WO2023011054A1 - 血泵 - Google Patents

血泵 Download PDF

Info

Publication number
WO2023011054A1
WO2023011054A1 PCT/CN2022/102198 CN2022102198W WO2023011054A1 WO 2023011054 A1 WO2023011054 A1 WO 2023011054A1 CN 2022102198 W CN2022102198 W CN 2022102198W WO 2023011054 A1 WO2023011054 A1 WO 2023011054A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
tube
blood flow
flow
blood pump
Prior art date
Application number
PCT/CN2022/102198
Other languages
English (en)
French (fr)
Inventor
余顺周
Original Assignee
深圳核心医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳核心医疗科技有限公司 filed Critical 深圳核心医疗科技有限公司
Publication of WO2023011054A1 publication Critical patent/WO2023011054A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes

Definitions

  • the invention relates to the field of medical devices, in particular to a blood pump percutaneously inserted into blood vessels of patients.
  • an intravascular blood pump is also called an intracardiac blood pump.
  • the blood pump includes an impeller and a motor that drives the impeller to rotate. When the impeller rotates, blood is delivered from the blood inflow port of the blood pump to the blood outflow port.
  • the pumping efficiency of the blood pump is an important parameter of the performance index of the blood pump. However, the pumping efficiency of the current intravascular blood pump is still low and needs to be improved.
  • a blood pump the blood pump has a blood flow channel, and a blood flow inlet and a blood flow outlet connected to the blood flow channel, the blood pump includes:
  • a driving unit placed in the blood flow channel, and connected in transmission with the impeller, the driving unit can drive the impeller to rotate, and a blood supply flow is formed between the driving unit and the channel wall of the blood flow channel through the gap, and the gap communicates with both the blood flow inlet and the blood flow outlet.
  • a blood pump the blood pump has a blood flow channel, and a blood flow inlet and a blood flow outlet communicated with the blood flow channel, the blood pump includes:
  • a flow tube defining at least part of the blood flow channel
  • a drive unit is placed in the blood flow channel and accommodated in the flow tube, the drive unit is connected to the impeller in transmission, the drive unit can drive the impeller to rotate, and the drive unit is connected to the flow tube
  • a gap for blood flow is formed between the tubes, and the gap communicates with both the blood flow inlet and the blood flow outlet.
  • Fig. 1 is a schematic structural diagram of a blood pump provided by the first embodiment of the present invention
  • Fig. 2 is a partial perspective view of the blood pump shown in Fig. 1;
  • Fig. 3 is an exploded view of the blood pump shown in Fig. 1;
  • Fig. 4 is a schematic structural diagram of a driving unit of a blood pump provided by the present invention.
  • Fig. 5 is a schematic structural diagram of a blood pump provided by the second embodiment of the present invention.
  • FIG. 6 is a partial perspective view of the blood pump shown in FIG. 5 .
  • a component when a component is said to be “fixed” to another component, it can be directly on the other component or there can also be an intervening component.
  • a component When a component is said to be “connected” to another component, it may be directly connected to the other component or there may be intervening components at the same time.
  • the end of the instrument that is closest to the operator is usually defined as the proximal end, and the end that is far from the operator is the distal end.
  • a blood pump 100 provided by the first embodiment of the present invention, in particular an intravascular blood pump, the blood pump 100 has a blood flow channel 110, and a The blood flow inlet 112 and the blood flow outlet 114 , where blood can enter the blood flow channel 110 from the blood flow inlet 112 and be discharged from the blood flow outlet 114 .
  • the blood pump 100 includes an impeller 120 and a driving unit 130 .
  • the impeller 120 is disposed on the blood flow channel 110 , and the impeller 120 is rotatable to promote blood entering the blood flow channel 110 from the blood flow inlet 112 and being discharged from the blood flow outlet 114 . Specifically, the impeller 120 is disposed close to the blood flow inlet 112 .
  • the driving unit 130 is placed in the blood flow channel 110 and is in transmission connection with the impeller 120 , and the driving unit 130 can drive the impeller 120 to rotate.
  • a gap 116 for blood flow is formed between the driving unit 130 and the channel wall of the blood flow channel 110 , and the gap 116 communicates with the blood flow inlet 112 and the blood flow outlet 114 . That is, on the blood flow path, the gap 116 is located between the blood flow inlet 112 and the blood flow outlet 114, then, the blood entering the blood flow channel 110 from the blood flow inlet 112 will flow through the gap 116, and from the blood flow The outlet 114 flows out, thereby taking away the heat generated by the driving unit 130 and helping the driving unit 130 to dissipate heat.
  • the blood pump 100 also includes an inlet tube 140 , a flow-through tube 150 and an outlet tube 160 .
  • the proximal end of the inlet tube 140 is fixedly connected to the driving unit 130 , and the blood inlet 112 is disposed at the distal end of the inlet tube 140 .
  • the inlet pipe 140 also defines a first communication port 142 .
  • the blood inlet 112 is provided on the tube wall of the inlet tube 140 ; there are multiple blood inlets 112 , and the multiple blood inlets 112 are arranged at intervals along the circumference of the inlet tube 140 .
  • the first communication port 142 is located at the proximal end of the inlet tube 140 ; there are multiple first communication ports 142 , and the plurality of first communication ports 142 are spaced along the circumference of the inlet tube 140 and evenly distributed on the tube wall of the inlet tube 140 .
  • the number of the blood flow inlet 112 and the first communication port 142 are 4-6 respectively. It can be understood that the number of blood flow inlets 112 and the number of first communication ports 142 can be adjusted according to actual design needs.
  • the impeller 120 is rotatably provided on the inlet pipe 140 .
  • the distal end of the flow pipe 150 is fixedly connected to the inlet pipe 140 , and the flow pipe 150 and the inlet pipe 140 communicate through the first communication port 142 . Specifically, the proximal end of the inlet tube 140 is received in the flow-through tube 150 .
  • the driving unit 130 is housed in the flow pipe 150 , and a gap 116 is formed between the driving unit 130 and the flow pipe 150 .
  • the distal end of the outlet tube 160 is accommodated in the flow tube 150 .
  • the distal end of the outlet tube 160 is connected to the driving unit 130 , and the blood outlet 114 is disposed at the proximal end of the outlet tube 160 .
  • the outlet tube 160 is also provided with a second communication port 162 , the proximal end of the flow tube 150 is fixedly connected to the outlet tube 160 , and the flow tube 150 communicates with the outlet tube 150 through the second communication port 162 .
  • the blood flow channel 110 is jointly defined by the inlet tube 140 , the flow tube 150 and the outlet tube 160 .
  • the flow tube 150 defines part of the blood flow channel 110 .
  • the driving unit 130 is located between the blood flow inlet 112 and the blood flow outlet 114 .
  • the blood enters the outlet tube 140 from the blood inlet 112, enters the flow tube 150 through the first communication port 142, flows through the gap 116 between the drive unit 130 and the flow tube 150, flows into the outlet tube 160 through the second communication port 162, and finally It is discharged from the blood outflow port 114 .
  • the blood outflow outlet 114 is provided on the tube wall of the outlet tube 160 ; there are multiple blood outflow outlets 114 , and the multiple blood outflow outlets 114 are arranged at intervals along the circumference of the inlet tube 140 .
  • the second communication port 162 is located at the distal end of the outlet pipe 160 ; there are multiple second communication ports 162 , and the plurality of second communication ports 162 are spaced along the circumference of the outlet pipe 160 and evenly distributed on the wall of the outlet pipe 160 .
  • the number of the blood flow outlet 114 and the second communication port 162 are 4-6 respectively. It can be understood that the number of blood flow outlets 114 and the number of second communication ports 162 can be adjusted according to actual design requirements.
  • the flow tube 150 includes a tube main body 152, and a distal transition section 154 and a proximal transition section 156 located at two ends of the tube main body 152.
  • the inner diameter of the distal transition section 154 is along the direction from the distal end to the proximal end. Gradually increasing, the inner diameter of the proximal transition section 156 gradually decreases along the direction from the distal end to the proximal end.
  • the transition sections located at both ends of the tube body 152 can make the blood flow near the first communication port 142 and the second communication port 162 transition smoothly, so that the blood pump 100 has a more stable flow field distribution and excellent blood compatibility.
  • the inner diameter of the tube main body 152 is equal, and the inner diameter of the end of the distal transition section 154 near the tube main body 152 is equal to that of the proximal transition section 156 near the end of the tube main body 152 inner diameter.
  • the tube main body 152 may also be a tubular body whose inner diameter changes from the distal end to the proximal end.
  • the position of the first communication port 142 corresponds to the position of the distal transition section 154.
  • the inner diameter of the distal transition section 154 gradually increases along the direction from the distal end to the proximal end.
  • the direction of blood flowing out from the first communication port 142 smoothly transitions to the direction of axial flow.
  • the position of the second communication port 162 corresponds to the position of the proximal transition end.
  • the inner diameter of the proximal transition section 156 gradually decreases along the direction from the distal end to the proximal end.
  • the proximal transition section 156 can make the blood flow smoothly from the axial direction to the Diagonal flow direction to better pass through the second communication port 162 .
  • the change of inner diameters of the distal transition section 154 and the proximal transition section 156 can be a linear gradual change, or a gradual change along a curve as shown in the figure, or change according to other curves.
  • the proximal end of the distal transition section 154 and the proximal end of the first communication port 142 are located on the same cross section of the blood pump 100, and the distal end of the proximal transition section 156 is located on the same cross-section as the second communication port 162. The ends are located on the same cross section of the blood pump 100, and this design can make the blood flow near the two communication ports run more smoothly.
  • the length of the second communication port 162 in the axial direction is greater than the length of the first communication port 142 in the axial direction, so as to The blood in the gap 116 is quickly drained.
  • the fixed point of the flow tube 150 and the inlet tube 140 is located between the blood flow inlet 112 and the first communication port 142 .
  • the fixing point of the flow tube 150 and the outlet tube 160 is located between the blood outlet 114 and the second communication port 162 .
  • the flow tube 150 further includes a proximal fixing section 157 and a distal fixing section 158, and the proximal fixing section 157 is fixedly sleeved between the blood outlet 114 and the second communication port 162 of the outlet tube 160 Between, the distal fixing section 158 is fixedly sleeved between the first communication port 142 of the inlet tube 140 and the blood inlet 112 .
  • the proximal fixing section 157 is fixedly connected to the end of the proximal transition section 156 away from the tube body 152
  • the distal fixing section 158 is fixedly connected to the end of the distal transition section 154 away from the tube body 152 .
  • the flow tube 150 includes a radially expandable portion, the radially expandable portion defines at least part of the blood flow channel 110, the driving unit 130 is accommodated in the radially expandable portion, the driving unit 130 and the radially expandable portion Gaps 116 are formed between the sections. Then, during the process of pushing the blood pump 100 into the patient's body, the radially expandable part is in an unexpanded state, so as to reduce the delivery outer diameter of the blood pump 100 and facilitate the pushing of the blood pump 100 .
  • the radially expandable portion includes a tube body 152 , and a distal transition section 154 and a proximal transition section 156 located at both ends of the tube body 152 .
  • the radially expandable portion is close to the driving unit 130 when not expanded, and a gap 116 is formed between the radially expandable portion and the driving unit 130 after being expanded.
  • the radially expandable part is close to the driving unit 130 when it is not radially expanded, so that the radially expandable part has a radial width as small as possible, which can reduce the outer diameter of the blood pump 100 during delivery, so that the blood pump 100 Push.
  • the radially expandable portion is expandable by injection of a fluid. Then, when blood enters the flow-through tube 150, the inner diameter of the radially expandable portion increases. The expansion operation of the radially expandable portion is achieved by the injection of blood, so that after the blood pump 100 is pushed into the target position of the patient's body, the radially expandable portion can be expanded by the injection of blood without further action by the operator. operate.
  • the material of the radially expandable portion is a flexible material, for example, the radially expandable portion may be made of impermeable membrane material.
  • the radially expandable part is made of fluorinated ethylene propylene copolymer film (FEP film), polyethylene terephthalate film (PET film) or E-PTFE film; or, the radially expandable part
  • FEP film fluorinated ethylene propylene copolymer film
  • PET film polyethylene terephthalate film
  • E-PTFE film E-PTFE film
  • the material is selected from at least one of polyurethane, nylon, polyethylene, polyether block polyamide (PEBAX) and latex. These materials are relatively compliant, enabling the expandable portion to expand (or inflate) rapidly after blood injection.
  • the radially expandable part of the above material pushes the driving unit 130 into the left ventricle, so that the radially expandable part can be clamped between the aortic valves, and when the aortic valve beats, it will radially squeeze the flow tube
  • the radially expandable portion of 150 enables a pulsating flow to be formed in the flow tube 150, which can better simulate actual blood flow.
  • the material of the proximal fixing section 157 and the distal fixing section 158 may be the same as that of the radially expandable part, or may be different.
  • the material of the radially expandable portion may be a flexible material only for a part of the section.
  • the flexible material can be fluorinated ethylene propylene copolymer film (FEP film), polyethylene terephthalate film (PET film) or E-PTFE film, or the flexible material is made of polyurethane, nylon, polyethylene, It is made of at least one material among polyether block polyamide (PEBAX) and latex.
  • the driving unit 130 is pushed into the left ventricle, so that the radially expandable portion of the flexible material segment can be clamped between the aortic valves, and when the aortic valve beats, the radially squeezed portion of the flow tube 150 can This segment of the radially expanded portion creates a pulsating flow within the flow tube 150 to better simulate actual blood flow.
  • the radially expandable part is not limited to the way of expanding by injecting liquid.
  • the radially expandable part can also be made of shape memory material, which can be made by heat (body temperature or be activated by other heat sources) to achieve expansion or contraction to be close to the drive unit 130; in other embodiments, a retainer and a release mechanism can also be provided to realize the expansion of the radially expandable portion and keep it close to the drive unit 130.
  • the flow tube 150 is not limited to the above-mentioned structure. In other embodiments, only the distal transition section 154 or the proximal transition section 156 is connected to the tube body 152 of the flow tube 150, or the flow tube 150 has no transition section, only includes the tube main body 152, or the flow tube 150 does not have the function of radial expansion, and the inner diameter of the flow tube 150 does not change all the time.
  • the first communication port 142, the second communication port 162, and the drive unit 130 are not limited to the above arrangement.
  • the first communication port 142 is arranged on the end surface of the proximal end of the inlet pipe 140, and the drive unit 130 is close to One end of the inlet pipe 140 can be fixed to the proximal end of the inlet pipe 140 or the inner wall of the flow pipe 150 through a support frame;
  • One end close to the outlet pipe 160 can be fixed to the far end of the outlet pipe 160 or the inner wall of the flow pipe 150 through a support frame;
  • the port 162 is arranged on the end face of the pipe section of the outlet pipe 160, and the drive unit 130 is directly fixed in the flow pipe 150 through the support frame; in some embodiments, the arrangement of the first communication port 142 and the second communication port 162 is still as shown 1, however, the driving unit 130 is not fixedly connected to the outlet pipe 160, nor is it fixedly connected to the inlet pipe 140, but is directly fixed in the flow pipe 150 through the support frame.
  • the blood pump 100 further includes a conduit 170 affixed to the proximal end of the outlet tube 160 .
  • the catheter 170 has a lumen for accommodating pipelines, such as cleaning pipelines and wires electrically connected to the drive unit 130 , etc.
  • the cleaning pipelines and wires extend outside the proximal end of the catheter 170 to connect with external devices.
  • the blood pump 100 further includes a pigtail tube 180 , the proximal end of the pigtail tube 180 is connected to the distal end of the inlet tube 140 , and the distal end of the pigtail tube 180 is curved.
  • the pigtail 180 can be used to stabilize the position of the blood pump 100 in the heart, providing atraumatic support to the heart tissue.
  • the pigtail pipe 180 is a hollow structure.
  • the distal end of the inlet tube 140 is provided with a perforation, and the perforation is used to communicate the lumen of the inlet tube 140 with the lumen of the pigtail tube 180 for the guide wire to pass through.
  • the material of the pigtail 180 is selected from at least one of polyurethane, nylon, polyethylene, PEBAX and latex.
  • the length of the pigtail pipe 180 along the axial direction after straightening is 10mm-50mm.
  • the driving unit 130 has a rotating shaft, and the impeller 120 is fixedly connected to the rotating shaft, so that the impeller 120 can rotate with the rotating shaft.
  • the driving unit 130 includes a housing 132 , and a rotor 134 and a stator 136 arranged in the housing 132 .
  • the proximal end of the housing 132 is fixedly connected to the distal end of the outlet tube 160
  • the distal end of the housing 132 is fixedly connected to the proximal end of the inlet tube 140 .
  • the rotor 134 includes a connected rotating shaft 1342 and a magnet 1344 , the rotating shaft 1342 is provided with a flywheel 1345 , the magnet 1344 is assembled on the flywheel 1345 , and the distal end of the rotating shaft 1342 extends outside the casing 132 and is fixedly connected with the impeller 120 .
  • the stator 136 includes a plurality of columns 1362 arranged around the axis of the rotating shaft 1342 , a coil winding 1364 around the periphery of each column 1362 , and a back plate 1366 connected to one end of the columns 1362 .
  • the center of the stator 136 has an axially penetrating passage through which the rotating shaft 1342 passes.
  • the coil winding 1364 generates a rotating magnetic field interacting with the magnet 1344 to rotate the rotating shaft 1342, thereby driving the impeller 120 to rotate.
  • the back plate 1366 can be used for The magnetic flux loop is closed to increase the output power of the drive unit 130 .
  • the drive unit 130 in this embodiment is only used as an example, and cannot be used to limit the structure of the drive unit 130.
  • the drive unit 130 can also have other structures, as long as the drive unit 130 can It only needs to drive the impeller 120 to rotate.
  • the driving unit 130 and the impeller 120 may also adopt a non-contact transmission connection, such as a magnetic transmission connection.
  • the blood pump 100 is implanted into the patient's heart by percutaneous intervention. When the blood pump 100 is working, it can pump blood from the left ventricle into the aorta to assist blood circulation.
  • the specific operation is:
  • the distal end of the blood pump 100 is passed through the aortic valve and advanced into the left ventricle until the flowthrough tube 150 is clamped in the aortic valve.
  • the blood flow inlet 112 is located in the left ventricle, and the blood flow outlet 114 is located in the aorta.
  • the aortic valve is clamped in the middle region of the flow tube 150 .
  • the driving unit 130 is started, and the driving unit 130 drives the impeller 120 to rotate.
  • the impeller 120 is working, blood enters the blood pump 100 from the blood flow inlet 112 and is discharged from the blood flow outlet 114 through the blood flow channel 110 in the blood pump 100 .
  • the flow tube 150 Since the flow tube 150 is clamped by the aortic valve, when the valve edge of the aortic valve beats, it will radially squeeze the flow tube 150 to form a pulsating flow in the flow tube 150, which can better simulate the actual blood flow. Moreover, the expanded flow tube 150 is made of a radially deformable flexible material, and when the aortic valve squeezes the flow tube 150, damage to the aortic valve can be reduced.
  • the axial size of the driving unit 130 is not limited by other conditions, as long as the blood outlet 114 is located in the aorta. Therefore, by increasing the axial dimension of the driving unit 130, the output power of the driving unit 130 can be increased, and the pumping efficiency of the impeller 120 can be improved.
  • the blood pump 100 of the present application can also be used as a right ventricular assist device, sending the blood pump 100 of the right ventricle to the pulmonary artery.
  • the above-mentioned blood pump 100 has at least the following advantages:
  • the driving unit 130 of this embodiment is located in the blood flow channel 110 as a whole, and the blood will flow along the outer surface of the driving unit 130.
  • the blood generated by the driving unit 130 can be taken
  • the heat helps the drive unit 130 to dissipate heat, so as to reduce the damage caused by the heat of the drive unit 130 to the blood.
  • the position of the blood flow outlet 114 on the blood pump 100 is not affected by the position of the drive unit 130, and the drive unit 130 can be pushed as a whole during percutaneous intervention To the left ventricle, as long as the blood outlet 114 is located at the target location, such as the aorta or pulmonary artery. Therefore, by increasing the axial dimension of the driving unit 130, the output power of the driving unit 130 can be increased, and the pumping efficiency of the blood pump 100 can be improved. Therefore, the above blood pump 100 is beneficial to improve the pumping efficiency.
  • the second embodiment of the present invention provides a blood pump 200, which has a blood flow channel 210, and a blood flow inlet 212 and a blood flow outlet 214 communicating with the blood flow channel 210.
  • the pump 200 includes an impeller 220 , a drive unit 230 , an inlet tube 240 , a flow-through tube 250 , a conduit 270 and a pigtail 280 .
  • the impeller 220 is in transmission connection with the driving unit 230 , the proximal end of the inlet pipe 240 is fixedly connected with the driving unit 230 , and the impeller 220 is located in the inlet pipe 240 .
  • the distal end of the catheter 270 is connected to the proximal end of the driving unit 230 .
  • the distal end of the inlet tube 240 is connected to the proximal end of the pigtail tube 280, and the distal end of the pigtail tube 280 is curved.
  • the distal end of the flow tube 250 is fixed on the inlet tube 240, the proximal end of the flow tube 240 is an open end, the drive unit 230 is accommodated in the flow tube 250, and a gap 216 for blood flow is formed between the flow tube 250 and the drive unit 230 .
  • the blood flow inlet 212 is disposed on the inlet tube 240 , and the inlet tube 240 is also provided with a first communication port 242 , through which the circulation tube 250 and the inlet tube 240 communicate.
  • the opening at the proximal end of the flow tube 250 is the blood outlet 214 of the blood pump 200 . That is, in this embodiment, the inlet tube 240 and the flow tube 250 jointly define the blood flow channel 210 , and at this time, the flow tube 250 defines part of the blood flow channel 210 .
  • the driving unit 230 is located in the blood flow channel 210 , specifically in the part of the blood flow channel 210 defined by the flow tube 250 .
  • the driving unit 230 is entirely located in the blood flow channel 210, the blood will flow along the outer surface of the driving unit 230, and when the blood flows through the outer surface of the driving unit 230, it can take away the heat generated by the driving unit 230, which is helpful
  • the driving unit 230 dissipates heat, reducing damage to blood caused by the heating of the driving unit 230 .
  • the driving unit 230 is located in the flow tube 250, the position of the blood outlet 214 on the blood pump 200 is not affected by the driving unit 230, and the driving unit 230 can be pushed into the left ventricle as a whole during percutaneous intervention. Therefore, The output power of the driving unit 230 can be increased by increasing the axial size of the driving unit 230 .
  • the blood outlet 214 may also be provided on the tube wall of the flow tube 250 .
  • the proximal end of the flow tube 30 can also be fixed on the driving unit 230 .
  • the flow tube 250 includes a connected tube body 252 and a distal transition section 254 whose inner diameter gradually increases from the distal end to the proximal end.
  • the distal transition section 254 is located near the first communication port 242, and the distal transition section 254 can make the blood flow near the first communication port 242 transition smoothly, so that the blood pump 200 has a more stable flow field distribution and excellent blood compatibility .
  • the inner diameter change of the distal transition section 254 may be a linear gradient, or a specific curve gradient along a certain formula.
  • the first communication port 242 is opened on the tube wall at the proximal end of the inlet tube 240 , and the position of the first communication port 242 corresponds to the position of the distal transition section 254 .
  • There are a plurality of first communication ports 242 and the plurality of first communication ports 242 are evenly spaced along the circumference of the inlet pipe 240 .
  • the fixed point of the flow tube 250 and the inlet tube 240 is located between the blood inlet 212 and the first communication port 242 .
  • the flow tube 250 further includes a distal fixing section 258 , and the distal fixing section 258 is fixedly sleeved between the first communication port 242 of the inlet tube 240 and the blood flow inlet 212 .
  • the distal fixing section 258 is fixedly connected to an end of the distal transition section 254 that is away from the tube main body 252 .
  • the flow tube 30 includes a radially expandable portion, and the driving unit 230 is accommodated in the radially expandable portion, which can reduce the delivery outer diameter of the blood pump 100 .
  • the radially expandable portion includes a tube body 252 and distal transition sections 254 at both ends of the tube body 252 .
  • the radially expandable portion is close to the driving unit 230 when not expanded, and a gap 216 is formed between the radially expandable portion and the driving unit 230 after being expanded.
  • the radially expandable part is close to the driving unit 230 when it is not radially expanded, so that the radially expandable part has as small a radial width as possible when pushed in, which can reduce the outer diameter of the blood pump 200 during delivery, So that the blood pump 200 is pushed in.
  • the radially expandable portion is expandable by injection of a fluid. Then, when blood enters the flow tube, the inner diameter of the radially expandable portion increases. The expansion operation of the radially expandable portion is achieved by the injection of blood, so that after the blood pump 200 is pushed into the target position of the patient's body, the radially expandable portion can be expanded by the injection of blood without further action by the operator. operate.
  • the material of the radially expandable part is a flexible material, for example, the radially expandable part can be made of an impermeable coating material, specifically, the material of the radially expandable part is fluorinated ethylene propylene Copolymer film (FEP film), polyethylene terephthalate film (PET film) or E-PTFE film; alternatively, the material of the radially expandable part is selected from polyurethane, nylon, polyethylene, polyether block At least one of polyamide (PEBAX) and latex. These materials are relatively compliant, enabling the expandable portion to expand (or inflate) rapidly after blood injection. Wherein, the material of the distal fixing segment can be the same as that of the radially expandable part, or it can be different.
  • FEP film fluorinated ethylene propylene Copolymer film
  • PET film polyethylene terephthalate film
  • E-PTFE film E-PTFE film
  • the material of the radially expandable part is selected from polyurethane
  • the material of the radially expandable portion may be a flexible material only for a part of the section.
  • the flexible material can be fluorinated ethylene propylene copolymer film (FEP film), polyethylene terephthalate film (PET film) or E-PTFE film, or the flexible material is made of polyurethane, nylon, polyethylene, polyester It is made of at least one material among ether block polyamide (PEBAX) and latex.
  • the driving unit 230 is pushed into the left ventricle, so that the segment of the flexible material of the radially expandable part can be clamped between the aortic valves, and when the aortic valve beats, the radially squeezed portion of the flow tube 250 can This segment of the radially expanded portion creates a pulsating flow within the flow tube 250 to better simulate actual blood flow.
  • the driving unit 230 is directly connected to the catheter 270 . Since the structures of the pigtail pipe 280, the inlet pipe 240, the impeller 240, the driving unit 230 and the conduit 270 are the same as those of the first embodiment, the specific structures thereof will not be repeated here.
  • the blood pump 200 in this embodiment can also be used as a left ventricular assist device or a right ventricular assist device, and the specific operation method thereof will not be repeated here.
  • the structure of the blood pump 200 in this embodiment is substantially the same as that of the blood pump 100 in the first embodiment, and it also has the effect of the blood pump 100 in the first embodiment, it will not be repeated here.
  • the structure of the blood pump can also be other structures different from the above-mentioned blood pump 100 and blood pump 200.
  • the blood pump can also have no inlet pipe and outlet pipe, and the blood flow inlet and blood flow The outlets are respectively arranged on the flow pipe and communicate with the inner cavity of the flow pipe.
  • the drive unit is fixed in the flow pipe through the support frame.
  • the impeller is placed in the flow pipe and connected with the drive unit. gap.
  • the inner cavity of the flow tube is the blood flow channel of the blood pump, that is, the flow tube defines the entire blood flow channel, and the driving unit is located in the blood flow channel.
  • the blood pump can also have an outlet tube instead of an inlet tube, the blood flow inlet is set on the flow tube, the blood flow outlet is set on the outlet tube, the proximal end of the flow tube is fixedly connected to the outlet tube, and the outlet tube
  • the far end of the pipe is fixedly connected to the drive unit, and at the same time, the drive unit is also fixedly connected to the flow pipe through the support frame.
  • the structure of the outlet pipe can be the same as that of the first embodiment, or it can be different.
  • the impeller is placed in the flow pipe. It is transmission connected with the drive unit, and a gap is formed between the flow pipe and the drive unit.
  • the outlet pipe may not be fixedly connected to the drive unit, and the drive unit is only fixed to the flow pipe through the support frame.
  • the flow tube and the inlet tube together define a blood flow channel.
  • the pigtail tube can also be omitted, or the pigtail tube can also be replaced by other structures that can provide non-traumatic support to the heart tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • External Artificial Organs (AREA)

Abstract

一种血泵(100,200),血泵(100,200)具有血流通道(110,210)、及与血流通道(110,210)相连通的血流入口(112,212)与血流出口(114,214),血泵(100,200)包括叶轮(120,220)和驱动单元(130,230),叶轮(120,220)能够旋转,驱动单元(130,230)置于血流通道(110,210)内,并与驱动单元(130,230)传动连接,驱动单元(130,230)能够驱动叶轮(120,220)旋转,驱动单元(130,230)于血流通道(110,210)的通道壁之间形成供血流通过的间隙(116,216),间隙(116,216)与血流入口(112,212)、血流出口(114,214)均相通。

Description

血泵 技术领域
本发明涉及医疗器械领域,尤其涉及一种经皮插入患者的血管中的血泵。
背景技术
血管内血泵,被设计为经皮插入患者的血管中,可沿血管探入患者的心脏,以作为左心室辅助设备或右心室辅助设备起作用。因此,血管内血泵也被称为心内血泵。血泵包括叶轮及驱动该叶轮旋转的电机,叶轮旋转时,将血液从血泵的血液流入口输送至血液流出口。血泵的泵送效率是血泵性能指标的重要参数,然而目前的血管内血泵的泵送效率仍然较低,需进行改善。
发明内容
基于此,有必要提供一种能够具有较高泵送效率的血泵。
一种血泵,所述血泵具有血流通道、及与所述血流通道相连通的血流入口与血流出口,所述血泵包括:
能够旋转的叶轮;
驱动单元,置于所述血流通道内,并与所述叶轮传动连接,所述驱动单元能够驱动所述叶轮旋转,所述驱动单元与所述血流通道的通道壁之间形成供血流通过的间隙,所述间隙与所述血流入口、所述血流出口均相通。
一种血泵,所述血泵具有血流通道,及与所述血流通道相连通的血流入口与血流出口,所述血泵包括:
叶轮,能够旋转地设于所述血流通道内;
流通管,所述流通管限定至少部分所述血流通道;
驱动单元,置于所述血流通道内,且收容于所述流通管,所述驱动单元与所述叶轮传动连接,所述驱动单元能够驱动所述叶轮旋转,所述驱动单元与所述流通管之间形成供血流通过的间隙,所述间隙与所述血流入口、所述血流出口均相通。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明 的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的一种血泵的结构示意图;
图2是图1所示的血泵的局部透视图;
图3是图1所示的血泵的分解图;
图4是本发明提供的一种血泵的驱动单元的结构示意图;
图5是本发明第二实施例提供的一种血泵的结构示意图;
图6是图5所示的血泵的局部透视图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在介入医疗领域,通常定义器械距操作者近的一端为近端,距操作者远的一端为远端。
请参阅图1和图2,本发明第一实施例提供的一种血泵100,特别涉及一 种血管内血泵,该血泵100具有血流通道110、及与血流通道110相连通的血流入口112与血流出口114,其中,血液能够从血流入口112进入血流通道110,并从血流出口114排出。其中,血泵100包括叶轮120和驱动单元130。
叶轮120设于血流通道110,叶轮120能够旋转,以促进血液从血流入口112进入血流通道110,并从血流出口114排出。具体地,叶轮120靠近血流入口112设置。
驱动单元130置于血流通道110内,并与叶轮120传动连接,驱动单元130能够驱动叶轮120旋转。驱动单元130与血流通道110的通道壁之间形成供血流通过的间隙116,该间隙116与血流入口112、血流出口114均相通。即在血液的流动路径上,该间隙116位于血流入口112和血流出口114之间,那么,从血流入口112进入到血流通道110的血液会流经该间隙116后,从血流出口114流出,从而带走驱动单元130产生的热量,帮助驱动单元130散热。
在图示的实施例中,血泵100还包括入口管140、流通管150和出口管160。
请一并参阅图3,入口管140的近端与驱动单元130固定连接,血流入口112设于入口管140的远端。入口管140还开设有第一连通口142。
具体地,血流入口112设于入口管140的管壁上;血流入口112为多个,多个血流入口112沿入口管140的周向间隔布置。第一连通口142位于入口管140的近端;第一连通口142为多个,多个第一连通口142沿入口管140的周向间隔且均匀地分布于入口管140的管壁。在其中一个实施例中,血流入口112和第一连通口142的数量分别为4-6个。可以理解,血流入口112的数量和第一连通口142的数量可以根据实际设计需要进行调整。其中,叶轮120能够旋转地设置于入口管140。
流通管150的远端与入口管140固接,流通管150和入口管140通过第一连通口142连通。具体地,入口管140的近端收容于流通管150中。驱动单元130收容于流通管150,驱动单元130与流通管150之间形成间隙116。出口管160的远端收容于流通管150。
出口管160的远端连接至驱动单元130,血流出口114设于出口管160 的近端。出口管160还开设有第二连通口162,流通管150的近端与出口管160固接,且流通管150通过第二连通口162与出口管150连通。
那么,在本实施例中,血流通道110由入口管140、流通管150及出口管160共同限定。此时,流通管150限定了部分血流通道110。驱动单元130位于血流入口112和血流出口114之间。血液从血流入口112进入口管140,通过第一连通口142进入流通管150,流经驱动单元130与流通管150之间的间隙116,在通过第二连通口162流入出口管160,最后从血流出口114排出。
具体地,血流出口114设于出口管160的管壁上;血流出口114为多个,多个血流出口114沿入口管140的周向间隔布置。第二连通口162位于出口管160的远端;第二连通口162为多个,多个第二连通口162沿出口管160的周向间隔且均匀分布于出口管160的管壁。在其中一个实施例中,血流出口114和第二连通口162的数量分别为4-6个。可以理解,血流出口114的数量和第二连通口162的数量可以根据实际设计需要进行调整。
在其中一个实施例中,流通管150包括管主体152、及位于管主体152的两端的远端过渡段154与近端过渡段156,远端过渡段154的内径沿远端到近端的方向逐渐变大,近端过渡段156的内径沿远端到近端的方向逐渐变小。位于管主体152两端的过渡段可使第一连通口142与第二连通口162附近的血流平稳过渡,使血泵100具有更稳定的流场分布和优秀的血液相容性。
具体在图示的实施例中,沿远端到近端,管主体152的内径相等,远端过渡段154的靠近管主体152的一端的内径等于近端过渡段156的靠近管主体152的一端的内径。需要说明的是,在其它实施例中,管主体152也可以为从远端到近端内径有所变化的管状体。
具体地,第一连通口142的位置与远端过渡段154的位置相对应,远端过渡段154的内径沿远端到近端的方向逐渐变大,远端过渡段154可使沿斜流方向从第一连通口142流出的血液平稳过渡到轴流方向。
第二连通口162的位置与近端过渡端的位置相对应,近端过渡段156的内径沿远端到近端的方向逐渐变小,近端过渡段156可使血液由轴流方向平稳过渡到斜流方向,以更好地通过第二连通口162。
其中,远端过渡段154与近端过渡段156的内径变化可以是线性渐变,也可以是沿如图所示的曲线渐变,或者是按照其它曲线变化。
在其它一些实施例中,远端过渡段154的近端与第一连通口142的近端位于血泵100的同一横截面上,近端过渡段156的远端与第二连通口162的远端位于血泵100的同一横截面上,采用这种设计可使两个连通口附近的血流运行更平稳。
进一步地,为了避免大量血液堆积在流通管150与驱动单元130之间的间隙116内,导致血栓形成,第二连通口162沿轴向的长度大于第一连通口142沿轴向的长度,以将间隙116内的血液快速排出。
具体地,流通管150与入口管140的固定点位于血流入口112与第一连通口142之间。流通管150与出口管160的固定点位于血流出口114与第二连通口162之间。在图示的实施例中,流通管150还包括近端固定段157和远端固定段158,近端固定段157固定地套设于出口管160的血流出口114和第二连通口162之间,远端固定段158固定地套设于入口管140的第一连通口142和血流入口112之间。近端固定段157与近端过渡段156的远离管主体152的一端固接,远端固定段158与远端过渡段154的远离管主体152的一端固接。
在其中一个实施例中,流通管150包括可径向扩张部分,可径向扩张部分限定至少部分血流通道110,驱动单元130收容于可径向扩张部分内,驱动单元130与可径向扩张部分之间形成间隙116。那么,在将血泵100推入患者体的过程中,使可径向扩张部分处于未扩张状态,以减小血泵100的输送外径,方便血泵100推入。在图示的实施例中,可径向扩张部分包括管主体152、及位于管主体152的两端的远端过渡段154与近端过渡段156。
在其中一个实施例中,可径向扩张部分在未扩张时紧贴驱动单元130,可径向扩张部分扩张后与驱动单元130之间形成间隙116。可径向扩张部分在未径向扩张时紧贴驱动单元130,以使可径向扩张部分具有尽可能小的径向宽度,能够减小血泵100输送时的外径,以便于血泵100推入。
在其中一个实施例中,可径向扩张部分能够通过注入液体而发生扩张。那么,当血液进入流通管150内,可径向扩张部分的内径增大。通过血液的 注入实现可径向扩张部分的扩张操作,如此,在将血泵100推入患者体的目标位置后,可径向扩张部分能够通过血液的注入而发生扩张,而无需操作者的其它操作。
在其中一个实施例中,可径向扩张部分的材质为柔性材质,例如,可径向扩张部分可由防渗透的覆膜材料制成。具体地,可径向扩张部分的材质为氟化乙烯丙烯共聚物膜(FEP膜)、聚对苯二甲酸乙二醇酯膜(PET膜)或E-PTFE膜;或者,可径向扩张部分的材料选自聚氨酯、尼龙、聚乙烯、聚醚嵌段聚酰胺(PEBAX)及乳胶中的至少一种。这些材料具有较好的顺应性,能够使可扩张部分在血液注入后迅速扩张(或膨胀)。另外,上述材质的可径向扩张部分,将驱动单元130推送至左心室内,可使可径向扩张部分夹持于主动脉瓣之间,主动脉瓣跳动时,会径向挤压流通管150的可径向扩张部分,使流通管150内形成脉动流,可更好地模拟实际血流。
其中,近端固定段157和远端固定段158的材料可以与可径向扩张部分相同,也可以不同。
在另一些实施例中,可径向扩张部分还可以仅为部分区段的材质为柔性材质。该柔性材质可以为氟化乙烯丙烯共聚物膜(FEP膜)、聚对苯二甲酸乙二醇酯膜(PET膜)或E-PTFE膜,或者,该柔性材质由聚氨酯、尼龙、聚乙烯、聚醚嵌段聚酰胺(PEBAX)及乳胶中的至少一种材料制作而成。此时,将驱动单元130推送至左心室内,可使可径向扩张部分的柔性材质的区段夹持于主动脉瓣之间,主动脉瓣跳动时,径向挤压流通管150的可径向扩张部分的该区段,使流通管150内形成脉动流,以更好地模拟实际血流。
需要说明的是,可径向扩张部分不限于为采用注入液体而发生扩张的方式,在一些实施例中,可径向扩张部分还可以采用形状记忆材料制作而成,其可通过热(体温或者是其它热源)激活的方式而实现扩张或收缩至紧贴驱动单元130;在另一些实施例中,还可以设置保持器和释放机构,以实现可径向扩张部分的扩张和保持紧贴驱动单元130。
可以理解的是,流通管150不限于采用上述结构,在其它实施例中,流通管150的管主体152上仅连接有远端过渡段154或近端过渡段156,或者流通管150不具有过渡段,只包括管主体152,或者,流通管150不具有径 向扩张的功能,流通管150的内径始终不发生变化。
第一连通口142、第二连通口162和驱动单元130也不限于采用上述设置方式,在一些实施例中,第一连通口142设于入口管140的近端的端面,驱动单元130的靠近入口管140的一端可通过支撑架固定于入口管140的近端或流通管150的内壁;在一些实施例中,第二连通口162设于出口管160的远端的端面,驱动单元130的靠近出口管160的一端可通过支撑架固定于出口管160的远端或流通管150的内壁;在一些实施例中,第一连通口142设于入口管140的近端的端面,第二连通口162设于出口管160的管段的端面,驱动单元130直接通过支撑架固接于流通管150中;在一些实施例中,第一连通口142和第二连通口162的设置方式仍然为图1所示的方式,然而驱动单元130既不与出口管160固接,也不与入口管140固接,而直接通过支撑架固接于流通管150中。
在图示的实施例中,血泵100还包括导管170,导管170与出口管160的近端固接。导管170具有容纳管线的管腔,管线例如为清洗管线、与驱动单元130电连接的导线等,清洗管线及导线等部件分别延伸至导管170的近端外,与外部设备连接。
在图示的实施例中,血泵100还包括猪尾管180,猪尾管180的近端连接至入口管140的远端,猪尾管180的远端呈弯曲状。猪尾管180可用于稳定血泵100在心脏中的位置,为心脏组织提供无创伤支持。具体地,猪尾管180为中空结构。入口管140的远端设有穿孔,穿孔用于使入口管140的管腔与猪尾管180的管腔相连通,以供导丝穿过。
在其中一个实施例中,猪尾管180的材料选自聚氨酯、尼龙、聚乙烯、PEBAX及乳胶材料中的至少一种。猪尾管180伸直后沿轴向的长度为10mm~50mm。
在其中一个实施例中,驱动单元130具有转轴,叶轮120与转轴固接,以使叶轮120能够随转轴旋转。
请参阅图4,在其中一个实施例中,驱动单元130包括壳体132、以及布置在壳体132内的转子134和定子136。壳体132的近端与出口管160的远端固定连接,壳体132的远端与入口管140的近端固定连接。
其中,转子134包括相连的转轴1342与磁体1344,转轴1342上设有飞轮1345,磁体1344装配在飞轮1345上,转轴1342的远端延伸至壳体132外与叶轮120固定连接。定子136包括多个围绕转轴1342的轴线布置的柱1362、围绕在每一柱1362外周的线圈绕组1364,以及与柱1362的一端相连的背板1366。定子136的中心具有沿轴向贯穿的通道,转轴1342从该通道中穿过,线圈绕组1364产生与磁体1344相互作用的旋转磁场以使转轴1342旋转,从而带动叶轮120旋转,背板1366可用于封闭磁通量回路,增加驱动单元130的输出功率。
需要说明的是,本实施例的驱动单元130仅用作举例,并不能用于对驱动单元130的结构进行限定,在其它实施例中,驱动单元130还可以为其它结构,只要驱动单元130能够带动叶轮120旋转即可,例如,在一些实施例中,驱动单元130与叶轮120还就可以采用非接触式的传动连接,例如,磁力传动连接等。
如下,以左心室辅助为例,将上述血泵100采用经皮介入的方式植入患者心脏,血泵100工作时,可将左心室的血液泵送至主动脉内,辅助血液循环。具体操作为:
首先,使血泵100的远端穿过主动脉瓣,并将其推送至左心室,直至流通管150被夹持在主动脉瓣中。此时,血流入口112位于左心室内,血流出口114位于主动脉内。优选地,主动脉瓣夹持在流通管150的中间区域。
然后,启动驱动单元130,驱动单元130带动叶轮120旋转,叶轮120工作时,血液从血流入口112进入血泵100内,并通过血泵100内的血流通道110从血流出口114排出。
由于流通管150被主动脉瓣夹持,主动脉瓣的瓣缘跳动时,会径向挤压流通管150,使流通管150内形成脉动流,可以更好地模拟实际血流。并且,扩张后的流通管150为径向可变形的柔性材质,主动脉瓣挤压流通管150时,可减小主动脉瓣的损伤。
此外,由于驱动单元130与叶轮120被推送至左心室内,驱动单元130的轴向尺寸不受其它条件限制,只要血流出口114位于主动脉内即可。故,可以通过增大驱动单元130的轴向尺寸,增加驱动单元130的输出功率,提 高叶轮120的泵送效率。
可以理解的是,在其它实施例中,本申请的血泵100还可以作为右心室辅助设备,将右心室的血泵100送至肺动脉。
上述血泵100至少具有以下优点:
(1)本实施例的驱动单元130整体位于血流通道110内,血液会沿着驱动单元130的外表面流动,当血流从驱动单元130的外表面流过时,可以带走驱动单元130产生的热量,有助于驱动单元130散热,以减少驱动单元130的发热对血液造成的损伤。
(2)由于驱动单元130位于血流通道110或流通管150内,血泵100上的血流出口114的位置可不受驱动单元130位置的影响,经皮介入时,可将驱动单元130整体推送至左心室内,只要血流出口114位于目标位置即可,如主动脉或肺动脉内。故,可以通过增大驱动单元130的轴向尺寸,增加驱动单元130的输出功率,提高血泵100的泵送效率,因此,上述血泵100有利于提高泵送效率。
(3)由于流通管150的可径向扩张部分的至少部分区段的材质为柔性材质,将驱动单元130推送至左心室内,可使可径向扩张部分的柔性材料的区段夹持于主动脉瓣之间,主动脉瓣跳动时,会径向挤压流通管150的可径向扩张部分的该区段,使流通管150内形成脉动流,可更好地模拟实际血流。
请一并参阅图5和图6,本发明第二实施例提供了一种血泵200,具有血流通道210、及与血流通道210相连通的血流入口212与血流出口214,血泵200包括叶轮220、驱动单元230、入口管240、流通管250、导管270及猪尾管280。
叶轮220与驱动单元230传动连接,入口管240的近端与驱动单元230固定连接,叶轮220位于入口管240内。导管270的远端连接至驱动单元230的近端。入口管240的远端连接至猪尾管280的近端,猪尾管280的远端呈弯曲状。
流通管250的远端固定在入口管240上,流通管240的近端为开口端,驱动单元230收容于流通管250内,流通管250与驱动单元230之间形成供血流通过的间隙216。
血流入口212设于入口管240上,入口管240还设有第一连通口242,流通管250和入口管240通过第一连通口242连通。在本实施例中,流通管250的近端的开口即为血泵200的血流出口214。即在本实施例中,入口管240和流通管250共同限定血流通道210,此时,流通管250限定了部分血流通道210。驱动单元230位于血流通道210中,具体为位于流通管250限定的那部分血流通道210中。那么,叶轮220工作时,血液从血流入口212进入入口管240内,并通过入口管240上的第一连通口242进入流通管250内,流经间隙216,最后通过血流出口214排出。
由于驱动单元230整体位于血流通道210内,血液会沿着驱动单元230的外表面流动,当血流从驱动单元230的外表面流过时,可以带走驱动单元230产生的热量,有助于驱动单元230散热,减少驱动单元230的发热对血液造成的损伤。并且,由于驱动单元230位于流通管250内,血泵200上的血流出口214的位置可不受驱动单元230的影响,经皮介入时,可将驱动单元230整体推送至左心室内,故,可以通过增大驱动单元230的轴向尺寸,增加驱动单元230的输出功率。
在其它实施例中,血流出口214还可以设在流通管250的管壁上。流通管30的近端还可以固定在驱动单元230上。
在图示的实施例中,流通管250包括相连的管主体252与远端过渡段254,远端过渡段254的内径沿远端到近端的方向逐渐变大。远端过渡段254位于第一连通口242附近,远端过渡段254可使第一连通口242附近的血流平稳过渡,使血泵200具有更稳定的流场分布和优秀的血液相容性。
远端过渡段254的内径变化可以是线性渐变,也可以是沿某种公式的特定曲线渐变。
在图示的实施例中,第一连通口242开设于入口管240的近端的管壁上,第一连通口242的位置与远端过渡段254的位置相对应。第一连通口242为多个,且多个第一连通口242沿入口管240的周向均匀间隔分布。
在本实施例中,流通管250与入口管240的固定点位于血流入口212与第一连通口242之间。具体地,流通管250还包括远端固定段258,远端固定段258固定地套设于入口管240的第一连通口242和血流入口212之间。 远端固定段258与远端过渡段254的远离管主体252的一端固接。
在其中一个实施例中,流通管30包括可径向扩张部分,驱动单元230收容于可径向扩张部分内,可减小血泵100的输送外径。在图示的实施例中,可径向扩张部分包括管主体252及位于管主体252的两端的远端过渡段254。
在其中一个实施例中,可径向扩张部分在未扩张时紧贴驱动单元230,可径向扩张部分扩张后与驱动单元230之间形成间隙216。可径向扩张部分在未径向扩张时紧贴驱动单元230,以使可径向扩张部分在推入时具有尽可能小的径向宽度,能够减小血泵200的输送时的外径,以便于血泵200推入。
在其中一个实施例中,可径向扩张部分能够通过注入液体而发生扩张。那么,当血液进入流通管内,可径向扩张部分的内径增大。通过血液的注入实现可径向扩张部分的扩张操作,如此,在将血泵200推入患者体的目标位置后,可径向扩张部分能够通过血液的注入而发生扩张,而无需操作者的其它操作。
在其中一个实施例中,可径向扩张部分的材质为柔性材质,例如,可径向扩张部分可由防渗透的覆膜材料制成,具体地,可径向扩张部分的材质为氟化乙烯丙烯共聚物膜(FEP膜)、聚对苯二甲酸乙二醇酯膜(PET膜)或E-PTFE膜;或者,可径向扩张部分的材料选自聚氨酯、尼龙、聚乙烯、聚醚嵌段聚酰胺(PEBAX)及乳胶中的至少一种。这些材料具有较好的顺应性,能够使可扩张部分在血液注入后迅速扩张(或膨胀)。其中,远端固定段的材料可以与可径向扩张部分相同,也可以不同。
在另一些实施例中,可径向扩张部分还可以仅为部分区段的材质为柔性材质。该柔性材料可以氟化乙烯丙烯共聚物膜(FEP膜)、聚对苯二甲酸乙二醇酯膜(PET膜)或E-PTFE膜,或者,该柔性材料由聚氨酯、尼龙、聚乙烯、聚醚嵌段聚酰胺(PEBAX)及乳胶中的至少一种材料制作而成。此时,将驱动单元230推送至左心室内,可使可径向扩张部分的柔性材料的区段夹持于主动脉瓣之间,主动脉瓣跳动时,径向挤压流通管250的可径向扩张部分的该区段,使流通管250内形成脉动流,以更好地模拟实际血流。
本实施例中,驱动单元230与导管270直接连接。由于猪尾管280、入口管240、叶轮240、驱动单元230及导管270的结构与第一实施例相同,其 具体结构在此不再赘述。
同样,本实施例的血泵200也可被用作左心室辅助设备或右心室辅助设备,其具体操作方式在此不再赘述。
由于本实施例的血泵200的结构与第一实施例的血泵100的结构大致相同,其也具有第一实施例的血泵100的效果,在此不再赘述。
可以理解的是,血泵的结构还可以为其它不同于上述血泵100和血泵200的结构,在其它实施例中,血泵还可以不具有入口管和出口管,血流入口与血流出口分别设置在流通管上、并与流通管的内腔相连通,驱动单元通过支撑架固定在流通管内,叶轮置于流通管内、并与驱动单元传动连接,流通管与驱动单元之间形成有间隙。此时,流通管的内腔即为血泵的血流通道,即流通管限定了整个血流通道,驱动单元位于血流通道内。叶轮工作时,血液从血流入口进入间隙内,随后通过血流出口排出。
在其它实施例中,血泵还可以具有出口管,而不具有入口管,血流入口设于流通管上,血流出口设于出口管上,流通管的近端与出口管固接,出口管的远端与驱动单元固接,同时,驱动单元还通过支撑架与流通管固接,此时,出口管的结构可以与第一实施例相同,也可以不同,叶轮置于流通管内、并与驱动单元传动连接,流通管与驱动单元之间形成有间隙。或者,出口管也可以不与驱动单元固接,驱动单元仅通过支撑架固定于流通管。在该方案中,流通管和入口管共同限定血流通道。
在其它实施例中,猪尾管也可以省略,或者是,猪尾管也可以采用其它能够给心脏组织提供无创伤支持的结构代替。
可以理解,在不违背本发明目的的前提下,对各实施例中技术方案的自由组合,而形成的新的技术方案,也是本发明所要申请保护的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种血泵,所述血泵具有血流通道、及与所述血流通道相连通的血流入口与血流出口,所述血泵包括:
    能够旋转的叶轮;
    驱动单元,置于所述血流通道内,并与所述叶轮传动连接,所述驱动单元能够驱动所述叶轮旋转,所述驱动单元与所述血流通道的通道壁之间形成供血流通过的间隙,所述间隙与所述血流入口、所述血流出口均相通。
  2. 根据权利要求1所述的血泵,其特征在于,所述血泵还包括流通管,所述流通管包括可径向扩张部分,所述可径向扩张部分限定至少部分所述血流通道,所述驱动单元收容于所述可径向扩张部分内,所述驱动单元与所述可径向扩张部分之间形成所述间隙。
  3. 根据权利要求2所述的血泵,其特征在于,所述可径向扩张部分在未扩张时紧贴所述驱动单元,所述可径向扩张部分扩张后与所述驱动单元之间形成所述间隙。
  4. 根据权利要求2所述的血泵,其特征在于,所述可径向扩张部分能够通过注入液体而发生扩张。
  5. 根据权利要求2所述的血泵,其特征在于,所述可径向扩张部分的至少部分区段的材质为柔性材质。
  6. 根据权利要求2~5中任一项所述的血泵,其特征在于,所述可径向扩张部分的材质为氟化乙烯丙烯共聚物膜、聚对苯二甲酸乙二醇酯膜或E-PTFE膜;或者,所述可径向扩张部分的材料由聚氨酯、尼龙、聚乙烯、聚醚嵌段聚酰胺及乳胶中的至少一种材料制作而成。
  7. 根据权利要求1所述的血泵,其特征在于,所述血泵还包括入口管、及远端与所述入口管固接的流通管,所述入口管的近端连接至所述驱动单元,所述驱动单元收容于所述流通管,且所述驱动单元与所述流通管之间形成所述间隙,所述血流入口设于所述入口管的远端,所述血流出口设于所述流通管的近端;
    所述入口管还开设有第一连通口,所述第一连通口连通所述入口管和所述流通管。
  8. 根据权利要求7所述的血泵,其特征在于,所述流通管包括相连的管主体及远端过渡段,所述远端过渡段的内径沿远端到近端的方向逐渐变大。
  9. 根据权利要求8所述的血泵,其特征在于,所述第一连通口开设于所述入口管的近端的管壁上,所述第一连通口的位置与所述远端过渡段的位置相对应。
  10. 根据权利要求1所述的血泵,其特征在于,所述血泵还包括入口管、流通管及出口管,所述入口管的近端连接至所述驱动单元,所述出口管的远端连接至所述驱动单元,所述流通管的远端与所述入口管固接,所述流通管的近端与所述出口管固接,所述驱动单元收容于所述流通管,且所述驱动单元与所述流通管之间形成所述间隙,所述血流入口设于所述入口管的远端,所述血流出口设于所述出口管的近端;
    所述入口管还开设有第一连通口,所述出口管还开设有第二连通口,所述入口管和所述出口管分别通过所述第一连通口和所述第二连通口与所述流通管连通。
  11. 根据权利要求10所述的血泵,其特征在于,所述流通管包括管主体、及位于所述管主体的两端的远端过渡段与近端过渡段;所述远端过渡段的内径沿远端到近端的方向逐渐变大,所述近端过渡段的内径沿远端到近端的方向逐渐变小。
  12. 根据权利要求11所述的血泵,其特征在于,所述第一连通口开设于所述入口管的近端的管壁上,所述第一连通口的位置与所述远端过渡段的位置相对应;
    及/或,所述第二连通口开设于所述出口管的远端的管壁上,所述第二连通口的位置与所述近端过渡段的位置相对应。
  13. 根据权利要求7~12中任一项所述的血泵,其特征在于,所述血泵还包括猪尾管,所述猪尾管的近端连接至所述入口管的远端,所述猪尾管的远端呈弯曲状。
  14. 根据权利要求1所述的血泵,其特征在于,所述叶轮设于所述血流通道,且靠近所述血流入口,所述间隙位于所述血流入口和所述入流出口之间。
  15. 根据权利要求1所述的血泵,其特征在于,所述驱动单元具有转轴,所述转轴与所述叶轮固接。
  16. 一种血泵,所述血泵具有血流通道,及与所述血流通道相连通的血流入口与血流出口,其特征在于,所述血泵包括:
    叶轮,能够旋转地设于所述血流通道内;
    流通管,所述流通管限定至少部分所述血流通道;
    驱动单元,置于所述血流通道内,且收容于所述流通管,所述驱动单元与所述叶轮传动连接,所述驱动单元能够驱动所述叶轮旋转,所述驱动单元与所述流通管之间形成供血流通过的间隙,所述间隙与所述血流入口、所述血流出口均相通。
  17. 根据权利要求16所述的血泵,其特征在于,所述叶轮靠近所述血流入口设置,所述驱动单元位于所述血流出口和所述血流入口之间。
  18. 根据权利要求16所述的血泵,其特征在于,所述流通管包括可径向扩张部分,所述可径向扩张部分限定至少部分所述血流通道,所述可径向扩张部分位于所述血流出口和所述血流入口之间,所述驱动单元收容于所述可径向扩张部分内,所述驱动单元与所述可径向扩张部分之间形成所述间隙。
  19. 根据权利要求18所述的血泵,其特征在于,所述可径向扩张部分在未扩张时紧贴所述驱动单元,所述可径向扩张部分扩张后与所述驱动单元之间形成所述间隙。
  20. 根据权利要求18或19所述的血泵,其特征在于,所述可径向扩张部分能够在注入液体的作用下发生扩张;
    及/或,所述可径向扩张部分至少部分区段的材质为柔性材质;
    及/或,所述可径向扩张部分的材质为氟化乙烯丙烯共聚物膜、聚对苯二甲酸乙二醇酯膜或E-PTFE膜,或者,所述可径向扩张部分的材料由聚氨酯、尼龙、聚乙烯、聚醚嵌段聚酰胺及乳胶中的至少一种材料制作而成。
PCT/CN2022/102198 2021-08-05 2022-06-29 血泵 WO2023011054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110895435.7A CN113599692A (zh) 2021-08-05 2021-08-05 血泵
CN202110895435.7 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023011054A1 true WO2023011054A1 (zh) 2023-02-09

Family

ID=78306994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102198 WO2023011054A1 (zh) 2021-08-05 2022-06-29 血泵

Country Status (2)

Country Link
CN (1) CN113599692A (zh)
WO (1) WO2023011054A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113599692A (zh) * 2021-08-05 2021-11-05 深圳核心医疗科技有限公司 血泵
CN114225214A (zh) * 2022-01-11 2022-03-25 丰凯利医疗器械(上海)有限公司 导管泵壳体结构以及导管泵装置
CN114259645A (zh) * 2022-01-11 2022-04-01 丰凯利医疗器械(上海)有限公司 泵血装置
CN114392476B (zh) * 2022-01-17 2024-02-06 上海炫脉医疗科技有限公司 一种高温超导磁悬浮轴流式血泵
CN116603163A (zh) * 2022-01-26 2023-08-18 心擎医疗(苏州)股份有限公司 用于对心脏在发生功能衰竭时进行辅助的装置
CN114608816A (zh) * 2022-02-25 2022-06-10 丰凯利医疗器械(上海)有限公司 试验装置和血泵流量的测试方法
CN114768088A (zh) * 2022-06-10 2022-07-22 深圳核心医疗科技有限公司 驱动装置和血泵
CN117298411A (zh) * 2022-06-23 2023-12-29 上海焕擎医疗科技有限公司 一种心室辅助装置及心室辅助装置的制作方法
WO2024037203A1 (zh) * 2022-08-18 2024-02-22 航天泰心科技有限公司 介入式血泵

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100816A1 (en) * 2000-04-01 2003-05-29 Thorsten Siess Paracardial blood pump
CN101873870A (zh) * 2007-11-01 2010-10-27 阿比奥梅德公司 免清洗的小型旋转式泵
CN102397598A (zh) * 2011-11-18 2012-04-04 武汉理工大学 紧凑型轴流式磁悬浮人工心脏泵
CN102481398A (zh) * 2009-07-01 2012-05-30 宾夕法尼亚州研究基金会 具有可扩张套管的血泵
CN104069555A (zh) * 2014-06-27 2014-10-01 长治市久安人工心脏科技开发有限公司 一种心脏辅助轴流式血泵
CN112237681A (zh) * 2020-09-15 2021-01-19 安徽通灵仿生科技有限公司 一体化微创导管式心脏辅助装置
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN113599692A (zh) * 2021-08-05 2021-11-05 深圳核心医疗科技有限公司 血泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208038B4 (de) * 2013-05-02 2016-09-08 Michael Siegenthaler Katheterbasierendes Herzunterstützungssystem
CN104225696B (zh) * 2014-09-04 2017-06-27 江苏大学 一种折叠式微创植入的心室内轴流血泵
US10632239B2 (en) * 2017-12-08 2020-04-28 Jervik Heart, Inc. Single inflow double suction centrifugal blood pump
CN111166948A (zh) * 2018-11-09 2020-05-19 上海微创医疗器械(集团)有限公司 经皮血泵及其网篮
CN112494803A (zh) * 2020-12-22 2021-03-16 余顺周 血泵

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100816A1 (en) * 2000-04-01 2003-05-29 Thorsten Siess Paracardial blood pump
CN101873870A (zh) * 2007-11-01 2010-10-27 阿比奥梅德公司 免清洗的小型旋转式泵
CN102481398A (zh) * 2009-07-01 2012-05-30 宾夕法尼亚州研究基金会 具有可扩张套管的血泵
CN102397598A (zh) * 2011-11-18 2012-04-04 武汉理工大学 紧凑型轴流式磁悬浮人工心脏泵
CN104069555A (zh) * 2014-06-27 2014-10-01 长治市久安人工心脏科技开发有限公司 一种心脏辅助轴流式血泵
CN112237681A (zh) * 2020-09-15 2021-01-19 安徽通灵仿生科技有限公司 一体化微创导管式心脏辅助装置
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN113599692A (zh) * 2021-08-05 2021-11-05 深圳核心医疗科技有限公司 血泵

Also Published As

Publication number Publication date
CN113599692A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023011054A1 (zh) 血泵
US20220241574A1 (en) Distal tip element for a ventricular assist device
US20240082541A1 (en) Catheter device
US10881769B2 (en) Purge-free miniature rotary pump
US11918800B2 (en) Gas-filled chamber for catheter pump motor assembly
US6976996B1 (en) Transport pump and organ stabilization apparatus including related methods
US5851174A (en) Cardiac support device
US5888241A (en) Cannula pumps for temporary cardiac support and methods of their application and use
EP0764448B1 (en) Cardiac support device
WO2021150777A1 (en) Percutaneous blood pump systems and related methods
CN112867531B (zh) 用于最小化在泵插入期间的渗漏的系统和方法
CA2480467A1 (en) Implantable heart assist system
JP2019080594A (ja) カテーテルポンプおよび処置方法
JPH08215312A (ja) バルーンカテーテル
US20220249830A1 (en) Percutaneous Blood Pump Systems and Related Methods
CN115869530A (zh) 一种介入式导管装置
US20230201565A1 (en) Percutaneous heart pump catheter with ability to track without use of a guide wire
CN117398598A (zh) 血泵
EP4274651A1 (en) Coaxial cannula for use with extracorporeal membrane oxygenation systems
CN116870356A (zh) 一种导管泵组件及其控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE