WO2022227521A1 - 用于制冷系统的控制方法及控制装置、智能空调器 - Google Patents

用于制冷系统的控制方法及控制装置、智能空调器 Download PDF

Info

Publication number
WO2022227521A1
WO2022227521A1 PCT/CN2021/132644 CN2021132644W WO2022227521A1 WO 2022227521 A1 WO2022227521 A1 WO 2022227521A1 CN 2021132644 W CN2021132644 W CN 2021132644W WO 2022227521 A1 WO2022227521 A1 WO 2022227521A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature value
value
wall
equal
heat exchanger
Prior art date
Application number
PCT/CN2021/132644
Other languages
English (en)
French (fr)
Inventor
苏宁
李延政
孙艳斌
郑岩
邱嵩
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022227521A1 publication Critical patent/WO2022227521A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present application relates to the technical field of air conditioning, for example, to a control method, a control device and an intelligent air conditioner for a refrigeration system.
  • electrochemical refrigeration systems are imperative.
  • This electrochemical refrigeration system is based on the endothermic and exothermic reactions in chemistry. It cools the indoor environment through the endothermic reaction, and releases the heat energy into the surrounding medium through the exothermic reaction. This method is actually under the action of the current.
  • the oxidation-reduction reaction is carried out under low temperature, but its thermal energy coefficient is high.
  • the prior art discloses an air conditioner and a control method thereof.
  • the air conditioner includes an indoor circulating water pipe, an indoor heat exchanger, two metal hydride heat exchangers and an electrochemical compressor, and connects indoor and outdoor through two hydrogen pipelines Two metal hydride heat exchangers, and the indoor heat exchanger is radiation heat exchange
  • the control method of the air conditioner includes: controlling the electromagnetic three-way reversing valve according to the positive and negative pressure of power transmission, and sending the heat-absorbing circulating water into the metal
  • the hydride heat exchanger is cooled, and the cooled water is sent into the room through the indoor circulating water pipe through a pressure pump for radiation heat exchange.
  • the wall at the indoor circulating water pipe is susceptible to moisture.
  • Embodiments of the present disclosure provide a control method, a control device, and an intelligent air conditioner for a refrigeration system, so as to solve the technical problem that the wall at the indoor circulating water pipe is susceptible to moisture under the condition of refrigeration.
  • the control method for a refrigeration system includes: obtaining the real-time temperature value of the wall, the content of hydride in the heat exchanger, the indoor ambient temperature value and the set temperature value; When the content of hydride in the heater is greater than or equal to the first preset value, and the indoor ambient temperature is greater than or equal to the set temperature value, if the real-time temperature value of the wall is less than the first preset value, then The electrochemical hydrogen pump and the circulating water pump are controlled to be closed, and the three-way valve is not turned, wherein the first set value is determined according to the acceptable minimum humidity temperature value of the wall.
  • the method further includes: when the content of hydride in the heat exchanger is greater than or equal to a first preset value, and the indoor ambient temperature value is greater than or equal to a set temperature value, if all When the real-time temperature value of the wall is greater than or equal to the second set value, the circulating water pump is controlled to be turned on, the electrochemical hydrogen pump is turned on, and the three-way valve does not turn around, wherein the second set value The value is greater than the first set value.
  • the method further includes: when the content of hydride in the heat exchanger is greater than or equal to a first preset value, and the indoor ambient temperature value is greater than or equal to a set temperature value, if all If the real-time temperature value of the wall is greater than or equal to the first set value, and the real-time temperature value of the wall is less than the second set value, the circulating water pump is controlled to be turned on, the electrochemical hydrogen pump is turned off, and the The three-way valve does not turn, wherein the second set value is greater than the first set value.
  • the method further includes: when the hydride content in the heat exchanger is greater than or equal to the first preset value, and the indoor ambient temperature value is less than the set temperature value, if the wall The real-time temperature value is greater than or equal to the second set value, the electrochemical hydrogen pump is controlled to be closed, the circulating water pump is opened, and the electromagnetic three-way valve does not turn.
  • the method further includes: when the hydride content in the heat exchanger is less than the first preset value, and the indoor ambient temperature value is greater than or equal to the preset temperature value, If the real-time temperature of the wall is greater than or equal to the second set value, the electrochemical hydrogen pump is turned on, the circulating water pump corresponding to the electrochemical device is turned on, and the three-way valve occurs. turn.
  • the first preset value is determined according to the content of metal hydride in the heat exchanger.
  • the minimum humidity temperature value is determined according to the structure and material of the wall.
  • the control device for the refrigeration system includes: an obtaining module configured to obtain the real-time temperature value of the wall, the content of hydride in the heat exchanger, the indoor ambient temperature value and the set temperature
  • the control module is configured to, when the content of hydride in the heat exchanger is greater than or equal to a first preset value, and the indoor ambient temperature is greater than or equal to a set temperature value, if the wall If the real-time temperature value is less than the first set value, the electrochemical hydrogen pump and the circulating water pump are controlled to be closed, and the three-way valve does not turn.
  • control device for a refrigeration system includes a processor and a memory storing program instructions, wherein the processor is configured to, when executing the program instructions, execute the implementation as described above.
  • the control method for the refrigeration system is provided in the example.
  • the intelligent air conditioner includes the control device for a refrigeration system as provided in the preceding embodiments.
  • control method, control device and intelligent air conditioner for a refrigeration system provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the control method for the refrigeration system includes: obtaining the real-time temperature value of the inner wall of the circulating water pipe, obtaining the hydride content in the heat exchanger, obtaining the indoor ambient temperature value and the set temperature value.
  • the content of hydride in the heat exchanger is greater than or equal to the first preset value, that is, the hydride in the first heat exchanger can continue to react, and the indoor ambient temperature is greater than or equal to the set temperature value, that is, the indoor ambient temperature is still
  • the electrochemical pump and the circulating water pump are controlled to close, and the three-way valve does not turn, that is, the temperature of the wall is about to reach the acceptable temperature of the wall.
  • FIG. 1 is a schematic structural diagram of an electrochemical refrigeration system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a control method for a refrigeration system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a control device for a refrigeration system provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another control device for a refrigeration system provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B three relationships.
  • the refrigeration system includes: a first metal hydride heat exchanger 11, a second metal hydride heat exchanger 12, an electrochemical hydrogen pump 13, two hydrogen pipelines 14, a first circulating water pump 21, The second circulating water pump 22 , the circulating water pipe 23 , the indoor radiant heat exchanger 24 , the first three-way valve 25 , the second three-way valve 26 , the third three-way valve 27 and the fourth three-way valve 28 .
  • the circulating water pipe is connected to the indoor heat exchanger for circulating circulating water; the first hydrogen pipe 14 is connected to the first metal hydride heat exchanger 11 and the electrochemical hydrogen pump 13, and the second hydrogen pipe 14 is connected to the second metal Hydride heat exchanger 12 and electrochemical hydrogen pump 13, the two metal hydride heat exchangers are filled with metal hydride, which can produce hydrogen absorption and exothermic reaction or hydrogen release endothermic reaction; three-way valve is used to communicate the whole cycle Circuit; the circulating water pump is used to pressurize the circulating water into the circulating water pipe. When working, only one of the two circulating water pumps is turned on, and the cooled water is sent into the room through the circulating water pipe through one circulating water pump for radiation heat exchange.
  • the specific implementation process is as follows:
  • the second metal hydride heat exchanger 11 When positive pressure is applied to the electrochemical hydrogen pump, the second metal hydride heat exchanger 11 absorbs hydrogen and releases heat as a condenser, the first metal hydride heat exchanger 11 dehydrogenates and absorbs heat as an evaporator, and the first circulating water pump 21 starts At this time, the first three-way valve 25 opens A1B1, the fourth three-way valve 28 opens B4C4, the third three-way valve 27 opens B3C3, and the second three-way valve 26 opens C2B2.
  • the cooled circulating water After the cooled circulating water is pressurized by the first circulating water pump 21, it enters the user's home through the circulating water pipe 23 for radiant heat exchange and cooling, and then flows back to the first metal hydride heat exchanger 11 to continue cooling, so as to circulate until the first metal hydride.
  • the content of hydride in the hydride heat exchanger 11 can no longer continue the endothermic reaction.
  • the first metal hydride heat exchanger 11 absorbs hydrogen and releases heat as a condenser
  • the second metal hydride heat exchanger 12 dehydrogenates and absorbs heat as an evaporator
  • the second circulating water pump 22 At this time, the third three-way valve 27 opens A3C3, the second three-way valve 26 opens C2B2, the first three-way valve 25 opens C1B1, and the fourth three-way valve 28 opens B4A4, and the circulating water is replaced by the second metal hydride.
  • the heat exchanger 12 After the heat exchanger 12 is cooled, it is pressurized by the second circulating water pump 22, enters the user's home through the circulating water pipe 23 for radiation heat exchange and refrigeration, and then flows back to the second metal hydride heat exchanger 12 to continue cooling.
  • the content of hydride in the metal hydride heat exchanger 12 is such that the endothermic reaction can no longer continue.
  • the refrigeration system may further include: a temperature detection element disposed at the circulating water pipe in the wall, an indoor temperature detection element, and a first metal hydride content detection element disposed in the two metal hydride heat exchangers and a second metal hydride content detection element.
  • the temperature detection element at the circulating water pipe can be used to detect the real-time temperature value of the wall
  • the indoor temperature detection element can be used to detect the real-time indoor temperature value
  • the first metal hydride content detection element can be used to detect the first metal hydride
  • the hydride content of the metal hydride heat exchanger, and the second metal hydride content detection element can be used to detect the hydride content of the second metal hydride heat exchanger.
  • control method for the refrigeration system includes:
  • the real-time temperature value of the wall it may be to obtain the real-time temperature value of the circulating water pipe in the wall, or to obtain the real-time temperature value of other parts in the wall. In the embodiment of the present disclosure, it is preferable to obtain the real-time temperature value of the circulating water pipe in the wall. For the temperature value, since the damp in the wall starts from the circulating water pipe, in order to find out whether the wall is damp or not, the real-time temperature value of the circulating water pipe in the wall can be obtained as the real-time temperature value of the wall in this embodiment of the present disclosure. temperature value.
  • the indoor ambient temperature value is the real-time temperature value in the indoor environment
  • the set temperature value is the temperature value set by the user, obtain the indoor ambient temperature value and the set temperature value, By comparing the indoor ambient temperature value and the set temperature value, it can be used to determine whether to suspend cooling or to determine whether to restart cooling.
  • the first metal hydride heat exchanger dehydrogenation absorbs heat as an evaporator
  • the second metal hydride heat exchanger absorbs hydrogen and releases heat as a condenser, that is, the first metal hydride heat exchanger is used as a condenser.
  • the hydride content in the first metal hydride heat exchanger decreases, the hydride content in the second metal hydride heat exchanger increases, and the detected content of the first metal hydride is still greater than or equal to the first preset value, wherein , the first preset value is the metal hydride content value when the hydrogen evolution reaction cannot continue to occur in the first metal hydride heat exchanger.
  • the indoor ambient temperature is greater than or equal to the set temperature value, that is, when the indoor ambient temperature value has not reached the temperature value set by the user.
  • the first set temperature value is determined according to the acceptable minimum humidity temperature value of the wall.
  • the first set value is equal to the minimum acceptable humidity temperature value of the wall plus a first adjustment value.
  • the minimum acceptable humidity temperature value for the wall which is about to reach the minimum acceptable humidity temperature value for the wall.
  • the electrochemical hydrogen pump for promoting the flow of hydrogen is controlled to be turned off, so that the hydrogen desorption reaction of the first metal hydride heat exchanger will slow down until it stops, that is, the first metal hydride heat exchanger will slow down the heat absorption until it stops heat absorption. .
  • the circulating water pump for circulating circulating water is controlled to be closed, so that the water flow speed in the circulating water pipe will gradually slow down, and the heat exchange rate of the indoor radiant heat exchanger will gradually decrease.
  • the three-way valve for controlling the flow direction of hydrogen does not turn around, and since the metal hydride content in the first metal hydride heat exchanger can continue to react, the three-way valve does not need to turn around. Through such a control method, the wall can be protected under the condition of cooling, and the wall can be prevented from being damp.
  • the states of the electrochemical hydrogen pump, the circulating water pump and the three-way valve remain in this state until the temperature of the wall rises to be greater than or equal to the first set value.
  • the process of applying negative pressure to the electrochemical hydrogen pump is the same as the control method of applying positive pressure to the electrochemical hydrogen pump, except that the direction of hydrogen flow and circulating water flow when the electrochemical hydrogen pump applies negative pressure is the same as when the electrochemical hydrogen pump applies positive pressure.
  • the directions of the circulation and the circulation of the circulating water are different, which will not be repeated here.
  • control method for the refrigeration system further includes:
  • the content of hydride in the heat exchanger is greater than or equal to the first preset value, and the indoor ambient temperature value is greater than or equal to the preset temperature value, that is, the first metal hydride
  • the metal hydride in the heat exchanger can continue to react, when the indoor temperature value has not reached the temperature value set by the user.
  • the second set value is determined according to the acceptable minimum humidity temperature value of the wall, that is A second adjustment value is added to the acceptable minimum humidity temperature value of the wall, and the second adjustment value is greater than the first adjustment value, that is, the second setting value is greater than the first setting value.
  • the real-time temperature value of the wall is greater than the acceptable minimum humidity temperature value of the wall, and the temperature in the circulating water pipe tends to rise, but the real-time temperature value of the wall has not reached the level that requires the electrochemical hydrogen pump to continue cooling.
  • the circulating water pump is controlled to open, the temperature rise is slowed down by the circulation of the circulating water, and the electrochemical hydrogen pump is controlled to be closed, that is, there is no need to reduce the temperature of the circulating water through electrochemical refrigeration, and the three-way valve does not turn, that is, the first metal
  • the metal hydride in the hydride heat exchanger can also continue to react.
  • the energy consumption of the circulating water pump is small, the energy consumption of the electrochemical hydrogen pump is relatively large.
  • the circulating water pump is turned on first, which can also play a role in energy saving.
  • the states of the electrochemical hydrogen pump, the circulating water pump, and the three-way valve remain in this state until the temperature of the wall rises to be greater than or equal to the second set value.
  • the process of applying negative pressure to the electrochemical hydrogen pump is the same as the control method of applying positive pressure to the electrochemical hydrogen pump, except that the direction of hydrogen flow and circulating water flow when the electrochemical hydrogen pump applies negative pressure is the same as when the electrochemical hydrogen pump applies positive pressure.
  • the directions of the circulation and the circulation of the circulating water are different, which will not be repeated here.
  • control method for the refrigeration system further includes:
  • the content of hydride in the heat exchanger is greater than or equal to the first preset value, and the indoor ambient temperature value is greater than or equal to the preset temperature value, that is, the first metal hydride
  • the metal hydride in the heat exchanger can continue to react, when the indoor temperature value has not reached the temperature value set by the user.
  • the second set value is determined according to the minimum acceptable humidity temperature value of the wall, that is, the acceptable minimum humidity temperature value of the wall plus a first Two adjustment values, the second adjustment value is greater than the first adjustment value, that is, the second setting value is greater than the first setting value.
  • the real-time temperature value of the wall is greater than the acceptable minimum humidity temperature value of the wall, and the temperature of the circulating water rises to the extent that it will affect the heat exchange of the radiant heat exchanger, then the circulating water pump can be controlled to turn on, and the electrochemical The hydrogen pump is turned on, the circulating water is cooled by the electrochemical hydrogen pump, and the three-way valve does not turn, that is, the metal hydride in the first metal hydride heat exchanger can continue to react.
  • the process of applying negative pressure to the electrochemical hydrogen pump is the same as the control method of applying positive pressure to the electrochemical hydrogen pump, except that the direction of hydrogen flow and circulating water flow when the electrochemical hydrogen pump applies negative pressure is the same as when the electrochemical hydrogen pump applies positive pressure.
  • the directions of the circulation and the circulation of the circulating water are different, which will not be repeated here.
  • control method for the refrigeration system further includes:
  • the content of hydride in the heat exchanger is greater than or equal to the first preset value, that is, the content of the first metal hydride in the heat exchanger can continue to produce chemical reactions. response, and the indoor ambient temperature value is less than the set temperature value, that is, the indoor ambient temperature value is less than the temperature value set by the user at this time. If the real-time temperature value of the wall is greater than or equal to the second set value, that is, when the real-time temperature value of the wall is far greater than the acceptable minimum humidity temperature value of the wall.
  • the indoor ambient temperature value is less than the temperature value set by the user at this time, it is necessary to prevent the radiant heat exchanger from continuing to exchange heat with the room, then control the electrochemical hydrogen pump to turn off and the circulating water pump to turn on, that is, to keep the circulating water flowing, but The temperature will not decrease any more, and the electromagnetic three-way valve will not be turned, that is, the metal hydride in the first metal hydride heat exchanger can continue to react.
  • the indoor ambient temperature value is maintained at the temperature value set by the user, which improves the user experience.
  • the process of applying negative pressure to the electrochemical hydrogen pump is the same as the control method of applying positive pressure to the electrochemical hydrogen pump, except that the direction of hydrogen flow and circulating water flow when the electrochemical hydrogen pump applies negative pressure is the same as when the electrochemical hydrogen pump applies positive pressure.
  • the directions of the circulation and the circulation of the circulating water are different, which will not be repeated here.
  • control method for the refrigeration system further includes:
  • the hydride content in the first metal hydride heat exchanger is less than the first preset value, that is, the metal hydride in the first metal hydride heat exchanger
  • the indoor ambient temperature value is greater than or equal to the set temperature value, that is, the indoor ambient temperature value has not reached the temperature value set by the user
  • the real-time temperature value of the wall is greater than or equal to the second set temperature value.
  • the fixed value, that is, the real-time temperature value of the wall is much larger than the acceptable minimum humidity temperature value of the wall.
  • the electrochemical hydrogen pump needs to be turned, the circulating water pump corresponding to the electrochemical hydrogen pump is turned on, the three-way valve is turned, the first metal hydride heat exchanger emits heat and the hydrogen absorption reaction occurs, and the second metal hydride heat exchanger absorbs The heat produces a hydrogen evolution reaction.
  • the electrochemical device can continuously cool the room, improving the user experience.
  • the first preset value is determined according to the content of metal hydride in the heat exchanger.
  • the first preset value may be based on the content of the metal hydride in the first metal hydride heat exchanger.
  • the metal hydride content is determined when the metal hydride can no longer release hydrogen.
  • the first preset value may be based on the content of the two metal hydride heat exchangers. When none of the metal hydrides can react any more, the metal hydride content remaining the most metal hydride content is determined.
  • the content of metal hydride is determined by two methods for determining the content of metal hydride, so that the electrochemical hydrogen pump can be controlled to turn after the metal hydride in the metal hydride heat exchanger cannot react.
  • the minimum humidity temperature value is determined according to the structure and material of the wall.
  • the minimum humidity temperature value can be determined according to the structure and material of the wall. Because the structure of the wall is different, the acceptable minimum humidity temperature value of the wall is different, and the material of the wall is different, the minimum acceptable humidity temperature value of the wall is different. Therefore, the minimum humidity temperature value is determined by the structure and material of the wall.
  • an embodiment of the present disclosure provides a control device for a refrigeration system, including: an obtaining module 31 and a control module 32 , the obtaining module 31 is configured to obtain a real-time temperature value of a wall, a hydride in a heat exchanger The content of the hydride, the indoor ambient temperature value and the set temperature value; the control module 32 is configured to be greater than or equal to the first preset value in the content of the hydride in the heat exchanger, and the indoor ambient temperature is greater than or equal to the set temperature value.
  • the real-time temperature value of the wall is less than the first set value, the electrochemical hydrogen pump and the circulating water pump are controlled to be closed, and the three-way valve does not turn.
  • control device for a refrigeration system provided by the embodiment of the present disclosure is beneficial to protect the wall during refrigeration and avoid the wall from being damp.
  • an embodiment of the present disclosure provides a control device for a refrigeration system, including a processor (processor) 400 and a memory (memory) 401 .
  • the apparatus may further include a communication interface (Communication Interface) 402 and a bus 403 .
  • the processor 400 , the communication interface 402 , and the memory 401 can communicate with each other through the bus 403 .
  • Communication interface 402 may be used for information transfer.
  • the processor 400 may invoke the logic instructions in the memory 401 to execute the control method for the refrigeration system of the above-mentioned embodiment.
  • logic instructions in the memory 401 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 401 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 400 executes the function application and data processing by running the program instructions/modules stored in the memory 401, that is, the control method for the refrigeration system in the above-mentioned embodiment is implemented.
  • the memory 401 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal device, and the like.
  • the memory 401 may include high-speed random access memory, and may also include non-volatile memory.
  • Embodiments of the present disclosure provide an intelligent air conditioner, including the above-mentioned control device for a refrigeration system.
  • Embodiments of the present disclosure provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are configured to execute the above-mentioned control method for a refrigeration system.
  • An embodiment of the present disclosure provides a computer program product, where the computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions that, when executed by a computer, cause all The computer executes the above-described control method for a refrigeration system.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium, and may also be a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure may be embodied in the form of software products, and the computer software products are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to execute all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listings.
  • the term “comprise” and its variations “comprises” and/or including and/or the like refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, or device that includes the element.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the various embodiments may refer to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method sections disclosed in the embodiments, reference may be made to the descriptions of the method sections for relevant parts.
  • the disclosed methods and products may be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • there may be other division methods for example, multiple units or components may be combined Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

本申请涉及空调技术领域,公开一种用于制冷系统的控制方法。该制冷系统包括设置于墙体内的循环水管处的温度检测元件,该方法包括:获得墙体的实时温度值、换热器内氢化物的含量、室内环境温度值以及设定温度值;在换热器内氢化物的含量大于或者等于第一预设值,且室内环境温度大于或者等于设定温度值的情况下,如果墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向。通过这样的控制方法,实现了在制冷的情况下,避免墙体受潮的效果。本申请还公开一种用于制冷系统的控制装置及智能空调器。

Description

用于制冷系统的控制方法及控制装置、智能空调器
本申请基于申请号为202110455622.3、申请日为2021年4月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,例如涉及一种用于制冷系统的控制方法、控制装置和智能空调器。
背景技术
随着节能环保成为时代主题,电化学制冷系统已是势在必行。这种电化学制冷系统是以化学中的吸热和放热反应为基础,通过吸热反应冷却室内环境,通过放热反应将热能释放到周围的介质中,这种方式实际是在电流的作用下进行的氧化-还原反应,但其热能系数高。
现有技术公开了一种空调器及其控制方法,该空调器包括室内循环水管、室内换热器、两个金属氢化物换热器和电化学压缩机,通过两条氢气管路连接室内外两个金属氢化物换热器,且室内换热器为辐射换热,该空调器的控制方法包括:根据送电正负压控制电磁三通换向阀,将吸热的循环水送入金属氢化物换热器中冷却,通过一个压力泵将冷却后的水通过室内循环水管送入室内,进行辐射换热。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
在制冷的情况下,室内循环水管处的墙体易受潮。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于制冷系统的控制方法、控制装置和智能空调器,以解决在制冷的情况下,室内循环水管处的墙体易受潮的技术问题。
在一些实施例中,所述用于制冷系统的控制方法包括:获得所述墙体的实时温度 值、换热器内氢化物的含量、室内环境温度值以及设定温度值;在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度大于或者等于设定温度值的情况下,如果所述墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向,其中,所述第一设定值根据所述墙体可接受的最低潮湿温度值确定。
可选地,所述方法还包括:在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度值大于或者等于设定温度值的情况下,如果所述墙体的实时温度值大于或者等于第二设定值时,则控制所述循环水泵开启,所述电化学氢泵开启,所述三通阀不发生转向,其中,所述第二设定值大于所述第一设定值。
可选地,所述方法还包括:在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度值大于或者等于设定温度值的情况下,如果所述墙体的实时温度值大于或者等于第一设定值,且所述墙体的实时温度值小于第二设定值,则控制所述循环水泵开启,所述电化学氢泵关闭,所述三通阀不发生转向,其中,所述第二设定值大于所述第一设定值。
可选地,所述方法还包括:在所述换热器内氢化物含量大于或者等于所述第一预设值,且室内环境温度值小于设定温度值的情况下,如果所述墙体的实时温度值大于或者等于所述第二设定值,则控制所述电化学氢泵关闭,所述循环水泵开启,所述电磁三通阀不发生转向。
可选地,所述方法还包括:在所述换热器中的氢化物含量小于所述第一预设值,且所述室内环境温度值大于或者等于所述设定温度值的情况下,如果所述墙体的实时温度大于或者等于所述第二设定值,则所述电化学氢泵转向开启,与所述电化学装置相对应的所述循环水泵开启,所述三通阀发生转向。
可选地,所述第一预设值根据所述换热器内金属氢化物的含量确定。
可选地,所述最低潮湿温度值根据所述墙体的结构和材质确定。
在一些实施例中,所述用于制冷系统的控制装置包括:获得模块,被配置为获得所述墙体的实时温度值、换热器内氢化物的含量、室内环境温度值以及设定温度值;控制模块,被配置为在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度大于或者等于设定温度值的情况下,如果所述墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向。
在一些实施例中,所述用于制冷系统的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如前述实施 例提供的所述的用于制冷系统的控制方法。
在一些实施例中,所述智能空调器包括如前述实施例提供的所述的用于制冷系统的控制装置。
本公开实施例提供的用于制冷系统的控制方法、控制装置和智能空调器,可以实现以下技术效果:
用于制冷系统的控制方法包括:获得循环水管内墙体的实时温度值,获得换热器内氢化物的含量,获得室内环境温度值以及设定温度值。在换热器内氢化物的含量大于或者等于第一预设值,即第一换热器内氢化物还可以继续发生反应,并且室内环境温度大于或者等于设定温度值,即室内环境温度还没达到设定温度值时,墙体的实时温度值小于第一设定值,则控制电化学泵和循环水泵关闭,三通阀不发生转向,即墙体的温度即将达到墙体能接受的最低潮湿温度时,说明温度再降低易出现墙体受损的现象,则要关闭电化学泵和循环水泵,使得电化学反应停止,循环水泵中的水不再循环,仅利用当前的循环水进行热交换,而三通阀不转向,即电化学氢泵中氢气的含量还可以继续发生反应。在制冷的情况下,通过这样的控制方法来保护墙体,避免墙体受潮。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个电化学制冷系统的结构示意图;
图2是本公开实施例提供的一个用于制冷系统的控制方法的示意图;
图3是本公开实施例提供的一个用于制冷系统的控制装置的示意图;
图4是本公开实施例提供的另一个用于制冷系统的控制装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情 况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1所示,该制冷系统包括:第一金属氢化物换热器11、第二金属氢化物换热器12、电化学氢泵13、两条氢气管路14、第一循环水泵21、第二循环水泵22、循环水管23、室内辐射式换热器24、第一三通阀25、第二三通阀26、第三三通阀27和第四三通阀28。其中,循环水管和室内换热器连接,用于流通循环水;第一氢气管路14连通第一金属氢化物换热器11和电化学氢泵13,第二氢气管路14连通第二金属氢化物换热器12和电化学氢泵13,两个金属氢化物换热器内填充有金属氢化物,可以发生吸氢放热反应或者放氢吸热反应;三通阀用于连通整个循环回路;循环水泵用于给循环水加压流入到循环水管中,工作时,两个循环水泵只开启一个,通过一个循环水泵将冷却后的水通过循环水管送入室内,进行辐射换热。具体实现过程如下:
当给电化学氢泵施加正压时,第二金属氢化物换热器吸氢放热作为冷凝器,第一金属氢化物换热器11脱氢吸热作为蒸发器,第一循环水泵21开始工作,此时第一三通阀25开启A1B1、第四三通阀28开启B4C4、第三三通27阀开启B3C3、第二三通阀26开启C2B2,在第一金属氢化物换热器11冷却的循环水经过第一循环水泵21增压后,通过循环水管23进入用户家进行辐射换热制冷,之后再流回第一金属氢化物换热器11继续冷却,以此循环直至第一金属氢化物换热器11中氢化物的含量无法再继续发生吸热反应。
当给电化学氢泵施加负压时,第一金属氢化物换热器11吸氢放热作为冷凝器,第二金属氢化物换热器12脱氢吸热作为蒸发器,第二循环水泵22开始工作,此时第三三通阀27开启A3C3、第二三通阀26开启C2B2、第一三通阀25开启C1B1、第四三通阀28开启B4A4,循环水在第二金属氢化物换热器12冷却后,经过第二循环水泵22 增压,通过循环水管23进入用户家进行辐射换热制冷,之后再流回第二金属氢化物换热器12继续冷却,以此循环直至第二金属氢化物换热器12中氢化物的含量无法再继续发生吸热反应。
本公开实施例中,制冷系统还可以包括:设置于墙体内循环水管处的温度检测元件、室内温度检测元件、设置于两个金属氢化物换热器内的第一金属氢化物含量检测元件和第二金属氢化物含量检测元件。其中,循环水管处的温度检测元件可以用于检测墙体实时的温度值,室内温度检测元件可以用于检测室内实时的温度值,第一金属氢化物含量检测元件可以用于检测第一金属氢化物换热器的氢化物含量,第二金属氢化物含量检测元件可以用于检测第二金属氢化物换热器的氢化物含量。
结合图2所示,用于制冷系统的控制方法包括:
S201,获得墙体的实时温度值、换热器内氢化物的含量、室内环境温度值以及设定温度值;
S202,在换热器内氢化物的含量大于或者等于第一预设值,且室内环境温度大于或者等于设定温度值的情况下,如果墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向,其中,第一设定值根据墙体可接受的最低潮湿温度值确定。
获得墙体的实时温度值,可以是获得墙体内循环水管处实时的温度值,也可以是获得墙体内其他部位的实时温度值,本公开实施例优选获得墙体内循环水管处实时的温度值,由于墙体内受潮是从循环水管处开始的,因此为了更快速地发现墙体内是否受潮,因此本公开实施例可以获得墙体内循环水管处实时的温度值作为墙体的实时温度值。
获得换热器内氢化物的含量,在制冷的情况下,可以仅获得作为蒸发器的金属氢化物换热器内的氢化物含量,也可以获得两个金属氢化物换热器中的含量,选取氢化物含量的最小值进行比较。通过获取氢化物含量可以知道金属氢化物换热器内的反应是否还可以继续,即是否需要将电化学氢泵进行转向。
获得室内环境温度值以及设定温度值,室内环境温度值即为实时的室内环境中的温度值,设定温度值即为用户设定的温度值,获得室内环境温度值以及设定温度值,通过比较室内环境温度值和设定温度值,可以用来判定是否需要暂停制冷或者可以用来判定是否重新进行制冷。
空调制冷时,以电化学氢泵施加正压为例,第一金属氢化物换热器脱氢吸热作为蒸发器,第二金属氢化物换热器吸氢放热作为冷凝器时,即第一金属氢化物换热器内的 氢化物含量减少,第二金属氢化物换热器内的氢化物含量增加,检测到的第一金属氢化物的含量仍大于或者等于第一预设值,其中,第一预设值为第一金属氢化物换热器内不能继续发生放氢反应时的金属氢化物含量值。并且此时室内环境温度大于或者等于设定温度值,即室内环境温度值还没有达到用户设定的温度值时。
如果墙体内的实时温度值小于第一设定值时,其中,第一设定温度值根据墙体可接受的最低潮湿温度值确定。第一设定值等于墙体可以接受的最低潮湿温度值加上一个第一调整值,当墙体内的实时温度值小于第一设定值时,即墙体内的实时温度值还没有达到墙体可接受的最低潮湿温度值,即将达到墙体可接受的最低潮湿温度值时。则控制用于促进氢气流通的电化学氢泵关闭,这样第一金属氢化物换热器的放氢反应就会减缓直至停止,即第一金属氢化物换热器会减缓吸热直至停止吸热。控制用于流通循环水的循环水泵关闭,这样循环水管中的水流速度会逐渐减缓,室内辐射式换热器的热交换速率逐渐降低。用于控制氢气流通方向的三通阀不发生转向,由于第一金属氢化物换热器中的金属氢化物含量还可以继续发生发应,则三通阀不需要发生转向。通过这样的控制方法,可以在制冷的情况下保护墙体,避免墙体受潮。
电化学氢泵、循环水泵以及三通阀的状态保持在这一状态,直至墙体的温度上升至大于或者等于第一设定值。
电化学氢泵施加负压时的过程与电化学氢泵施加正压的控制方法相同,只是电化学氢泵施加负压时氢气流通以及循环水流通的方向与电化学氢泵施加正压时氢气流通以及循环水流通的方向不同,此处不再赘述。
可选地,用于制冷系统的控制方法还包括:
S301,在换热器内氢化物的含量大于或者等于第一预设值,且室内环境温度值大于或者等于设定温度值的情况下,如果墙体的实时温度值大于或者等于第一设定值,且墙体的实时温度值小于第二设定值,则控制循环水泵开启,电化学氢泵关闭,三通阀不发生转向,其中,第二设定值大于第一设定值。
以电化学氢泵施加正压为例,在换热器内氢化物的含量大于或者等于第一预设值,并且室内环境温度值大于或者等于设定温度值的情况下,即第一金属氢化物换热器内的金属氢化物还可以继续发生反应,室内温度值还没有达到用户设定的温度值时。
如果墙体的实时温度值大于或者等于第一设定值,并且墙体的实时温度值小于第二设定值,其中,第二设定值根据墙体可接受的最低潮湿温度值确定,即墙体可接受的最低潮湿温度值加上一个第二调整值,第二调整值大于第一调整值,即第二设定值大于 第一设定值。此时,墙体的实时温度值大于墙体可接受的最低潮湿温度值,且循环水管内的温度有上升的趋势,但是该墙体的实时温度值还没有达到需要电化学氢泵继续制冷的状态,则控制循环水泵开启,通过循环水的流通来减缓温度上升,控制电化学氢泵关闭,即还无需通过电化学制冷来降低循环水的温度,三通阀不发生转向,即第一金属氢化物换热器中的金属氢化物还可以继续发生反应。同时由于循环水泵的耗能小,电化学氢泵的耗能较大,通过这样的控制方法,先开启循环水泵,还可以起到节能的作用。
电化学氢泵、循环水泵以及三通阀的状态保持在这一状态,直至墙体的温度上升至大于或者等于第二设定值。
电化学氢泵施加负压时的过程与电化学氢泵施加正压的控制方法相同,只是电化学氢泵施加负压时氢气流通以及循环水流通的方向与电化学氢泵施加正压时氢气流通以及循环水流通的方向不同,此处不再赘述。
可选地,用于制冷系统的控制方法还包括:
S401,在换热器内氢化物的含量大于或者等于第一预设值,且室内环境温度值大于或者等于设定温度值的情况下,如果墙体的实时温度值大于或者等于第二设定值时,则控制循环水泵开启,电化学氢泵开启,三通阀不发生转向,其中,第二设定值大于第一设定值。
以电化学氢泵施加正压为例,在换热器内氢化物的含量大于或者等于第一预设值,并且室内环境温度值大于或者等于设定温度值的情况下,即第一金属氢化物换热器内的金属氢化物还可以继续发生反应,室内温度值还没有达到用户设定的温度值时。
如果墙体的实时温度值大于或者等于第二设定值时,其中,第二设定值根据墙体可接受的最低潮湿温度值确定,即墙体可接受的最低潮湿温度值加上一个第二调整值,第二调整值大于第一调整值,即第二设定值大于第一设定值。此时墙体的实时温度值大于墙体可接受的最低潮湿温度值,且循环水的温度上升到即将影响辐射式换热器发生热交换的程度,则此时可以控制循环水泵开启,电化学氢泵开启,通过电化学氢泵为循环水进行降温,三通阀不发生转向,即第一金属氢化物换热器中的金属氢化物还可以继续发生反应。
电化学氢泵施加负压时的过程与电化学氢泵施加正压的控制方法相同,只是电化学氢泵施加负压时氢气流通以及循环水流通的方向与电化学氢泵施加正压时氢气流通以及循环水流通的方向不同,此处不再赘述。
可选地,用于制冷系统的控制方法还包括:
S501,在换热器内氢化物含量大于或者等于第一预设值,且室内环境温度值小于设定温度值的情况下,如果墙体的实时温度值大于或者等于第二设定值,则控制电化学氢泵关闭,循环水泵开启,电磁三通阀不发生转向。
在制冷的状态下,以电化学氢泵施加正压为例,换热器内氢化物的含量大于或者等于第一预设值,即第一金属氢化物换热器的含量还可以继续发生化学反应,并且室内环境温度值小于设定温度值,即此时室内环境温度值小于用户设定的温度值。如果墙体的实时温度值大于或者等于第二设定值,即墙体的实时温度值远大于墙体可接受的最低潮湿温度值时。
由于此时室内环境温度值小于用户设定的温度值,那么需要阻止辐射式换热器继续与室内发生热交换,则控制电化学氢泵关闭,循环水泵开启,即保持循环水继续流通,但是温度不会再降低,电磁三通阀不发生转向,即第一金属氢化物换热器中的金属氢化物可以继续发生反应。通过这样的控制方式,使得室内环境温度值维持在用户设定的温度值,提高了用户的使用体验。
电化学氢泵施加负压时的过程与电化学氢泵施加正压的控制方法相同,只是电化学氢泵施加负压时氢气流通以及循环水流通的方向与电化学氢泵施加正压时氢气流通以及循环水流通的方向不同,此处不再赘述。
可选地,用于制冷系统的控制方法还包括:
S601,在换热器中的氢化物含量小于第一预设值,且室内环境温度值大于或者等于设定温度值的情况下,如果墙体的实时温度值大于或者等于第二设定值,则电化学氢泵转向开启,与电化学氢泵相对应的循环水泵开启,三通阀发生转向。
在制冷状态下,以电化学氢泵施加正压为例,第一金属氢化物换热器中的氢化物含量小于第一预设值,即第一金属氢化物换热器中的金属氢化物的含量无法再发生反应,并且室内环境温度值大于或者等于设定温度值的情况下,即室内环境温度值还没有达到用户设定的温度值,墙体的实时温度值大于或者等于第二设定值,即墙体的实时温度值远大于墙体可接受的最低潮湿温度值。
此时电化学氢泵需要转向,与电化学氢泵相应的循环水泵开启,三通阀发生转向,第一金属氢化物换热器放热发生吸氢反应,第二金属氢化物换热器吸热发生放氢反应。通过这样的控制方法,使得电化学装置可以持续的为室内制冷,提高了用户的使用体验。
可选地,第一预设值根据换热器内金属氢化物的含量确定。
当第一金属氢化物换热器内金属氢化物的含量与第二金属氢化物换热器内金属氢 化物的含量相等时,第一预设值可以根据第一金属氢化物换热器内的金属氢化物无法再释放氢气时金属氢化物的含量确定。
当第一金属氢化物换热器内金属氢化物的含量与第二金属氢化物换热器内金属氢化物的含量不相等时,第一预设值可以根据两个金属氢化物换热器中的金属氢化物都不能再发生反应时,金属氢化物含量剩余最多的金属氢化物含量来确定。
通过两种金属氢化物含量的确定方法来确定金属氢化物的含量,使得金属氢化物换热器内的金属氢化物无法发生反应后,即可控制电化学氢泵发生转向。
可选地,最低潮湿温度值根据墙体的结构和材质确定。
最低潮湿温度值可以根据墙体的结构和材质来确定,由于墙体的结构不同,则墙体可接受的最低潮湿温度值不同,墙体的材质不同,则墙体可接受的最低潮湿温度值不同,因此,通过墙体的结构和材质确定最低潮湿温度值。
结合图3所示,本公开实施例提供一种用于制冷系统的控制装置包括:获得模块31和控制模块32,获得模块31被配置为获得墙体的实时温度值、换热器内氢化物的含量、室内环境温度值以及设定温度值;控制模块32被配置为在换热器内氢化物的含量大于或者等于第一预设值,且室内环境温度大于或者等于设定温度值的情况下,如果墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向。
采用本公开实施例提供的用于制冷系统的控制装置,有利于在制冷时保护墙体,避免墙体受潮。
结合图4所示,本公开实施例提供一种用于制冷系统的控制装置,包括处理器(processor)400和存储器(memory)401。可选地,该装置还可以包括通信接口(Communication Interface)402和总线403。其中,处理器400、通信接口402、存储器401可以通过总线403完成相互间的通信。通信接口402可以用于信息传输。处理器400可以调用存储器401中的逻辑指令,以执行上述实施例的用于制冷系统的控制方法。
此外,上述的存储器401中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器401作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器400通过运行存储在存储器401中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于制冷系统的控制方法。
存储器401可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器401可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种智能空调器,包含上述的用于制冷系统的控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于制冷系统的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于制冷系统的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说 明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以 依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于制冷系统的控制方法,其特征在于,所述方法包括:
    获得所述墙体的实时温度值、换热器内氢化物的含量、室内环境温度值以及设定温度值;
    在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度大于或者等于设定温度值的情况下,如果所述墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向,
    其中,所述第一设定值根据所述墙体可接受的最低潮湿温度值确定。
  2. 根据权利要求1所述的控制方法,其特征在于,所述方法还包括:
    在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度值大于或者等于设定温度值的情况下,如果所述墙体的实时温度值大于或者等于第二设定值时,则控制所述循环水泵开启,所述电化学氢泵开启,所述三通阀不发生转向,
    其中,所述第二设定值大于所述第一设定值。
  3. 根据权利要求1所述的控制方法,其特征在于,所述方法还包括:
    在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度值大于或者等于设定温度值的情况下,如果所述墙体的实时温度值大于或者等于第一设定值,且所述墙体的实时温度值小于第二设定值,则控制所述循环水泵开启,所述电化学氢泵关闭,所述三通阀不发生转向,
    其中,所述第二设定值大于所述第一设定值。
  4. 根据权利要求1所述的控制方法,其特征在于,所述方法还包括:
    在所述换热器内氢化物含量大于或者等于所述第一预设值,且室内环境温度值小于设定温度值的情况下,如果所述墙体的实时温度值大于或者等于所述第二设定值,则控制所述电化学氢泵关闭,所述循环水泵开启,所述电磁三通阀不发生转向。
  5. 根据权利要求1所述的控制方法,其特征在于,所述方法还包括:
    在所述换热器中的氢化物含量小于所述第一预设值,且所述室内环境温度值大于或者等于所述设定温度值的情况下,如果所述墙体的实时温度大于或者等于所述第二设定值,则所述电化学氢泵转向开启,与所述电化学氢泵相对应的循环水泵开启,所述三通阀发生转向。
  6. 根据权利要求1至5任一项所述的控制方法,其特征在于,所述第一预设 值根据所述换热器内金属氢化物的含量确定。
  7. 根据权利要求1至5任一项所述的控制方法,其特征在于,所述最低潮湿温度值根据所述墙体的结构和材质确定。
  8. 一种用于制冷系统的控制装置,其特征在于,包括:
    获得模块,被配置为获得所述墙体的实时温度值、换热器内氢化物的含量、室内环境温度值以及设定温度值;
    控制模块,被配置为在所述换热器内氢化物的含量大于或者等于第一预设值,且所述室内环境温度大于或者等于设定温度值的情况下,如果所述墙体的实时温度值小于第一设定值,则控制电化学氢泵和循环水泵关闭,三通阀不发生转向,
    其中,所述第一设定值根据所述墙体可接受的最低潮湿温度值确定。
  9. 一种用于制冷系统的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述的用于制冷系统的控制方法。
  10. 一种智能空调器,其特征在于,包括如权利要求8或9所述的用于制冷系统的控制装置。
PCT/CN2021/132644 2021-04-26 2021-11-24 用于制冷系统的控制方法及控制装置、智能空调器 WO2022227521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110455622.3A CN113465136B (zh) 2021-04-26 2021-04-26 用于制冷系统的控制方法及控制装置、智能空调器
CN202110455622.3 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022227521A1 true WO2022227521A1 (zh) 2022-11-03

Family

ID=77870555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132644 WO2022227521A1 (zh) 2021-04-26 2021-11-24 用于制冷系统的控制方法及控制装置、智能空调器

Country Status (2)

Country Link
CN (1) CN113465136B (zh)
WO (1) WO2022227521A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465136B (zh) * 2021-04-26 2022-10-28 青岛海尔空调器有限总公司 用于制冷系统的控制方法及控制装置、智能空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351493A (en) * 1991-12-10 1994-10-04 Sanyo Electric Co., Ltd. Thermally driven refrigeration system utilizing metal hydrides
CN203022132U (zh) * 2012-11-12 2013-06-26 东易日盛家居装饰集团股份有限公司 一种地下室室内防潮结构
CN106196368A (zh) * 2016-07-21 2016-12-07 青岛海尔空调器有限总公司 电化学空调系统的转动控制方法
CN107642846A (zh) * 2016-07-21 2018-01-30 青岛海尔空调器有限总公司 电化学空调系统及其控制方法
CN108507059A (zh) * 2017-02-27 2018-09-07 青岛海尔智能技术研发有限公司 电化学空调、用于控制电化学空调的方法
CN113465136A (zh) * 2021-04-26 2021-10-01 青岛海尔空调器有限总公司 用于制冷系统的控制方法及控制装置、智能空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206494C (zh) * 2002-08-19 2005-06-15 乐金电子(天津)电器有限公司 利用储氢合金的反应装置及其控制方法
CN102997484B (zh) * 2012-12-27 2014-12-10 中国科学院广州能源研究所 金属氢化物制冷装置
JP2015151093A (ja) * 2014-02-18 2015-08-24 株式会社デンソー 空調装置
CN108571788B (zh) * 2017-03-09 2021-01-29 青岛海尔空调器有限总公司 一种除湿机及控制方法
CN108800370A (zh) * 2017-04-26 2018-11-13 青岛海尔空调器有限总公司 空调器及其控制方法
CN207865541U (zh) * 2018-01-08 2018-09-14 王秀娟 一种内置wifi的挂壁式空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351493A (en) * 1991-12-10 1994-10-04 Sanyo Electric Co., Ltd. Thermally driven refrigeration system utilizing metal hydrides
CN203022132U (zh) * 2012-11-12 2013-06-26 东易日盛家居装饰集团股份有限公司 一种地下室室内防潮结构
CN106196368A (zh) * 2016-07-21 2016-12-07 青岛海尔空调器有限总公司 电化学空调系统的转动控制方法
CN107642846A (zh) * 2016-07-21 2018-01-30 青岛海尔空调器有限总公司 电化学空调系统及其控制方法
CN107642848A (zh) * 2016-07-21 2018-01-30 青岛海尔空调器有限总公司 电化学空调系统
CN108507059A (zh) * 2017-02-27 2018-09-07 青岛海尔智能技术研发有限公司 电化学空调、用于控制电化学空调的方法
CN113465136A (zh) * 2021-04-26 2021-10-01 青岛海尔空调器有限总公司 用于制冷系统的控制方法及控制装置、智能空调器

Also Published As

Publication number Publication date
CN113465136B (zh) 2022-10-28
CN113465136A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN108895719B (zh) 一种热泵机组及其供暖控制方法
JP5305714B2 (ja) 給湯暖房システム
CN110594947B (zh) 一种空调的控制方法、控制装置及空调
CN111207485B (zh) 一种防冻结控制方法、装置、存储介质及水多联系统
CN109579213B (zh) 一种空调器温度控制方法、存储设备及空调器
JP7259950B2 (ja) 冷却システム、そのための制御装置、冷却方法、およびプログラム
WO2022227521A1 (zh) 用于制冷系统的控制方法及控制装置、智能空调器
WO2023035593A1 (zh) 制热系统及其控制方法
WO2023011065A1 (zh) 用于控制电化学制冷系统的方法及装置、电化学制冷系统
WO2022242220A1 (zh) 用于电化学制冷系统的转向控制方法及装置、智能空调器
CN117628602A (zh) 一种空调系统、空调器及控制方法
WO2023011064A1 (zh) 用于控制电化学制冷系统的方法及装置、电化学制冷系统
CN107796089A (zh) 电化学制冷系统的金属氢化物换热器换向控制方法
CN113357792B (zh) 用于空调控制的方法、装置和空调
JP2007155275A (ja) ヒートポンプ給湯機
CN114636224A (zh) 空调系统、用于控制空调系统的方法及装置、存储介质
CN200975808Y (zh) 变频节能热泵冷冻空调机组
JP4848971B2 (ja) ヒートポンプ給湯装置
JP6588388B2 (ja) 発熱体冷却システム
CN220865157U (zh) 车辆热管理系统和自动驾驶车辆
CN113834360B (zh) 用于调节换热系统的方法及装置、换热系统
CN109798662B (zh) 蓄热换热热泵热水器及其控制方法
CN215523817U (zh) 一种结合溴化锂吸收式制冷机的冷库余热回收系统
JP6491139B2 (ja) 発熱体冷却システム
JP6683659B2 (ja) 地中熱空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938980

Country of ref document: EP

Kind code of ref document: A1