WO2023011211A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2023011211A1
WO2023011211A1 PCT/CN2022/107157 CN2022107157W WO2023011211A1 WO 2023011211 A1 WO2023011211 A1 WO 2023011211A1 CN 2022107157 W CN2022107157 W CN 2022107157W WO 2023011211 A1 WO2023011211 A1 WO 2023011211A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
cyclic shift
indicates
comb
antenna ports
Prior art date
Application number
PCT/CN2022/107157
Other languages
English (en)
French (fr)
Inventor
吴世娟
余政
刘晓晴
张永平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011211A1 publication Critical patent/WO2023011211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method, device and computer-readable storage medium.
  • the sounding reference signal can be used for beam management, codebook-based transmission, non-codebook-based transmission, antenna switching or positioning, etc. Scenes.
  • SRS transmission with a comb size of 8 (Comb-8) is supported and the maximum number of cyclic shifts (cyclic shift, CS) that can be supported for Comb-8 is 6 or 12.
  • the maximum number of cyclic shifts that Comb-8 can support is 12, in the case that the length of the SRS sequence corresponding to the SRS cannot be divisible by the maximum number of cyclic shifts, there may be SRS gaps between multiplexed antenna ports at the same comb position.
  • the problem of sequence non-orthogonality will have a great impact on the performance of channel estimation. Therefore, how to ensure the orthogonality of multiplexing sequences at the same comb position, improve channel estimation accuracy, and improve coverage performance and system capacity has become an urgent problem to be solved.
  • the present application provides a communication method, device and computer-readable storage medium, which can improve channel estimation accuracy, coverage performance and system capacity.
  • the present application provides a communication method, which can be applied to a terminal device, and can also be applied to a module (for example, a chip) in the terminal device.
  • the application to the terminal device is used as an example for description below.
  • the method may include: determining at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS, the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer; according to the cyclic shift and at least one of the comb positions to send the first SRS to the network device; in the SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the terminal device can determine at least one of the cyclic shift of the SRS sequence and the comb position, so as to realize SRS Orthogonal transmission of the SRS sequence corresponding to the same comb position.
  • the maximum cyclic shift number supported by Comb-8 is 12, and the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer case (for example, the length of the SRS sequence is 6, or The length of the SRS sequence is 12)
  • non-orthogonal SRS sequences may be generated on the same comb position, which will have a greater impact on channel estimation performance.
  • the terminal device determines the cyclic shift and/or comb position of the SRS sequence according to the new mapping rule, so that the SRS sequence at the same comb position Two-by-two orthogonality can solve the problem of non-orthogonal SRS sequences sent at the same comb position that may occur in the prior art, thereby improving channel estimation accuracy, coverage performance and system capacity.
  • the SRS sequences corresponding to the same comb position are pairwise orthogonal to the cyclic shift of the SRS sequence, the length of the SRS sequence, and the maximum cyclic shift number At least one is related.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and p i indicates the serial number of the antenna port i.
  • the SRS sequence corresponding to the SRS when the SRS sequence corresponding to the SRS is at the same comb position, The SRS sequence corresponds to multiple antenna ports one by one, and different antenna ports are distinguished by cyclic shift at the same comb position.
  • the cyclic shift configuration rule of the SRS sequence that is, modifying the mapping expression of the antenna port and the cyclic shift of the SRS sequence, Based on the existing protocol mechanism, the mapping relationship between p i and ⁇ i is redesigned.
  • the terminal device determines the cyclic shift of the SRS sequences corresponding to multiple antenna ports at the same comb position according to the re-modified mapping expression, which can make the SRS sequences at the same comb position two-by-two orthogonal, which can improve the channel estimation accuracy and improve Covers performance and system capacity.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • the transmission comb size for the SRS is 8
  • the 4 SRS sequences corresponding to the SRS correspond to 4 antenna ports
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the 4 antenna ports of the terminal device are at the same comb position
  • the 4 antennas Ports are distinguished by cyclic shift at the same comb position
  • the cyclic shift configuration rules of the four SRS sequences can be modified, that is, the mapping expressions between the four antenna ports and the cyclic shift can be modified, and redesigned on the basis of the existing protocol mechanism
  • the mapping relationship between p i and ⁇ i is 8
  • the terminal device determines the cyclic shift of the 4 SRS sequences corresponding to the 4 antenna ports at the same comb position according to the re-modified mapping expression, which can make the 4 SRS sequences at the same comb position orthogonal, which can improve the channel estimation accuracy and improve Covers performance and system capacity.
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the first SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different
  • the comb position of , the M is related to at least one item of the number of antenna ports, the maximum number of cyclic shifts, and the length of the SRS sequence, and the M is a positive integer greater than or equal to 1.
  • the terminal device can pass the non-orthogonal SRS sequence through Different comb positions are sent to network devices.
  • the SRS sequence corresponding to the SRS corresponds to multiple antenna ports, and the multiple antenna ports are divided into multiple groups.
  • the antenna ports in each group are at the same comb position, and different groups are at different comb positions, that is, different groups of antennas Ports can be multiplexed through comb positions.
  • Corresponding non-orthogonal SRS sequences to different comb positions can solve the problem of non-orthogonal SRS sequences at the same comb position caused by the non-integer ratio of the length of the SRS sequence to the maximum cyclic shift number, thereby improving channel estimation. Accuracy, improve coverage performance and system capacity.
  • the SRS sequences corresponding to the antenna ports in the same group are orthogonal.
  • multiple antenna ports are divided into multiple groups, which can be understood as dividing the antenna ports corresponding to two orthogonal SRS sequences into one group, and dividing the antenna ports corresponding to non-orthogonal SRS sequences through
  • the multiplexing of different comb positions can not only solve the non-orthogonal problem of SRS sequences at the same comb position caused by the non-integer ratio of the length of the SRS sequence to the maximum cyclic shift number, but also realize the non-orthogonal problem of SRS sequences at the same comb position through cyclic shift Bits realize the multiplexing between different antenna ports, which can improve the accuracy of channel estimation, improve coverage performance and system capacity.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents a set n
  • the SRS sequences corresponding to the SRS correspond to multiple antenna ports , multiple antenna ports are divided into multiple groups, and different groups are in different comb positions.
  • the mapping rules between antenna ports and comb positions of SRS sequences can be modified. On the basis of the existing protocol mechanism, p i and mapping relationship.
  • the terminal device determines the comb position of the SRS sequence corresponding to multiple antenna ports according to the re-modified mapping rule, which can make non-orthogonal SRS sequences correspond to different comb positions, and pairwise orthogonal SRS sequences correspond to the same comb position, solving the problem of SRS sequence
  • the ratio of the length to the maximum number of cyclic shifts is a non-integer, and the SRS sequence at the same comb position is not orthogonal, thereby improving the channel estimation accuracy, improving coverage performance and system capacity.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the SRS transmission comb size is 8
  • the SRS sequence corresponding to the SRS corresponds to 4 antenna ports
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12.
  • the 4 antenna ports can be divided into 2 groups, and each group maps a different comb location, that is, two sets of antenna ports can be multiplexed through different comb locations.
  • the terminal device determines the comb positions of the 4 SRS sequences corresponding to the 4 antenna ports according to the re-modified mapping expression, which can solve the problem of the length of the SRS sequence and the The ratio of the maximum cyclic shift number is non-integer and the SRS sequence is not orthogonal at the same comb position, thereby improving the accuracy of channel estimation, improving coverage performance and system capacity.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • p i Indicates the number of antenna ports corresponding to the first SRS
  • p i Indicates the comb position of the SRS sequence corresponding to the antenna port i
  • K TC indicates the transmission comb size of the first SRS
  • ⁇ m represents the set m, the set satisfies:
  • the cyclic shift offset value satisfies
  • the SRS sequence corresponding to the SRS corresponds to multiple antenna ports, and the multiple antenna ports are divided into multiple groups, and different groups are located in different comb positions.
  • the mapping rule between the antenna port and the comb position of the SRS sequence can be modified. In the existing Based on the protocol mechanism, redesign p i and mapping relationship.
  • the terminal device determines the comb position of the SRS sequence corresponding to multiple antenna ports according to the re-modified mapping rule, which can make non-orthogonal SRS sequences correspond to different comb positions, and pairwise orthogonal SRS sequences correspond to the same comb position, solving the problem of SRS sequence
  • the ratio of the length of the length to the maximum cyclic shift number is a non-integer SRS sequence non-orthogonal problem at the same comb position.
  • the existing mechanism is used under the condition of 4 antenna ports, and the cyclic shift offset value satisfies
  • the four antenna ports correspond to two comb positions. This scheme can be further extended based on existing mechanisms. On the basis of reducing the impact of standards, the accuracy of channel estimation is further improved, and the coverage performance and system capacity are improved.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the first SRS is an SRS for positioning.
  • the method further includes: determining a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, the In the above SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • the present application provides a communication method, which can be applied to a network device, or to a module (eg, a chip) in the network device.
  • the application to the network device will be described below as an example.
  • the method may include: determining at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS, the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer; according to the cyclic shift receiving the first SRS from the terminal device with at least one of the comb positions; in the SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the network device can determine at least one of the cyclic shift of the SRS sequence and the comb position, so that SRS can be realized Orthogonal reception of the corresponding SRS sequence at the same comb position.
  • non-orthogonal SRS sequences may be generated on the same comb position, which will have a greater impact on channel estimation performance.
  • the terminal device determines the cyclic shift and/or comb position of the SRS sequence according to the new mapping rule, so that the SRS sequence at the same comb position Two-by-two orthogonality can solve the problem of non-orthogonal SRS sequences sent at the same comb position that may occur in the prior art, thereby improving channel estimation accuracy, coverage performance and system capacity.
  • the executive body of the second aspect is a network device, and the specific content of the second aspect corresponds to the content of the first aspect.
  • the corresponding features and beneficial effects of the second aspect can refer to the description of the first aspect. To avoid repetition, the Detailed description is omitted here.
  • the SRS sequences corresponding to the same comb position are pairwise orthogonal to the cyclic shift of the SRS sequence, the length of the SRS sequence, and the maximum cyclic shift number At least one is related.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and p i indicates the serial number of the antenna port i.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the first SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different
  • the comb position of , the M is related to at least one item of the number of antenna ports, the maximum number of cyclic shifts, and the length of the SRS sequence, and the M is a positive integer greater than or equal to 1.
  • the SRS sequences corresponding to the antenna ports in the same group are orthogonal.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents a set n
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • p i Indicates the number of antenna ports corresponding to the first SRS
  • p i Indicates the comb position of the SRS sequence corresponding to the antenna port i
  • K TC indicates the transmission comb size of the first SRS
  • ⁇ m represents the set m, the set satisfies:
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the corresponding SRS The number of antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the method further includes: determining a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, the In the above SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • the method further includes:
  • the SRS is a plurality of SRS
  • the at least one cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence
  • the SRS sequence the pairwise orthogonality between the SRS sequences corresponding to the different SRS corresponding to the same comb position satisfies:
  • the network device determines a cyclic shift offset value corresponding to the SRS, and the cyclic shift offset value is associated with the cyclic shift of the antenna port pair.
  • the network device can configure the cyclic shift offset value determined for different SRSs based on the mapping relationship between the antenna port and the cyclic shift.
  • the above mapping relationship can be determined based on a predefined method or based on a signaling indication The method is determined to ensure that the cyclic shift of the SRS sequences corresponding to the antenna ports corresponding to different SRSs satisfies the above formula relationship, thereby ensuring that the SRS sequences corresponding to the antenna ports corresponding to different SRSs are orthogonal.
  • the present application provides a communication method, which can be applied to a terminal device, or to a module (for example, a chip) in the terminal device, and the application to a terminal is used as an example for description below.
  • the method may include: determining at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer; according to At least one of the cyclic shift and the comb position sends the SRS to a network device.
  • the terminal device sends an SRS to the network device.
  • the terminal device can determine At least one of the cyclic shift of the SRS sequence and the comb position, so as to realize the transmission of the SRS.
  • the terminal device determines the cyclic shift and/or comb position of the SRS sequence according to the new mapping rule, which can realize the corresponding SRS sequence under the same SRS.
  • the cyclic shifts of multiple antenna ports in the same comb position are evenly allocated, and the network side and the terminal side determine the cyclic shift and/or comb position corresponding to the SRS sequence through the scheme of this application, so as to avoid different interpretations of the same transmitted SRS sequence, In turn, channel estimation accuracy can be improved, and coverage performance and system capacity can be improved.
  • the product of the ratio of the maximum cyclic shift number to the number of antenna ports and the first coefficient is an integer.
  • a coefficient is added in the new mapping rule, so that the product of the coefficient and the ratio of the maximum cyclic shift number to the number of antenna ports is an integer.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i is the first coefficient
  • k is an integer greater than or equal to 1
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS sequence is a non-integer number of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position.
  • the cyclic shift configuration rule of the SRS sequence can be modified, that is, the mapping expression of the antenna port and the cyclic shift of the SRS sequence can be modified, and a new coefficient ⁇ i is added on the basis of the existing protocol mechanism , redesign the relationship between pi and ⁇ i , so that the product of ⁇ i and the ratio of the maximum cyclic shift number to the number of antenna ports is an integer.
  • the terminal device determines the cyclic shift of the SRS sequences corresponding to multiple antenna ports at the same comb position according to the re-modified mapping expression, which can make the cyclic shift of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position Even distribution can improve channel estimation accuracy, coverage performance and system capacity.
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The cyclic shift of satisfies:
  • the transmission comb size of the SRS is 8
  • the 4 SRS sequences corresponding to the SRS correspond to 4 antenna ports
  • the length of the SRS sequence is 6, and the maximum number of cyclic shifts is 12.
  • the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS sequence is a non-integer problem that the cyclic shift distribution of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position is uneven.
  • the 4 antenna ports of the terminal equipment are at the same comb position, and the 4 antenna ports are distinguished by cyclic shift at the same comb position.
  • the cyclic shift configuration rules of the 4 SRS sequences can be modified, that is, the 4 antenna ports and the cyclic shift can be modified.
  • the shifted mapping expression on the basis of the existing protocol mechanism, adds a new coefficient, for example Redesign the relationship between p i and ⁇ i . Among them, the coefficient The product of and the ratio of the maximum cyclic shift number to the number of antenna ports is an integer.
  • the terminal device determines the cyclic shift of the 4 SRS sequences corresponding to 4 antenna ports at the same comb position according to the re-modified mapping expression, which can realize the cyclic shift of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position Evenly distributed shifts can improve channel estimation accuracy, coverage performance and system capacity.
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to the number of ports multiplexed at the same comb position.
  • the ratio of the maximum cyclic shift number to the number of antenna ports is an integer through the number of multiplexed ports at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the number of multiplexed ports at the same comb position is equal to a greatest common divisor of the maximum cyclic shift number and the number of antenna ports.
  • the number of multiplexed ports at the same comb position is equal to the greatest common divisor of the maximum cyclic shift number and the antenna port number, which can make the maximum cyclic shift number and
  • the ratio of the number of antenna ports is an integer.
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions.
  • the M is related to at least one of the maximum cyclic shift number and the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS sequence is a non-integer number of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position.
  • the multiple antenna ports corresponding to the SRS sequence correspond to different comb positions, which can realize the average cyclic shift distribution of the antenna ports corresponding to the SRS sequence at the same comb position under the same SRS, thereby improving channel estimation. Accuracy, improve coverage performance and system capacity.
  • the M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • the comb position of the SRS sequence corresponding to the SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS sequence is a non-integer number of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position.
  • the SRS sequence corresponding to the SRS corresponds to multiple antenna ports.
  • the multiple antenna ports are divided into multiple groups. Different groups are in different comb positions.
  • the mapping between the antenna port and the comb position of the SRS sequence can be modified. rules, on the basis of the existing protocol mechanism, redesign p i and mapping relationship.
  • the terminal device determines the comb position of the SRS sequence corresponding to multiple antenna ports according to the re-modified mapping rule, which can realize the average distribution of the cyclic shift of multiple antenna ports corresponding to the SRS sequence in the same comb position under the same SRS, thereby improving Channel estimation accuracy improves coverage performance and system capacity.
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The comb position satisfies:
  • the SRS transmission comb size is 8
  • the SRS sequences corresponding to the SRS correspond to 4 antenna ports
  • the length of the SRS sequence is 6, and the maximum number of cyclic shifts is 12.
  • the ratio of the maximum number of cyclic shifts to the number of antenna ports corresponding to the SRS sequence is a non-integer problem that the cyclic shift distribution of the multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position is uneven, and 4
  • Each antenna port is divided into two groups, and each group is mapped to a different comb position, that is, two groups of antenna ports can be multiplexed through different comb positions.
  • the terminal device determines the comb positions of the 4 SRS sequences corresponding to the 4 antenna ports according to the re-modified mapping expression, which can be implemented under the same SRS
  • the cyclic shifts of the multiple antenna ports corresponding to the SRS sequence are evenly distributed at the same comb position, which can improve the channel estimation accuracy, coverage performance and system capacity.
  • the SRS is an SRS for positioning.
  • the method further includes: determining a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, the In the above SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • the present application provides a communication method, which can be applied to a network device, and can also be applied to a module (eg, a chip) in the network device.
  • the application to the network device will be described below as an example.
  • the method may include: determining at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer; according to At least one of the cyclic shift and the comb position receives the SRS from a terminal device.
  • the network device receives the SRS from the terminal device.
  • the network device can At least one of the cyclic shift and the comb position of the SRS sequence is determined, so that the reception of the SRS can be realized.
  • the terminal device determines the cyclic shift and/or comb position of the SRS sequence according to the new mapping rule, which can realize the corresponding SRS sequence under the same SRS.
  • the cyclic shifts of multiple antenna ports in the same comb position are evenly allocated, and the network side and the terminal side determine the cyclic shift and/or comb position corresponding to the SRS sequence through the scheme of this application, so as to avoid different interpretations of the same transmitted SRS sequence, In turn, channel estimation accuracy can be improved, and coverage performance and system capacity can be improved.
  • the executor of the fourth aspect is a network device
  • the specific content of the fourth aspect corresponds to the content of the third aspect
  • the corresponding features and beneficial effects of the fourth aspect can refer to the description of the third aspect. In order to avoid repetition, the Detailed description is omitted here.
  • the product of the ratio of the maximum cyclic shift number to the number of antenna ports and the first coefficient is an integer.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i is the first coefficient
  • k is an integer greater than or equal to 1
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The cyclic shift of satisfies:
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to the number of ports multiplexed at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the number of multiplexed ports at the same comb position is equal to a greatest common divisor of the maximum cyclic shift number and the number of antenna ports.
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions.
  • the M is related to at least one of the maximum cyclic shift number and the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • the comb position of the SRS sequence corresponding to the SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The comb position satisfies:
  • the present application provides a communication method, which can be applied to a network device, or to a module (eg, a chip) in the network device, and the application to the network device will be described below as an example.
  • the method can include:
  • [] represents the rounding function
  • Indicates the maximum number of cyclic shifts Indicates the serial number of the antenna port i
  • Indicates the serial number of the antenna port q Indicates the number of antenna ports corresponding to the first SRS
  • the SRS sequence corresponding to the antenna port i and the SRS sequence corresponding to the antenna port q are SRS sequences corresponding to different SRSs, the and said satisfy:
  • k is a positive integer
  • L represents the length of the SRS sequence corresponding to the antenna port i or the SRS sequence corresponding to the antenna port q
  • the SRS sequence corresponding to the antenna port i is the same as the SRS sequence corresponding to the antenna port q of the same length.
  • a network device can communicate with one or more terminal devices.
  • multiple SRS sequences corresponding to different SRSs are orthogonal to each other.
  • Different SRSs can be understood as SRSs sent by different terminal devices to the network device in the same OFDM symbol, or different SRSs sent by the same terminal device in the same OFDM symbol.
  • the network device configures the cyclic shift offset value for one or more terminal devices communicating with it When determining the cyclic shift corresponding to the SRS sequence and/or determining the comb position corresponding to the SRS sequence based on the scheme provided by this application, or determining the cyclic shift corresponding to the SRS sequence and/or based on other schemes (for example, existing protocol schemes) Or on the basis of determining the comb position corresponding to the SRS sequence, it is necessary to ensure that multiple SRS sequences at the same comb position corresponding to different SRSs are orthogonal.
  • the multiple SRS sequences corresponding to the first SRS and the multiple SRS sequences corresponding to the second SRS are orthogonal to each other, so that different SRS sequences transmitted by different antenna ports will not affect each other, thereby effectively improving channel estimation. Accuracy, improve coverage performance and system capacity.
  • the SRS is an SRS for positioning.
  • the method further includes: determining a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, the In the above SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • the embodiment of the present application provides a communication device.
  • the communication device has the function of implementing the actions in the method example of the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes:
  • a determining unit configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS, where the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer;
  • a sending unit configured to send the first SRS to a network device according to at least one of the cyclic shift and the comb position;
  • the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the SRS sequences corresponding to the same comb position are pairwise orthogonal to the cyclic shift of the SRS sequence, the length of the SRS sequence, and the maximum cyclic shift number At least one is related.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and p i indicates the serial number of the antenna port i.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the first SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different
  • the comb position of , the M is related to at least one item of the number of antenna ports, the maximum number of cyclic shifts, and the length of the SRS sequence, and the M is a positive integer greater than or equal to 1.
  • the SRS sequences corresponding to the antenna ports in the same group are orthogonal.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents a set n
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • p i Indicates the number of antenna ports corresponding to the first SRS
  • p i Indicates the comb position of the SRS sequence corresponding to the antenna port i
  • K TC indicates the transmission comb size of the first SRS
  • ⁇ m represents the set m, the set satisfies:
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the first SRS is an SRS for positioning.
  • the determining unit is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is related to the cyclic shift corresponding to the SRS sequence In the SRS sequence, the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the embodiment of the present application provides a communication device.
  • the communication device has the function of implementing the actions in the method example of the second aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes:
  • a determining unit configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS, where the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer;
  • a receiving unit configured to receive the first SRS from a terminal device according to at least one of the cyclic shift and the comb position;
  • the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the SRS sequences corresponding to the same comb position are pairwise orthogonal to the cyclic shift of the SRS sequence, the length of the SRS sequence, and the maximum cyclic shift number At least one is related.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and p i indicates the serial number of the antenna port i.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the first SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different
  • the comb position of , the M is related to at least one item of the number of antenna ports, the maximum number of cyclic shifts, and the length of the SRS sequence, and the M is a positive integer greater than or equal to 1.
  • the SRS sequences corresponding to the antenna ports in the same group are orthogonal.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents a set n
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum cyclic shift number is 12
  • the first SRS The number of corresponding antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • p i Indicates the number of antenna ports corresponding to the first SRS
  • p i Indicates the comb position of the SRS sequence corresponding to the antenna port i
  • K TC indicates the transmission comb size of the first SRS
  • ⁇ m represents the set m, the set satisfies:
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the corresponding SRS The number of antenna ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the determining unit is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is related to the cyclic shift corresponding to the SRS sequence In the SRS sequence, the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the determining unit is further configured to:
  • the SRS is a plurality of SRS
  • the at least one cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence
  • the SRS In the sequence, the pairwise orthogonality between the SRS sequences corresponding to different SRS occupying the same comb position satisfies:
  • the embodiment of the present application provides a communication device.
  • the communication device has the function of implementing the actions in the method example of the third aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes:
  • a determining unit configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, and the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer;
  • a sending unit configured to send the SRS to a network device according to at least one of the cyclic shift and the comb position.
  • the product of the ratio of the maximum cyclic shift number to the number of antenna ports and the first coefficient is an integer.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i is the first coefficient
  • k is an integer greater than or equal to 1
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The cyclic shift of satisfies:
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to the number of ports multiplexed at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the number of multiplexed ports at the same comb position is equal to a greatest common divisor of the maximum cyclic shift number and the number of antenna ports.
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions.
  • the M is related to at least one of the maximum cyclic shift number and the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • the comb position of the SRS sequence corresponding to the SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The comb position satisfies:
  • the SRS is an SRS for positioning.
  • the determining unit is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is related to the cyclic shift corresponding to the SRS sequence In the SRS sequence, the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the embodiment of the present application provides a communication device.
  • the communication device has the function of implementing the actions in the method example of the fourth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes:
  • a determination unit configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, where the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer;
  • a receiving unit configured to receive the SRS from the terminal device according to at least one of the cyclic shift and the comb position.
  • the product of the ratio of the maximum cyclic shift number to the number of antenna ports and the first coefficient is an integer.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i is the first coefficient
  • k is an integer greater than or equal to 1
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The cyclic shift of satisfies:
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to the number of ports multiplexed at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the number of multiplexed ports at the same comb position is equal to a greatest common divisor of the maximum cyclic shift number and the number of antenna ports.
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions.
  • the M is related to at least one of the maximum cyclic shift number and the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • the comb position of the SRS sequence corresponding to the SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the SRS sequence corresponding to the SRS The comb position satisfies:
  • the determining unit is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is related to the cyclic shift corresponding to the SRS sequence In the SRS sequence, the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the embodiment of the present application provides a communication device.
  • the communication device has the function of implementing the actions in the method example of the fifth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes:
  • a determining unit configured to determine a cyclic shift offset value corresponding to the first SRS and a cyclic shift offset value corresponding to the second SRS;
  • [] represents the rounding function
  • Indicates the maximum number of cyclic shifts Indicates the serial number of the antenna port i
  • Indicates the serial number of the antenna port q Indicates the number of antenna ports corresponding to the first SRS
  • the SRS sequence corresponding to the antenna port i and the SRS sequence corresponding to the antenna port q are SRS sequences corresponding to different SRSs, the and said satisfy:
  • k is a positive integer
  • L represents the length of the SRS sequence corresponding to the antenna port i or the SRS sequence corresponding to the antenna port q
  • the SRS sequence corresponding to the antenna port i is the same as the SRS sequence corresponding to the antenna port q of the same length.
  • the present application provides a communication device, and the communication device may be a terminal or a module (for example, a chip) in the terminal.
  • the device may include a processor, a memory, an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices other than the communication device Other communication devices output information, and the processor invokes the computer program stored in the memory to execute the communication method provided by the first aspect or any implementation manner of the first aspect; or the third aspect or any implementation manner of the third aspect The communication method provided.
  • a communication device in a twelfth aspect, is provided, and the communication device may be a network device, or may be a module (for example, a chip) in the network device.
  • the device may include a processor, a memory, an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices other than the communication device Other communication devices output information, and the processor invokes the computer program stored in the memory to execute the communication method provided by the second aspect or any implementation manner of the second aspect; or the fourth aspect or any implementation manner of the fourth aspect The communication method provided; or the communication method provided by the fifth aspect or any implementation manner of the fifth aspect.
  • the present application provides a communication system, the communication system includes at least one terminal and at least one network device, when at least one aforementioned terminal device and at least one aforementioned network device are running in the communication system, use To perform any method described in the first aspect or the second aspect above, or to perform any method described in the third aspect or the fourth aspect above, or the method described in the fifth aspect.
  • the present application provides a computer-readable storage medium, on which computer instructions are stored, and when the computer program or computer instructions are run, the above-mentioned first aspect and any one of them may be realization of the second aspect and any possible realization thereof, the third aspect and any possible realization thereof, the fourth aspect and any possible realization thereof, or the fifth aspect and any possible realization thereof The method described in is executed.
  • the present application provides a computer program product including executable instructions.
  • the computer program product runs on a user device, the above-mentioned first aspect and any possible implementation thereof, and the second aspect and any possible implementation thereof, the third aspect and any possible implementation thereof, the fourth aspect and any possible implementation thereof, or the method described in the fifth aspect and any possible implementation thereof .
  • the present application provides a chip system, the chip system includes a processor, and may also include a memory, for realizing the above-mentioned first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof implementation, the third aspect and any possible implementation thereof, the fourth aspect and any possible implementation thereof, and the method in the fifth invention and any possible implementation thereof.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • Fig. 1 is a schematic structural diagram of a different comb provided by the prior art
  • Fig. 2 is a schematic diagram of non-orthogonal sequences provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of sequence orthogonality provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Comb-tooth Comb-N refers to selecting a subcarrier to carry SRS among every N subcarriers.
  • N is configured through the high-level parameter transmissionComb
  • combOffset is configured to transmit the comb-tooth offset, which is equivalent to selecting N subcarriers.
  • the SRSs of different terminal devices can be sent on the same symbol and the same RB, and can be distinguished from each other by using different combs.
  • SRS has three different comb structures: Comb-2, Comb-4 and Comb-8.
  • the Comb-N in the embodiment of this application can be the comb-tooth structure Comb-2, Comb-4 or Comb-8 in the existing mechanism, or the comb-tooth structure that will evolve in the future, such as Comb-16, Comb-32, etc. .
  • FIG. 1 only shows Comb-2, Comb-4 and Comb-8 as examples. Please refer to FIG. 1 .
  • FIG. 1 is a schematic structural diagram of a different comb provided in the prior art.
  • SRS resource that is, SRS resource
  • SRS resource is one or more of time domain resources, frequency domain resources, and air domain resources for transmitting SRS.
  • the time-domain resource may refer to a time unit/time-domain position for sending the SRS, and the time unit may be a frame frame, a subframe subframe, a time slot or a symbol, and the like.
  • the frequency domain resource may refer to a frequency domain location where the SRS is transmitted, and the air domain resource may refer to an antenna port, a beam direction, and the like.
  • radio resource control radio resource control
  • RRC radio resource control
  • IESRS-Resource or SRS-PosResource, wherein SRS-PosResource is used for positioning scenarios.
  • the same terminal can activate at most one SRS resource set at the same time, and one SRS resource set can contain one or more SRS resources, and multiple SRS resources are distinguished by resource ID. Different terminal devices configure different SRS resources.
  • SRS SRS resource
  • one SRS corresponds to one or more antenna ports
  • each antenna port corresponds to one SRS sequence.
  • one SRS corresponds to one or more antenna ports, and these sequences are sent on different antenna ports.
  • An SRS resource configures the number of antenna ports, configured by nrofSRS-Ports, otherwise, the number of antenna ports is 0.
  • SRS is used to estimate the channel quality of different frequency bands.
  • the 3GPP TSG RAN Meeting#86 meeting determined the work item description (work item description, WID) to further enhance the multiple input multiple output (MIMO) in the NR system.
  • WID work item description
  • MIMO multiple input multiple output
  • Partial frequency domain monitoring enables SRS to be sent at part frequency domain locations.
  • resource block, RB resource block for sending SRS
  • the transmission power of SRS on a single resource element (resource element, RE) is increased, thereby effectively improving the coverage performance of SRS.
  • the range of the SRS transmission frequency domain is reduced, and the number of user equipment (UE) that can be multiplexed in the same time slot (slot) increases correspondingly, and the capacity of the SRS system is significantly improved.
  • the channel has a relatively flat characteristic in the frequency domain, that is, the channel has a relatively strong correlation in the frequency domain, other frequency domain ranges can be obtained by means of difference on the basis of monitoring some frequency bands channel estimation information, thereby effectively improving the efficiency of system channel estimation.
  • partial frequency domain monitoring at sub-carrier level can be realized by adding comb. Adding the comb can improve the SRS coverage and capacity performance without affecting the characteristics of the ZC sequence, such as low PAPR characteristics.
  • the 104e meeting decided to support Comb-8 as one of the ways to improve SRS coverage and capacity performance.
  • the antenna port corresponding to the SRS sequence corresponding to different SRS and the different SRS resource are mainly through frequency division multiplexing (frequency division multiplexing, FDM) and Multiplexing by means of code division multiplexing (CDM).
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • the CDM multiplexing mode is implemented by cyclic shifting.
  • the multiplexing rules for cyclic shifts of different SRS sequences are as follows:
  • Protocol 38.211 stipulates that for an SRS sequence corresponding to an SRS, the SRS sequence base sequence and cyclically shift CS to get:
  • M ZC is the sequence length. base sequence It is defined by the group index u ⁇ ⁇ 0,1,...29 ⁇ and the base sequence index v within the group, as well as the sequence length M ZC . in the base sequence
  • different SRS sequences are distinguished by different cyclic shifts, and the SRS sequences corresponding to different cyclic shifts are orthogonal.
  • the specific cyclic shift configuration method and the generation of orthogonal SRS sequences based on cyclic shifts are as follows:
  • p i represents the serial number of antenna port i
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to antenna port i
  • Indicates the number of consecutive OFDM symbols occupied by one SRS, ⁇ log 2 (K TC )
  • K TC indicates the transmission comb size of the SRS, K TC ⁇ 2,4,8 ⁇ .
  • the cyclic shift of multiple SRS sequences corresponding to SRS is:
  • mapping relationship between the SRS sequence and the physical resource is:
  • the starting position of frequency domain resource of SRS defined as:
  • n shift indicates the frequency domain offset value (RB level) compared to the reference point
  • n shift is configured by high-level signaling freqDomainShift
  • Indicates the comb offset value corresponding to SRS Denotes a function of the parameter K TC and the time-domain OFDM symbol l'.
  • SRS sequences at the same comb position they need to be multiplexed in an orthogonal manner based on different cyclic shifts.
  • SRS sequence r 0 and sequence r 1 of length M ZC their base sequences are the same, and the configuration cyclic shifts are ⁇ 0 and ⁇ 1 ,
  • Table 2 is different The mapping relationship between ⁇ i and p i under the condition
  • FIG. 2 is a schematic diagram of non-orthogonal sequences provided by an embodiment of the present application. as shown in picture 2, The sequence r 0 is not orthogonal to the sequence r 1 , and it is impossible to achieve multiplexing between different antenna ports by cyclic shifting at the same comb position.
  • the transmission sequence r 0 of the antenna port p 0 is not orthogonal to the transmission sequence r 1 of the antenna port p 1 , and the network device estimates When the channel corresponding to the antenna port p0 is used, it will be interfered by the SRS sequence sent by the antenna port p1 , which will have a great impact on the channel estimation performance.
  • Table 3 is different The mapping relationship between ⁇ i and p i under the condition
  • the cyclic shift value When the antenna ports are p 1 and p 3 , the corresponding SRS is transmitted at different comb positions.
  • adding the floor function operation to the original mapping expression between the cyclic shift ⁇ i and the antenna port p i may lead to the problem that the cyclic shift allocated among the four antenna ports is discontinuous.
  • the cyclic shift index values of 0, 1, 3 and 4 are allocated between port p 0 and port p 4 , and the cyclic shift index value 2 is not used, resulting in a non-continuous cyclic shift mapping problem.
  • the technical problems to be solved in this application may include: in the case where the ratio of the length of the SRS sequence corresponding to the SRS to the maximum cyclic shift number is non-integer, solving the same comb position in the prior art may produce non-orthogonal SRS sequences problem, and when the ratio of the maximum number of cyclic shifts corresponding to SRS to the number of antenna ports corresponding to SRS is non-integer, the cyclic shift of the antenna ports corresponding to the SRS sequence under the same SRS in the same comb position cannot be evenly distributed problems, thereby improving the accuracy of channel estimation, improving coverage performance and system capacity.
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include a network device 301 and a terminal device 302 .
  • the terminal device 302 can be connected to the network device 301 in a wireless manner, and can access the core network through the network device 301 .
  • the terminal device 302 may be fixed or mobile.
  • the network device 301 may be an entity for transmitting or receiving signals, and may be a device for communicating with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or a code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • BTS base transceiver station
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • LTE LTE system
  • the evolved base station (evolved NodeB, eNB or eNodeB) in the network can also be a wireless controller in the cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted Devices, wearable devices, and network devices in a 5G network or network devices in a future evolved PLMN network are not limited in this embodiment of the application.
  • the network device may be a device in the wireless network, for example, a radio access network (radio access network, RAN) node that connects the terminal device to the wireless network.
  • RAN nodes are: base station, next-generation base station gNB, transmission reception point (transmission reception point, TRP), evolved node B (evolved Node B, eNB), home base station, baseband unit (baseband unit, BBU) , or the access point (access point, AP) in the WiFi system, etc.
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • Terminal equipment 302 is an entity on the user side for receiving or transmitting signals, such as user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal , terminal, wireless communication device, user agent or user device.
  • the terminal device can also be a mobile phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a tablet computer (Pad), a computer with a wireless transceiver function, and a virtual reality (VR) terminal.
  • SIP session initiation protocol
  • Pad tablet computer
  • VR virtual reality
  • augmented reality (augmented reality, AR) terminal equipment wireless terminals in industrial control (industrial control), wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), with wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wireless terminals in self driving, wireless terminals in remote medical, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, wearable devices (such as smart watches, smart bracelets, pedometer, etc.), terminal equipment in a 5G network or a terminal equipment in a future evolved public land mobile network (PLMN), etc., are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted, and can also be deployed on water (such as ships, etc.), and can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device 302 may be a legacy UE, or may be an RB-level partial frequency hopping (RPFS) UE that supports SRS coverage and capacity enhancement, or may be other UEs, This application does not limit the type of terminal equipment.
  • legacy UE refers to user equipment supporting existing mechanisms, for example, user equipment supporting release-15 and release-16.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • the terminal device can also be a terminal in the Internet of Things (Internet of Things, IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the development of information technology in the future, and its main technical feature is to connect items to Network connection, so as to realize the intelligent network of man-machine interconnection and object interconnection.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • the terminal device may also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data (part of the terminal), receiving control information and downlink data from network devices, and sending electromagnetic waves. Transmit uplink data to network devices.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • EDGE enhanced data rate for GSM evolution
  • WiMAX worldwide interoperability for microwave access
  • the technical solution of the embodiment of the present application can also be applied to other communication systems, such as public land mobile network (public land mobile network, PLMN) system, advanced long-term evolution (LTE advanced, LTE-A) system, 5G system, new air interface (newradio (NR) system, machine-to-machine communication (machine to machine, M2M) system, or other communication systems evolved in the future, etc., which are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • LTE advanced, LTE-A advanced long-term evolution
  • 5G system new air interface
  • newradio (NR) system newradio (machine to machine, M2M) system
  • M2M machine-to-machine communication
  • M2M machine to machine
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • terminal devices included in the network architecture shown in FIG. 3 are just an example, and this embodiment of the present application is not limited thereto.
  • more or less terminal devices communicating with network devices may also be included, which are not described one by one in the accompanying drawings for the sake of concise description.
  • the application scenario may not be limited to include network devices and terminal devices, for example, it may also include core network nodes or bearer Devices for virtualizing network functions and the like are obvious to those skilled in the art, and will not be repeated here.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this embodiment may also be performed by a module (for example, a chip) in the terminal device, and the functions performed by the network device in this application may also be performed by a module (for example, a chip) in the network device .
  • the communication method may include the following steps.
  • Step S401 The terminal device determines at least one of the cyclic shift and the comb position of the SRS sequence corresponding to the first SRS, and the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer.
  • the comb position may refer to frequency domain positions corresponding to multiple SRS sequences.
  • the comb position may be an RE position, for example, on a certain OFDM symbol, the first RB where the SRS is located or the start position of the RE in a certain RB.
  • the starting position of RE is a natural number smaller than the size of comb, such as Comb-4, the starting position of RE is 0, 1, 2, 3; Comb-4, the starting position of RE is 0, 1, 2, 3...7; Comb-12, the starting position of RE is 0,1,2,3...11.
  • mapping to different comb positions it may refer to mapping to a certain OFDM symbol, mapping to different RE start positions in an RB, and mapping to a different comb position in a certain OFDM symbol, that is, mapping to FDM on the RE.
  • the comb positions of different SRS sequences may be different, or the comb positions of some SRS sequences may be the same.
  • the comb position may be used to send the SRS sequence.
  • the cyclic shift may correspond to the cyclic shift of multiple antenna ports corresponding to multiple SRS sequences at the same comb position.
  • the cyclic shifts of different SRS sequences may be different, or the cyclic shifts of some SRS sequences may be the same.
  • the cyclic shift can be used to generate the SRS sequence.
  • the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer, which can be understood as that the length of the SRS sequence cannot be divided by the maximum cyclic shift number.
  • the terminal device determines the cyclic shift of the SRS sequence corresponding to the first SRS At least one of the position and comb position, determined in any of the following ways:
  • Method 1 When the SRS sequence corresponding to the SRS is at the same comb position, multiple SRS sequences correspond to multiple antenna ports one by one, and different antenna ports are distinguished by cyclic shift at the same comb position.
  • the terminal device determines the cyclic shifts of the SRS sequences corresponding to multiple antenna ports at the same comb position according to the re-modified mapping expression, so that the SRS sequences at the same comb position are orthogonal to each other.
  • the comb position may be predefined, or may be indicated by the network device to the terminal device through high-layer signaling, such as RRC, or downlink control information (downlink control information, DCI), or other high-layer signaling.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position is related to at least one of the cyclic shift of the SRS sequence, the length of the SRS sequence, and the maximum cyclic shift number.
  • the orthogonality judgment criterion is as follows: for antenna ports p i and antenna ports p j (i ⁇ j) that are multiplexed through different cyclic shifts of the same comb position, the assigned cyclic shift and satisfy:
  • the length of the SRS sequence represented by L in the embodiment of the present application represents the sequence length of the SRS sequence transmitted by the terminal device through one antenna port under the same OFDM symbol, or the length of the SRS sequence represented by L represents the same Under the OFDM symbol, transmit the sequence length of the SRS sequence corresponding to the antenna port corresponding to one SRS.
  • L can be determined based on the configured SRS bandwidth m SRS,b , where m SRS,b is the number of RBs configured for the SRS, and is determined by the RRC signal Instructions.
  • L can be based on OK, among them, Indicates the number of RBs corresponding to one SRS transmitted under the same OFDM symbol, m SRS,b indicates the number of RBs configured for SRS, and PF indicates the partial frequency monitoring coefficient.
  • the mapping relationship of the cyclic shift of the SRS sequence corresponding to the SRS is redesigned.
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to at least one item of the cyclic shift offset value, the maximum cyclic shift number, and the serial number of the antenna port. specific:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set m satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, It can be indicated by the high-level parameter transmissionComb, Indicates the number of antenna ports corresponding to the first SRS, It can be configured by the high-level parameter nrofSRS-Ports, and p i represents the serial number of the antenna port i.
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to antenna port i, presented in angle form, for example ⁇ i can be directly used to generate the SRS sequence, and the specific generation of the SRS sequence can refer to the description above. Also represents the cyclic shift of the SRS sequence corresponding to the antenna port i, presented in the form of an index, for example, 0. ⁇ i and The relationship between satisfies:
  • cyclic shift offset value It can also be understood as a cyclic shift index, and can also be understood as a cyclic shift corresponding to an SRS, which is configured by the high-level parameter transmissionComb.
  • SRS which is configured by the high-level parameter transmissionComb.
  • mapping expression of the cyclic shift of the SRS sequence corresponding to the SRS there may be other forms of deformation.
  • the operation of adding (multiplying) a certain parameter (value) is added on the basis of the expression in the prior art; limit.
  • the transmission comb size of the first SRS is 8
  • the sequence length of the SRS is 6N
  • the maximum number of cyclic shifts is 12, and the number of antenna ports corresponding to the first SRS Take 4 as an example to illustrate:
  • Table 4 is different The mapping relationship between ⁇ i and p i under the condition
  • the maximum number of cyclic shifts is 12, and the number of antenna ports is 4.
  • the cyclic shift of the SRS sequence corresponding to the antenna port p 0 The corresponding sequence expression is:
  • sequence r 0 is multiplied by the sequence r 1
  • Sequence r 0 and sequence r 1 are orthogonal sequences. Please refer to FIG. 5 .
  • FIG. 5 is a schematic diagram of sequence orthogonality provided by an embodiment of the present application. As shown in Figure 5, sequence r 0 and sequence r 1 implement multiplexing between different antenna ports by cyclic shifting at the same comb position.
  • Method 1 For the SRS sequence corresponding to the SRS at the same comb position, by modifying the cyclic shift configuration rule of the SRS sequence, that is, modifying the mapping expression of the antenna port and the cyclic shift of the SRS sequence, the SRS sequence at the same comb position can be realized.
  • the SRS sequences are pairwise orthogonal.
  • the SRS sequence corresponding to the first SRS when the SRS sequence corresponding to the first SRS is at the same comb position, the SRS sequence corresponds to multiple antenna ports one by one, and for the SRS sequence corresponding to the first SRS that is not orthogonal to the same comb position, by modifying the antenna port and the comb position
  • the mapping expression can correspond non-orthogonal SRS sequences to different comb positions, and can realize pairwise orthogonality of SRS sequences at the same comb position. Specifically:
  • the SRS sequence corresponding to the first SRS corresponds to multiple antenna ports respectively.
  • the multiple antenna ports are divided into M groups.
  • the antenna ports in each group are at the same comb position, and different groups are at different comb positions, that is, antenna ports of different groups. Multiplexing can be achieved through the comb position.
  • the antenna ports corresponding to two orthogonal SRS sequences are divided into one group, and the non-orthogonal SRS sequences are corresponding to different comb positions, which can solve the problem that the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer The problem of non-orthogonal SRS sequences at the same comb position.
  • the SRS sequences are not orthogonal. It can be understood that the SRS sequences corresponding to different antenna ports do not satisfy the orthogonality judgment criterion in the first method.
  • k is any integer.
  • the comb positions of the SRS sequences corresponding to different antenna ports are related to at least one item of the comb offset value, the maximum cyclic shift number, the serial number of the antenna port, and the comb size of the SRS. specific:
  • the comb position of the SRS sequence corresponding to the different antenna ports corresponding to the first SRS satisfies:
  • the starting position of frequency domain resource of SRS defined as:
  • n shift represents the frequency domain offset value (RB level) compared with the reference point
  • n shift is configured by high-level signaling freqDomainShift, Indicates the comb offset value corresponding to the first SRS, Denotes a function of the parameter K TC and the time-domain OFDM symbol l'. Determined based on the following expression:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents the set n
  • the comb positions corresponding to the antenna ports in the same group are the same, and the cyclic shift of the SRS sequences corresponding to different antenna ports in the same comb position can be determined by using the mapping rule in the prior art, or by using the same SRS in the first method, different The mapping rule of the cyclic shift of the SRS sequence corresponding to the antenna port.
  • the SRS transmission comb size is 8
  • the length of the SRS sequence corresponding to the first SRS is 6N
  • the maximum number of cyclic shifts is 12
  • the length of the SRS sequence corresponding to the first SRS The number of antenna ports is 4 as an example, and the mapping rules of the cyclic shift and comb position of the SRS sequence corresponding to different antenna ports are described:
  • the starting position of frequency domain resource of SRS defined as:
  • n shift represents the frequency domain offset value (RB level) compared with the reference point
  • n shift is configured by high-level signaling freqDomainShift, Indicates the comb offset value corresponding to the first SRS, Denotes a function of the parameter K TC and the time-domain OFDM symbol l'.
  • Table 5 is different The mapping relationship between ⁇ i , comb position and p i under the condition
  • antenna port p 0 and antenna port p 2 are multiplexed at the same comb position to The transmission sequence of antenna port p 0 is:
  • sequence r 0 is multiplied by the sequence r 1 .
  • Sequence r 0 and sequence r 1 are orthogonal sequences.
  • the pairwise orthogonality of the SRS sequences at the same comb position can be realized.
  • Method 3 limit the cyclic shift offset value configured by the network device, so that the multiplexed antenna port p i and antenna port p j (i ⁇ j) are realized through different cyclic shifts of the same comb position, and the allocated cyclic shift and satisfy:
  • the multiple SRSs can be multiple SRSs of the same terminal device.
  • the same terminal device sends different SRSs between different OFDM symbols; multiple SRSs can also be multiple SRSs of different terminal devices.
  • the network device may determine at least one cyclic shift offset value corresponding to multiple SRSs, at least one cyclic shift offset value is associated with the cyclic shift of the SRS sequence corresponding to the multiple SRSs, corresponding to different SRSs at the same comb position The pairwise orthogonality between the SRS sequences.
  • pairwise orthogonality between SRS sequences corresponding to different SRSs corresponding to the same comb position satisfies:
  • the network device can configure the cyclic shift offset value for different SRSs, based on the mapping relationship between antenna ports and cyclic shifts, to ensure that the cyclic shifts of the SRS sequences corresponding to the antenna ports corresponding to different SRSs satisfy the above formula relationship , so as to ensure that the SRS sequences corresponding to the antenna ports corresponding to different SRSs are orthogonal.
  • the pairwise orthogonality between the SRS sequences corresponding to the SRS corresponding to the same comb position satisfies:
  • k 1 is an integer, Indicates the maximum number of cyclic shifts.
  • the network device can configure the cyclic shift offset value for the SRS, based on the mapping relationship between the antenna port and the cyclic shift, to ensure that the cyclic shift of the SRS sequence corresponding to the antenna port corresponding to different SRS satisfies the above formula relationship, In this way, it is ensured that the SRS sequences corresponding to the antenna ports corresponding to different SRSs are orthogonal.
  • k 1 may take a value of 0.
  • the configurations belong to the same set, which can ensure that the SRS sequences corresponding to the antenna ports corresponding to different SRSs are orthogonal at the same comb position.
  • determine the first set X the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS
  • the second SRS corresponds to the cyclic shift of the SRS sequence corresponding to the antenna port j
  • the SRS sequences corresponding to the antenna ports corresponding to the cyclic shift configuration included in the first set X are orthogonal.
  • Table 7 The multiplexing combination of the first SRS of 4 antenna ports and the second SRS of 2 antenna ports
  • the network device configures the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS to the terminal device
  • the cyclic shift of the SRS sequence corresponding to the antenna port j corresponding to the second SRS Based on the cyclic shift mapping relation designed by the scheme, in order to ensure that the first SRS and the second SRS are orthogonal at the same comb position, if but
  • ⁇ 0,5/11 ⁇ can be understood as, the network device configures the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS to the terminal device
  • the cyclic shift of the SRS sequence corresponding to the antenna port j corresponding to the second SRS Based on the cyclic shift mapping relation designed by the scheme, in order to ensure that the first SRS and the second SRS are orthogonal at the same comb position, if but or 11. Or, from the perspective of the terminal device, its configured cyclic shift offset value
  • the embodiment of the present application only combines the first SRS of 4 antenna ports with the second SRS of 4 antenna ports, the first SRS of 4 antenna ports and the second SRS of 4 antenna ports
  • the second SRS combination of 2 antenna ports is used as an example for illustration. It can be understood that this embodiment of the present application may also include other possible multiplexing combinations, which will not be described here one by one.
  • the device may multiplex the combination of SRS as follows:
  • Table 9 The multiplexing combination of the first SRS of 4 antenna ports and the second SRS of 2 antenna ports
  • the network device configures the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS to the terminal device
  • the cyclic shift of the SRS sequence corresponding to the antenna port j corresponding to the second SRS Based on the cyclic shift mapping relation designed by the scheme, in order to ensure that the first SRS and the second SRS are orthogonal at the same comb position, if but One of the values in 2,4,6,8,10. Or, from the perspective of the terminal device, its configured cyclic shift offset value
  • the embodiment of the present application only combines the first SRS of 4 antenna ports with the second SRS of 4 antenna ports, the first SRS of 4 antenna ports and the second SRS of 4 antenna ports
  • the second SRS combination of 2 antenna ports is used as an example for illustration. It can be understood that this embodiment of the present application may also include other possible multiplexing combinations, which will not be described here one by one.
  • the cyclic shift and comb position of the SRS sequence corresponding to the first SRS and the second SRS are determined based on the existing mechanism, and the cyclic shift offset value configured by the network device is limited.
  • the network device can directly specify the first SRS
  • the cyclic shift offset value of the first SRS and the second SRS ensures that the SRS sequences corresponding to the antenna ports corresponding to different SRSs are orthogonal.
  • the SRS transmission comb size is 8
  • the SRS sequence length is 6
  • the maximum cyclic shift number is 12
  • the number of SRS antenna ports is 4.
  • Table 10 is different The mapping relationship between ⁇ i , comb position and p i under the condition
  • the antenna port p 0 and the antenna port p 2 correspond to the same comb position, and the corresponding SRS sequences are orthogonal, where p i represents the serial number of the antenna port.
  • the SRS sequence corresponding to antenna port p 1 or antenna port p 3 is not orthogonal to the SRS sequence corresponding to antenna port p 0 , but can be distinguished by different comb positions.
  • the terminal device determines at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS. It can be understood that, in one manner, the above-mentioned manner of determining the cyclic shift and comb position of the SRS sequence is predefined , when the terminal device receives the parameters configured by the network device, for example n shift , etc., trigger a determination action, that is, determine the cyclic shift and comb position of the SRS sequence according to the parameters configured by the network device and the predefined method 1, method 2 or method 3. In another way, the above-mentioned method of determining the cyclic shift and comb position of the SRS sequence is indicated by the network device through high-level signaling.
  • the high-level signaling can be DCI signaling, or in the form of bitmap, or RRC signaling, etc.
  • the terminal device when the terminal device receives the manner of determining the cyclic shift and comb position of the SRS sequence and related configuration parameters, it triggers a determination operation.
  • the SRS in this embodiment of the present application is an SRS used for positioning.
  • the length of the SRS sequence is 6N.
  • non-orthogonal SRS sequences may be generated at the same comb position, and the cyclic shift of the SRS sequences corresponding to multiple antenna ports at the same comb position can be determined by the above method 1, method 2 and method 3, and the same comb position can be realized.
  • the SRS sequences are pairwise orthogonal.
  • the SRS sequences corresponding to different antenna ports are orthogonal
  • the cyclic shifts of the SRS sequences corresponding to multiple antenna ports at the same comb position may also be determined through the above-mentioned method 1, method 2 and method 3.
  • two maximum cyclic shift numbers can also be defined. Specifically: if the length of the SRS sequence is equal to 6N (N is a positive odd number), the maximum cyclic shift number that can be supported is 6; if The sequence length of the SRS is equal to 6N (N is an even number), and the maximum number of cyclic shifts that can be supported is 12. For example, in the Comb-8 scenario, if the length of the SRS sequence corresponding to the SRS is 18, the maximum number of cyclic shifts can be supported to be 6; if the length of the SRS sequence corresponding to the SRS is 24, the maximum number of cyclic shifts can be supported for 12. The details are shown in Table 11 below:
  • N in Table 11 is a positive odd number. It can be understood that the embodiment of the present application only uses the Comb-8 scenario as an example for illustration, and the present application may also be applicable to other scenarios, for example, Comb-2, Comb-6, Comb-16, Comb-32, etc. in the future.
  • Step S402 the terminal device sends an SRS to the network device according to at least one of the cyclic shift and the comb position.
  • the terminal device may send the SRS to the network device according to at least one of the cyclic shift and the comb position.
  • the network device can also determine the cyclic shift of the antenna port and at least one of the comb positions For one item, for a specific determination method, reference may be made to the detailed description in the above step S401, and details are not repeated here to avoid repetition.
  • the network device After the network device determines at least one of the cyclic shift and the comb position of the antenna port, it can receive the SRS from the terminal device according to at least one of the cyclic shift and the comb position, and then implement beam management based on the SRS, codebook-based transmission, non-codebook-based transmission, antenna switching transmission or positioning functions.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this embodiment may also be performed by a module (for example, a chip) in the terminal device, and the functions performed by the network device in this application may also be performed by a module (for example, a chip) in the network device .
  • the communication method may include the following steps.
  • Step S601 Determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, and the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer.
  • the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer number, which can be understood as that the maximum cyclic shift number corresponding to the SRS cannot be divided by the number of antenna ports corresponding to the SRS.
  • the terminal device determines at least one of the cyclic shift of the antenna port and the comb position, and the specific determination method is as follows:
  • the cyclic shift configuration rule of the SRS sequence can be modified, that is, the mapping expression of the antenna port and the cyclic shift of the SRS sequence can be modified to realize the cycle of multiple antenna ports corresponding to the SRS sequence under the same SRS at the same comb position Shifts are evenly distributed.
  • the cyclic shift of the SRS sequence is related to at least one of the cyclic shift offset value, the maximum cyclic shift number and the antenna port number. specific:
  • a new coefficient ⁇ i is added, and the relationship between pi and ⁇ i is redesigned, so that the product of ⁇ i and the ratio of the maximum cyclic shift number to the number of antenna ports is an integer , that is, the maximum cyclic shift
  • the product of the ratio of the number to the number of antenna ports and the first coefficient is an integer.
  • the SRS sequence corresponds to multiple antenna ports one by one, and the cyclic shift of the SRS sequence corresponding to different antenna ports satisfies:
  • ⁇ i is the first coefficient, and ⁇ i satisfies the following conditions:
  • k is an integer greater than or equal to 0.
  • the embodiment of the present application does not limit the value of ⁇ i .
  • the transmission comb size of SRS is 8, the length of SRS sequence is 6, the maximum number of cyclic shifts is 12, and the number of antenna ports corresponding to SRS is 4.
  • the cyclic shift of the SRS sequence corresponding to different antenna ports satisfies:
  • Table 12 is different The mapping relationship between ⁇ i and p i under the condition
  • antenna port p 0 and antenna port p 2 correspond to the same comb position, and the corresponding cyclic shift satisfies uniform distribution, where p i represents the serial number of the antenna port.
  • the SRS sequence corresponding to antenna port p 1 or antenna port p 3 is not continuous with the cyclic shift corresponding to antenna port p 0 , but can be distinguished by different comb positions.
  • the SRS allocation at the 4-antenna port SRS Under the condition of , at the same comb position, the 4-antenna port SRS can only be multiplexed with 2 1-antenna port SRS, and the above-mentioned 2 1-antenna ports correspond to the cyclic shift offset value Equal to 4 or 5 respectively.
  • the cyclic shifts of the SRS sequences corresponding to different antenna ports are related to the number of ports multiplexed at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to different antenna ports satisfies:
  • It is the number of multiplexed ports in the same comb position. This can be achieved in a predefined way, for example, Equal to the greatest common divisor of the maximum cyclic shift number and the number of antenna ports; another example, It is equal to the number of antenna ports divided by the number of comb positions occupied by one SRS.
  • the maximum number of cyclic shifts is 6, the number of antenna ports but If the maximum number of cyclic shifts is 12, the number of antenna ports but If the antenna port ⁇ p 0 ,p 2 ⁇ and the antenna port ⁇ p 1 ,p 3 ⁇ correspond to different comb positions (two comb positions), then the corresponding
  • the cyclic shifts of the SRS sequences corresponding to different antenna ports satisfy:
  • limit network equipment can be configured for 3,4,5.
  • the specific comb position corresponding to the antenna port can be designed based on the following scheme:
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions, and the M and the maximum
  • the number of cyclic shifts is related to at least one item of the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the SRS sequence corresponding to the SRS corresponds to multiple antenna ports. Multiple antenna ports are divided into multiple groups. Different groups are located in different comb positions. The mapping rule between the antenna port and the comb position of the SRS sequence can be modified. In the existing protocol mechanism Based on that, redesign p i with mapping relationship.
  • the terminal device determines the comb position of the SRS sequence corresponding to multiple antenna ports according to the re-modified mapping rule, which can realize the average cyclic shift allocation of multiple antenna ports corresponding to the SRS sequence in the same comb position under the same SRS.
  • M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the transmission comb size of SRS is 8, and the maximum number of cyclic shifts is 6.
  • the number of antenna ports corresponding to the SRS is 4 as an example for illustration.
  • the comb positions of the SRS sequences corresponding to different antenna ports satisfy:
  • the above four antenna ports correspond to two different comb positions respectively, and the starting position of the frequency domain resources of the SRS defined as:
  • n shift indicates the frequency domain offset value (RB level) compared to the reference point
  • n shift is configured by high-level signaling freqDomainShift
  • Indicates the comb offset value corresponding to SRS Denotes a function of the parameter K TC and the time-domain OFDM symbol l'.
  • the terminal device determines at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS. It can be understood that, in one manner, the above-mentioned manner of determining the cyclic shift and comb position of the SRS sequence is predefined, and the terminal When the device receives the parameters configured by the network device, such as n shift , etc., trigger a determination action, that is, determine the cyclic shift and comb position of the SRS sequence according to parameters configured by the network device and a predefined determination method. In another way, the above-mentioned method of determining the cyclic shift and comb position of the SRS sequence is indicated by the network device through high-level signaling.
  • the high-level signaling can be DCI signaling, or in the form of bitmap, or RRC signaling, etc.
  • the terminal device when the terminal device receives the manner of determining the cyclic shift and comb position of the SRS sequence and related configuration parameters, it triggers a determination operation.
  • the SRS in this embodiment of the present application is an SRS used for positioning.
  • Step S602 the terminal device sends an SRS to the network device according to at least one of the cyclic shift and the comb position.
  • the terminal device may send the SRS to the network device according to at least one of the cyclic shift and the comb position.
  • the network device can also determine at least one of the cyclic shift of the antenna port and the comb position.
  • the specific determination method can refer to the detailed description in the above step S601. To avoid repetition, details are not repeated here.
  • the network device After the network device determines at least one of the cyclic shift and the comb position of the antenna port, it can receive the SRS from the terminal device according to at least one of the cyclic shift and the comb position, and then implement beam management based on the SRS, codebook-based transmission, non-codebook-based transmission, antenna switching transmission or positioning functions.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device may be a terminal device or a module (for example, a chip) in the terminal device.
  • the apparatus 700 at least includes: a determining unit 701 and a sending unit 702; wherein:
  • Determining unit 701 used to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS, the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer;
  • a sending unit 702 configured to send the first SRS to a network device according to at least one of the cyclic shift and the comb position;
  • the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and p i indicates the serial number of the antenna port i.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the antenna corresponding to the first SRS The number of ports is 4, and the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the first SRS are divided into M groups, the antenna ports in the same group correspond to the same comb position, and the antenna ports of different groups correspond to different comb positions , the M is related to at least one of the number of antenna ports, the maximum number of cyclic shifts, and the length of the SRS sequence, and the M is a positive integer greater than or equal to 1.
  • the SRS sequences corresponding to the antenna ports in the same group are orthogonal.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents a set n
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the antenna corresponding to the first SRS The number of ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • p i Indicates the number of antenna ports corresponding to the first SRS
  • p i Indicates the comb position of the SRS sequence corresponding to the antenna port i
  • K TC indicates the transmission comb size of the first SRS
  • ⁇ m represents the set m, the set satisfies:
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the antenna corresponding to the first SRS The number of ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the first SRS is an SRS for positioning.
  • the determining unit 701 is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, In the SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • determining unit 701 and the sending unit 702 For a more detailed description of the determining unit 701 and the sending unit 702, reference may be made directly to the relevant description of the terminal device in the method embodiment shown in FIG. 4 above, and details are not repeated here.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the apparatus may be a network device, or a module (for example, a chip) in the network device.
  • the apparatus 800 at least includes: a determining unit 801 and a receiving unit 802; wherein:
  • a determining unit 801 configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the first SRS, where the ratio of the length of the SRS sequence to the maximum cyclic shift number is a non-integer;
  • a receiving unit 802 configured to receive the first SRS from the terminal device according to at least one of the cyclic shift and the comb position;
  • the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • ⁇ 1 , ⁇ 2 , ..., ⁇ N represent a given value
  • ⁇ m represents a set m
  • the set satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i, Indicates the maximum number of cyclic shifts, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and p i indicates the serial number of the antenna port i.
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the antenna corresponding to the first SRS The number of ports is 4, and the cyclic shift of the SRS sequence corresponding to the first SRS satisfies:
  • the multiple antenna ports corresponding to the SRS sequences corresponding to the first SRS are divided into M groups, the antenna ports in the same group correspond to the same comb position, and the antenna ports of different groups correspond to different comb positions , the M is related to at least one of the number of antenna ports, the maximum number of cyclic shifts, and the length of the SRS sequence, and the M is a positive integer greater than or equal to 1.
  • the SRS sequences corresponding to the antenna ports in the same group are orthogonal.
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the first SRS
  • ⁇ n represents a set n
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the antenna corresponding to the first SRS The number of ports is 4, and the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • p i represents the serial number of the antenna port i
  • p i Indicates the number of antenna ports corresponding to the first SRS
  • p i Indicates the comb position of the SRS sequence corresponding to the antenna port i
  • K TC indicates the transmission comb size of the first SRS
  • ⁇ m represents the set m, the set satisfies:
  • the transmission comb size of the first SRS is 8
  • the length of the SRS sequence is 6N
  • N is a positive odd number
  • the maximum number of cyclic shifts is 12
  • the number of antenna ports corresponding to the SRS is is 4, the comb position of the SRS sequence corresponding to the first SRS satisfies:
  • the determining unit 801 is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, In the SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • the determining unit 801 is further configured to:
  • the SRS is a plurality of SRS
  • the at least one cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence
  • the SRS In the sequence, the pairwise orthogonality between the SRS sequences corresponding to different SRS occupying the same comb position satisfies:
  • determining unit 801 and the receiving unit 802 For a more detailed description of the determining unit 801 and the receiving unit 802, reference may be made directly to the relevant description of the network device in the method embodiment shown in FIG. 4 above, and details are not repeated here.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the device may be a terminal device or a module (for example, a chip) in the terminal device.
  • the apparatus 900 at least includes: a determining unit 901 and a sending unit 902; wherein:
  • the determining unit 901 is configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, and the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer;
  • the sending unit 902 is configured to send the SRS to a network device according to at least one of the cyclic shift and the comb position.
  • the product of the ratio of the maximum cyclic shift number to the number of antenna ports and the first coefficient is an integer.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i is the first coefficient
  • k is an integer greater than or equal to 1
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the transmission comb size of the SRS is 8
  • the maximum number of cyclic shifts corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the cyclic shift of the SRS sequence corresponding to the SRS is bits satisfy:
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to the number of ports multiplexed at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the number of multiplexed ports at the same comb position is equal to the greatest common divisor of the maximum cyclic shift number and the number of antenna ports.
  • the plurality of antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions, so
  • the M is related to at least one of the maximum cyclic shift number and the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • the comb position of the SRS sequence corresponding to the SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4, and the comb position of the SRS sequence corresponding to the SRS is satisfy:
  • the SRS is an SRS for positioning.
  • the determining unit 901 is further configured to determine a cyclic shift offset value corresponding to the first SRS, the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, the In the above SRS sequence, the pairwise orthogonality between the SRS sequences corresponding to the same comb position satisfies:
  • determining unit 901 and the sending unit 902 For a more detailed description of the determining unit 901 and the sending unit 902, reference may be made directly to the relevant description of the terminal device in the method embodiment shown in FIG. 6 , and details are not repeated here.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the apparatus may be a network device, or a module (for example, a chip) in the network device.
  • the apparatus 1000 at least includes: a determining unit 1001 and a receiving unit 1002; wherein:
  • the determining unit 1001 is configured to determine at least one of the cyclic shift and comb position of the SRS sequence corresponding to the SRS, and the ratio of the maximum cyclic shift number corresponding to the SRS to the number of antenna ports corresponding to the SRS is a non-integer;
  • the receiving unit 1002 is configured to receive the SRS from the terminal device according to at least one of the cyclic shift and the comb position.
  • the product of the ratio of the maximum cyclic shift number to the number of antenna ports and the first coefficient is an integer.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i is the first coefficient
  • k is an integer greater than or equal to 1
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the transmission comb size of the SRS is 8
  • the maximum number of cyclic shifts corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4,
  • the cyclic shift of the SRS sequence corresponding to the SRS is bits satisfy:
  • the cyclic shift of the SRS sequence corresponding to the SRS is related to the number of ports multiplexed at the same comb position.
  • the cyclic shift of the SRS sequence corresponding to the SRS satisfies:
  • ⁇ i represents the cyclic shift of the SRS sequence corresponding to the antenna port i
  • p i represents the serial number of the antenna port i
  • the number of multiplexed ports at the same comb position is equal to the greatest common divisor of the maximum cyclic shift number and the number of antenna ports.
  • the plurality of antenna ports corresponding to the SRS sequences corresponding to the SRS are divided into M groups, the comb positions corresponding to the antenna ports in the same group are the same, and the antenna ports of different groups correspond to different comb positions, so
  • the M is related to at least one of the maximum cyclic shift number and the number of antenna ports, and the M is a positive integer greater than or equal to 1.
  • the M is equal to the ratio of the number of antenna ports to the number of multiplexed antenna ports at the same comb position:
  • the comb position of the SRS sequence corresponding to the SRS satisfies:
  • p i represents the serial number of the antenna port i
  • K TC represents the transmission comb size of the SRS
  • ⁇ n represents the set n
  • the transmission comb size of the SRS is 8
  • the maximum cyclic shift number corresponding to the SRS is 6
  • the number of antenna ports corresponding to the SRS is 4, and the comb position of the SRS sequence corresponding to the SRS is satisfy:
  • determining unit 1001 and the receiving unit 1002 For a more detailed description of the determining unit 1001 and the receiving unit 1002, reference may be made directly to the relevant description of the network device in the method embodiment shown in FIG. 6 above, and details are not repeated here.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the apparatus may be a network device, or a module (for example, a chip) in the network device.
  • the device 1100 at least includes: a determining unit 1101; wherein:
  • a determining unit 1101 configured to determine a cyclic shift offset value corresponding to the first SRS and a cyclic shift offset value corresponding to the second SRS;
  • [] represents the rounding function
  • Indicates the maximum number of cyclic shifts Indicates the serial number of the antenna port i
  • Indicates the serial number of the antenna port q Indicates the number of antenna ports corresponding to the first SRS
  • the SRS sequence corresponding to the antenna port i and the SRS sequence corresponding to the antenna port q are SRS sequences corresponding to different SRSs, the and said satisfy:
  • k is a positive integer
  • L represents the length of the SRS sequence corresponding to the antenna port i or the SRS sequence corresponding to the antenna port q
  • the SRS sequence corresponding to the antenna port i is the same as the SRS sequence corresponding to the antenna port q of the same length.
  • the SRS is an SRS for positioning.
  • the determining unit 1101 is further configured to: determine a cyclic shift offset value corresponding to the first SRS, where the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence, In the SRS sequence, pairwise orthogonality between SRS sequences corresponding to the same comb position satisfies:
  • determining unit 1101 For a more detailed description of the determining unit 1101, reference may be made directly to the relevant description of the network device in the method embodiment shown in FIG. 4 above, and details are not repeated here.
  • the apparatus 1200 may include one or more processors 1201, and the processors 1201 may also be referred to as processing units, and may implement certain control functions.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Data for Software Programs.
  • the processor 1201 may also store instructions and data 1203, and the instructions and data 1203 may be executed by the processor, so that the apparatus 1200 executes the methods described in the foregoing method embodiments.
  • the processor 1201 may include a transceiver unit configured to implement receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the apparatus 1200 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the apparatus 1200 may include one or more memories 1202, on which instructions 1204 may be stored, and the instructions may be executed on the processor, so that the apparatus 1200 executes the above-mentioned method embodiments. described method.
  • data may also be stored in the memory.
  • instructions and data may also be stored in the processor.
  • the processor and memory can be set separately or integrated together. For example, the corresponding relationships described in the foregoing method embodiments may be stored in a memory, or stored in a processor.
  • the apparatus 1200 may further include a transceiver 1205 and an antenna 1206 .
  • the processor 1201 may be called a processing unit, and controls the apparatus 1200 .
  • the transceiver 1205 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device or a transceiver module, etc., and is used to realize a transceiver function.
  • the apparatus 1200 in the embodiment of the present application may be used to execute the method described in FIG. 6 in the embodiment of the present application.
  • the communication device 1200 may be a terminal device, or a module (for example, a chip) in the terminal device.
  • the processor 1201 is used to execute the above-mentioned embodiment
  • the transceiver 1205 is used to perform the operations performed by the sending unit 702 in the above embodiment, and the transceiver 1205 is also used to send information to other communication devices other than the communication device.
  • the foregoing terminal device or modules within the terminal device may also be used to perform various methods performed by the terminal device in the above method embodiment in FIG. 4 , which will not be repeated here.
  • the communication device 1200 may be a network device, or a module (for example, a chip) in the network device.
  • the processor 1201 is used to execute the above embodiments
  • the transceiver 1205 is used to perform the operations performed by the receiving unit 802 in the above embodiment, and the transceiver 1205 is also used to receive information from other communication devices other than the communication device.
  • the foregoing network device or a module within the network device may also be used to execute various methods performed by the network device in the method embodiment in FIG. 4 above, which will not be repeated here.
  • the communication device 1200 may be a terminal device, or a module (for example, a chip) in the terminal device.
  • the processor 1201 is used to execute the above-mentioned embodiment
  • the transceiver 1205 is used to perform the operations performed by the sending unit 902 in the above embodiment
  • the transceiver 1205 is also used to send information to other communication devices other than the communication device.
  • the foregoing terminal device or modules within the terminal device may also be used to perform various methods performed by the terminal device in the above method embodiment in FIG. 6 , which will not be repeated here.
  • the communication device 1200 may be a network device, or a module (for example, a chip) in the network device.
  • the processor 1201 is used to execute the above embodiments
  • the transceiver 1205 is used to perform the operations performed by the receiving unit 1002 in the above embodiment, and the transceiver 1205 is also used to receive information from other communication devices other than the communication device.
  • the foregoing network device or a module within the network device may also be used to execute various methods performed by the network device in the method embodiment in FIG. 6 above, which will not be repeated here.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the devices described in the above embodiments may be network devices or terminals, but the scope of the devices described in this application is not limited thereto, and the structure of the devices may not be limited by FIG. 12 .
  • a device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • a set of one or more ICs may also include storage components for storing data and instructions;
  • ASIC such as modem (MSM)
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • a terminal device 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, analyze and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data .
  • a storage may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal and execute software. Programs, which process data for software programs.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capability, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal 1300 includes a transceiver unit 1301 and a processing unit 1302 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1301 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 1301 for realizing the sending function can be regarded as a sending unit
  • the transceiver unit 1301 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit may be one integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the processing unit 1302 is configured to perform the operations performed by the determining unit 701 in the above embodiments
  • the transceiving unit 1301 is configured to perform the operations performed by the sending unit 702 in the above embodiments.
  • the terminal 1300 may also be used to execute various methods performed by the terminal device in the method embodiment in FIG. 4 above, which will not be repeated here.
  • the processing unit 1302 is configured to perform the operations performed by the determining unit 901 in the above embodiments
  • the transceiving unit 1301 is configured to perform the operations performed by the sending unit 902 in the above embodiments.
  • the terminal 1300 can also be used to execute the various methods performed by the terminal device in the above method embodiment in FIG. 6 , which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the process related to the terminal device in the communication method provided by the above method embodiment can be implemented.
  • the embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored.
  • the program is executed by a processor, the process related to the network device in the communication method provided by the above method embodiment can be implemented.
  • the embodiment of the present application also provides a computer program product, which, when running on a computer or a processor, causes the computer or processor to execute one or more steps in any one of the above-mentioned communication methods. If each component module of the above-mentioned device is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • the embodiment of the present application also provides a chip system, including at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to execute Some or all of the steps described in any one of the above method embodiments corresponding to FIG. 4 and FIG. 6 are included.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application also discloses a communication system, which includes a terminal and a network device.
  • a communication system which includes a terminal and a network device.
  • FIG. 4 and FIG. 6 For a specific description, reference may be made to the communication method shown in FIG. 4 and FIG. 6 .
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile memory and nonvolatile memory.
  • the non-volatile memory can be a hard disk (hard disk drive, HDD), a solid-state drive (solid-state drive, SSD), a read-only memory (read-only memory, ROM), a programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous dRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DR RAM
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.
  • modules/units in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置及计算机可读存储介质。其中,通信方法包括:确定第一探测参考信号SRS对应的SRS序列的循环移位和梳齿comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述第一SRS;所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。通过本申请提供的技术方案,可以提高信道估计精度,提升覆盖性能和系统容量。

Description

一种通信方法、装置及计算机可读存储介质
本申请要求于2021年08月06日提交中国专利局、申请号为202110905761.1、申请名称为“一种通信方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法、装置及计算机可读存储介质。
背景技术
探测参考信号(sounding reference signal,SRS)可以用于波束管理(beam management)、基于码本(codebook)的传输、基于非码本(non-codebook)的传输、天线切换(antenna switching)或者定位等场景。现有讨论中,支持梳状comb大小为8(Comb-8)的SRS传输且针对Comb-8可支持的最大循环移位(cyclic shift,CS)数为6或者12。然而,若Comb-8可支持的最大循环移位数为12,在SRS对应的SRS序列的长度不能整除最大循环移位数的情况下,可能会出现相同comb位置下复用天线端口间SRS的序列不正交的问题,会对信道估计性能产生较大的影响。因此,如何保证相同comb位置下复用序列的正交性,提高信道估计精度,提升覆盖性能和系统容量成为亟待解决的问题。
发明内容
本申请提供一种通信方法、装置及计算机可读存储介质,可以提高信道估计精度,提升覆盖性能和系统容量。
第一方面,本申请提供了一种通信方法,该通信方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片),下面以应用于终端设备为例进行描述。该方法可以包括:确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述第一SRS;所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
在本申请提供的方案中,在SRS对应的SRS序列的长度不能整除最大循环移位数的场景下,终端设备可以确定SRS序列的循环移位和comb位置中的至少一项,从而可以实现SRS对应的相同comb位置的SRS序列的正交发送。不同于现有技术中,在Comb-8可支持的最大循环移位数为12,SRS序列的长度与最大循环移位数的比值为非整数的情况下(例如SRS序列的长度为6,或者SRS序列的长度为12),相同comb位置上可能产生不正交的SRS序列,从而会对信道估计性能产生较大的影响,本申请实施例中,对于SRS序列的长度与最大循环移位数的比值为非整数,即包括SRS序列的长度小于最大循环移位数的场景,终端设备根据新的映射规则确定SRS序列的循环移位和/或comb位置,使得相同comb位置的SRS序列之间两两正交,可以解决现有技术中的可能出现的相同comb位置下发送SRS序列不正交的问题,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000001
其中,
Figure PCTCN2022107157-appb-000002
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000003
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000004
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
在本申请提供的方案中,为实现相同comb位置的SRS序列正交,不同序列对应的不同循环移位需满足上述公式条件。为满足上述条件,可以通过修改不同序列对应的不同循环移位来实现,或者,通过修改不同序列对应的comb位置,保证相同comb位置的SRS序列之间两两正交。上述公式条件从现有协议角度出发,通过阐述SRS序列正交与SRS序列对应的循环移位,最大循环移位数以及序列长度之间的关系,基于本申请设计方案可以解决上述SRS序列正交问题。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000005
Figure PCTCN2022107157-appb-000006
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000007
Figure PCTCN2022107157-appb-000008
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000009
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000010
表示最大循环移位数,
Figure PCTCN2022107157-appb-000011
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000012
表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
在本申请提供的方案中,针对SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,当SRS对应的SRS序列在同一comb位置,SRS序列一一对应多个天线端口,不同天线端口在同一comb位置通过循环移位区分,通过修改SRS序列的循环移位配置规则,即修改天线端口与SRS序列的循环移位的映射表达式,在现有协议机制的基础上,重新设计p i和α i的映射关系。终端设备根据重新修改后的映射表达式确定多个天线端口分别对应的SRS序列在同一comb位置的循环移位,可以使得相同comb位置下的SRS序列两两正交,可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000013
Figure PCTCN2022107157-appb-000014
Figure PCTCN2022107157-appb-000015
在一个具体的实施例中,对于SRS的传输comb大小为8,SRS对应的4个SRS序列分别对应4个天线端口,SRS序列的长度为6N,N为正奇数,最大循环移位数为12的场景下,针对SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,终端设备的4个天线端口在同一comb位置,4个天线端口在同一comb位置通过循环移位区分,可以修改4个SRS序列的循环移位配置规则,即修改4个天线端口与循环移位的映射表达式,在现有协议机制的基础上,重新设计p i和α i的映射关系。终端设备根据重新修改后的映射表达式确定4个天线端口对应的4个SRS序列在同一comb位置的循环移位,可以使得相同comb位置下4个SRS序列正交,可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
在本申请提供的方案中,针对SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,终端设备可以将不正交的SRS序列通过不同comb位置发送给网络设备。具体的,SRS对应的SRS序列分别对应多个天线端口,多个天线端口分为多组,每一组内的天线端口在同一comb位置,不同组分别在不同的comb位置,即不同组的天线端口可以通过comb位置实现复用。将不正交的SRS序列对应不同的comb位置,可以解决SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述同一组内的天线端口对应的SRS序列正交。
在本申请提供的方案中,多个天线端口分为多组,可以理解为,将两两正交的SRS序列对应的天线端口分为一组,将不正交的SRS序列对应的天线端口通过不同comb位置实现复用,不仅可以解决SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,还可以实现相同comb位置下通过循环移位实现不同天线端口间的复用,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000016
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000017
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000018
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000019
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000020
Figure PCTCN2022107157-appb-000021
其中,
Figure PCTCN2022107157-appb-000022
表示所述第一SRS对应的天线端口数。
在本申请提供的方案中,针对SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,SRS对应的SRS序列分别对应多个天线端口,多个天线端口分为多组,不同组分别在不同的comb位置,可以修改天线端口与SRS序列的comb位置的映射规则,在现有协议机制的基础上,重新设计p i
Figure PCTCN2022107157-appb-000023
的映射关系。终端设备根据重新修改后的映射规则确定多个天线端口对应的SRS序列的comb位置,可以使得不正 交的SRS序列对应不同comb位置,两两正交的SRS序列对应相同comb位置,解决SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,进而提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000024
在一个具体的实施例中,对于SRS的传输comb大小为8,SRS对应的SRS序列分别对应4个天线端口,SRS序列的长度为6N,N为正奇数,最大循环移位数为12的场景下,针对SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,可以将4个天线端口分为2组,每组映射不同的comb位置,即2组天线端口可以通过不同的comb位置实现复用。修改4个天线端口与4个SRS序列的comb位置的映射表达式,终端设备根据重新修改后的映射表达式确定4个天线端口对应的4个SRS序列的comb位置,可以解决SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,进而提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000025
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000026
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000027
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000028
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
Figure PCTCN2022107157-appb-000029
表示最大循环移位数,Φ m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000030
Figure PCTCN2022107157-appb-000031
其中,
Figure PCTCN2022107157-appb-000032
表示所述第一SRS对应的天线端口数。
在本申请提供的方案中,针对SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,在循环移位偏移值满足
Figure PCTCN2022107157-appb-000033
条件下,SRS对应的SRS序列分别对应多个天线端口,多个天线端口分为多组,不同组分别在不同的comb位置,可以修改天线端口与SRS序列的comb位置的映射规则,在现有协议机制的基础上,重新设计p i
Figure PCTCN2022107157-appb-000034
的映射关系。终端设备根据重新修改后的映射规则确定多个天线端口对应的SRS序列的comb位置,可以使得不正交的SRS序列对应不同comb位置,两两正交的SRS序列对应相同comb位置,解决SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题,同时,沿用现有机制在4天线端口条件下,且循环移位偏移值满足
Figure PCTCN2022107157-appb-000035
所述4天线端口对应两个comb位置。本方案可以基于现有机制进一步扩展。在降低标准影响的基础上,进而提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000036
在一种可能的实现方式中,所述第一SRS为用于定位的SRS。
在一种可能的实现方式中,所述方法还包括:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000037
其中,
Figure PCTCN2022107157-appb-000038
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000039
表示最大循环移位数,L表示所述SRS序列的长度。
第二方面,本申请提供了一种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以应用于网络设备为例进行描述。该方法可以包括:确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述第一SRS;所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
在本申请提供的方案中,在SRS对应的SRS序列的长度不能整除最大循环移位数的场景下,网络设备可以确定SRS序列的循环移位和comb位置中的至少一项,从而可以实现SRS对应的相同comb位置的SRS序列的正交接收。不同于现有技术中,在Comb-8可支持的最大循环移位数为12,SRS序列的长度与最大循环移位数的比值为非整数的情况下(例如SRS序列的长度为6,或者SRS序列的长度为12),相同comb位置上可能产生不正交的SRS序列,从而会对信道估计性能产生较大的影响,本申请实施例中,对于SRS序列的长度与最大循环移位数的比值为非整数,即包括SRS序列的长度小于最大循环移位数的场景,终端设备根据新的映射规则确定SRS序列的循环移位和/或comb位置,使得相同comb位置的SRS序列之间两两正交,可以解决现有技术中的可能出现的相同comb位置下发送SRS序列不正交的问题,进而可以提高信道估计精度,提升覆盖性能和系统容量。
应理解,第二方面的执行主体为网络设备,第二方面的具体内容与第一方面的内容对应,第二方面相应特征以及达到的有益效果可以参考第一方面的描述,为避免重复,此处适当省略详细描述。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000040
其中,
Figure PCTCN2022107157-appb-000041
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000042
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000043
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000044
Figure PCTCN2022107157-appb-000045
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000046
Figure PCTCN2022107157-appb-000047
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000048
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000049
表示最大循环移位数,
Figure PCTCN2022107157-appb-000050
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000051
表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000052
Figure PCTCN2022107157-appb-000053
Figure PCTCN2022107157-appb-000054
在一种可能的实现方式中,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
在一种可能的实现方式中,所述同一组内的天线端口对应的SRS序列正交。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000055
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000056
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000057
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000058
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000059
Figure PCTCN2022107157-appb-000060
其中,
Figure PCTCN2022107157-appb-000061
表示所述第一SRS对应的天线端口数。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000062
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000063
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000064
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000065
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000066
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
Figure PCTCN2022107157-appb-000067
表示最大循环移位数,Φ m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000068
Figure PCTCN2022107157-appb-000069
其中,
Figure PCTCN2022107157-appb-000070
表示所述第一SRS对应的天线端口数。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000071
在一种可能的实现方式中,所述方法还包括:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000072
其中,
Figure PCTCN2022107157-appb-000073
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000074
表示最大循环移位数,L表示所述SRS序列的长度。
在一种可能的实现方式中,所述方法还包括:
确定SRS分别对应的至少一个循环移位偏移值,所述SRS为多个SRS,所述至少一个循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的不同SRS对应的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000075
其中,
Figure PCTCN2022107157-appb-000076
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000077
表示所述第二SRS对应天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000078
表示最大循环移位数,L表示所述SRS序列的长度。
在本申请提供的方案中,网络设备确定SRS对应的循环移位偏移值,上述循环移位偏移值与天线端口对于的循环移位相关联。在相同comb位置,网络设备可以通过为不同的SRS配置确定的循环移位偏移值,基于天线端口与循环移位的映射关系,上述映射关系可以基于预定义方式确定,也可以基于信令指示方式确定,保证不同SRS对应的天线端口对应的SRS序列的循环移位满足上述公式关系,从而保证不同SRS对应的天线端口对应的SRS序列正交。
第三方面,本申请提供了一种通信方法,该通信方法可以应用于终端设备,也可以应用 于终端设备中的模块(例如,芯片),下面以应用于终端为例进行描述。该方法可以包括:确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述SRS。
在本申请提供的方案中,终端设备向网络设备发送SRS,对于同一SRS,在SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数的情况下,终端设备可以确定SRS序列的循环移位和comb位置中的至少一项,从而可以实现SRS的发送。不同于现有技术中,在Comb-8可支持的最大循环移位数为6的场景下(例如:定位场景),根据现有协议规定,在天线端口数为4的场景下,无法确定天线端口对应的循环移位,采用函数取整的方法虽然可以确定天线端口对应的循环移位,但无法实现相同SRS 4个天线端口间循环移位的均匀分配,本申请实施例中,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数的场景,终端设备根据新的映射规则确定SRS序列的循环移位和/或comb位置,可以实现同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,网络侧和终端侧通过本申请方案确定SRS序列对应的循环移位和/或comb位置,避免造成对同一传输SRS序列的不同解读,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
本申请提供的方案中,在新的映射规则中新增一个系数,使得该系数和最大循环移位数与所述天线端口数的比值的乘积为整数。通过这样新的映射规则,可以实现在同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000079
Figure PCTCN2022107157-appb-000080
其中,ρ i为所述第一系数,
Figure PCTCN2022107157-appb-000081
k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000082
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000083
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000084
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000085
表示所述SRS对应的天线端口数。
在本申请提供的方案中,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,可以修改SRS序列的循环移位配置规则,即修改天线端口与SRS序列的循环移位的映射表达式,在现有协议机制的基础上,新增一个系数ρ i,重新设计p i和α i的关系,使得ρ i和最大循环移位数与所述天线端口数的比值的乘积为整数。终端设备根据重新修改后的映射表达式确定多个天线端口对应的SRS序列在同一comb位置的循环移位,可以使得同一个SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,可以提高信道估计精度,提升覆盖性能和系统容量。
可以理解的,在新的映射规则中新增一个系数ρ i,使得该系数和最大循环移位数与所述天线端口数的比值的乘积为整数只是一种实现方式,其他修改映射表达式的方式,例如,增加某一个系数,实现循环移位的平均分配的目的,本申请实施例对此不作限制。
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000086
Figure PCTCN2022107157-appb-000087
在一个具体的实施例中,对于SRS的传输comb大小为8,SRS对应的4个SRS序列分别对应4个天线端口,SRS序列的长度为6,最大循环移位数为12的场景下,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,对于同一SRS,终端设备的4个天线端口在同一comb位置,4个天线端口在同一comb位置通过循环移位区分,可以修改4个SRS序列的循环移位配置规则,即修改4个天线端口与循环移位的映射表达式,在现有协议机制的基础上,新增一个系数,例如
Figure PCTCN2022107157-appb-000088
重新设计p i和α i的关系。其中,该系数
Figure PCTCN2022107157-appb-000089
和最大循环移位数与天线端口数的比值的乘积为整数。终端设备根据重新修改后的映射表达式确定4个天线端口对应的4个SRS序列在同一comb位置的循环移位,可以实现同一个SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
本申请提供的方案中,在新的映射规则中,通过相同comb位置下复用的端口数,使得最大循环移位数与天线端口数的比值为整数。通过这样新的映射规则,可以实现在同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000090
Figure PCTCN2022107157-appb-000091
其中,
Figure PCTCN2022107157-appb-000092
为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000093
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000094
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000095
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000096
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
在本申请提供的方案中,新的映射规则中,相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数,可以使得最大循环移位数与天线端口数的比值为整数,通过这样新的映射规则,可以实现在同一个SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1 的正整数。
在本申请提供的方案中,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,SRS序列对应的多个天线端口对应不同comb位置,可以实现在同一个SRS下SRS序列对应的天线端口在相同comb位置的循环移位平均分配,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000097
在一种可能的实现方式中,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000098
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000099
表示所述SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000100
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000101
表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000102
Figure PCTCN2022107157-appb-000103
在本申请提供的方案中,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,SRS对应的SRS序列分别对应多个天线端口,多个天线端口分为多组,不同组分别在不同的comb位置,可以修改天线端口与SRS序列的comb位置的映射规则,在现有协议机制的基础上,重新设计p i
Figure PCTCN2022107157-appb-000104
的映射关系。终端设备根据重新修改后的映射规则确定多个天线端口对应的SRS序列的comb位置,可以实现在同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000105
在一个具体的实施例中,对于SRS的传输comb大小为8,SRS对应的SRS序列分别对应4个天线端口,SRS序列的长度为6,最大循环移位数为12的场景下,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,可以将4个天线端口分为2组,每组映射不同的comb位置,即2组天线端口可以通过不同的comb位置实现复用。修改4个天线端口与4个SRS序列的comb位置的映射表达式,终端设备根据重新修改后的映射表达式确定4个天线端口对应的4个SRS序列的comb位置,可以实现在同一个SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,进而可以提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述SRS为用于定位的SRS。
在一种可能的实现方式中,所述方法还包括:确定第一SRS对应的循环移位偏移值,所 述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000106
其中,
Figure PCTCN2022107157-appb-000107
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000108
表示最大循环移位数,L表示所述SRS序列的长度。
第四方面,本申请提供了一种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以应用于网络设备为例进行描述。该方法可以包括:确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述SRS。
在本申请提供的方案中,网络设备接收来自终端设备的SRS,对于同一SRS,在SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数的情况下,网络设备可以确定SRS序列的循环移位和comb位置中的至少一项,从而可以实现SRS的接收。不同于现有技术中,在Comb-8可支持的最大循环移位数为6的场景下(例如:定位场景),根据现有协议规定,在天线端口数为4的场景下,无法确定天线端口对应的循环移位,采用函数取整的方法虽然可以确定天线端口对应的循环移位,但无法实现相同SRS 4个天线端口间循环移位的均匀分配,本申请实施例中,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数的场景,终端设备根据新的映射规则确定SRS序列的循环移位和/或comb位置,可以实现同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配,网络侧和终端侧通过本申请方案确定SRS序列对应的循环移位和/或comb位置,避免造成对同一传输SRS序列的不同解读,进而可以提高信道估计精度,提升覆盖性能和系统容量。
应理解,第四方面的执行主体为网络设备,第四方面的具体内容与第三方面的内容对应,第四方面相应特征以及达到的有益效果可以参考第三方面的描述,为避免重复,此处适当省略详细描述。
在一种可能的实现方式中,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000109
Figure PCTCN2022107157-appb-000110
其中,ρ i为所述第一系数,
Figure PCTCN2022107157-appb-000111
k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000112
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000113
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000114
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000115
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000116
Figure PCTCN2022107157-appb-000117
在一种可能的实现方式中,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000118
Figure PCTCN2022107157-appb-000119
其中,
Figure PCTCN2022107157-appb-000120
为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000121
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000122
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000123
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000124
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
在一种可能的实现方式中,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
在一种可能的实现方式中,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000125
在一种可能的实现方式中,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000126
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000127
表示所述SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000128
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000129
表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000130
Figure PCTCN2022107157-appb-000131
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000132
第五方面,本申请提供了一种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以应用于网络设备为例进行描述。该方法可以包括:
确定第一SRS对应的循环移位偏移值和第二SRS对应的循环移位偏移值;
所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列 的循环移位,满足关系式:
Figure PCTCN2022107157-appb-000133
所述第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022107157-appb-000134
其中,[]表示取整函数,
Figure PCTCN2022107157-appb-000135
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000136
表示所述第二SRS对应的天线端口q对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000137
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000138
表示所述第二SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000139
表示最大循环移位数,
Figure PCTCN2022107157-appb-000140
表示所述天线端口i的序号,
Figure PCTCN2022107157-appb-000141
表示所述天线端口q的序号,
Figure PCTCN2022107157-appb-000142
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000143
表示所述第二SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为不同SRS对应的SRS序列,所述
Figure PCTCN2022107157-appb-000144
和所述
Figure PCTCN2022107157-appb-000145
满足:
Figure PCTCN2022107157-appb-000146
其中,k为正整数,L表示所述天线端口i对应的SRS序列或者所述天线端口q对应的SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列的长度相同。
在本申请提供的方案中,网络设备可以与一个或多个终端设备通信。在相同comb位置,不同SRS对应的多个SRS序列正交相互正交。不同SRS,可以理解为,不同终端设备在相同OFDM符号向网络设备发送的SRS,或者同一终端设备在相同OFDM符号发送的不同SRS。网络设备在给与其通信的一个或多个终端设备配置循环移位偏移值
Figure PCTCN2022107157-appb-000147
时,基于本申请提供方案确定SRS序列对应的循环移位和/或确定SRS序列对应的comb位置基础上,或者基于其他方案(例如,现有协议方案)确定SRS序列对应的循环移位和/或确定SRS序列对应的comb位置基础上,需要保证不同SRS对应的相同comb位置的多个SRS序列正交。例如,在相同comb位置,第一SRS对应的多个SRS序列与第二SRS对应的多个SRS序列相互正交,这样,不同天线端口发送不同SRS序列时不会相互影响,从而有效提高信道估计精度,提升覆盖性能和系统容量。
在一种可能的实现方式中,所述SRS为用于定位的SRS。
在一种可能的实现方式中,所述方法还包括:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000148
其中,
Figure PCTCN2022107157-appb-000149
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000150
表示最大循环移位数,L表示所述SRS序列的长度。
第六方面,本申请实施例提供一种通信装置。
有益效果可以参见第一方面的描述,此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置包括:
确定单元,用于确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;
发送单元,用于根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述第一SRS;
所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000151
其中,
Figure PCTCN2022107157-appb-000152
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000153
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000154
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000155
Figure PCTCN2022107157-appb-000156
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000157
Figure PCTCN2022107157-appb-000158
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000159
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000160
表示最大循环移位数,
Figure PCTCN2022107157-appb-000161
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000162
表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000163
Figure PCTCN2022107157-appb-000164
Figure PCTCN2022107157-appb-000165
在一种可能的实现方式中,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
在一种可能的实现方式中,所述同一组内的天线端口对应的SRS序列正交。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000166
Figure PCTCN2022107157-appb-000167
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000168
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000169
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000170
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000171
Figure PCTCN2022107157-appb-000172
其中,
Figure PCTCN2022107157-appb-000173
表示所述第一SRS对应的天线端口数。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000174
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000175
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000176
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000177
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000178
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
Figure PCTCN2022107157-appb-000179
表示最大循环移位数,Φ m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000180
Figure PCTCN2022107157-appb-000181
其中,
Figure PCTCN2022107157-appb-000182
表示所述第一SRS对应的天线端口数。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000183
在一种可能的实现方式中,所述第一SRS为用于定位的SRS。
在一种可能的实现方式中,所述确定单元,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000184
其中,
Figure PCTCN2022107157-appb-000185
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000186
表示最大循环移位数,L表示所述SRS序列的长度。
第七方面,本申请实施例提供一种通信装置。
有益效果可以参见第二方面的描述,此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置包括:
确定单元,用于确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;
接收单元,用于根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述第一SRS;
所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
在一种可能的实现方式中,所述对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000187
其中,
Figure PCTCN2022107157-appb-000188
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000189
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000190
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000191
Figure PCTCN2022107157-appb-000192
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000193
Figure PCTCN2022107157-appb-000194
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000195
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000196
表示最大循环移位数,
Figure PCTCN2022107157-appb-000197
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000198
表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000199
Figure PCTCN2022107157-appb-000200
Figure PCTCN2022107157-appb-000201
在一种可能的实现方式中,所述第一SRS对应的SRS序列分别对应的多个天线端口分为 M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
在一种可能的实现方式中,所述同一组内的天线端口对应的SRS序列正交。
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000202
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000203
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000204
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000205
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000206
Figure PCTCN2022107157-appb-000207
其中,
Figure PCTCN2022107157-appb-000208
表示所述第一SRS对应的天线端口数。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000209
在一种可能的实现方式中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000210
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000211
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000212
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000213
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
Figure PCTCN2022107157-appb-000214
表示最大循环移位数,Φ m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000215
Figure PCTCN2022107157-appb-000216
其中,
Figure PCTCN2022107157-appb-000217
表示所述第一SRS对应的天线端口数。
在一种可能的实现方式中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000218
在一种可能的实现方式中,所述确定单元,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000219
其中,
Figure PCTCN2022107157-appb-000220
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000221
表示最大循环移位数,L表示所述SRS序列的长度。
在一种可能的实现方式中,所述确定单元,还用于:
确定所述SRS分别对应的至少一个循环移位偏移值,所述SRS为多个SRS,所述至少一个循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,占用相同comb位置的不同SRS对应的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000222
其中,
Figure PCTCN2022107157-appb-000223
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000224
表示所述第二SRS对应天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000225
表示最大循环移位数。
第八方面,本申请实施例提供一种通信装置。
有益效果可以参见第三方面的描述,此处不再赘述。所述通信装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置包括:
确定单元,用于确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;
发送单元,用于根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述SRS。
在一种可能的实现方式中,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000226
Figure PCTCN2022107157-appb-000227
其中,ρ i为所述第一系数,
Figure PCTCN2022107157-appb-000228
k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000229
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000230
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000231
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000232
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000233
Figure PCTCN2022107157-appb-000234
在一种可能的实现方式中,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000235
Figure PCTCN2022107157-appb-000236
其中,
Figure PCTCN2022107157-appb-000237
为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000238
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000239
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000240
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000241
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
在一种可能的实现方式中,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
在一种可能的实现方式中,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000242
在一种可能的实现方式中,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000243
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000244
表示所述SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000245
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000246
表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000247
Figure PCTCN2022107157-appb-000248
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000249
在一种可能的实现方式中,所述SRS为用于定位的SRS。
在一种可能的实现方式中,所述确定单元,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000250
其中,
Figure PCTCN2022107157-appb-000251
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000252
表示最大循环移位数,L表示所述SRS序列的长度。
第九方面,本申请实施例提供一种通信装置。
有益效果可以参见第四方面的描述,此处不再赘述。所述通信装置具有实现上述第四方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置包括:
确定单元,用于确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;
接收单元,用于根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述SRS。
在一种可能的实现方式中,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000253
Figure PCTCN2022107157-appb-000254
其中,ρ i为所述第一系数,
Figure PCTCN2022107157-appb-000255
k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000256
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000257
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000258
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000259
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000260
Figure PCTCN2022107157-appb-000261
在一种可能的实现方式中,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
在一种可能的实现方式中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000262
Figure PCTCN2022107157-appb-000263
其中,
Figure PCTCN2022107157-appb-000264
为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000265
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000266
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000267
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000268
表示所述SRS对应的天线端口数。
在一种可能的实现方式中,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
在一种可能的实现方式中,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
在一种可能的实现方式中,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000269
在一种可能的实现方式中,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000270
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000271
表示所述SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000272
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000273
表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000274
Figure PCTCN2022107157-appb-000275
在一种可能的实现方式中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000276
在一种可能的实现方式中,所述确定单元,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000277
其中,
Figure PCTCN2022107157-appb-000278
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000279
表示最大循环移位数,L表示所述SRS序列的长度。
第十方面,本申请实施例提供一种通信装置。
有益效果可以参见第五方面的描述,此处不再赘述。所述通信装置具有实现上述第五方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,所述通信装置包括:
确定单元,用于确定第一SRS对应的循环移位偏移值和第二SRS对应的循环移位偏移值;
所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022107157-appb-000280
所述第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022107157-appb-000281
其中,[]表示取整函数,
Figure PCTCN2022107157-appb-000282
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000283
表示所述第二SRS对应的天线端口q对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000284
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000285
表示所述第二SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000286
表示最大循环移位数,
Figure PCTCN2022107157-appb-000287
表示所述天线端口i的序号,
Figure PCTCN2022107157-appb-000288
表示所述天线端口q的序号,
Figure PCTCN2022107157-appb-000289
表 示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000290
表示所述第二SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为不同SRS对应的SRS序列,所述
Figure PCTCN2022107157-appb-000291
和所述
Figure PCTCN2022107157-appb-000292
满足:
Figure PCTCN2022107157-appb-000293
其中,k为正整数,L表示所述天线端口i对应的SRS序列或者所述天线端口q对应的SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列的长度相同。
第十一方面,本申请提供了一种通信装置,该通信装置可以为终端,也可以为终端中的模块(例如,芯片)。该装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序执行第一方面或第一方面的任一实施方式提供的通信方法;或者第三方面或第三方面的任一实施方式提供的通信方法。
第十二方面,提供了一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。该装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序执行第二方面或第二方面的任一实施方式提供的通信方法;或者第四方面或第四方面的任一实施方式提供的通信方法;或者第五方面或第五方面的任一实施方式提供的通信方法。
第十三方面,本申请提供了一种通信系统,该通信系统包括至少一个终端和至少一个网络设备,当至少一个前述的终端设备和至少一个前述的网络设备在该通信系统中运行时,用于执行上述第一方面或者第二方面所述的任一种方法,或者执行上述第三方面或第四方面所述的任一种方法,或者第五方面所述的方法。
第十四方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机指令,当该计算机程序或计算机指令运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第四方面及其任一种可能的实现或者第五方面及其任一种可能的实现中所述方法被执行。
第十五方面,本申请提供了一种包括可执行指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第四方面及其任一种可能的实现或者第五方面及其任一种可能的实现中所述方法被执行。
第十六方面,本申请提供了芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第四方面及其任一种可能的实现和第五发明及其任一种可能的实现中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是现有技术提供的一种不同comb的结构示意图;
图2是本申请实施例提供的一种序列不正交的示意图;
图3是本申请实施例提供的一种网络架构示意图;
图4是本申请实施例提供的一种通信方法的流程示意图;
图5是本申请实施例提供的一种序列正交的示意图;
图6是本申请实施例提供的另一种通信方法的流程示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的另一种通信装置的结构示意图;
图9是本申请实施例提供的又一种通信装置的结构示意图;
图10是本申请实施例提供的又一种通信装置的结构示意图;
图11是本申请实施例提供的又一种通信装置的结构示意图;
图12是本申请实施例提供的又一种通信装置的结构示意图;
图13是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行清楚、详细地描述。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
先给出本申请实施例可能出现的技术术语的定义:
(1)comb
梳齿Comb-N指的是每N个子载波中选择一个子载波来承载SRS,这里的N是通过高层参数transmissionComb来配置的,combOffset配置的是传输梳齿偏移,相当于选择在N个子载波的哪一个资源单元(resource element,RE)上发。不同终端设备的SRS可以在同一符号且相同的RB上发送,彼此之间可以通过使用不同的comb来区分。
现有机制中,SRS具有三种不同的梳齿结构:Comb-2、Comb-4和Comb-8。本申请实施例中的Comb-N可以是现有机制中的梳齿结构Comb-2、Comb-4或者Comb-8,也可以是未来演进的梳齿结构,例如Comb-16、Comb-32等。图1仅以Comb-2、Comb-4和Comb-8举例示意,请参阅图1,图1是现有技术提供的一种不同comb的结构示意图。
(2)SRS资源
SRS资源,即SRS resource,传输SRS的时域资源,频域资源,空域资源中的一种或多种。示例性的,时域资源可以指发送SRS的时间单元/时域位置,时间单元可以是帧frame、子帧subframe、时隙slot或符号symbol等。频域资源可以指发送SRS的频域位置,空域资源可以指天线端口、波束方向等。
由无线资源控制(radio resource control,RRC)IESRS-Resource或SRS-PosResource配置,其中,SRS-PosResource用于定位场景。相同终端相同时刻最多可以激活一个SRS resource set,一个SRS resource set可以包含一个或多个SRS resource,多个SRS resource通过resource ID来区分。不同终端设备配置SRS resource不同。
SRS与SRS resource的关系:一个SRS在一个SRS resource上发送,一个SRS对应一个或多个天线端口,每个天线端口对应一个SRS序列。或者说,一个SRS对应一个或多个天线端口,这些序列在不同的天线端口上发送。
(3)天线端口数
一个SRS resource配置天线端口数,由nrofSRS-Ports配置,否则,天线端口数为0。
(4)天线端口序号p i
若一个SRS资源集SRS-ResourceSet中高层参数usage的未设置为'nonCodebook'时,该资 源集中包含的每一个SRS对应的天线端口为p i=1000+i;当一个SRS资源集SRS-ResourceSet中高层参数usage的设置为'nonCodebook'时,该资源集中包含的第(i+1)个SRS资源的天线端口索引为p i=1000+i。这里的原因是,高层参数usage的设置为'nonCodebook'时,每个SRS资源只会配置一个天线端口,一个资源集中的所有SRS资源联合测量多个端口的预编码信息。
在第五代新空口(fifth generation new radio,5G NR)通信系统中,SRS用于估计不同频段的信道质量。3GPP TSG RAN Meeting#86次会议确定工作项目描述(work item description,WID)实现NR系统中多输入多输出(multiple input multiple output,MIMO)的进一步增强。其中,考虑到SRS广泛应用在多种场景中,提升SRS容量和覆盖成为主要目标之一,并确定可能采用的技术如下:SRS时间捆绑(SRS time bundling)、增加SRS重复以及部分频域监听。
部分频域监听实现了SRS在部分频域位置发送。通过降低发送SRS的资源块(resource block,RB)数量,在上行功率一定的条件下,SRS在单个资源单元(resource element,RE)上的发送功率提升,从而有效提升了SRS的覆盖性能。同时,SRS发送频域范围降低,同一时隙(slot)内可以复用的用户设备(user equipment,UE)数量对应增加,SRS系统容量显著提升。从另一方面来说,若信道在频域具有比较好的平坦特性,即,信道在频域具有比较强的相关性,可以在监听部分频带的基础上,通过差分的方式得到其他频域范围的信道估计信息,从而有效提升系统信道估计效率。
3GPP TSG RAN WG1 103e会议讨论了部分频域监听的几种实现方式,包括:RB级别的部分频域监听,子载波级别的部分频域监听以及子带(sub-band)级别的部分频域监听等。其中,子载波级别的部分频域监听可以通过增加comb来实现。增加comb可以在提升SRS覆盖和容量性能的基础上,不影响ZC序列的特性,例如,低PAPR特性等。据此,104e会议确定将支持Comb-8作为提升SRS覆盖和容量性能的方式之一。
对于同一正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号(symbol),不同SRS对应的SRS序列对应的天线端口以及不同SRS resource主要通过频分复用(frequency division multiplexing,FDM)和码分复用(code division multiplexing,CDM)的方式进行复用。
其中,CDM复用方式通过循环移位来实现。不同SRS序列的循环移位的复用规则如下所示:
协议38.211规定,对于一个SRS对应的SRS序列,SRS序列
Figure PCTCN2022107157-appb-000294
由基序列
Figure PCTCN2022107157-appb-000295
和循环移位CS得到:
Figure PCTCN2022107157-appb-000296
其中,M ZC为序列长度。基序列
Figure PCTCN2022107157-appb-000297
由组索引u∈{0,1,…29}和组内基序列索引v以及序列长度M ZC定义。在基序列
Figure PCTCN2022107157-appb-000298
相同条件下,不同SRS序列通过不同循环移位区分,且不同循环移位对应的SRS序列正交,具体循环移位配置方式以及基于循环移位的正交SRS序列生成如下所示:
基于SRS序列生成,其与SRS资源映射对应关系满足:
Figure PCTCN2022107157-appb-000299
Figure PCTCN2022107157-appb-000300
Figure PCTCN2022107157-appb-000301
其中,p i表示天线端口i的序号,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000302
表示SRS 对应的SRS序列的长度,
Figure PCTCN2022107157-appb-000303
表示一个SRS所占的连续OFDM符号数量,δ=log 2(K TC),K TC表示SRS的传输comb大小,K TC∈{2,4,8}。SRS对应的多个SRS序列的循环移位为:
Figure PCTCN2022107157-appb-000304
Figure PCTCN2022107157-appb-000305
其中,
Figure PCTCN2022107157-appb-000306
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000307
表示最大循环移位数,
Figure PCTCN2022107157-appb-000308
表示SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000309
由高层参数transmissionComb指示,
Figure PCTCN2022107157-appb-000310
由表1指示。其中,Comb-8应用在定位场景中。
表1
Figure PCTCN2022107157-appb-000311
与K TC的映射关系
Figure PCTCN2022107157-appb-000312
不同SRS序列的循环移位和comb位置的复用规则如下所示:
SRS序列对应物理资源的映射关系为:
Figure PCTCN2022107157-appb-000313
SRS的频域资源起始位置
Figure PCTCN2022107157-appb-000314
定义为:
Figure PCTCN2022107157-appb-000315
其中,
Figure PCTCN2022107157-appb-000316
表示带宽部分(bandwith part,BWP)内天线端口p i可以传输SRS序列的最低频域位置。
Figure PCTCN2022107157-appb-000317
Figure PCTCN2022107157-appb-000318
n shift表示相比参考点的频域偏移值(RB级别),n shift由高层信令freqDomainShift配置,
Figure PCTCN2022107157-appb-000319
表示SRS对应的comb偏移值,
Figure PCTCN2022107157-appb-000320
表示参数K TC和时域OFDM符号l′的函数。
Figure PCTCN2022107157-appb-000321
表示天线端口i对应的SRS序列的comb位置,通过上述表达式可知,若SRS配置天线端口数为4时,不同SRS序列对应的天线端口之间通过循环移位和comb位置两种方式复用。
对于相同comb位置的SRS序列,需基于不同循环移位通过正交的方式进行复用,考虑长度M ZC的SRS序列r 0和序列r 1,其基序列相同,配置循环移位分别为α 0和α 1
Figure PCTCN2022107157-appb-000322
Figure PCTCN2022107157-appb-000323
对于配置循环移位α 0≠? 1,序列r 0和序列r 1相乘,可得
Figure PCTCN2022107157-appb-000324
Figure PCTCN2022107157-appb-000325
M ZC=8为例,上述公式等号右边的8个分量中的任意一个分量存在对称的分量,其中,某个分量和与其对称的分量可以称为一对对称的分量,一对对称的分量的和为0,在
Figure PCTCN2022107157-appb-000326
M ZC=8的情况下,
Figure PCTCN2022107157-appb-000327
满足两SRS序列为正交的序列。
在现有SRS覆盖和容量提升课题下,104b-e针对Comb-8可支持的最大循环移位数进行了讨论。一种讨论是支持Comb-8条件下最大循环移位数为6。一种讨论是支持Comb-8条件下最大循环移位数为12。对于同一个SRS配置带宽,同一OFDM符号内可复用的SRS的最大天线端口数为
Figure PCTCN2022107157-appb-000328
在Comb-8最大循环移位数为6的条件下,可复用的SRS的最大天线端口数为48。相比于Comb-4对应最大循环移位数为12的现有机制,Comb-8的复用性能没有提升。为提升Comb-8的复用性能,一种讨论是支持Comb-8条件下最大循环移位数为12。
现有协议支持SRS端口数
Figure PCTCN2022107157-appb-000329
对应天线端口
Figure PCTCN2022107157-appb-000330
p i=1000+i,在
Figure PCTCN2022107157-appb-000331
条件下,循环移位α i与天线端口p i的映射关系如表2所示:
表2不同
Figure PCTCN2022107157-appb-000332
条件下α i与p i的映射关系
Figure PCTCN2022107157-appb-000333
如表2所示,以
Figure PCTCN2022107157-appb-000334
SRS对应的SRS序列的长度为6为例,天线端口p 0对应的SRS序列的循环移位α i=0,对应序列表达式为:
Figure PCTCN2022107157-appb-000335
其中,
Figure PCTCN2022107157-appb-000336
为基序列,同理,天线端口p 1对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000337
对应发送序列为:
Figure PCTCN2022107157-appb-000338
请参阅图2,图2是本申请实施例提供的一种序列不正交的示意图。如图2所示,
Figure PCTCN2022107157-appb-000339
序列r 0与序列r 1不正交,无法实现同一comb位置下通过循环移位实现不同天线端口间的复用。同理,在SRS对应的SRS序列的长度为18,30,…,6N,N为正奇数时,天线端口p 0发送序列r 0与天线端口p 1发送序列r 1不正交,网络设备估计天线端口p 0对应的信道时,会受到来自天线端口p 1发送的SRS序列的干扰,对信道估计性能产生较大的影响。
在现有SRS覆盖和容量提升课题下,104b-e针对Comb-8可支持的最大循环移位数进行了讨论。一种讨论是支持Comb-8条件下最大循环移位数为6。然而,若最大循环移位数为6,在天线端口数为4的条件下,4个天线端口无法均分6个循环移位,以致无法支持相同comb内天线端口数为4的循环移位复用,对信道估计性能产生较大的影响。
针对于Comb-8条件下最大循环移位数为6,无法支持相同comb位置内天线端口数为4的循环移位复用的情况,现有技术中将不同SRS序列的循环移位α i的表达式增加floor函数,如下:
Figure PCTCN2022107157-appb-000340
Figure PCTCN2022107157-appb-000341
不同SRS序列的循环移位α i与天线端口p i映射关系如表3所示:
表3不同
Figure PCTCN2022107157-appb-000342
条件下α i与p i的映射关系
Figure PCTCN2022107157-appb-000343
Figure PCTCN2022107157-appb-000344
如表3所示,在循环移位值
Figure PCTCN2022107157-appb-000345
天线端口为p 1和p 3时,对应SRS在不同comb位置传输。但是,在原有循环移位α i与天线端口p i映射表达式中增加floor函数的操作,可能会导致4个天线端口间分配循环移位不连续的问题。例如,在
Figure PCTCN2022107157-appb-000346
条件下,端口p 0和端口p 4之间分配循环移位索引值为0,1,3和4,循环移位索引值2并没有被使用,导致非连续的循环移位映射问题。
综上所述,在Comb-8可支持的最大循环移位数为12,在SRS对应的SRS序列的长度与最大循环移位数的比值为非整数的情况下,无法实现相同comb位置下复用天线端口间SRS序列的正交性,对信道估计性能产生较大的影响。在Comb-8可支持的最大循环移位数为6,最大循环移位数与天线端口数的比值为非整数的情况下,无法实现在同一SRS下SRS序列对应的天线端口在相同comb位置的循环移位平均分配,对信道估计性能产生较大的影响。因此,如何提高信道估计精度,提升覆盖性能和系统容量成为亟待解决的问题。
本申请所要解决的技术问题可以包括:在SRS对应的SRS序列的长度与最大循环移位数的比值为非整数的情况下,解决现有技术中的相同comb位置可能产生不正交的SRS序列的问题,以及在SRS对应的最大循环移位数与SRS对应的天线端口数的比值为非整数的情况下,解决同一SRS下SRS序列对应的天线端口在相同comb位置的循环移位无法平均分配的问题,进而提高信道估计精度,提升覆盖性能和系统容量。
基于上述,为了更好地理解本申请提出的一种通信方法及相关装置,下面先对本申请实施例应用的网络架构进行描述。
请参阅图3,图3是本申请实施例提供的一种网络架构示意图。如图3所示,该网络架构可以包括网络设备301和终端设备302。终端设备302可以通过无线方式与网络设备301相连,并可以通过网络设备301接入到核心网中。终端设备302可以是固定位置的,也可以是可移动的。
网络设备301,可以是用于发射或接收信号的实体,可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。网络设备可以是无线网络中的设备,例如将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
终端设备302,是用户侧的一种用于接收或发射信号的实体,如用户设备、接入终端、用 户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是手机(mobile phone)、蜂窝电话、无绳电话、会话启动协议(session initiationprotocol,SIP)电话、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴设备(例如智能手表、智能手环、计步器等),5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载,也可以部署在水面(如轮船等),还可以部署在空中(例如飞机、气球和卫星上等)。在本申请实施例中,终端设备302可以是legacy UE,也可以为支持SRS覆盖和容量增强的RB级别的部分频率监听(RB-level partial frequency hopping,RPFS)UE,还可以为其他的UE,本申请对终端设备的类型不作限制。其中,legacy UE指的是支持现有机制的用户设备,例如,支持release-15、release-16的用户设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信系统(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码多分址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信(universal mobile telecommunications system,UMTS)系统、增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(public land mobile network,PLMN)系统,高级的长期演进(LTE advanced,LTE-A)系统、5G系统、新空口(newradio,NR)系统、机器与机器通信(machine  to machine,M2M)系统、或者未来演进的其它通信系统等,本申请实施例对此不作限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
需要说明的是,图3所示的网络架构中所包含的终端设备的数量和类型仅仅是一种举例,本申请实施例并不限制于此。例如,还可以包括更多的或者更少的与网络设备进行通信的终端设备,为简明描述,不在附图中一一描述。此外,在如图3所示的网络架构中,尽管示出了网络设备和终端设备,但是该应用场景中可以并不限于包括网络设备和终端设备,例如还可以包括核心网节点或用于承载虚拟化网络功能的设备等,这些对于本领域技术人员而言是显而易见的,在此不再一一赘述。
结合上述的网络架构,下面对本申请实施例提供的一种通信方法进行描述。请参阅图4,图4是本申请实施例提供的一种通信方法的流程示意图。本实施例中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。如图4所示,该通信方法可以包括以下步骤。
步骤S401:终端设备确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,SRS序列的长度与最大循环移位数的比值为非整数。
comb位置可以指的是多个SRS序列对应的频域位置。具体的,comb位置可以是RE位置,例如:某个OFDM符号上,在SRS所在的第一个RB或某RB中的RE的起始位置。RE起始位置为小于comb大小的自然数,比如Comb-4,RE起始位置为0,1,2,3;Comb-4,RE起始位置为0,1,2,3...7;Comb-12,RE起始位置为0,1,2,3...11。另外,当映射到不同的comb位置时,可以是指映射到某个OFDM符号上,映射到一个RB中不同的RE起始位置,在某个OFDM符号映射到不同的comb位置,即映射到FDM的RE上。其中,不同SRS序列的comb位置可以不同,或者部分SRS序列的comb位置相同。在本申请实施例中,comb位置可以用于发送SRS序列。
循环移位,可以对应于多个SRS序列对应的多个天线端口在相同comb位置的循环移位。其中,不同SRS序列的循环移位可以不同,或者部分SRS序列的循环移位相同。在本申请实施例中,循环移位可以用于生成SRS序列。
SRS序列的长度与最大循环移位数的比值为非整数,可以理解为,SRS序列的长度不能整除最大循环移位数。
针对第一SRS对应的SRS序列的长度与最大循环移位数的比值为非整数时所产生的相同comb位置上SRS序列不正交的问题,终端设备确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,确定的方式可以为以下任一种:
方式一,当SRS对应的SRS序列在同一comb位置,多个SRS序列一一对应多个天线端口,不同天线端口在同一comb位置通过循环移位区分,通过修改SRS序列的循环移位配置 规则,即修改天线端口与SRS序列的循环移位的映射表达式,在现有协议机制的基础上,重新设计p i和α i的映射关系。终端设备根据重新修改后的映射表达式确定多个天线端口分别对应的SRS序列在同一comb位置的循环移位,可以使得相同comb位置下的SRS序列两两正交。comb位置可以是预定义的,也可以是由网络设备通过高层信令指示给终端设备,例如RRC,或者下行控制信息(downlink control information,DCI),或者其它的高层信令。
其中,对应相同comb位置的SRS序列之间两两正交与SRS序列的循环移位、SRS序列的长度和最大循环移位数中的至少一项有关。在一个实施例中,正交判断准则如下:对于通过同一comb位置的不同循环移位实现复用的天线端口p i和天线端口p j(i≠j),其分配的循环移位
Figure PCTCN2022107157-appb-000347
Figure PCTCN2022107157-appb-000348
满足:
Figure PCTCN2022107157-appb-000349
其中,
Figure PCTCN2022107157-appb-000350
表示天线端口i对应的SRS的序列的循环移位,
Figure PCTCN2022107157-appb-000351
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000352
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
需要说明的是,本申请实施例的L所表示的SRS序列的长度表示相同OFDM符号下,终端设备通过一个天线端口传输的SRS序列的序列长度,或者,L所表示的SRS序列的长度表示相同OFDM符号下,传输一个SRS对应的天线端口对应的SRS序列的序列长度,示例性的,L可以基于配置SRS带宽m SRS,b确定,其中,m SRS,b为SRS配置RB数,由RRC信令指示。示例性的,部分频率监听场景,L可以基于
Figure PCTCN2022107157-appb-000353
确定,其中,
Figure PCTCN2022107157-appb-000354
表示相同OFDM符号下,传输一个SRS对应的RB数,m SRS,b表示SRS配置RB数,P F表示部分频率监听系数。
基于上述正交判断准则,在现有协议机制的基础上,重新设计SRS对应的SRS序列的循环移位的映射关系。SRS对应的SRS序列的循环移位与循环移位偏移值、最大循环移位数和天线端口序号中的至少一项有关。具体的:
在一个实施例中,同一SRS内,第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000355
Figure PCTCN2022107157-appb-000356
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合m满足:
Figure PCTCN2022107157-appb-000357
Figure PCTCN2022107157-appb-000358
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000359
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000360
表示最大循环移位数,
Figure PCTCN2022107157-appb-000361
表示第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000362
可以由高层参数transmissionComb指示,
Figure PCTCN2022107157-appb-000363
表示第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000364
可以由高层参数nrofSRS-Ports配置,p i表示天线端口i的序号。
可以理解,α i表示天线端口i对应的SRS序列的循环移位,以角度形式呈现,例如
Figure PCTCN2022107157-appb-000365
α i可以直接用于SRS序列的生成,具体SRS序列的生成可以参考上文的描述。
Figure PCTCN2022107157-appb-000366
也表示天线端口i对应的SRS序列的循环移位,以索引的形式呈现,例如0。α i
Figure PCTCN2022107157-appb-000367
之间的关系满足:
Figure PCTCN2022107157-appb-000368
Figure PCTCN2022107157-appb-000369
表示循环移位偏移值,
Figure PCTCN2022107157-appb-000370
也可以理解为循环移位索引,还可以理解为一个SRS对应的循环移位,由高层参数transmissionComb配置。本申请实施例中对于α i
Figure PCTCN2022107157-appb-000371
Figure PCTCN2022107157-appb-000372
在此统一进行说明,为避免重复,后续不再赘述。
对于SRS对应的SRS序列的循环移位的映射表达式,还可以有其他形式的变形。例如,在现有技术的表达式基础上增加相加(乘)某个参数(数值)的操作;又例如,在现有技术的表达式基础上增加向上(下)取整操作,具体方式不作限制。
下面以第一SRS的传输comb大小为8,SRS的序列长度为6N,N为正奇数,例如N=1,3,5…,最大循环移位数为12,第一SRS对应的天线端口数为4为例进行说明:
基于天线端口i奇偶数分为两个集合Ω 1和Ω 2,其中,Ω 1={p 0,p 2},Ω 2={p 1,p 3},γ 1、γ 2的取值满足正交判断准则,例如:γ 1=0,γ 2=-1;或者γ 1=0,γ 2=11;或者γ 1=0,γ 2=1;或者γ 1=-1,γ 2=0;或者γ 1=11,γ 2=0;或者γ 1=1,γ 2=0。
若γ 1=0,γ 2=1,第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000373
Figure PCTCN2022107157-appb-000374
Figure PCTCN2022107157-appb-000375
SRS序列的循环移位α i与天线端口p i映射关系如表4所示:
表4不同
Figure PCTCN2022107157-appb-000376
条件下α i与p i的映射关系
Figure PCTCN2022107157-appb-000377
如表4所示,以
Figure PCTCN2022107157-appb-000378
SRS序列的长度为6,最大循环移位数为12,天线端口数为4为例,天线端口p 0对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000379
对应序列表达式为:
Figure PCTCN2022107157-appb-000380
其中,
Figure PCTCN2022107157-appb-000381
表示基序列,同理,天线端口p 1对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000382
对应序列表达式为:
Figure PCTCN2022107157-appb-000383
序列r 0和序列r 1相乘,
Figure PCTCN2022107157-appb-000384
满足序列r 0与序列r 1为正交的序列。请参阅图5,图5是本申请实施例提供的一种序列正交的示意图。如图5所示,序列r 0与序列r 1实现同一comb位置下通过循环移位实现不同天线端口间的复用。
方式一的确定方式,对于SRS对应的SRS序列在同一comb位置,通过修改SRS序列的循环移位配置规则,即修改天线端口与SRS序列的循环移位的映射表达式,可以实现相同comb位置下的SRS序列两两正交。
方式二,当第一SRS对应的SRS序列在同一comb位置,SRS序列一一对应多个天线端口,对于相同comb位置不正交的第一SRS对应的SRS序列,通过修改天线端口与comb位置的映射表达式,可以将不正交的SRS序列对应不同的comb位置,可以实现相同comb位 置下的SRS序列两两正交,具体的:
第一SRS对应的SRS序列分别对应多个天线端口,多个天线端口分为M组,每一组内的天线端口在同一comb位置,不同组分别在不同的comb位置,即不同组的天线端口可以通过comb位置实现复用。将两两正交的SRS序列对应的天线端口分为一组,将不正交的SRS序列对应不同的comb位置,可以解决SRS序列的长度与最大循环移位数的比值为非整数所产生的相同comb位置上SRS序列不正交的问题。
SRS序列不正交,可以理解为,不同天线端口对应的SRS序列不满足方式一中的正交判断准则。在一个实施例中,对于通过同一comb位置的不同循环移位实现复用的天线端口p i和天线端口p j(i≠j),其分配的循环移位
Figure PCTCN2022107157-appb-000385
Figure PCTCN2022107157-appb-000386
不满足:
Figure PCTCN2022107157-appb-000387
k为任意整数。
重新设计不同天线端口对应的SRS序列的comb位置的映射关系。不同天线端口对应的SRS序列的comb位置与comb偏移值、最大循环移位数、天线端口序号和SRS的comb大小中的至少一项有关。具体的:
在一个实施例中,第一SRS对应的不同天线端口对应的SRS序列的comb位置满足:
SRS的频域资源起始位置
Figure PCTCN2022107157-appb-000388
定义为:
Figure PCTCN2022107157-appb-000389
其中,
Figure PCTCN2022107157-appb-000390
为BWP内天线端口p i可以传输SRS序列的最低频域位置。
Figure PCTCN2022107157-appb-000391
其中,n shift表示相比参考点的频域偏移值(RB级别),n shift由高层信令freqDomainShift配置,
Figure PCTCN2022107157-appb-000392
表示第一SRS对应的comb偏移值,
Figure PCTCN2022107157-appb-000393
表示参数K TC和时域OFDM符号l′的函数。
Figure PCTCN2022107157-appb-000394
基于下述表达式确定:
Figure PCTCN2022107157-appb-000395
或者,
Figure PCTCN2022107157-appb-000396
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000397
表示第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000398
表示天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000399
表示第一SRS对应的comb偏移值,K TC表示第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000400
Figure PCTCN2022107157-appb-000401
其中,
Figure PCTCN2022107157-appb-000402
表示第一SRS对应的天线端口数。
同一组内的天线端口对应的comb位置相同,确定同一comb位置的不同天线端口对应的SRS序列的循环移位,可以采用现有技术中的映射规则,也可以采用方式一中同一SRS内,不同天线端口对应的SRS序列的循环移位的映射规则。
下面以SRS的传输comb大小为8,第一SRS对应的SRS序列的长度为6N,N为正奇数,例如N=1,3,5…,最大循环移位数为12,第一SRS对应的天线端口数为4为例,对不同天线端口对 应的SRS序列的循环移位和comb位置的映射规则进行说明:
Figure PCTCN2022107157-appb-000403
Figure PCTCN2022107157-appb-000404
SRS的频域资源起始位置
Figure PCTCN2022107157-appb-000405
定义为:
Figure PCTCN2022107157-appb-000406
其中,
Figure PCTCN2022107157-appb-000407
为BWP内天线端口p i可以传输SRS序列的最低频域位置。
Figure PCTCN2022107157-appb-000408
其中,n shift表示相比参考点的频域偏移值(RB级别),n shift由高层信令freqDomainShift配置,
Figure PCTCN2022107157-appb-000409
表示第一SRS对应的comb偏移值,
Figure PCTCN2022107157-appb-000410
表示参数K TC和时域OFDM符号l′的函数。
Figure PCTCN2022107157-appb-000411
或者,
Figure PCTCN2022107157-appb-000412
不同天线端口对应的SRS序列的循环移位α i、comb位置和天线端口p i映射关系如表5所示:
表5不同
Figure PCTCN2022107157-appb-000413
条件下α i、comb位置与p i的映射关系
Figure PCTCN2022107157-appb-000414
如表5所示,天线端口p 0与天线端口p 2在相同comb位置下复用,以
Figure PCTCN2022107157-appb-000415
天线端口p 0发送序列为:
Figure PCTCN2022107157-appb-000416
其中,
Figure PCTCN2022107157-appb-000417
表示基序列,同理,天线端口p 2发送序列为:
Figure PCTCN2022107157-appb-000418
序列r 0和序列r 1相乘,
Figure PCTCN2022107157-appb-000419
满足序列r 0与序列r 1为正交的序列。
方式二的确定方式,通过重新设计不同天线端口对应的SRS序列的循环移位以及comb位置的映射表达式,可以实现相同comb位置下的SRS序列两两正交。
方式三,限制网络设备配置的循环移位偏移值,使得通过同一comb位置的不同循环移位实现复用的天线端口p i和天线端口p j(i≠j),其分配的循环移位
Figure PCTCN2022107157-appb-000420
Figure PCTCN2022107157-appb-000421
满足:
Figure PCTCN2022107157-appb-000422
当有多个SRS时,多个SRS可以是同一终端设备的多个SRS,例如,针对noncodebook场景,同一终端设备在不同OFDM符号间发送不同SRS;多个SRS也可以是不同终端设备的多个 SRS。网络设备可以确定多个SRS分别对应的至少一个循环移位偏移值,至少一个循环移位偏移值与多个SRS对应的SRS序列的循环移位相关联,对应相同comb位置的不同SRS对应的SRS序列之间两两正交。
在一个实施例中,对应相同comb位置的不同SRS对应的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000423
其中,
Figure PCTCN2022107157-appb-000424
表示第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000425
表示第二SRS对应天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000426
表示最大循环移位数。第一SRS与第二SRS为不同的SRS。在相同comb位置,网络设备可以通过为不同SRS配置循环移位偏移值,基于天线端口与循环移位的映射关系,保证不同SRS对应的天线端口对应的SRS序列的循环移位满足上述公式关系,从而保证不同SRS对应的天线端口对应的SRS序列正交。
在一个实施例中,对应相同comb位置的SRS对应的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000427
其中,
Figure PCTCN2022107157-appb-000428
表示第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000429
表示最大循环移位数。在相同comb位置,网络设备可以通过为SRS配置循环移位偏移值,基于天线端口与循环移位的映射关系,保证不同SRS对应的天线端口对应的SRS序列的循环移位满足上述公式关系,从而保证不同SRS对应的天线端口对应的SRS序列正交。其中,k 1可以取值为0。
可选的,不同SRS之间的
Figure PCTCN2022107157-appb-000430
配置属于同一集合,这样可以保证在相同comb位置,不同SRS对应的天线端口对应的SRS序列正交。具体的:确定第一集合X,第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000431
第二SRS对应天线端口j对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000432
第一集合X包括的循环移位配置对应的天线端口对应的SRS序列正交。
在一个实施例中,基于方式一确定第一SRS和第二SRS对应的SRS序列的循环移位和comb位置,以第一SRS的传输comb大小为8,SRS的序列长度为6N,N为正奇数,例如N=1,3,5…,最大循环移位数为12,第一SRS对应的天线端口数为4,第二SRS对应的天线端口数为4或2,γ 1=0,γ 2=1为例进行说明,网络设备可能复用SRS的组合如下:
1)4天线端口的第一SRS与4天线端口的第二SRS组合:
表6 4天线端口的不同SRS的复用组合
Figure PCTCN2022107157-appb-000433
2)4天线端口的第一SRS与2天线端口的第二SRS组合:
表7 4天线端口的第一SRS与2天线端口的第二SRS的复用组合
Figure PCTCN2022107157-appb-000434
如表6所示,{0,10}可以理解为,网络设备向终端设备配置第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000435
和第二SRS对应天线端口j对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000436
基于方案设计的循环移位映射关系式,为保证第一SRS和第二SRS在相同comb位置正交,若
Figure PCTCN2022107157-appb-000437
Figure PCTCN2022107157-appb-000438
如表7所示,{0,5/11}可以理解为,网络设备向终端设备配置第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000439
和第二SRS对应天线端口j对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000440
基于方案设计的循环移位映射关系式,为保证第一SRS和第二SRS在相同comb位置正交,若
Figure PCTCN2022107157-appb-000441
Figure PCTCN2022107157-appb-000442
或11。或者,从终端设备来看,其配置的循环移位偏移值
Figure PCTCN2022107157-appb-000443
基于相同comb位置下,不同SRS对应的天线端口对应的SRS序列正交,本申请实施例仅以4天线端口的第一SRS与4天线端口的第二SRS组合、4天线端口的第一SRS与2天线端口的第二SRS组合进行举例说明,可以理解,本申请实施例还可以包括其它可能的复用组合,在此不一一进行说明。
在另一个实施例中,基于方式二确定第一SRS和第二SRS对应的SRS序列的循环移位和comb位置,以第一SRS的传输comb大小为8,SRS的序列长度为6N,N为正奇数,例如N=1,3,5…,最大循环移位数为12,第一SRS对应的天线端口数为4,第二SRS对应的天线端口数为4或2为例进行说明,网络设备可能复用SRS的组合如下:
1)4天线端口的第一SRS与4天线端口的第二SRS组合:
表8 4天线端口的不同SRS的复用组合
Figure PCTCN2022107157-appb-000444
2)4天线端口的第一SRS与2天线端口的第二SRS组合:
表9 4天线端口的第一SRS与2天线端口的第二SRS的复用组合
Figure PCTCN2022107157-appb-000445
如表8和表9所示,{0,2,4,6,8,10}可以理解为,网络设备向终端设备配置第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000446
和第二SRS对应天线端口j对应的SRS序列的循环移位
Figure PCTCN2022107157-appb-000447
基于方案设计的循环移位映射关系式,为保证第一SRS和第二SRS在相同comb位置正交,若
Figure PCTCN2022107157-appb-000448
Figure PCTCN2022107157-appb-000449
为2,4,6,8,10中的其中一个值。或者,从终端设备来看,其配置的循环移位偏移值
Figure PCTCN2022107157-appb-000450
基于相同comb位置下,不同SRS对应的天线端口对应的SRS序列正交,本申请实施例仅以4天线端口的第一SRS与4天线端口的第二SRS组合、4天线端口的第一SRS与2天线端口的第二SRS组合进行举例说明,可以理解,本申请实施例还可以包括其它可能的复用组合,在此不一一进行说明。
在另一个实施例中,基于现有机制确定第一SRS和第二SRS对应的SRS序列的循环移位和comb位置,限制网络设备配置的循环移位偏移值,可以通过网络设备直接指定第一SRS和第二SRS的循环移位偏移值,保证不同SRS对应的天线端口对应的SRS序列正交。
下面以SRS的传输comb大小为8,SRS序列的长度为6,最大循环移位数为12,SRS的天线端口数为4为例进行说明,一种可选的配置组合如表10所示:
表10不同
Figure PCTCN2022107157-appb-000451
条件下α i、comb位置与p i的映射关系
Figure PCTCN2022107157-appb-000452
如表10所示,为保证相同comb位置的SRS序列正交,配置循环移位偏移值
Figure PCTCN2022107157-appb-000453
Figure PCTCN2022107157-appb-000454
在此场景下,天线端口p 0与天线端口p 2对应相同comb位置,对应SRS序列正交,其中,p i表示天线端口序号。天线端口p 1或天线端口p 3对应的SRS序列与天线端口p 0对应的SRS序列不正交,但可以通过不同的comb位置区分。
终端设备确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,可以理解为,在一种方式中,上述确定SRS序列的循环移位和comb位置的方式是预定义的,终端设备接收到网络设备配置的参数时,例如
Figure PCTCN2022107157-appb-000455
n shift等,触发确定动作,即根据网络设备配置的参数和预定义的方式一、方式二或方式三确定SRS序列的循环移位和comb位置。在另一种方式中,上述确定SRS序列的循环移位和comb位置的方式是网络设备通过高层信令指示的,例如,高层信令可以是DCI信令,或者bitmap形式,或者RRC信令等,终端设备接收到确定SRS序列的循环移位和comb位置的方式以及相关的配置参数时,触发确定操作。
可选的,本申请实施例中的SRS为用于定位的SRS。
可以理解,Comb-8场景下,SRS序列的长度为6N,当N为正奇数时,例如,N=1,3,5…,SRS序列的长度与最大循环移位数为非整数的情况下,相同comb位置上可能产生不正交的SRS序列,通过上述的方式一、方式二和方式三确定多个天线端口分别对应的SRS序列在同一comb位置的循环移位,可以实现相同comb位置下的SRS序列两两正交。而当N为正偶数时,例如N=2,4,…,即SRS序列的长度与最大循环移位数为整数的情况下,基于现有机制,不同天线端口分别对应的SRS序列是正交的,也可以通过上述的方式一、方式二和方式三确定多个天线端口分别对应的SRS序列在同一comb位置的循环移位。
可选的,除上述描述的方案,还可以定义两种最大循环移位数,具体的:若SRS序列的长度等于6N(N为正奇数),则可支持最大循环移位数为6;若SRS的序列长度等于6N(N为偶数),则可支持最大循环移位数为12。例如,在Comb-8场景下,若SRS对应的SRS序列的长度为18,则可支持最大循环移位数为6;若SRS对应的SRS序列的长度为24,则可支持最大循环移位数为12。具体如下表表11所示:
表11 Comb-8场景下最大循环移位数
Figure PCTCN2022107157-appb-000456
表11中的N为正奇数。可以理解,本申请实施例仅以Comb-8场景为例进行说明,本申请还可以适用于其它场景,例如,Comb-2、Comb-6,未来可能的Comb-16、Comb-32等。
步骤S402:终端设备根据循环移位和comb位置中的至少一项向网络设备发送SRS。
终端设备确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项之后,可以根据循环移位和comb位置中的至少一项向网络设备发送SRS。
相应的,针对SRS的序列长度不能整除最大循环移位数时所产生的不同天线端口对应的SRS的序列不正交的问题,网络设备也可以确定天线端口的循环移位和comb位置中的至少一项,具体的确定方式可以参考上述步骤S401中的详细描述,为避免重复,在此不再赘述。网络设备确定天线端口的循环移位和comb位置中的至少一项后,可以根据循环移位和comb位置中的至少一项接收来自终端设备的SRS,进而实现根据SRS进行波束管理、基于码本的传输、基于非码本的传输、天线切换发送或者定位等功能。
结合上述的网络架构,下面对本申请实施例提供的另一种通信方法进行描述。请参阅图6,图6是本申请实施例提供的另一种通信方法的流程示意图。本实施例中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。如图6所示,该通信方法可以包括以下步骤。
步骤S601:确定SRS对应SRS序列的循环移位和comb位置中的至少一项,SRS对应的最大 循环移位数与SRS对应的天线端口数的比值为非整数。
SRS对应的最大循环移位数与SRS对应的天线端口数的比值为非整数,可以理解为,SRS对应的最大循环移位数不能整除SRS对应的天线端口数。
针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不连续的问题,终端设备确定天线端口的循环移位和comb位置中的至少一项,具体的确定方式如下:
同一SRS内,可以修改SRS序列的循环移位配置规则,即修改天线端口与SRS序列的循环移位的映射表达式,实现同一个SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配。SRS序列的循环移位与循环移位偏移值、最大循环移位数和天线端口序号中的至少一项有关。具体的:
在一个实施例中,新增一个系数ρ i,重新设计p i和α i的关系,使得ρ i和最大循环移位数与所述天线端口数的比值的乘积为整数,即最大循环移位数与天线端口数的比值和第一系数的乘积为整数。同一SRS内,SRS序列一一对应多个天线端口,不同天线端口对应的SRS的序列的循环移位满足:
Figure PCTCN2022107157-appb-000457
Figure PCTCN2022107157-appb-000458
其中,ρ i为第一系数,ρ i满足以下条件:
Figure PCTCN2022107157-appb-000459
k为大于或等于0的整数。
示例性的,
Figure PCTCN2022107157-appb-000460
在满足上述准则的基础上,本申请实施例对ρ i的取值不作限制。以SRS的传输comb大小为8,SRS序列的长度为6,最大循环移位数为12,SRS对应的天线端口数为4,
Figure PCTCN2022107157-appb-000461
为例进行说明,同一SRS内,不同天线端口对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000462
Figure PCTCN2022107157-appb-000463
不同天线端口对应的SRS序列的循环移位α i与天线端口p i映射关系如表12所示:
表12不同
Figure PCTCN2022107157-appb-000464
条件下α i与p i的映射关系
Figure PCTCN2022107157-appb-000465
如表12所示,为实现不同天线端口间循环移位的均匀分配,配置循环移位偏移值
Figure PCTCN2022107157-appb-000466
在此场景下,天线端口p 0与天线端口p 2对应相同comb位置,对应循环移位满足均匀分配,其中,p i表示天线端口序号。天线端口p 1或天线端口p 3对应的SRS序列与天线端口p 0对应的循环移位不连续,但可以通过不同的comb位置区分。
值得注意的是,对于不同SRS之间复用,在4天线端口SRS分配
Figure PCTCN2022107157-appb-000467
的条件下,同一 comb位置下,4天线端口SRS只能与2个1天线端口SRS复用,上述2个1天线端口对应循环移位偏移值
Figure PCTCN2022107157-appb-000468
分别等于4或5。
在另一个实施例中,在相同comb位置,不同天线端口对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。同一SRS内,不同天线端口对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000469
Figure PCTCN2022107157-appb-000470
其中,
Figure PCTCN2022107157-appb-000471
为相同comb位置下复用的端口数。
Figure PCTCN2022107157-appb-000472
可以通过预定义的方式实现,例如,
Figure PCTCN2022107157-appb-000473
等于最大循环移位数与天线端口数的最大公约数;又例如,
Figure PCTCN2022107157-appb-000474
等于天线端口数除以一个SRS所占comb位置数量。
示例性的,若最大循环移位数为6,天线端口数
Figure PCTCN2022107157-appb-000475
Figure PCTCN2022107157-appb-000476
若最大循环移位数为12,天线端口数
Figure PCTCN2022107157-appb-000477
Figure PCTCN2022107157-appb-000478
若天线端口{p 0,p 2}与天线端口{p 1,p 3}对应不同的comb位置(两个comb位置),则对应
Figure PCTCN2022107157-appb-000479
在又一个实施例中,同一SRS内,不同天线端口对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000480
Figure PCTCN2022107157-appb-000481
若最大循环移位数为6,天线端口数为4,为保证天线端口间配置循环移位的连续性,天线端口{p 0,p 2}与天线端口{p 1,p 3}对应不同的comb位置,限制网络设备可配
Figure PCTCN2022107157-appb-000482
为3,4,5。
基于上述方案,具体的天线端口对应的comb位置可基于下述方案设计:
所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,SRS对应的SRS序列分别对应多个天线端口,多个天线端口分为多组,不同组分别在不同的comb位置,可以修改天线端口与SRS序列的comb位置的映射规则,在现有协议机制的基础上,重新设计p i
Figure PCTCN2022107157-appb-000483
的映射关系。终端设备根据重新修改后的映射规则确定多个天线端口对应的SRS序列的comb位置,可以实现在同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位平均分配。
在一个实施例中,M等于天线端口数与相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000484
不同天线端口对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000485
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000486
表示SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000487
表示天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000488
表示SRS对应的comb偏移值,K TC表 示SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000489
Figure PCTCN2022107157-appb-000490
下面以SRS的传输comb大小为8,最大循环移位数为6,
Figure PCTCN2022107157-appb-000491
该SRS对应的天线端口数为4为例进行说明,不同天线端口对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000492
其中,上述4个天线端口分别对应不同的2个comb位置,SRS的频域资源起始位置
Figure PCTCN2022107157-appb-000493
定义为:
Figure PCTCN2022107157-appb-000494
Figure PCTCN2022107157-appb-000495
n shift表示相比参考点的频域偏移值(RB级别),n shift由高层信令freqDomainShift配置,
Figure PCTCN2022107157-appb-000496
表示SRS对应的comb偏移值,
Figure PCTCN2022107157-appb-000497
表示参数K TC和时域OFDM符号l′的函数。
Figure PCTCN2022107157-appb-000498
表示天线端口i对应的SRS序列的comb位置,通过上述表达式可知,若SRS配置天线端口数为4时,不同SRS序列对应的天线端口之间通过循环移位和comb位置两种方式复用。
终端设备确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,可以理解为,在一种方式中,上述确定SRS序列的循环移位和comb位置的方式是预定义的,终端设备接收到网络设备配置的参数时,例如
Figure PCTCN2022107157-appb-000499
n shift等,触发确定动作,即根据网络设备配置的参数和预定义的确定方式确定SRS序列的循环移位和comb位置。在另一种方式中,上述确定SRS序列的循环移位和comb位置的方式是网络设备通过高层信令指示的,例如,高层信令可以是DCI信令,或者bitmap形式,或者RRC信令等,终端设备接收到确定SRS序列的循环移位和comb位置的方式以及相关的配置参数时,触发确定操作。
可选的,本申请实施例中的SRS为用于定位的SRS。
步骤S602:终端设备根据循环移位和comb位置中的至少一项向网络设备发送SRS。
终端设备确定SRS对应的SRS序列的循环移位和comb位置中的至少一项之后,可以根据循环移位和comb位置中的至少一项向网络设备发送SRS。
相应的,针对SRS对应的最大循环移位数与SRS序列对应的天线端口数的比值为非整数所产生的同一SRS下SRS序列对应的多个天线端口在相同comb位置的循环移位分配不平均的问题,网络设备也可以确定天线端口的循环移位和comb位置中的至少一项,具体的确定方式可以参考上述步骤S601中的详细描述,为避免重复,在此不再赘述。网络设备确定天线端口的循环移位和comb位置中的至少一项后,可以根据循环移位和comb位置中的至少一项接收来自终端设备的SRS,进而实现根据SRS进行波束管理、基于码本的传输、基于非码本的传输、天线切换发送或者定位等功能。
上面描述了本申请实施例提供的方法实施例,下面对本申请实施例涉及的虚拟装置实施例进行描述。
请参阅图7,图7是本申请实施例提供的一种通信装置的结构示意图,该装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。如图7所示,该装置700,至少包括:确定单元701和发送单元702;其中:
确定单元701,用于确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一 项,所述SRS序列的长度与最大循环移位数的比值为非整数;
发送单元702,用于根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述第一SRS;
所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
在一个实施例中,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
在一个实施例中,所述对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000500
其中,
Figure PCTCN2022107157-appb-000501
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000502
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000503
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
在一个实施例中,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000504
Figure PCTCN2022107157-appb-000505
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000506
Figure PCTCN2022107157-appb-000507
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000508
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000509
表示最大循环移位数,
Figure PCTCN2022107157-appb-000510
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000511
表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
在一个实施例中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000512
Figure PCTCN2022107157-appb-000513
Figure PCTCN2022107157-appb-000514
在一个实施例中,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所 述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
在一个实施例中,所述同一组内的天线端口对应的SRS序列正交。
在一个实施例中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000515
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000516
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000517
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000518
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000519
Figure PCTCN2022107157-appb-000520
其中,
Figure PCTCN2022107157-appb-000521
表示所述第一SRS对应的天线端口数。
在一个实施例中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000522
在一个实施例中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000523
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000524
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000525
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000526
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
Figure PCTCN2022107157-appb-000527
表示最大循环移位数,Φ m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000528
Figure PCTCN2022107157-appb-000529
其中,
Figure PCTCN2022107157-appb-000530
表示所述第一SRS对应的天线端口数。
在一个实施例中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000531
在一个实施例中,所述第一SRS为用于定位的SRS。
在一个实施例中,所述确定单元701,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000532
其中,
Figure PCTCN2022107157-appb-000533
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000534
表示最大循环移位数,L表示所述SRS序列的长度。
有关上述确定单元701和发送单元702更详细的描述可以直接参考上述图4所示的方法实施例中终端设备的相关描述,这里不加赘述。
请参阅图8,图8是本申请实施例提供的另一种通信装置的结构示意图。该装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。如图8所示,该装置800,至少包括:确定单元801和接收单元802;其中:
确定单元801,用于确定第一SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;
接收单元802,用于根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述第一SRS;
所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
在一个实施例中,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
在一个实施例中,所述对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000535
其中,
Figure PCTCN2022107157-appb-000536
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000537
表示天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000538
表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
在一个实施例中,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000539
Figure PCTCN2022107157-appb-000540
其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000541
Figure PCTCN2022107157-appb-000542
α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000543
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000544
表示最大循环移位数,
Figure PCTCN2022107157-appb-000545
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000546
表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
在一个实施例中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000547
Figure PCTCN2022107157-appb-000548
Figure PCTCN2022107157-appb-000549
在一个实施例中,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
在一个实施例中,所述同一组内的天线端口对应的SRS序列正交。
在一个实施例中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000550
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000551
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000552
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000553
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000554
Figure PCTCN2022107157-appb-000555
其中,
Figure PCTCN2022107157-appb-000556
表示所述第一SRS对应的天线端口数。
在一个实施例中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000557
在一个实施例中,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000558
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000559
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000560
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000561
表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
Figure PCTCN2022107157-appb-000562
表示最大循环移位数,Φ m表示集合m,所述集合满足:
Figure PCTCN2022107157-appb-000563
Figure PCTCN2022107157-appb-000564
其中,
Figure PCTCN2022107157-appb-000565
表示所述第一SRS对应的天线端口数。
在一个实施例中,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000566
在一个实施例中,所述确定单元801,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000567
其中,
Figure PCTCN2022107157-appb-000568
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000569
表示最大循环移位数,L表示所述SRS序列的长度。
在一个实施例中,所述确定单元801,还用于:
确定所述SRS分别对应的至少一个循环移位偏移值,所述SRS为多个SRS,所述至少一个循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,占用相同comb位置的不同SRS对应的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000570
其中,
Figure PCTCN2022107157-appb-000571
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000572
表示所述第二SRS对应天线端口j对应的SRS序列的循环移位,k为正整数,
Figure PCTCN2022107157-appb-000573
表示最大循环移位数,L表示所述SRS序列的长度。
有关上述确定单元801和接收单元802更详细的描述可以直接参考上述图4所示的方法实施例中网络设备的相关描述,这里不加赘述。
请参阅图9,图9是本申请实施例提供的又一种通信装置的结构示意图,该装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。如图9所示,该装置900,至少包括:确定单元901和发送单元902;其中:
确定单元901,用于确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;
发送单元902,用于根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述SRS。
在一个实施例中,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
在一个实施例中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000574
Figure PCTCN2022107157-appb-000575
其中,ρ i为所述第一系数,
Figure PCTCN2022107157-appb-000576
k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000577
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000578
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000579
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000580
表示所述SRS对应的天线端口数。
在一个实施例中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000581
Figure PCTCN2022107157-appb-000582
在一个实施例中,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
在一个实施例中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000583
Figure PCTCN2022107157-appb-000584
其中,
Figure PCTCN2022107157-appb-000585
为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000586
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000587
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000588
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000589
表示所述SRS对应的天线端口数。
在一个实施例中,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
在一个实施例中,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
在一个实施例中,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000590
在一个实施例中,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000591
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000592
表示所述SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000593
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000594
表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000595
Figure PCTCN2022107157-appb-000596
在一个实施例中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000597
在一个实施例中,所述SRS为用于定位的SRS。
在一个实施例中,所述确定单元901,还用于确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb 位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000598
其中,
Figure PCTCN2022107157-appb-000599
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000600
表示最大循环移位数,L表示所述SRS序列的长度。
有关上述确定单元901和发送单元902更详细的描述可以直接参考上述图6所示的方法实施例中终端设备的相关描述,这里不加赘述。
请参阅图10,图10是本申请实施例提供的又一种通信装置的结构示意图。该装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。如图10所示,该装置1000,至少包括:确定单元1001和接收单元1002;其中:
确定单元1001,用于确定SRS对应的SRS序列的循环移位和comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;
接收单元1002,用于根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述SRS。
在一个实施例中,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
在一个实施例中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000601
Figure PCTCN2022107157-appb-000602
其中,ρ i为所述第一系数,
Figure PCTCN2022107157-appb-000603
k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000604
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000605
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000606
表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000607
表示所述SRS对应的天线端口数。
在一个实施例中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000608
Figure PCTCN2022107157-appb-000609
在一个实施例中,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
在一个实施例中,所述SRS对应的SRS序列的循环移位满足:
Figure PCTCN2022107157-appb-000610
Figure PCTCN2022107157-appb-000611
其中,
Figure PCTCN2022107157-appb-000612
为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000613
表示天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000614
表示所述SRS对应的最大循环移位数,
Figure PCTCN2022107157-appb-000615
表示所述SRS对应的循环移位偏移值,p i 表示天线端口i的序号,
Figure PCTCN2022107157-appb-000616
表示所述SRS对应的天线端口数。
在一个实施例中,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
在一个实施例中,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
在一个实施例中,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
Figure PCTCN2022107157-appb-000617
在一个实施例中,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000618
其中,p i表示天线端口i的序号,
Figure PCTCN2022107157-appb-000619
表示所述SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000620
表示所述天线端口i对应的SRS序列的comb位置,
Figure PCTCN2022107157-appb-000621
表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
Figure PCTCN2022107157-appb-000622
Figure PCTCN2022107157-appb-000623
在一个实施例中,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
Figure PCTCN2022107157-appb-000624
有关上述确定单元1001和接收单元1002更详细的描述可以直接参考上述图6所示的方法实施例中网络设备的相关描述,这里不加赘述。
请参阅图11,图11是本申请实施例提供的又一种通信装置的结构示意图。该装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。如图11所示,该装置1100,至少包括:确定单元1101;其中:
确定单元1101,用于确定第一SRS对应的循环移位偏移值和第二SRS对应的循环移位偏移值;
所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022107157-appb-000625
所述第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022107157-appb-000626
其中,[]表示取整函数,
Figure PCTCN2022107157-appb-000627
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000628
表示所述第二SRS对应的天线端口q对应的SRS序列的循环移位,
Figure PCTCN2022107157-appb-000629
表示所述 第一SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000630
表示所述第二SRS对应的循环移位偏移值,
Figure PCTCN2022107157-appb-000631
表示最大循环移位数,
Figure PCTCN2022107157-appb-000632
表示所述天线端口i的序号,
Figure PCTCN2022107157-appb-000633
表示所述天线端口q的序号,
Figure PCTCN2022107157-appb-000634
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022107157-appb-000635
表示所述第二SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为不同SRS对应的SRS序列,所述
Figure PCTCN2022107157-appb-000636
和所述
Figure PCTCN2022107157-appb-000637
满足:
Figure PCTCN2022107157-appb-000638
其中,k为正整数,L表示所述天线端口i对应的SRS序列或者所述天线端口q对应的SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列的长度相同。
在一个实施例中,所述SRS为用于定位的SRS。
在一个实施例中,所述确定单元1101,还用于:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
Figure PCTCN2022107157-appb-000639
其中,
Figure PCTCN2022107157-appb-000640
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
Figure PCTCN2022107157-appb-000641
表示最大循环移位数,L表示所述SRS序列的长度。
有关上述确定单元1101更详细的描述可以直接参考上述图4所示的方法实施例中网络设备的相关描述,这里不加赘述。
基于上述网络架构,请参阅图12,图12是本申请实施例提供的又一种通信装置的结构示意图。如图12所示,该装置1200可以包括一个或多个处理器1201,处理器1201也可以称为处理单元,可以实现一定的控制功能。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1201也可以存有指令、数据1203,所述指令、数据1203可以被所述处理器运行,使得所述装置1200执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1201中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置1200中可以包括一个或多个存储器1202,其上可以存有指令1204,所述指令可在所述处理器上被运行,使得所述装置1200执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令、数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置1200还可以包括收发器1205、天线1206。所述处理器1201可以称为处理单元,对所述装置1200进行控制。所述收发器1205可以称为收发单元、收发机、收发 电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置1200可以用于执行本申请实施例中图6中描述的方法。
在一个实施例中,该通信装置1200可以为终端设备,也可以为终端设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,处理器1201用于执行上述实施例中确定单元701执行的操作,收发器1205用于执行上述实施例中发送单元702执行的操作,收发器1205还用于向该通信装置之外的其它通信装置发送信息。上述终端设备或者终端设备内的模块还可以用于执行上述图4方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置1200可以为网络设备,也可以为网络设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,处理器1201用于执行上述实施例中确定单元801和确定单元1101执行的操作,收发器1205用于执行上述实施例中接收单元802执行的操作,收发器1205还用于接收来自该通信装置之外的其它通信装置的信息。上述网络设备或者网络设备内的模块还可以用于执行上述图4方法实施例中网络设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置1200可以为终端设备,也可以为终端设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,处理器1201用于执行上述实施例中确定单元901执行的操作,收发器1205用于执行上述实施例中发送单元902执行的操作,收发器1205还用于向该通信装置之外的其它通信装置发送信息。上述终端设备或者终端设备内的模块还可以用于执行上述图6方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置1200可以为网络设备,也可以为网络设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,处理器1201用于执行上述实施例中确定单元1001执行的操作,收发器1205用于执行上述实施例中接收单元1002执行的操作,收发器1205还用于接收来自该通信装置之外的其它通信装置的信息。上述网络设备或者网络设备内的模块还可以用于执行上述图6方法实施例中网络设备执行的各种方法,不再赘述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图12的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据、指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
请参阅图13,图13是本申请实施例提供的一种终端设备的结构示意图。为了便于说明,图13仅示出了终端设备的主要部件。如图13所示,终端设备1300包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端1300的收发单元1301,将具有处理功能的处理器视为终端1300的处理单元1302。如图13所示,终端1300包括收发单元1301和处理单元1302。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1301中用于实现接收功能的器件视为接收单元,将收发单元1301中用于实现发送功能的器件视为发送单元,即收发单元1301包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
在一个实施例中,处理单元1302用于执行上述实施例中确定单元701执行的操作,收发单元1301用于执行上述实施例中发送单元702执行的操作。该终端1300还可以用于执行上述图4方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,处理单元1302用于执行上述实施例中确定单元901执行的操作,收发单元1301用于执行上述实施例中发送单元902执行的操作。该终端1300还可以用于执行上 述图6方法实施例中终端设备执行的各种方法,不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
本申请实施例还提供一种芯片系统,包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器通过线路互联,所述至少一个处理器用于运行计算机程序或指令,以执行包括上述图4和图6对应的方法实施例中记载的任意一种的部分或全部步骤。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还公开一种通信系统,该系统包括终端和网络设备,具体描述可以参考图4和图6所示的通信方法。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是硬盘(hard disk drive,HDD)、固态硬盘(solid-state drive,SSD)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static rAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous dRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令、数据。
还应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (55)

  1. 一种通信方法,其特征在于,包括:
    确定第一探测参考信号SRS对应的SRS序列的循环移位和梳齿comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;
    根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述第一SRS;
    所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
  2. 根据权利要求1所述的方法,其特征在于,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
  3. 根据权利要求2所述的方法,其特征在于,所述对应相同comb位置的SRS序列之间两两正交满足:
    Figure PCTCN2022107157-appb-100001
    其中,
    Figure PCTCN2022107157-appb-100002
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100003
    表示天线端口j对应的SRS序列的循环移位,k为正整数,
    Figure PCTCN2022107157-appb-100004
    表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100005
    Figure PCTCN2022107157-appb-100006
    其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
    Figure PCTCN2022107157-appb-100007
    Figure PCTCN2022107157-appb-100008
    α i表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100009
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100010
    表示最大循环移位数,
    Figure PCTCN2022107157-appb-100011
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022107157-appb-100012
    表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
  5. 根据权利要求4所述的方法,其特征在于,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100013
    Figure PCTCN2022107157-appb-100014
    Figure PCTCN2022107157-appb-100015
  6. 根据权利要求1所述的方法,其特征在于,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述同一组内的天线端口对应的SRS序列正交。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100016
    Figure PCTCN2022107157-appb-100017
    其中,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100018
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100019
    表示所述天线端口i对应的SRS序列的comb位置,
    Figure PCTCN2022107157-appb-100020
    表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
    Figure PCTCN2022107157-appb-100021
    Figure PCTCN2022107157-appb-100022
    其中,
    Figure PCTCN2022107157-appb-100023
    表示所述第一SRS对应的天线端口数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100024
  10. 根据权利要求6所述的方法,其特征在于,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100025
    其中,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100026
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100027
    表示所述天线端口i对应的SRS序列的comb位置,
    Figure PCTCN2022107157-appb-100028
    表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
    Figure PCTCN2022107157-appb-100029
    表示最大循环移位数,Φ m表示集合m,所述集合满足:
    Figure PCTCN2022107157-appb-100030
    Figure PCTCN2022107157-appb-100031
    其中,
    Figure PCTCN2022107157-appb-100032
    表示所述第一SRS对应的天线端口数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100033
  12. 根据权利要求1-11任意一项所述的方法,其特征在于,所述第一SRS为用于定位的SRS。
  13. 一种通信方法,其特征在于,包括:
    确定第一探测参考信号SRS对应的SRS序列的循环移位和梳齿comb位置中的至少一项,所述SRS序列的长度与最大循环移位数的比值为非整数;
    根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述第一SRS;
    所述SRS序列中,对应相同comb位置的SRS序列之间两两正交。
  14. 根据权利要求13所述的方法,其特征在于,所述对应相同comb位置的SRS序列之间两两正交与所述SRS序列的循环移位、所述SRS序列的长度、所述最大循环移位数中的至少一项有关。
  15. 根据权利要求14所述的方法,其特征在于,所述对应相同comb位置的SRS序列之间两两正交满足:
    Figure PCTCN2022107157-appb-100034
    其中,
    Figure PCTCN2022107157-appb-100035
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100036
    表示天线端口j对应的SRS序列的循环移位,k为正整数,
    Figure PCTCN2022107157-appb-100037
    表示最大循环移位数,L表示所述SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述对应相同comb位置的SRS序列中的不同SRS序列。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100038
    Figure PCTCN2022107157-appb-100039
    其中,γ 1、γ 2,…,γ N表示给定的值,Ω m表示集合m,所述集合满足:
    Figure PCTCN2022107157-appb-100040
    Figure PCTCN2022107157-appb-100041
    α i表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100042
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100043
    表示最大循环移位数,
    Figure PCTCN2022107157-appb-100044
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022107157-appb-100045
    表示所述第一SRS对应的天线端口数,p i表示所述天线端口i的序号。
  17. 根据权利要求16所述的方法,其特征在于,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100046
    Figure PCTCN2022107157-appb-100047
    Figure PCTCN2022107157-appb-100048
  18. 根据权利要求13所述的方法,其特征在于,所述第一SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与天线端口数、所述最大循环移位数以及所述SRS序列的长度的至少一项有关,所述M为大于或等于1的正整数。
  19. 根据权利要求18所述的方法,其特征在于,所述同一组内的天线端口对应的SRS序列正交。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100049
    Figure PCTCN2022107157-appb-100050
    其中,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100051
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100052
    表示所述天线端口i对应的SRS序列的comb位置,
    Figure PCTCN2022107157-appb-100053
    表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,Φ n表示集合n,所述集合满足:
    Figure PCTCN2022107157-appb-100054
    Figure PCTCN2022107157-appb-100055
    其中,
    Figure PCTCN2022107157-appb-100056
    表示所述第一SRS对应的天线端口数。
  21. 根据权利要求20所述的方法,其特征在于,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100057
  22. 根据权利要求18或19所述的方法,其特征在于,所述第一SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100058
    其中,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100059
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100060
    表示所述天线端口i对应的SRS序列的comb位置,
    Figure PCTCN2022107157-appb-100061
    表示所述第一SRS对应的comb偏移值,K TC表示所述第一SRS的传输comb大小,
    Figure PCTCN2022107157-appb-100062
    表示最大循环移位数,Φ m表示集合m,所述集合满足:
    Figure PCTCN2022107157-appb-100063
    Figure PCTCN2022107157-appb-100064
    其中,
    Figure PCTCN2022107157-appb-100065
    表示所述第一SRS对应的天线端口数。
  23. 根据权利要求22所述的方法,其特征在于,所述第一SRS的传输comb大小为8,所述SRS序列的长度为6N,N为正奇数,所述最大循环移位数为12,所述第一SRS对应的天线端口数为4,所述第一SRS对应的多个SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100066
  24. 一种通信方法,其特征在于,包括:
    确定探测参考信号SRS对应的SRS序列的循环移位和梳齿comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;
    根据所述循环移位和所述comb位置中的至少一项向网络设备发送所述SRS。
  25. 根据权利要求24所述的方法,其特征在于,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
  26. 根据权利要求25所述的方法,其特征在于,所述SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100067
    Figure PCTCN2022107157-appb-100068
    其中,ρ i为所述第一系数,
    Figure PCTCN2022107157-appb-100069
    k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100070
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100071
    表示所述SRS对应的最大循环移位数,
    Figure PCTCN2022107157-appb-100072
    表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100073
    表示所述SRS对应的天线端口数。
  27. 根据权利要求26所述的方法,其特征在于,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100074
    Figure PCTCN2022107157-appb-100075
  28. 根据权利要求24所述的方法,其特征在于,相同comb位置,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
  29. 根据权利要求28所述的方法,其特征在于,所述SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100076
    Figure PCTCN2022107157-appb-100077
    其中,
    Figure PCTCN2022107157-appb-100078
    为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100079
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100080
    表示所述SRS对应的最大循环移位数,
    Figure PCTCN2022107157-appb-100081
    表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100082
    表示所述SRS对应的天线端口数。
  30. 根据权利要求28或29所述的方法,其特征在于,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
  31. 根据权利要求25-30任一项所述的方法,其特征在于,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
  32. 根据权利要求31所述的方法,其特征在于,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
    Figure PCTCN2022107157-appb-100083
  33. 根据权利要求31或32所述的方法,其特征在于,所述SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100084
    其中,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100085
    表示所述SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100086
    表示所述天线端口i对应的SRS序列的comb位置,
    Figure PCTCN2022107157-appb-100087
    表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
    Figure PCTCN2022107157-appb-100088
    Figure PCTCN2022107157-appb-100089
  34. 根据权利要求33所述的方法,其特征在于,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100090
  35. 根据权利要求24-34任一项所述的方法,其特征在于,所述SRS为用于定位的SRS。
  36. 根据权利要求24-35任一项所述的方法,其特征在于,所述方法还包括:确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
    Figure PCTCN2022107157-appb-100091
    其中,
    Figure PCTCN2022107157-appb-100092
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
    Figure PCTCN2022107157-appb-100093
    表示最大循环移位数,L表示所述SRS序列的长度。
  37. 一种通信方法,其特征在于,包括:
    确定探测参考信号SRS对应的SRS序列的循环移位和梳齿comb位置中的至少一项,所述SRS对应的最大循环移位数与所述SRS对应的天线端口数的比值为非整数;
    根据所述循环移位和所述comb位置中的至少一项接收来自终端设备的所述SRS。
  38. 根据权利要求37所述的方法,其特征在于,所述最大循环移位数与所述天线端口数的比值和第一系数的乘积为整数。
  39. 根据权利要求38所述的方法,其特征在于,所述SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100094
    Figure PCTCN2022107157-appb-100095
    其中,ρ i为所述第一系数,
    Figure PCTCN2022107157-appb-100096
    k为大于或等于0的整数,α i表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100097
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100098
    表示所述SRS对应的最大循环移位数,
    Figure PCTCN2022107157-appb-100099
    表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100100
    表示所述SRS对应的天线端口数。
  40. 根据权利要求39所述的方法,其特征在于,所述SRS的传输comb大小为8,所述 SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100101
    Figure PCTCN2022107157-appb-100102
  41. 根据权利要求37所述的方法,其特征在于,所述SRS对应的SRS序列的循环移位与相同comb位置下复用的端口数有关。
  42. 根据权利要求41所述的方法,其特征在于,所述SRS对应的SRS序列的循环移位满足:
    Figure PCTCN2022107157-appb-100103
    Figure PCTCN2022107157-appb-100104
    其中,
    Figure PCTCN2022107157-appb-100105
    为相同comb位置下复用的端口数,α i表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100106
    表示天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100107
    表示所述SRS对应的最大循环移位数,
    Figure PCTCN2022107157-appb-100108
    表示所述SRS对应的循环移位偏移值,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100109
    表示所述SRS对应的天线端口数。
  43. 根据权利要求41或42所述的方法,其特征在于,所述相同comb位置下复用的端口数等于所述最大循环移位数与所述天线端口数的最大公约数。
  44. 根据权利要求38-43任一项所述的方法,其特征在于,所述SRS对应的SRS序列分别对应的多个天线端口分为M组,同一组内的天线端口对应的comb位置相同,不同组的天线端口对应到不同的comb位置,所述M与所述最大循环移位数和所述天线端口数中的至少一项有关,所述M为大于或等于1的正整数。
  45. 根据权利要求44所述的方法,其特征在于,所述M等于所述天线端口数与所述相同comb位置下复用的天线端口数的比值:
    Figure PCTCN2022107157-appb-100110
  46. 根据权利要求44或45所述的方法,其特征在于,所述SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100111
    其中,p i表示天线端口i的序号,
    Figure PCTCN2022107157-appb-100112
    表示所述SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100113
    表示所述天线端口i对应的SRS序列的comb位置,
    Figure PCTCN2022107157-appb-100114
    表示所述SRS对应的comb偏移值,K TC表示所述SRS的传输comb大小,Φ n表示集合n,所述集合满足:
    Figure PCTCN2022107157-appb-100115
    Figure PCTCN2022107157-appb-100116
  47. 根据权利要求46所述的方法,其特征在于,所述SRS的传输comb大小为8,所述SRS对应的最大循环移位数为6,所述SRS对应的天线端口数为4,所述SRS对应的SRS序列的comb位置满足:
    Figure PCTCN2022107157-appb-100117
  48. 一种通信方法,其特征在于,包括:
    确定第一探测参考信号SRS对应的循环移位偏移值和第二SRS对应的循环移位偏移值;
    所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022107157-appb-100118
    所述第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022107157-appb-100119
    其中,[]表示取整函数,
    Figure PCTCN2022107157-appb-100120
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100121
    表示所述第二SRS对应的天线端口q对应的SRS序列的循环移位,
    Figure PCTCN2022107157-appb-100122
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022107157-appb-100123
    表示所述第二SRS对应的循环移位偏移值,
    Figure PCTCN2022107157-appb-100124
    表示最大循环移位数,
    Figure PCTCN2022107157-appb-100125
    表示所述天线端口i的序号,
    Figure PCTCN2022107157-appb-100126
    表示所述天线端口q的序号,
    Figure PCTCN2022107157-appb-100127
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022107157-appb-100128
    表示所述第二SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为不同SRS对应的SRS序列,所述
    Figure PCTCN2022107157-appb-100129
    和所述
    Figure PCTCN2022107157-appb-100130
    满足:
    Figure PCTCN2022107157-appb-100131
    其中,k为正整数,L表示所述天线端口i对应的SRS序列或者所述天线端口q对应的SRS序列的长度,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列的长度相同。
  49. 根据权利要求48所述的方法,其特征在于,所述SRS为用于定位的SRS。
  50. 根据权利要求48或49所述的方法,其特征在于,所述方法还包括:
    确定第一SRS对应的循环移位偏移值,所述循环移位偏移值与所述SRS序列对应的循环移位相关联,所述SRS序列中,对应相同comb位置的SRS序列之间两两正交满足:
    Figure PCTCN2022107157-appb-100132
    其中,
    Figure PCTCN2022107157-appb-100133
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,k 1为整数,
    Figure PCTCN2022107157-appb-100134
    表示最大循环移位数,L表示所述SRS序列的长度。
  51. 一种通信装置,其特征在于,包括用于执行如权利要求1-12中任意一项所述方法的单元;或者
    用于执行如权利要求13-23中任意一项所述方法的单元;或者
    用于执行如权利要求24-36中任意一项所述方法的单元;或者
    用于执行如权利要求37-47中任意一项所述方法的单元;或者
    用于执行如权利要求48-50中任意一项所述方法的单元。
  52. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述存储器中存储的存储计算机程序被所述处理器调用时,实现
    如权利要求1-12任意一项所述的方法;或者
    如权利要求13-23任意一项所述的方法;或者
    如权利要求24-36任意一项所述的方法;或者
    如权利要求37-47任意一项所述的方法;或者
    如权利要求48-50任意一项所述的方法。
  53. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被处理器执行时,实现
    如权利要求1-12任意一项所述的方法;或者
    如权利要求13-23任意一项所述的方法;或者
    如权利要求24-36任意一项所述的方法;或者
    如权利要求37-47任意一项所述的方法;或者
    如权利要求48-50任意一项所述的方法。
  54. 一种包括可执行指令的计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或计算机指令,当所述计算机程序或计算机指令被处理器执行时,实现
    如权利要求1-12任意一项所述的方法;或者
    如权利要求13-23任意一项所述的方法;或者
    如权利要求24-36任意一项所述的方法;或者
    如权利要求37-47任意一项所述的方法;或者
    如权利要求48-50任意一项所述的方法。
  55. 一种芯片系统,其特征在于,包括至少一个处理器、存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,实现
    如权利要求1-12任意一项所述的方法;或者
    如权利要求13-23任意一项所述的方法;或者
    如权利要求24-36任意一项所述的方法;或者
    如权利要求37-47任意一项所述的方法;或者
    如权利要求48-50任意一项所述的方法。
PCT/CN2022/107157 2021-08-06 2022-07-21 一种通信方法、装置及计算机可读存储介质 WO2023011211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110905761.1 2021-08-06
CN202110905761.1A CN115706686A (zh) 2021-08-06 2021-08-06 一种通信方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023011211A1 true WO2023011211A1 (zh) 2023-02-09

Family

ID=85155167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107157 WO2023011211A1 (zh) 2021-08-06 2022-07-21 一种通信方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115706686A (zh)
WO (1) WO2023011211A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667579A (zh) * 2017-03-30 2018-10-16 华为技术有限公司 一种数据发送方法、相关设备及系统
CN109905217A (zh) * 2017-12-11 2019-06-18 中兴通讯股份有限公司 参考信号的传输方法及装置
CN110535607A (zh) * 2017-03-24 2019-12-03 华为技术有限公司 探测参考信号设计
CN111835488A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种确定天线端口映射方法和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535607A (zh) * 2017-03-24 2019-12-03 华为技术有限公司 探测参考信号设计
CN108667579A (zh) * 2017-03-30 2018-10-16 华为技术有限公司 一种数据发送方法、相关设备及系统
CN109905217A (zh) * 2017-12-11 2019-06-18 中兴通讯股份有限公司 参考信号的传输方法及装置
CN111835488A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种确定天线端口映射方法和终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "SRS Performance and Potential Enhancements", 3GPP DRAFT; R1-2103444, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052178174 *
MODERATOR (ZTE): "FL summary #1 on SRS enhancements", 3GPP DRAFT; R1-2102674, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 13 April 2021 (2021-04-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051995262 *
VIVO: "Discussion on UL RS for NR positioning", 3GPP DRAFT; R1-1910238, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789043 *

Also Published As

Publication number Publication date
CN115706686A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
JP2022122914A (ja) 基準信号シーケンスを決定するための方法および装置、コンピュータプログラム製品、ならびにコンピュータ可読ストレージ媒体
CA3053919C (en) Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system
JP7092187B2 (ja) リソース構成方法、決定方法及びその装置、並びに通信システム
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
CN107689845B (zh) 一种传输参考信号的方法、相关设备及通信系统
US20230029215A1 (en) Reference Signal Transmission Method and Apparatus
US11381288B2 (en) Communication method, network device, and terminal device
WO2019015468A1 (zh) 数据传输方法、网络设备和终端设备
CN114667685B (zh) 通信方法和装置
JP7121199B2 (ja) シーケンスを生成及び処理する方法並びに装置
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2023011211A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN110868279B (zh) 一种信号发送、接收方法及装置
WO2023143620A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2018228296A1 (zh) 用于进行数据传输的方法和装置
WO2023273928A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022253166A1 (zh) 一种通信的方法和装置
WO2023143011A1 (zh) 一种通信方法和装置
WO2023011613A1 (zh) 无线通信方法和装置
WO2024061236A1 (zh) 发送和接收参考信号的方法、通信装置
WO2023011617A1 (zh) 一种获取信息的方法和装置
WO2022262532A1 (zh) 符号传输的方法和通信装置
CN116170890A (zh) 一种通信方法、装置及计算机可读存储介质
WO2024069274A1 (en) Devices, methods and apparatuses for antenna port configuration
CA3157199A1 (en) Resource determining method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE