WO2023011064A1 - 用于控制电化学制冷系统的方法及装置、电化学制冷系统 - Google Patents

用于控制电化学制冷系统的方法及装置、电化学制冷系统 Download PDF

Info

Publication number
WO2023011064A1
WO2023011064A1 PCT/CN2022/102633 CN2022102633W WO2023011064A1 WO 2023011064 A1 WO2023011064 A1 WO 2023011064A1 CN 2022102633 W CN2022102633 W CN 2022102633W WO 2023011064 A1 WO2023011064 A1 WO 2023011064A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
refrigeration system
water pump
electrochemical
powered
Prior art date
Application number
PCT/CN2022/102633
Other languages
English (en)
French (fr)
Inventor
苏宁
郑岩
赵国胜
孙艳斌
李延政
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023011064A1 publication Critical patent/WO2023011064A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present application relates to the technical field of air conditioning, for example, to a method and device for controlling an electrochemical refrigeration system and the electrochemical refrigeration system.
  • thermal radiation electrochemical refrigeration systems have begun to replace traditional vapor compression refrigeration systems.
  • the thermal radiation electrochemical refrigeration systems on the market use metal hydride heat exchangers to achieve refrigeration. This thermal radiation
  • the type electrochemical refrigeration system does not have the problem of refrigerant release or leakage polluting the environment, which is energy-saving and environmentally friendly.
  • the hydride heat exchanger of the electrochemical refrigeration system performs continuous refrigeration for a relatively short period of time.
  • Embodiments of the present disclosure provide a method and device for controlling an electrochemical refrigeration system, and the electrochemical refrigeration system, so as to increase the continuous refrigeration time of the electrochemical refrigeration system.
  • the electrochemical refrigeration system includes a circulating water pipe with circulating water inside; the first circulating water pump is connected to the circulating water pipe through an electromagnetic three-way valve; the second circulating water pump is connected to the circulating water pipe through the electromagnetic three-way valve; The three-way valve is connected to the circulating water pipe; the first heat exchanger is respectively communicated with the first circulating water pump and the electrochemical hydrogen pump, and is configured to act as a The evaporator is used to dehydrogenate and absorb heat; the second heat exchanger is connected to the second circulating water pump and the electrochemical hydrogen pump respectively, and is configured to serve as a negative pressure when the electrochemical refrigeration system is powered on The evaporator is used to dehydrogenate and absorb heat; the electrochemical hydrogen pump is connected to the first heat exchanger and the second heat exchanger respectively; the method includes:
  • the first circulating water pump When the electrochemical refrigeration system is powered on to positive pressure, the first circulating water pump is turned on, the second circulating water pump is turned off, and the electromagnetic three-way valve is controlled to communicate with the first circulating water pump and the circulating water pump. water pipes; or,
  • the second circulating water pump When the electrochemical refrigeration system is powered on to a negative pressure, the second circulating water pump is turned on, the first circulating water pump is turned off, and the electromagnetic three-way valve is controlled to communicate with the second circulating water pump and the circulating water pump. water pipe;
  • E 0 is the preset system power-on hydride concentration.
  • the device includes: a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for controlling an electrochemical refrigeration system when the program instructions are executed.
  • the electrochemical refrigeration system includes:
  • the first circulating water pump is connected to the circulating water pipe through an electromagnetic three-way valve;
  • the second circulating water pump is connected to the circulating water pipe through the electromagnetic three-way valve;
  • the first heat exchanger in communication with the first circulating water pump, is configured to serve as an evaporator when the electrochemical refrigeration system is powered on with positive pressure, dehydrogenation and heat absorption;
  • the second heat exchanger in communication with the second circulating water pump, is configured to serve as an evaporator when the electrochemical refrigeration system is powered on to a negative pressure, dehydrogenating and absorbing heat;
  • the method, device and electrochemical refrigeration system provided in the embodiments of the present disclosure for controlling the electrochemical refrigeration system can achieve the following technical effects:
  • Fig. 1 is a schematic diagram of an electrochemical refrigeration system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a method for controlling an electrochemical refrigeration system provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another method for controlling an electrochemical refrigeration system provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of another method for controlling an electrochemical refrigeration system provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of a device for controlling an electrochemical refrigeration system provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • correspondence may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.
  • an embodiment of the present disclosure provides an electrochemical refrigeration system, including: a circulating water pipe 10 , a first circulating water pump 20 , a second circulating water pump 30 , a first heat exchanger 40 , a second heat exchanger 50 and Electrochemical hydrogen pump 60 .
  • the first circulating water pump 20 is connected to the circulating water pipe 10 through the electromagnetic three-way valve 70;
  • the second circulating water pump 30 is connected to the circulating water pipe 10 through the electromagnetic three-way valve 70;
  • the first heat exchanger 40 communicates with the first circulating water pump 20 and is configured as an evaporator when the electrochemical refrigeration system is powered on with positive pressure to dehydrogenate and absorb heat;
  • the second heat exchanger 50 communicates with the second circulating water pump 30 and is configured In order to serve as an evaporator when the electrochemical refrigeration system is powered on with negative pressure, dehydrogenation absorbs heat;
  • the electrochemical hydrogen pump communicates with the first heat exchanger 40 and the second heat exchanger 50 respectively.
  • refrigeration can be realized through the dehydrogenation and heat absorption of the first heat exchanger 40 or the second heat exchanger 50 .
  • the electromagnetic three-way valve 70 includes a first electromagnetic three-way valve 71 , a second electromagnetic three-way valve 72 , a third electromagnetic three-way valve 73 and a fourth electromagnetic three-way valve 74 .
  • the first electromagnetic three-way valve 71 is connected with the first circulating water pump 20, the circulating water pipe 10 and the second electromagnetic three-way valve 72 respectively;
  • the second electromagnetic three-way valve 72 is respectively connected with the first heat exchanger 40, the circulating water pipe 10 and the first
  • the electromagnetic three-way valve 71 is connected;
  • the third electromagnetic three-way valve 73 is respectively connected with the second circulating water pump 30, the circulating water pipe 10 and the fourth electromagnetic three-way valve 74;
  • the fourth electromagnetic three-way valve 74 is respectively connected with the second heat exchanger 50 , the circulating water pipe 10 and the third electromagnetic three-way valve 73 are connected.
  • the flow direction of the circulating water can be better controlled through the electromagnetic three-way valve 70 .
  • the electrochemical refrigeration system further includes a first hydride detection device and a second hydride detection device.
  • the first hydride detection device is configured to detect the hydride concentration of the first heat exchanger 40 ;
  • the second hydride detection device is configured to detect the hydride concentration of the second heat exchanger 50 . In this way, it is beneficial to detect the hydride concentration of the evaporator.
  • the electrochemical refrigeration system further includes a timer configured to time the power-off time of the electrochemical refrigeration system. In this way, it is beneficial to obtain the system power outage time more accurately.
  • an embodiment of the present disclosure provides a method for controlling an electrochemical refrigeration system, including:
  • the electrochemical refrigeration system detects the hydride concentration E of the evaporator.
  • the electrochemical refrigeration system executes to determine whether the electrochemical refrigeration system is under positive pressure when powered on.
  • E 0 is the preset system power-on hydride concentration.
  • the control circulating water flows out from the first heat exchanger as an evaporator, enters the circulating water pipe through the first circulating water pump, and then flows back to the first heat exchanger; when the system is powered on, it is negative pressure
  • the circulating water is controlled to flow out from the second heat exchanger as an evaporator, enter the circulating water pipe through the second circulating water pump, and then flow back to the second heat exchanger; realize the reverse phase of two sets of refrigeration systems composed of two pairs of heat exchangers operation, thereby increasing the continuous refrigeration time of the electrochemical refrigeration system.
  • the electrochemical refrigeration system executes and controls the electromagnetic three-way valve to communicate with the first circulating water pump and the circulating water pipe, including: the electrochemical refrigeration system executes and controls the first electromagnetic three-way valve to communicate with the first circulating water pump and the circulating water pipe, and controls the fourth
  • the electromagnetic three-way valve is connected to the circulating water pipe and the third electromagnetic three-way valve
  • the third electromagnetic three-way valve is connected to the fourth electromagnetic three-way valve and the circulating water pipe
  • the second electromagnetic three-way valve is connected to the circulating water pipe and the first heat exchange valve. device.
  • the electromagnetic three-way valve to connect the first circulating water pump and the circulating water pipe to control the circulating water flowing out from the first heat exchanger as the evaporator, enter the circulating water pipe through the first circulating water pump, and then flow back to the first heat exchanger .
  • the electrochemical refrigeration system executes and controls the electromagnetic three-way valve to communicate with the second circulating water pump and the circulating water pipe, including: the electrochemical refrigeration system executes and controls the third electromagnetic three-way valve to communicate with the second circulating water pump and the circulating water pipe, and controls the second The electromagnetic three-way valve connects the circulating water pipe and the first electromagnetic three-way valve, and controls the first electromagnetic three-way valve to connect the circulating water pipe and the second electromagnetic three-way valve, and controls the fourth electromagnetic three-way valve to connect the circulating water pipe and the second heat exchange valve. device.
  • the electromagnetic three-way valve to communicate with the second circulating water pump and the circulating water pipe to control the circulating water to flow out from the second heat exchanger as the evaporator, enter the circulating water pipe through the second circulating water pump, and then flow back to the second heat exchanger .
  • the value range of E 0 is [4%, 6%]. Specifically, the value of E 0 may be 4%, 4.5%, 5%, 5.5%, or 6%.
  • the control circulating water flows out from the first heat exchanger as the evaporator, enters the circulating water pipe through the first circulating water pump, and then flows back to the first heat exchanger; in the case of negative pressure when the system is powered on , control the circulating water to flow out from the second heat exchanger as the evaporator, enter the circulating water pipe through the second circulating water pump, and then flow back to the second heat exchanger; realize the reverse phase operation of two sets of refrigeration systems composed of two pairs of heat exchangers, Thereby improving the continuous refrigeration time of the electrochemical refrigeration system.
  • an embodiment of the present disclosure provides another method for controlling an electrochemical refrigeration system, including:
  • the electrochemical refrigeration system detects the hydride concentration E of the evaporator.
  • the electrochemical refrigeration system executes to determine whether E>E 0 is established.
  • the electrochemical refrigeration system executes to determine whether the electrochemical refrigeration system is under positive pressure when powered on.
  • the electrochemical refrigeration system executes to control the reversing or closing of the electromagnetic three-way valve according to the system power outage duration t. or,
  • the electrochemical refrigeration system performs power-on control of the electrochemical refrigeration system according to t.
  • E 0 is the preset system power-on hydride concentration.
  • the power-on voltage of the electrochemical refrigeration system can be controlled to be positive pressure or negative pressure, or control
  • the electrochemical refrigeration system is powered off; when the system is powered on with positive pressure, the controlled circulating water flows out from the first heat exchanger as an evaporator, enters the circulating water pipe through the first circulating water pump, and then flows back to the first heat exchanger; In the case of negative pressure when the system is powered on, the circulating water is controlled to flow out from the second heat exchanger as an evaporator, enter the circulating water pipe through the second circulating water pump, and then flow back to the second heat exchanger; in the case of a power failure of the system , according to the length of the system power outage, control the reversing or closing of the electromagnetic three-way valve, or control the power-on of the electrochemical refrigeration system to realize the switching between positive pressure and negative pressure of the system; in
  • the electrochemical refrigeration system controls the reversing or closing of the electromagnetic three-way valve according to t, including: the electrochemical refrigeration system controls the closing of the electromagnetic three-way valve when t ⁇ t 1 ; or, the electrochemical refrigeration system
  • the opening direction of the electromagnetic three-way valve is controlled to be opposite to the opening direction of the electromagnetic three-way valve before the power failure of the electrochemical refrigeration system;
  • t 1 is the duration of the first preset system power failure
  • t 2 is the second preset system power outage duration, t 1 ⁇ t 2 .
  • the value range of t 1 is [0min, 0.5min].
  • the value of t 1 may be 0 min, 0.1 min, 0.2 min, 0.3 min, 0.4 min or 0.5 min.
  • the value range of t 2 is [0.6min, 2min]. More specifically, the value of t 2 may be 0.6 min, 0.8 min, 1 min, 1.5 min or 2 min.
  • the power-on voltage of the electrochemical refrigeration system is controlled to be positive or negative pressure, or the power-off of the electrochemical refrigeration system is controlled; , control the circulating water to flow out from the first heat exchanger as the evaporator, enter the circulating water pipe through the first circulating water pump, and then flow back to the first heat exchanger; when the system is powered on with negative pressure, control the circulating water from as the The second heat exchanger of the evaporator flows out, enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger; in the case of a system power failure, control the reversing or closing of the electromagnetic three-way valve according to the length of the system power failure, Or control the power-on of the electrochemical refrigeration system to realize the switching between positive pressure and negative pressure of the system; in this way, two pairs of heat exchangers form two sets of refrigeration systems to operate in reverse phase, thereby increasing the continuous
  • the electrochemical refrigeration system controls the opening direction of the electromagnetic three-way valve to be opposite to the opening direction of the electromagnetic three-way valve before the electrochemical refrigeration system is powered off, including: the electrochemical refrigeration system performs the first cycle before the electrochemical refrigeration system is powered off When the water pump and the circulating water pipe are connected, control the electromagnetic three-way valve to connect the second circulating water pump and the circulating water pipe; The electromagnetic three-way valve communicates with the first circulating water pump and the circulating water pipe.
  • the circulating water can be switched between the following two flow directions: the first flow direction, the circulating water flows out from the first heat exchanger as the evaporator, and enters the circulation through the first circulating water pump The water pipe flows back to the first heat exchanger; in the second flow direction, the circulating water flows out from the second heat exchanger as an evaporator, enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger.
  • the power-on voltage of the electrochemical refrigeration system is controlled to be positive or negative pressure, or the power-off of the electrochemical refrigeration system is controlled; the power-on voltage of the system is positive
  • control circulating water to flow out from the first heat exchanger as an evaporator enter the circulating water pipe through the first circulating water pump, and then flow back to the first heat exchanger;
  • the water flows out from the second heat exchanger as the evaporator enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger;
  • the reversing of the electromagnetic three-way valve is controlled according to the length of the power failure of the system Or shut down, or control the electrochemical refrigeration system to power on, to realize the switching between positive pressure and negative pressure of the system; in this way, two pairs of heat exchangers form two sets of refrigeration systems to operate in reverse phase,
  • the direction of the voltage is opposite; wherein, t 3 is the third preset system power outage duration, t 1 ⁇ t 2 ⁇ t 3 .
  • the value range of t 3 is [2.1min, 4min]. More specifically, the value of t 3 can be 2.1 min, 2.5 min, 3 min, 3.5 min, or 4 min.
  • the power-on voltage of the electrochemical refrigeration system is controlled to be positive pressure or negative pressure, or Control the power failure of the electrochemical refrigeration system; in the case of positive pressure when the system is powered on, control the circulating water to flow out from the first heat exchanger as the evaporator, enter the circulating water pipe through the first circulating water pump, and then flow back to the first heat exchanger ; In the case of negative pressure when the system is powered on, the control circulating water flows out from the second heat exchanger as the evaporator, enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger; According to the power failure time of the system, control the reversing or closing of the electromagnetic three-way valve, or control the power-on of the electrochemical refrigeration system to realize the switching between positive pressure and negative pressure of the system; in this way, two
  • the electrochemical refrigeration system executes to control the power-on voltage of the electrochemical refrigeration system to be opposite to the voltage direction before the electrochemical refrigeration system is powered off, including: the electrochemical refrigeration system performs power-on of the electrochemical refrigeration system to be In the case of positive pressure, the electrochemical refrigeration system is controlled to be powered on to negative pressure; or, the electrochemical refrigeration system is executed to control the electrochemical refrigeration system to be powered on to Electricity is positive.
  • the power-on voltage of the electrochemical refrigeration system is controlled to be positive pressure or negative pressure, or Control the power failure of the electrochemical refrigeration system; in the case of positive pressure when the system is powered on, control the circulating water to flow out from the first heat exchanger as the evaporator, enter the circulating water pipe through the first circulating water pump, and then flow back to the first heat exchanger ; In the case of negative pressure when the system is powered on, the control circulating water flows out from the second heat exchanger as the evaporator, enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger; According to the power failure time of the system, control the reversing or closing of the electromagnetic three-way valve, or control the power-on of the electrochemical refrigeration system to realize the switching between positive pressure and negative pressure of the system; in this way, two
  • an embodiment of the present disclosure provides another method for controlling an electrochemical refrigeration system, including:
  • the electrochemical refrigeration system detects the hydride concentration E of the evaporator.
  • the electrochemical refrigeration system executes to determine whether the electrochemical refrigeration system is under positive pressure when powered on.
  • the electrochemical refrigeration system detects the temperature T of the circulating water pipe.
  • the electrochemical refrigeration system controls the electrochemical hydrogen pump, the first circulating water pump, and the second circulating water pump to be turned on or off according to the temperature T of the circulating water pipe.
  • E 0 is the preset system power-on hydride concentration.
  • the control circulating water flows out from the first heat exchanger as an evaporator, enters the circulating water pipe through the first circulating water pump, and then flows back to the first heat exchanger; when the system is powered on, it is negative pressure
  • the circulating water is controlled to flow out from the second heat exchanger as an evaporator, enter the circulating water pipe through the second circulating water pump, and then flow back to the second heat exchanger; realize the reverse phase of two sets of refrigeration systems composed of two pairs of heat exchangers operation, thereby improving the continuous cooling time of the electrochemical refrigeration system; it can also control the temperature of the circulating water in the circulating water pipe, thereby better controlling the temperature of the wall with the circulating water pipe installed.
  • the electrochemical refrigeration system controls the opening or closing of the electrochemical hydrogen pump, the first circulating water pump, and the second circulating water pump according to the temperature T of the circulating water pipe, including: the electrochemical refrigeration system is implemented under the condition of T ⁇ T 0 , Turn off the electrochemical hydrogen pump, the first circulating water pump, and the second circulating water pump; or, when the electrochemical refrigeration system executes T ⁇ T 0 , turn on the electrochemical hydrogen pump; and, the electrochemical refrigeration system executes according to the electrochemical refrigeration system
  • the power-on voltage controls the opening or closing of the first circulating water pump and the second circulating water pump; wherein, T 0 is the minimum temperature of the preset circulating water pipe.
  • T 0 is associated with the actual wall structure and material, and the value range is [10°C, 30°C]. More specifically, the value of T x0 may be 10°C, 15°C, 20°C, or 25°C.
  • the power-on voltage of the electrochemical refrigeration system can be controlled to be positive or negative;
  • the flow out of the first heat exchanger of the heat exchanger enters the circulating water pipe through the first circulating water pump, and then flows back to the first heat exchanger; when the system is powered on with negative pressure, the circulating water is controlled to flow from the second heat exchanger as the evaporator
  • the flow out of the device enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger; realizes the reverse phase operation of two sets of refrigeration systems composed of two pairs of heat exchangers, thereby improving the continuous refrigeration time of the electrochemical refrigeration system; Control the temperature of the circulating water in the circulating water pipe,
  • the electrochemical refrigeration system controls the opening or closing of the first circulating water pump and the second circulating water pump according to the power-on voltage of the electrochemical refrigeration system. In this case, turn on the first circulating water pump and turn off the second circulating water pump; or, when the electrochemical refrigeration system is powered on to a negative pressure, turn on the second circulating water pump and turn off the first circulating water pump.
  • the power-on voltage of the electrochemical refrigeration system can be controlled to be positive or negative;
  • the flow out of the first heat exchanger of the heat exchanger enters the circulating water pipe through the first circulating water pump, and then flows back to the first heat exchanger; when the system is powered on with negative pressure, the circulating water is controlled to flow from the second heat exchanger as the evaporator
  • the flow out of the device enters the circulating water pipe through the second circulating water pump, and then flows back to the second heat exchanger; realizes the reverse phase operation of two sets of refrigeration systems composed of two pairs of heat exchangers, thereby improving the continuous refrigeration time of the electrochemical refrigeration system;
  • an embodiment of the present disclosure provides a device for controlling an electrochemical refrigeration system, including a processor (processor) 100 and a memory (memory) 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transfer.
  • the processor 100 can call the logic instructions in the memory 101 to execute the method for controlling the electrochemical refrigeration system of the above-mentioned embodiments.
  • the above logic instructions in the memory 101 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to implement the method for controlling the electrochemical refrigeration system in the above-mentioned embodiments.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an electrochemical refrigeration system, including the above-mentioned device for controlling the electrochemical refrigeration system.
  • An embodiment of the present disclosure provides a computer-readable storage medium, storing computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for controlling an electrochemical refrigeration system.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above-mentioned method for controlling an electrochemical refrigeration system.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种用于控制电化学制冷系统的方法、装置及电化学制冷系统,所述电化学制冷系统包括循环水管(10)、第一循环水泵(20)、第二循环水泵(30)、第一换热器(40)、第二换热器(50)、电化学氢泵(60)和电磁三通阀(70);所述方法包括:检测蒸发器的氢化物浓度E;在E>E0的情况下,控制所述电化学制冷系统上电;在所述电化学制冷系统上电为正压的情况下,开启所述第一循环水泵(20)、关闭所述第二循环水泵(30),控制所述电磁三通阀(70)连通所述第一循环水泵(20)和所述循环水管(10);或者,在所述电化学制冷系统上电为负压的情况下,开启所述第二循环水泵(30)、关闭所述第一循环水泵(20),控制所述电磁三通阀(70)连通所述第二循环水泵(30)和所述循环水管(10);其中,E0为预设系统上电氢化物浓度。

Description

用于控制电化学制冷系统的方法及装置、电化学制冷系统
本申请基于申请号为202110902832.2、申请日为2021年08月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,例如涉及一种用于控制电化学制冷系统的方法、装置和电化学制冷系统。
背景技术
目前,大多数空调特别是家用空调采用的都是蒸汽压缩式制冷,这种传统的蒸汽压缩式制冷系统耗能多,而且传统的蒸汽压缩式制冷系统的冷媒多为氟化物,其释放或者泄露易危害环境。
随着节能环保成为时代主题,热辐射式电化学制冷系统开始取代传统的蒸汽压缩式制冷系统兴起,市面上的热辐射式电化学制冷系统采用金属氢化物换热器实现制冷,这种热辐射式电化学制冷系统不存在冷媒释放或泄露污染环境的问题,节能而且环保。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
电化学制冷系统的氢化物换热器进行连续制冷的时间比较短。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制电化学制冷系统的方法、装置和电化学制冷系统,以提升电化学制冷系统的连续制冷时间。
在一些实施例中,所述电化学制冷系统包括循环水管,内部有可循环流动的水;第一循环水泵,通过电磁三通阀与所述循环水管连接;第二循环水泵,通过所述电磁三通阀与所述循环水管连接;第一换热器,分别与所述第一循环水泵和电化学氢泵连通,被配置为在所述电化学制冷系统上电为正压的情况下作为蒸发器,脱氢吸热;第二换热器,分别与所述第二循环水泵和所述电化学氢泵连通,被配置为在所述电化学制冷系统上电为负压的 情况下作为蒸发器,脱氢吸热;电化学氢泵,分别与所述第一换热器和所述第二换热器连通;所述方法包括:
检测蒸发器的氢化物浓度E;
在E>E 0的情况下,控制所述电化学制冷系统上电;
在所述电化学制冷系统上电为正压的情况下,开启所述第一循环水泵、关闭所述第二循环水泵,控制所述电磁三通阀连通所述第一循环水泵和所述循环水管;或者,
在所述电化学制冷系统上电为负压的情况下,开启所述第二循环水泵、关闭所述第一循环水泵,控制所述电磁三通阀连通所述第二循环水泵和所述循环水管;
其中,E 0为预设系统上电氢化物浓度。
在一些实施例中,所述装置包括:处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行上述的用于控制电化学制冷系统的方法。
在一些实施例中,所述电化学制冷系统包括:
循环水管,内部有可循环流动的水;
第一循环水泵,通过电磁三通阀与所述循环水管连接;
第二循环水泵,通过所述电磁三通阀与所述循环水管连接;
第一换热器,与所述第一循环水泵连通,被配置为在所述电化学制冷系统上电为正压的情况下作为蒸发器,脱氢吸热;
第二换热器,与所述第二循环水泵连通,被配置为在所述电化学制冷系统上电为负压的情况下作为蒸发器,脱氢吸热;
电化学氢泵,分别与所述第一换热器和所述第二换热器连通;和,
上述用于控制电化学制冷系统的装置。
本公开实施例提供的用于控制电化学制冷系统的方法、装置和电化学制冷系统,可以实现以下技术效果:
在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个电化学制冷系统的示意图;
图2是本公开实施例提供的一个用于控制电化学制冷系统的方法的示意图;
图3是本公开实施例提供的另一个用于控制电化学制冷系统的方法的示意图;
图4是本公开实施例提供的另一个用于控制电化学制冷系统的方法的示意图;
图5是本公开实施例提供的一个用于控制电化学制冷系统的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
结合图1所示,本公开实施例提供一种电化学制冷系统,包括:循环水管10、第一循环水泵20、第二循环水泵30、第一换热器40、第二换热器50和电化学氢泵60。循环水管10内部有可循环流动的水;第一循环水泵20通过电磁三通阀70与循环水管10连接;第二循环水泵30通过电磁三通阀70与循环水管10连接;第一换热器40与第一循环水泵 20连通,被配置为在电化学制冷系统上电为正压的情况下作为蒸发器,脱氢吸热;第二换热器50与第二循环水泵30连通,被配置为在电化学制冷系统上电为负压的情况下作为蒸发器,脱氢吸热;电化学氢泵分别与第一换热器40和第二换热器50连通。
用本公开实施例提供的电化学制冷系统,能通过第一换热器40或第二换热器50的脱氢吸热实现制冷。
可选地,电磁三通阀70包括第一电磁三通阀71、第二电磁三通阀72、第三电磁三通阀73和第四电磁三通阀74。第一电磁三通阀71分别与第一循环水泵20、循环水管10和第二电磁三通阀72连接;第二电磁三通阀72分别与第一换热器40、循环水管10和第一电磁三通阀71连接;第三电磁三通阀73分别与第二循环水泵30、循环水管10和第四电磁三通阀74连接;第四电磁三通阀74分别与第二换热器50、循环水管10和第三电磁三通阀73连接。这样,可以更好地通过电磁三通阀70控制循环水的流向。
可选地,电化学制冷系统还包括第一氢化物检测装置、第二氢化物检测装置。第一氢化物检测装置被配置为检测第一换热器40的氢化物浓度;第二氢化物检测装置被配置为检测第二换热器50的氢化物浓度。这样,有利于检测蒸发器的氢化物浓度。
可选地,电化学制冷系统还包括计时器,被配置为对电化学制冷系统的停电时间计时。这样,有利于更精确地得到系统停电时间。
结合图2所示,本公开实施例提供一种用于控制电化学制冷系统的方法,包括:
S201,电化学制冷系统执行检测蒸发器的氢化物浓度E。
S202,电化学制冷系统执行在E>E 0的情况下,控制电化学制冷系统上电。
S203,电化学制冷系统执行判断电化学制冷系统上电是否为正压。
S204,电化学制冷系统执行在电化学制冷系统上电为正压的情况下,开启第一循环水泵、关闭第二循环水泵,控制电磁三通阀连通第一循环水泵和循环水管。或者,
S205,电化学制冷系统执行在电化学制冷系统上电为负压的情况下,开启第二循环水泵、关闭第一循环水泵,控制电磁三通阀连通第二循环水泵和循环水管。
其中,E 0为预设系统上电氢化物浓度。
采用本公开实施例提供的用于控制电化学制冷系统的方法,能在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
可选地,电化学制冷系统执行控制电磁三通阀连通第一循环水泵和循环水管,包括:电化学制冷系统执行控制第一电磁三通阀连通第一循环水泵和循环水管,并控制第四电磁三通阀连通循环水管和第三电磁三通阀,并控制第三电磁三通阀连通第四电磁三通阀和循环水管,并控制第二电磁三通阀连通循环水管和第一换热器。这样,有利于电磁三通阀连通第一循环水泵和循环水管,来控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器。
可选地,电化学制冷系统执行控制电磁三通阀连通第二循环水泵和循环水管,包括:电化学制冷系统执行控制第三电磁三通阀连通第二循环水泵和循环水管,并控制第二电磁三通阀连通循环水管和第一电磁三通阀,并控制第一电磁三通阀连通循环水管和第二电磁三通阀,并控制第四电磁三通阀连通循环水管和第二换热器。这样,有利于电磁三通阀连通第二循环水泵和循环水管,来控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器。
可选地,E 0的取值范围为[4%,6%]。具体地,E 0的取值可以为4%,4.5%,5%,5.5%,6%。这样,通过限制预设系统上电氢化物浓度,更好地在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
结合图3所示,本公开实施例提供另一种用于控制电化学制冷系统的方法,包括:
S301,电化学制冷系统执行检测蒸发器的氢化物浓度E。
S302,电化学制冷系统执行判断E>E 0是否成立。
S303,电化学制冷系统执行在E>E 0的情况下,控制电化学制冷系统上电。
S304,电化学制冷系统执行判断电化学制冷系统上电是否为正压。
S305,电化学制冷系统执行在电化学制冷系统上电为正压的情况下,开启第一循环水泵、关闭第二循环水泵,控制电磁三通阀连通第一循环水泵和循环水管。或者,
S306,电化学制冷系统执行在电化学制冷系统上电为负压的情况下,开启第二循环水泵、关闭第一循环水泵,控制电磁三通阀连通第二循环水泵和循环水管。
S307,电化学制冷系统执行在E≤E 0的情况下,控制电化学制冷系统停电。
S308,电化学制冷系统执行根据系统停电时长t控制电磁三通阀的换向或关闭。或者,
S309,电化学制冷系统执行根据t控制电化学制冷系统上电。
其中,E 0为预设系统上电氢化物浓度。
采用本公开实施例提供的用于控制电化学制冷系统的方法,能在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压,或者控制电化学制冷系统停电;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;在系统停电的情况下,根据系统停电时长控制电磁三通阀的换向或关闭,或者控制电化学制冷系统上电,实现系统正压与负压的切换;这样实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
可选地,电化学制冷系统执行根据t控制电磁三通阀的换向或关闭,包括:电化学制冷系统执行在t≥t 1的情况下,控制电磁三通阀关闭;或者,电化学制冷系统执行在t≥t 2的情况下,控制电磁三通阀的开启方向与电化学制冷系统停电前电磁三通阀的开启方向相反;其中,t 1为第一预设系统停电时长,t 2为第二预设系统停电时长,t 1<t 2。具体地,t 1的取值范围为[0min,0.5min]。更具体地,t 1的取值可以是0min,0.1min,0.2min,0.3min,0.4min或0.5min。具体地,t 2的取值范围为[0.6min,2min]。更具体地,t 2的取值可以是0.6min,0.8min,1min,1.5min或2min。这样,在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压,或者控制电化学制冷系统停电;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;在系统停电的情况下,根据系统停电时长控制电磁三通阀的换向或关闭,或者控制电化学制冷系统上电,实现系统正压与负压的切换;这样实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
可选地,电化学制冷系统执行控制电磁三通阀的开启方向与电化学制冷系统停电前电磁三通阀的开启方向相反,包括:电化学制冷系统执行在电化学制冷系统停电前第一循环水泵和循环水管连通的情况下,控制电磁三通阀连通第二循环水泵和循环水管;或者,电化学制冷系统执行在电化学制冷系统停电前第二循环水泵和循环水管连通的情况下,控制电磁三通阀连通第一循环水泵和循环水管。这样,通过控制电磁三通阀的换向,实现循环水在以下两种流向之间切换:第一种流向,循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;第二种流向,循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器。从而更好地实现在 蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压,或者控制电化学制冷系统停电;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;在系统停电的情况下,根据系统停电时长控制电磁三通阀的换向或关闭,或者控制电化学制冷系统上电,实现系统正压与负压的切换;这样实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
可选地,电化学制冷系统执行根据t控制电化学制冷系统上电,包括:电化学制冷系统执行在t=t 3的情况下,控制电化学制冷系统上电电压与电化学制冷系统停电前的电压方向相反;其中,t 3为第三预设系统停电时长,t 1<t 2<t 3。具体地,t 3的取值范围为[2.1min,4min]。更具体地,t 3的取值可以是2.1min,2.5min,3min,3.5min,或者4min。这样,有利于电化学制冷系统上电切换电压方向,从而更好地实现在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压,或者控制电化学制冷系统停电;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;在系统停电的情况下,根据系统停电时长控制电磁三通阀的换向或关闭,或者控制电化学制冷系统上电,实现系统正压与负压的切换;这样实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
可选地,电化学制冷系统执行控制电化学制冷系统上电电压与电化学制冷系统停电前的电压方向相反,包括:电化学制冷系统执行在电化学制冷系统停电前电化学制冷系统上电为正压的情况下,控制电化学制冷系统上电为负压;或者,电化学制冷系统执行在电化学制冷系统停电前电化学制冷系统上电为负压的情况下,控制电化学制冷系统上电为正压。这样,有利于电化学制冷系统上电切换电压方向,从而更好地实现在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压,或者控制电化学制冷系统停电;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;在系统停电的情况下,根据系统停电时长控制电磁三通阀的换向或关闭,或者控制电化学制冷系统上电,实现系统正压与负压的切换;这样实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间。
结合图4所示,本公开实施例提供另一种用于控制电化学制冷系统的方法,包括:
S401,电化学制冷系统执行检测蒸发器的氢化物浓度E。
S402,电化学制冷系统执行在E>E 0的情况下,控制电化学制冷系统上电。
S403,电化学制冷系统执行判断电化学制冷系统上电是否为正压。
S404,电化学制冷系统执行在电化学制冷系统上电为正压的情况下,开启第一循环水泵、关闭第二循环水泵,控制电磁三通阀连通第一循环水泵和循环水管。或者,
S405,电化学制冷系统执行在电化学制冷系统上电为负压的情况下,开启第二循环水泵、关闭第一循环水泵,控制电磁三通阀连通第二循环水泵和循环水管。
S406,电化学制冷系统执行检测循环水管温度T。
S407,电化学制冷系统执行根据循环水管温度T控制电化学氢泵、第一循环水泵、第二循环水泵的开启或关闭。
其中,E 0为预设系统上电氢化物浓度。
采用本公开实施例提供的用于控制电化学制冷系统的方法,能在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间;还能控制循环水管内循环水的温度,进而更好地控制安装有循环水管的墙体的温度。
可选地,电化学制冷系统执行根据循环水管温度T控制电化学氢泵、第一循环水泵、第二循环水泵的开启或关闭,包括:电化学制冷系统执行在T<T 0的情况下,关闭电化学氢泵、第一循环水泵、第二循环水泵;或者,电化学制冷系统执行在T≥T 0的情况下,开启电化学氢泵;并,电化学制冷系统执行根据电化学制冷系统上电电压控制第一循环水泵、第二循环水泵的开启或关闭;其中,T 0为预设循环水管最低温度。具体地,T 0与实际墙体结构、材质相关联,取值范围为[10℃,30℃]。更具体地,T x0的取值可以是10℃,15℃,20℃,25℃。这样,能在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间;还能控制循环水管内循环水的温度,进而更好地控制安装有循环水 管的墙体的温度;还能控制循环水管内循环水的温度,进而更好地控制安装有循环水管的墙体的温度,更好地减少墙体受潮。
可选地,电化学制冷系统执行根据电化学制冷系统上电电压控制第一循环水泵、第二循环水泵的开启或关闭,包括:电化学制冷系统执行在电化学制冷系统上电为正压的情况下,开启第一循环水泵、关闭第二循环水泵;或者,电化学制冷系统执行在电化学制冷系统上电为负压的情况下,开启第二循环水泵、关闭第一循环水泵。这样,能在蒸发器的氢化物浓度满足预设条件的情况下,控制电化学制冷系统上电电压为正压或者负压;在系统上电为正压的情况下,控制循环水从作为蒸发器的第一换热器流出,通过第一循环水泵进入循环水管,再流回第一换热器;在系统上电为负压的情况下,控制循环水从作为蒸发器的第二换热器流出,通过第二循环水泵进入循环水管,再流回第二换热器;实现两对换热器组成两套制冷系统的反相运行,从而提升电化学制冷系统的连续制冷时间;还能控制循环水管内循环水的温度,进而更好地控制安装有循环水管的墙体的温度;还能控制循环水管内循环水的温度,进而更好地控制安装有循环水管的墙体的温度,更好地减少墙体受潮。
结合图5所示,本公开实施例提供一种用于控制电化学制冷系统的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于控制电化学制冷系统的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制电化学制冷系统的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种电化学制冷系统,包含上述的用于控制电化学制冷系统的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于控制电化学制冷系统的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于控制电化学制冷系统的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的 系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于控制电化学制冷系统的方法,其特征在于,所述电化学制冷系统包括循环水管,内部有可循环流动的水;第一循环水泵,通过电磁三通阀与所述循环水管连接;第二循环水泵,通过所述电磁三通阀与所述循环水管连接;第一换热器,分别与所述第一循环水泵和电化学氢泵连通,被配置为在所述电化学制冷系统上电为正压的情况下作为蒸发器,脱氢吸热;第二换热器,分别与所述第二循环水泵和所述电化学氢泵连通,被配置为在所述电化学制冷系统上电为负压的情况下作为蒸发器,脱氢吸热;电化学氢泵,分别与所述第一换热器和所述第二换热器连通;所述方法包括:
    检测蒸发器的氢化物浓度E;
    在E>E 0的情况下,控制所述电化学制冷系统上电;
    在所述电化学制冷系统上电为正压的情况下,开启所述第一循环水泵、关闭所述第二循环水泵,控制所述电磁三通阀连通所述第一循环水泵和所述循环水管;或者,
    在所述电化学制冷系统上电为负压的情况下,开启所述第二循环水泵、关闭所述第一循环水泵,控制所述电磁三通阀连通所述第二循环水泵和所述循环水管;
    其中,E 0为预设系统上电氢化物浓度。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    在E≤E 0的情况下,控制所述电化学制冷系统停电;
    根据系统停电时长t控制所述电磁三通阀的换向或关闭;或者,
    根据t控制所述电化学制冷系统上电。
  3. 根据权利要求2所述的方法,其特征在于,所述根据t控制所述电磁三通阀的换向或关闭,包括:
    在t≥t 1的情况下,控制所述电磁三通阀关闭;或者,
    在t≥t 2的情况下,控制所述电磁三通阀的开启方向与所述电化学制冷系统停电前所述电磁三通阀的开启方向相反;
    其中,t 1为第一预设系统停电时长,t 2为第二预设系统停电时长,t 1<t 2
  4. 根据权利要求3所述的方法,其特征在于,所述控制所述电磁三通阀的开启方向与所述电化学制冷系统停电前所述电磁三通阀的开启方向相反,包括:
    在所述电化学制冷系统停电前所述第一循环水泵和所述循环水管连通的情况下,控制所述电磁三通阀连通所述第二循环水泵和所述循环水管;或者,
    在所述电化学制冷系统停电前所述第二循环水泵和所述循环水管连通的情况下,控制所述电磁三通阀连通所述第一循环水泵和所述循环水管。
  5. 根据权利要求3所述的方法,其特征在于,所述根据t控制所述电化学制冷系统上电,包括:
    在t=t 3的情况下,控制所述电化学制冷系统上电电压与所述电化学制冷系统停电前的电压方向相反;
    其中,t 3为第三预设系统停电时长,t 1<t 2<t 3
  6. 根据权利要求5所述的方法,其特征在于,所述控制所述电化学制冷系统上电电压与所述电化学制冷系统停电前的电压方向相反,包括:
    在所述电化学制冷系统停电前所述电化学制冷系统上电为正压的情况下,控制所述电化学制冷系统上电为负压;或者,
    在所述电化学制冷系统停电前所述电化学制冷系统上电为负压的情况下,控制所述电化学制冷系统上电为正压。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,在所述控制所述电磁三通阀连通所述第二循环水泵和所述循环水管之后,还包括:
    检测循环水管温度T;
    根据所述循环水管温度T控制所述电化学氢泵、所述第一循环水泵、所述第二循环水泵的开启或关闭。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述循环水管温度T控制所述电化学氢泵、所述第一循环水泵、所述第二循环水泵的开启或关闭,包括:
    在T<T 0的情况下,关闭所述电化学氢泵、所述第一循环水泵、所述第二循环水泵;或者,
    在T≥T 0的情况下,开启所述电化学氢泵;并,根据所述电化学制冷系统上电电压控制所述第一循环水泵、所述第二循环水泵的开启或关闭;
    其中,T 0为预设循环水管最低温度。
  9. 一种用于控制电化学制冷系统的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至8任一项所述的用于控制电化学制冷系统的方法。
  10. 一种电化学制冷系统,其特征在于,包括:
    循环水管,内部有可循环流动的水;
    第一循环水泵,通过电磁三通阀与所述循环水管连接;
    第二循环水泵,通过所述电磁三通阀与所述循环水管连接;
    第一换热器,与所述第一循环水泵连通,被配置为在所述电化学制冷系统上电为
PCT/CN2022/102633 2021-08-06 2022-06-30 用于控制电化学制冷系统的方法及装置、电化学制冷系统 WO2023011064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110902832.2 2021-08-06
CN202110902832.2A CN113654141B (zh) 2021-08-06 2021-08-06 用于控制电化学制冷系统的方法及装置、电化学制冷系统

Publications (1)

Publication Number Publication Date
WO2023011064A1 true WO2023011064A1 (zh) 2023-02-09

Family

ID=78478598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102633 WO2023011064A1 (zh) 2021-08-06 2022-06-30 用于控制电化学制冷系统的方法及装置、电化学制冷系统

Country Status (2)

Country Link
CN (1) CN113654141B (zh)
WO (1) WO2023011064A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654141B (zh) * 2021-08-06 2023-03-24 青岛海尔空调器有限总公司 用于控制电化学制冷系统的方法及装置、电化学制冷系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139363A (ja) * 1990-09-28 1992-05-13 Toyota Autom Loom Works Ltd 水素吸蔵ヒートポンプ
JP2004190983A (ja) * 2002-12-12 2004-07-08 Japan Steel Works Ltd:The 水素貯蔵合金利用の冷熱発生方法及びその装置
CN106196368A (zh) * 2016-07-21 2016-12-07 青岛海尔空调器有限总公司 电化学空调系统的转动控制方法
CN107642846A (zh) * 2016-07-21 2018-01-30 青岛海尔空调器有限总公司 电化学空调系统及其控制方法
CN107975967A (zh) * 2016-10-21 2018-05-01 青岛海尔智能技术研发有限公司 金属氢化物制冷系统及其控制方法
CN108507071A (zh) * 2017-02-27 2018-09-07 青岛海尔智能技术研发有限公司 电化学空调、用于控制电化学空调的方法
CN108800370A (zh) * 2017-04-26 2018-11-13 青岛海尔空调器有限总公司 空调器及其控制方法
CN113654141A (zh) * 2021-08-06 2021-11-16 青岛海尔空调器有限总公司 用于控制电化学制冷系统的方法及装置、电化学制冷系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107975968A (zh) * 2016-10-21 2018-05-01 青岛海尔智能技术研发有限公司 金属氢化物制冷系统及其控制方法
CN108507114B (zh) * 2017-02-27 2020-12-25 青岛海尔智能技术研发有限公司 一种控制电化学空调系统的方法及装置
CN109425060B (zh) * 2017-08-28 2020-11-03 青岛海尔智能技术研发有限公司 一种电化学空调系统及控制方法
DE102019102273A1 (de) * 2019-01-30 2020-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betreiben einer Thermoregulierungsanordnung, Thermoregulierungsanordnung und Fahrzeug
CN110030659B (zh) * 2019-03-26 2021-01-29 青岛海尔空调器有限总公司 一种电化学空调及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04139363A (ja) * 1990-09-28 1992-05-13 Toyota Autom Loom Works Ltd 水素吸蔵ヒートポンプ
JP2004190983A (ja) * 2002-12-12 2004-07-08 Japan Steel Works Ltd:The 水素貯蔵合金利用の冷熱発生方法及びその装置
CN106196368A (zh) * 2016-07-21 2016-12-07 青岛海尔空调器有限总公司 电化学空调系统的转动控制方法
CN107642846A (zh) * 2016-07-21 2018-01-30 青岛海尔空调器有限总公司 电化学空调系统及其控制方法
CN107975967A (zh) * 2016-10-21 2018-05-01 青岛海尔智能技术研发有限公司 金属氢化物制冷系统及其控制方法
CN108507071A (zh) * 2017-02-27 2018-09-07 青岛海尔智能技术研发有限公司 电化学空调、用于控制电化学空调的方法
CN108800370A (zh) * 2017-04-26 2018-11-13 青岛海尔空调器有限总公司 空调器及其控制方法
CN113654141A (zh) * 2021-08-06 2021-11-16 青岛海尔空调器有限总公司 用于控制电化学制冷系统的方法及装置、电化学制冷系统

Also Published As

Publication number Publication date
CN113654141A (zh) 2021-11-16
CN113654141B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023011064A1 (zh) 用于控制电化学制冷系统的方法及装置、电化学制冷系统
WO2014111012A1 (zh) 一种溴化锂机组与冷库结合使用的冷热内平衡系统
CN102269484B (zh) 太阳能辅热地源空调热水一体机
CN110186212B (zh) 一种蓄热、蓄冷系统
CN109059280A (zh) 一种热泵热水系统及其控制方法
CN102313397A (zh) 热回收多联热泵空调热水机系统
CN105240968A (zh) 一种利用蓄热水箱实现夏季蓄冷的蓄能系统
WO2023011065A1 (zh) 用于控制电化学制冷系统的方法及装置、电化学制冷系统
WO2014111014A1 (zh) 一种溴化锂机组与冷库结合使用的冷热外平衡系统
CN102914013A (zh) 热水空调系统及其工作方法
CN207455841U (zh) 一种冷水机组空调系统
WO2022242220A1 (zh) 用于电化学制冷系统的转向控制方法及装置、智能空调器
WO2022227521A1 (zh) 用于制冷系统的控制方法及控制装置、智能空调器
CN110779282A (zh) 太阳能热泵混合烘干系统、烘干方法、装置及控制器
CN104633977A (zh) 一种多用途能量平衡机组
CN210119031U (zh) 一种蓄热、蓄冷系统
KR20130072828A (ko) 연료전지 기반의 열회수 장치 및 그 동작 방법
CN208238096U (zh) 冷热平衡三效合一节能系统
CN207365153U (zh) 采暖换热站的管网及系统
CN220828917U (zh) 空调系统
CN112240593A (zh) 供暖装置、供暖装置的控制方法、控制装置和供暖系统
CN108507062B (zh) 一种电化学空调系统、控制方法及装置
CN111076420A (zh) 基于空气能热泵的节能节水建筑工地热水系统及其施工方法
CN218627021U (zh) 一种热水、采暖和制冷三联供热泵二级循环装置
CN104344551A (zh) 空气能热水器以及预防结霜的方法、除霜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22851779

Country of ref document: EP

Kind code of ref document: A1