WO2023013413A1 - Probe card - Google Patents

Probe card Download PDF

Info

Publication number
WO2023013413A1
WO2023013413A1 PCT/JP2022/028162 JP2022028162W WO2023013413A1 WO 2023013413 A1 WO2023013413 A1 WO 2023013413A1 JP 2022028162 W JP2022028162 W JP 2022028162W WO 2023013413 A1 WO2023013413 A1 WO 2023013413A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe pin
probe
cable
tip
core
Prior art date
Application number
PCT/JP2022/028162
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 笹嶋
Original Assignee
東邦電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦電子株式会社 filed Critical 東邦電子株式会社
Publication of WO2023013413A1 publication Critical patent/WO2023013413A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a probe card used for semiconductor probe testing.
  • probe cards There are two types of probe cards: a cantilever type in which probe pins (probe needles, simply called probes) are arranged substantially parallel to an object to be inspected such as a wafer, and a vertical type in which probe pins are arranged substantially perpendicularly. There are two types. The tip of the probe pin protrudes from the plate. The tip of the cantilever probe pin is bent or curved in a substantially L shape. A vertical probe pin is entirely linear. A spring-type probe pin is also included in the vertical type.
  • probe pins probe needles, simply called probes
  • vertical type in which probe pins are arranged substantially perpendicularly.
  • the tip of the probe pin protrudes from the plate.
  • the tip of the cantilever probe pin is bent or curved in a substantially L shape.
  • a vertical probe pin is entirely linear.
  • a spring-type probe pin is also included in the vertical type.
  • the proximal end of the probe pin is connected to a cable connected to an inspection device via an intervening member such as a contact, a soldered portion, or a coaxial pin (see Patent Document 1, for example).
  • the inventors of the present application have found that, especially when using high-frequency electrical signals such as several GHz as test signals, the electrical signal obtained via the probe pin may be degraded due to the intervention of the intervening member. It is considered that this is because the transmission loss of the intervening member at high frequencies is inferior to that of the probe pin and the core of the cable. Deterioration of the electrical signal obtained through the probe pin lowers the measurement accuracy of the electrical characteristics of the inspection object, such as a chip on a semiconductor wafer.
  • an object of the present invention is to provide a probe card capable of improving the measurement accuracy of electrical characteristics.
  • the present invention comprises a probe pin made of a metal conductor, elastically deformable, and having a tip projecting from an end face, a core body made of an electric conductor electrically connected to the probe pin and an inspection device, and the core body.
  • the probe card is provided with a cable having an insulating coating made of an insulating material for coating, and is characterized in that the proximal end of the probe pin and the distal end of the core are in direct contact with each other.
  • the base end of the probe pin and the tip of the core of the cable are in direct contact.
  • the probe pin and the core of the cable are inferior in transmission loss at high frequencies such as connectors, soldered parts, coaxial pins, etc. It is possible to suppress the deterioration of the electrical signal obtained via the probe pin compared to the case where it is connected via an intervening member, and to measure the electrical characteristics of the chip on the semiconductor wafer that is the inspection object. It is possible to improve the accuracy.
  • the distal end surface of the core body is exposed on the distal end side, the exposed distal end surface of the core body is polished, and the proximal end of the probe pin is curved by elastic deformation. It is preferable that the tip of the protruding portion on the side is in contact with the tip surface.
  • the tip of the protrusion on the base end side of the probe pin is in contact with the polished tip surface of the core of the cable.
  • part of the restoring force always acts in the direction in which the tip of the probe pin presses the core body to return to the original shape of the probe pin. For these reasons, it is possible to ensure the contact between the probe pin and the core body.
  • the core body exposed from the insulating coating on the proximal end side of the cable and the proximal end portion of the probe pin are in direct contact and fixed to each other by soldering. preferably.
  • FIG. 1 is a schematic diagram showing a probe card according to a first embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a probe card according to a second embodiment of the present invention
  • FIGS. 1 and 2 are diagrams for schematically explaining this embodiment, and the dimensions are deformed.
  • the probe card 100 constitutes an inspection jig of an inspection apparatus for inspecting a circuit formed on an inspection object in which semiconductor parts such as semiconductor chips and semiconductor elements are formed on a semiconductor substrate such as a silicon wafer.
  • the probe card 100 supports a large number of probe pins 10 so as to correspond to each inspection point within a predetermined range of the inspection object.
  • the inspection points within the inspection area are inspected by bringing the probe pin 10 into contact with each inspection point within the inspection area. After that, the inspection table that supports the inspection object is moved to move the inspection area, and the inspection is performed. In this manner, the entire inspection object is inspected by sequentially moving the inspection area. Specifically, in a state where the tip portion 11 of the probe pin 10 is pressed against a semiconductor component on a semiconductor substrate, a test signal composed of a high-frequency electric signal such as several GHz is applied from an inspection device (not shown) to the object to be inspected. supply. Based on the electrical signals obtained through the probe pins 10, the inspection apparatus measures the electrical characteristics of the chips on the semiconductor wafer, which are the objects to be inspected.
  • the probe card 100 includes a plurality of probe pins 10, cables 30 connected to each probe pin 10, connectors 50 connected to each cable 30, and the like. In addition, in FIG. 1, only two probe pins 10 and the component parts corresponding to these are shown typically.
  • Each probe pin 10 is also called a probe needle or simply a probe, and is made of an elastically deformable metal conductor.
  • the probe pin 10 is a straight elongated rod-shaped body as a whole, and is a vertical type that is arranged substantially perpendicularly to the inspection object.
  • the probe pin 10 is generally made of rhenium-tungsten, palladium alloy, beryllium steel, etc., but may be made of various other metals and alloys.
  • the probe pin 10 has a cylindrical shape with a diameter of 30 ⁇ m to 50 ⁇ m and a total length of 5 mm to 15 mm.
  • the distal end portion 11 (lower end portion in FIG. 1) and the proximal end portion 12 (lower end portion in FIG. 1) of the probe pin 10 have a shape such as a spherical, semi-elliptical, conical, or truncated conical shape. It is rounded so that
  • the probe pin 10 may be made of a stranded wire or the like in which a plurality of linear bodies are twisted together.
  • the dimensions, shape, and the like of the probe pin 10 described above are examples, and are not limited thereto.
  • the outer peripheral surface of the probe pin 10 is covered with an insulating film 13 made of an insulating resin such as polyurethane, polyester, polyesterimide, polyamideimide, polyimide, fluorine resin, or the like, except for the ends 11 and 12 .
  • an insulating resin such as polyurethane, polyester, polyesterimide, polyamideimide, polyimide, fluorine resin, or the like, except for the ends 11 and 12 .
  • the pin unit portion 70 includes a proximal side plate 71 to which the proximal end portions 12 of the plurality of probe pins 10 are fixed, a distal side plate 72 from which the distal ends 11 of the plurality of probe pins 10 protrude toward the distal side, and A connecting portion 73 that connects the proximal side plate 71 and the distal side plate 72 is provided.
  • the base end plate 71 is composed of a plurality of plates 71A to 71C, here three plates, made of ceramic or engineering plastic resin, for example. These plates 71A to 71C are formed with through holes 71a to 71c through which the base ends of the probe pins 10 can be inserted.
  • the cross-sectional diameter of the through holes 71a to 71c is preferably 1.1 to 1.2 times the diameter of the probe pin 10 including the insulating coating 13.
  • FIG. Note that the cross-sectional shape of the through holes 71a to 71c is not limited to a circular shape, and may be an elliptical shape, a polygonal shape, or the like.
  • the three plates 71A to 71C are vertically stacked so that the through holes 71a to 71c through which the base ends of the same probe pins 10 are inserted are slightly displaced in the horizontal direction. It is fixed using fixtures such as
  • the through holes 71a to 71c are positioned so as to continue rightward from top to bottom. Even if the through holes 71a to 71c are continuously shifted in one direction, the through holes 71a to 71c are arranged in different directions, for example, rightward, leftward, and rightward in order, or rightward, frontward, and leftward. Any order, such as the order of directions, may be shifted.
  • the base end side of the probe pin 10 By inserting the base end side of the probe pin 10 through these through holes 71a to 71c, the base end side of the probe pin 10 is elastically deformed and curved along the displacement of the through holes 71a to 71c. At this time, the insulating coatings 13 and 23 covering the outer peripheral surface of the probe pin 10 contact the corners of the through holes 71a to 71c and are elastically or plastically deformed so that the corners bite into the corners. Due to this deformation, the probe pin 10 is supported by the base end plate 71 without falling off.
  • the tips of the proximal end portions 12 of the probe pins 10 protrude from the proximal side surface (upper surface in FIG. 1) of the proximal side plate 71 .
  • the probe pin 10 is insulated from the proximal side plate 71 by an insulating coating 13 covering these outer peripheral surfaces.
  • the tip side plate 72 is made of, for example, ceramic or engineering plastic, and is formed with a plurality of through holes 72a corresponding to the base end portions 11 of the plurality of probe pins 10 to be inserted therethrough.
  • the tips of the tip portions 11 of the probe pins 10 protrude from the tip side surface 72A (lower surface in FIG. 1) of the tip side plate 72 .
  • the tip side plate 72 corresponds to the member of the present invention, and the tip side surface 72A of the tip side plate 72 corresponds to the tip side end face of the present invention.
  • the cross-sectional shape of the through hole 72a is not limited to a circular shape, and may be an elliptical shape, a polygonal shape, or the like.
  • the probe pin 10 is insulated from the proximal side plate 71 and the distal side plate 72 by the insulating coating 13 .
  • the proximal side plate 71 and the distal side plate 72 may be insulated by being made of an insulator.
  • the connecting portion 73 is made of metal such as SUS, and fixedly connects the proximal side plate 71 and the distal side plate 72 .
  • each probe pin 10 is supported by the base end plate 71 on the base end side, and the tip portion 11 side is inserted through the through hole 72 a of the base end plate 72 .
  • the probe pin 10 elastically deforms and bends, and part of the restoring force that tries to return to the original straight shape is released. It acts to move the proximal end upward.
  • Each cable 30 has a core body 31 electrically connected to the probe pin 10 and an insulating coating 32 made of an insulator covering the core body 31 .
  • the cable 30 is conventionally a commercially available cable used for signal communication, etc., and the core 31 is preferably made of a solid conductor metal.
  • Each connector 50 is electrically connected to the core 31 of the cable 30 .
  • Each connector 50 is connected to a connector at the end of a cable connected to the inspection device, although not shown.
  • the connector 50 is a commercially available connector or the like conventionally used for signal communication.
  • the electrode unit portion 80 includes a connector plate 81 to which a plurality of connectors 50 are fixed, an electrode plate 82 to which the tip portions of a plurality of cables 30 are fixed, and a connecting portion that connects the connector plate 81 and the electrode plate 82. 83 is provided.
  • the connector plate 81 is made of, for example, metal or glass epoxy resin, and has a plurality of connectors 50 fixed thereto. Note that the cores 31 of the cables 30 are electrically connected to these connectors 50 .
  • the electrode plate 82 is made of, for example, metal or glass epoxy resin, and the tips of the plurality of cables 30 are fixed. Each cable 30 is fixed to the electrode plate 82 so that its tip protrudes from the tip side surface (lower surface in FIG. 1) of the electrode plate 82 .
  • the core 31 of the cable 30 is insulated from the electrode plate 82 by the insulating coating 32 .
  • the tip end face of the core body 31 is exposed at the tip end side of each cable 30, and the exposed rear end face of the core body 31 is polished by milling or the like. Specifically, the tip portion of each cable 30 is cut perpendicular to the central axis thereof, and the portion of the core body exposed at the circular cut surface is polished by milling or the like.
  • the connecting part 83 is made of metal such as SUS, and fixedly connects the connector plate 81 and the electrode plate 82 .
  • each cable 30 is connected to the connector 50 fixed to the connector plate 81 at its proximal end, and the polished core 31 protrudes from the electrode plate 82 and exposed at its distal end.
  • the pin unit section 70 and the electrode unit section 80 are configured to be detachable. Specifically, the base end side plate 71 of the pin unit section 70 and the electrode plate 82 of the electrode unit section 80 are detachably configured using guide pins and bolts.
  • each probe pin 10 and the corresponding cable 30 simply by assembling the pin unit section 70 and the electrode unit section 80 .
  • These electrical connections are configured to press the base end portion 12 of the probe pin 10 against the polished surface of the core body 31 extending on the horizontal plane.
  • part of the restoring force always acts in the direction in which these tips press against the core body 31 to return the probe pin 10 to its original straight shape. . By these, it is possible to reliably maintain the electrical connection described above.
  • each probe pin 10 and its corresponding cable 30 are in direct contact.
  • an electrical signal of a high frequency such as several GHz
  • these signals are connected through an intermediate member such as a connector, a soldered part, a coaxial pin, etc., which is inferior in transmission loss at high frequencies, as in the above-mentioned conventional technique.
  • the probe pin 10 is used, the deterioration of the electrical signal obtained via the probe pin 10 can be suppressed, and the measurement accuracy of the electrical characteristics of the semiconductor wafer, which is the inspection object, can be improved. becomes possible.
  • FIG. 3 is a diagram for schematically explaining the present embodiment, and the dimensions are deformed.
  • the probe card 200 includes a plurality of probe pins 110, cables 130 corresponding to each probe pin 110, connectors 150 corresponding to each cable 130, and the like. In addition, in FIG. 3, only one probe pin 110 and the component corresponding to this are shown typically.
  • Each probe pin 110 has a tip portion 111 (the left end portion in FIG. 3) bent or curved at a substantially right angle to form an elongated L-shaped rod, and a cantilever arranged substantially parallel to the inspection object. is a type.
  • the tip portion 111 of the probe pin 110 has a rounded tip, but the base end portion 112 (the right end portion in FIG. 3) may or may not have a rounded tip.
  • a plurality of probe pins 110 , cables 130 and connectors 150 are arranged in the unit section 170 .
  • Each cable 130 has a core body 131 electrically connected to the probe pin 110 and an insulating coating 132 made of an insulator covering the core body 131 .
  • the cable 130 is conventionally a commercially available cable or the like used for signal communication, etc., and the core 131 is preferably made of a solid conductor metal, but may be made of a large number of conducting wires. may
  • the unit part 170 is made of a connector plate 171 to which the connector 150 is fixed, a fixing plate 172 fixed to the peripheral edge of the connector plate 171, and a thermosetting resin that fixes the tip side of the cable 130 to the fixing plate 172.
  • a resin curing section 181 is provided.
  • the connector plate 171 is made of, for example, metal or glass epoxy resin, and the connector 150 is fixed using thermosetting resin, bolts, or the like. A core 131 of the cable 130 is electrically connected to the connector 150 .
  • the fixing plate 172 is made of metal or ceramic, for example, and is fixed to the lower surface of the peripheral portion of the connector plate 171 using thermosetting resin, adhesive, bolts, or the like.
  • the cured resin portion 181 is formed by curing the resin adhesive applied to fix the tip side of the cable 130 to the fixing plate 172 .
  • the core 131 exposed from the insulating coating 132 on the tip side of the cable 130 and the base end 112 of the probe pin 110 are in direct contact and fixed to each other by soldering 191 .
  • the probe pin 110 is fixed to the tip of the cable 130 by soldering 191
  • the base end of the core 131 of the cable 130 is fixed to the connector 150, and the tip of the cable 130 is heated with a thermosetting resin. It is preferably fixed to the fixed plate 172 by curing.
  • each probe pin 110 and the corresponding core 131 of the cable 130 are always in direct contact.
  • an electrical signal of a high frequency such as several GHz is used as a test signal
  • these signals are connected through an intermediate member such as a connector, a soldered part, a coaxial pin, etc., which is inferior in transmission loss at high frequencies, as in the above-mentioned conventional technique.
  • the probe pin 110 is used, the deterioration of the electric signal obtained through the probe pin 110 can be suppressed, and the measurement accuracy of the electric characteristics of the semiconductor wafer, which is the object to be inspected, can be improved. becomes possible.
  • the cable 130 has its proximal end fixed to the connector 150 fixed to the connect plate 171, its distal end fixed to the fixed plate 172 by the resin hardening part 181, and both ends are fixed.
  • the rear end portion of the probe pin 110 is fixed by a soldering portion 191 on the tip side of the portion fixed by the resin curing portion 181 on the tip side of the cable 130 .
  • the probe pin 110 is cantilevered while the cable 130 is fixed. Therefore, the probe pin 110 is supported in a cantilever shape, and can be freely elastically deformed and curved when the tip of the tip portion 111 comes into contact with the object to be inspected.
  • the base end of the probe pin 110 is fixed to the core 131 of the cable 130 by soldering 191. Therefore, even if the tip of the tip portion 111 contacts the test object and bends, It is possible to reliably maintain direct contact between the portion 111 and the core 131 .
  • the present invention is not limited to the probe cards 100 and 200 described above, and can be modified as appropriate as long as it is applied to structures used in semiconductor probe tests.
  • the dimensions and shapes described above are examples, and can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

Provided is a probe card that makes it possible to plan the measurement precision of electrical characteristics. The probe card 100 comprises: a probe pin 10 that comprises a metal conductor, is elastically deformable, and has a tip section 11 protruding from an end face 72a; and a cable 30 that has a core 31 comprising an electrical conductor electrically connected with the probe pin 10 and an inspection device, and an insulating film 32 comprising an insulator which covers the core 31. The base end 11 of the probe pin 10 and the tip section of the core 31 are in direct contact.

Description

プローブカードprobe card
 本発明は、半導体プローブテストに用いるプローブカードに関する。 The present invention relates to a probe card used for semiconductor probe testing.
 プローブカードには、ウエハなどの検査対象物に対して、略平行にプローブピン(プローブ針、単にプローブともいう)が配置されるカンチレバー型と、略垂直にプローブピンが配置される垂直型との2種類がある。プローブピンは先端部がプレートから突出している。カンチレバー型のプローブピンの先端部は略L字状に屈曲又は湾曲している。垂直型のプローブピンは全体が直線状となっている。なお、スプリング式のプローブピンも垂直型に含まれる。 There are two types of probe cards: a cantilever type in which probe pins (probe needles, simply called probes) are arranged substantially parallel to an object to be inspected such as a wafer, and a vertical type in which probe pins are arranged substantially perpendicularly. There are two types. The tip of the probe pin protrudes from the plate. The tip of the cantilever probe pin is bent or curved in a substantially L shape. A vertical probe pin is entirely linear. A spring-type probe pin is also included in the vertical type.
 そして、プローブピンは、その基端側にてコンタクト、はんだ付け部、同軸ピンなどの介在部材を介して、検査装置に接続されるケーブルに接続されている(例えば、特許文献1参照)。 The proximal end of the probe pin is connected to a cable connected to an inspection device via an intervening member such as a contact, a soldered portion, or a coaxial pin (see Patent Document 1, for example).
特開2020-12685号公報JP 2020-12685 A
 しかしながら、本願発明者は、特に数GHzなどの高周波数の電気信号をテスト信号として用いる場合、介在部材を介することによりプローブピンを介して得られる電気信号が劣化することがあることを見出した。これは、介在部材の高周波における伝送損失が、プローブピン及ケーブルの芯体よりも劣るからであると考えられる。プローブピンを介して得られる電気信号が劣化すると、検査対象物である半導体ウエハ上のチップなどの電気的特性の測定精度が低下する。 However, the inventors of the present application have found that, especially when using high-frequency electrical signals such as several GHz as test signals, the electrical signal obtained via the probe pin may be degraded due to the intervention of the intervening member. It is considered that this is because the transmission loss of the intervening member at high frequencies is inferior to that of the probe pin and the core of the cable. Deterioration of the electrical signal obtained through the probe pin lowers the measurement accuracy of the electrical characteristics of the inspection object, such as a chip on a semiconductor wafer.
 本発明は、以上の点に鑑み、電気的特性の測定精度の向上を図ることが可能なプローブカードを提供することを目的とする。 In view of the above points, an object of the present invention is to provide a probe card capable of improving the measurement accuracy of electrical characteristics.
 本発明は、金属導体からなり弾性変形可能であって、先端部が端面から突出しているプローブピンと、前記プローブピン及び検査装置と電気的に接続される電気導体からなる芯体及び前記芯体を被覆する絶縁体からなる絶縁被膜を有するケーブルとを備えたプローブカードであって、前記プローブピンの基端部と前記芯体の先端部とが直接的に接触していることを特徴とする。 The present invention comprises a probe pin made of a metal conductor, elastically deformable, and having a tip projecting from an end face, a core body made of an electric conductor electrically connected to the probe pin and an inspection device, and the core body. The probe card is provided with a cable having an insulating coating made of an insulating material for coating, and is characterized in that the proximal end of the probe pin and the distal end of the core are in direct contact with each other.
 本発明によれば、プローブピンの基端部とケーブルの芯体の先端部とが直接的に接触している。これにより、特に数GHzなどの高周波数の電気信号をテスト信号として用いる場合、上記従来のように、プローブピンとケーブルの芯体とがコネクタ、はんだ付け部、同軸ピンなどの高周波における伝送損失が劣る介在部材を介して接続されている場合と比較して、プローブピンを介して得られる電気信号の劣化を抑制することができ、検査対象物である半導体ウエハ上のチップなどの電気的特性の測定精度の向上を図ることが可能となる。 According to the present invention, the base end of the probe pin and the tip of the core of the cable are in direct contact. As a result, especially when a high frequency electric signal such as several GHz is used as a test signal, the probe pin and the core of the cable are inferior in transmission loss at high frequencies such as connectors, soldered parts, coaxial pins, etc. It is possible to suppress the deterioration of the electrical signal obtained via the probe pin compared to the case where it is connected via an intervening member, and to measure the electrical characteristics of the chip on the semiconductor wafer that is the inspection object. It is possible to improve the accuracy.
 本発明において、前記ケーブルは、先端側にて前記芯体の先端面が露出し、当該露出した前記芯体の先端面が研磨されているとともに、弾性変形により湾曲された前記プローブピンの基端側の突起部の先端が前記先端面に当接していることが好ましい。 In the present invention, in the cable, the distal end surface of the core body is exposed on the distal end side, the exposed distal end surface of the core body is polished, and the proximal end of the probe pin is curved by elastic deformation. It is preferable that the tip of the protruding portion on the side is in contact with the tip surface.
 この場合、ケーブルの芯体の研磨した先端面にプローブピンの基端側の突起部の先端が当接している。また、プローブピンは弾性変形により湾曲されているので、プローブピンの先端が芯体を押し付ける方向にプローブピンの元の形状に戻ろうとする復元力の一部が常に作用する。これらのため、プローブピンと芯体との当接の確実化を図ることが可能となる。 In this case, the tip of the protrusion on the base end side of the probe pin is in contact with the polished tip surface of the core of the cable. In addition, since the probe pin is bent by elastic deformation, part of the restoring force always acts in the direction in which the tip of the probe pin presses the core body to return to the original shape of the probe pin. For these reasons, it is possible to ensure the contact between the probe pin and the core body.
 また、本発明において、前記ケーブルの基端側にて前記絶縁被膜から露出している前記芯体と前記プローブピンの基端部とが直接的に接触し、かつ、はんだ付けにより互いに固定されていることが好ましい。 Further, in the present invention, the core body exposed from the insulating coating on the proximal end side of the cable and the proximal end portion of the probe pin are in direct contact and fixed to each other by soldering. preferably.
 この場合、ケーブルの芯体とプローブピンとがはんだ付けにより互いに固定されているので、プローブピンと芯体とが直接的に接触することを確実に維持することが可能となる。 In this case, since the core of the cable and the probe pin are fixed to each other by soldering, it is possible to reliably maintain direct contact between the probe pin and the core.
本発明の第1の実施形態に係るプローブカードを示す模式図。1 is a schematic diagram showing a probe card according to a first embodiment of the present invention; FIG. 図1のII部を示す拡大図。The enlarged view which shows the II section of FIG. 本発明の第2の実施形態に係るプローブカードを示す模式図。FIG. 4 is a schematic diagram showing a probe card according to a second embodiment of the present invention;
 本発明の第1の実施形態に係るプローブカード100について図1及び図2を参照して説明する。なお、図1及び図2は本実施形態を模式的に説明するための図であり、寸法はデフォルメされている。 A probe card 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 and 2 are diagrams for schematically explaining this embodiment, and the dimensions are deformed.
 プローブカード100は、シリコンウエハなどの半導体基板に半導体チップ、半導体素子などの半導体部品が形成されている検査対象物に形成された回路を検査するための検査装置の検査治具を構成する。プローブカード100は、検査対象物の所定範囲の領域内の各検査点に対応するように、多数のプローブピン10を支持している。 The probe card 100 constitutes an inspection jig of an inspection apparatus for inspecting a circuit formed on an inspection object in which semiconductor parts such as semiconductor chips and semiconductor elements are formed on a semiconductor substrate such as a silicon wafer. The probe card 100 supports a large number of probe pins 10 so as to correspond to each inspection point within a predetermined range of the inspection object.
 検査領域内の各検査点にプローブピン10を接触させて検査領域内の検査点の検査を行う。その後、検査対象物を支持する検査台を移動させて検査領域を移動し、検査を行う。このように、検査領域を順次移動させながら検査を行うことにより、検査対象物全体の検査を行う。具体的には、半導体基板の半導体部品に対してプローブピン10の先端部11を押し付けた状態で、数GHzなどの高周波数の電気信号からなるテスト信号を、図示しない検査装置から検査対象物に供給する。そして、プローブピン10を介して得られる電気信号に基づいて、検査対象物である半導体ウエハ上のチップなどの電気的特性を上記検査装置が測定する。 The inspection points within the inspection area are inspected by bringing the probe pin 10 into contact with each inspection point within the inspection area. After that, the inspection table that supports the inspection object is moved to move the inspection area, and the inspection is performed. In this manner, the entire inspection object is inspected by sequentially moving the inspection area. Specifically, in a state where the tip portion 11 of the probe pin 10 is pressed against a semiconductor component on a semiconductor substrate, a test signal composed of a high-frequency electric signal such as several GHz is applied from an inspection device (not shown) to the object to be inspected. supply. Based on the electrical signals obtained through the probe pins 10, the inspection apparatus measures the electrical characteristics of the chips on the semiconductor wafer, which are the objects to be inspected.
 プローブカード100は、複数のプローブピン10、各プローブピン10に接続されるケーブル30、及び、各ケーブル30に接続されるコネクタ50などを備えている。なお、図1においては、2本のプローブピン10並びにこれらに対応する構成部品のみを模式的に示している。 The probe card 100 includes a plurality of probe pins 10, cables 30 connected to each probe pin 10, connectors 50 connected to each cable 30, and the like. In addition, in FIG. 1, only two probe pins 10 and the component parts corresponding to these are shown typically.
 各プローブピン10は、プローブ針、又は、単にプローブとも呼ばれ、弾性変形可能な金属導体からなる。プローブピン10は、全体として直線状の細長い棒状体となっており、検査対象物に対しい略垂直に配置される垂直型である。プローブピン10は、一般的にレニウムタングステン、パラジウム合金、べリリウム鋼など使用するが、その他の各種金属及び合金の素材からなっていてもよい。 Each probe pin 10 is also called a probe needle or simply a probe, and is made of an elastically deformable metal conductor. The probe pin 10 is a straight elongated rod-shaped body as a whole, and is a vertical type that is arranged substantially perpendicularly to the inspection object. The probe pin 10 is generally made of rhenium-tungsten, palladium alloy, beryllium steel, etc., but may be made of various other metals and alloys.
 プローブピン10は、具体的には、直径30μmから50μm、全長5mmから15mmの円柱状からなる。プローブピン10の先端部11(図1における下側端部)及び基端部12(図1における下側端部)は、先端が円球、半楕円状、円錐状、円錐台状などの形状となるように丸みを帯びている。なお、プローブピン10は、複数本の線状体が撚り合わさった撚り線などからなるものであってもよい。また、上述したプローブピン10の寸法及び形状などは一例であり、これに限定されない。 Specifically, the probe pin 10 has a cylindrical shape with a diameter of 30 μm to 50 μm and a total length of 5 mm to 15 mm. The distal end portion 11 (lower end portion in FIG. 1) and the proximal end portion 12 (lower end portion in FIG. 1) of the probe pin 10 have a shape such as a spherical, semi-elliptical, conical, or truncated conical shape. It is rounded so that The probe pin 10 may be made of a stranded wire or the like in which a plurality of linear bodies are twisted together. Moreover, the dimensions, shape, and the like of the probe pin 10 described above are examples, and are not limited thereto.
 なお、プローブピン10は、両端部11,12以外の部分は、ポリウレタン、ポリエステル、ポリエステルイミド、ポリアミドイミド、ポリイミド、フッ素樹脂などの絶縁性樹脂からなる絶縁被膜13より外周面が被覆されている。 The outer peripheral surface of the probe pin 10 is covered with an insulating film 13 made of an insulating resin such as polyurethane, polyester, polyesterimide, polyamideimide, polyimide, fluorine resin, or the like, except for the ends 11 and 12 .
 複数のプローブピン10は、ピンユニット部70に支持されている。ピンユニット部70は、複数のプローブピン10の基端部12側が固定される基端側プレート71、複数のプローブピン10の先端部11が先端側に向かって突出する先端側プレート72、及び、基端側プレート71と先端側プレート72とを連結する連結部73を備えている。 A plurality of probe pins 10 are supported by the pin unit section 70 . The pin unit portion 70 includes a proximal side plate 71 to which the proximal end portions 12 of the plurality of probe pins 10 are fixed, a distal side plate 72 from which the distal ends 11 of the plurality of probe pins 10 protrude toward the distal side, and A connecting portion 73 that connects the proximal side plate 71 and the distal side plate 72 is provided.
 基端側プレート71は、例えばセラミックやエンジニアリングプラスチック樹脂からなる、複数枚、ここでは3枚のプレート71A~71Cから構成されている。これら複数のプレート71A~71Cには、プローブピン10の基端側がそれぞれ挿通することが可能な貫通孔71a~71cが形成されている。貫通孔71a~71cの断面の直径は、絶縁被膜13を含めたプローブピン10の直径の1.1倍から1.2倍であることが好ましい。なお、貫通孔71a~71cの断面の形状は、円形状に限定されず、楕円形状、多角形状などであってもよい。 The base end plate 71 is composed of a plurality of plates 71A to 71C, here three plates, made of ceramic or engineering plastic resin, for example. These plates 71A to 71C are formed with through holes 71a to 71c through which the base ends of the probe pins 10 can be inserted. The cross-sectional diameter of the through holes 71a to 71c is preferably 1.1 to 1.2 times the diameter of the probe pin 10 including the insulating coating 13. FIG. Note that the cross-sectional shape of the through holes 71a to 71c is not limited to a circular shape, and may be an elliptical shape, a polygonal shape, or the like.
 そして、3枚のプレート71A~71Cは、同一のプローブピン10の基端側が挿通される貫通孔71a~71cが水平方向に少しずつずれるように、垂直方向に積み重ねられた状態で、図示しないボルトなどの固定具を用いて固定されている。 The three plates 71A to 71C are vertically stacked so that the through holes 71a to 71c through which the base ends of the same probe pins 10 are inserted are slightly displaced in the horizontal direction. It is fixed using fixtures such as
 図1及び図2においては、貫通孔71a~71cは上から下の方向に右方に向かって連続するように位置している。貫通孔71a~71cは、このように一の方向に向かって連続的にずれるものであっても、異なる方向、例えば、右方向、左方向、右方向の順に、あるいは右方向、手前方向、左方向の順などの任意の順にずれるものであってもよい。 In FIGS. 1 and 2, the through holes 71a to 71c are positioned so as to continue rightward from top to bottom. Even if the through holes 71a to 71c are continuously shifted in one direction, the through holes 71a to 71c are arranged in different directions, for example, rightward, leftward, and rightward in order, or rightward, frontward, and leftward. Any order, such as the order of directions, may be shifted.
 これら貫通孔71a~71cをプローブピン10の基端側が挿通することにより、貫通孔71a~71cのずれに沿ってプローブピン10の基端側が弾性変形して湾曲する。このとき、プローブピン10の外周面を被覆する絶縁被膜13,23が貫通孔71a~71cの角部と接触して角部が食い込むように弾性変形又は塑性変形する。この変形により、プローブピン10はずれ落ちずに基端側プレート71に支持される。 By inserting the base end side of the probe pin 10 through these through holes 71a to 71c, the base end side of the probe pin 10 is elastically deformed and curved along the displacement of the through holes 71a to 71c. At this time, the insulating coatings 13 and 23 covering the outer peripheral surface of the probe pin 10 contact the corners of the through holes 71a to 71c and are elastically or plastically deformed so that the corners bite into the corners. Due to this deformation, the probe pin 10 is supported by the base end plate 71 without falling off.
 また、プローブピン10は、それらの基端部12の先端が、基端側プレート71の基端側面(図1における上面)から突出している。プローブピン10は、これらの外周面を被覆する絶縁被膜13により、基端側プレート71とは絶縁されている。 In addition, the tips of the proximal end portions 12 of the probe pins 10 protrude from the proximal side surface (upper surface in FIG. 1) of the proximal side plate 71 . The probe pin 10 is insulated from the proximal side plate 71 by an insulating coating 13 covering these outer peripheral surfaces.
 先端側プレート72は、例えばセラミックやエンジニアリングプラスチックからなり、複数のプローブピン10の基端部11側が挿通するように、これらに対応した複数の貫通孔72aが形成されている。各プローブピン10は、それらの先端部11の先端が、先端側プレート72の先端側面72A(図1における下面)から突出している。先端側プレート72が本発明の部材に相当し、先端側プレート72の先端側面72Aが本発明の先端側の端面に相当する。なお、貫通孔72aの断面の形状は、円形状に限定されず、楕円形状、多角形状などであってもよい。 The tip side plate 72 is made of, for example, ceramic or engineering plastic, and is formed with a plurality of through holes 72a corresponding to the base end portions 11 of the plurality of probe pins 10 to be inserted therethrough. The tips of the tip portions 11 of the probe pins 10 protrude from the tip side surface 72A (lower surface in FIG. 1) of the tip side plate 72 . The tip side plate 72 corresponds to the member of the present invention, and the tip side surface 72A of the tip side plate 72 corresponds to the tip side end face of the present invention. The cross-sectional shape of the through hole 72a is not limited to a circular shape, and may be an elliptical shape, a polygonal shape, or the like.
 プローブピン10は、絶縁被膜13により、基端側プレート71及び先端側プレート72とは絶縁されている。なお、基端側プレート71及び先端側プレート72が絶縁体からなることにより、絶縁されていてもよい。 The probe pin 10 is insulated from the proximal side plate 71 and the distal side plate 72 by the insulating coating 13 . The proximal side plate 71 and the distal side plate 72 may be insulated by being made of an insulator.
 連結部73は、例えばSUSなどの金属からなり、基端側プレート71と先端側プレート72とを固定的に連結している。 The connecting portion 73 is made of metal such as SUS, and fixedly connects the proximal side plate 71 and the distal side plate 72 .
 各プローブピン10は、上述したように、これらの基端側が基端側プレート71にて支持され、先端部11側が基端側プレート72の貫通孔72aを挿通している。そして、プローブピン10は、その先端部11の先端が検査対象物に略垂直方向に接触すると、弾性変形して湾曲するとともに、元の形状である直線状に戻ろうとする復元力の一部が基端側を上方に移動させるように作用する。 As described above, each probe pin 10 is supported by the base end plate 71 on the base end side, and the tip portion 11 side is inserted through the through hole 72 a of the base end plate 72 . When the tip of the tip portion 11 of the probe pin 10 contacts the object to be inspected in a substantially vertical direction, the probe pin 10 elastically deforms and bends, and part of the restoring force that tries to return to the original straight shape is released. It acts to move the proximal end upward.
 各ケーブル30は、プローブピン10と電気的に接続される芯体31、及び芯体31を被覆する絶縁体からなる絶縁被膜32を有している。ケーブル30は、従来、信号の通信などの行う際に使用される市販のケーブルなどであり、芯体31は、中実の導体金属からなることが好ましい。 Each cable 30 has a core body 31 electrically connected to the probe pin 10 and an insulating coating 32 made of an insulator covering the core body 31 . The cable 30 is conventionally a commercially available cable used for signal communication, etc., and the core 31 is preferably made of a solid conductor metal.
 各コネクタ50は、ケーブル30の芯体31と電気的に接続されている。そして、各コネクタ50には、図示しないが、検査装置に接続されているケーブルの先端のコネクタが接続される。コネクタ50は、従来、信号の通信などの行う際に使用される市販のコネクタなどである。 Each connector 50 is electrically connected to the core 31 of the cable 30 . Each connector 50 is connected to a connector at the end of a cable connected to the inspection device, although not shown. The connector 50 is a commercially available connector or the like conventionally used for signal communication.
 そして、複数のケーブル30、及びコネクタ50は、電極ユニット部80に配置されている。電極ユニット部80は、複数のコネクタ50が固定されているコネクタプレート81、複数のケーブル30の先端部が固定されている電極プレート82、及び、コネクタプレート81と電極プレート82とを連結する連結部83を備えている。 A plurality of cables 30 and connectors 50 are arranged in the electrode unit section 80 . The electrode unit portion 80 includes a connector plate 81 to which a plurality of connectors 50 are fixed, an electrode plate 82 to which the tip portions of a plurality of cables 30 are fixed, and a connecting portion that connects the connector plate 81 and the electrode plate 82. 83 is provided.
 コネクタプレート81は、例えば金属やガラスエポキシ樹脂からなり、複数のコネクタ50が固定されている。なお、これらコネクタ50にはケーブル30の芯体31が電気的に接続されている。 The connector plate 81 is made of, for example, metal or glass epoxy resin, and has a plurality of connectors 50 fixed thereto. Note that the cores 31 of the cables 30 are electrically connected to these connectors 50 .
 電極プレート82は、例えば金属やガラスエポキシ樹脂からなり、複数のケーブル30の先端部が固定されている。各ケーブル30は、それらの先端が、電極プレート82の先端側面(図1における下面)から突出するように電極プレート82に固定されている。 The electrode plate 82 is made of, for example, metal or glass epoxy resin, and the tips of the plurality of cables 30 are fixed. Each cable 30 is fixed to the electrode plate 82 so that its tip protrudes from the tip side surface (lower surface in FIG. 1) of the electrode plate 82 .
 ケーブル30の芯体31は、絶縁被膜32により、電極プレート82とは絶縁されている。 The core 31 of the cable 30 is insulated from the electrode plate 82 by the insulating coating 32 .
 ここで、各ケーブル30の先端側にて芯体31の先端面が露出し、この露出した芯体31の後端面がフライス加工などにより研磨されている。具体的は、各ケーブル30の先端部において、これらの中心軸と直交するように切断し、その円形状の切断面において露出する芯体の部分をフライス加工などにより研磨している。 Here, the tip end face of the core body 31 is exposed at the tip end side of each cable 30, and the exposed rear end face of the core body 31 is polished by milling or the like. Specifically, the tip portion of each cable 30 is cut perpendicular to the central axis thereof, and the portion of the core body exposed at the circular cut surface is polished by milling or the like.
 連結部83は、例えばSUSなどの金属からなり、コネクタプレート81と電極プレート82とを固定的に連結している。 The connecting part 83 is made of metal such as SUS, and fixedly connects the connector plate 81 and the electrode plate 82 .
 各ケーブル30は、上述したように、これらの基端部側がそれぞれコネクタプレート81に固定されたコネクタ50に接続され、先端部側は研磨された芯体31が電極プレート82から突出して露出している。 As described above, each cable 30 is connected to the connector 50 fixed to the connector plate 81 at its proximal end, and the polished core 31 protrudes from the electrode plate 82 and exposed at its distal end. there is
 そして、ピンユニット部70と電極ユニット部80とは着脱自在に構成されている。具体的には、ピンユニット部70の基端側プレート71と電極ユニット部80の電極プレート82とがガイドピンやボルトを用いた構成により、着脱自在に構成されている。 The pin unit section 70 and the electrode unit section 80 are configured to be detachable. Specifically, the base end side plate 71 of the pin unit section 70 and the electrode plate 82 of the electrode unit section 80 are detachably configured using guide pins and bolts.
 そして、ピンユニット部70と電極ユニット部80とが組み付けられることにより、各プローブピン10の基端部12の先端と、これに対応するケーブル30の露出した芯体31の研磨面が当接するように構成されている。 By assembling the pin unit portion 70 and the electrode unit portion 80, the tip of the base end portion 12 of each probe pin 10 and the polished surface of the exposed core 31 of the corresponding cable 30 are brought into contact with each other. is configured to
 これにより、ピンユニット部70と電極ユニット部80とを組み付けるだけで、各プローブピン10とこれに対応するケーブル30との電気的接続を得ることが可能となる。そして、これらの電気的接続は、水平面上に延びる芯体31の研磨面に対して、プローブピン10の基端部12を押し付けるように構成されている。また、プローブピン10は常に湾曲された状態であるので、これらの先端が芯体31を押し付ける方向にプローブピン10の元の形状である直線状に戻ろうとする復元力の一部が常に作用する。これらにより、上記の電気的接続を確実に維持することが可能である。 As a result, it is possible to obtain electrical connection between each probe pin 10 and the corresponding cable 30 simply by assembling the pin unit section 70 and the electrode unit section 80 . These electrical connections are configured to press the base end portion 12 of the probe pin 10 against the polished surface of the core body 31 extending on the horizontal plane. In addition, since the probe pin 10 is always in a curved state, part of the restoring force always acts in the direction in which these tips press against the core body 31 to return the probe pin 10 to its original straight shape. . By these, it is possible to reliably maintain the electrical connection described above.
 上述したように、各プローブピン10とこれに対応するケーブル30は直接的に接触している。これにより、特に数GHzなどの高周波数の電気信号をテスト信号として用いる場合、上記従来のように、これらがコネクタ、はんだ付け部、同軸ピンなどの高周波における伝送損失が劣る介在部材を介して接続されている場合と比較して、プローブピン10を介して得られる電気信号の劣化を抑制することができ、検査対象物である半導体ウエハ上のチップなどの電気的特性の測定精度の向上を図ることが可能となる。 As described above, each probe pin 10 and its corresponding cable 30 are in direct contact. As a result, when an electrical signal of a high frequency such as several GHz is used as a test signal, these signals are connected through an intermediate member such as a connector, a soldered part, a coaxial pin, etc., which is inferior in transmission loss at high frequencies, as in the above-mentioned conventional technique. Compared to the case where the probe pin 10 is used, the deterioration of the electrical signal obtained via the probe pin 10 can be suppressed, and the measurement accuracy of the electrical characteristics of the semiconductor wafer, which is the inspection object, can be improved. becomes possible.
 以下、本発明の第2の実施形態に係るプローブカード200について図3を参照して説明する。なお、図3は本実施形態を模式的に説明するための図であり、寸法はデフォルメされている。 A probe card 200 according to a second embodiment of the present invention will be described below with reference to FIG. Note that FIG. 3 is a diagram for schematically explaining the present embodiment, and the dimensions are deformed.
 プローブカード200は、複数のプローブピン110、各プローブピン110に対応するケーブル130、及び、各ケーブル130に対応するコネクタ150などを備えている。なお、図3においては、1本のプローブピン110及びこれに対応する構成部品のみを模式的に示している。 The probe card 200 includes a plurality of probe pins 110, cables 130 corresponding to each probe pin 110, connectors 150 corresponding to each cable 130, and the like. In addition, in FIG. 3, only one probe pin 110 and the component corresponding to this are shown typically.
 各プローブピン110は、先端部111(図3における左側端部)が略直角に屈曲又は湾曲して細長いL状の棒状体となっており、検査対象物に対しい略平行に配置されるカンチレバー型である。 Each probe pin 110 has a tip portion 111 (the left end portion in FIG. 3) bent or curved at a substantially right angle to form an elongated L-shaped rod, and a cantilever arranged substantially parallel to the inspection object. is a type.
 プローブピン110は、先端部111は先端が丸みを帯びているが、基端部112(図3における右側端部)は、先端が丸みを帯びていても、丸みを帯びていなくてもよい。 The tip portion 111 of the probe pin 110 has a rounded tip, but the base end portion 112 (the right end portion in FIG. 3) may or may not have a rounded tip.
 そして、複数のプローブピン110、ケーブル130、及び、コネクタ150はユニット部170に配置されている。 A plurality of probe pins 110 , cables 130 and connectors 150 are arranged in the unit section 170 .
 各ケーブル130は、プローブピン110と電気的に接続される芯体131、及び芯体131を被覆する絶縁体からなる絶縁被膜132を有している。ケーブル130は、従来、信号の通信などの行う際に使用される市販のケーブルなどであり、芯体131は、中実の導体金属からなることが好ましいが、多数の導線などからなるものであってもよい。 Each cable 130 has a core body 131 electrically connected to the probe pin 110 and an insulating coating 132 made of an insulator covering the core body 131 . The cable 130 is conventionally a commercially available cable or the like used for signal communication, etc., and the core 131 is preferably made of a solid conductor metal, but may be made of a large number of conducting wires. may
 ユニット部170は、コネクタ150が固定されているコネクタプレート171、コネクタプレート171の周縁部に固定された固定プレート172、及び、ケーブル130の先端側を固定プレート172に固定する熱硬化した樹脂からなる樹脂硬化部181を備えている。 The unit part 170 is made of a connector plate 171 to which the connector 150 is fixed, a fixing plate 172 fixed to the peripheral edge of the connector plate 171, and a thermosetting resin that fixes the tip side of the cable 130 to the fixing plate 172. A resin curing section 181 is provided.
 コネクタプレート171は、例えば金属やガラスエポキシ樹脂からなり、コネクタ150が、熱硬化樹脂やボルトなどを用いて固定されている。なお、コネクタ150にはケーブル130の芯体131が電気的に接続されている。 The connector plate 171 is made of, for example, metal or glass epoxy resin, and the connector 150 is fixed using thermosetting resin, bolts, or the like. A core 131 of the cable 130 is electrically connected to the connector 150 .
 固定プレート172は、例えば金属やセラミックからなり、コネクタプレート171の周縁部の下面に熱硬化樹脂、接着剤やボルトなどを用いて固定されている。 The fixing plate 172 is made of metal or ceramic, for example, and is fixed to the lower surface of the peripheral portion of the connector plate 171 using thermosetting resin, adhesive, bolts, or the like.
 樹脂硬化部181は、ケーブル130の先端側を固定プレート172に固定するために塗布した樹脂接着剤が固化してなるものである。 The cured resin portion 181 is formed by curing the resin adhesive applied to fix the tip side of the cable 130 to the fixing plate 172 .
 そして、ケーブル130の先端側にて絶縁被膜132から露出している芯体131とプローブピン110の基端部112とが直接的に接触し、かつ、はんだ付け191により互いに固定されている。なお、ケーブル130の先端部にプローブピン110をはんだ付け191により固定した後に、ケーブル130の芯体131の基端部をコネクタ150に固定し、ケーブル130の先端部を、熱硬化性樹脂を熱硬化させることにより固定プレート172に固定することが好ましい。 The core 131 exposed from the insulating coating 132 on the tip side of the cable 130 and the base end 112 of the probe pin 110 are in direct contact and fixed to each other by soldering 191 . After the probe pin 110 is fixed to the tip of the cable 130 by soldering 191, the base end of the core 131 of the cable 130 is fixed to the connector 150, and the tip of the cable 130 is heated with a thermosetting resin. It is preferably fixed to the fixed plate 172 by curing.
 これにより、各プローブピン110とこれに対応するケーブル130の芯体131とは常に直接的に接触している。これにより、特に数GHzなどの高周波数の電気信号をテスト信号として用いる場合、上記従来のように、これらがコネクタ、はんだ付け部、同軸ピンなどの高周波における伝送損失が劣る介在部材を介して接続されている場合と比較して、プローブピン110を介して得られる電気信号の劣化を抑制することができ、検査対象物である半導体ウエハ上のチップなどの電気的特性の測定精度の向上を図ることが可能となる。 As a result, each probe pin 110 and the corresponding core 131 of the cable 130 are always in direct contact. As a result, when an electrical signal of a high frequency such as several GHz is used as a test signal, these signals are connected through an intermediate member such as a connector, a soldered part, a coaxial pin, etc., which is inferior in transmission loss at high frequencies, as in the above-mentioned conventional technique. As compared with the case where the probe pin 110 is used, the deterioration of the electric signal obtained through the probe pin 110 can be suppressed, and the measurement accuracy of the electric characteristics of the semiconductor wafer, which is the object to be inspected, can be improved. becomes possible.
 ケーブル130は、上述したように、その基端側がコネクトプレート171に固定されたコネクタ150に固定され、先端側が固定プレート172に樹脂硬化部181により固定されており両端部が固定されている。そして、ケーブル130の先端側の樹脂硬化部181により固定されている部分よりも先端側にて、プローブピン110の後端部がはんだ付け部191により固定されている。 As described above, the cable 130 has its proximal end fixed to the connector 150 fixed to the connect plate 171, its distal end fixed to the fixed plate 172 by the resin hardening part 181, and both ends are fixed. The rear end portion of the probe pin 110 is fixed by a soldering portion 191 on the tip side of the portion fixed by the resin curing portion 181 on the tip side of the cable 130 .
 これにより、ケーブル130は固定された状態でプローブピン110は片持ち状に支持される。そのため、プローブピン110は、カンチレバー状に支持され、検査対象物に先端部111の先端が接触することにより、自由に弾性変形して湾曲することが可能となっている。 As a result, the probe pin 110 is cantilevered while the cable 130 is fixed. Therefore, the probe pin 110 is supported in a cantilever shape, and can be freely elastically deformed and curved when the tip of the tip portion 111 comes into contact with the object to be inspected.
 プローブピン110は、上述したように、その基端側がケーブル130の芯体131にはんだ付け191により固定されているので、先端部111の先端が検査対象物に接触して湾曲しても、先端部111と芯体131とが直接的に接触することを確実に維持することが可能となる。 As described above, the base end of the probe pin 110 is fixed to the core 131 of the cable 130 by soldering 191. Therefore, even if the tip of the tip portion 111 contacts the test object and bends, It is possible to reliably maintain direct contact between the portion 111 and the core 131 .
 なお、本発明は、上述したプローブカード100,200に限定されるものではなく、半導体プローブテストで使用される構造に適用されるものであれば、適宜変更することが可能である。また、上述した寸法及び形状などは、一例であり、適宜変更可能である。 It should be noted that the present invention is not limited to the probe cards 100 and 200 described above, and can be modified as appropriate as long as it is applied to structures used in semiconductor probe tests. In addition, the dimensions and shapes described above are examples, and can be changed as appropriate.
 10,110…プローブピン、 11,111…先端部、 12,112…基端部、 
 13…絶縁被膜、 30,130…ケーブル、 31,131…芯体、 32,132…絶縁被膜、 50,150…コネクタ、 70…ピンユニット部、 71…基端側プレート、 71A~71C…プレート、 71a~71c…貫通孔、 72…先端側プレート(部材)、 72A…先端側面(先端側の端面)、 72a…貫通孔、 73…連結部、 80…電極ユニット部、 81…コネクタプレート、 82…電極プレート、 83…連結部、 100,200…プローブカード、 170…ユニット、 171…コネクタプレート、 172…固定プレート、 181…樹脂硬化部、 191…はんだ付け部。
 
DESCRIPTION OF SYMBOLS 10,110... Probe pin 11,111... Distal part 12,112... Base part,
DESCRIPTION OF SYMBOLS 13... Insulating coating 30,130...Cable 31,131...Core body 32,132...Insulating coating 50,150...Connector 70...Pin unit part 71...Base end side plate 71A-71C...Plate, 71a to 71c through holes 72 tip side plate (member) 72A tip side surface (tip side end face) 72a through hole 73 connecting portion 80 electrode unit portion 81 connector plate 82 Electrode plate 83 Coupling portion 100, 200 Probe card 170 Unit 171 Connector plate 172 Fixing plate 181 Resin curing portion 191 Soldering portion.

Claims (3)

  1.  金属導体からなり弾性変形可能であって、先端部が端面から突出しているプローブピンと、前記プローブピン及び検査装置と電気的に接続される電気導体からなる芯体及び前記芯体を被覆する絶縁体からなる絶縁被膜を有するケーブルとを備えたプローブカードであって、
     前記プローブピンの基端部と前記芯体の先端部とが直接的に接触していることを特徴とするプローブカード。
    A probe pin made of a metal conductor, elastically deformable, and having a tip protruding from an end face, a core made of an electric conductor electrically connected to the probe pin and the inspection device, and an insulator covering the core. A probe card comprising a cable having an insulating coating consisting of
    A probe card, wherein a base end portion of the probe pin and a tip end portion of the core body are in direct contact with each other.
  2.  前記ケーブルは、先端側にて前記芯体の先端面が露出し、当該露出した前記芯体の先端面が研磨されているとともに、弾性変形により湾曲された前記プローブピンの基端側の突起部の先端が前記先端面に当接していることを特徴とする請求項1に記載のプローブカード。 In the cable, the distal end face of the core body is exposed on the distal end side, and the exposed distal end face of the core body is polished, and the protruding portion on the proximal end side of the probe pin is curved by elastic deformation. 2. The probe card according to claim 1, wherein the tip of the is in contact with the tip surface.
  3.  前記ケーブルの基端側にて前記絶縁被膜から露出している前記芯体と前記プローブピンの基端部とが直接的に接触し、かつ、はんだ付けにより互いに固定されていることを特徴とする請求項1に記載のプローブカード。
     
    The core body exposed from the insulating coating on the base end side of the cable and the base end portion of the probe pin are in direct contact and fixed to each other by soldering. The probe card according to claim 1.
PCT/JP2022/028162 2021-08-03 2022-07-20 Probe card WO2023013413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-127744 2021-08-03
JP2021127744A JP2023022720A (en) 2021-08-03 2021-08-03 probe card

Publications (1)

Publication Number Publication Date
WO2023013413A1 true WO2023013413A1 (en) 2023-02-09

Family

ID=85155537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028162 WO2023013413A1 (en) 2021-08-03 2022-07-20 Probe card

Country Status (2)

Country Link
JP (1) JP2023022720A (en)
WO (1) WO2023013413A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344509A (en) * 1998-05-29 1999-12-14 Hiroshi Katagawa Probe card and probe pin
JP2000241453A (en) * 1999-02-19 2000-09-08 Japan Electronic Materials Corp Probe card
JP2001041974A (en) * 1999-07-28 2001-02-16 Fuji Photo Film Co Ltd Board inspection apparatus
JP2012018116A (en) * 2010-07-09 2012-01-26 Hioki Ee Corp Probe unit for circuit board checkup and circuit board checkup device
US20200341053A1 (en) * 2017-01-03 2020-10-29 Teps Co., Ltd. Vertical ultra low leakage probe card for dc parameter test

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344509A (en) * 1998-05-29 1999-12-14 Hiroshi Katagawa Probe card and probe pin
JP2000241453A (en) * 1999-02-19 2000-09-08 Japan Electronic Materials Corp Probe card
JP2001041974A (en) * 1999-07-28 2001-02-16 Fuji Photo Film Co Ltd Board inspection apparatus
JP2012018116A (en) * 2010-07-09 2012-01-26 Hioki Ee Corp Probe unit for circuit board checkup and circuit board checkup device
US20200341053A1 (en) * 2017-01-03 2020-10-29 Teps Co., Ltd. Vertical ultra low leakage probe card for dc parameter test

Also Published As

Publication number Publication date
JP2023022720A (en) 2023-02-15

Similar Documents

Publication Publication Date Title
JP5426161B2 (en) Probe card
JP5289771B2 (en) Probe card
JP4921344B2 (en) Inspection socket
JP4535828B2 (en) Inspection unit manufacturing method
JP2008070146A (en) Socket for inspection
KR101883009B1 (en) Probe unit, circuit board inspection apparatus and method for manufacturing probe unit
EP2871483A1 (en) Inspection jig
JP2012524905A (en) Conductive Kelvin contacts for microcircuit testers
JP2007064850A (en) Probe card
CN101176008A (en) Resilient probes for electrical testing
JP2019138768A (en) probe
CN112600006A (en) Electrical contact, electrical connection structure and electrical connection device
JP2007178163A (en) Inspection unit and outer sheath tube assembly for inspection probe used for it
JP2024055974A (en) Contact probe
WO2023013413A1 (en) Probe card
JP2012078297A (en) Jig for wire probe, and inspection device and inspection method using the same
JP7302117B2 (en) Inspection jig for semiconductor devices
TWI806083B (en) Electrical contact structure of electrical contactor and electrical connecting apparatus
JP6000046B2 (en) Probe unit and inspection device
JP5088504B2 (en) Contact for board inspection and method for manufacturing the same
KR102174427B1 (en) Test Device
JP7353859B2 (en) Electrical contacts and electrical connection devices
JP3225841U (en) Calibration adapter for calibrating the probe
JP2007232558A (en) Electronic component inspection probe
JPH0580124A (en) Semiconductor element inspecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852837

Country of ref document: EP

Kind code of ref document: A1