WO2023011548A1 - 通信方法及装置、芯片、芯片模组、存储介质 - Google Patents

通信方法及装置、芯片、芯片模组、存储介质 Download PDF

Info

Publication number
WO2023011548A1
WO2023011548A1 PCT/CN2022/110042 CN2022110042W WO2023011548A1 WO 2023011548 A1 WO2023011548 A1 WO 2023011548A1 CN 2022110042 W CN2022110042 W CN 2022110042W WO 2023011548 A1 WO2023011548 A1 WO 2023011548A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
round
trip delay
timing advance
satellite
Prior art date
Application number
PCT/CN2022/110042
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2023011548A1 publication Critical patent/WO2023011548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device, a chip, a chip module, and a storage medium.
  • non-global navigation satellite system that is, the terminal does not have GNSS capabilities and cannot obtain its own location information
  • the terminal cannot determine the round-trip delay between the terminal and the serving satellite ( round trip time, RTT), and then the terminal cannot determine the precise timing advance (time advance, TA) amount when sending uplink data.
  • RTT round trip time
  • TA timing advance
  • the present application provides a communication method and device, so as to improve the accuracy of the timing advance of uplink transmission by a terminal.
  • a communication method includes:
  • the terminal receives first configuration information of the second cell, where the first configuration information includes a first round-trip delay
  • the terminal acquires a second round-trip delay
  • the terminal At least one item of the method is to determine a timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the third round-trip delay is a sum of the first round-trip delay and the second round-trip delay.
  • the terminal is in the coverage areas of the first cell and the second cell, or the terminal is in the coverage area of the first beam in the first cell and the coverage area of the second beam within the coverage area of the second beam in the cell.
  • the first round-trip time delay is the second satellite corresponding to the second cell at the lowest point in the coverage area of the second beam in the second cell or the second cell.
  • the second round-trip delay is a round-trip delay between the first satellite and the second satellite.
  • the method also includes:
  • the terminal receives second configuration information of the first cell, the second configuration information includes a maximum round-trip delay and a fourth round-trip delay, and the maximum round-trip delay is the first cell or the first The maximum round-trip delay between the first beam coverage area in the cell and the first satellite, the fourth round-trip delay is the first cell or the first beam coverage area in the first cell The round-trip time delay between the lowest point in and the satellite corresponding to the first cell;
  • the terminal advances according to the fourth round-trip delay and the public timing indicated by the first cell At least one of a value, a timing advance adjustment value indicated by the first cell, and a timing advance offset value indicated by the first cell determines the third round-trip delay.
  • the terminal adjusts the timing advance value indicated by the first cell according to the third round-trip delay, the public timing advance value indicated by the first cell, or the first At least one of the timing advance offset values indicated by a cell determines the timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell, including:
  • the public timing advance value indicated by the first cell the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell.
  • One item determining a timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the acquiring the second round-trip delay by the terminal includes:
  • the terminal determines the second round-trip time delay according to the satellite ephemeris information of the first satellite and the satellite ephemeris information of the second satellite;
  • the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the first beam is larger than the coverage area of the second beam.
  • a communication method in a second aspect, includes:
  • the base station corresponding to the first cell sends second configuration information
  • the second configuration information includes a maximum round-trip delay and a fourth round-trip delay
  • the maximum round-trip delay is the first cell or the first cell in the first cell
  • the fourth round-trip delay is the first cell or the first beam in the first cell
  • the base station corresponding to the first cell sends third configuration information
  • the third configuration information includes a second round-trip time delay
  • the second round-trip time delay is the difference between the first satellite and the second satellite corresponding to the second cell
  • the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the first beam is larger than the coverage area of the second beam in the second cell.
  • a communication method includes:
  • the terminal acquires position information of the second cell or a set point within the coverage area of the second beam in the second cell relative to the second satellite corresponding to the second cell;
  • the terminal determines the first cell or the first beam coverage area in the first cell according to the position information of the set point relative to the second satellite and the ephemeris information of the first satellite corresponding to the first cell a first round-trip delay with the first satellite;
  • the terminal At least one item of the method is to determine a timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the terminal is in the coverage areas of the first cell and the second cell, or the terminal is in the coverage area of the first beam in the first cell and the coverage area of the second cell Within the coverage area of the second beam in .
  • the method also includes:
  • the terminal receives first information of the second cell, where the first information includes location information of the set point.
  • the set point is the second cell or any point within the coverage area of the second beam in the second cell.
  • a communication device which can implement the communication method in the first aspect above.
  • the communication device may be a chip or a terminal.
  • the above method can be realized by software, hardware, or by executing corresponding software by hardware.
  • the communication device may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to receive first configuration information of the second cell, and the first configuration information includes the first round-trip time extend;
  • a processing unit configured to obtain a second round-trip delay
  • the processing unit is further configured to determine a third round-trip delay between the terminal and the first satellite corresponding to the first cell according to the first round-trip delay and the second round-trip delay;
  • the processing unit is further configured to: according to the third round-trip delay, the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance value indicated by the first cell At least one of the timing advance offset values determines a timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the terminal is in the coverage areas of the first cell and the second cell, or the terminal is in the coverage area of the first beam in the first cell and the second beam in the second cell. within the coverage area of the beam.
  • the first round-trip delay is the round-trip time between the second cell or the lowest point in the coverage area of the second beam in the second cell and the second satellite corresponding to the second cell extend;
  • the second round-trip delay is a round-trip delay between the first satellite and the second satellite.
  • the transceiver unit is further configured to receive second configuration information of the first cell, the second configuration information includes a maximum round-trip delay and a fourth round-trip delay, and the maximum round-trip delay is the The first cell or the maximum round-trip delay between the first beam coverage area in the first cell and the first satellite, the fourth round-trip delay is the first cell or the first cell The round-trip time delay between the nadir in the first beam coverage area and the satellite corresponding to the first cell;
  • the processing unit is further configured to: if the sum of the first round-trip delay and the second round-trip delay is greater than the maximum round-trip delay, according to the fourth round-trip delay and the first cell At least one of the indicated common timing advance value, the timing advance adjustment value indicated by the first cell, and the timing advance offset value indicated by the first cell determines the third round-trip delay.
  • the processing unit is further configured to determine a fifth round-trip time delay according to the first round-trip time delay, the second round-trip time delay, and the satellite orientation information corresponding to the first satellite and the second satellite. delay;
  • the processing unit is further configured to: according to the fifth round-trip delay, the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance value indicated by the first cell At least one of the timing advance offset values determines a timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the processing unit is further configured to determine the second round-trip time delay according to the satellite ephemeris information of the first satellite and the satellite ephemeris information of the second satellite; or
  • the transceiving unit is further configured to receive third configuration information of the first cell or the second cell, where the third configuration information includes the second round-trip delay.
  • the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the first beam is larger than the coverage area of the second beam.
  • a communication device which can implement the communication method in the first aspect above.
  • the communication device may be a chip or an access network device.
  • the above method can be realized by software, hardware, or by executing corresponding software by hardware.
  • the communication device may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to send second configuration information, and the second configuration information includes a maximum round-trip delay and a fourth round-trip delay.
  • the maximum round-trip delay is the maximum round-trip delay between the first cell or the first beam coverage area in the first cell and the first satellite corresponding to the first cell, the first 4.
  • the round-trip delay is the round-trip delay between the first cell or the lowest point in the coverage area of the first beam in the first cell and the first satellite corresponding to the first cell;
  • the transceiver unit is further configured to send third configuration information, the third configuration information includes a second round-trip time delay, and the second round-trip time delay is the distance between the first satellite and the second satellite corresponding to the second cell The round-trip delay between
  • the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the first beam is larger than the coverage area of the second beam in the second cell.
  • a communication device which can implement the communication method in the above third aspect.
  • the communication device may be a chip or a terminal.
  • the above method can be realized by software, hardware, or by executing corresponding software by hardware.
  • the communication device may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to acquire the settings in the second cell or the second beam coverage area in the second cell position information of the point relative to the second satellite corresponding to the second cell;
  • a processing unit configured to determine the first cell or the first beam in the first cell according to the position information of the set point relative to the second satellite and the ephemeris information of the first satellite corresponding to the first cell a first round-trip delay between the coverage area and the first satellite;
  • the processing unit is further configured to: according to the first round-trip delay, the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance value indicated by the first cell At least one of the timing advance offset values determines a timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the terminal is in the coverage areas of the first cell and the second cell, or the terminal is in the coverage area of the first beam in the first cell and the second beam in the second cell. within the coverage area of the beam.
  • the transceiving unit is further configured to receive first information of the second cell, where the first information includes location information of the set point.
  • the set point is the second cell or any point within the coverage area of the second beam in the second cell.
  • the communication device in the foregoing fourth aspect to the sixth aspect includes a processor coupled to a memory; the processor is configured to support the device to perform corresponding functions in the foregoing communication method.
  • the memory is used to be coupled with the processor, and it holds programs (instructions) and/or data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the memory may be located inside the communication device or outside the communication device.
  • the communication device in the fourth aspect to the sixth aspect above includes a processor and a transceiver device, the processor is coupled to the transceiver device, and the processor is used to execute computer programs or instructions , to control the transceiver device to receive and send information; when the processor executes the computer program or instructions, the processor is also used to implement the above method through logic circuits or code instructions.
  • the transceiver device may be a transceiver, a transceiver circuit or an input-output interface, which is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transmit signals from the processor to other communication devices other than the communication device.
  • the transceiver device is a transceiver circuit or an input/output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium, and when the computer program or instruction is executed, the methods described in the above aspects are implemented.
  • a computer program product containing instructions is provided, and when the instructions are run on a communication device, the communication device is made to execute the methods described in the above aspects.
  • the terminal establishes connections with the first cell and the second cell at the same time, and the terminal can obtain a more accurate timing advance for uplink transmission.
  • FIG. 1 is a schematic diagram of network configuration with a fixed TA value
  • Fig. 2 is a schematic diagram of a communication system applicable to the present application
  • FIG. 3 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of determining a timing advance for uplink transmission according to the method shown in FIG. 3 in an exemplary dual connectivity scenario
  • FIG. 5 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of determining a timing advance for uplink transmission according to the method shown in FIG. 6 in an exemplary dual connectivity scenario
  • FIG. 8 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the terminal cannot determine the RTT between the terminal and the serving satellite, and thus the terminal cannot determine the current TA value when sending uplink data.
  • the network configures a "fixed TA value" for each cell/beam (beam) through system information.
  • the fixed TA value refers to the RTT between the satellite and the lowest point in the coverage area of the cell/beam (such as point 100 in FIG. 1 ), that is, the minimum RTT value (RTTmin). Since the terminal does not have GNSS capabilities, the actual distance from the terminal to the satellite cannot be determined.
  • the network will indicate the RTTmin value between the point closest to the satellite and the satellite in the cell/beam coverage area to the terminal.
  • the terminal sends uplink data based on the network The indicated RTTmin and the public TA value determine the required TA value for uplink transmission.
  • the terminal can obtain an approximate TA value according to the "fixed TA value" indicated by the network and the public TA value (RTT between the reference point and the satellite), and the error of the approximate TA value does not exceed the maximum difference time corresponding to the current cell/beam delay.
  • the maximum differential delay corresponding to the cell/beam is relatively large (that is, the coverage area of the cell/beam is large)
  • the TA value determined in this way has a large error, which seriously affects the reliability of uplink transmission.
  • the present application also provides a communication solution.
  • the terminal establishes connections with the first cell and the second cell at the same time.
  • the terminal can determine the base station corresponding to the first cell to perform uplink data transmission according to the first round-trip delay and the second round-trip delay. A more accurate timing advance can be obtained.
  • Fig. 2 shows a schematic diagram of a communication system applicable to the present application.
  • the communication system may include at least one gateway 100 (only one is shown in the figure), a satellite 200 (or UAS platform), and one or more terminals 300 connected to the gateway 100 through the satellite (or UAS platform).
  • the terminal 300 accesses a data network (data network) through the satellite 200 and the gateway 100 .
  • the gateway 100 and the satellite 200 are connected through a feeder link; the satellite 200 and the terminal 300 are connected through a service link.
  • a cell can be composed of one or more beams.
  • An ellipse in the figure can represent a beam.
  • the gateway 100 may be a device capable of communicating with the terminal 300 .
  • the gateway 100 may be any device with a wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in the fifth generation (the fifth generation, 5G) communication system, base station or gateway in future communication system, access node in WiFi system, wireless relay node , wireless backhaul nodes, etc.
  • the gateway 100 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the gateway 100 may also be a small station, a transmission reference point (TRP) or the like.
  • TRP transmission reference point
  • the terminal device 300 is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water, such as on a ship; it can also be deployed in the air, such as an airplane , balloons and satellites etc.
  • the terminal device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • Terminal equipment may sometimes be called user equipment (user equipment, UE), access terminal equipment, UE unit, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, terminal (terminal), wireless communication equipment, UE Proxy or UE device etc.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more, and in view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application.
  • And/or describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/" unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
  • FIG. 3 it is a schematic flowchart of a communication method provided by the embodiment of the present application.
  • This method can be applied to a dual connectivity scenario, that is, the terminal establishes connections with the first cell and the second cell at the same time.
  • the method may include the steps of:
  • the second cell sends first configuration information.
  • the UE receives the first configuration information.
  • the first configuration information includes a first round-trip delay.
  • the UE is in the coverage areas of the first cell and the second cell, or the UE is in the coverage area of the first beam in the first cell and the coverage area of the second beam in the second cell.
  • the first beam is a serving beam of the UE in the first cell
  • the second beam is a serving beam of the UE in the second cell.
  • the UE communicates with the gateway/base station corresponding to the first cell through the first satellite in the coverage area of the first cell, and communicates with the gateway/base station corresponding to the second cell through the second satellite in the coverage area of the second cell.
  • the first satellite corresponding to the first cell and the second satellite corresponding to the second cell may be in the same satellite orbit, or may be in different satellite orbits.
  • the UE When the UE sends uplink data to the gateway/base station corresponding to the first cell in the first cell with a larger coverage area or in the coverage area of the first beam in the first cell, it determines that the first cell or There may be a large error in the timing advance amount when sending uplink data to the gateway/base station corresponding to the first cell in the coverage area of the first beam in the first cell.
  • the fixed TA value is the round-trip time delay between the first cell or the lowest point in the coverage area of the first beam in the first cell and the first satellite corresponding to the first cell. Therefore, this embodiment aims to improve the accuracy of the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell.
  • the second cell sends first configuration information to the UE, where the first configuration information includes a first round-trip delay.
  • the first round-trip delay is the round-trip delay between the second cell or the lowest point in the second beam coverage area in the second cell and the second satellite corresponding to the second cell, as shown in Figure 4.
  • the second beam is a serving beam of the UE in the second cell.
  • the second cell may carry the foregoing first configuration information through system information, RRC signaling, or a media access control element (media access control-control elelment, MAC CE).
  • system information RRC signaling
  • media access control element media access control-control elelment, MAC CE
  • the UE acquires a second round-trip delay.
  • the second round-trip time delay is the round-trip time delay between the first satellite and the second satellite.
  • the UE may obtain the first round-trip delay through its own calculation, or may receive the first round-trip delay from the first cell or the second cell.
  • the UE determines a third round-trip time delay between the UE and the first satellite corresponding to the first cell according to the first round-trip time delay and the second round-trip time delay.
  • the UE may determine a third round-trip delay between the UE and the first satellite corresponding to the first cell according to the first round-trip delay and the second round-trip delay.
  • the third round-trip delay is the sum of the first round-trip delay and the second round-trip delay.
  • the UE determines the UE according to the third round-trip delay and at least one of the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell.
  • the public timing advance value is the round-trip delay between the reference point and the first satellite.
  • the public timing advance value may be broadcast by the first cell, and all UEs within the range of the first cell may acquire the public timing advance value by receiving system information of the first cell.
  • the timing advance adjustment value may be indicated by the first cell through message 2/message B in the random access process, or MAC CE.
  • the UE may determine that the UE and A timing advance when the base station corresponding to the first cell performs uplink data transmission. Specifically, it may be: the UE determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell according to the third round-trip delay; or, the UE determines the timing advance between the UE and the first cell according to the third round-trip delay and the public timing advance value.
  • the timing advance during transmission or, the UE determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell according to the third round-trip delay, the timing advance adjustment value, and the timing advance offset value; or the UE determines the timing advance according to the third
  • the three round-trip delays, the public timing advance value, the timing advance adjustment value and the timing advance offset value determine the timing advance amount when the UE performs uplink data transmission with the base station corresponding to the first cell.
  • the UE sends uplink transmission data according to the timing advance for uplink transmission.
  • the base station corresponding to the first cell receives the uplink transmission data.
  • the terminal can determine the timing advance when the terminal performs uplink data transmission with the base station corresponding to the coverage area of the first cell according to the first round-trip delay and the second round-trip delay, and can obtain A more precise timing advance.
  • FIG. 5 it is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • the method may include the steps of:
  • the first cell sends second configuration information.
  • the UE receives the second configuration information.
  • the second configuration information includes a maximum round-trip delay and a fourth round-trip delay.
  • the maximum round-trip delay is the maximum round-trip delay between the first cell or the first beam coverage area in the first cell and the first satellite
  • the fourth round-trip delay is the first cell or the first beam coverage in the first cell
  • the first cell may carry the above-mentioned second configuration information through system information, RRC signaling or MAC CE.
  • the second cell sends first configuration information.
  • the UE receives the first configuration information.
  • the first configuration information includes a first round-trip delay.
  • step S301 For the specific implementation of this step, reference may be made to step S301 in the foregoing embodiment, and details are not repeated here.
  • the UE determines a second round-trip time delay according to the satellite ephemeris information of the first satellite and the satellite ephemeris information of the second satellite.
  • the UE may determine the second round-trip time delay according to the satellite ephemeris information of the first satellite and the satellite ephemeris information of the second satellite.
  • the second round-trip time delay is a round-trip time delay of electromagnetic wave transmission between the first satellite and the second satellite.
  • step S504. The UE judges whether the sum of the first round-trip delay and the second round-trip delay is greater than the maximum round-trip delay; if yes, execute step S505; otherwise, jump to step S506.
  • the UE needs to determine whether the sum of the first round-trip delay and the second round-trip delay is greater than the maximum round-trip delay configured above.
  • the UE adjusts according to the fourth round-trip delay, the public timing advance value indicated by the first cell, and the timing advance indicated by the first cell. At least one of the value and the timing advance offset value indicated by the first cell determines the third round-trip delay.
  • the UE uses the fourth round-trip delay with a smaller value, the public timing advance value indicated by the first cell, and the At least one of the timing advance adjustment value and the timing advance offset value indicated by the first cell determines the third round-trip delay.
  • the UE delays the third round-trip delay according to the fourth round-trip delay; or, the UE adjusts the third round-trip delay according to the fourth round-trip delay and the public timing advance value; or, the UE adjusts the delay according to the fourth round-trip delay and the timing advance or, the UE offsets the third round-trip delay according to the fourth round-trip delay and the timing advance; or, the UE adjusts the third round-trip delay according to the fourth round-trip delay, the common timing advance value, and the timing advance adjustment value Delay; or, UE according to the fourth round-trip delay, public timing advance value and timing advance offset value third round-trip delay; or, UE according to the fourth round-trip delay, timing advance adjustment value and timing advance offset value first Three round-trip delays; or a third round-trip delay by the UE according to the fourth round-trip delay, the public timing advance value, the timing advance adjustment value, and the timing advance offset value.
  • the UE determines the first satellite corresponding to the terminal and the first cell according to the first round-trip delay and the second round-trip delay The third round-trip delay between.
  • the third round-trip delay is the sum of the first round-trip delay and the second round-trip delay.
  • the UE determines the UE according to the third round-trip delay and at least one of the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell.
  • the UE calculates the third round-trip delay (which is smaller than the fourth round-trip delay) and the first cell indication At least one of the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell quantity.
  • the UE sends uplink transmission data according to the timing advance.
  • the base station corresponding to the first cell receives the uplink transmission data.
  • the terminal can determine the timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell according to the first round-trip delay and the second round-trip delay, and can obtain more accurate timing advance.
  • FIG. 6 it is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • the method may include the steps of:
  • the first cell sends second configuration information.
  • the UE receives the second configuration information.
  • the second configuration information includes the maximum round-trip delay and the fourth round-trip delay
  • the maximum round-trip delay is the first cell or the maximum round-trip delay between the first beam coverage area in the first cell and the first satellite
  • the second The round-trip delay is the round-trip delay between the first cell or the lowest point in the coverage area of the first beam in the first cell and the satellite corresponding to the first cell.
  • step S501 for the specific implementation of this step, reference may be made to step S501 in the foregoing embodiment, which will not be repeated here.
  • the second cell sends first configuration information.
  • the UE receives the first configuration information.
  • the first configuration information includes a first round-trip delay.
  • step S401 For the specific implementation of this step, reference may be made to step S401 or step S502 in the foregoing embodiment, and details are not repeated here.
  • the first cell sends third configuration information.
  • the UE receives the third configuration information,
  • the third configuration information includes the second round-trip delay.
  • the gateway corresponding to the first cell may have obtained the second round-trip delay in advance, and therefore, the UE may receive third configuration information of the first cell, where the third configuration information includes the second round-trip delay.
  • the second round-trip time delay is a round-trip time delay between the first satellite and the second satellite.
  • the UE may receive system information, MAC CE or RRC signaling of the first cell, where the system information or RRC signaling includes the above third configuration information.
  • step S604. The UE judges whether the sum of the first round-trip delay and the second round-trip delay is greater than the maximum round-trip delay; if yes, execute step S605; otherwise, jump to step S606.
  • the UE needs to determine whether the sum of the first round-trip delay and the second round-trip delay is greater than the maximum round-trip delay configured above.
  • the UE adjusts according to the fourth round-trip delay, the public timing advance value indicated by the first cell, and the timing advance indicated by the first cell At least one of the value and the timing advance offset value indicated by the first cell determines the third round-trip delay.
  • the UE uses the fourth round-trip delay with a smaller value, the public timing advance value indicated by the first cell, and the At least one of the timing advance adjustment value and the timing advance offset value indicated by the first cell determines the third round-trip delay.
  • the UE determines the first satellite corresponding to the terminal and the first cell according to the first round-trip delay and the second round-trip delay The third round-trip delay between.
  • the UE determines a fifth round-trip time delay according to the first round-trip time delay, the second round-trip time delay, and satellite orientation information corresponding to the first satellite and the second satellite.
  • the UE determines the positions of the satellite corresponding to the first cell and the satellite corresponding to the second cell according to the ephemeris information of the satellite corresponding to the first cell and the ephemeris information of the satellite corresponding to the second cell.
  • the UE determines the first cell according to the position information of the satellite corresponding to the first cell, the position of the satellite corresponding to the second cell, and the coverage area of the second cell or the azimuth angle of the second beam in the second cell relative to the position of the satellite corresponding to the second cell.
  • the angle between the line between the position of the corresponding satellite and the position of the satellite corresponding to the second cell and the coverage area of the second cell or the orientation of the second beam in the second cell relative to the position of the satellite corresponding to the second cell (as shown in FIG. Angle A) shown in 7.
  • the UE determines the fifth round-trip delay according to the included angle, the first round-trip delay value, and the second round-trip delay.
  • the UE determines the UE according to the fifth round-trip delay and at least one of the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell.
  • the UE determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell according to the fifth round-trip delay; or, the UE determines the timing advance between the UE and the first cell according to the fifth round-trip delay and the public timing advance value.
  • the timing advance during transmission or, the UE determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell according to the fifth round-trip delay, the timing advance adjustment value and the timing advance offset value; or the UE determines the timing advance according to the fifth 5.
  • the round-trip delay, the public timing advance value, the timing advance adjustment value and the timing advance offset value determine the timing advance amount when the UE performs uplink data transmission with the base station corresponding to the first cell.
  • the UE sends uplink transmission data according to the timing advance for uplink transmission.
  • the first cell receives the uplink transmission data.
  • the terminal can determine the timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell according to the first round-trip delay and the second round-trip delay, and can obtain more accurate timing advance.
  • FIG. 8 it is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • the method may include the steps of:
  • the second cell sends the second cell or set point location information within the coverage area of the second beam in the second cell.
  • the UE receives the setpoint location information.
  • the UE is in the coverage areas of the first cell and the second cell, or the UE is in the coverage area of the first beam in the first cell and the coverage area of the second beam in the second cell.
  • the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the first beam is larger than the coverage area of the second beam. If the UE performs uplink transmission to the gateway/base station corresponding to the first cell based on the approximate TA value obtained from the first cell or the fixed TA value corresponding to the first beam in the first cell and the public TA value indicated by the network, the first cell or the second The coverage area of the first beam in a cell is relatively large, and the accuracy of the approximate TA value is not enough, which affects the reliability of UE uplink transmission.
  • the second cell can send the second cell or the set point position information in the second beam coverage area in the second cell to the UE through system information or RRC signaling .
  • the location information of the set point may be the location information of the lowest point, the highest point or any point in the second cell or in the coverage area of the second beam in the second cell.
  • the UE acquires position information of a second cell or a set point within a coverage area of a second beam in the second cell relative to a second satellite corresponding to the second cell.
  • the second cell also needs to indicate the relationship between the set point position information and the position of the second satellite.
  • the UE can obtain the real-time position of the second position, so as to determine the position information of the set point relative to the second satellite corresponding to the second cell.
  • the position information of the set point relative to the second satellite corresponding to the second cell may be the coordinates of the set point.
  • the UE determines the distance between the first cell or the first beam coverage area in the first cell and the first satellite according to the position information of the set point relative to the second satellite and the ephemeris information of the first satellite corresponding to the first cell The first round-trip delay of .
  • the UE may determine the round-trip delay between the set point and the second satellite according to the position information of the set point relative to the second satellite corresponding to the second cell and the satellite position of the second satellite.
  • the UE determines the UE according to at least one of the first round-trip delay, the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell.
  • the public timing advance value is the round-trip delay between the reference point and the first satellite.
  • the public timing advance value may be broadcast by the first cell, and all UEs within the range of the first cell may receive the public timing advance value.
  • the timing advance adjustment value may be indicated by the first cell through message 2/message B in the random access process, or MAC CE.
  • the UE may determine that the UE and A timing advance when the base station corresponding to the first cell performs uplink data transmission.
  • the UE determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell; or, the UE determines the timing advance between the UE and the first cell according to the first round-trip delay and the public timing advance value
  • the timing advance amount when the corresponding base station performs uplink data transmission or, the UE determines the timing advance amount when the UE performs uplink data transmission with the base station corresponding to the first cell according to the first round trip delay and the timing advance adjustment value; or, the UE determines the timing advance amount when the UE performs uplink data transmission with the base station corresponding to the first cell
  • the first round-trip delay and the timing advance offset value determine the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell; or, the UE determines according to the first round-trip delay, the public timing advance value, and the timing advance adjustment value
  • the timing advance during transmission or, the UE determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell according to the first round-trip delay, the timing advance adjustment value, and the timing advance offset value; or the UE determines the timing advance according to the first - The round-trip delay, the public timing advance value, the timing advance adjustment value and the timing advance offset value determine the timing advance amount when the UE performs uplink data transmission with the base station corresponding to the first cell.
  • the UE performs uplink data transmission based on the timing advance.
  • the terminal can obtain the position information of the second cell or the set point in the coverage area of the second beam in the second cell relative to the second satellite corresponding to the second cell, according to the The location information finally determines the timing advance when the UE performs uplink data transmission with the base station corresponding to the first cell, and a more accurate timing advance can be obtained.
  • the terminal includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 9 and FIG. 10 are schematic structural diagrams of a possible communication device provided by an embodiment of the present application. These communication devices can be used to realize the functions of the terminal in the foregoing method embodiments, and thus can also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be a terminal, or a module (such as a chip) applied to the terminal.
  • a communication device 900 includes a processing unit 910 and a transceiver unit 920 .
  • the communication device 900 is configured to implement the functions of the terminal or the access network device in the method embodiments shown in FIG. 3 , FIG. 5 , FIG. 6 or FIG. 8 .
  • the transceiver unit 920 is used to receive the first configuration information of the second cell, the first configuration
  • the information includes a first round-trip delay;
  • the processing unit 910 is configured to acquire a second round-trip delay;
  • the processing unit 910 is further configured to determine the terminal and the second round-trip delay according to the first round-trip delay and the second round-trip delay The third round-trip delay between the first satellites corresponding to the first cell; and the processing unit 910 is further configured to, according to the third round-trip delay, the public timing advance value indicated by the first cell, the first At least one of the timing advance adjustment value indicated by a cell, or the timing advance offset value indicated by the first cell, to determine the timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell .
  • the terminal is in the coverage area of the first cell and the second cell, or the terminal is in the coverage area of the first beam in the first cell and in the second cell within the coverage area of the second beam.
  • the first round-trip delay is the distance between the second cell or the lowest point in the coverage area of the second beam in the second cell and the second satellite corresponding to the second cell
  • the round-trip delay between; the second round-trip delay is the round-trip delay between the first satellite and the second satellite.
  • the transceiver unit 920 is further configured to receive second configuration information of the first cell, where the second configuration information includes a maximum round-trip delay and a fourth round-trip delay, and the maximum round-trip time delay is the maximum round-trip delay between the first cell or the first beam coverage area in the first cell and the first satellite, and the fourth round-trip delay is the first cell or the maximum round-trip delay between The round-trip delay between the lowest point in the coverage area of the first beam in the first cell and the satellite corresponding to the first cell; the processing unit 910 is further configured to if the first round-trip delay is the same as the The sum of the second round-trip delay is greater than the maximum round-trip delay, then according to the fourth round-trip delay, the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, At least one of the timing advance offset values indicated by the first cell determines the third round-trip delay.
  • the second configuration information includes a maximum round-trip delay and a fourth round-trip delay
  • the maximum round-trip time delay
  • the processing unit 910 is further configured to determine according to the first round-trip delay, the second round-trip delay, and the satellite orientation information corresponding to the first satellite and the second satellite The fifth round-trip delay; and the processing unit 910 is further configured to, according to the fifth round-trip delay, the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the at least one of the timing advance offset values indicated by the first cell, and determine the timing advance when the terminal performs uplink data transmission with the base station corresponding to the first cell.
  • the processing unit 910 is further configured to determine the second round-trip time delay according to the satellite ephemeris information of the first satellite and the satellite ephemeris information of the second satellite; or the transceiver unit 920. Further, receive third configuration information of the first cell or the second cell, where the third configuration information includes the second round-trip delay.
  • the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the first beam is larger than the coverage area of the second beam.
  • processing unit 910 and the transceiver unit 920 can be directly obtained by referring to the relevant description of the terminal in the method embodiment shown in FIG. 3 , FIG. 5 or FIG. 6 , and details are not repeated here.
  • the transceiver unit 920 is used to send the second configuration information, so
  • the second configuration information includes a maximum round-trip delay and a fourth round-trip delay, and the maximum round-trip delay is the first cell or the first beam coverage area in the first cell corresponding to the first cell
  • the maximum round-trip delay between the first satellites, the fourth round-trip delay being that the first cell or the lowest point in the coverage area of the first beam in the first cell corresponds to the first cell
  • the round-trip time delay between the first satellites; the transceiver unit 920 is also used to send third configuration information, the third configuration information includes a second round-trip time delay, and the second round-trip time delay is the first satellite The round-trip delay between the second satellite corresponding to the second cell; wherein, the coverage area of the first cell is larger than the coverage area of the second cell, or the coverage area of the
  • processing unit 910 and the transceiver unit 920 can be directly obtained by referring to the related description of the first cell in the method embodiment shown in FIG. 3 , FIG. 5 or FIG. 6 , and details are not repeated here.
  • the processing unit 910 is used to obtain the relative The position information of the second satellite corresponding to the second cell; the processing unit 910 is further configured to determine the set point according to the position information of the set point relative to the second satellite and the ephemeris information of the first satellite corresponding to the first cell.
  • the first round-trip delay between the first cell or the first beam coverage area in the first cell and the first satellite; and the processing unit 910 is configured to, according to the first round-trip delay and the at least one of the public timing advance value indicated by the first cell, the timing advance adjustment value indicated by the first cell, or the timing advance offset value indicated by the first cell, and determine the relationship between the terminal and the second Timing advance when the base station corresponding to a cell performs uplink data transmission.
  • the terminal is in the coverage areas of the first cell and the second cell, or the terminal is in the coverage area of the first beam in the first cell and the coverage area of the second cell Within the coverage area of the second beam in .
  • the transceiving unit 920 is configured to receive first information of the second cell, where the first information includes location information of the set point.
  • the set point is the second cell or any point within the coverage area of the second beam in the second cell.
  • processing unit 910 and the transceiver unit 920 can be directly obtained by referring to the relevant description of the terminal in the method embodiment shown in FIG. 8 , and details are not repeated here.
  • a communication device 1000 includes a processor 1010 and an interface circuit 1020 .
  • the processor 1010 and the interface circuit 1020 are coupled to each other.
  • the interface circuit 1020 may be a transceiver or an input-output interface.
  • the communication device 1000 may further include a memory 1030 for storing instructions executed by the processor 1010 or storing input data required by the processor 1010 to execute the instructions or storing data generated by the processor 1010 after executing the instructions.
  • the processor 1010 is used to implement the functions of the processing unit 910
  • the interface circuit 1020 is used to implement the functions of the transceiver unit 920 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the access network equipment; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas) Information, which is sent by the terminal to the access network device.
  • the access network equipment chip implements the functions of the access network equipment in the above method embodiments.
  • the access network device chip receives information from other modules (such as radio frequency modules or antennas) in the access network device, and the information is sent by the terminal to the access network device; or, the access network device chip sends information to the access network device Other modules (such as radio frequency modules or antennas) in the network send information, and the information is sent by the access network equipment to the terminal.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in an access network device or a terminal.
  • the processor and the storage medium may also exist in the access network device or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, an access network device, a user device or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置、芯片、芯片模组、存储介质。该方法包括:终端接收第二小区的第一配置信息,第一配置信息包括第一往返时延;终端获取第二往返时延;终端根据第一往返时延和第二往返时延,确定终端与第一小区对应的第一卫星之间的第三往返时延;终端根据第三往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定终端与第一小区覆盖区域对应的基站进行上行数据传输时的定时提前量。还公开了相应的装置及芯片、芯片模组、存储介质。采用本申请的方案,可以获得较为精确的定时提前量。

Description

通信方法及装置、芯片、芯片模组、存储介质
本申请要求于2021年08月04日提交中国专利局、申请号为202110888774.2、申请名称为“通信方法及装置、芯片、芯片模组、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置、芯片、芯片模组、存储介质。
背景技术
在非全球导航卫星系统(non-global navigation satellite system,non-GNSS)场景下(即终端不具备GNSS能力,无法获取自己的位置信息),终端无法确定终端与服务卫星之间的往返时延(round trip time,RTT),进而终端在发送上行数据时无法确定精确的定时提前(time advance,TA)量。
发明内容
本申请提供一种通信方法及装置,以提高终端进行上行传输的定时提前量的精度。
第一方面,提供了一种通信方法,所述方法包括:
终端接收第二小区的第一配置信息,所述第一配置信息包括第一往返时延;
所述终端获取第二往返时延;
所述终端根据所述第一往返时延和所述第二往返时延,确定所述终端与第一小区对应的第一卫星之间的第三往返时延;
所述终端根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
在一种可能的实现中,所述第三往返时延为所述第一往返时延和所述第二往返时延之和。
在又一种可能的实现中,所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
在又一种可能的实现中,所述第一往返时延为所述第二小区或所述第二小区中的第二波束覆盖区域内的最低点与所述第二小区对应的第二卫星之间的往返时延;
所述第二往返时延为所述第一卫星与所述第二卫星之间的往返时延。
在又一种可能的实现中,所述方法还包括:
所述终端接收所述第一小区的第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的卫星之间的往返时延;
若所述第一往返时延与所述第二往返时延之和大于所述最大往返时延,则所述终端根据所述第四往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、所述第一小区指示的定时提前偏移值中的至少一项确定所述第三往返时延。
在又一种可能的实现中,所述终端根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量,包括:
根据所述第一往返时延、所述第二往返时延以及所述第一卫星与所述第二卫星对应的卫星方位信息,确定第五往返时延;
根据所述第五往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
在又一种可能的实现中,所述终端获取第二往返时延,包括:
所述终端根据所述第一卫星的卫星星历信息和所述第二卫星的卫星星历信息,确定所述第二往返时延;或
接收所述第一小区或所述第二小区的第三配置信息,所述第三配置信息包括所述第二往返时延。
在又一种可能的实现中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二波束覆盖区域。
第二方面,提供了一种通信方法,所述方法包括:
第一小区对应的基站发送第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一小区对应的第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的第一卫星之间的往返时延;
所述第一小区对应的基站发送第三配置信息,所述第三配置信息包括第二往返时延,所述第二往返时延为所述第一卫星与第二小区对应的第二卫星之间的往返时延;
其中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二小区中的第二波束覆盖区域。
第三方面,提供了一种通信方法,所述方法包括:
终端获取第二小区或所述第二小区中的第二波束覆盖区域内的设定点相对于第二小区对应的第二卫星的位置信息;
所述终端根据所述设定点相对于第二卫星的位置信息和第一小区对应的第一卫星的星历信息,确定所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的第一往返时延;
所述终端根据所述第一往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
在一种可能的实现中,所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
在又一种可能的实现中,所述方法还包括:
所述终端接收所述第二小区的第一信息,所述第一信息包括所述设定点的位置信息。
在又一种可能的实现中,所述设定点为所述第二小区或所述第二小区中的所述第二波束覆盖区域内的任一点。
第四方面,提供了一种通信装置,可以实现上述第一方面中的通信方法。例如所述通信装置可以是芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:收发单元,用于接收第二小区的第一配置信息,所述第一配置信息包括第一往返时延;
处理单元,用于获取第二往返时延;
所述处理单元,还用于根据所述第一往返时延和所述第二往返时延,确定所述终端与第一小区对应的第一卫星之间的第三往返时延;
所述处理单元,还用于根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
可选地,所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
可选地,所述第一往返时延为所述第二小区或所述第二小区中的第二波束覆盖区域内的最低点与所述第二小区对应的第二卫星之间的往返时延;
所述第二往返时延为所述第一卫星与所述第二卫星之间的往返时延。
可选地,所述收发单元,还用于接收所述第一小区的第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的卫星之间的往返时延;
所述处理单元,还用于若所述第一往返时延与所述第二往返时延之和大于所述最大往返时延,则根据所述第四往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、所述第一小区指示的定时提前偏移值中的至少一项确定所述第三往返时延。
可选地,所述处理单元,还用于根据所述第一往返时延、所述第二往返时延以及所述第一卫星与所述第二卫星对应的卫星方位信息,确定第五往返时延;
所述处理单元,还用于根据所述第五往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
可选地,所述处理单元,还用于根据所述第一卫星的卫星星历信息和所述第二卫星的卫星星历信息,确定所述第二往返时延;或
所述收发单元,还用于接收所述第一小区或所述第二小区的第三配置信息,所述第三配置信息包括所述第二往返时延。
可选地,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二波束覆盖区域。
第五方面,提供了一种通信装置,可以实现上述第一方面中的通信方法。例如所述通信装置可以是芯片或者接入网设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:收发单元,用于发送第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述 最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一小区对应的第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的第一卫星之间的往返时延;
所述收发单元,还用于发送第三配置信息,所述第三配置信息包括第二往返时延,所述第二往返时延为所述第一卫星与第二小区对应的第二卫星之间的往返时延;
其中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二小区中的第二波束覆盖区域。
第六方面,提供了一种通信装置,可以实现上述第三方面中的通信方法。例如所述通信装置可以是芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:收发单元,用于获取第二小区或所述第二小区中的第二波束覆盖区域内的设定点相对于第二小区对应的第二卫星的位置信息;
处理单元,用于根据所述设定点相对于第二卫星的位置信息和第一小区对应的第一卫星的星历信息,确定所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的第一往返时延;
所述处理单元,还用于根据所述第一往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
可选地,所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
可选地,所述收发单元,还用于接收所述第二小区的第一信息,所述第一信息包括所述设定点的位置信息。
可选地,所述设定点为所述第二小区或所述第二小区中的所述第二波束覆盖区域内的任一点。
在又一种可能的实现方式中,上述第四方面~第六方面中的通信装置包括与存储器耦合的处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。可选的,该存储器可以位于该通信装置内部,也可以位于该通信装置外部。
在又一种可能的实现方式中,上述第四方面~第六方面中的通信装置包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于通过逻辑电路或执行代码指令实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口,用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当上述第四方面~第六方面中的通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为终端时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机 程序或指令,当所述计算机程序或指令被执行时,实现上述各方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当该指令在通信装置上运行时,使得通信装置执行上述各方面所述的方法。
采用本申请提供的通信方案,具有如下有益效果:
终端同时与第一小区和第二小区建立连接,终端可以获得较为精确的进行上行传输的定时提前量。
附图说明
图1为网络配置固定的TA值的示意图;
图2为本申请适用的一种通信系统的示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为示例的双连接场景下根据图3所示的方法确定进行上行传输的定时提前量的示意图;
图5为本申请实施例提供的又一种通信方法的流程示意图;
图6为本申请实施例提供的又一种通信方法的流程示意图;
图7为示例的双连接场景下根据图6所示的方法确定进行上行传输的定时提前量的示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
在non-GNSS场景下,终端无法确定终端与服务卫星之间的RTT,进而终端在发送上行数据时无法确定当前的TA值。一种实现为,网络通过系统信息针对每个小区/波束(beam)配置一个“固定的TA值”。该固定的TA值是指卫星到小区/beam覆盖区域内的最低点(如图1中的点100)之间的RTT,即最小的RTT值(RTTmin)。由于终端不具备GNSS能力,无法确定终端到卫星的实际距离,此时网络将小区/beam覆盖区域内距离卫星最近的点到卫星之间的RTTmin值指示给终端,终端在发送上行数据时基于网络指示的RTTmin以及公共TA值确定上行发送的所需要的TA值。
终端根据网络指示的“固定TA值”以及公共TA值(参考点至卫星之间的RTT)可以得到一个大概的TA值,该大概的TA值的误差不超过当前小区/beam对应的最大差分时延。当小区/beam对应的最大差分时延较大时(即小区/beam覆盖区域较大),这种方式确定的TA值存在较大的误差,严重影响上行发送的可靠性。
本申请还提供一种通信方案,终端同时与第一小区和第二小区建立连接,终端可以根据第一往返时延和第二往返时延等确定终端与第一小区对应的基站进行上行数据传输时的定时提前量,可以获得较为精确的定时提前量。
图2给出了本申请适用的一种通信系统的示意图。该通信系统可以包括至少一个网关(gateway)100(图中仅示出1个)、卫星200(或UAS平台)、以及通过卫星(或UAS平台)与网关100连接的一个或多个终端300。终端300通过卫星200和网关100访问数据网络(data network)。其中,网关100与卫星200之间通过反馈链路(feeder link)连接;卫星200与终端300之间通过服务链路(service link)连接。
本申请可以应用于NTN场景下,如图2所示,一个小区可以由一个或多个波束组成。图中一个椭圆可以表示一个波束。
网关100可以是能和终端300通信的设备。网关100可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网关、WiFi系统中的接入节点、无线中继节点、无线回传节点等。网关100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网关100还可以是小站,传输节点(transmission reference point,TRP)等。本申请的实施例对网关所采用的具体技术和具体设备形态不做限定。
终端设备300是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,如飞机、气球和卫星上等。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、移动站、移动台、远方站、远程终端设备、移动设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
如图3所示,为本申请实施例提供的一种通信方法的流程示意图。该方法可以应用于双连接场景,即终端同时与第一小区和第二小区建立连接。该方法可以包括以下步骤:
S301、第二小区发送第一配置信息。对应地,UE接收该第一配置信息。
其中,该第一配置信息包括第一往返时延。
如图4所示,UE处于第一小区和第二小区的覆盖区域内,或者UE处于第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。其中,第一波束为UE在第一小区的服务波束,第二波束为UE在第二小区的服务波束。
UE在第一小区覆盖区域通过第一卫星与第一小区对应的网关/基站通信,UE在第二小区覆盖区域通过第二卫星与第二小区对应的网关/基站通信。第一小区对应的第一卫星与第二小区对应的第二卫星可以在相同的卫星轨道,也可以是在不同的卫星轨道。
UE在覆盖区域较大的第一小区或第一小区中的第一波束覆盖区域内向第一小区对应的网关/基站发送上行数据时,根据第一小区指示的固定TA值确定在第一小区或第一小区中的第一波束覆盖区域内向第一小区对应的网关/基站发送上行数据时的定时提前量会存在较大的误差。该固定TA值是第一小区或第一小区中的第一波束覆盖区域内的最低点与第一小区对应的第一卫星之间的往返时延。因此,本实施例旨在提高UE与第一小区对应的基站进行上行数据传输时的定时提前量的精度。
首先,第二小区向UE发送第一配置信息,该第一配置信息包括第一往返时延。第一往返时延为第二小区或第二小区中的第二波束覆盖区域内的最低点与第二小区对应的第二卫星 之间的往返时延,如图4所示。第二波束为UE在第二小区的服务波束。
示例性地,第二小区可以通过系统信息、RRC信令或媒体接入层控制单元(media access control-control elelment,MAC CE)携带上述第一配置信息。
S302、UE获取第二往返时延。
其中,如图4所示,第二往返时延为第一卫星与第二卫星之间的往返时延。
UE可以通过自身计算获得第一往返时延,也可以从第一小区或第二小区接收第一往返时延。
S303、UE根据第一往返时延和第二往返时延,确定UE与第一小区对应的第一卫星之间的第三往返时延。
根据图4,UE可以根据第一往返时延和第二往返时延,确定UE与第一小区对应的第一卫星之间的第三往返时延。可选地,第三往返时延为第一往返时延和第二往返时延之和。
S304、UE根据第三往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
其中,公共定时提前值是参考点与第一卫星之间的往返时延。公共定时提前值可以是第一小区广播的,第一小区范围内的UE均可以通过接收第一小区的系统信息获取该公共定时提前值。
定时提前调整值可以是第一小区通过随机接入过程中的消息2/消息B、或者MAC CE指示的。
UE可以根据第三往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。具体可以是:UE根据第三往返时延确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第三往返时延和公共定时提前值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第三往返时延和定时提前调整值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第三往返时延和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第三往返时延、公共定时提前值和定时提前调整值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第三往返时延、公共定时提前值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第三往返时延、定时提前调整值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者UE根据第三往返时延、公共定时提前值、定时提前调整值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
S305、UE根据进行上行传输的定时提前量,发送上行传输数据。相应地,第一小区对应的基站接收该上行传输数据。
根据本申请实施例提供的一种通信方法,终端可以根据第一往返时延和第二往返时延等确定终端与第一小区覆盖区域对应的基站进行上行数据传输时的定时提前量,可以获得较为精确的定时提前量。
如图5所示,为本申请实施例提供的又一种通信方法的流程示意图。该方法可以包括以下步骤:
S501、第一小区发送第二配置信息。相应地,UE接收该第二配置信息。
其中,第二配置信息包括最大往返时延和第四往返时延。最大往返时延为第一小区或第一小区中的第一波束覆盖区域与第一卫星之间的最大往返时延,第四往返时延为第一小区或第一小区中的第一波束覆盖区域内的最低点与第一小区对应的卫星之间的往返时延。
示例性地,第一小区可以通过系统信息、RRC信令或MAC CE携带上述第二配置信息。
S502、第二小区发送第一配置信息。对应地,UE接收该第一配置信息。
其中,该第一配置信息包括第一往返时延。
该步骤的具体实现可参考上述实施例中的步骤S301,在此不再赘述。
S503、UE根据第一卫星的卫星星历信息和第二卫星的卫星星历信息,确定第二往返时延。
在NTN中,卫星的运转是基于特定的轨道,其运动是有规律的,因此,由卫星运动所带来的传播时延变化是有规律且可以预测的。UE可以根据第一卫星的卫星星历信息和第二卫星的卫星星历信息,确定第二往返时延。其中,第二往返时延为第一卫星与第二卫星之间电磁波传输的往返时延。
S504、UE判断第一往返时延与第二往返时延之和是否大于最大往返时延;若是,则执行步骤S505;否则,跳转至步骤S506。
为了进一步提高计算过程的精度,UE需要判断第一往返时延与第二往返时延之和是否大于上述配置的最大往返时延。
S505、若第一往返时延与第二往返时延之和大于最大往返时延,则UE根据第四往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、第一小区指示的定时提前偏移值中的至少一项确定第三往返时延。
若第一往返时延与第二往返时延之和大于最大往返时延,则UE根据取值较小的第四往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、第一小区指示的定时提前偏移值中的至少一项确定第三往返时延。
具体可以是:UE根据第四往返时延第三往返时延;或者,UE根据第四往返时延和公共定时提前值第三往返时延;或者,UE根据第四往返时延和定时提前调整值第三往返时延;或者,UE根据第四往返时延和定时提前偏移值第三往返时延;或者,UE根据第四往返时延、公共定时提前值和定时提前调整值第三往返时延;或者,UE根据第四往返时延、公共定时提前值和定时提前偏移值第三往返时延;或者,UE根据第四往返时延、定时提前调整值和定时提前偏移值第三往返时延;或者UE根据第四往返时延、公共定时提前值、定时提前调整值和定时提前偏移值第三往返时延。
S506、若第一往返时延与第二往返时延之和小于或等于最大往返时延,则UE根据第一往返时延和第二往返时延,确定终端与第一小区对应的第一卫星之间的第三往返时延。
可选地,第三往返时延为第一往返时延和第二往返时延之和。
S507、UE根据第三往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
若第一往返时延与第二往返时延之和小于或等于最大往返时延,则UE根据计算出的第三往返时延(相比第四往返时延较小)、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
具体实现可参考上述步骤S304。
S508、UE根据该定时提前量,发送上行传输数据。相应地,第一小区对应的基站接收该上行传输数据。
根据本申请实施例提供的一种通信方法,终端可以根据第一往返时延和第二往返时延等确定终端与第一小区对应的基站进行上行数据传输时的定时提前量,可以获得较为精确的定时提前量。
如图6所示,为本申请实施例提供的又一种通信方法的流程示意图。该方法可以包括以下步骤:
S601、第一小区发送第二配置信息。相应地,UE接收该第二配置信息。
其中,第二配置信息包括最大往返时延和第四往返时延,最大往返时延为第一小区或第一小区中的第一波束覆盖区域与第一卫星之间的最大往返时延,第四往返时延为第一小区或第一小区中的第一波束覆盖区域内的最低点与第一小区对应的卫星之间的往返时延。
该步骤的具体实现可参考上述实施例的步骤S501,在此不再赘述。
S602、第二小区发送第一配置信息。对应地,UE接收该第一配置信息。
其中,该第一配置信息包括第一往返时延。
该步骤的具体实现可参考上述实施例的步骤S401或步骤S502,在此不再赘述。
S603、第一小区发送第三配置信息。相应地,UE接收该第三配置信息,
其中,第三配置信息包括第二往返时延。
第一小区对应的网关可以预先已经获得了第二往返时延,因此,UE可以接收第一小区的第三配置信息,该第三配置信息包括第二往返时延。其中,第二往返时延为第一卫星与第二卫星之间的往返时延。示例性地,UE可以接收第一小区的系统信息、MAC CE或RRC信令,该系统信息或RRC信令包括上述第三配置信息。
S604、UE判断第一往返时延与第二往返时延之和是否大于最大往返时延;若是,则执行步骤S605;否则,跳转至步骤S606。
为了进一步提高计算过程的精度,UE需要判断第一往返时延与第二往返时延之和是否大于上述配置的最大往返时延。
S605、若第一往返时延与第二往返时延之和大于最大往返时延,则UE根据第四往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、第一小区指示的定时提前偏移值中的至少一项确定第三往返时延。
若第一往返时延与第二往返时延之和大于最大往返时延,则UE根据取值较小的第四往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、第一小区指示的定时提前偏移值中的至少一项确定第三往返时延。
该步骤的具体实现可参考上述步骤S505。
S606、若第一往返时延与第二往返时延之和小于或等于最大往返时延,则UE根据第一往返时延和第二往返时延,确定终端与第一小区对应的第一卫星之间的第三往返时延。
S607、UE根据第一往返时延、第二往返时延以及第一卫星与第二卫星对应的卫星方位信息,确定第五往返时延。
UE根据第一小区对应的卫星的星历信息,第二小区对应的卫星的星历信息确定第一小区对应的卫星以及第二小区对应的卫星的位置。UE根据第一小区对应的卫星的位置信息,第二小区对应的卫星的位置,以及第二小区覆盖区域或者第二小区中第二波束相对于第二小区对应卫星位置的方位角确定第一小区对应的卫星的位置与第二小区对应的卫星的位置之间连线与第二小区覆盖区域或者第二小区中第二波束相对于第二小区对应卫星位置的方位之间的 夹角(如图7所示的夹角A)。最后UE根据夹角,第一往返时延值,第二往返时延确定第五往返时延。
S608、UE根据第五往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
具体可以是:UE根据第五往返时延确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第五往返时延和公共定时提前值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第五往返时延和定时提前调整值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第五往返时延和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第五往返时延、公共定时提前值和定时提前调整值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第五往返时延、公共定时提前值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第五往返时延、定时提前调整值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者UE根据第五往返时延、公共定时提前值、定时提前调整值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
S609、UE根据进行上行传输的定时提前量,发送上行传输数据。相应地,第一小区接收该上行传输数据。
根据本申请实施例提供的一种通信方法,终端可以根据第一往返时延和第二往返时延等确定终端与第一小区对应的基站进行上行数据传输时的定时提前量,可以获得较为精确的定时提前量。
如图8所示,为本申请实施例提供的又一种通信方法的流程示意图。该方法可以包括以下步骤:
S801、第二小区发送第二小区或第二小区中的第二波束覆盖区域内的设定点位置信息。相应地,UE接收该设定点位置信息。
在本实施例中,UE处于第一小区和第二小区的覆盖区域内,或者UE处于第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
可选地,第一小区的覆盖区域大于第二小区的覆盖区域,或第一波束覆盖区域大于第二波束覆盖区域。UE如果根据网络指示的第一小区或者第一小区中第一波束对应的固定TA值以及公共TA值得到的大概TA值向第一小区对应的网关/基站进行上行传输,由于第一小区或第一小区中第一波束覆盖区域较大,该大概TA值精度不够,影响UE上行传输的可靠性。
以第二小区对应的第二卫星位置为参考点,第二小区可以通过系统信息或RRC信令将第二小区或第二小区中的第二波束覆盖区域内的设定点位置信息发送给UE。
该设定点位置信息可以是第二小区或第二小区中的第二波束覆盖区域内的最低点、最高点或任一个点的位置信息。
S802、UE获取第二小区或第二小区中的第二波束覆盖区域内的设定点相对于第二小区对应的第二卫星的位置信息。
由于第二卫星的移动,第二卫星的位置随着时间会发生快速的变化,因此,第二小区还需要指示设定点位置信息与第二卫星的位置之间的关系式。
UE根据第二卫星的位置以及该关系式,可以获得第二位置的实时位置,从而确定该设定点相对于第二小区对应的第二卫星的位置信息。示例性地,该设定点相对于第二小区对应 的第二卫星的位置信息可以是设定点的坐标。
S803、UE根据设定点相对于第二卫星的位置信息和第一小区对应的第一卫星的星历信息,确定第一小区或第一小区中的第一波束覆盖区域与第一卫星之间的第一往返时延。
UE可以根据上述设定点相对于第二小区对应的第二卫星的位置信息以及第二卫星的卫星位置,确定设定点与第二卫星之间的往返时延。
然而根据设定点与第二卫星之间的往返时延、以及第一卫星与第二卫星之间的往返时延,确定第一小区或第一小区中的第一波束覆盖区域与第一卫星之间的第一往返时延。
S804、UE根据第一往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
其中,公共定时提前值是参考点与第一卫星之间的往返时延。公共定时提前值可以是第一小区广播的,第一小区范围内的UE均可以接收到该公共定时提前值。
定时提前调整值可以是第一小区通过随机接入过程中的消息2/消息B、或者MAC CE指示的。
UE可以根据第一往返时延、以及第一小区指示的公共定时提前值、第一小区指示的定时提前调整值、或第一小区指示的定时提前偏移值中的至少一项,确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
具体可以是:UE根据第一往返时延确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第一往返时延和公共定时提前值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第一往返时延和定时提前调整值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第一往返时延和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第一往返时延、公共定时提前值和定时提前调整值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第一往返时延、公共定时提前值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者,UE根据第一往返时延、定时提前调整值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量;或者UE根据第一往返时延、公共定时提前值、定时提前调整值和定时提前偏移值确定UE与第一小区对应的基站进行上行数据传输时的定时提前量。
UE基于该定时提前量进行上行数据传输。
根据本申请实施例提供的一种通信方法,终端可以获取第二小区或第二小区中的第二波束覆盖区域内的设定点相对于第二小区对应的第二卫星的位置信息,根据可以该位置信息最终确定UE与第一小区对应的基站进行上行数据传输时的定时提前量,可以获得较为精确的定时提前量。
可以理解的是,为了实现上述实施例中的功能,终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图9和图10为本申请实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是终端,还可以是应用于终端的模块(如芯片)。
如图9所示,通信装置900包括处理单元910和收发单元920。通信装置900用于实现上述图3、图5、图6或图8中所示的方法实施例中终端或接入网设备的功能。
其中,该通信装置900用于实现图3、图5或图6所示的方法实施例中终端的功能时,收发单元920,用于接收第二小区的第一配置信息,所述第一配置信息包括第一往返时延;处理单元910,用于获取第二往返时延;处理单元910,还用于根据所述第一往返时延和所述第二往返时延,确定所述终端与第一小区对应的第一卫星之间的第三往返时延;以及处理单元910,还用于根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
在一个可能的实现中,所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
在又一个可能的实现中,所述第一往返时延为所述第二小区或所述第二小区中的第二波束覆盖区域内的最低点与所述第二小区对应的第二卫星之间的往返时延;所述第二往返时延为所述第一卫星与所述第二卫星之间的往返时延。
在又一个可能的实现中,收发单元920,还用于接收所述第一小区的第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的卫星之间的往返时延;处理单元910,还用于若所述第一往返时延与所述第二往返时延之和大于所述最大往返时延,则根据所述第四往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、所述第一小区指示的定时提前偏移值中的至少一项确定所述第三往返时延。
在又一个可能的实现中,处理单元910,还用于根据所述第一往返时延、所述第二往返时延以及所述第一卫星与所述第二卫星对应的卫星方位信息,确定第五往返时延;以及处理单元910,还用于根据所述第五往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
在又一个可能的实现中,处理单元910,还用于根据所述第一卫星的卫星星历信息和所述第二卫星的卫星星历信息,确定所述第二往返时延;或收发单元920,还用于接收所述第一小区或所述第二小区的第三配置信息,所述第三配置信息包括所述第二往返时延。
在又一个可能的实现中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二波束覆盖区域。
有关上述处理单元910和收发单元920更详细的描述可以直接参考图3、图5或图6所示的方法实施例中终端的相关描述直接得到,这里不加赘述。
其中,该通信装置900用于实现图3、图5或图6所示的方法实施例中第一小区对应的接入网设备的功能时,收发单元920,用于发送第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一小区对应的第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的第一卫星之间的往返时延;收发单元920,还用于发送第三配置信息,所述第三配置信息包括第二往返时延,所述第二往返时延为所述第一卫星与第二小区对应的第二卫星之间的往返时延; 其中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二小区中的第二波束覆盖区域。
有关上述处理单元910和收发单元920更详细的描述可以直接参考图3、图5或图6所示的方法实施例中第一小区的相关描述直接得到,这里不加赘述。
该通信装置900用于实现图8所示的方法实施例中终端的功能时,处理单元910,用于获取第二小区或所述第二小区中的第二波束覆盖区域内的设定点相对于第二小区对应的第二卫星的位置信息;处理单元910,还用于根据所述设定点相对于第二卫星的位置信息和第一小区对应的第一卫星的星历信息,确定所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的第一往返时延;以及处理单元910,用于根据所述第一往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
在一种可能的实现中,所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
在又一种可能的实现中,收发单元920,用于接收所述第二小区的第一信息,所述第一信息包括所述设定点的位置信息。
在又一种可能的实现中,所述设定点为所述第二小区或所述第二小区中的所述第二波束覆盖区域内的任一点。
有关上述处理单元910和收发单元920更详细的描述可以直接参考图8所示的方法实施例中终端的相关描述直接得到,这里不加赘述。
如图10所示,通信装置1000包括处理器1010和接口电路1020。处理器1010和接口电路1020之间相互耦合。可以理解的是,接口电路1020可以为收发器或输入输出接口。可选的,通信装置1000还可以包括存储器1030,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。
当通信装置1000用于实现图3、图5、图6或图8所示的方法时,处理器1010用于实现上述处理单元910的功能,接口电路1020用于实现上述收发单元920的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给接入网设备的。
当上述通信装置为应用于接入网设备的芯片时,该接入网设备芯片实现上述方法实施例中接入网设备的功能。该接入网设备芯片从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给接入网设备的;或者,该接入网设备芯片向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存 储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、接入网设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端接收第二小区的第一配置信息,所述第一配置信息包括第一往返时延;
    所述终端获取第二往返时延;
    所述终端根据所述第一往返时延和所述第二往返时延,确定所述终端与第一小区对应的第一卫星之间的第三往返时延;
    所述终端根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
  3. 根据权利要求2所述的方法,其特征在于,所述第一往返时延为所述第二小区或所述第二小区中的第二波束覆盖区域内的最低点与所述第二小区对应的第二卫星之间的往返时延;
    所述第二往返时延为所述第一卫星与所述第二卫星之间的往返时延。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述第一小区的第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的卫星之间的往返时延;
    若所述第一往返时延与所述第二往返时延之和大于所述最大往返时延,则所述终端根据所述第四往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、所述第一小区指示的定时提前偏移值中的至少一项确定所述第三往返时延。
  5. 根据权利要求3所述的方法,其特征在于,所述终端根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量,包括:
    根据所述第一往返时延、所述第二往返时延以及所述第一卫星与所述第二卫星对应的卫星方位信息,确定第五往返时延;
    根据所述第五往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
  6. 根据权利要求1-3任一所述的方法,其特征在于,所述终端获取第二往返时延,包括:
    所述终端根据所述第一卫星的卫星星历信息和所述第二卫星的卫星星历信息,确定所述第二往返时延;或
    接收所述第一小区或所述第二小区的第三配置信息,所述第三配置信息包括所述第二往返时延。
  7. 根据权利要求2或3所述的方法,其特征在于,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二波束覆盖区域。
  8. 一种通信方法,其特征在于,所述方法包括:
    第一小区对应的基站发送第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一小区对应的第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的第一卫星之间的往返时延;
    所述第一小区对应的基站发送第三配置信息,所述第三配置信息包括第二往返时延,所述第二往返时延为所述第一卫星与第二小区对应的第二卫星之间的往返时延;
    其中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二小区中的第二波束覆盖区域。
  9. 一种通信方法,其特征在于,所述方法包括:
    终端获取第二小区或所述第二小区中的第二波束覆盖范围内的设定点相对于第二小区对应的第二卫星的位置信息;
    所述终端根据所述设定点相对于第二卫星的位置信息和第一小区对应的第一卫星的星历信息,确定所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的第一往返时延;
    所述终端根据所述第一往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区覆盖区域对应的基站进行上行数据传输时的定时提前量。
  10. 根据权利要求9所述的方法,其特征在于,
    所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述第二小区的第一信息,所述第一信息包括所述设定点的位置信息。
  12. 根据权利要求9或10所述的方法,其特征在于,所述设定点为所述第二小区或所述第二小区中的所述第二波束覆盖区域内的任一点。
  13. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于接收第二小区的第一配置信息,所述第一配置信息包括第一往返时延;
    处理单元,用于获取第二往返时延;
    所述处理单元,还用于根据所述第一往返时延和所述第二往返时延,确定所述终端与第 一小区对应的第一卫星之间的第三往返时延;
    所述处理单元,还用于根据所述第三往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
  14. 根据权利要求13所述的装置,其特征在于,
    所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
  15. 根据权利要求14所述的装置,其特征在于,所述第一往返时延为所述第二小区或所述第二小区中的第二波束覆盖区域内的最低点与所述第二小区对应的第二卫星之间的往返时延;
    所述第二往返时延为所述第一卫星与所述第二卫星之间的往返时延。
  16. 根据权利要求13-15任一项所述的装置,其特征在于:
    所述收发单元,还用于接收所述第一小区的第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的卫星之间的往返时延;
    所述处理单元,还用于若所述第一往返时延与所述第二往返时延之和大于所述最大往返时延,则根据所述第四往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、所述第一小区指示的定时提前偏移值中的至少一项确定所述第三往返时延。
  17. 根据权利要求15所述的装置,其特征在于:
    所述处理单元,还用于根据所述第一往返时延、所述第二往返时延以及所述第一卫星与所述第二卫星对应的卫星方位信息,确定第五往返时延;
    所述处理单元,还用于根据所述第五往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
  18. 根据权利要求13-15任一所述的装置,其特征在于:
    所述处理单元,还用于根据所述第一卫星的卫星星历信息和所述第二卫星的卫星星历信息,确定所述第二往返时延;或
    所述收发单元,还用于接收所述第一小区或所述第二小区的第三配置信息,所述第三配置信息包括所述第二往返时延。
  19. 根据权利要求13或14所述的装置,其特征在于,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二波束覆盖区域。
  20. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于发送第二配置信息,所述第二配置信息包括最大往返时延和第四往返时延,所述最大往返时延为所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一小区对应的第一卫星之间的最大往返时延,所述第四往返时延为所述第一小区或所述第一小区中的所述第一波束覆盖区域内的最低点与所述第一小区对应的第一卫星之间的往返时延;
    所述收发单元,还用于发送第三配置信息,所述第三配置信息包括第二往返时延,所述第二往返时延为所述第一卫星与第二小区对应的第二卫星之间的往返时延;
    其中,所述第一小区的覆盖区域大于所述第二小区的覆盖区域,或所述第一波束覆盖区域大于所述第二小区中的第二波束覆盖区域。
  21. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于获取第二小区或所述第二小区中的第二波束覆盖区域内的设定点相对于第二小区对应的第二卫星的位置信息;
    处理单元,用于根据所述设定点相对于第二卫星的位置信息和第一小区对应的第一卫星的星历信息,确定所述第一小区或所述第一小区中的第一波束覆盖区域与所述第一卫星之间的第一往返时延;
    所述处理单元,还用于根据所述第一往返时延、以及所述第一小区指示的公共定时提前值、所述第一小区指示的定时提前调整值、或所述第一小区指示的定时提前偏移值中的至少一项,确定所述终端与所述第一小区对应的基站进行上行数据传输时的定时提前量。
  22. 根据权利要求21所述的装置,其特征在于,
    所述终端处于所述第一小区和所述第二小区的覆盖区域内,或者所述终端处于所述第一小区中的第一波束覆盖区域内和第二小区中的第二波束覆盖区域内。
  23. 根据权利要求21或22所述的装置,其特征在于:
    所述收发单元,还用于接收所述第二小区的第一信息,所述第一信息包括所述设定点的位置信息。
  24. 根据权利要求21或22所述的装置,其特征在于,所述设定点为所述第二小区或所述第二小区中的所述第二波束覆盖区域内的任一点。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述装置之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-7任一所述的方法、或实现如权利要求8所述的方法、或实现如权利要求9-12任一所述的方法。
  26. 一种芯片,应用于终端,其特征在于,所述芯片,用于执行如权利要求1-7任一所述的方法、或执行如权利要求8所述的方法、或执行如权利要求9-12任一所述的方法。
  27. 一种芯片模组,应用于终端,其特征在于,包括收发组件和芯片,所述芯片,用于执行如权利要求1-7任一所述的方法、或执行如权利要求8所述的方法、或执行如权利要求9-12任一所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-7任一所述的方法、或实现如权利要求8所述的方法、或实现如权利要求9-12任一所述的方法。
PCT/CN2022/110042 2021-08-04 2022-08-03 通信方法及装置、芯片、芯片模组、存储介质 WO2023011548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110888774.2A CN115941015A (zh) 2021-08-04 2021-08-04 通信方法及装置、芯片、芯片模组、存储介质
CN202110888774.2 2021-08-04

Publications (1)

Publication Number Publication Date
WO2023011548A1 true WO2023011548A1 (zh) 2023-02-09

Family

ID=85155265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110042 WO2023011548A1 (zh) 2021-08-04 2022-08-03 通信方法及装置、芯片、芯片模组、存储介质

Country Status (2)

Country Link
CN (1) CN115941015A (zh)
WO (1) WO2023011548A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190386926A1 (en) * 2018-06-18 2019-12-19 Qualcomm Incorporated Round-trip time signaling
CN111095820A (zh) * 2017-08-22 2020-05-01 弗劳恩霍夫应用研究促进协会 无线通信系统、基站和用户侧设备
CN111263390A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 往返时延的处理方法、相关装置及可读存储介质
CN111757457A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 用于上行定时同步的方法和装置
US20210029658A1 (en) * 2018-04-03 2021-01-28 Idac Holdings, Inc. Timing advance for non-terrestrial network communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095820A (zh) * 2017-08-22 2020-05-01 弗劳恩霍夫应用研究促进协会 无线通信系统、基站和用户侧设备
US20210029658A1 (en) * 2018-04-03 2021-01-28 Idac Holdings, Inc. Timing advance for non-terrestrial network communication
US20190386926A1 (en) * 2018-06-18 2019-12-19 Qualcomm Incorporated Round-trip time signaling
CN111263390A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 往返时延的处理方法、相关装置及可读存储介质
CN111757457A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 用于上行定时同步的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "PRACH design and UL timing management", 3GPP DRAFT; R1-1912165, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823243 *
MEDIATEK INC.: "Round trip delay offset for configured grant timers", 3GPP DRAFT; R2-2008969, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942019 *

Also Published As

Publication number Publication date
CN115941015A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US8787184B2 (en) Collaborative sharing of location information among devices in a network
WO2019134555A1 (zh) 用于终端设备的定位方法、装置及系统
US20210345285A1 (en) Method and Device for User Equipment Positioning
EP3644663B1 (en) Positioning method, computer readable storage medium, computer program product and apparatus
US20220123817A1 (en) Apparatus, method and computer program for beam management
WO2022143746A1 (zh) 非陆地网络定位方法、装置、设备及存储介质
US9781566B1 (en) Apparatus, system and method of estimating a distance between a first station and a second station
US20220061014A1 (en) Reporting measurement distribution for positioning
US20230300630A1 (en) Method for angle based positioning measurement and apparatus therefor
US20240064688A1 (en) Method and apparatus for positioning terminal, device, and medium
US20240007995A1 (en) Positioning method and apparatus, communication device, and network-side device
TW202205887A (zh) 新無線電中的被動定位方法
WO2023226680A1 (zh) 定位方法、装置、设备、存储介质及程序产品
WO2023011548A1 (zh) 通信方法及装置、芯片、芯片模组、存储介质
CN109818658A (zh) 用于无线通信系统的电子设备、方法和存储介质
KR20150023183A (ko) 디바이스의 위치를 결정하는 장치 및 방법
WO2023011549A1 (zh) 调度时延确定方法及装置
WO2022077409A1 (zh) 天线校准方法、设备、存储介质、通信系统及芯片系统
WO2023116273A1 (zh) 定位方法及装置、存储介质、程序产品
WO2023273860A1 (zh) 一种定位方法及装置
WO2023207811A1 (zh) 通信方法和通信装置
US20230258760A1 (en) Method of transmitting and receiving information for measurement of prs in wireless communication system and apparatus therefor
WO2024051759A1 (zh) 卫星定位方法和相关产品
US20240085514A1 (en) Determining an orientation of a user equipment with a cellular network
US20240023058A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE