, and a monitor 1030.
  • the computer 1000 also has an interface device 1040 for connecting with various devices, and a communication device 1050 for connecting with other information processing devices or the like by wire or wirelessly.
  • Computer 1000 also has RAM 1060 and storage device 1070 for temporarily storing various information. Each device 1010 - 1070 is also connected to a bus 1080 .
  • the storage device 1070 stores programs having functions similar to those of the acquisition unit 231, the prediction unit 232, the search unit 233, and the provision unit 234 shown in FIG. Also, the storage device 1070 stores material information 221 , chemical solution information 222 and model information 223 .
  • the input device 1020 receives input of various information such as operation information from the user of the computer 1000, for example.
  • the monitor 1030 displays various screens such as a display screen to the user of the computer 1000, for example.
  • the interface device 1040 is connected with, for example, a printing device.
  • the communication device 1050 is connected to, for example, a network (not shown) and exchanges various information with other information processing devices.
  • the computer 1010 performs various processes by reading each program stored in the storage device 1070, developing it in the RAM 1060, and executing it. Further, these programs can cause the computer 1000 to function as the acquiring unit 231, the predicting unit 232, the searching unit 233, and the providing unit 234 shown in FIG.
  • the above program does not necessarily have to be stored in the storage device 1070.
  • the computer 1000 may read and execute a program stored in a storage medium readable by the computer 1000 .
  • storage media readable by the computer 1000 include portable recording media such as CD-ROMs, DVDs (Digital Versatile Discs), USB (Universal Serial Bus) memories, semiconductor memories such as flash memories, and hard disk drives.
  • the program may be stored in a device connected to a public line, the Internet, a LAN, etc., and the computer 1000 may read out the program from the device and execute the program.
  • the learning device 10 is also realized by a computer having the same configuration as the computer described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Strategic Management (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Software Systems (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Drying Of Semiconductors (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

This prediction method predicts an etching rate for an input condition, which has been input, by using a model that outputs the etching rate on the basis of feature amounts pertaining to a film and a chemical liquid in the etching of a substrate. In addition, the prediction method provides the predicted etching rate.

Description

予測方法、予測プログラム、予測装置、学習方法、学習プログラム及び学習装置Prediction method, prediction program, prediction device, learning method, learning program, and learning device
 本開示は、予測方法、予測プログラム、予測装置、学習方法、学習プログラム及び学習装置に関する。 The present disclosure relates to a prediction method, a prediction program, a prediction device, a learning method, a learning program, and a learning device.
 基板のエッチングにおいて、知見のない膜種に対するエッチング特性を把握するために、薬液スクリーニングが行われる。薬液スクリーニングによれば、どの薬液で、どのような条件で処理すると適切にエッチングできるかといったことを把握することができる。 In substrate etching, chemical liquid screening is performed to understand the etching characteristics of unknown film types. According to chemical liquid screening, it is possible to grasp which chemical liquid is used and under what conditions to perform etching appropriately.
 また、基板をエッチングするための基板処理装置の設定条件とエッチングの実行結果を基に、機械学習により生成したモデルを使って、基板処理装置の設定を補正するための補正データを生成する技術が知られている。 There is also a technique for generating correction data for correcting the settings of the substrate processing apparatus using a model generated by machine learning based on the setting conditions of the substrate processing apparatus for etching the substrate and the etching execution results. Are known.
特開2020-4817号公報JP 2020-4817 A
 全く知見のない膜種に対して薬液スクリーニングを行う場合、薬液の選定及び条件の設定等に膨大な時間がかかる場合がある。 When performing chemical screening on film types for which there is absolutely no knowledge, it may take an enormous amount of time to select chemicals and set conditions.
 本開示は、エッチングに関する条件を効率良く予測できる予測方法、予測プログラム、予測装置、学習方法、学習プログラム及び学習装置を提供する。 The present disclosure provides a prediction method, a prediction program, a prediction device, a learning method, a learning program, and a learning device that can efficiently predict etching conditions.
 実施形態に係る予測方法は、コンピュータによって実行される予測方法であって、基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する予測工程と、予測工程によって予測されたエッチングレートを提供する提供工程と、を含む。 A prediction method according to an embodiment is a prediction method executed by a computer, and uses a model that outputs an etching rate based on feature amounts related to a film and a chemical solution in etching a substrate to estimate an etching rate for input conditions. and a providing step of providing the etch rate predicted by the predicting step.
 本開示によれば、エッチングに関する条件を効率良く予測できる。 According to the present disclosure, etching conditions can be predicted efficiently.
図1は、モデルについて説明する図である。FIG. 1 is a diagram explaining a model. 図2は、実施形態に係る学習装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of the learning device according to the embodiment. 図3は、第1のモデルの学習処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of learning processing for the first model. 図4は、第2のモデルの学習処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of learning processing for the second model. 図5は、実施形態に係る予測装置の構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration example of a prediction device according to the embodiment; 図6は、第1のモデルによる予測処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of prediction processing using the first model. 図7は、第2のモデルによる予測処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of prediction processing using the second model. 図8は、探索処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of search processing. 図9は、実験データの例を示す図である。FIG. 9 is a diagram showing an example of experimental data. 図10は、実験データの例を示す図である。FIG. 10 is a diagram showing an example of experimental data. 図11は、活性化エネルギーの算出方法を説明する図である。FIG. 11 is a diagram illustrating a method of calculating activation energy. 図12は、プログラムを実行するコンピュータの一例を示す図である。FIG. 12 is a diagram illustrating an example of a computer that executes programs.
 以下に、予測方法、予測プログラム、予測装置、学習方法、学習プログラム及び学習装置の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により開示技術は限定されない。 Below, embodiments of the prediction method, prediction program, prediction device, learning method, learning program, and learning device will be described in detail based on the drawings. Note that the disclosed technology is not limited by the following embodiments.
 基板のエッチングにおいては、膜及び薬液に関する条件によりエッチングレートが異なる。逆に、所望するエッチングレートによりエッチングを行うためには、当該エッチングレートに適した条件を設定しておく必要がある。 In substrate etching, the etching rate varies depending on the film and chemical conditions. Conversely, in order to perform etching at a desired etching rate, it is necessary to set conditions suitable for the etching rate.
 例えば、実施形態の学習装置は、機械学習の手法により、各種条件とエッチングレートとの関係を表すモデルを生成する。さらに、実施形態の予測装置は、生成されたモデルを用いて、エッチングレート又はエッチングレート以外の各種条件を予測する。 For example, the learning device of the embodiment generates a model representing the relationship between various conditions and the etching rate using a machine learning technique. Furthermore, the prediction device of the embodiment uses the generated model to predict the etching rate or various conditions other than the etching rate.
 図1を用いて、本実施形態のモデルについて説明する。図1は、モデルについて説明する図である。 The model of this embodiment will be described using FIG. FIG. 1 is a diagram explaining a model.
 図1に示すように、エッチング実験の結果を蓄積することによって実験データDB121が作成される。 As shown in FIG. 1, an experimental data DB 121 is created by accumulating the results of etching experiments.
 例えば、実験データDB121は、膜種、成膜条件、薬液種、処理条件及びエッチングレート(ER:etching rate)が含まれる。 For example, the experimental data DB 121 includes film types, deposition conditions, chemical liquid types, processing conditions, and etching rates (ER).
 第1のモデルは、実験データDB121を学習することにより生成される。図1の例では、第1のモデルはER=f(X)のように表される。ここで、Xは、実験データDB121に含まれる条件群であり、第1のモデルの特徴量である。 The first model is generated by learning the experimental data DB 121. In the example of FIG. 1, the first model is expressed as ER=f(X). Here, X is a condition group included in the experimental data DB 121 and is a feature amount of the first model.
 さらに、実験データDB121に膜の物性である材料物性、及び薬液の物性である薬液物性を追加することにより、実験データDB121aが得られる。 Furthermore, by adding material properties, which are film properties, and chemical liquid properties, which are chemical properties, to the experimental data DB 121, an experimental data DB 121a is obtained.
 第2のモデルは、実験データDB121aを学習することにより生成される。図1の例では、第2のモデルはER=g(Y,Z)のように表される。ここで、Yは材料物性である。また、Zは薬液物性である。 The second model is generated by learning the experimental data DB 121a. In the example of FIG. 1, the second model is expressed as ER=g(Y,Z). where Y is the physical property of the material. Also, Z is the physical property of the chemical solution.
 モデルは線形又は非線形の回帰モデルであってもよい。例えば、第1のモデルは、Xを説明変数とし、ERを目的変数とする回帰モデルである。また、例えば、第2のモデルは、Y及びZを説明変数とし、ERを目的変数とする回帰モデルである。 The model may be a linear or nonlinear regression model. For example, the first model is a regression model with X as an explanatory variable and ER as an objective variable. Also, for example, the second model is a regression model with Y and Z as explanatory variables and ER as an objective variable.
 以降の説明では、説明変数を特徴量と呼ぶ場合がある。また、X、Y及びZはベクトルであってもよい。 In the explanation below, explanatory variables may be referred to as feature quantities. Also, X, Y and Z may be vectors.
 また、図1に示す膜種、成膜条件、薬液種、処理条件、材料物性及び薬液物性は、それぞれが複数の特徴量を含むものであってもよい。例えば、処理条件には、温度と処理時間が含まれていてもよい。 In addition, each of the film types, deposition conditions, chemical liquid types, processing conditions, material physical properties, and chemical liquid physical properties shown in FIG. 1 may include a plurality of feature quantities. For example, processing conditions may include temperature and processing time.
 また、各特徴量は、質的変数であってもよいし量的変数であってもよい。例えば、膜種、薬液種等は質的変数であってもよい。また、成膜条件及び処理条件には、温度、濃度等の量的変数が含まれていてもよい。また、材料物性及び薬液物性は、量的変数を含んでいてもよい。 Also, each feature amount may be a qualitative variable or a quantitative variable. For example, film type, chemical liquid type, etc. may be qualitative variables. Also, the film formation conditions and processing conditions may include quantitative variables such as temperature and concentration. In addition, the material physical properties and chemical liquid physical properties may include quantitative variables.
 ここで、実施形態では、学習装置がモデルを生成するものとする。また、予測装置は、学習装置によって生成されたモデルを用いて予測処理を行うものとする。なお、学習装置及び予測装置は同一の装置により実現されてもよい。 Here, in the embodiment, it is assumed that the learning device generates the model. Also, the prediction device performs prediction processing using the model generated by the learning device. Note that the learning device and the prediction device may be realized by the same device.
[学習装置]
 図2を用いて、学習装置の構成を説明する。図2は、実施形態に係る学習装置の構成例を示すブロック図である。
[Learning device]
The configuration of the learning device will be described with reference to FIG. FIG. 2 is a block diagram showing a configuration example of the learning device according to the embodiment.
 図2に示すように、学習装置10は、I/F(インタフェース)部11、記憶部12及び制御部13を有する。 As shown in FIG. 2, the learning device 10 has an I/F (interface) section 11, a storage section 12 and a control section 13.
 I/F部11は、他の装置の間でデータのやり取りを行うためのインタフェースである。例えば、I/F部11はNIC(Network Interface Card)である。さらに、I/F部11は、マウス、キーボード、ディスプレイ及びスピーカ等の入出力装置と接続されていてもよい。 The I/F unit 11 is an interface for exchanging data between other devices. For example, the I/F unit 11 is a NIC (Network Interface Card). Furthermore, the I/F section 11 may be connected to input/output devices such as a mouse, keyboard, display, and speaker.
 記憶部12は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスクや光ディスク等の記憶装置によって実現される。 The storage unit 12 is implemented by, for example, a RAM (Random Access Memory), a semiconductor memory device such as flash memory, or a storage device such as a hard disk or optical disk.
 記憶部12は、実験データDB121、材料情報122、薬液情報123及びモデル情報124を記憶する。 The storage unit 12 stores an experimental data DB 121, material information 122, chemical solution information 123, and model information 124.
 実験データDB121は、図1で説明した通り、エッチング実験の結果を蓄積することによって作成されるデータベースである。 The experimental data DB 121 is a database created by accumulating the results of etching experiments, as explained in FIG.
 材料情報122は、膜種及び膜の材料物性を対応付けた情報である。材料物性には、例えば原子組成、結晶性、結合エネルギー等が含まれる。ここで、結晶性は、例えば膜が結晶であるか非晶であるかを示す値である。また、結晶性は、面方位、欠陥密度といった膜の結晶構造に関する指標であってもよい。 The material information 122 is information that associates the film type with the material properties of the film. Material physical properties include, for example, atomic composition, crystallinity, binding energy, and the like. Here, the crystallinity is, for example, a value indicating whether the film is crystalline or amorphous. The crystallinity may also be an index related to the crystal structure of the film, such as plane orientation and defect density.
 薬液情報123は、薬液種及び薬液物性を対応付けた情報である。薬液物性には、例えばORP(Oxidation-Reduction Potential)、pH、誘電率等が含まれる。 The chemical liquid information 123 is information that associates chemical liquid types and chemical liquid physical properties. Chemical properties include, for example, ORP (Oxidation-Reduction Potential), pH, dielectric constant, and the like.
 材料情報122及び薬液情報123の各物性は、実測値であってもよいし、文献等から得られた情報であってもよい。 The physical properties of the material information 122 and the chemical information 123 may be measured values or information obtained from literature or the like.
 モデル情報124は、モデルを構築するための情報である。モデル情報124は、学習装置10が実行する学習処理によって生成され、また更新される。 The model information 124 is information for constructing a model. The model information 124 is generated and updated by learning processing executed by the learning device 10 .
 本実施形態では、モデル情報124は、図1に示す第1のモデル及び第2のモデルの係数等のパラメータであるものとする。 In this embodiment, the model information 124 is assumed to be parameters such as coefficients of the first model and the second model shown in FIG.
 制御部13は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等によって、内部の記憶装置に記憶されているプログラムがRAMを作業領域として実行されることにより実現される。 The control unit 13 can execute programs stored in an internal storage device using the RAM as a work area, for example, by a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), etc. It is realized by
 また、制御部13は、例えば、ASIC(Application Specific Integrated Circuit)及びFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。 Also, the control unit 13 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
 制御部13は、取得部131と、予測部132と、更新部133と、を有する。なお、制御部13の内部構成は、ここで説明した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。 The control unit 13 has an acquisition unit 131, a prediction unit 132, and an update unit 133. Note that the internal configuration of the control unit 13 is not limited to the configuration described here, and may be another configuration as long as it performs the information processing described later.
 取得部131は、入力条件に含まれる膜の種類及び薬液の種類に基づき、膜の物性を示す値及び薬液の物性を示す値を取得する。 The acquisition unit 131 acquires a value indicating the physical properties of the film and a value indicating the physical properties of the chemical solution based on the type of film and the type of chemical solution included in the input conditions.
 取得部131は、実験データDB121の膜種に対応する材料物性を材料情報122から取得する。また、取得部131は、実験データDB121の薬液種に対応する薬液物性を薬液情報123から取得する。 The acquisition unit 131 acquires the material properties corresponding to the film type in the experimental data DB 121 from the material information 122 . Further, the acquisition unit 131 acquires the chemical solution physical properties corresponding to the chemical solution type in the experimental data DB 121 from the chemical solution information 123 .
 ここで、材料物性は、膜の物性を示す値の一例である。また、薬液物性は、薬液の物性を示す値の一例である。 Here, the material properties are an example of values that indicate the physical properties of the film. Also, the physical properties of the chemical solution are examples of values indicating the physical properties of the chemical solution.
 さらに、取得部131は、材料物性及び薬液物性を実験データDB121に追加することで、実験データDB121aを得ることができる。図1で説明した通り、実験データDB121aは、第2のモデルの学習に用いられる。 Furthermore, the acquisition unit 131 can obtain the experimental data DB 121a by adding the physical properties of the material and the physical properties of the chemical solution to the experimental data DB 121. As described with reference to FIG. 1, the experimental data DB 121a is used for learning the second model.
 予測部132は、基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する。 The prediction unit 132 predicts the etching rate for the input conditions by using a model that outputs the etching rate based on the feature values related to the film and the chemical solution in the etching of the substrate.
 第1のモデル及び第2のモデルは、基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルの例である。 The first model and the second model are examples of models that output the etching rate based on the feature values related to the film and the chemical liquid in the etching of the substrate.
 更新部133は、予測部132によって予測されたERと正解のERとの差分が小さくなるようにモデルのパラメータを更新する。例えば、更新部133は、最小二乗法により回帰モデルの係数を更新する。更新部133は、モデル情報124を更新する。 The update unit 133 updates the parameters of the model so that the difference between the ER predicted by the prediction unit 132 and the correct ER is reduced. For example, the updating unit 133 updates the coefficients of the regression model using the method of least squares. The updating unit 133 updates the model information 124 .
 例えば、予測部132は、実験データDB121の膜種、成膜条件、薬液種及び処理条件を第1のモデルに入力し、ERを出力させる。そして、更新部133は、第1のモデルが出力したERと実験データDB121のERとの差分が小さくなるように第1のモデルのパラメータを更新する。 For example, the prediction unit 132 inputs the film type, film formation conditions, chemical liquid type, and processing conditions of the experimental data DB 121 into the first model, and outputs ER. Then, the updating unit 133 updates the parameters of the first model so that the difference between the ER output by the first model and the ER of the experimental data DB 121 becomes smaller.
 例えば、学習装置10は、第1のモデルとして(1)式のような回帰モデルを得ることができる。 For example, the learning device 10 can obtain a regression model such as formula (1) as the first model.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式のx(nは正の整数)は特徴量である。また、xの係数は学習処理によって得られたパラメータであり、モデル情報124に含まれる。例えば、x、x、xは、それぞれ膜種、成膜条件、薬液温度(処理条件の1つ)に相当する特徴量である。 (1) x n (n is a positive integer) is a feature amount. Also, the coefficient of xn is a parameter obtained by learning processing and included in the model information 124 . For example, x 1 , x 2 , and x 3 are feature quantities corresponding to film type, film formation conditions, and chemical solution temperature (one of processing conditions), respectively.
 また、例えば、予測部132は、実験データDB121aの材料物性及び薬液物性を第2のモデルに入力し、ERを出力させる。そして、更新部133は、第2のモデルが出力したERと実験データDB121aのERとの差分が小さくなるように第2のモデルのパラメータを更新する。 Also, for example, the prediction unit 132 inputs the physical properties of the material and the physical properties of the liquid medicine of the experimental data DB 121a into the second model, and outputs the ER. Then, the update unit 133 updates the parameters of the second model so that the difference between the ER output by the second model and the ER of the experimental data DB 121a is reduced.
 例えば、学習装置10は、第2のモデルとして(2)式のような回帰モデルを得ることができる。 For example, the learning device 10 can obtain a regression model such as Equation (2) as the second model.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (2)式のy及びz(nは正の整数)は特徴量である。また、(2)式のy及びzの係数は学習処理によって得られたパラメータであり、モデル情報124に含まれる。例えば、y、yは、材料物性に相当する特徴量である。また、例えば、(2)式のz、zは、薬液物性に相当する特徴量である。 y n and z n (n is a positive integer) in equation (2) are feature quantities. Also, the coefficients of y n and z n in equation (2) are parameters obtained by learning processing and included in the model information 124 . For example, y 1 and y 2 are feature quantities corresponding to material properties. Also, for example, z 1 and z 2 in the formula (2) are feature quantities corresponding to chemical liquid physical properties.
 本実施形態では、学習装置10が線形の回帰モデルを生成するものとして説明したが、学習装置10は非線形の回帰モデルを生成するようにしてもよい。また、学習装置10は、実験データDB121が変更された際に、モデル情報124をさらに更新するようにしてもよい。 Although the learning device 10 generates a linear regression model in this embodiment, the learning device 10 may generate a nonlinear regression model. Further, the learning device 10 may further update the model information 124 when the experimental data DB 121 is changed.
 図3及び図4を用いて、学習装置10による学習処理の流れを説明する。図3は、第1のモデルの学習処理の流れを示すフローチャートである。図4は、第2のモデルの学習処理の流れを示すフローチャートである。 The flow of learning processing by the learning device 10 will be described using FIGS. 3 and 4. FIG. FIG. 3 is a flowchart showing the flow of learning processing for the first model. FIG. 4 is a flowchart showing the flow of learning processing for the second model.
 図3に示すように、第1のモデルの学習処理において、まず、学習装置10は、実験データから得られた特徴量を第1のモデルに入力しエッチングレートを予測する(ステップS101)。 As shown in FIG. 3, in the learning process of the first model, the learning device 10 first inputs the feature amount obtained from the experimental data into the first model to predict the etching rate (step S101).
 そして、学習装置10は、予測したエッチングレートが正解のエッチングレートに近付くように第1のモデルのパラメータを更新する(ステップS102)。 Then, the learning device 10 updates the parameters of the first model so that the predicted etching rate approaches the correct etching rate (step S102).
 図4に示すように、第2のモデルの学習処理において、まず、学習装置10は、膜の種類に応じた材料物性及び薬液の種類に応じた薬液物性を取得する(ステップS111)。 As shown in FIG. 4, in the learning process of the second model, the learning device 10 first acquires material properties corresponding to the type of film and chemical liquid properties corresponding to the type of chemical liquid (step S111).
 次に、学習装置10は、材料物性及び薬液物性を含む特徴量を第2のモデルに入力しエッチングレートを予測する(ステップS112)。 Next, the learning device 10 inputs the feature quantity including the physical properties of the material and the physical properties of the chemical solution into the second model to predict the etching rate (step S112).
 そして、学習装置10は、予測したエッチングレートが正解のエッチングレートに近付くように第2のモデルのパラメータを更新する(ステップS113)。 Then, the learning device 10 updates the parameters of the second model so that the predicted etching rate approaches the correct etching rate (step S113).
[予測装置]
 図5を用いて、予測装置の構成を説明する。図5は、実施形態に係る予測装置の構成例を示すブロック図である。
[Prediction device]
The configuration of the prediction device will be described with reference to FIG. FIG. 5 is a block diagram illustrating a configuration example of a prediction device according to the embodiment;
 図5に示すように、予測装置20は、I/F部21、記憶部22及び制御部23を有する。 As shown in FIG. 5, the prediction device 20 has an I/F section 21, a storage section 22 and a control section 23.
 I/F部21は、他の装置の間でデータのやり取りを行うためのインタフェースである。例えば、I/F部21はNICである。さらに、I/F部21は、マウス、キーボード、ディスプレイ及びスピーカ等の入出力装置と接続されていてもよい。 The I/F unit 21 is an interface for exchanging data between other devices. For example, the I/F unit 21 is a NIC. Furthermore, the I/F section 21 may be connected to input/output devices such as a mouse, keyboard, display, and speaker.
 記憶部22は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子、ハードディスクや光ディスク等の記憶装置によって実現される。 The storage unit 22 is realized by, for example, a semiconductor memory device such as a RAM, a flash memory, or a storage device such as a hard disk or an optical disk.
 記憶部22は、実験データDB121、材料情報221、薬液情報222及びモデル情報223を記憶する。 The storage unit 22 stores an experimental data DB 121, material information 221, chemical solution information 222, and model information 223.
 材料情報221及び薬液情報222は、それぞれ学習装置10の材料情報122及び薬液情報123と同様の情報である。 The material information 221 and the chemical information 222 are the same information as the material information 122 and the chemical information 123 of the learning device 10, respectively.
 モデル情報223は、学習済みのモデルを構築するための情報である。モデル情報223は、学習装置10のモデル情報124と同様の情報である。ただし、モデル情報223は、学習装置10によって更新済み(又は生成済み)であるものとする。 The model information 223 is information for constructing a learned model. The model information 223 is information similar to the model information 124 of the learning device 10 . However, it is assumed that the model information 223 has been updated (or generated) by the learning device 10 .
 本実施形態では、モデル情報223は、図1に示す第1のモデル及び第2のモデルの係数等のパラメータであるものとする。 In this embodiment, the model information 223 is assumed to be parameters such as coefficients of the first model and the second model shown in FIG.
 制御部23は、例えば、CPU、MPU、GPU等によって、内部の記憶装置に記憶されているプログラムがRAMを作業領域として実行されることにより実現される。 The control unit 23 is realized, for example, by executing a program stored in an internal storage device using a RAM as a work area by a CPU, MPU, GPU, or the like.
 また、制御部23は、例えば、ASIC及びFPGA等の集積回路により実現されてもよい。 Also, the control unit 23 may be realized by an integrated circuit such as ASIC and FPGA, for example.
 制御部23は、取得部231と、予測部232と、探索部233と、提供部234と、を有する。なお、制御部23の内部構成は、ここで説明した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。 The control unit 23 has an acquisition unit 231 , a prediction unit 232 , a search unit 233 and a provision unit 234 . Note that the internal configuration of the control unit 23 is not limited to the configuration described here, and may be another configuration as long as it performs the information processing described later.
 取得部231は、入力条件に含まれる膜の種類及び薬液の種類に基づき、膜の物性を示す値及び薬液の物性を示す値を取得する。 The acquisition unit 231 acquires a value indicating the physical properties of the film and a value indicating the physical properties of the chemical solution based on the type of film and the type of chemical solution included in the input conditions.
 ここで、予測装置20は、入力条件として、一部の特徴量の入力を受け付ける。また、予測装置20は、一部の特徴量を特定するための情報の入力を受け付けてもよい。 Here, the prediction device 20 accepts input of some feature amounts as input conditions. Also, the prediction device 20 may receive input of information for specifying a part of the feature amount.
 取得部231は、例えば膜種が予測装置20に入力された場合に、当該膜種に対応する材料物性を材料情報221から取得する。また、取得部231は、例えば薬液種が予測装置20に入力された場合に、当該薬液種に対応する薬液物性を薬液情報222から取得する。 For example, when a film type is input to the prediction device 20, the acquisition unit 231 acquires material properties corresponding to the film type from the material information 221. Further, for example, when a chemical liquid type is input to the prediction device 20 , the acquisition unit 231 acquires chemical liquid properties corresponding to the chemical liquid type from the chemical liquid information 222 .
 予測部232は、基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する。 The prediction unit 232 predicts the etching rate for the input conditions by using a model that outputs the etching rate based on the feature values related to the film and the chemical solution in the etching of the substrate.
 例えば、予測部232は、膜種、膜の成膜条件、薬液種、エッチングの処理条件を含む特徴量を基にエッチングレートを出力する第1のモデルを用いて、エッチングレートを予測する。 For example, the prediction unit 232 predicts the etching rate using a first model that outputs the etching rate based on feature amounts including film type, film deposition conditions, chemical liquid type, and etching processing conditions.
 また、例えば、予測部232は、材料物性及び薬液物性を示す値を含む特徴量を基にエッチングレートを出力する第2のモデルを用いて、エッチングレートを予測する。 Also, for example, the prediction unit 232 predicts the etching rate using a second model that outputs the etching rate based on the feature amount including the values indicating the physical properties of the material and the physical properties of the chemical solution.
 探索部233は、モデルを用いて、指定されたエッチングレートを基に、膜及び薬液に関する特徴量を探索する。これにより、予測装置20は、エッチングレートだけでなく、他の特徴量を予測することができる。 Using the model, the search unit 233 searches for feature amounts related to the film and the chemical based on the designated etching rate. Thereby, the prediction device 20 can predict not only the etching rate but also other feature quantities.
 例えば、探索部233は、第1のモデルを用いて、エッチングレートから膜種、成膜条件、薬液種及び処理条件の少なくともいずれかを探索し、探索した結果を推奨条件として出力する。 For example, the search unit 233 uses the first model to search for at least one of the film type, film formation conditions, chemical liquid type, and processing conditions from the etching rate, and outputs the search results as recommended conditions.
 また、例えば、探索部233は、第2のモデルを用いて、エッチングレートから材料物性及び薬液物性の少なくともいずれかを探索し、探索した結果を推奨条件として出力する。 Also, for example, the searching unit 233 searches for at least one of material properties and chemical liquid properties from the etching rate using the second model, and outputs the search results as recommended conditions.
 また、例えば、探索部233は、第2のモデルを用いて、エッチングレート及び膜に関する条件(膜種、成膜条件、材料物性等)から薬液種又は薬液物性を探索し、探索した結果を有効薬液の候補として出力する。 Further, for example, the search unit 233 searches for the chemical liquid type or the chemical liquid physical properties from the etching rate and film-related conditions (film type, film formation conditions, material physical properties, etc.) using the second model, and the search result is used as a valid method. Output as a drug solution candidate.
 提供部234は、予測部232によって予測されたエッチングレートを提供する。また、提供部234は、探索部233によって探索された特徴量(探索結果)を提供する。 The provision unit 234 provides the etching rate predicted by the prediction unit 232. Also, the providing unit 234 provides the feature amount (search result) searched by the searching unit 233 .
 例えば、提供部234は、I/F部21を介して、予測結果及び探索結果をテキスト、音声、画像等の所定のデータ形式により出力する。 For example, the provision unit 234 outputs the prediction result and the search result in a predetermined data format such as text, voice, and image via the I/F unit 21.
 例えば、提供部234は、I/F部21に接続されたネットワークを介して、外部装置に対し、エッチングレート又は探索結果を送信してもよい。また、例えば、提供部234は、I/F部21に接続された表示部に、エッチングレート又は探索結果を表示させてもよい。 For example, the providing unit 234 may transmit the etching rate or the search result to the external device via the network connected to the I/F unit 21. Further, for example, the providing unit 234 may cause the display unit connected to the I/F unit 21 to display the etching rate or the search result.
 図6、図7及び図8を用いて、予測装置20による予測処理及び探索処理の流れを説明する。図6は、第1のモデルによる予測処理の流れを示すフローチャートである。図7は、第2のモデルによる予測処理の流れを示すフローチャートである。図8は、探索処理の流れを示すフローチャートである。 The flow of prediction processing and search processing by the prediction device 20 will be described using FIGS. 6, 7 and 8. FIG. FIG. 6 is a flowchart showing the flow of prediction processing using the first model. FIG. 7 is a flowchart showing the flow of prediction processing using the second model. FIG. 8 is a flowchart showing the flow of search processing.
 図6に示すように、第1のモデルによる予測処理において、まず、予測装置20は、入力条件から得られた特徴量を第1のモデルに入力しエッチングレートを予測する(ステップS201)。 As shown in FIG. 6, in the prediction process using the first model, first, the prediction device 20 inputs the feature amount obtained from the input conditions to the first model to predict the etching rate (step S201).
 そして、予測装置20は、予測したエッチングレートを提供する(ステップS202)。 Then, the prediction device 20 provides the predicted etching rate (step S202).
 図7に示すように、第2のモデルによる予測処理において、まず、予測装置20は、膜の種類に応じた材料物性及び薬液の種類に応じた薬液物性を取得する(ステップS211)。 As shown in FIG. 7, in the prediction process using the second model, first, the prediction device 20 acquires material properties according to the type of film and chemical properties according to the type of chemical (step S211).
 次に、予測装置20は、材料物性及び薬液物性を含む特徴量を第2のモデルに入力しエッチングレートを予測する(ステップS212)。 Next, the prediction device 20 inputs the feature amount including the physical properties of the material and the physical properties of the chemical solution into the second model to predict the etching rate (step S212).
 そして、予測装置20は、予測したエッチングレートを提供する(ステップS213)。 Then, the prediction device 20 provides the predicted etching rate (step S213).
 図8に示すように、探索処理において、まず、予測装置20は、第2のモデルを用いて、入力された膜に関する条件及びエッチングレートから薬液に関する特徴量を探索する(ステップS221)。 As shown in FIG. 8, in the search process, first, the prediction device 20 uses the second model to search for the feature amount related to the chemical solution from the input conditions and etching rate related to the film (step S221).
 そして、予測装置20は、探索した特徴量を提供する(ステップS222)。 Then, the prediction device 20 provides the searched feature amount (step S222).
[実施例1]
 図9を用いて、エッチングレートの予測処理及び探索処理の具体例を説明する。図9は、実験データの例を示す図である。
[Example 1]
A specific example of the etching rate prediction process and search process will be described with reference to FIG. FIG. 9 is a diagram showing an example of experimental data.
 図9の「Film」は膜種である。図9の「Depo」は成膜条件である。図9の「Chem_1」、「Chem_2」、「Chem_1_vol ratio」、「Chem_2_vol ratio」及び「Chem_1_vconc(vol%)」は薬液種である。図9の「Temp(deg.C)」及び「Process time(min)」は処理条件である。 "Film" in Fig. 9 is the type of film. "Depo" in FIG. 9 is a film forming condition. "Chem_1", "Chem_2", "Chem_1_vol ratio", "Chem_2_vol ratio" and "Chem_1_vconc (vol%)" in Fig. 9 are chemical types. "Temp (deg.C)" and "Process time (min)" in FIG. 9 are processing conditions.
 学習装置10は、図9に示す実験データから、(3)式のような回帰モデルを生成する。 The learning device 10 generates a regression model like Equation (3) from the experimental data shown in FIG.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (3)式のx(nは正の整数)は特徴量である。例えば、x、x、xは、それぞれ、図9の「Chem_1_vconc(vol%)」(HF濃度)、「Temp(deg.C)」(温度)、「Process time(min)」(処理時間)に相当する。また、xは、0から1の範囲になるように規格化されているものとする。 (3) x n (n is a positive integer) is a feature amount. For example, x 1 , x 2 , and x 3 are respectively “Chem_1_vconc (vol%)” (HF concentration), “Temp (deg.C)” (temperature), “Process time (min)” (processing time). It is also assumed that xn is normalized to be in the range of 0 to 1.
 このように、学習装置10は、所定の手法により特徴選択を行った上で、実験データの一部の特徴量を使って回帰モデルを生成することができる。 In this way, the learning device 10 can generate a regression model using some feature amounts of experimental data after performing feature selection by a predetermined method.
 ここで、予測装置20には、入力条件として(HF濃度,温度,処理時間)=(0.1vol%,40℃,2min)が入力されたものとする。 Here, it is assumed that (HF concentration, temperature, processing time) = (0.1 vol%, 40°C, 2 min) are input to the prediction device 20 as input conditions.
 まず、予測装置20は、入力条件を(0.1vol%,40℃,2min)=(0.38,0,0.05)のように規格化する。そして、予測装置20は、規格化した入力条件を学習済みの回帰モデルである(3)式に入力しER=8.5(nm/min)を予測する。 First, the prediction device 20 normalizes the input conditions as (0.1 vol%, 40°C, 2 min) = (0.38, 0, 0.05). Then, the prediction device 20 inputs the normalized input conditions to the learned regression model (3) and predicts ER=8.5 (nm/min).
 また、ER=20が指定された場合、予測装置20は、探索処理により、(HF濃度,温度,処理時間)=(0.15vol%,47.3℃,2.1min)を得る。 Also, when ER=20 is specified, the prediction device 20 obtains (HF concentration, temperature, processing time)=(0.15 vol%, 47.3° C., 2.1 min) through search processing.
 このように、本実施形態によれば、入力条件からエッチングレートを予測し、また、エッチングレートを基に各条件を探索することができる。 Thus, according to this embodiment, the etching rate can be predicted from the input conditions, and each condition can be searched based on the etching rate.
[実施例2]
 図10を用いて、新規膜についてのエッチングレートの予測処理の具体例を説明する。図10は、実験データの例を示す図である。
[Example 2]
A specific example of the etching rate prediction process for a new film will be described with reference to FIG. FIG. 10 is a diagram showing an example of experimental data.
 図10の「Film」は膜種である。図10の「Depo」及び「Depo_temp(deg.C)」は成膜条件である。図10の「Chem_1」、「Chem_2」、「Chem_1_vol ratio」、「Chem_2_vol ratio」及び「Chem_1_vconc(vol%)」は薬液種である。図10の「Temp(deg.C)」は処理条件である。 "Film" in Fig. 10 is the type of film. "Depo" and "Depo_temp (deg.C)" in FIG. 10 are film forming conditions. "Chem_1", "Chem_2", "Chem_1_vol ratio", "Chem_2_vol ratio", and "Chem_1_vconc (vol%)" in Fig. 10 are chemical liquid types. "Temp (deg.C)" in FIG. 10 is a processing condition.
 学習装置10は、図10に示す実験データから、(4)式のような回帰モデルを生成する。 The learning device 10 generates a regression model like Equation (4) from the experimental data shown in FIG.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (3)式のx(nは正の整数)は特徴量である。例えば、x、xは、それぞれ、図10の「Depo_temp(deg.C)」(成膜温度)、「Chem_1_vconc(vol%)」(HF濃度)に相当する。また、xは、0から1の範囲になるように規格化されているものとする。 (3) x n (n is a positive integer) is a feature amount. For example, x 1 and x 2 respectively correspond to "Depo_temp (deg.C)" (film formation temperature) and "Chem_1_vconc (vol%)" (HF concentration) in FIG. It is also assumed that xn is normalized to be in the range of 0 to 1.
 ここで、予測装置20には、入力条件として(成膜温度,HF濃度)=(1000℃,1vol%)が入力されたものとする。 Here, it is assumed that (film formation temperature, HF concentration) = (1000°C, 1 vol%) is input to the prediction device 20 as input conditions.
 まず、予測装置20は、入力条件を(1000℃,1vol%)=(0.643,0.069)のように規格化する。そして、予測装置20は、規格化した入力条件を学習済みの回帰モデルである(4)式に入力しER=3.5(nm/min)を予測する。 First, the prediction device 20 normalizes the input conditions as (1000°C, 1 vol%) = (0.643, 0.069). Then, the prediction device 20 inputs the normalized input conditions to the learned regression model (4) and predicts ER=3.5 (nm/min).
 また、ER=20が指定された場合、予測装置20は、探索処理により、(HF濃度,温度,処理時間)=(0.15vol%,47.3℃,2.1min)を得る。 Also, when ER=20 is specified, the prediction device 20 obtains (HF concentration, temperature, processing time)=(0.15 vol%, 47.3° C., 2.1 min) through search processing.
 このように、本実施形態によれば、入力条件の成膜温度が実験データに存在しない場合(新規膜)であっても、エッチングレートを予測することができる。 As described above, according to the present embodiment, the etching rate can be predicted even when the film formation temperature of the input condition does not exist in the experimental data (new film).
[その他の実施形態]
 提供部234は、入力された処理温度と、予測部232によって予測されたエッチングレートと、の関係から算出した活性化エネルギーを提供することができる。図11を用いて、活性化エネルギーの算出方法を説明する。図11は、活性化エネルギーの算出方法を説明する図である。
[Other embodiments]
The providing unit 234 can provide the activation energy calculated from the relationship between the input processing temperature and the etching rate predicted by the prediction unit 232 . A method for calculating the activation energy will be described with reference to FIG. FIG. 11 is a diagram illustrating a method of calculating activation energy.
 図11に示すように、提供部234は、予測されたエッチングレート、又は実験データのエッチングレートに基づく反応(エッチング)速度定数ln kと、エッチングの処理温度Tの逆数をプロットする。 As shown in FIG. 11, the providing unit 234 plots the reaction (etching) rate constant ln k based on the predicted etching rate or the experimental data etching rate and the reciprocal of the etching processing temperature T.
 そして、提供部234は、プロットした点を(5)式により近似した直線301の傾きから、活性化エネルギーEaを算出することができる。なお、(5)式のAは定数であり、Rは気体定数である。 Then, the providing unit 234 can calculate the activation energy Ea from the slope of the straight line 301 obtained by approximating the plotted points by the formula (5). In addition, A of (5) Formula is a constant and R is a gas constant.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 これにより、予測装置20は、エッチングレートだけでなく、活性化エネルギーを提供することができる。 As a result, the prediction device 20 can provide not only the etching rate but also the activation energy.
 これまで説明してきたように、実施形態の学習装置10の予測部132は、基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する。また、更新部133は、予測部132によって予測されたエッチングレートと正解のエッチングレートとの差分が小さくなるようにモデルのパラメータを更新する。その結果、実施形態によれば、エッチングに関する条件を効率良く予測可能なモデルを得ることができる。 As described above, the prediction unit 132 of the learning device 10 according to the embodiment uses a model that outputs an etching rate based on feature amounts related to a film and a chemical solution in substrate etching, and uses a model that outputs an etching rate for an input input condition. Predict rates. The updating unit 133 also updates the parameters of the model so that the difference between the etching rate predicted by the prediction unit 132 and the correct etching rate becomes smaller. As a result, according to the embodiment, it is possible to obtain a model that can efficiently predict etching conditions.
 実施形態の予測装置20の予測部232は、基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する。また、提供部234は、予測部232によって予測されたエッチングレートを提供する。その結果、実施形態によれば、エッチングに関する条件を効率良く予測することができる。 The prediction unit 232 of the prediction device 20 of the embodiment predicts the etching rate for the inputted input conditions using a model that outputs the etching rate based on the feature values of the film and the chemical solution in the etching of the substrate. Also, the providing unit 234 provides the etching rate predicted by the predicting unit 232 . As a result, according to the embodiment, etching conditions can be predicted efficiently.
 実施形態の予測装置20の予測部232は、膜の種類、膜の成膜条件、薬液の種類、エッチングの処理条件を含む特徴量を基にエッチングレートを出力するモデルを用いて、エッチングレートを予測する。その結果、実施形態によれば、実験データと同様の特徴量を用いて、エッチングレートを容易に予測することができる。 The prediction unit 232 of the prediction device 20 of the embodiment estimates the etching rate using a model that outputs the etching rate based on feature amounts including film type, film deposition conditions, chemical liquid type, and etching processing conditions. Predict. As a result, according to the embodiment, it is possible to easily predict the etching rate using feature amounts similar to experimental data.
 実施形態の予測装置20の予測部232は、膜の物性を示す値及び薬液の物性を示す値を含む特徴量を基にエッチングレートを出力するモデルを用いて、エッチングレートを予測する。その結果、実施形態によれば、膜及び薬液の物性に関する特徴量を用いて、エッチングレートを高精度に予測することができる。 The prediction unit 232 of the prediction device 20 of the embodiment predicts the etching rate using a model that outputs the etching rate based on the feature amount including the value indicating the physical properties of the film and the value indicating the physical properties of the chemical solution. As a result, according to the embodiment, it is possible to predict the etching rate with high accuracy using the feature values relating to the physical properties of the film and the chemical solution.
 実施形態の予測装置20の取得部231は、入力条件に含まれる膜の種類及び薬液の種類に基づき、膜の物性を示す値及び薬液の物性を示す値を取得する。予測部232は、モデルを用いて、取得部231によって取得された値に対するエッチングレートを予測する。その結果、実施形態によれば、膜及び薬液の物性に関する特徴量を自動的に取得することができる。 The acquisition unit 231 of the prediction device 20 of the embodiment acquires a value indicating the physical properties of the film and a value indicating the physical properties of the chemical solution based on the type of film and the type of chemical solution included in the input conditions. The prediction unit 232 uses a model to predict the etching rate for the value acquired by the acquisition unit 231 . As a result, according to the embodiment, it is possible to automatically acquire the feature values relating to the physical properties of the film and the chemical solution.
 実施形態の予測装置20の探索部233は、モデルを用いて、指定されたエッチングレートを基に、膜及び薬液に関する特徴量を探索する。また、提供部234は、探索部233によって探索された特徴量を提供する。その結果、実施形態によれば、エッチングレート以外の条件を探索により得ることができる。 The search unit 233 of the prediction device 20 of the embodiment uses the model to search for feature amounts related to the film and the chemical based on the designated etching rate. Also, the providing unit 234 provides the feature amount searched by the searching unit 233 . As a result, according to the embodiment, conditions other than the etching rate can be obtained by searching.
 実施形態の予測装置20の予測部232は、エッチングの処理温度を含む特徴量を基にエッチングレートを出力するモデルを用いて、入力された処理温度に対するエッチングレートを予測する。また、提供部234は、入力された処理温度と、予測部232によって予測されたエッチングレートと、の関係から算出した活性化エネルギーを提供する。その結果、実施形態によれば、エッチングレートとは異なる観点からの分析結果を提供することができる。 The prediction unit 232 of the prediction device 20 of the embodiment predicts the etching rate for the input processing temperature using a model that outputs the etching rate based on the feature amount including the etching processing temperature. The providing unit 234 also provides the activation energy calculated from the relationship between the input processing temperature and the etching rate predicted by the prediction unit 232 . As a result, according to the embodiment, it is possible to provide analysis results from a viewpoint different from the etching rate.
 今回開示された実施形態は、すべての点で例示であって、制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形体で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 上記の実施形態で説明した各種の処理は、あらかじめ用意されたプログラムをコンピュータで実行することで実現できる。そこで、以下では、上記の各実施形態と同様の機能を有するプログラムを実行するコンピュータの一例を説明する。図12は、プログラムを実行するコンピュータの一例を示す図である。 The various processes described in the above embodiments can be realized by executing a prepared program on a computer. Therefore, an example of a computer that executes a program having functions similar to those of the above-described embodiments will be described below. FIG. 12 is a diagram illustrating an example of a computer that executes programs.
 図12に示すように、コンピュータ1000は、各種演算処理を実行するコンピュータ1010と、データ入力を受け付ける入力装置1020と、モニタ1030とを有する。また、コンピュータ1000は、各種装置と接続するためのインタフェース装置1040と、他の情報処理装置等と有線又は無線により接続するための通信装置1050とを有する。また、コンピュータ1000は、各種情報を一時記憶するRAM1060と、記憶装置1070とを有する。また、各装置1010~1070は、バス1080に接続される。 As shown in FIG. 12, the computer 1000 has a computer 1010 that executes various arithmetic processes, an input device 1020 that receives data input, and a monitor 1030. The computer 1000 also has an interface device 1040 for connecting with various devices, and a communication device 1050 for connecting with other information processing devices or the like by wire or wirelessly. Computer 1000 also has RAM 1060 and storage device 1070 for temporarily storing various information. Each device 1010 - 1070 is also connected to a bus 1080 .
 記憶装置1070には、図5に示した取得部231、予測部232、探索部233及び提供部234の各処理部と同様の機能を有するプログラムが記憶される。また、記憶装置1070には、材料情報221、薬液情報222及びモデル情報223が記憶される。入力装置1020は、例えば、コンピュータ1000のユーザから操作情報等の各種情報の入力を受け付ける。モニタ1030は、例えば、コンピュータ1000のユーザに対して表示画面等の各種画面を表示する。インタフェース装置1040は、例えば印刷装置等が接続される。通信装置1050は、例えば、図示しないネットワークと接続され、他の情報処理装置と各種情報をやり取りする。 The storage device 1070 stores programs having functions similar to those of the acquisition unit 231, the prediction unit 232, the search unit 233, and the provision unit 234 shown in FIG. Also, the storage device 1070 stores material information 221 , chemical solution information 222 and model information 223 . The input device 1020 receives input of various information such as operation information from the user of the computer 1000, for example. The monitor 1030 displays various screens such as a display screen to the user of the computer 1000, for example. The interface device 1040 is connected with, for example, a printing device. The communication device 1050 is connected to, for example, a network (not shown) and exchanges various information with other information processing devices.
 コンピュータ1010は、記憶装置1070に記憶された各プログラムを読み出して、RAM1060に展開して実行することで、各種の処理を行う。また、これらのプログラムは、コンピュータ1000を図5に示した取得部231、予測部232、探索部233及び提供部234として機能させることができる。 The computer 1010 performs various processes by reading each program stored in the storage device 1070, developing it in the RAM 1060, and executing it. Further, these programs can cause the computer 1000 to function as the acquiring unit 231, the predicting unit 232, the searching unit 233, and the providing unit 234 shown in FIG.
 なお、上記のプログラムは、必ずしも記憶装置1070に記憶されている必要はない。例えば、コンピュータ1000が読み取り可能な記憶媒体に記憶されたプログラムを、コンピュータ1000が読み出して実行するようにしてもよい。コンピュータ1000が読み取り可能な記憶媒体は、例えば、CD-ROMやDVD(Digital Versatile Disc)、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN等に接続された装置にこのプログラムを記憶させておき、コンピュータ1000がこれらからプログラムを読み出して実行するようにしてもよい。 It should be noted that the above program does not necessarily have to be stored in the storage device 1070. For example, the computer 1000 may read and execute a program stored in a storage medium readable by the computer 1000 . Examples of storage media readable by the computer 1000 include portable recording media such as CD-ROMs, DVDs (Digital Versatile Discs), USB (Universal Serial Bus) memories, semiconductor memories such as flash memories, and hard disk drives. . Alternatively, the program may be stored in a device connected to a public line, the Internet, a LAN, etc., and the computer 1000 may read out the program from the device and execute the program.
 ここでは、予測装置20を実現するためのコンピュータの例を説明したが、学習装置10についても、ここで説明したコンピュータと同様の構成のコンピュータにより実現される。 Here, an example of a computer for realizing the prediction device 20 has been described, but the learning device 10 is also realized by a computer having the same configuration as the computer described here.
 10 学習装置
 11、21 I/F部
 12、22 記憶部
 13、23 制御部
 20 予測装置
 121 実験データDB
 122、221 材料情報
 123、222 薬液情報
 124、223 モデル情報
REFERENCE SIGNS LIST 10 learning device 11, 21 I/F section 12, 22 storage section 13, 23 control section 20 prediction device 121 experiment data DB
122, 221 Material information 123, 222 Chemical solution information 124, 223 Model information

Claims (11)

  1.  コンピュータによって実行される予測方法であって、
     基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する予測工程と、
     前記予測工程によって予測されたエッチングレートを提供する提供工程と、
     を含む、予測方法。
    A computer implemented prediction method comprising:
    a prediction step of predicting an etching rate for input conditions using a model that outputs an etching rate based on feature values relating to films and chemicals in substrate etching;
    a providing step of providing the etching rate predicted by the predicting step;
    Forecasting methods, including
  2.  前記予測工程は、前記膜の種類、前記膜の成膜条件、前記薬液の種類、エッチングの処理条件を含む特徴量を基にエッチングレートを出力するモデルを用いて、エッチングレートを予測する、請求項1に記載の予測方法。 The prediction step predicts the etching rate using a model that outputs the etching rate based on feature amounts including the type of the film, film deposition conditions, the type of the chemical solution, and etching processing conditions. Item 1. The prediction method according to item 1.
  3.  前記予測工程は、前記膜の物性を示す値及び前記薬液の物性を示す値を含む特徴量を基にエッチングレートを出力するモデルを用いて、エッチングレートを予測する、請求項1に記載の予測方法。 2. The prediction according to claim 1, wherein the prediction step predicts the etching rate using a model that outputs the etching rate based on a feature amount including a value indicating the physical property of the film and a value indicating the physical property of the chemical solution. Method.
  4.  前記入力条件に含まれる膜の種類及び薬液の種類に基づき、前記膜の物性を示す値及び前記薬液の物性を示す値を取得する取得工程をさらに有し、
     前記予測工程は、前記モデルを用いて、前記取得工程によって取得された値に対するエッチングレートを予測する、請求項3に記載の予測方法。
    further comprising an acquisition step of acquiring a value indicating a physical property of the film and a value indicating the physical property of the chemical solution based on the type of the film and the type of the chemical solution included in the input conditions;
    4. The prediction method according to claim 3, wherein the prediction step uses the model to predict the etching rate for the values obtained by the obtaining step.
  5.  前記モデルを用いて、指定されたエッチングレートを基に、膜及び薬液に関する特徴量を探索する探索工程をさらに含み、
     前記提供工程は、前記探索工程によって探索された特徴量を提供する、請求項1又は2に記載の予測方法。
    Further comprising a search step of searching for feature values related to the film and the chemical based on the specified etching rate using the model,
    The prediction method according to claim 1 or 2, wherein said providing step provides the feature amount searched for by said searching step.
  6.  前記予測工程は、エッチングの処理温度を含む特徴量を基にエッチングレートを出力するモデルを用いて、入力された処理温度に対するエッチングレートを予測し、
     前記提供工程は、前記入力された処理温度と、前記予測工程によって予測されたエッチングレートと、の関係から算出した活性化エネルギーを提供する、請求項1又は2に記載の予測方法。
    The prediction step predicts the etching rate for the input processing temperature using a model that outputs the etching rate based on the feature amount including the etching processing temperature,
    3. The prediction method according to claim 1, wherein said providing step provides activation energy calculated from a relationship between said input processing temperature and said etching rate predicted by said predicting step.
  7.  基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測し、
     前記予測する処理によって予測されたエッチングレートを提供する処理をコンピュータに実行させる、予測プログラム。
    predicting the etching rate for the input conditions using a model that outputs the etching rate based on the feature values related to the film and the chemical liquid in the etching of the substrate;
    A prediction program that causes a computer to execute a process of providing an etching rate predicted by the predicting process.
  8.  基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する予測部と、
     前記予測部によって予測されたエッチングレートを提供する提供部と、
     を有する、予測装置。
    a prediction unit that predicts an etching rate for input conditions using a model that outputs an etching rate based on feature amounts related to films and chemicals in substrate etching;
    a providing unit that provides the etching rate predicted by the predicting unit;
    A prediction device having
  9.  コンピュータによって実行される学習方法であって、
     基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する予測工程と、
     前記予測工程によって予測されたエッチングレートと正解のエッチングレートとの差分が小さくなるように前記モデルのパラメータを更新する更新工程と、
     を含む、学習方法。
    A computer implemented learning method comprising:
    a prediction step of predicting an etching rate for input conditions using a model that outputs an etching rate based on feature values relating to films and chemicals in substrate etching;
    an update step of updating parameters of the model so that the difference between the etching rate predicted by the prediction step and the correct etching rate becomes smaller;
    How to learn, including
  10.  基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測し、
     前記予測する処理によって予測されたエッチングレートと正解のエッチングレートとの差分が小さくなるように前記モデルのパラメータを更新する処理をコンピュータに実行させる、学習プログラム。
    predicting the etching rate for the input conditions using a model that outputs the etching rate based on the feature values related to the film and the chemical liquid in the etching of the substrate;
    A learning program that causes a computer to execute a process of updating parameters of the model so that a difference between the etching rate predicted by the predicting process and a correct etching rate becomes smaller.
  11.  基板のエッチングにおける膜及び薬液に関する特徴量を基にエッチングレートを出力するモデルを用いて、入力された入力条件に対するエッチングレートを予測する予測部と、
     前記予測部によって予測されたエッチングレートと正解のエッチングレートとの差分が小さくなるように前記モデルのパラメータを更新する更新部と、
     を有する、学習装置。
    a prediction unit that predicts an etching rate for input conditions using a model that outputs an etching rate based on feature amounts related to films and chemicals in substrate etching;
    an updating unit that updates the parameters of the model so that the difference between the etching rate predicted by the prediction unit and the correct etching rate becomes smaller;
    A learning device having
PCT/JP2022/028438 2021-08-05 2022-07-22 Prediction method, prediction program, prediction device, learning method, learning program, and learning device WO2023013436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023540254A JPWO2023013436A1 (en) 2021-08-05 2022-07-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-129221 2021-08-05
JP2021129221 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013436A1 true WO2023013436A1 (en) 2023-02-09

Family

ID=85155598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028438 WO2023013436A1 (en) 2021-08-05 2022-07-22 Prediction method, prediction program, prediction device, learning method, learning program, and learning device

Country Status (3)

Country Link
JP (1) JPWO2023013436A1 (en)
TW (1) TW202310033A (en)
WO (1) WO2023013436A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332619A (en) * 2005-04-28 2006-12-07 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2009177007A (en) * 2008-01-25 2009-08-06 Panasonic Corp Etching method of insulating film
JP2011029443A (en) * 2009-07-27 2011-02-10 Panasonic Corp Method and system for wet processing
JP2014220430A (en) * 2013-05-09 2014-11-20 東京エレクトロン株式会社 Substrate processing method, program, controller, deposition system, and substrate processing system
WO2016104433A1 (en) * 2014-12-26 2016-06-30 倉敷紡績株式会社 Silicon concentration or etch selectivity measurement method and measurement device
JP2018032781A (en) * 2016-08-25 2018-03-01 東京応化工業株式会社 Etchant and etching method
JP2019106476A (en) * 2017-12-13 2019-06-27 オムロン株式会社 Monitoring system, learning device, learning method, monitoring device, and monitoring method
JP2021072294A (en) * 2019-10-29 2021-05-06 倉敷紡績株式会社 Substrate etching method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332619A (en) * 2005-04-28 2006-12-07 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2009177007A (en) * 2008-01-25 2009-08-06 Panasonic Corp Etching method of insulating film
JP2011029443A (en) * 2009-07-27 2011-02-10 Panasonic Corp Method and system for wet processing
JP2014220430A (en) * 2013-05-09 2014-11-20 東京エレクトロン株式会社 Substrate processing method, program, controller, deposition system, and substrate processing system
WO2016104433A1 (en) * 2014-12-26 2016-06-30 倉敷紡績株式会社 Silicon concentration or etch selectivity measurement method and measurement device
JP2018032781A (en) * 2016-08-25 2018-03-01 東京応化工業株式会社 Etchant and etching method
JP2019106476A (en) * 2017-12-13 2019-06-27 オムロン株式会社 Monitoring system, learning device, learning method, monitoring device, and monitoring method
JP2021072294A (en) * 2019-10-29 2021-05-06 倉敷紡績株式会社 Substrate etching method

Also Published As

Publication number Publication date
TW202310033A (en) 2023-03-01
JPWO2023013436A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
TWI524189B (en) Method and system for detection of tool performance degradation and mismatch and related computer program product and apparatus
Choi et al. Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture
WO2019180433A1 (en) Predicting using digital twins
Chang et al. A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities
TWI831893B (en) Method, system and computer-readable medium for prescriptive analytics in highly collinear response space
JP6718500B2 (en) Optimization of output efficiency in production system
WO2019194105A1 (en) Causal relation learning device, causal relation estimating device, causal relation learning method, causal relation estimating method, and program
Kang et al. Adaptive nonparametric control chart for time-varying and multimodal processes
JP6484449B2 (en) Prediction device, prediction method, and prediction program
US20210334655A1 (en) Predicting properties of materials from physical material structures
JP2021193623A (en) Test evaluation system, program and test evaluation method
Fry et al. Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction
WO2023013436A1 (en) Prediction method, prediction program, prediction device, learning method, learning program, and learning device
US20230054159A1 (en) Method and device for predicting defects
JP2023067749A (en) Information processing method, information processor, and storage medium
Khan et al. Fast robust estimation of prediction error based on resampling
US20240185117A1 (en) Knowledge Graph Based Modeling System for a Production Environment
Ban et al. Fast etch recipe creation with automated model-based process optimization
Choung et al. Process control of time-varying systems using parameter-less self-organizing maps
Hortaçsu et al. Structural Econometric Modeling in Industrial Organization and Quantitative Marketing: Theory and Applications
JP2022170171A (en) Management device, management method, and program
JP2023512508A (en) Training with Moment Estimation Using Different Time Constants
Masselot et al. Constrained groupwise additive index models
Park et al. CD and OCD sampling scheme optimization for HVM environment
JP7406664B1 (en) Learning model generation method, information processing device, computer program, material selection method, and simulation experiment value generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540254

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852860

Country of ref document: EP

Kind code of ref document: A1