WO2023011288A1 - 信号处理系统和方法 - Google Patents

信号处理系统和方法 Download PDF

Info

Publication number
WO2023011288A1
WO2023011288A1 PCT/CN2022/108290 CN2022108290W WO2023011288A1 WO 2023011288 A1 WO2023011288 A1 WO 2023011288A1 CN 2022108290 W CN2022108290 W CN 2022108290W WO 2023011288 A1 WO2023011288 A1 WO 2023011288A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
tested
frequency
amplification
Prior art date
Application number
PCT/CN2022/108290
Other languages
English (en)
French (fr)
Inventor
陈志慧
谢永恒
张勇
卫强
李秋爽
Original Assignee
北京锐安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京锐安科技有限公司 filed Critical 北京锐安科技有限公司
Publication of WO2023011288A1 publication Critical patent/WO2023011288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • H04B1/0042Digital filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0096Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges where a full band is frequency converted into another full band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the technical field of communications, for example, to a signal processing system and method.
  • Wireless communication technology is a communication method that uses the characteristics that wireless signals can propagate freely in space to exchange information.
  • wireless communication technology With the rapid development of communication technology, wireless communication technology is becoming more and more mature, and has been applied in many information transmission fields to realize communication, which brings great convenience to people's life.
  • Signal quality greatly affects people's use experience, therefore, the test of signal quality is also very important.
  • the signal frequency cannot meet the testing requirements of the device.
  • the embodiment of the present application provides a signal processing system and method, which can convert a high-frequency signal to be tested into an intermediate frequency signal to be tested that can be used for testing under the condition that the signal index meets the standard, so as to meet the requirements of the signal to be tested. Testing requirements.
  • An embodiment of the present application provides a signal processing system, including a first signal amplification module, a first filtering module, an amplification attenuation module, a frequency mixing module, and an intermediate frequency filtering module, wherein:
  • the output terminal of the first signal amplifying module is electrically connected to the input terminal of the first filtering module, and the first signal amplifying module is configured to receive the signal to be tested, and amplify the signal to be tested to obtain the signal to be tested. Test the amplified signal;
  • the output end of the first filtering module is electrically connected to the input end of the amplification and attenuation module, and the first filtering module is configured to filter the amplified signal to be tested to obtain a filtered signal to be tested;
  • the output end of the amplification and attenuation module is electrically connected to the input end of the mixing module, and the amplification and attenuation module is configured to perform amplification and attenuation processing on the filtered signal to be tested to obtain an amplification and attenuation signal to be tested;
  • the output end of the frequency mixing module is electrically connected to the input end of the intermediate frequency filter module, and the frequency mixing module is configured to perform frequency mixing processing on the amplified and attenuated signal to be tested to obtain a mixed frequency signal to be tested;
  • the intermediate frequency filter module is configured to perform intermediate frequency filter processing on the mixed frequency signal to be tested to obtain an intermediate frequency signal to be tested.
  • the embodiment of the present application also provides a signal processing method applied to a signal processing system, including:
  • FIG. 1 is a schematic diagram of a signal processing system provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a specific example of a signal processing system provided in Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of a specific example of another signal processing system provided in Embodiment 1 of the present application.
  • FIG. 4 is a flowchart of a signal processing method provided in Embodiment 2 of the present application.
  • FIG. 5 is a flow chart of a specific example of a signal processing method provided in Embodiment 2 of the present application.
  • Figure 1 is a schematic diagram of a signal processing system provided in Embodiment 1 of the present application, the signal processing system includes: a first signal amplification module 10, a first filtering module 20, an amplification attenuation module 30, a frequency mixing module 40 and an intermediate frequency filtering module 50.
  • the output end of the first signal amplifying module 10 is electrically connected with the input end of the first filter module 20, and the first signal amplifying module 10 is set to receive the signal to be tested, and amplifies the signal to be tested to obtain the amplification to be tested Signal;
  • the output end of the first filter module 20 is electrically connected to the input end of the amplification attenuation module 30, and the first filter module 20 is set to filter the amplified signal to be tested to obtain the filtered signal to be tested;
  • the output of the amplified attenuation module 30 end is electrically connected to the input end of the frequency mixing module 40, and the amplification and attenuation module 30 is set to carry out amplification and attenuation processing on the filter signal to be tested, and obtains the amplification and attenuation signal to be tested;
  • Terminals are electrically connected, and the frequency mixing module 40 is set to carry out frequency mixing processing on the amplified and attenuated signal to be tested to obtain a mixed frequency signal to be tested;
  • the first signal amplification module 10 may be a module for amplifying signals.
  • the first filtering module 20 may be a module for filtering signals.
  • the amplification and attenuation module 30 may be a module for performing amplification and attenuation processing on signals.
  • the frequency mixing module 40 may be a module for performing frequency mixing processing on signals.
  • the intermediate frequency filtering module 50 may be a module for performing intermediate frequency filtering processing on a signal.
  • the signal to be tested may be a signal to be tested without signal processing. Optionally, the signal to be tested may be a high-frequency signal.
  • the amplified signal to be tested may be a signal obtained by amplifying the signal to be tested.
  • the filtered signal to be tested may be a signal obtained by filtering the amplified signal to be tested.
  • the amplified and attenuated signal to be tested may be a signal obtained by amplifying and attenuating the filtered signal to be tested.
  • the frequency mixing signal to be tested may be a signal obtained by performing frequency mixing processing on the amplified and attenuated signal to be tested.
  • the intermediate frequency signal to be tested may be a signal obtained by performing intermediate frequency filtering on the mixed frequency signal to be tested.
  • the signal processing system is composed of a first signal amplification module 10 , a first filtering module 20 , an amplification and attenuation module 30 , a frequency mixing module 40 and an intermediate frequency filtering module 50 .
  • the first signal amplifying module 10 can receive the signal to be tested, and amplify the signal to be tested to obtain the amplified signal to be tested, so that the output terminal of the first signal amplifying module 10 outputs the amplified signal to be tested to the first filtering module 20, to further process the amplified signal to be tested.
  • the amplified signal to be tested can be filtered to obtain the filtered signal to be tested, so that the output terminal of the first filter module 20 outputs the filtered signal to be tested to the amplification attenuation Module 30, to further process the filtered signal to be tested.
  • the filtered signal to be tested can be amplified and attenuated to obtain the amplified and attenuated signal to be tested, so that the output terminal of the amplified and attenuated module 30 outputs the amplified and attenuated signal to be tested to the mixer.
  • the frequency module 40 is used to further process the amplified and attenuated signal to be tested.
  • the amplified and attenuated signal to be tested can be mixed to obtain the mixed frequency signal to be tested, so that the output terminal of the mixed frequency module 40 outputs the mixed frequency signal to be tested to the intermediate frequency filtering module 50 to further process the mixed frequency signal to be tested.
  • the intermediate frequency filtering process can be carried out on the mixed frequency signal to be tested, so as to obtain the intermediate frequency signal to be tested, so that the output terminal of the intermediate frequency filtering module 50 outputs the intermediate frequency signal to be tested. Test the IF signal to be tested.
  • the signal to be tested is only a signal of one frequency bandwidth
  • only one first filtering module is required to filter the amplified signal.
  • the high-frequency signal to be tested can be converted into an intermediate-frequency signal to be tested, and at the same time, it can ensure that the signal index meets the standard, that is, the signal index will not deteriorate, so as to meet the Test requirements for the signal under test.
  • FIG. 2 is a schematic diagram of a specific example of a signal processing system provided in Embodiment 1 of the present application.
  • the signal processing system may also include a first radio frequency switch Module 60; the quantity of the first filter module 20 can be the same as the number of switches of the first radio frequency switch module 60; the input end of the first radio frequency switch module 60 can be electrically connected with the first signal amplification module 10, the first radio frequency switch module 60 The output end of each switch can be electrically connected to a first filter module 20, and the first radio frequency switch module 60 can be set to filter the amplified signal to be tested according to the signal test requirements to obtain sub-signals of various frequency bands.
  • a filtering module is configured to filter the sub-signals in the frequency band corresponding to each of the first filtering modules to obtain a filtered signal to be tested.
  • the first radio frequency switch module 60 can select filtering modules corresponding to multiple frequency bands according to different frequency bands of the signal, for example, it can be a multi-select one radio frequency switch, which is not limited in this embodiment of the present application.
  • the sub-signals of the amplified signal to be tested may be amplified signals to be tested in different frequency bands.
  • the signal to be tested is a broadband signal
  • different sub-signals of various frequency bands in the broadband signal can be screened out by the first radio frequency switch module.
  • the number of the first filter module 20 is the same as the number of switches of the first radio frequency switch module 60, that is, the output end of each switch of the first radio frequency switch module 60 is connected to a first filter module 20,
  • the first radio frequency switch module 60 selects the first filter module 20 corresponding to each frequency band according to different frequency bands of the amplified signal to be tested.
  • the input end of the first radio frequency switch module 60 can receive the amplified signal to be tested, and screen the amplified signal to be tested in different frequency bands according to the signal test requirements, and also That is, according to the amplified signals to be tested in different frequency bands, the switch branch of the corresponding first radio frequency switch module 60 is selected, so that the first filter module 20 corresponding to each frequency band of the amplified signal to be tested is correct for each frequency band.
  • the amplified signal to be tested is filtered to obtain the filtered signal to be tested.
  • the amplifying and attenuating module 30 may include a power amplifier 310 with a digitally controlled attenuator; the power amplifier 310 with a numerically controlled attenuator may be set to attenuate and amplify the signal to be tested according to the configured attenuation and amplification parameters. Amplify and attenuate the processing to obtain the amplified and attenuated signal to be tested.
  • the power amplifier 310 with a digitally controlled attenuator may be a power amplifier with an attenuator that automatically controls signal attenuation, and may be used to amplify and attenuate the filtered signal to be tested.
  • the attenuation amplification parameter may be a parameter of a signal attenuation amplification value. It can be understood that the attenuation and amplification parameters may be preconfigured according to specific scenarios, so as to control the signal attenuation and amplification value.
  • the amplification and attenuation module 30 may directly use a power amplifier 310 with a digitally controlled attenuator.
  • the input terminal of the power amplifier 310 with a digitally controlled attenuator can receive the filtered signal to be tested, and perform amplification and attenuation processing on the filtered signal to be tested according to the pre-configured attenuation and amplification parameters to obtain The amplified and attenuated signal to be tested.
  • FIG. 3 is a schematic diagram of a specific example of another signal processing system provided in Embodiment 1 of the present application.
  • the amplification and attenuation module 30 may include a programmable attenuation module 320 and the second signal amplification module 330; the input end of the programmable attenuation module 320 is electrically connected to the output end of the first filter module 20, and the programmable attenuation module 320 is set to perform attenuation processing on the filtered signal to be tested according to the attenuation parameters configured , to obtain the attenuation signal to be tested; the input end of the second signal amplification module 330 is electrically connected to the output end of the programmable attenuation module 320, and the output end of the second signal amplification module 330 is electrically connected to the input end of the mixing module 40,
  • the second signal amplifying module 330 is configured to amplify the attenuated signal to be tested again
  • the programmable attenuation module 320 may be a programmable module for attenuating signals.
  • the second signal amplification module 330 may be another module for amplifying signals.
  • the attenuation parameter may be a parameter of signal attenuation.
  • the attenuated signal to be tested may be a signal obtained by attenuating the filtered signal to be tested.
  • the amplification and attenuation module 30 may also be composed of a programmable attenuation module 320 and a second signal amplification module 330 .
  • the input terminal of the programmable attenuation module 320 can receive the filter signal to be tested, and perform attenuation processing on the filter signal to be tested according to the configured attenuation parameters to obtain the attenuated signal to be tested, thereby
  • the output terminal of the programmable attenuation module 320 can send the attenuation signal to be tested to the input terminal of the second signal amplification module 330, and after the input terminal of the second signal amplification module 330 receives the attenuation signal to be tested, the attenuation signal to be tested is amplified again processing to obtain the amplified and attenuated signal to be tested, so as to output the amplified and attenuated signal to be tested to the mixing module 40 .
  • the signal processing system may further include a second radio frequency switch module 70
  • the frequency mixing module 40 may include a low frequency frequency mixing module 410, a high frequency frequency mixing module 430 and a local oscillator module 420
  • the input end of the second radio frequency switch module 70 is electrically connected with the output end of the amplification attenuation module 30, and the output end of the second radio frequency switch module 70 is electrically connected with the input end of the low frequency band mixing module 410, and is connected with the high frequency band mixing module
  • the input terminal of 430 is electrically connected, and the second radio frequency switch module 70 is set to carry out branch processing to the amplified attenuation signal to be tested, obtains the first road to be tested signal and the second road to be tested signal;
  • the output end of the second radio frequency switch module 70 is electrically connected, and is electrically connected with the output end of the local oscillator module 420, and the output end of the low frequency band mixing module 410 is electrically connected with the input end of the intermediate frequency filtering
  • the second radio frequency switch module 70 can be used to select a corresponding module according to different frequency bands of the signal, for example, it can be an alternative radio frequency switch, which is not limited in this embodiment of the present application.
  • the low frequency band mixing module 410 may be a module for performing frequency mixing processing on low frequency band signals.
  • the high frequency mixing module 430 may be a module for performing frequency mixing processing on the high frequency signal.
  • the local oscillator module 420 may be a module for generating a local oscillator signal.
  • the local oscillator module 420 may generate a broadband local oscillator signal.
  • the first signal to be tested may be a signal to be tested obtained after branching processing by the second radio frequency switch module 70 .
  • the second signal to be tested may be another signal to be tested obtained after branching processing by the second radio frequency switch module 70 .
  • the local oscillator signal may be a signal sent by the local oscillator module 420, and is used for performing frequency mixing processing on the signal.
  • the signal to be tested is a fifth generation mobile communication technology (The 5th Generation Mobile Communication Technology, 5G) signal
  • the local oscillator signal can be a broadband local oscillator signal, that is, the local oscillator signal can be a 700M-6G signal .
  • the signal to be tested is the 4th Generation Mobile Communication Technology (4G) signal
  • the local oscillator signal can be a 800M-2700M signal.
  • the embodiments of the present application do not limit this.
  • the low-frequency signal to be tested may be a signal obtained after low-frequency mixing processing.
  • the high-frequency signal to be tested may be a signal obtained after high-frequency mixing processing.
  • the signal to be tested when the signal to be tested is a wide-band signal, the signal can be split and processed through the second radio frequency switch module.
  • the amplified and attenuated signal to be tested is subjected to mixing processing, after the amplified and attenuated signal to be tested is received at the input end of the second radio frequency switch module 70, the amplified and attenuated signal to be tested is subjected to branch processing to obtain the first signal to be tested and the second signal to be tested.
  • the frequency mixing module 40 may be composed of a low frequency frequency mixing module 410 , a high frequency frequency mixing module 430 and a local oscillator module 420 .
  • the output terminal of the second radio frequency switch module 70 outputs the first signal to be tested to the input terminal of the low frequency mixing module 410 , and outputs the second signal to be tested to the input terminal of the high frequency mixing module 430 .
  • the input terminal of the low frequency mixing module 410 After receiving the local oscillator signal sent by the local oscillator module 420 and the first signal to be tested, the input terminal of the low frequency mixing module 410 performs low frequency mixing processing on the first signal to be tested according to the local oscillator signal to obtain a low frequency signal to be tested.
  • the signal to be tested so that the output end of the low frequency mixing module 410 outputs the low frequency signal to be tested to the intermediate frequency filtering module 50 .
  • the input terminal of the high frequency mixing module 430 After receiving the local oscillator signal sent by the local oscillator module 420 and the second signal to be tested, the input terminal of the high frequency mixing module 430 performs high frequency mixing processing on the second signal to be tested according to the local oscillator signal to obtain a high
  • the frequency of the signal to be tested is high, so that the output terminal of the high frequency mixing module 430 outputs the high frequency signal to be tested to the intermediate frequency filter module 50 .
  • the input terminal of the intermediate frequency filter module 50 After the input terminal of the intermediate frequency filter module 50 receives the low frequency signal to be tested and the high frequency signal to be tested, it can perform intermediate frequency filtering on the low frequency signal to be tested and the high frequency signal to be tested to obtain the intermediate frequency signal to be tested.
  • the signal processing system may also include a third signal amplification module 80; the input terminal of the third signal amplification module 80 is electrically connected to the output terminal of the intermediate frequency filter module 50, and the third signal The output end of the amplification module 80 is electrically connected to an analog-to-digital conversion (AD) processing module 90, and the third signal amplification module 80 is configured to amplify the intermediate frequency signal to be tested to obtain the target signal to be tested.
  • AD analog-to-digital conversion
  • the third signal amplification module 80 may be another module for amplifying signals.
  • the AD processing module 90 may be a module for performing analog-to-digital conversion processing on signals.
  • the intermediate frequency signal to be tested may be amplified again by the third signal amplification module, so as to test the signal to be tested.
  • the input terminal of the third signal amplification module 80 can receive the intermediate frequency signal to be tested, and amplify the intermediate frequency signal to be tested to obtain the target signal to be tested, so that the third signal amplification module
  • the output terminal of 80 outputs the target signal to be tested to the AD processing module 90 , and then the target signal to be tested can be tested by the AD processing module 90 .
  • the first signal amplification module 10 may include a low-noise amplifier module 110; the low-noise amplifier module 110 may be configured to receive the signal to be tested sent by the antenna, and perform amplification processing on the signal to be tested .
  • the low noise amplifier module 110 can be used to amplify and process the signal received from the antenna, so that the subsequent electronic equipment can further process the signal. It can be understood that the signal from the antenna is generally very weak, and the signal needs to be amplified before further processing, and the low noise amplifier module 110 is generally located near the antenna to reduce the loss of the signal due to transmission.
  • the low noise amplifier module 110 may be used as the first signal amplification module 10 of the signal processing system.
  • the signal to be tested sent by the antenna may be received by the low noise amplifier module 110 of the signal processing system, and the signal to be tested may be amplified.
  • the signal to be tested may include at least one of a 4G signal and a 5G signal.
  • the signal to be tested may be a 4G signal, may also be a 5G signal, or may also be a 4G and 5G signal, which is not limited in this embodiment of the present application.
  • the 3rd Generation Partnership Project defines FR1 and FR2 for the range of 5G frequency bands.
  • the frequency range FR1 is the so-called 5G Sub-6GHz (below 6GHz) frequency band
  • the frequency range FR2 is the 5G millimeter wave frequency band.
  • the current outdoor base stations are basically in the FR1 frequency band. Therefore, the test frequency band of many existing signal test equipment needs to be extended from 800-2700MHz to 800-6000MHz to realize the test of 4G signals and 5G signals.
  • a signal processing system is formed by the first signal amplification module, the first filtering module, the amplification attenuation module, the frequency mixing module and the intermediate frequency filtering module, and the system receives the signal to be tested through the first signal amplification module, and amplifying the signal to be tested to obtain the amplified signal to be tested, using the first filter module to filter the amplified signal to be tested to obtain the filtered signal to be tested, and using the amplification and attenuation module to perform amplification and attenuation processing on the filtered signal to be tested to obtain the amplified signal to be tested Amplify and attenuate the signal, use the frequency mixing module to perform mixing processing on the amplified and attenuated signal to be tested to obtain the mixed frequency signal to be tested, and then use the intermediate frequency filter module to perform intermediate frequency filtering on the mixed frequency signal to be tested to obtain the intermediate frequency signal to be tested to solve the existing signal Without any processing, the problem of being unable to meet the test requirements can be
  • Fig. 4 is a flow chart of a signal processing method provided by Embodiment 2 of the present application. This embodiment is applicable to the situation where the signal to be tested is processed.
  • the method can be executed by a signal processing system, which can be implemented by software/hardware way to achieve.
  • the signal processing system includes a first signal amplifying module, a first filtering module, an amplifying and attenuating module, a frequency mixing module and an intermediate frequency filtering module. As shown in Figure 4, the method includes the following steps:
  • S410 Receive a signal to be tested, and perform amplification processing on the signal to be tested to obtain an amplified signal to be tested.
  • the first signal amplifying module can receive the signal to be tested, and amplify the signal to be tested to obtain the amplified signal to be tested, so that the output terminal of the first signal amplifying module outputs the amplified signal to be tested to
  • the first filter module is used to further process the amplified signal to be tested.
  • receiving the signal to be tested and amplifying the signal to be tested may further include: receiving the signal to be tested sent by the antenna, and amplifying the signal to be tested.
  • the low noise amplifier module in the first signal amplification module of the signal processing system receives the signal to be tested sent by the antenna, and amplifies the signal to be tested.
  • the signal to be tested may include at least one of a 4G signal and a 5G signal.
  • the signal to be tested may be a 4G signal, may also be a 5G signal, or may also be a 4G and 5G signal, which is not limited in this embodiment of the present application.
  • the input terminal of the first filter module after the input terminal of the first filter module receives the amplified signal to be tested, it can filter the amplified signal to be tested to obtain the filtered signal to be tested, so that the output terminal of the first filter module filters the amplified signal to be tested
  • the signal is output to the amplification and attenuation module to further process the filtered signal to be tested.
  • performing filtering processing on the amplified signal to be tested may include: performing screening and filtering processing on sub-signals of the amplified signal to be tested according to signal test requirements to obtain the filtered signal to be tested.
  • the input terminal of the first radio frequency switch module can receive the amplified signal to be tested, and screen the amplified signal to be tested in different frequency bands according to the signal test requirements , that is, select the corresponding switch branch of the first radio frequency switch module according to the amplified signals to be tested in different frequency bands, so that the first filter module corresponding to the amplified signals to be tested in each frequency band
  • the amplified signal is filtered to obtain the filtered signal to be tested.
  • the input terminal of the amplification and attenuation module after the input terminal of the amplification and attenuation module receives the filtered signal to be tested, it can perform amplification and attenuation processing on the filtered signal to be tested to obtain the amplification and attenuation signal to be tested, so that the output terminal of the amplification and attenuation module amplifies the signal to be tested.
  • the attenuated signal is output to the frequency mixing module to further process the amplified and attenuated signal to be tested.
  • performing amplification and attenuation processing on the filtered signal to be tested may include: performing amplification and attenuation processing on the filtered signal to be tested according to configured attenuation and amplification parameters, to obtain the amplified and attenuated signal to be tested.
  • the input terminal of the power amplifier with a digitally controlled attenuator of the amplification and attenuation module can receive the filtered signal to be tested, and perform the filtering signal according to the pre-configured attenuation and amplification parameters. Amplify and attenuate the processing to obtain the amplified and attenuated signal to be tested.
  • performing amplification and attenuation processing on the filtered signal to be tested may include: performing attenuation processing on the filtered signal to be tested according to configured attenuation parameters to obtain an attenuated signal to be tested; Amplifying processing to obtain the amplified and attenuated signal to be tested.
  • the input terminal of the programmable attenuation module of the amplification and attenuation module can receive the filtered signal to be tested, and perform attenuation processing on the filtered signal to be tested according to the configured attenuation parameters to obtain The attenuation signal to be tested, so that the output terminal of the programmable attenuation module can send the attenuation signal to be tested to the input terminal of the second signal amplification module, and after the input terminal of the second signal amplification module receives the attenuation signal to be tested, the attenuation signal to be tested The amplification process is performed again to obtain the amplified attenuation signal to be tested, so that the amplified attenuation signal to be tested is output to the frequency mixing module.
  • the amplified attenuation signal to be tested can be mixed to obtain the mixed frequency signal to be tested, so that the output terminal of the frequency mixing module will be The test mixed frequency signal is output to the intermediate frequency filter module for further processing the to-be-tested mixed frequency signal.
  • the intermediate frequency filtering process can be performed on the mixed frequency signal to be tested to obtain the intermediate frequency signal to be tested, so that the output terminal of the intermediate frequency filtering module will be tested.
  • the intermediate frequency signal output is used to test the intermediate frequency signal to be tested.
  • performing frequency mixing processing on the amplified and attenuated signal to be tested may include: performing branching processing on the amplified and attenuated signal to be tested to obtain a first signal to be tested and a second signal to be tested; according to this Perform low-frequency mixing processing on the first signal to be tested by using the local oscillator signal to obtain a low-frequency signal to be tested; perform high-frequency mixing on the second signal to be tested according to the local oscillator signal to obtain a high-frequency signal to be tested.
  • Performing intermediate frequency filtering processing on the mixed frequency signal to be tested may include: performing intermediate frequency filtering processing on the low frequency signal to be tested and the high frequency signal to be tested to obtain the intermediate frequency signal to be tested.
  • the amplified and attenuated signal to be tested when the amplified and attenuated signal to be tested is subjected to mixing processing, after the amplified and attenuated signal to be tested is received at the input end of the second radio frequency switch module, the amplified and attenuated signal to be tested can be divided into branches to obtain the first The signal to be tested and the second signal to be tested, so that the output terminal of the second RF switch module outputs the first signal to be tested to the input terminal of the low frequency band mixing module, and the second channel to be tested The signal is output to the high frequency mixer input of the module.
  • the input terminal of the low-frequency mixing module After receiving the local oscillator signal sent by the local oscillator module and the first signal to be tested, the input terminal of the low-frequency mixing module performs low-frequency mixing processing on the first signal to be tested according to the local oscillator signal to obtain a low-frequency signal to be tested , so that the output end of the low frequency mixing module outputs the low frequency signal to be tested to the intermediate frequency filtering module.
  • the input terminal of the high frequency mixing module After receiving the local oscillator signal sent by the local oscillator module and the second signal to be tested, performs high frequency mixing processing on the second signal to be tested according to the local oscillator signal to obtain a high frequency signal to be tested.
  • the signal to be tested so that the output end of the high frequency mixing module outputs the high frequency signal to be tested to the intermediate frequency filter module.
  • the input terminal of the intermediate frequency filter module can perform intermediate frequency filtering on the low-frequency signal to be tested and the high-frequency signal to be tested to obtain an intermediate frequency signal to be tested.
  • the signal processing method may further include: performing amplification processing on the intermediate frequency signal to be tested to obtain a target signal to be tested.
  • the input terminal of the third signal amplification module can receive the intermediate frequency signal to be tested, and perform amplification processing on the intermediate frequency signal to be tested to obtain the target signal to be tested, so that the third signal
  • the output end of the amplification module outputs the target signal to be tested to the AD processing module, so that the target signal to be tested can be tested.
  • FIG. 5 is a specific example flow chart of a signal processing method provided in Embodiment 2 of the present application, as shown in FIG. 5
  • the specific process includes: the antenna receives the radio frequency signal (the frequency is F1), and the radio frequency signal is amplified by the first signal amplification module to obtain the amplified signal to be tested.
  • the first radio frequency switch module and the first filter module can be a bandpass filter
  • the out-of-band unwanted signal in the amplified signal to be tested can be suppressed by at least 40dB, and the out-of-band clutter can be suppressed and input to the mixing module .
  • the local oscillator signal with a frequency of F2 is input to the frequency mixing module.
  • the frequency mixing module is composed of two frequency mixing modules working at high frequency and low frequency respectively, that is, a low frequency frequency mixing module and a high frequency frequency mixing module.
  • the frequency mixing module outputs the mixed frequency signal (F1-F2) to be tested, and the mixed frequency signal to be tested is output to the AD processing module after passing through the intermediate frequency filter module and the third signal amplification module, thereby completing the processing of converting the entire high frequency signal into an intermediate frequency signal process.
  • the signal to be tested is received by the first signal amplification module, and the signal to be tested is amplified to obtain the amplified signal to be tested, and the first filtering module is used to filter the amplified signal to be tested to obtain the filtered signal to be tested , and use the amplification and attenuation module to perform amplification and attenuation processing on the filtered signal to be tested to obtain the amplified and attenuated signal to be tested, and use the frequency mixing module to perform mixing processing on the amplified and attenuated signal to be tested to obtain the mixed frequency signal to be tested, and then use the intermediate frequency filter module to be tested
  • the mixed frequency signal is processed by intermediate frequency filtering to obtain the intermediate frequency signal to be tested, which solves the problem that the existing signal cannot meet the test requirements without any processing.
  • the test signal is converted into a test signal of an intermediate frequency that can be used for testing, so as to meet the test requirements of the test signal.

Abstract

本申请实施例公开了一种信号处理系统和方法。该系统包括第一信号放大模块、第一滤波模块、放大衰减模块、混频模块和中频滤波模块,其中:第一信号放大模块接收待测信号并对待测信号进行放大处理,得到待测试放大信号;第一滤波模块对待测试放大信号进行滤波处理,得到待测试滤波信号;放大衰减模块对待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号;混频模块对待测试放大衰减信号进行混频处理,得到待测试混频信号;中频滤波模块对待测试混频信号进行中频滤波处理,得到待测试中频信号。

Description

信号处理系统和方法
本申请要求在2021年08月03日提交中国专利局、申请号为202110885089.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,例如涉及一种信号处理系统和方法。
背景技术
无线通信技术是利用无线信号在空间中可以自由传播的特性进行信息交换的一种通信方式。随着通信技术的迅速发展,无线通信技术越来越成熟,已经被应用于很多信息传输领域中来实现通信,给人们的生活带来很大的便捷。信号质量很大程度地影响着人们的使用体验,因此,对信号质量的测试也至关重要。然而,待测信号在不进行任何处理的情况下,信号频率无法满足设备的测试需求。
发明内容
本申请实施例提供一种信号处理系统和方法,能够在保证信号指标满足标准的情况下,将高频的待测信号转为可以用于测试的中频的待测信号,从而满足待测信号的测试要求。
本申请实施例提供了一种信号处理系统,包括第一信号放大模块、第一滤波模块、放大衰减模块、混频模块和中频滤波模块,其中:
所述第一信号放大模块的输出端与所述第一滤波模块的输入端电连接,所述第一信号放大模块设置为接收待测信号,并对所述待测信号进行放大处理,得到待测试放大信号;
所述第一滤波模块的输出端与所述放大衰减模块的输入端电连接,所述第一滤波模块设置为对所述待测试放大信号进行滤波处理,得到待测试滤波信号;
所述放大衰减模块的输出端与所述混频模块的输入端电连接,所述放大衰减模块设置为对所述待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号;
所述混频模块的输出端与所述中频滤波模块的输入端电连接,所述混频模块设置为对所述待测试放大衰减信号进行混频处理,得到待测试混频信号;
所述中频滤波模块设置为对所述待测试混频信号进行中频滤波处理,得到待测试中频信号。
本申请实施例还提供了一种信号处理方法,应用于信号处理系统,包括:
接收待测信号,并对所述待测信号进行放大处理,得到待测试放大信号;
对所述待测试放大信号进行滤波处理,得到待测试滤波信号;
对所述待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号;
对所述待测试放大衰减信号进行混频处理,得到待测试混频信号;
对所述待测试混频信号进行中频滤波处理,得到待测试中频信号。
附图说明
图1是本申请实施例一提供的一种信号处理系统的示意图;
图2是本申请实施例一提供的一种信号处理系统的具体示例示意图;
图3是本申请实施例一提供的另一种信号处理系统的具体示例示意图;
图4是本申请实施例二提供的一种信号处理方法的流程图;
图5是本申请实施例二提供的一种信号处理方法的具体示例流程图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。
另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。在讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,多项操作的顺序可以被重新安排。当一项操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
本申请实施例的说明书和权利要求书及附图中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述特定的顺序。此外术语“包括”和“具有”以及他们任何变形,意图在于覆盖不排他的包含,例如包含了一系列步骤或单元的过程、方法、系统、产品或设备。
实施例一
图1是本申请实施例一提供的一种信号处理系统的示意图,该信号处理系 统包括:第一信号放大模块10、第一滤波模块20、放大衰减模块30、混频模块40和中频滤波模块50。其中:第一信号放大模块10的输出端与第一滤波模块20的输入端电连接,所述第一信号放大模块10设置为接收待测信号,并对待测信号进行放大处理,得到待测试放大信号;第一滤波模块20的输出端与放大衰减模块30的输入端电连接,所述第一滤波模块20设置为对待测试放大信号进行滤波处理,得到待测试滤波信号;放大衰减模块30的输出端与混频模块40的输入端电连接,所述放大衰减模块30设置为对待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号;混频模块40的输出端与中频滤波模块50的输入端电连接,所述混频模块40设置为对待测试放大衰减信号进行混频处理,得到待测试混频信号;中频滤波模块50设置为对待测试混频信号进行中频滤波处理,得到待测试中频信号。
第一信号放大模块10可以是用于对信号进行放大处理的一个模块。第一滤波模块20可以是用于对信号进行滤波处理的一个模块。放大衰减模块30可以是用于对信号进行放大衰减处理的模块。混频模块40可以是用于对信号进行混频处理的模块。中频滤波模块50可以是用于对信号进行中频滤波处理的模块。待测信号可以是未进行信号处理的待测试的信号。可选的,待测信号可以为高频信号。待测试放大信号可以是对待测信号进行放大处理得到的信号。待测试滤波信号可以是对待测试放大信号进行滤波处理得到的信号。待测试放大衰减信号可以是对待测试滤波信号进行放大衰减处理得到的信号。待测试混频信号可以是对待测试放大衰减信号进行混频处理得到的信号。待测试中频信号可以是对待测试混频信号进行中频滤波处理得到的信号。
在本申请实施例中,信号处理系统由第一信号放大模块10、第一滤波模块20、放大衰减模块30、混频模块40和中频滤波模块50构成。其中第一信号放大模块10可以接收待测信号,并将待测信号进行放大处理,以得到待测试放大信号,从而第一信号放大模块10的输出端将待测试放大信号输出至第一滤波模块20,以进一步对待测试放大信号进行处理。第一滤波模块20的输入端接收到待测试放大信号之后,可以对待测试放大信号进行滤波处理,以得到待测试滤波信号,从而第一滤波模块20的输出端将待测试滤波信号输出至放大衰减模块30,以进一步对待测试滤波信号进行处理。放大衰减模块30的输入端接收到待测试滤波信号之后,可以对待测试滤波信号进行放大衰减处理,以得到待测试放大衰减信号,从而放大衰减模块30的输出端将待测试放大衰减信号输出至混频模块40,以进一步对待测试放大衰减信号进行处理。混频模块40的输入端接收到待测试放大衰减信号之后,可以对待测试放大衰减信号进行混频处理,以得到待测试混频信号,从而混频模块40的输出端将待测试混频信号输出至中频滤波模块50,以进一步对待测试混频信号进行处理。中频滤波模块50的输入端 接收到待测试混频信号之后,可以对待测试混频信号进行中频滤波处理,以得到待测试中频信号,从而中频滤波模块50的输出端将待测试中频信号输出,以对待测试中频信号进行测试。
可选的,当待测信号仅为一种频带宽度的信号时,在通过第一信号放大模块进行放大处理之后,仅需要一个第一滤波模块对放大处理后的信号进行滤波处理。
由此可见,通过上述信号处理系统,可以将高频的待测信号转为可以用于测试的中频的待测信号,同时可以保证信号指标满足标准,也即信号的指标不会恶化,从而满足待测信号的测试要求。
在本申请实施例的一个可选实施方式中,图2是本申请实施例一提供的一种信号处理系统的具体示例示意图,如图2所示,该信号处理系统还可以包括第一射频开关模块60;第一滤波模块20的数量可以与第一射频开关模块60的开关路数相同;第一射频开关模块60的输入端可以与第一信号放大模块10电连接,第一射频开关模块60的每一路开关的输出端可以与一个第一滤波模块20电连接,第一射频开关模块60可以是设置为根据信号测试需求对待测试放大信号进行筛选,得到多种频带的子信号,每个第一滤波模块设置为对所述每个第一滤波模块对应的频带的子信号进行滤波处理,得到待测试滤波信号。
第一射频开关模块60可以根据信号的不同频段选择多个频段对应的滤波模块,例如可以是多选一射频开关,本申请实施例对此并不进行限制。待测试放大信号的子信号可以是不同频段的待测试放大信号。
在本申请实施例中,当待测信号为宽频信号时,可以通过第一射频开关模块筛选出宽频信号中的多种频带的不同子信号。在信号处理系统中,第一滤波模块20的数量与第一射频开关模块60的开关路数相同,也即第一射频开关模块60的每一路开关的输出端均连接一个第一滤波模块20,以使第一射频开关模块60根据待测试放大信号的不同频段选择与每个频段对应的第一滤波模块20。
在第一信号放大模块10的输出端输出待测试放大信号之后,第一射频开关模块60的输入端可以接收待测试放大信号,并根据信号测试需求对不同频段的待测试放大信号进行筛选,也即根据不同频段的待测试放大信号选择对应的第一射频开关模块60的开关支路,以使与待测试放大信号的每一种频段对应的第一滤波模块20对所述每一种频段的待测试放大信号进行滤波处理,以得到待测试滤波信号。
在本申请实施例的一个可选实施方式中,放大衰减模块30可以包括带数控衰减器的功率放大器310;带数控衰减器的功率放大器310可以设置为根据配置 的衰减放大参数对待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号。
带数控衰减器的功率放大器310可以是带有自动控制信号衰减的衰减器的功率放大器,可以用于对待测试滤波信号进行放大衰减处理。衰减放大参数可以是信号衰减放大值的参数。可以理解的是,衰减放大参数可以是根据具体场景进行预先配置,以对信号衰减放大值进行控制。
可选的,放大衰减模块30可以直接采用带数控衰减器的功率放大器310。在第一滤波模块20输出待测试滤波信号之后,带数控衰减器的功率放大器310的输入端可以接收待测试滤波信号,并根据预先配置的衰减放大参数对待测试滤波信号进行放大衰减处理,以得到待测试放大衰减信号。
在本申请实施例的一个可选实施方式中,图3是本申请实施例一提供的另一种信号处理系统的具体示例示意图,如图3所示,放大衰减模块30可以包括可编程衰减模块320和第二信号放大模块330;可编程衰减模块320的输入端与第一滤波模块20的输出端电连接,所述可编程衰减模块320设置为根据配置的衰减参数对待测试滤波信号进行衰减处理,得到待测试衰减信号;第二信号放大模块330的输入端与所述可编程衰减模块320的输出端电连接,第二信号放大模块330的输出端与混频模块40的输入端电连接,第二信号放大模块330的设置为对待测试衰减信号再次进行放大处理,得到待测试放大衰减信号。
可编程衰减模块320可以是可编程的、用于对信号进行衰减处理的模块。第二信号放大模块330可以是用于对信号进行放大处理的另一个模块。衰减参数可以是信号衰减的参数。待测试衰减信号可以是对待测试滤波信号进行衰减处理得到的信号。
可选的,放大衰减模块30还可以采用可编程衰减模块320和第二信号放大模块330构成。在第一滤波模块20输出待测试滤波信号之后,可编程衰减模块320的输入端可以接收待测试滤波信号,并根据配置的衰减参数对待测试滤波信号进行衰减处理,以得到待测试衰减信号,从而可编程衰减模块320的输出端可以将待测试衰减信号发送至第二信号放大模块330的输入端,第二信号放大模块330的输入端接收到待测试衰减信号之后,对待测试衰减信号再次进行放大处理,以得到待测试放大衰减信号,从而将待测试放大衰减信号输出至混频模块40。
在本申请实施例的一个可选实施方式中,信号处理系统还可以包括第二射频开关模块70,混频模块40可以包括低频段混频模块410、高频段混频模块430和本振模块420;第二射频开关模块70的输入端与放大衰减模块30的输出端电连接,第二射频开关模块70的输出端与低频段混频模块410的输入端电连接, 并与高频段混频模块430的输入端电连接,第二射频开关模块70设置为对待测试放大衰减信号进行分路处理,得到第一路待测信号和第二路待测信号;低频段混频模块410的输入端与第二射频开关模块70的输出端电连接,并与本振模块420的输出端电连接,低频段混频模块410的输出端与中频滤波模块50的输入端电连接,低频段混频模块410设置为根据本振模块输出的本振信号对第一路待测信号进行低频混频处理,得到低频待测信号;高频段混频模块430的输入端与第二射频开关模块70的输出端电连接,并与本振模块420的输出端电连接,高频段混频模块430的输出端与中频滤波模块50的输入端电连接,高频段混频模块430设置为根据本振模块输出的本振信号对第二路待测信号进行高频混频处理,得到高频待测信号;中频滤波模块50是设置为对低频待测信号和高频待测信号进行中频滤波处理,得到待测试中频信号。
第二射频开关模块70可以用于根据信号的不同频段选择对应的模块,例如可以是二选一射频开关,本申请实施例对此并不进行限制。低频段混频模块410可以是用于对低频段信号进行混频处理的模块。高频段混频模块430可以是用于对高频段信号进行混频处理的模块。本振模块420可以是用于生成本振信号的模块,可选的,当待测信号为宽频信号时,本振模块420可以生成宽频本振信号。第一路待测信号可以是经过第二射频开关模块70进行分路处理后得到的一个待测信号。第二路待测信号可以是经过第二射频开关模块70进行分路处理后得到的另一个待测信号。本振信号可以是本振模块420发出的信号,用于对信号进行混频处理。示例性的,如果待测信号为第五代移动通信技术(The 5th Generation Mobile Communication Technology,5G)信号,则本振信号可以是宽频本振信号,也即本振信号可以是700M-6G的信号。如果待测信号为第四代移动通信技术(The 4th Generation Mobile Communication Technology,4G)信号,则本振信号可以是800M-2700M的信号。本申请实施例对此并不进行限制。低频待测信号可以是经过低频混频处理后得到的信号。高频待测信号可以是经过高频混频处理后得到的信号。
可选的,当待测信号为宽频信号时,可以通过第二射频开关模块将信号进行分路处理。在对待测试放大衰减信号进行混频处理时,可以在第二射频开关模块70的输入端接收到待测试放大衰减信号之后,对待测试放大衰减信号进行分路处理,以得到第一路待测信号和第二路待测信号。
可选的,混频模块40可以采用低频段混频模块410、高频段混频模块430和本振模块420构成。相应的,第二射频开关模块70的输出端将第一路待测信号输出至低频段混频模块410的输入端,将第二路待测信号输出至高频段混频模块430的输入端。低频段混频模块410的输入端在接收本振模块420发送的本振信号和第一路待测信号之后,根据本振信号对第一路待测信号进行低频混 频处理,以得到低频待测信号,从而低频段混频模块410的输出端将低频待测信号输出至中频滤波模块50。高频段混频模块430的输入端在接收本振模块420发送的本振信号和第二路待测信号之后,根据本振信号对第二路待测信号进行高频混频处理,以得到高频待测信号,从而高频段混频模块430的输出端将高频待测信号输出至中频滤波模块50。中频滤波模块50的输入端在接收到低频待测信号和高频待测信号之后,可以对低频待测信号和高频待测信号进行中频滤波处理,以得到待测试中频信号。
在本申请实施例的一个可选实施方式中,该信号处理系统还可以包括第三信号放大模块80;第三信号放大模块80的输入端与中频滤波模块50的输出端电连接,第三信号放大模块80的输出端与模数转换(analogue-to-digital conversion,AD)处理模块90电连接,第三信号放大模块80设置为对待测试中频信号进行放大处理,得到目标待测信号。
第三信号放大模块80可以是用于对信号进行放大处理的再一个模块。AD处理模块90可以是用于对信号进行模数转换处理的模块。
可选的,可以通过第三信号放大模块对待测试中频信号再次进行放大处理,以便对待测信号进行测试。在中频滤波模块50输出待测试中频信号之后,第三信号放大模块80的输入端可以接收待测试中频信号,并对待测试中频信号进行放大处理,以得到目标待测信号,从而第三信号放大模块80的输出端将目标待测信号输出至AD处理模块90,进而可以通过AD处理模块90对目标待测信号进行测试。
在本申请实施例的一个可选实施方式中,第一信号放大模块10可以包括低噪放模块110;低噪放模块110可设置为接收天线发送的待测信号,并对待测信号进行放大处理。
低噪放模块110可以用于将接收自天线的信号进行放大处理,以便后级的电子设备对信号做进一步处理。可以理解的是,来自天线的信号一般都非常微弱,需要对信号放大处理后再做进一步处理,且低噪放模块110一般位于靠近天线的部位,以减小信号因传输造成的损耗。
可选的,当待测信号为来自天线的信号时,可以采用低噪放模块110作为信号处理系统的第一信号放大模块10。相应的,可以由信号处理系统的低噪放模块110接收天线发送的待测信号,并对待测信号进行放大处理。
在本申请实施例的一个可选实施方式中,待测信号可以包括4G信号和5G信号中的至少一项。
待测信号可以是4G信号,也可以是5G信号,或者还可以是4G和5G信号, 本申请实施例对此并不进行限制。
需要说明的是,现在许多信号测试设备只能测试4G信号,4G基站发射的信号频段是800-2700MHz。而5G信号的频段更宽更高。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)针对5G频段范围的定义是FR1与FR2。频率范围FR1即通常所讲的5G Sub-6GHz(6GHz以下)频段,频率范围FR2则是5G毫米波频段。现在的室外基站基本都是FR1频段。由此,现有的许多信号测试设备的测试频段需要从800-2700MHz扩展成800-6000MHz,以实现对4G信号和5G信号的测试。
在本申请实施例中,通过在信号处理系统中设置第一射频开关模块,能够通过第一射频开关模块在宽频信号中筛选出多种频带的不同子信号,从而对子信号做进一步处理,进而实现对宽频信号的处理,使处理后的宽频信号满足测试要求。
本实施例的技术方案,通过第一信号放大模块、第一滤波模块、放大衰减模块、混频模块和中频滤波模块构成一种信号处理系统,该系统通过第一信号放大模块接收待测信号,并对待测信号进行放大处理,得到待测试放大信号,采用第一滤波模块对待测试放大信号进行滤波处理,得到待测试滤波信号,并采用放大衰减模块对待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号,采用混频模块对待测试放大衰减信号进行混频处理,得到待测试混频信号,再采用中频滤波模块对待测试混频信号进行中频滤波处理,得到待测试中频信号,解决现有信号在不进行任何处理的情况下,无法满足测试需求的问题,能够在保证信号指标满足标准的情况下,将高频的待测信号转为可以用于测试的中频的待测信号,从而满足待测信号的测试要求。
实施例二
图4是本申请实施例二提供的一种信号处理方法的流程图,本实施例可适用于对待测试信号进行处理的情况,该方法可以由信号处理系统来执行,该系统可以由软件/硬件的方式来实现。信号处理系统包括第一信号放大模块、第一滤波模块、放大衰减模块、混频模块和中频滤波模块。如图4所示,该方法包括如下步骤:
S410、接收待测信号,并对所述待测信号进行放大处理,得到待测试放大信号。
在本申请实施例中,第一信号放大模块可以接收待测信号,并将待测信号进行放大处理,以得到待测试放大信号,从而第一信号放大模块的输出端将待 测试放大信号输出至第一滤波模块,以进一步对待测试放大信号进行处理。
可选的,接收待测信号,并对所述待测信号进行放大处理,还可以包括:接收天线发送的待测信号,并对所述待测信号进行放大处理。
示例性的,信号处理系统的第一信号放大模块中的低噪放模块接收天线发送的待测信号,并对待测信号进行放大处理。
可选的,待测信号可以包括4G信号和5G信号中的至少一项。
待测信号可以是4G信号,也可以是5G信号,或者还可以是4G和5G信号,本申请实施例对此并不进行限制。
S420、对所述待测试放大信号进行滤波处理,得到待测试滤波信号。
在本申请实施例中,第一滤波模块的输入端接收到待测试放大信号之后,可以对待测试放大信号进行滤波处理,以得到待测试滤波信号,从而第一滤波模块的输出端将待测试滤波信号输出至放大衰减模块,以进一步对待测试滤波信号进行处理。
可选的,对待测试放大信号进行滤波处理,可以包括:根据信号测试需求对所述待测试放大信号的子信号进行筛选和滤波处理,得到所述待测试滤波信号。
示例性的,在第一信号放大模块的输出端输出待测试放大信号之后,第一射频开关模块的输入端可以接收待测试放大信号,并根据信号测试需求对不同频段的待测试放大信号进行筛选,也即根据不同频段的待测试放大信号选择对应的第一射频开关模块的开关支路,以使与每一频段的待测试放大信号对应的第一滤波模块对所述每一频段的待测试放大信号进行滤波处理,以得到待测试滤波信号。
S430、对所述待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号。
在本申请实施例中,放大衰减模块的输入端接收到待测试滤波信号之后,可以对待测试滤波信号进行放大衰减处理,以得到待测试放大衰减信号,从而放大衰减模块的输出端将待测试放大衰减信号输出至混频模块,以进一步对待测试放大衰减信号进行处理。
可选的,对所述待测试滤波信号进行放大衰减处理,可以包括:根据配置的衰减放大参数对所述待测试滤波信号进行放大衰减处理,得到所述待测试放大衰减信号。
示例性的,在第一滤波模块输出待测试滤波信号之后,放大衰减模块的带 数控衰减器的功率放大器的输入端可以接收待测试滤波信号,并根据预先配置的衰减放大参数对待测试滤波信号进行放大衰减处理,以得到待测试放大衰减信号。
可选的,对所述待测试滤波信号进行放大衰减处理,可以包括:根据配置的衰减参数对所述待测试滤波信号进行衰减处理,得到待测试衰减信号;对所述待测试衰减信号再次进行放大处理,得到所述待测试放大衰减信号。
示例性的,在第一滤波模块输出待测试滤波信号之后,放大衰减模块的可编程衰减模块的输入端可以接收待测试滤波信号,并根据配置的衰减参数对待测试滤波信号进行衰减处理,以得到待测试衰减信号,从而可编程衰减模块的输出端可以将待测试衰减信号发送至第二信号放大模块的输入端,第二信号放大模块的输入端接收到待测试衰减信号之后,对待测试衰减信号再次进行放大处理,以得到待测试放大衰减信号,从而将待测试放大衰减信号输出至混频模块。
S440、对所述待测试放大衰减信号进行混频处理,得到待测试混频信号。
在本申请实施例中,混频模块的输入端接收到待测试放大衰减信号之后,可以对待测试放大衰减信号进行混频处理,以得到待测试混频信号,从而混频模块的输出端将待测试混频信号输出至中频滤波模块,以进一步对待测试混频信号进行处理。
S450、对所述待测试混频信号进行中频滤波处理,得到待测试中频信号。
在本申请实施例中,中频滤波模块的输入端接收到待测试混频信号之后,可以对待测试混频信号进行中频滤波处理,以得到待测试中频信号,从而中频滤波模块的输出端将待测试中频信号输出,以对待测试中频信号进行测试。
可选的,对所述待测试放大衰减信号进行混频处理,可以包括:对所述待测试放大衰减信号进行分路处理,得到第一路待测信号和第二路待测信号;根据本振信号对所述第一路待测信号进行低频混频处理,得到低频待测信号;根据本振信号对所述第二路待测信号进行高频混频处理,得到高频待测信号。对所述待测试混频信号进行中频滤波处理,可以包括:对所述低频待测信号和所述高频待测信号进行中频滤波处理,得到所述待测试中频信号。
示例性的,在对待测试放大衰减信号进行混频处理时,可以在第二射频开关模块的输入端接收到待测试放大衰减信号之后,对待测试放大衰减信号进行分路处理,以得到第一路待测信号和第二路待测信号,从而第二射频开关模块的输出端将第一路待测信号输出至低频段混频模块的输入端,将第二路待测信号输出至高频段混频模块的输入端。低频段混频模块的输入端在接收本振模块 发送的本振信号和第一路待测信号之后,根据本振信号对第一路待测信号进行低频混频处理,以得到低频待测信号,从而低频段混频模块的输出端将低频待测信号输出至中频滤波模块。高频段混频模块的输入端在接收本振模块发送的本振信号和第二路待测信号之后,根据本振信号对第二路待测信号进行高频混频处理,以得到高频待测信号,从而高频段混频模块的输出端将高频待测信号输出至中频滤波模块。中频滤波模块的输入端在接收到低频待测信号和高频待测信号之后,可以对低频待测信号和高频待测信号进行中频滤波处理,以得到待测试中频信号。
可选的,信号处理方法还可以包括:对所述待测试中频信号进行放大处理,得到目标待测信号。
示例性的,在中频滤波模块输出待测试中频信号之后,第三信号放大模块的输入端可以接收待测试中频信号,并对待测试中频信号进行放大处理,以得到目标待测信号,从而第三信号放大模块的输出端将目标待测信号输出至AD处理模块,进而可以对目标待测信号进行测试。
为了使本领域技术人员更好地理解本实施例信号处理方法,下面采用一个具体示例进行说明,图5是本申请实施例二提供的一种信号处理方法的具体示例流程图,如图5所示,具体过程包括有:天线接收射频信号(频率为F1),射频信号经过第一信号放大模块放大,得到待测试放大信号。通过使用第一射频开关模块和第一滤波模块(第一滤波模块可以是带通滤波器)可以对待测试放大信号中的带外无用信号抑制至少40dB以上,抑制带外杂波输入到混频模块。将频率为F2的本振信号输入到混频模块,混频模块由两个分别工作在高频和低频的混频模块,也即低频段混频模块和高频段混频模块构成。混频模块输出待测试混频信号(F1-F2),待测试混频信号经过中频滤波模块和第三信号放大模块后输出给AD处理模块,由此完成整个高频信号转为中频信号的处理流程。
本实施例的技术方案,通过第一信号放大模块接收待测信号,并对待测信号进行放大处理,得到待测试放大信号,采用第一滤波模块对待测试放大信号进行滤波处理,得到待测试滤波信号,并采用放大衰减模块对待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号,采用混频模块对待测试放大衰减信号进行混频处理,得到待测试混频信号,再采用中频滤波模块对待测试混频信号进行中频滤波处理,得到待测试中频信号,解决现有信号在不进行任何处理的情况下,无法满足测试需求的问题,能够在保证信号指标满足标准的情况下,将高频的待测信号转为可以用于测试的中频的待测信号,从而满足待测信号的测试要求。

Claims (10)

  1. 一种信号处理系统,包括第一信号放大模块、第一滤波模块、放大衰减模块、混频模块和中频滤波模块,其中:
    所述第一信号放大模块的输出端与所述第一滤波模块的输入端电连接,所述第一信号放大模块设置为接收待测信号,并对所述待测信号进行放大处理,得到待测试放大信号;
    所述第一滤波模块的输出端与所述放大衰减模块的输入端电连接,所述第一滤波模块设置为对所述待测试放大信号进行滤波处理,得到待测试滤波信号;
    所述放大衰减模块的输出端与所述混频模块的输入端电连接,所述放大衰减模块设置为对所述待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号;
    所述混频模块的输出端与所述中频滤波模块的输入端电连接,所述混频模块设置为对所述待测试放大衰减信号进行混频处理,得到待测试混频信号;
    所述中频滤波模块设置为对所述待测试混频信号进行中频滤波处理,得到待测试中频信号。
  2. 根据权利要求1所述的系统,还包括第一射频开关模块;所述第一滤波模块的数量与所述第一射频开关模块的开关路数相同;
    所述第一射频开关模块的输入端与所述第一信号放大模块电连接,所述第一射频开关模块的每一路开关的输出端与一个第一滤波模块电连接,所述第一射频开关模块是设置为根据信号测试需求对所述待测试放大信号进行筛选,得到多个频带的子信号,每个第一滤波模块设置为对所述每个第一滤波模块对应的频带的子信号进行滤波处理,得到所述待测试滤波信号。
  3. 根据权利要求1所述的系统,其中,所述放大衰减模块包括带数控衰减器的功率放大器;
    所述带数控衰减器的功率放大器设置为根据配置的衰减放大参数对所述待测试滤波信号进行放大衰减处理,得到所述待测试放大衰减信号。
  4. 根据权利要求1所述的系统,其中,所述放大衰减模块包括可编程衰减模块和第二信号放大模块;
    所述可编程衰减模块的输入端与所述第一滤波模块的输出端电连接,所述可编程衰减模块设置为根据配置的衰减参数对所述待测试滤波信号进行衰减处理,得到待测试衰减信号;
    所述第二信号放大模块的输入端与所述可编程衰减模块的输出端电连接,所述第二信号放大模块输出端与所述混频模块的输入端电连接,所述第二信号放大模块设置为对所述待测试衰减信号进行放大处理,得到所述待测试放大衰减信号。
  5. 根据权利要求1所述的系统,还包括第二射频开关模块,所述混频模块包括低频段混频模块、高频段混频模块和本振模块;
    所述第二射频开关模块的输入端与所述放大衰减模块的输出端电连接,所述第二射频开关模块的输出端与所述低频段混频模块的输入端电连接,并与所述高频段混频模块的输入端电连接,所述第二射频开关模块设置为对所述待测试放大衰减信号进行分路处理,得到第一路待测信号和第二路待测信号;
    所述低频段混频模块的输入端与所述第二射频开关模块的输出端电连接,并与所述本振模块的输出端电连接,所述低频段混频模块的输出端与所述中频滤波模块的输入端电连接,所述低频段混频模块设置为根据所述本振模块输出的本振信号对所述第一路待测信号进行低频混频处理,得到低频待测信号;
    所述高频段混频模块的输入端与所述第二射频开关模块的输出端电连接,并与所述本振模块的输出端电连接,所述高频段混频模块的输出端与所述中频 滤波模块的输入端电连接,所述高频段混频模块设置为根据所述本振模块输出的本振信号对所述第二路待测信号进行高频混频处理,得到高频待测信号;
    所述中频滤波模块是设置为对所述低频待测信号和所述高频待测信号进行中频滤波处理,得到所述待测试中频信号。
  6. 根据权利要求1-5任一所述的系统,还包括第三信号放大模块;
    所述第三信号放大模块的输入端与所述中频滤波模块的输出端电连接,所述第三信号放大模块设置为对所述待测试中频信号进行放大处理,得到目标待测信号。
  7. 根据权利要求6所述的系统,其中,所述第一信号放大模块包括低噪放模块;
    所述低噪放模块设置为接收天线发送的待测信号,并对所述待测信号进行放大处理。
  8. 根据权利要求7所述的系统,其中,所述待测信号包括4G信号和5G信号中的至少一项。
  9. 一种信号处理方法,应用于信号处理系统,包括:
    接收待测信号,并对所述待测信号进行放大处理,得到待测试放大信号;
    对所述待测试放大信号进行滤波处理,得到待测试滤波信号;
    对所述待测试滤波信号进行放大衰减处理,得到待测试放大衰减信号;
    对所述待测试放大衰减信号进行混频处理,得到待测试混频信号;
    对所述待测试混频信号进行中频滤波处理,得到待测试中频信号。
  10. 根据权利要求9所述的方法,其中,所述对所述待测试放大信号进行滤波处理,包括:
    根据信号测试需求对所述待测试放大信号的子信号进行筛选和滤波处理, 得到所述待测试滤波信号。
PCT/CN2022/108290 2021-08-03 2022-07-27 信号处理系统和方法 WO2023011288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110885089.4 2021-08-03
CN202110885089.4A CN113645016B (zh) 2021-08-03 2021-08-03 一种信号处理系统和方法

Publications (1)

Publication Number Publication Date
WO2023011288A1 true WO2023011288A1 (zh) 2023-02-09

Family

ID=78419419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108290 WO2023011288A1 (zh) 2021-08-03 2022-07-27 信号处理系统和方法

Country Status (2)

Country Link
CN (1) CN113645016B (zh)
WO (1) WO2023011288A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645016B (zh) * 2021-08-03 2023-07-21 北京锐安科技有限公司 一种信号处理系统和方法
CN115133945B (zh) * 2022-05-11 2024-04-12 东莞有方物联网科技有限公司 信号处理装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291875A1 (en) * 2006-10-13 2010-11-18 Thales Radioelectric transmission and reception module mainly intended for broad-band radiocommunications
CN104393909A (zh) * 2014-11-26 2015-03-04 成都中远信电子科技有限公司 一种用于无人机遥测、遥控和数传系统的射频模块的使用方法
CN106656243A (zh) * 2015-10-27 2017-05-10 中兴通讯股份有限公司 多频段收发信机及多频段射频信号发送和接收方法
CN107613504A (zh) * 2017-10-23 2018-01-19 上海创远仪器技术股份有限公司 通信网络测试仪及多通信制式信号的测试方法
CN113645016A (zh) * 2021-08-03 2021-11-12 北京锐安科技有限公司 一种信号处理系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291875A1 (en) * 2006-10-13 2010-11-18 Thales Radioelectric transmission and reception module mainly intended for broad-band radiocommunications
CN104393909A (zh) * 2014-11-26 2015-03-04 成都中远信电子科技有限公司 一种用于无人机遥测、遥控和数传系统的射频模块的使用方法
CN106656243A (zh) * 2015-10-27 2017-05-10 中兴通讯股份有限公司 多频段收发信机及多频段射频信号发送和接收方法
CN107613504A (zh) * 2017-10-23 2018-01-19 上海创远仪器技术股份有限公司 通信网络测试仪及多通信制式信号的测试方法
CN113645016A (zh) * 2021-08-03 2021-11-12 北京锐安科技有限公司 一种信号处理系统和方法

Also Published As

Publication number Publication date
CN113645016A (zh) 2021-11-12
CN113645016B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2023011288A1 (zh) 信号处理系统和方法
CN104967494B (zh) 一种测试方法、设备和系统
CN109274381B (zh) 一种多频段移动通信射频收发机
US9059794B2 (en) Method of generating interference signals and device to carry out such a method
CN107613504B (zh) 通信网络测试仪及多通信制式信号的测试方法
CN102291157B (zh) 多制式通道复用电路
CN105794309A (zh) 多通道射频装置及方法
CN108847866B (zh) 射频前端邻道干扰抑制电路和wlan接入设备
CN213521865U (zh) 一种变频接收系统
EP2043377A1 (en) A sector base station
CN105577294B (zh) 多功能手持式无源互调分析仪
CN210327507U (zh) 用于接收变频器的变频组件
CN103354468A (zh) 带宽1.2GHz的L波段上变频器及上变频实现方法
CN205232164U (zh) 一种宽带高增益平坦度功率放大器
CN108768500B (zh) 一种通信卫星转发器
CN108400789B (zh) 多系统合路平台及提高多系统合路平台互调的方法
CN210246725U (zh) C波段接收通道组件
CN114337722A (zh) 一种耦合集成器件、射频系统和终端设备
CN111934698B (zh) 一种射频信号接收方法、射频信号发送方法及装置
CN112822131A (zh) 邻信道抑制电路及邻信道抑制方法
CN106656283A (zh) 一种智能化分布式天线的实现方法
CN210274043U (zh) 一种vuc接收模块
CN204633716U (zh) C波段下变频组件
CN108199738B (zh) 超外差接收信道共用基础模块的设计方法
CN116184043B (zh) 一种用于无人机平台的宽带电磁环境监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE