WO2023011046A1 - 一种数据速率确定方法及相关装置 - Google Patents

一种数据速率确定方法及相关装置 Download PDF

Info

Publication number
WO2023011046A1
WO2023011046A1 PCT/CN2022/101295 CN2022101295W WO2023011046A1 WO 2023011046 A1 WO2023011046 A1 WO 2023011046A1 CN 2022101295 W CN2022101295 W CN 2022101295W WO 2023011046 A1 WO2023011046 A1 WO 2023011046A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical uplink
data channel
uplink data
time
transport block
Prior art date
Application number
PCT/CN2022/101295
Other languages
English (en)
French (fr)
Inventor
焦淑蓉
孙跃
花梦
高飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111146785.XA external-priority patent/CN115913452A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011046A1 publication Critical patent/WO2023011046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method for determining a data rate and related devices.
  • PUSCH physical uplink shared channel
  • the present application provides a method for determining a data rate and a related device, which realize precise determination of a data rate for a scenario where one TB is transmitted across multiple time slots.
  • a method for determining a data rate comprising:
  • the transmission parameter of the first physical uplink data channel includes the number of first time units, and the first physical uplink data channel is in each of the first At most one transport block cyclic redundancy check code is attached to the time unit;
  • the terminal device can determine the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel received from the access network device, because the transmission of the first physical uplink data channel
  • the parameters include the number of first time units, and the first physical uplink data channel attaches at most one transport block cyclic redundancy check code to each first time unit, so the terminal device is based on the first physical uplink data crossing the time slot boundary
  • the transmission parameters of the channel determine the data rate corresponding to the first physical uplink data channel, which realizes the precise determination of the data rate of the first physical uplink data channel when crossing the time slot boundary, that is, realizes that one TB spans multiple time slots Accurately determine the data rate in the transmission scenario.
  • the flexibility of scheduling is also improved.
  • a method for determining a data rate comprising:
  • the transmission parameters of the first physical uplink data channel include the number of first time units, and the first physical uplink data channel is at most attached to each of the first time units A transport block cyclic redundancy check code;
  • the access network device can send the transmission parameters of the first physical uplink data channel to the terminal device, so that the terminal device can determine the The data rate corresponding to the first physical uplink data channel, because the transmission parameters of the first physical uplink data channel include the number of first time units, and the first physical uplink data channel attaches at most one transport block cyclic redundancy to each first time unit The remaining check code, so the terminal device determines the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel crossing the time slot boundary, which realizes the accurate determination of The data rate of the first physical uplink data channel is to accurately determine the data rate in the scenario where one TB is transmitted across multiple time slots.
  • the flexibility of scheduling is also improved.
  • the first time unit includes one or more of the following:
  • the corresponding time slot when the transmission block transmitted by the first physical uplink data channel is attached with a cyclic redundancy check code once.
  • the first time unit includes one or more of the following:
  • the first time unit does not include S time slots.
  • the first time unit does not include one or more of the following:
  • the transmission parameter of the first physical uplink data channel further includes the number of symbols of the first time unit, and the symbols of the first time unit include one or more of the following item:
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the jth serving cell
  • N j is the first time in the jth serving cell
  • L 1 is the symbol number of the first time unit in the j th serving cell
  • V j,m is the number of bits scheduled for the m th transport block in the j th serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • DataRateCC is the maximum data rate corresponding to one component carrier
  • the serving cell is a cell that provides services for the terminal device.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the j th serving cell
  • L 2 is the first time in the j th serving cell
  • the number of units, V j,m is the number of bits scheduled for the m-th transport block in the j-th serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • DataRateCC is the maximum data rate corresponding to one component carrier
  • the serving cell is a cell that provides services for the terminal device.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the jth serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • the serving A cell is a cell that provides services for the terminal device
  • V j,m is the number of bits scheduled for the m-th transport block in the j-th serving cell
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C' is the number of bits of the transport block
  • N j is the number of the first time unit in the jth serving cell.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the j th serving cell
  • L 3 is the first time in the j th serving cell
  • DataRateCC is the maximum data rate corresponding to a component carrier
  • the serving cell is a cell that provides services for the terminal device;
  • V j,m is the number of bits scheduled for the m-th transport block in the j-th serving cell
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C' is the number of bits of the transport block
  • N j is the number of the first time unit in the jth serving cell.
  • the number of resource blocks allocated by the first physical uplink data channel is less than or equal to 1/N j of the number of first resource blocks, and N j is the jth
  • the number of the first time units in the serving cell, the first resource block includes one or more of the following:
  • a method for determining a data rate comprising:
  • the transmission parameters of the first physical uplink data channel include the first time slot number and the first symbol number corresponding to the first time unit, the first physical uplink data channel
  • the uplink data channel attaches at most one transport block cyclic redundancy check code to the first time unit, the first number of time slots is the number of time slots included in the first time unit, and the first symbol The number is the number of orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols used to transmit the first physical uplink data channel in each time slot included in the first time unit;
  • the terminal device can determine the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel received from the access network device, because the transmission of the first physical uplink data channel
  • the parameters include the first time slot number and the first symbol number corresponding to the first time unit, and the first physical uplink data channel attaches at most one transport block cyclic redundancy check code to each first time unit, so the terminal device is based on
  • the transmission parameters of the first physical uplink data channel crossing the time slot boundary determine the data rate corresponding to the first physical uplink data channel, which realizes the accurate determination of the data rate of the first physical uplink data channel in the case of crossing the time slot boundary, That is, it realizes the accurate determination of the data rate in the scenario where one TB is transmitted across multiple time slots.
  • the flexibility of scheduling is also improved.
  • a method for determining a data rate comprising:
  • the transmission parameters of the first physical uplink data channel include the first time slot number and the first symbol number corresponding to the first time unit, and the first physical uplink data channel is in the At most one transport block cyclic redundancy check code is attached to the first time unit, the first number of time slots is the number of time slots included in the first time unit, and the first number of symbols is the number of time slots included in the first time unit The number of OFDM symbols used to transmit the first physical uplink data channel in each time slot included in a time unit;
  • the access network device can send the transmission parameters of the first physical uplink data channel to the terminal device, so that the terminal device can determine the The data rate corresponding to the first physical uplink data channel, because the transmission parameters of the first physical uplink data channel include the first number of time slots and the first number of symbols corresponding to the first time unit, the first physical uplink data channel in each first At most one transport block cyclic redundancy check code is attached to the time unit, so the terminal device determines the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel across the time slot boundary, which realizes the In the case of crossing time slot boundaries, the data rate of the first physical uplink data channel is accurately determined, that is, the data rate is accurately determined in the scenario where one TB is transmitted across multiple time slots.
  • the flexibility of scheduling is also improved.
  • the size of the transport block transmitted by the first physical uplink data channel is determined according to a transmission parameter of the first physical uplink data channel.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • M is the number of transport blocks transmitted on the first physical uplink data channel
  • L3 is the first number of symbols corresponding to the first physical uplink data channel
  • DataRateCC is the maximum data rate corresponding to one component carrier
  • V j,m is the number of bits scheduled for the mth transport block carried on the first physical uplink data channel
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C ' is the number of code blocks scheduled for the transport block.
  • a communication device in a fifth aspect, includes a transceiver module and a processing module,
  • the transceiver module is configured to receive transmission parameters of a first physical uplink data channel from an access network device; the transmission parameters of the first physical uplink data channel include the number of first time units, and the first physical uplink data channel Attaching at most one transport block cyclic redundancy check code to each of the first time units;
  • the processing module is configured to determine a data rate corresponding to the first physical uplink data channel according to transmission parameters of the first physical uplink data channel.
  • a communication device in a sixth aspect, includes a transceiver module,
  • the transceiver module is configured to acquire the transmission parameters of the first physical uplink data channel;
  • the transmission parameters of the first physical uplink data channel include the number of first time units, and the first physical uplink data channel is in each of the At most one transport block cyclic redundancy check code is attached to the first time unit;
  • the transceiver module is configured to send the transmission parameters of the first physical uplink data channel to the terminal device.
  • the first time unit includes one or more of the following:
  • the corresponding time slot when the transmission block transmitted by the first physical uplink data channel is attached with a cyclic redundancy check code once.
  • the first time unit includes one or more of the following:
  • the first time unit does not include S time slots.
  • the first time unit does not include one or more of the following:
  • the transmission parameter of the first physical uplink data channel further includes the number of symbols of the first time unit, and the symbols of the first time unit include one or more of the following item:
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the jth serving cell
  • N j is the first time in the jth serving cell
  • L 1 is the symbol number of the first time unit in the j th serving cell
  • V j,m is the number of bits scheduled for the m th transport block in the j th serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • DataRateCC is the maximum data rate corresponding to one component carrier
  • the serving cell is a cell that provides services for the terminal device.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the j th serving cell
  • L 2 is the first time in the j th serving cell
  • the number of units, V j,m is the number of bits scheduled for the m-th transport block in the j-th serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • DataRateCC is the maximum data rate corresponding to one component carrier
  • the serving cell is a cell that provides services for the terminal device.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the jth serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • the serving A cell is a cell that provides services for the terminal device
  • V j,m is the number of bits scheduled for the m-th transport block in the j-th serving cell
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C' is the number of bits of the transport block
  • N j is the number of the first time unit in the jth serving cell.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the j th serving cell
  • L 3 is the first time in the j th serving cell
  • DataRateCC is the maximum data rate corresponding to a component carrier
  • the serving cell is a cell that provides services for the terminal device;
  • V j,m is the number of bits scheduled for the m-th transport block in the j-th serving cell
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C' is the number of bits of the transport block
  • N j is the number of the first time unit in the jth serving cell.
  • the number of resource blocks allocated by the first physical uplink data channel is less than or equal to 1/N j of the number of first resource blocks, and N j is the jth
  • the number of the first time units in the serving cell, the first resource block includes one or more of the following:
  • a communication device in a seventh aspect, includes a transceiver module and a processing module,
  • the transceiver module is configured to receive transmission parameters of the first physical uplink data channel from the access network device;
  • the transmission parameters of the first physical uplink data channel include the first time slot number and the first symbol corresponding to the first time unit number
  • the first physical uplink data channel attaches at most one transport block cyclic redundancy check code to the first time unit
  • the first number of time slots is the number of time slots contained in the first time unit number
  • the first number of symbols is the number of OFDM symbols used to transmit the first physical uplink data channel in each time slot included in the first time unit;
  • the processing module is configured to determine a data rate corresponding to the first physical uplink data channel according to transmission parameters of the first physical uplink data channel.
  • a communication device in an eighth aspect, includes a transceiver module,
  • the transceiver module is configured to obtain transmission parameters of the first physical uplink data channel;
  • the transmission parameters of the first physical uplink data channel include the first time slot number and the first symbol number corresponding to the first time unit, the first A physical uplink data channel has at most one transport block cyclic redundancy check code attached to the first time unit, the first number of time slots is the number of time slots included in the first time unit, and the second A number of symbols is the number of OFDM symbols used to transmit the first physical uplink data channel in each time slot included in the first time unit;
  • the transceiver module is configured to send the transmission parameters of the first physical uplink data channel to the terminal device.
  • the size of the transport block transmitted by the first physical uplink data channel is determined according to a transmission parameter of the first physical uplink data channel.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula:
  • M is the number of transport blocks transmitted on the first physical uplink data channel
  • L3 is the first number of symbols corresponding to the first physical uplink data channel
  • DataRateCC is the maximum data rate corresponding to one component carrier
  • V j,m is the number of bits scheduled for the mth transport block carried on the first physical uplink data channel
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C ' is the number of code blocks scheduled for the transport block.
  • a communication device including a processor, a memory, an input interface, and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices other than the communication device.
  • the communication device outputs information, and the processor invokes the computer program stored in the memory to implement the method according to any one of the first aspect or the second aspect or the third aspect or the fourth aspect.
  • the communication device may be a chip or a device including a chip that implements the method in any one of the first aspect or the second aspect or the third aspect or the fourth aspect.
  • the embodiment of the present application also provides a communication device, including a processor, configured to execute the computer program (or computer-executable instruction) stored in the memory.
  • a communication device including a processor, configured to execute the computer program (or computer-executable instruction) stored in the memory.
  • the computer program or computer-executable instruction
  • Make the device execute the method in the first aspect and each possible implementation of the first aspect or the method in the second aspect and each possible implementation of the second aspect or the third aspect and the method in each possible implementation of the third aspect or the fourth aspect A method in each possible implementation of the aspect and the fourth aspect.
  • processor and memory are integrated;
  • the above-mentioned memory is located outside the communication device.
  • the communication device also includes a communication interface, which is used for the communication device to communicate with other devices, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, circuit, bus, module or other types of communication interface.
  • the embodiment of the present application further provides a communication device, configured to execute the method in the foregoing first aspect and various possible implementations thereof.
  • the embodiment of the present application further provides a communication device, configured to execute the method in the foregoing second aspect and various possible implementations thereof.
  • the embodiment of the present application further provides a communication device, configured to execute the method in the above third aspect and various possible implementations thereof.
  • the embodiment of the present application further provides a communication device, configured to execute the method in the above fourth aspect and various possible implementations thereof.
  • a computer-readable storage medium in which a computer program (or computer-executable instruction) is stored, when the computer program (or computer-executable instruction) is executed, as in the first aspect or The method in any possible implementation of the second aspect, the third aspect, or the fourth aspect is executed.
  • the embodiment of the present application also provides a computer program product including computer-executable instructions.
  • the computer program product When the computer program product is run, the above-mentioned first aspect and any possible implementation thereof, and the second aspect Part or all of the steps of the method described in the third aspect and any possible implementation thereof, the third aspect and any possible implementation thereof, the fourth aspect and any possible implementation thereof are performed.
  • the embodiment of the present application also provides a computer program including computer-executable instructions.
  • the computer program When the computer program is executed, the above-mentioned first aspect and any possible implementation thereof, the second aspect and its Some or all steps of the methods described in any possible implementation, the third aspect and any possible implementation thereof, the fourth aspect and any possible implementation thereof are performed.
  • a communication system including one or more of the following: the above-mentioned terminal device, and the above-mentioned access network device.
  • Fig. 1 is a schematic diagram of an encoding process
  • Figure 2 is a schematic diagram of the mapping pattern of PUSCH repetition Type A
  • Figure 3 is a schematic diagram of a mapping pattern of PUSCH repetition Type B
  • Figure 4 is a schematic diagram of another mapping pattern of PUSCH repetition Type B
  • Fig. 5 is a schematic diagram of the data rate of TB transmitted on different carriers
  • Fig. 6 is the infrastructure of the communication system provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure applicable to a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for determining a data rate provided in an embodiment of the present application.
  • FIG. 9A is a schematic diagram of transmission parameters of a first physical uplink data channel provided by an embodiment of the present application.
  • FIG. 9B is a schematic diagram of another transmission parameter of the first physical uplink data channel provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a simplified access network device provided by an embodiment of the present application.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be one or more .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • references to "one embodiment” or “some embodiments” and the like described in the embodiments of the present application mean that specific features, structures or characteristics described in connection with the embodiments are included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • each frame is divided into 10 subframes, and each subframe is 1ms long.
  • Each subframe is divided into several slots: when the cyclic prefix (CP) is a normal (normal) CP, each slot consists of 14 orthogonal frequency-division multiplexing , OFDM) symbols; when the cyclic prefix is extended (extended) CP, each time slot is composed of 12 OFDM symbols.
  • the specific time length of each time slot is determined by a parameter set, where, for example, the parameter set may include subcarrier spacing (subcarrier spacing, SCS). For example, when the SCS is 15kHz, the length of a slot is 1ms; when the subcarrier interval is 30kHz, the length of a slot is 0.5ms.
  • SCS subcarrier spacing
  • NR supports one time slot for uplink transmission, denoted as U slot; NR supports one time slot for downlink transmission, denoted as D slot; NR supports a time slot with both uplink and downlink configuration, denoted as S slot.
  • Typical time division duplex (TDD) system time slot configuration format including DDDSU, DDDSUDDSUU, DDDDDDDDDUU, etc. It can be understood that a time slot can include downlink symbols, uplink symbols, and flexible symbols. Downlink symbols cannot be used for uplink transmission; uplink symbols cannot be used for downlink transmission; while flexible Symbols can be used for both downlink and uplink transmissions.
  • TDD time division duplex
  • the uplink time slot is composed of discrete Fourier transform-spread-orthogonal frequency-division multiplexing (DFT-S-OFDM) symbols .
  • DFT-S-OFDM discrete Fourier transform-spread-orthogonal frequency-division multiplexing
  • NR defines a resource element (resource element, RE) as a subcarrier on an OFDM symbol, and RE is the smallest physical unit in the NR standard.
  • RE resource element
  • the 12 consecutive subcarriers in the frequency domain are called a resource block (resource block, RB).
  • resource block resource block
  • one RB fixedly includes 12 subcarriers, due to different subcarrier intervals, actual bandwidths occupied by different RBs in the frequency domain are not necessarily the same.
  • the uplink channels in NR include: physical uplink control channel (PUCCH), physical uplink shared channel (physical uplink shared channel, PUSCH), and physical random access channel (physical random access channel, PRACH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • Uplink signals in NR include: sounding reference signal (sounding reference signal, SRS), demodulation reference signal (demodulation reference signal, DMRS), and phase-tracking reference signal (phase-tracking reference signal, PTRS).
  • sounding reference signal sounding reference signal
  • DMRS demodulation reference signal
  • phase-tracking reference signal phase-tracking reference signal
  • PTRS phase-tracking reference signal
  • PUSCH transmission in NR is divided into three types: PUSCH transmission based on dynamic scheduling, configured grant (CG) type 1 (type1) PUSCH transmission, and CG type2 PUSCH transmission.
  • CG configured grant
  • the PUSCH transmission based on dynamic scheduling that is, each PUSCH transmission is scheduled using downlink control information (DCI) indicated by the physical layer.
  • DCI downlink control information
  • the terminal device performs a PUSCH transmission once receiving an uplink scheduling.
  • the PUSCH transmission of CG Type1 that is, the PUSCH transmission of semi-static scheduling, receives high-level configuration (including the high-level parameter configuredGrantConfig of rrc-ConfiguredUplinkGrant), and does not receive physical layer indication DCI, which is called configured uplink grant in the protocol.
  • the upper layer configures some semi-persistent resources. If the terminal device has uplink data to send, it can use these resources to send PUSCH; if there is no uplink data to send, no data is sent.
  • the PUSCH transmission of CG Type2 first receives the high-level configuration (not including the high-level parameter configuredGrantConfig of rrc-ConfiguredUplinkGrant), and then the physical layer instructs the DCI to activate or deactivate.
  • the protocol is called configured uplink grant based on L1signalling.
  • some semi-persistent resources are configured by the upper layer, and then activated/deactivated by physical layer signaling: the behavior when activated is similar to that of configuring and permitting Type1PUSCH transmission; when not activated, these resources cannot be used.
  • Figure 1 is a schematic diagram of an encoding process. Combining with Figure 1, it can be seen that, for a TB, a terminal device can sequentially perform transmission block cyclic redundancy check (cyclic redundancy check, CRC) attachment, code block (code block, CB ) division, code block CRC attachment, channel coding, rate matching, code block concatenation, scrambling (scrambling), modulation (modulation), precoding, symbol mapping, etc.
  • CRC cyclic redundancy check
  • the terminal device attaches the transport block CRC to the TB, which may include: the terminal device determines the CRC generator polynomial and the number of check bits L according to the payload size A of the TB; the terminal device generates the checksum according to the TB bit sequence and the CRC generator polynomial check bit sequence p 0 ,p 1, p 2 ,p 3, ...,p L-1 , and check bit sequence p 0 ,p 1, p 2 ,p 3, ...,p L-1 Attached to the bit sequence of the TB to obtain the bit sequence b 0 , b 1 , b 2 , b 3 , ..., b B-1 after CRC attachment.
  • B A+L.
  • the terminal device determines the CRC check bit sequence of each code block according to the bit stream of each code block And the CRC check bit sequence of each code block Attach to the corresponding code block to obtain the bit sequence after each code block is attached
  • the number of parity bits L 24 for each code block.
  • the terminal device can use a low density parity check (low density parity check, LDPC) code to perform LDPC channel coding on each code block, where the input of the channel coding can be, for example, c 0 ,c 1, c 2 ,c 3, ...,c K-1 , the output of the channel coding can be, for example, d 0 ,d 1, d 2 ,d 3, ...,d N-1 , where N is The input of channel coding is the length of the sequence after channel coding.
  • the terminal device may also perform rate matching on each code block, and the rate matching may include bit selection (bit selection) and bit interleaving (bit interleaving), which will not be detailed here.
  • the input of the rate matching can be, for example, d 0 , d 1, d 2 , d 3, ..., d N-1
  • the output of the rate matching can be, for example, f 0 , f 1, f 2 , f 3, . .., f E-1
  • E is the length of the rate-matched input sequence after rate-matching.
  • the terminal device can also sequentially concatenate the bits f rk of the C code blocks after rate matching to obtain a bit sequence g t .
  • k is an integer greater than or equal to 0 and less than or equal to Er -1
  • Er is the number of bits of the rth code block after rate matching
  • t is greater than or equal to 0 and less than or equal to G-1 is an integer
  • G is the length of the bit sequence g t .
  • the terminal device can also scramble the bit sequence g t .
  • the bit sequence before scrambling is The scrambled bit sequence is is the number of bits corresponding to a constellation point. Understandably, scrambling is similar to is the bit sequence after scrambling, b (q) (i) is the bit sequence before scrambling, c (q) (i) is the scrambling sequence, i is greater than or equal to 0, and less than or equal to an integer of .
  • the terminal device can also perform constellation modulation on the scrambled bit sequence to obtain a complex modulation symbol sequence Then, the terminal device can multiply the complex modulation symbol sequence and the precoding matrix to obtain the precoded complex modulation symbol sequence ap (antenna port) is the number of antenna ports. Finally, for each antenna port, the terminal device can map the precoded complex modulation symbol sequence to time-frequency resources.
  • mapping the reserved resources preset by the protocol (such as DMRS, PTRS, etc.) can be skipped.
  • the mapping can be performed in the order of the frequency domain first and then the time domain. Sequence number ascending order mapping, after mapping all subcarriers of the first OFDM symbol, start mapping from the lowest sequence number subcarrier of the second OFDM symbol. And so on, until the allocated time-frequency resources are mapped.
  • the PUSCH repetition type in NR is divided into two types: PUSCH repetition Type A and PUSCH repetition Type B.
  • the former is adopted in the Rel-15 version, and the latter is newly introduced in the Rel-16 version.
  • PUSCH repetition Type A repeats K times in units of time slots, and the start symbol S is the starting position of the relative time slot; L is the number of consecutive symbols allocated to PUSCH starting from S; S and L are determined by the start and length Instruct SLIV to decide.
  • K>1 the same symbol allocation is applied over K consecutive slots.
  • the agreement stipulates the design of effective combination of S and L, so that PUSCH repetition type A will not cross the time slot boundary. If there are symbols in a certain group of allocated symbols that cannot be used to send the PUSCH repetition, the transmission of the PUSCH repetition is canceled.
  • PUSCH repetition Type B is repeated K times in units of the length L indicated by the network side, and the start symbol S is the starting position of the relative time slot; L is the number of consecutive symbols starting from S allocated to PUSCH.
  • PUSCH repetition type B is more flexible than PUSCH repetition type A. It may occur that a repetition crosses a time slot boundary, or a repetition contains invalid symbols (invalid symbol(s)). At this time, the repetition will be split. In the protocol, the repetition before splitting is called nominal repetition, and the repetition after splitting is called actual repetition.
  • the number of repetitions K indicated by the network side refers to the total number of nominal repetitions.
  • the terminal device does not need to The transmission of PUSCH is processed in time slot s j in a serving cell:
  • J is the number of configured serving cells belonging to a frequency range (frequency range, FR); for the jth serving cell, M is the number of TBs transmitted in time slot s j .
  • PUSCH repetition Type B each actual repetition is calculated separately.
  • ⁇ (j) is the subcarrier spacing configuration of PUSCH in time slot s j in the jth serving cell.
  • C is the total number of code blocks of the transmission block, such as the total number of code blocks in 5 above.
  • CBGTI code block group transmission information
  • DataRate is the maximum data rate after summing all carriers, in megabits per second (Mbps).
  • the calculation formula is in the form of summing multiple component carriers (CC), the parameters are all given by the upper layer, and the maximum supported parameters of the terminal equipment are calculated from this to calculate the maximum data rate supported by the terminal equipment.
  • CC summing multiple component carriers
  • FIG. 5 is a schematic diagram of data rates of TBs transmitted on different carriers.
  • the subcarrier intervals corresponding to the 3 CCs are 60kHz, 30kHz, and 15kHz respectively, and TB0, TB1, and TB2 are transmitted on CC0, CC1, and CC2 respectively.
  • the data rate of TB transmitted on different carriers satisfies the following formula: Wherein, TB0, TB1 and TB2 represent the number of bits transmitted by each TB respectively.
  • processingType2Enabled in the high-level parameter PUSCH-ServingCellConfig is configured, and is configured as enable; (that is, the terminal device supports processing capability 2); or,
  • the PUSCH is a hybrid automatic repeat request (HARQ); or,
  • the terminal device does not need to process the transmission of PUSCH when the following conditions are not met:
  • L is the number of symbols allocated to PUSCH
  • M is the number of TB in PUSCH
  • is the subcarrier spacing configuration of PUSCH
  • V j,m can refer to the above-mentioned related descriptions, and will not be repeated here.
  • DataRateCC is the maximum data rate of a carrier, in Mbps.
  • a transmission block is only transmitted on one slot (except for PUSCH repetition Type B, when the nominal repetition is divided into actual repetition by the slot boundary , the same transport block is transmitted on at most two slots). That is to say, in the current NR protocol, the base station will not actively schedule a transmission block to be transmitted on multiple slots.
  • multi-slot PUSCH transmission block processing transport block processing over multi-slot PUSCH, TBoMS
  • work item description work item description, WID
  • TBoMS refers to The base station side schedules one TB to send PUSCH on multiple slots.
  • TBoMS can improve channel coding gain by aggregating smaller packets in multiple time slots; by transmitting a single TB in multiple time slots, only Attaching a TB cyclic redundancy check code reduces the number of bits occupied by TB CRC; a single TB of TBoMS is elongated in the time domain, reducing the number of RBs occupied in the frequency domain, thereby increasing the power spectral density.
  • the TBoMS time domain resource allocation (time domain resource allocation, TDRA) method was determined as the TDRA method of PUSCH repetition Type A, and this conclusion was written into the agreement.
  • the resources used for TBoMS transmission are allocated in the S-slot, and whether it is necessary to optimize the TDRA of the S-slot remains to be discussed.
  • the calculation method for determining the transport block size (TBS) of TBoMS is: first determine the number of REs based on the first L symbols allocated for TBoMS transmission, and then multiply by K ⁇ 1.
  • L is L in SLIV of TDRA of PUSCH, representing the number of symbols; the definition of K is still to be discussed.
  • the maximum TBS of TBoMS is written into the agreement unchanged. That is to say, although a single TB of TBoMS is extended to be sent on multiple slots, the maximum size of a single TB of TBoMS is still consistent with the maximum size of a TB sent on one time slot in R-15/R-16.
  • the transmission occasion (TO) of PUSCH is specified for non-repeated PUSCH and PUSCH repetition Type A.
  • TO is a repetition of PUSCH in a time slot .
  • TO is the basic unit of power control and redundancy version (RV) cycling.
  • the working assumption of defining the transmission opportunity for TBoMS was proposed, which is TOT (transmission occasion for TBoMS).
  • the TOT is determined to be composed of at least one or more continuous physical time slots for uplink transmission.
  • the design aspects related to TOT and signal generation such as the relationship between rate matching (RM), RV cycling, power control, and collision handling (collision handling), are still to be discussed.
  • Rate matching is performed slot by slot
  • Rate matching is performed TOT by TOT, that is, RM is continuously performed on all time slots allocated by a TOT;
  • Rate matching is performed continuously on all slots/all TOTs allocated by TBoMS.
  • the determination of the redundancy version belongs to the part of bit selection.
  • a single RV or multiple RVs may be used on the entire TBoMS, which is still to be discussed in a follow-up meeting.
  • the data rate calculation formula involved in the above 7 is still used (the numerator is still the number of bits that the TB is scheduled to transmit, and the denominator is the duration of a time slot time (multi-CC formula) or the duration of L symbols in a slot (single CC formula)), resulting in a calculated data rate much larger than the actual data rate transmitted by TBoMS, which also limits the TBS of TBoMS transmission or limits TBoMS scheduling.
  • the data rate calculation formula involved in the above 7 It is the sum of TBs on multiple serving cells.
  • the data rate calculated for TBoMS is larger than the real value, and it will also limit the data rate of PUSCH transmission on other CCs to be less than the maximum data rate that the terminal device can support, thus limiting
  • the scheduling of TBs on other CCs may limit the TBS of other TBs. Therefore, for the scenario where one TB is transmitted across multiple time slots, how to accurately determine the data rate has become an urgent technical problem to be solved at the current stage.
  • the present application provides a method for determining a data rate to solve the above-mentioned technical problem, and the embodiments of the present application are described in detail below.
  • FIG. 6 shows the basic architecture of the communication system provided by the embodiment of the present application.
  • the communication system may include one or more access network devices 10 (only one is shown in FIG. 6 ) and one or more terminal devices 20 communicating with each access network device 10 .
  • FIG. 6 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solution provided in this application.
  • the access network device 10 is an entity on the network side for sending a signal, or receiving a signal, or sending a signal and receiving a signal.
  • the access network device 10 may be a device deployed in a radio access network (radio access network, RAN) to provide a wireless communication function for the terminal device 20, for example, it may be a transmission reception point (transmission reception point, TRP), a base station, various The control node of the form.
  • RAN radio access network
  • TRP transmission reception point
  • a base station various The control node of the form.
  • the access network equipment may be various forms of macro base stations, micro base stations (also called small cells), relay stations, access points (access point, AP), radio network controllers (radio network controller, RNC), Node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center), etc., can also be the antenna panel of the base station.
  • the control node can connect multiple base stations, and configure resources for multiple terminals under the coverage of multiple base stations.
  • the names of the equipment with base station functions may be different.
  • it may be a gNB in 5G, or a network-side device in a post-5G network, or an access network device in a future evolved PLMN network.
  • This application does not limit the specific name of the access network device.
  • the access network device 10 may also include a central unit (central unit, CU) and a distributed unit (distributed unit, DU) integrated on the gNB. It can be understood that the access network device 10 may also be called a wireless access network device, which is not limited here.
  • the terminal device 20 is an entity on the user side for receiving signals, or sending signals, or receiving signals and sending signals.
  • the terminal device 20 is used to provide users with one or more of voice services and data connectivity services.
  • the terminal device 20 may be a device that includes a wireless transceiver function and can cooperate with access network devices to provide communication services for users.
  • the terminal equipment 20 may refer to a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device 20 may also be a drone, an Internet of Things (Internet of Things, IoT) device, a station (station, ST) in a WLAN, a cellular phone (cellular phone), a smart phone (smart phone), a cordless phone, a wireless data Cards, tablet computers, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, laptop computers ), machine type communication (machine type communication, MTC) terminals, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (also known as wearable smart devices) , virtual reality (virtual reality, VR) terminal, augmented reality (augmented reality, AR) terminal, wireless terminal in industrial control (industrial control), wireless terminal in self driving (self driving), remote medical (remote medical) Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • IoT Internet of Things
  • IoT Internet of Things
  • the terminal device 20 may also be a device to device (device to device, D2D) device, for example, an electric meter, a water meter, and the like.
  • the terminal device 20 may also be a terminal in a 5G system, or a terminal in a next-generation communication system, which is not limited in this embodiment of the present application.
  • the communication system may further include a core network device 30 .
  • the terminal device 20 is connected to the access network device in a wireless manner, and the access network device is connected to the core network device in a wireless or wired manner.
  • the core network equipment and the access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the access network equipment can be integrated on the same physical equipment, or they can be integrated on one physical equipment Part of the functions of the core network device and part of the functions of the access network device are specified.
  • Terminal equipment can be fixed or mobile.
  • FIG. 6 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 6 .
  • the embodiments of the present application do not limit the number of core network devices, access network devices and terminal devices included in the mobile communication system.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, or device-to-device (device to device, D2D) signal transmission.
  • the sending device is an access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is an access network device.
  • the sending device is a terminal device
  • the corresponding receiving device is also a terminal device.
  • the transmission direction of the signal in the embodiments of the present application is not limited.
  • the communication between the access network device and the terminal device and between the terminal device and the terminal device can be carried out through the licensed spectrum (licensed spectrum), or through the unlicensed spectrum (unlicensed spectrum), or through the licensed spectrum and the unlicensed spectrum at the same time. spectrum for communication.
  • the communication between the access network device and the terminal device and between the terminal device and the terminal device can be carried out through the frequency spectrum below 6G, the frequency spectrum above 6G can also be used for communication, and the frequency spectrum below 6G and the frequency spectrum above 6G can also be used at the same time. communication.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the access network device and the terminal device.
  • the technical solutions provided by the embodiments of the present application are applicable to various system architectures.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • each network element (such as access network device 10, terminal device 20, core network device 30, etc.) in FIG. A functional module of , which is not specifically limited in this embodiment of the present application. It can be understood that the above function can be a network element in a hardware device, a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • FIG. 7 is a schematic diagram of a hardware structure applicable to a communication device provided by an embodiment of the present application.
  • the communication device 700 includes at least one processor 701 , a communication line 702 and at least one communication interface 704 .
  • the processor 701 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication link 702 may include a pathway for communicating information between the above-described components.
  • the communication interface 704 is any device such as a transceiver (such as an antenna) for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN), etc.
  • a transceiver such as an antenna
  • WLAN wireless local area networks
  • the communication device 700 further includes a memory 703, the memory 703 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory , CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disc storage media or other magnetic storage devices, or capable of carrying or storing Desired program code in the form of a data structure and any other medium capable of being accessed by a computer, but not limited thereto.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile disc
  • the memory may exist independently and be connected to the processor through the communication line 702 . Memory can also be integrated with the processor.
  • the memory provided by the embodiment of the present application may generally be non-volatile.
  • the memory 703 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 701.
  • the processor 701 is configured to execute computer-executed instructions stored in the memory 703, so as to implement the methods provided in the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 701 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 7 .
  • the communications apparatus 700 may include multiple processors, for example, the processor 701 and the processor 707 in FIG. 7 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 700 may further include an output device 705 and an input device 706 .
  • Output device 705 is in communication with processor 701 and can display information in a variety of ways.
  • the output device 705 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 706 communicates with the processor 701 and can receive user input in various ways.
  • the input device 706 may be a mouse, a keyboard, a touch screen device, or a sensory device, among others.
  • the aforementioned communication device 700 may be a general-purpose device or a special-purpose device.
  • the communication device 700 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 7 equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 700 .
  • FIG. 8 is a schematic flowchart of a method for determining a data rate provided in an embodiment of the present application.
  • the access network device in FIG. 8 is the access network device 10 in FIG. 6
  • the terminal device in FIG. 8 is the terminal device 20 in FIG. 6 .
  • the method includes but is not limited to the following steps:
  • the access network device acquires transmission parameters of the first physical uplink data channel.
  • the transmission parameters about the first physical uplink data channel may be implemented in any of the following ways:
  • the transmission parameter of the first physical uplink data channel includes the number of first time units, and the first physical uplink data channel attaches at most one transmission block cyclic redundancy check code to each first time unit.
  • the transmission parameters of the first physical uplink data channel include the first time slot number and the first symbol number corresponding to the first time unit, and the first physical uplink data channel has at most one transport block cyclic redundancy attached to the first time unit Check code, the first number of time slots is the number of time slots included in the first time unit, and the first number of symbols is the positive number used to transmit the first physical uplink data channel in each time slot included in the first time unit Number of OFDM symbols for cross-frequency division multiplexing.
  • FIG. 9A is a schematic diagram of transmission parameters of a first physical uplink data channel provided by an embodiment of the present application.
  • the number of first time units is 2, and a TB CRC code is attached to each first time unit.
  • a first time unit may include 4 time slots, and the number of symbols in the first time unit may be the number of symbols used to transmit the first physical uplink data channel included in one time slot in the first time unit, as shown in FIG. 9A L in
  • FIG. 9B is a schematic diagram of another transmission parameter of the first physical uplink data channel according to the embodiment of the present application.
  • the number of the first time unit is 2, and a TB CRC code is attached to each first time unit.
  • the number of first time slots corresponding to one first time unit is 4, and the number of first symbols corresponding to one first time unit is L.
  • the number of symbols in the first time unit may be the number of symbols used to transmit the first physical uplink data channel included in one time slot in the first time unit, that is, L in FIG. 9B .
  • the first physical uplink data channel may be a PUSCH or other channels, which is not limited here. It can be understood that the first physical uplink data channel may carry the first transmission block, and the first transmission block occupies the first time unit.
  • the first transport block may be TBoMS or other transport blocks, which is not limited here.
  • the first time unit includes one or more of the following: a total time slot corresponding to the first physical uplink data channel; an available time slot corresponding to the first physical uplink data channel; The time slot corresponding to resource allocation; the time slot corresponding to the size of the transmission block transmitted by the first physical uplink data channel; the time slot corresponding to a transmission opportunity of the first physical uplink data channel; the first physical uplink data channel The time slot corresponding to the first rate matching of the transmitted transmission block; the time slot corresponding to the primary redundancy version mapping of the first physical uplink data channel; the transmission block transmitted by the first physical uplink data channel is attached with a cyclic redundancy check The corresponding time slot during code verification.
  • the total time slot corresponding to the first physical uplink data channel includes one or more of the following: the total nominal time slot corresponding to the first physical uplink data channel, the total physical time slot corresponding to the first physical uplink data channel (physical) time slots, total continuous time slots corresponding to the first physical uplink data channel, total nominal time slots corresponding to the first transport block, total physical time slots corresponding to the first transport block, total continuous time corresponding to the first transport block There is no limit here.
  • the available time slot corresponding to the first physical uplink data channel includes one or more of the following: a time slot corresponding to the first physical uplink data channel for sending the first physical uplink data channel, the first physical uplink data channel
  • the time slot corresponding to the channel is actually used for sending the first physical uplink data channel
  • the time slot corresponding to the first physical uplink data channel is used for sending the first transport block
  • the time slot corresponding to the first physical uplink data channel is actually used for sending the first physical uplink data channel.
  • the time slot of the transmission block is not limited here.
  • the time slot corresponding to the time domain resource allocation for the first physical uplink data channel includes: the corresponding time slot when the time domain resource allocation is performed for the first transport block.
  • the time slot corresponding to the time domain resource allocation for the first transmission block can be understood as: the first transmission block uses K in the TDRA of repetition Type A, which is not limited here.
  • determining the time slot corresponding to the size of the transport block transmitted by the first physical uplink data channel includes: determining the time slot corresponding to the size of the first transport block.
  • the corresponding time slot when determining the size of the first transport block can be understood as: K involved in calculating the size of the transport block in the first transport block, such as the K multiplied by the first transport block when calculating the size of the transport block, in This is not limited.
  • the size of the transport block transmitted by the first physical uplink data channel is determined according to a transmission parameter of the first physical uplink data channel.
  • the time slot corresponding to a transmission opportunity of the first physical uplink data channel includes one or more of the following: a nominal time slot corresponding to a transmission opportunity of the first transmission block, a nominal time slot corresponding to a transmission opportunity of the first transmission block
  • the available time slots are not limited here.
  • the time slot corresponding to the rate matching of the transport block transmitted by the first physical uplink data channel includes one or more of the following: a nominal time slot corresponding to a rate matching unit of the first transport block, the first The available time slot corresponding to one rate matching unit of the transport block is not limited here, and the rate matching unit refers to a bit selection and bit interleaving unit.
  • the time slot corresponding to the primary redundancy version mapping of the first physical uplink data channel includes one or more of the following: a nominal time slot corresponding to a redundancy version mapping of the first transmission block, the first transmission block
  • the available time slot corresponding to a redundant version map of the block is not limited here.
  • the first time unit includes one or more of the following: total symbols corresponding to the first physical uplink data channel; available symbols corresponding to the first physical uplink data channel; time-domain resource allocation for the first physical uplink data channel The symbol corresponding to the timing; the symbol corresponding to the size of the transmission block transmitted by the first physical uplink data channel; the symbol corresponding to a transmission opportunity of the first physical uplink data channel; the transmission block transmitted by the first physical uplink data channel A symbol corresponding to one rate matching; a symbol corresponding to a redundant version mapping of the first physical uplink data channel; a corresponding symbol when a cyclic redundancy check code is attached to a transport block transmitted by the first physical uplink data channel.
  • the total symbol corresponding to the first physical uplink data channel includes one or more of the following: the total nominal symbol corresponding to the first physical uplink data channel, the total physical symbol corresponding to the first physical uplink data channel ) symbols, the total continuous symbols corresponding to the first physical uplink data channel, the total nominal symbols corresponding to the first transmission block, the total physical symbols corresponding to the first transmission block, and the total continuous symbols corresponding to the first transmission block, there is no limitation here .
  • the available symbols corresponding to the first physical uplink data channel include one or more of the following: symbols corresponding to the first physical uplink data channel for sending the first physical uplink data channel, symbols corresponding to the first physical uplink data channel The symbol actually used to send the first physical uplink data channel, the symbol used to send the first transport block corresponding to the first physical uplink data channel, the symbol actually used to send the first transport block corresponding to the first physical uplink data channel , without limitation here.
  • the symbols corresponding to time-domain resource allocation for the first physical uplink data channel include: time slots corresponding to time-domain resource allocation for the first physical uplink data channel and time slots for the first physical uplink data channel
  • the product between the time slot corresponding to the time domain resource allocation for the first physical uplink data channel and the symbol of each time slot when the time domain resource allocation is performed for the first physical uplink data channel can be understood as: The product of the corresponding time slot when time domain resource allocation is performed for a transport block and the symbol of each time slot when time domain resource allocation is performed for the first transport block.
  • the time slot corresponding to the time domain resource allocation for the first transmission block can be understood as: the first transmission block uses K in the TDRA of repetition Type A, and there is no limitation here.
  • the symbol of each time slot when allocating time-domain resources for the first transmission block can be understood as: the first transmission block uses L in the TDRA of repetition Type A, and there is no limitation here.
  • determining the symbol corresponding to the size of the transport block transmitted by the first physical uplink data channel includes: determining the time slot corresponding to the size of the transport block transmitted by the first physical uplink data channel and determining the first physical uplink
  • the size of the transport block transmitted by the data channel is the product between the symbols corresponding to each time slot.
  • the product between the corresponding time slot when determining the size of the transport block transmitted by the first physical uplink data channel and the symbol of each time slot when determining the size of the transport block transmitted by the first physical uplink data channel can be understood is: the product of the corresponding time slot when the size of the first transmission block is determined and the symbol of each time slot when the size of the first transmission block is determined.
  • the corresponding time slot when determining the size of the transport block of the first transport block can be understood as: K used when the first transport block calculates the size of the transport block, which is not limited here.
  • the symbol of each time slot when determining the size of the first transport block may be understood as: L used when the first transport block calculates the size of the transport block, which is not limited here.
  • the symbol corresponding to a transmission opportunity of the first physical uplink data channel includes one or more of the following: a nominal symbol corresponding to a transmission opportunity of the first transmission block, an available symbol corresponding to a transmission opportunity of the first transmission block symbols, without limitation.
  • the symbol corresponding to the rate matching of the transport block transmitted by the first physical uplink data channel includes one or more of the following: the nominal symbol corresponding to a rate matching unit of the first transport block, the first transport block
  • the available symbols corresponding to a rate matching unit of are not limited here, and the rate matching unit refers to a unit of bit selection and bit interleaving.
  • the symbol corresponding to the primary redundancy version mapping of the first physical uplink data channel includes one or more of the following: a nominal symbol corresponding to a redundancy version mapping of the first transport block, a symbol of the first transport block
  • the available time slot corresponding to a redundant version mapping is not limited here.
  • the first time unit does not include S time slots.
  • the total time slot corresponding to the first physical uplink data channel does not include the S time slot; the available time slot corresponding to the first physical uplink data channel does not include the S time slot; perform time domain resource allocation for the first physical uplink data channel
  • the corresponding time slot does not include the S time slot; the corresponding time slot when determining the size of the transport block transmitted by the first physical uplink data channel does not include the S time slot; the time slot corresponding to a transmission opportunity of the first physical uplink data channel Does not include the S time slot; the time slot corresponding to the rate matching of the transport block transmitted by the first physical uplink data channel does not include the S time slot; the time slot corresponding to the primary redundancy version mapping of the first physical uplink data channel
  • the S time slot is not included; the corresponding time slot when the transmission block transmitted by the first physical uplink data channel is attached with a cyclic redundancy check code does not include the S time slot.
  • the first time unit does not include one or more of the following: symbols in the S slot; non-downlink symbols in the S slot; available symbols in the S slot; Signal symbol.
  • the non-downlink symbols in the S slot may include: the flexible symbols in the S slot and the uplink symbols in the S slot, which are not limited here.
  • the total symbols corresponding to the first physical uplink data channel do not include the symbols in the S slot; the available symbols corresponding to the first physical uplink data channel do not include the symbols in the S slot; The corresponding symbols in the time domain resource allocation do not include the symbols in the S slot; the corresponding symbols when determining the size of the transport block transmitted by the first physical uplink data channel do not include the symbols in the S slot; the first physical uplink data channel The symbol corresponding to a transmission opportunity of the first physical uplink data channel does not include the symbol in the S slot; the corresponding symbol when the rate matching is performed on the transport block transmitted by the first physical uplink data channel does not include the symbol in the S slot; the first physical uplink data channel The symbols corresponding to the primary redundancy version mapping of the channel do not include the symbols in the S slot; the corresponding symbols when the transport block transmitted by the first physical uplink data channel is attached with a cyclic redundancy check code do not include the symbols in the S slot symbol.
  • the total symbols corresponding to the first physical uplink data channel do not include the non-downlink symbols in the S slot; the available symbols corresponding to the first physical uplink data channel do not include the non-downlink symbols in the S slot;
  • the corresponding symbols do not include the non-downlink symbols in the S slot;
  • the corresponding symbols do not include the non-downlink symbols in the S slot.
  • Downlink symbol the symbol corresponding to a transmission opportunity of the first physical uplink data channel does not include the non-downlink symbol in the S slot; the corresponding symbol when rate matching is performed on the transport block transmitted by the first physical uplink data channel does not include S
  • the non-downlink symbols in the time slot the symbols corresponding to the primary redundancy version mapping of the first physical uplink data channel do not include the non-downlink symbols in the S slot; the transport block transmitted by the first physical uplink data channel is attached with a cyclic redundancy
  • the symbols corresponding to the residual check code do not include the non-downlink symbols in the S slot.
  • the total symbols corresponding to the first physical uplink data channel do not include the available symbols in the S slot; the available symbols corresponding to the first physical uplink data channel do not include the available symbols in the S slot; The symbols corresponding to the time-domain resource allocation of the data channel do not include the available symbols in the S slot; the corresponding symbols when determining the size of the transport block transmitted by the first physical uplink data channel do not include the available symbols in the S slot; The symbol corresponding to a transmission opportunity of a physical uplink data channel does not include the available symbols in the S slot; the corresponding symbols when rate matching is performed on the transmission block transmitted by the first physical uplink data channel do not include the available symbols in the S slot.
  • the symbol corresponding to the primary redundancy version mapping of the first physical uplink data channel does not include the available symbols in the S slot; the corresponding symbol when the transport block transmitted by the first physical uplink data channel is attached with a cyclic redundancy check code Symbols do not include available symbols in S slots.
  • the total symbols corresponding to the first physical uplink data channel do not include the symbols allocated to the demodulation reference signal in the S slot; the available symbols corresponding to the first physical uplink data channel do not include the symbols allocated to the demodulation reference signal in the S slot The symbol of the reference signal; the corresponding symbol when the time-domain resource allocation is performed for the first physical uplink data channel does not include the symbol allocated to the demodulation reference signal in the S slot; determine the size of the transport block transmitted by the first physical uplink data channel The symbol corresponding to the hour does not include the symbol allocated to the demodulation reference signal in the S slot; the symbol corresponding to a transmission opportunity of the first physical uplink data channel does not include the symbol allocated to the demodulation reference signal in the S slot; for the first The symbols corresponding to the transmission block transmitted by the physical uplink data channel when rate matching is performed once do not include the symbols allocated to the demodulation reference signal in the S slot; the symbols corresponding to the primary redundancy version mapping of the first physical uplink data channel do not include The symbols
  • the transmission parameters of the first physical uplink data channel also include the number of symbols of the first time unit, and the symbols of the first time unit include one or more of the following: symbols allocated by the first physical uplink data channel in one time slot ; the symbol of each time slot when performing time domain resource allocation for the first physical uplink data channel; the symbol of each time slot when determining the size of the transport block transmitted by the first physical uplink data channel.
  • the symbol number of the first time unit is L in FIG. 9A .
  • the symbols allocated in one time slot for the first physical uplink data channel may be understood as: the symbols allocated in one time slot for the first transport block.
  • the symbol of each time slot when performing time domain resource allocation for the first physical uplink data channel may be understood as: the symbol of each time slot when performing time domain resource allocation for the first transport block.
  • the symbol of each time slot when determining the size of the transport block transmitted by the first physical uplink data channel may be understood as: the symbol of each time slot when determining the size of the first transport block.
  • the first number of time slots is a positive integer greater than or equal to 2.
  • the first number of timeslots is obtained by the access network device from the candidate set of timeslot numbers and sent to the terminal device, and the candidate set of timeslot numbers may be configured by the access network device to the terminal device or the protocol through high-level signaling Predefined, no limitation here.
  • at least one positive integer greater than or equal to 2 is included in the candidate set of timeslot numbers.
  • the first number of time slots is determined by the terminal device according to the first parameter and the second parameter issued by the access network device
  • the second parameter may be the number of the first time unit
  • the first parameter is determined by the first time slot number Determined with the second parameter.
  • the terminal device After receiving the first parameter and the second parameter, the terminal device can obtain the number of the first time unit through the second parameter, and can determine the first time slot number through the first parameter and the second parameter.
  • the first parameter is obtained by multiplying the first time slot number and the second parameter.
  • Another implementation manner is that the first parameter is obtained by joint encoding of the first time slot number and the second parameter.
  • the first number of time slots is the number of time slots included in the first time unit, where the time slots may be nominal time slots in the protocol, that is, regardless of whether the time slots are valid; where the time slots are also Can be an available slot.
  • a valid time slot means that there is no certain RRC configuration that makes the time slot invalid.
  • the RRC configuration that can make the time slot invalid includes but is not limited to: configuring all or part of the OFDM symbols in the time slot as downlink transmission or higher priority uplink transmission, or configure all or part of the L symbols used for the first physical uplink data channel transmission in the time slot as downlink transmission or higher priority uplink transmission, higher priority uplink transmission refers to the transmission priority
  • the priority is higher than the uplink transmission of the first physical uplink data channel, and the transmission priority may be a physical layer priority or a MAC layer priority or other priorities.
  • the terminal device receives the transmission parameters of the first physical uplink data channel from the access network device.
  • the access network device sends the transmission parameters of the first physical uplink data channel to the terminal device.
  • the transmission parameters of the first physical uplink data channel may be included in the first radio resource control (radio resource control, RRC) signaling; or, the transmission parameters of the first physical uplink data channel may include In the first downlink control information (downlink control information, DCI); or, some parameters in the transmission parameters of the first physical uplink data channel may be included in the first RRC signaling, the transmission parameters of the first physical uplink data channel The rest of the parameters in may be included in the first DCI, which is not limited here.
  • RRC radio resource control
  • the first time unit may be included in the first RRC signaling, and the symbol number of the first time unit may be included in the first DCI.
  • the terminal device determines the data rate corresponding to the first physical uplink data channel according to the transmission parameter of the first physical uplink data channel.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula (1) or formula (2) or formula (3):
  • J is the number of configured serving cells belonging to the first frequency range
  • M is the number of transport blocks transmitted in one time slot in the jth serving cell
  • duration of one slot in the jth serving cell is the duration of one symbol in the jth serving cell
  • ⁇ (j) is the subcarrier spacing configuration corresponding to the jth serving cell
  • N j is the number of the first time unit in the jth serving cell
  • L 1 is the The number of symbols in the first time unit in the j serving cell
  • V j,m is the number of bits scheduled for the mth transport block in the j serving cell
  • DataRate is the maximum data rate corresponding to J component carriers
  • DataRateCC is a The maximum data rate corresponding to the component carrier
  • the serving cell is a cell that provides services for terminal equipment.
  • the first time unit includes one or more of the following: the total time slot corresponding to the first physical uplink data channel; the available time slot corresponding to the first physical uplink data channel Time slot; time slot corresponding to time domain resource allocation for the first physical uplink data channel; time slot corresponding to determining the size of the transport block transmitted by the first physical uplink data channel; one transmission of the first physical uplink data channel The time slot corresponding to the opportunity; the time slot corresponding to the rate matching of the transport block transmitted by the first physical uplink data channel; the time slot corresponding to the redundant version mapping of the first physical uplink data channel; the first physical uplink data channel The corresponding time slot when a cyclic redundancy check code is attached to the transport block transmitted by the data channel.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula (4) or formula (5):
  • L 2 is the number of first time units in the jth serving cell. It can be understood that for L 2 in formula (4) and formula (5), the first time unit includes one or more of the following: the total symbol corresponding to the first physical uplink data channel; the total symbol corresponding to the first physical uplink data channel Available symbols; symbols corresponding to time-domain resource allocation for the first physical uplink data channel; symbols corresponding to determining the size of the transport block transmitted by the first physical uplink data channel; corresponding to a transmission opportunity of the first physical uplink data channel the symbol corresponding to the transmission block transmitted by the first physical uplink data channel; the symbol corresponding to the first rate matching of the transport block transmitted by the first physical uplink data channel; the symbol corresponding to the primary redundancy version mapping of the first physical uplink data channel; The symbol corresponding to when a transmission block is attached with a cyclic redundancy check code.
  • A is the number of bits of the transport block (that is, A is the number of bits of the m-th transport block in the j-th serving cell)
  • C is the total code block number of the transport block (that is, C is the number of bits of the m-th transport block in the j-th serving cell).
  • C' is the number of code blocks scheduled for transport blocks (that is, C' is the number of code blocks scheduled for the mth transport block in the jth serving cell).
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula (6):
  • the first time unit includes one or more of the following: the total time slot corresponding to the first physical uplink data channel; the first physical uplink data channel corresponding to The available time slot for the first physical uplink data channel; the corresponding time slot for time domain resource allocation for the first physical uplink data channel; the corresponding time slot for determining the size of the transport block transmitted by the first physical uplink data channel; the first physical uplink data channel for the corresponding time slot A time slot corresponding to a transmission opportunity; a time slot corresponding to a rate matching of the transmission block transmitted by the first physical uplink data channel; a time slot corresponding to a redundant version mapping of the first physical uplink data channel; the first The corresponding time slot when the transport block transmitted by the physical uplink data channel is attached with a cyclic redundancy check code once.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula (7):
  • the first time unit includes one or more of the following: the total time slot corresponding to the first physical uplink data channel; the first physical uplink data channel corresponding to The available time slot for the first physical uplink data channel; the corresponding time slot for time domain resource allocation for the first physical uplink data channel; the corresponding time slot for determining the size of the transport block transmitted by the first physical uplink data channel; the first physical uplink data channel for the corresponding time slot A time slot corresponding to a transmission opportunity; a time slot corresponding to a rate matching of the transmission block transmitted by the first physical uplink data channel; a time slot corresponding to a redundant version mapping of the first physical uplink data channel; the first The corresponding time slot when the transport block transmitted by the physical uplink data channel is attached with a cyclic
  • V j, m in formula (2), formula (3), formula (5) and V j , m in formula (7) is established when the first condition is met, and the first condition is one of the following:
  • the PUSCH is hybrid automatic repeat transmission.
  • the data rate corresponding to the first physical uplink data channel satisfies the following formula (8):
  • M is the number of transport blocks transmitted on the first physical uplink data channel, is the duration of transmitting one symbol of the first physical uplink data channel, L3 is the number of first symbols corresponding to the first physical uplink data channel, and DataRateCC is the maximum data rate corresponding to one component carrier.
  • V j,m is the number of bits scheduled for the mth transport block carried on the first physical uplink data channel
  • A is the number of bits of the transport block
  • C is the total number of code blocks of the transport block
  • C' is the scheduling of the transport block the number of code blocks.
  • the terminal device can determine the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel received from the access network device, because the transmission of the first physical uplink data channel
  • the parameters include the number of first time units, and the first physical uplink data channel attaches at most one transport block cyclic redundancy check code to each first time unit, so the terminal device is based on the first physical uplink data crossing the time slot boundary
  • the transmission parameters of the channel determine the data rate corresponding to the first physical uplink data channel, which realizes the precise determination of the data rate of the first physical uplink data channel when crossing the time slot boundary, that is, realizes that one TB spans multiple time slots Accurately determine the data rate in the transmission scenario.
  • the flexibility of scheduling is also improved.
  • the access network device may also acquire the transmission parameters of the second physical uplink data channel, where at least one transmission block cyclic redundancy check code is attached to each second time unit of the second physical uplink data channel.
  • the second physical uplink data channel may be PUSCH or other channels, which is not limited here. It can be understood that the second physical uplink data channel may carry the second transmission block, and the second transmission block occupies the second time unit.
  • the second transport block may be TB or other transport blocks, which is not limited here.
  • the second time unit is a time slot in the jth serving cell.
  • the transmission parameters of the second physical uplink data channel include one or more of the following: the number of transport blocks transmitted in one time slot in the jth serving cell, the number of bits of the mth transport block in the jth serving cell , the total number of code blocks of the m-th transport block in the j-th serving cell, and the number of scheduled code blocks of the m-th transport block in the j-th serving cell.
  • the transmission parameters of the second physical uplink data channel may be included in the second RRC signaling; or, the transmission parameters of the second physical uplink data channel may be included in the second DCI; or, the second physical uplink data channel Part of the transmission parameters of the transmission parameters may be included in the second RRC signaling, and the rest of the transmission parameters of the second physical uplink data channel may be included in the second DCI, which is not limited here.
  • the access network device may also send the transmission parameters of the second physical uplink data channel to the terminal device, and correspondingly, the terminal device may also receive The network access device receives transmission parameters of the second physical uplink data channel. It can be understood that after the terminal device receives the transmission parameters of the second physical uplink data channel from the access network device, the terminal device may also determine the data rate corresponding to the second physical uplink data channel according to the transmission parameters of the second physical uplink data channel.
  • the data rate corresponding to the second physical uplink data channel and the data rate corresponding to the first physical uplink data channel satisfy the following formula (9):
  • J' is the number of configured serving cells belonging to the first frequency range
  • M' is the number of transport blocks transmitted in one time slot in the j'th serving cell
  • ⁇ (j') is the subcarrier spacing configuration corresponding to the j'th serving cell
  • V j',m' is the mth time in the j'th serving cell 'Number of bits for scheduling of transport blocks.
  • V j′,m′ is similar to V j,m in the above formula (1) to formula (5), the difference is that A in V j′,m′ is the m′th in the j′th serving cell
  • the number of bits in the transmission block, C in V j′,m′ is the total code block number of the m′th transmission block in the j′th serving cell
  • C in V j′,m′ is the j′th serving cell Number of code blocks scheduled for the m'th transport block in the cell.
  • N j in formula (9) is the same as N j in formula (1) to formula (3), and will not be repeated here.
  • TBO spans 3 time slots (that is, TBoMS is transmitted in TBoMS mode).
  • the data rate of TB transmitted on different carriers at time 1 satisfies the following formula (10):
  • the data rate corresponding to the second physical uplink data channel and the data rate corresponding to the first physical uplink data channel satisfy the following formula (11):
  • L 2 in formula (11) is the same as L 2 in formula (4) to formula (5), and will not be repeated here.
  • formula (11) Be the data rate corresponding to the second physical uplink data channel, in formula (11) is the data rate corresponding to the first physical uplink data channel.
  • the terminal device may also send the first physical uplink data channel to the access network device, and correspondingly, the access network device may also receive the first physical uplink data channel from the terminal device.
  • the terminal device sends the first physical uplink data channel to the access network device, including: the data rate corresponding to the first physical uplink data channel of the terminal device satisfies any of formulas (1) to (9) and formula (11) When a formula is used, the first physical uplink data channel is sent to the access network device.
  • the formula satisfied by the data rate; if N j 1 involved in V j, m in formula (6), then formula (6) is the formula satisfied by the data
  • the terminal device may also send the second physical uplink data channel to the access network device, and correspondingly, the access network device may also receive the second physical uplink data channel from the terminal device.
  • the number of resource blocks allocated to the first physical uplink data channel is less than or equal to 1/N j of the number of first resource blocks, where N j is the number of first time units in the jth serving cell, and the first resource A block includes one or more of the following: a resource block included in a carrier; a resource block used by the carrier for data transmission; a resource block for the bandwidth part; a resource block for the bandwidth part used in the carrier for data transmission; terminal equipment Supported resource blocks.
  • the access network device acquires the transmission parameters of the first physical uplink data channel; the access network device determines the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel. It can be seen that the access network device can spontaneously determine the data rate corresponding to the first physical uplink data channel according to the transmission parameters of the first physical uplink data channel, because the transmission parameters of the first physical uplink data channel include the number of first time units, The first physical uplink data channel attaches at most one transport block cyclic redundancy check code to each first time unit, so the access network device determines the first The data rate corresponding to the physical uplink data channel, which realizes the accurate determination of the data rate of the first physical uplink data channel when crossing the time slot boundary, that is, the accurate determination of the data in the scenario where one TB is transmitted across multiple time slots rate. In addition, the flexibility of scheduling is also improved, the interaction process is reduced, and the efficiency when determining the data rate corresponding to the first physical uplink data channel is improved.
  • the access network device may also schedule the terminal device to send the first physical uplink data channel according to the data rate corresponding to the first physical uplink data channel.
  • each network element includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the terminal device or the access network device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module Among them, the above-mentioned integrated modules can be implemented not only in the form of hardware, but also in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 can be applied to the above method shown in FIG. 8 , and as shown in FIG. 10 , the communication device 1000 includes: a processing module 1001 and a transceiver module 1002 .
  • the processing module 1001 may be one or more processors, and the transceiver module 1002 may be a transceiver or a communication interface.
  • the communication device may be used to implement the terminal equipment or the access network equipment involved in any of the above method embodiments, or be used to implement the functions of the network elements involved in any of the above method embodiments.
  • the network element or network function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the communication device 1000 may further include a storage module 1003 for storing program codes and data of the communication device 1000 .
  • the transceiver module 1002 is used to support communication with access network devices, etc., and the transceiver module specifically performs the sending and/or receiving actions performed by the terminal device in FIG. process.
  • the processing module 1001 may be configured to support the communication apparatus 1000 to execute the processing actions in the foregoing method embodiments, for example, to support the terminal device to execute step 803, and/or other processes of the technologies described herein.
  • the transceiver module 1002 is configured to support communication with terminal devices, etc., and specifically perform the sending and/or receiving actions performed by the access network device in FIG. 8, for example, support the access network device to perform step 802, and/or Other processes in the techniques described herein.
  • the transceiver module 1002 may be an interface, a pin, or a circuit.
  • the interface can be used to input the data to be processed to the processor, and can output the processing result of the processor.
  • the interface can be a general purpose input output (GPIO) interface, which can communicate with multiple peripheral devices (such as display (LCD), camera (camara), radio frequency (radio frequency, RF) modules, antennas, etc. )connect.
  • the interface is connected with the processor through the bus.
  • the processing module 1001 may be a processor, and the processor may execute computer-executed instructions stored in the storage module, so that the chip executes the method involved in the embodiment of FIG. 8 .
  • the processor may include a controller, an arithmetic unit and registers.
  • the controller is mainly responsible for decoding instructions and sending control signals for operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logic operations, and can also perform address operations and conversions.
  • the register is mainly responsible for saving the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor can be application specific integrated circuits (ASIC) architecture, microprocessor without interlocked piped stages architecture (MIPS) architecture, advanced streamlined instructions Advanced RISC machines (ARM) architecture or network processor (network processor, NP) architecture, etc.
  • Processors can be single-core or multi-core.
  • the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be a storage module located outside the chip, such as read-only memory (Read Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), etc. .
  • processors and the interface can be realized through hardware design, software design, or a combination of software and hardware, which is not limited here.
  • FIG. 11 is a schematic structural diagram of a simplified terminal device provided by an embodiment of the present application.
  • a mobile phone is taken as an example of a terminal device.
  • the terminal device includes at least one processor, and may also include a radio frequency circuit, an antenna, and an input and output device.
  • the processor can be used to process communication protocols and communication data, and can also be used to control terminal equipment, execute software programs, process data of software programs, and the like.
  • the terminal device may also include a memory, which is mainly used to store software programs and data. These related programs can be loaded into the memory when the communication device leaves the factory, or can be loaded into the memory later when needed.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves, and the antenna is the antenna provided in the embodiment of the present application.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only one memory and processor are shown in FIG. 11 . In an actual terminal device product, there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and radio frequency circuit with transceiver function can be regarded as the receiving unit and the transmitting unit of the terminal equipment (also collectively referred to as the transceiver unit), and the processor with processing function can be regarded as the processing unit of the terminal equipment .
  • the terminal device includes a receiving module 31 , a processing module 32 and a sending module 33 .
  • the receiving module 31 can also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending module 33 can also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the processing module 32 may also be called a processor, a processing board, a processing device, and the like.
  • the processing module 32 is configured to execute functions of the terminal device in the embodiment shown in FIG. 8 .
  • FIG. 12 is a schematic structural diagram of a simplified access network device provided by an embodiment of the present application.
  • the access network equipment includes a radio frequency signal transceiving and converting part and a part 42, and the radio frequency signal transceiving and converting part further includes a receiving module 41 and a sending module 43 (also collectively referred to as a transceiver module).
  • the RF signal transceiver and conversion part is mainly used for the RF signal transceiver and the conversion of the RF signal and the baseband signal; the 42 part is mainly used for the baseband processing and controlling the access network equipment, etc.
  • the receiving module 41 can also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending module 43 can also be called a transmitter, a transmitter, a transmitter, a transmitting circuit, etc.
  • the part 42 is usually the control center of the access network equipment, which can usually be called a processing module, and is used to control the access network equipment to execute the above-mentioned steps performed by the access network equipment in FIG. 8 .
  • a processing module is usually the control center of the access network equipment, which can usually be called a processing module, and is used to control the access network equipment to execute the above-mentioned steps performed by the access network equipment in FIG. 8 .
  • Part 42 may include one or more single boards, and each single board may include one or more processors and one or more memories, and the processors are used to read and execute programs in the memories to realize baseband processing functions and interface network device control. If there are multiple single boards, each single board can be interconnected to increase the processing capacity. As an optional implementation, it is also possible that multiple single boards share one or more processors, or that multiple single boards share one or more memories, or that multiple single boards share one or more processors at the same time. device.
  • the sending module 43 is configured to execute the function of the access network device in the embodiment shown in FIG. 8 .
  • the embodiment of the present application also provides a communication device, including a processor, a memory, an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices outside the communication device Other communication devices output information, and the processor invokes the computer program stored in the memory to implement the embodiment shown in FIG. 8 .
  • the embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored, and when the computer program is run, the embodiment shown in FIG. 8 is realized.
  • the embodiment of the present application also provides a computer-readable storage medium, in which computer-executable instructions are stored. When the computer-executable instructions are executed, the embodiment shown in FIG. 8 is shown.
  • the embodiment of the present application also provides a computer program product including instructions, and when the computer reads and executes the instructions in the computer program product, the computer executes and implements the embodiment shown in FIG. 8 .
  • the embodiment of the present application also provides a communication device, including a processor, configured to execute a computer program (or computer-executable instruction) stored in the memory, and when the computer program (or computer-executable instruction) is executed, the device executes Example shown in Figure 8.
  • a communication device including a processor, configured to execute a computer program (or computer-executable instruction) stored in the memory, and when the computer program (or computer-executable instruction) is executed, the device executes Example shown in Figure 8.
  • the embodiment of the present application also provides a computer program product including computer-executable instructions.
  • the computer program product When the computer program product is executed, some or all of the steps of the embodiment shown in FIG. 8 are executed.
  • the embodiment of the present application also provides a computer program including computer-executable instructions.
  • the computer program When the computer program is executed, some or all of the steps of the embodiment shown in FIG. 8 are executed.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the above integrated units are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium Among them, several instructions are included to make a computer device (which may be a personal computer, a cloud server, or a network device, etc.) execute all or part of the steps of the above-mentioned methods in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • U disk mobile hard disk
  • read-only memory ROM, Read-Only Memory
  • RAM random access memory
  • magnetic disk or optical disc etc.
  • the above is only a specific embodiment of the application, but the scope of protection of the application is not limited thereto. Any person familiar with the technical field can easily think of various equivalents within the scope of the technology disclosed in the application. Modifications or replacements, these modifications or replacements shall be covered within the scope of protection of this application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据速率确定方法及相关装置,该方法包括:从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。该方法针对一个TB跨越多个时隙传输的场景实现了精准确定数据速率。

Description

一种数据速率确定方法及相关装置
本申请要求在2021年8月6日提交中华人民共和国知识产权局、申请号为202110904542.1、发明名称为“一种数据速率确定方法及相关装置”的中国专利申请的优先权,以及要求在2021年9月28日提交中华人民共和国知识产权局、申请号为202111146785.X、发明名称为“一种数据速率确定方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据速率确定方法及相关装置。
背景技术
目前,在计算物理上行共享信道(physical uplink shared channel,PUSCH)对应的数据速率时,一般针对的是一个传输块(transport block,TB)不跨越时隙传输的场景。然而,如果针对一个TB跨越多个时隙传输的场景,依旧按照一个TB不跨越时隙传输的场景来计算数据速率的话,往往会存在计算出来的数据速率误差较大的问题。因此,针对一个TB跨越多个时隙传输的场景,如何精准确定数据速率成为当前阶段亟待解决的技术问题。
发明内容
本申请提供了一种数据速率确定方法及相关装置,针对一个TB跨越多个时隙传输的场景实现了精准确定数据速率。
第一方面,提供一种数据速率确定方法,所述方法包括:
从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
可以看出,上述技术方案中,终端设备可以根据从接入网设备接收的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,因为第一物理上行数据信道的传输参数包括第一时间单元的数目,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码,所以终端设备是根据跨越时隙边界的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,这实现了在跨越时隙边界的情况下,精准确定第一物理上行数据信道的数据速率,即实现了一个TB跨越多个时隙传输的场景下精准确定数据速率。另外,也提升了调度的灵活性。
第二方面,提供一种数据速率确定方法,所述方法包括:
获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
向终端设备发送所述第一物理上行数据信道的传输参数。
可以看出,上述技术方案中,接入网设备可以向终端设备发送第一物理上行数据信道的传输参数,使得终端设备可以根据从接入网设备接收的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,因为第一物理上行数据信道的传输参数包括第一时间单元的数目,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码,所以终端设备是根据跨越时隙边界的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,这实现了在跨越时隙边界的情况下,精准确定第一物理上行数据信道的数据速率,即实现了一个TB跨越多个时隙传输的场景下精准确定数据速率。另外,也提升了调度的灵活性。
可选的,结合第一方面或第二方面,所述第一时间单元包括以下一项或多项:
所述第一物理上行数据信道对应的总时隙;
所述第一物理上行数据信道对应的可用时隙;
为所述第一物理上行数据信道进行时域资源分配时对应的时隙;
确定所述第一物理上行数据信道所传输的传输块的大小时对应的时隙;
所述第一物理上行数据信道的一个传输时机对应的时隙;
对所述第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;
所述第一物理上行数据信道的一次冗余版本映射所对应的时隙;
所述第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
可选的,结合第一方面或第二方面,所述第一时间单元包括以下一项或多项:
所述第一物理上行数据信道对应的总符号;
所述第一物理上行数据信道对应的可用符号;
为所述第一物理上行数据信道进行时域资源分配时对应的符号;
确定所述第一物理上行数据信道所传输的传输块的大小时对应的符号;
所述第一物理上行数据信道的一个传输时机对应的符号;
对所述第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号;
所述第一物理上行数据信道的一次冗余版本映射所对应的符号;
所述第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号。
可选的,结合第一方面或第二方面,所述第一时间单元不包括S时隙。
可选的,结合第一方面或第二方面,所述第一时间单元不包括以下一项或多项:
S时隙中的符号;
所述S时隙中的非下行符号;
所述S时隙中的可用符号;
所述S时隙中分配给解调参考信号的符号。
可选的,结合第一方面或第二方面,所述第一物理上行数据信道的传输参数还包括所述第一时间单元的符号数,所述第一时间单元的符号包括以下一项或多项:
所述第一物理上行数据信道在一个时隙分配的符号;
为所述第一物理上行数据信道进行时域资源分配时每个时隙的符号;
确定所述第一物理上行数据信道所传输的传输块的大小时每个时隙的符号。
可选的,结合第一方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000001
或,
Figure PCTCN2022101295-appb-000002
或,
Figure PCTCN2022101295-appb-000003
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000004
为所述第j个服务小区中一个时隙的持续时间,
Figure PCTCN2022101295-appb-000005
为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,N j为所述第j个服务小区中所述第一时间单元的数目,L 1为所述第j个服务小区中所述第一时间单元的符号数,V j,m为所述第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区。
可选的,结合第一方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000006
或,
Figure PCTCN2022101295-appb-000007
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000008
为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,L 2为所述第j个服务小区中所述第一时间单元的数目,V j,m为所述第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区。
可选的,结合第一方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000009
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙内传输的传输块的数目,
Figure PCTCN2022101295-appb-000010
为所述第j个服务小区中一个时隙的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,DataRate为J个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区;
Figure PCTCN2022101295-appb-000011
或,
Figure PCTCN2022101295-appb-000012
V j,m为所述第j个服务小区中第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数,N j为所述第j个服务小区中所述第一时间单元的数目。
可选的,结合第一方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000013
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000014
为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,L 3为所述第j个服务小区中所述第一时间单元的符号数,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区;
Figure PCTCN2022101295-appb-000015
或,
Figure PCTCN2022101295-appb-000016
或,
Figure PCTCN2022101295-appb-000017
V j,m为所述第j个服务小区中第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数,N j为所述第j个服务小区中所述第一时间单元的数目。
可选的,结合第一方面或第二方面,所述第一物理上行数据信道分配的资源块的数目,小于或等于第一资源块数目的1/N j,N j为所述第j个服务小区中所述第一时间单元的数目,所述第一资源块包括以下一项或多项:
一个载波所包含的资源块;
进行数据传输时载波使用的资源块;
带宽部分的资源块;
进行数据传输时载波中所使用的带宽部分的资源块;
所述终端设备所支持的资源块。
第三方面,提供一种数据速率确定方法,所述方法包括:
从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号个数;
根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
可以看出,上述技术方案中,终端设备可以根据从接入网设备接收的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,因为第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码,所以终端设备是根据跨越时隙边界的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,这实现了在跨越时隙边界的情况下,精准确定第一物理上行数据信道的数据速率,即实现了一个TB跨越多个时隙传输的场景下精准确定数据速率。另外,也提升了调度的灵活性。
第四方面,提出一种数据速率确定方法,所述方法包括:
获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用OFDM符号个数;
向终端设备发送所述第一物理上行数据信道的传输参数。
可以看出,上述技术方案中,接入网设备可以向终端设备发送第一物理上行数据信道的传输参数,使得终端设备可以根据从接入网设备接收的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,因为第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码,所以终端设备是根据跨越时隙边界的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,这实现了在跨越时隙边界的 情况下,精准确定第一物理上行数据信道的数据速率,即实现了一个TB跨越多个时隙传输的场景下精准确定数据速率。另外,也提升了调度的灵活性。
可选的,结合第三方面或第四方面,所述第一物理上行数据信道所传输的传输块的大小根据所述第一物理上行数据信道的传输参数确定。
可选的,结合第三方面或第四方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000018
其中,M为所述第一物理上行数据信道上传输的传输块的数目,
Figure PCTCN2022101295-appb-000019
为传输所述第一物理上行数据信道的一个符号的持续时间,L 3为所述第一物理上行数据信道对应的所述第一符号数,DataRateCC为一个分量载波对应的最大数据速率;
Figure PCTCN2022101295-appb-000020
V j,m为所述第一物理上行数据信道上承载的第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数。
第五方面,提供一种通信装置,所述装置包括收发模块和处理模块,
所述收发模块,用于从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
所述处理模块,用于根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
第六方面,提供一种通信装置,所述装置包括收发模块,
所述收发模块,用于获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
所述收发模块,用于向终端设备发送所述第一物理上行数据信道的传输参数。
可选的,结合第五方面或第六方面,所述第一时间单元包括以下一项或多项:
所述第一物理上行数据信道对应的总时隙;
所述第一物理上行数据信道对应的可用时隙;
为所述第一物理上行数据信道进行时域资源分配时对应的时隙;
确定所述第一物理上行数据信道所传输的传输块的大小时对应的时隙;
所述第一物理上行数据信道的一个传输时机对应的时隙;
对所述第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;
所述第一物理上行数据信道的一次冗余版本映射所对应的时隙;
所述第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
可选的,结合第五方面或第六方面,所述第一时间单元包括以下一项或多项:
所述第一物理上行数据信道对应的总符号;
所述第一物理上行数据信道对应的可用符号;
为所述第一物理上行数据信道进行时域资源分配时对应的符号;
确定所述第一物理上行数据信道所传输的传输块的大小时对应的符号;
所述第一物理上行数据信道的一个传输时机对应的符号;
对所述第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号;
所述第一物理上行数据信道的一次冗余版本映射所对应的符号;
所述第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号。
可选的,结合第五方面或第六方面,所述第一时间单元不包括S时隙。
可选的,结合第五方面或第六方面,所述第一时间单元不包括以下一项或多项:
S时隙中的符号;
所述S时隙中的非下行符号;
所述S时隙中的可用符号;
所述S时隙中分配给解调参考信号的符号。
可选的,结合第五方面或第六方面,所述第一物理上行数据信道的传输参数还包括所述第一时间单元的符号数,所述第一时间单元的符号包括以下一项或多项:
所述第一物理上行数据信道在一个时隙分配的符号;
为所述第一物理上行数据信道进行时域资源分配时每个时隙的符号;
确定所述第一物理上行数据信道所传输的传输块的大小时每个时隙的符号。
可选的,结合第五方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000021
或,
Figure PCTCN2022101295-appb-000022
或,
Figure PCTCN2022101295-appb-000023
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000024
为所述第j个服务小区中一个时隙的持续时间,
Figure PCTCN2022101295-appb-000025
为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,N j为所述第j个服务小区中所述第一时间单元的数目,L 1为所述第j个服务小区中所述第一时间单元的符号数,V j,m为所述第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区。
可选的,结合第五方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000026
或,
Figure PCTCN2022101295-appb-000027
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000028
为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,L 2为所述第j个服务小区中所述第一时间单元的数目,V j,m为所述第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区。
可选的,结合第五方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000029
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000030
为所述第j个服务小区中一个时隙的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,DataRate为J个分量载波对应的最大数据速率,所述服务小区 是为所述终端设备提供服务的小区;
Figure PCTCN2022101295-appb-000031
或,
Figure PCTCN2022101295-appb-000032
V j,m为所述第j个服务小区中第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数,N j为所述第j个服务小区中所述第一时间单元的数目。
可选的,结合第五方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000033
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000034
为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,L 3为所述第j个服务小区中所述第一时间单元的符号数,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区;
Figure PCTCN2022101295-appb-000035
或,
Figure PCTCN2022101295-appb-000036
或,
Figure PCTCN2022101295-appb-000037
V j,m为所述第j个服务小区中第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数,N j为所述第j个服务小区中所述第一时间单元的数目。
可选的,结合第五方面或第六方面,所述第一物理上行数据信道分配的资源块的数目,小于或等于第一资源块数目的1/N j,N j为所述第j个服务小区中所述第一时间单元的数目,所述第一资源块包括以下一项或多项:
一个载波所包含的资源块;
进行数据传输时载波使用的资源块;
带宽部分的资源块;
进行数据传输时载波中所使用的带宽部分的资源块;
所述终端设备所支持的资源块。
第七方面,提供一种通信装置,所述装置包括收发模块和处理模块,
所述收发模块,用于从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的OFDM符号个数;
所述处理模块,用于根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
第八方面,提供一种通信装置,所述装置包括收发模块,
所述收发模块,用于获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信 道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用OFDM符号个数;
所述收发模块,用于向终端设备发送所述第一物理上行数据信道的传输参数。
可选的,结合第七方面或第八方面,所述第一物理上行数据信道所传输的传输块的大小根据所述第一物理上行数据信道的传输参数确定。
可选的,结合第七方面或第八方面,所述第一物理上行数据信道对应的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000038
其中,M为所述第一物理上行数据信道上传输的传输块的数目,
Figure PCTCN2022101295-appb-000039
为传输所述第一物理上行数据信道的一个符号的持续时间,L 3为所述第一物理上行数据信道对应的所述第一符号数,DataRateCC为一个分量载波对应的最大数据速率;
Figure PCTCN2022101295-appb-000040
V j,m为所述第一物理上行数据信道上承载的第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数。
第九方面,提供一种通信装置,包括处理器、存储器、输入接口和输出接口,输入接口用于接收来自通信装置之外的其它通信装置的信息,输出接口用于向通信装置之外的其它通信装置输出信息,处理器调用存储器中存储的计算机程序实现如第一方面或第二方面或第三方面或第四方面任意一项的方法。
在一种可能的设计中,该通信装置可以是实现第一方面或第二方面或第三方面或第四方面中任意一项方法的芯片或者包含芯片的设备。
第十方面,本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序(或计算机可执行指令),当计算机程序(或计算机可执行指令)被执行时,使得该装置执行如第一方面及第一方面各个可能的实现中的方法或者第二方面及其各个可能的实现中的方法或者第三方面及第三方面各个可能的实现中的方法或第四方面及第四方面各个可能的实现中的方法。
在一种可能的实现中,处理器和存储器集成在一起;
在另一种可能的实现中,上述存储器位于该通信装置之外。
该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第十一方面,本申请实施例还提供一种通信装置,用于执行上述第一方面及其各种可能的实现中的方法。
第十二方面,本申请实施例还提供一种通信装置,用于执行上述第二方面及其各种可能的实现中的方法。
第十三方面,本申请实施例还提供一种通信装置,用于执行上述第三方面及其各种可能的实现中的方法。
第十四方面,本申请实施例还提供一种通信装置,用于执行上述第四方面及其各种可能的实现中的方法。
第十五方面,一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序(或计算机可执行指令),当计算机程序(或计算机可执行指令)被运行时,如第一方面或第二方面或第三方面或第四方面任意一种可能实现中的方法被执行。
第十六方面,本申请实施例还提供了一种包括计算机可执行指令的计算机程序产品,当该计算机程序产品被运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第四方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十七方面,本申请实施例还提供了一种包括计算机可执行指令的计算机程序,当该计算机程序被运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现、第四方面及其任一种可能的实现中所述的方法的部分或全部步骤被执行。
第十八方面,提供一种通信系统,包括以下一项或多项:上述终端设备、上述接入网设备。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
其中:
图1为一种编码过程的示意图;
图2为PUSCH repetition Type A的映射图案示意图;
图3为一种PUSCH repetition Type B的映射图案示意图;
图4为又一种PUSCH repetition Type B的映射图案示意图;
图5为在不同载波上传输的TB的数据速率示意图;
图6为本申请实施例提供的通信系统的基础架构;
图7所示为可适用于本申请实施例提供的通信装置的硬件结构示意图;
图8为本申请实施例提供的一种数据速率确定方法的流程示意图;
图9A为本申请实施例提供一种第一物理上行数据信道的传输参数的示意图;
图9B为本申请实施例提供又一种第一物理上行数据信道的传输参数的示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的一种简化的终端设备的结构示意图;
图12为本申请实施例提供的一种简化的接入网设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,本申请实施例中的术语“系统”和“网络”可被互换使用。除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是一个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以下的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以下仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
为了便于理解本申请,下面介绍本申请实施例涉及的相关技术知识。
1.时域结构
新无线(new radio,NR)标准中,传输的帧长持续时间为10ms,每个帧(frame)被分割为10个子帧,每个子帧长1ms。每个子帧被划分为若干个时隙(slot):当循环前缀(cyclic prefix,CP)为普通(normal)CP时,每个时隙由14个正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号构成;当循环前缀为扩展(extended)CP时,每个时隙由12个OFDM符号构成。每个时隙具体的时间长度由参数集确定,其中,参数集例如可以包括子载波间隔(subcarrier spacing,SCS)。如,SCS为15kHz时,一个slot长1ms;子载波间隔为30kHz时,一个slot长0.5ms。
NR支持一个时隙用于上行传输,记为U slot;NR支持一个时隙用于下行传输,记为D slot;NR支持一个时隙既有上行也有下行的配置,记为S slot。典型的时分复用(time division duplex,TDD)系统时隙配置格式,包括DDDSU、DDDSUDDSUU、DDDDDDDDUU等。可以理解的,一个时隙中可以包括下行符号(downlink symbols)、上行符号(uplink symbols)、和灵活符号(flexible symbols),下行符号不能用于上行传输;上行符号不能用于下行传输;而灵活符号既可用于下行传输也可用于上行传输。
在长期演进(long term evolution,LTE)标准中,上行时隙由离散傅里叶变换扩展正交频分复用(discrete Fourier transform-spread-orthogonal frequency-division  multiplexing,DFT-S-OFDM)符号构成。
2.频域结构
NR定义一个资源单元(resource element,RE)为一个OFDM符号上的一个子载波,RE是NR标准里最小的物理单元。频域上连续的12个子载波称为一个资源块(resource block,RB)。虽然一个RB固定包括12个子载波,但由于不同的子载波间隔,不同RB在频域上占用的实际带宽不一定相同。
3.上行信道和信号
NR中上行信道包括:物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、以及物理随机接入信道(physical random access channel,PRACH)。
NR中上行信号包括:探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS),以及相位跟踪参考信号(phase-tracking reference signal,PTRS)。其中,上行DMRS伴随PUCCH和PUSCH传输,其时频资源占用了PUCCH或PUSCH的一部分。上行PTRS伴随PUSCH传输,其时频资源占用了PUSCH的一部分。
4.三种PUSCH传输
NR中的PUSCH传输分为三种:基于动态调度的PUSCH传输、配置许可(configured grant,CG)类型1(type1)的PUSCH传输,和CG type2的PUSCH传输。
其中,基于动态调度的PUSCH传输,即每次PUSCH传输,都用物理层指示下行控制信息(downlink control information,DCI)进行调度。在此种传输中,终端设备接收到一次上行调度,就进行一次PUSCH传输。
其中,CG Type1的PUSCH传输,即半静态调度的PUSCH传输,接收高层配置(包含rrc-ConfiguredUplinkGrant的高层参数configuredGrantConfig),不接收物理层指示DCI,协议中称为configured uplink grant。在此种传输中,高层配置了一些半持续资源,终端设备如果有上行数据需要发送,就可以利用这些资源发送PUSCH;如果没有上行数据需要发送,则不进行数据发送。
其中,CG Type2的PUSCH传输,即先接收高层配置(不包含rrc-ConfiguredUplinkGrant的高层参数configuredGrantConfig),再由物理层指示DCI激活或者去激活,协议中称为configured uplink grant based on L1signalling。此种传输中,高层配置了一些半持续资源,然后由物理层信令激活/去激活:激活时行为和配置许可Type1PUSCH传输类似;没有激活时,这些资源不能使用。
5.PUSCH处理的一般步骤
在NR中,PUSCH的数据(uplink shared channel,UL-SCH)传输中,一个PUSCH传输块(transport block,TB)的编码过程,可以参见图1。图1为一种编码过程的示意图,结合图1,可以看出,针对一个TB,终端设备可以依次进行传输块循环冗余校验(cyclic redundancy check,CRC)附着、码块(code block,CB)分割、码块CRC附着、信道编码、速率匹配、码块级联、加扰(scrambling)、调制(modulation)、预编码、符号映射等。
若TB的比特序列为a 0,a 1,a 2,a 3,...,a A-1,A为有效载荷大小。终端设备对该TB进行传输块CRC附着,可以包括:终端设备根据TB的有效载荷大小A,确定CRC的生成多项式以及校验比特数L;终端设备根据TB的比特序列和CRC的生成多项式生成校验比特序列p 0,p 1,p 2,p 3,...,p L-1,并将校验比特序列p 0,p 1,p 2,p 3,...,p L-1附着到TB的比特序列,得到CRC附着后的比特序列b 0,b 1,b 2,b 3,...,b B-1。其中,B=A+L。接着,若B大于最大码块尺寸K cb,终端设备对TB的比特序列进行码块分割,得到C个码块,C个码块中每个码块的比特流为 c r0,c r1,c r2,c r3,...,c r(K′-L-1),r为大于或等于0,且小于C的整数,r为码块号,K′为K r或K,K r=K为第r个码块的比特数。然后,终端设备根据每个码块的比特流确定每个码块的CRC校验比特序列
Figure PCTCN2022101295-appb-000041
并将每个码块的CRC校验比特序列
Figure PCTCN2022101295-appb-000042
附着到对应码块,得到每个码块附着后的比特序列
Figure PCTCN2022101295-appb-000043
其中,每个码块的校验比特数L=24。紧接着,在NR中,对于数据信道,终端设备可以采用低密度奇偶校验(low density parity check,LDPC)码,对每个码块进行LDPC信道编码,其中,信道编码的输入例如可以为c 0,c 1,c 2,c 3,...,c K-1,信道编码的输出例如可以为d 0,d 1,d 2,d 3,...,d N-1,N为信道编码的输入经过信道编码后序列的长度。当然,终端设备还可以对每个码块进行速率匹配,速率匹配可以包括比特选择(bit selection)和比特交织(bit interleaving),具体不在此赘述。其中,速率匹配的输入例如可以为d 0,d 1,d 2,d 3,...,d N-1,速率匹配的输出例如可以为f 0,f 1,f 2,f 3,...,f E-1,E为速率匹配的输入经过速率匹配后序列的长度。然后,终端设备还可以将速率匹配后的C个码块的比特f rk顺序级联,得到比特序列g t。其中,k为大于或等于0,且小于或等于E r-1的整数,E r为第r个码块经过速率匹配后的比特数,t为大于或等于0,且小于或等于G-1的整数,G为比特序列g t的长度。
另外,终端设备还可以对比特序列g t进行加扰。如对于单码字q=0,加扰前的比特序列为
Figure PCTCN2022101295-appb-000044
加扰后的比特序列为
Figure PCTCN2022101295-appb-000045
为一个星座点对应的比特数。可以理解的,加扰类似于
Figure PCTCN2022101295-appb-000046
为加扰后的比特序列,b (q)(i)为加扰前的比特序列,c (q)(i)为加扰序列,i为大于或等于0,且小于或等于
Figure PCTCN2022101295-appb-000047
的整数。接着,终端设备还可以对加扰后的比特序列进行星座调制,得到复数调制符号序列
Figure PCTCN2022101295-appb-000048
然后,终端设备可以将复数调制符号序列和预编码矩阵进行相乘,得到预编码后的复数调制符号序列
Figure PCTCN2022101295-appb-000049
ap(antenna port)为天线端口数。最后,针对每个天线端口,终端设备可以将预编码后的复数调制符号序列映射到时频资源上。映射时可以跳过协议预设的预留资源(比如DMRS、PTRS等),映射可以按照先频域后时域的顺序进行,如从第一个OFDM符号的最低序号子载波开始,按子载波序号升序映射,映射完第一个OFDM符号的所有子载波之后,再从第二个OFDM符号的最低序号子载波开始映射。以此类推,直到映射完所分配的时频资源。
6.PUSCH的两种重复类型(repetition Type)
NR中PUSCH重复类型分为两种:PUSCH repetition Type A和PUSCH repetition Type B,前者是Rel-15版本中采用的,后者是Rel-16版本中新引入的。
其中,PUSCH repetition Type A以时隙为单位重复K次,起始符号S是相对时隙的开始位置;L是分配给PUSCH的,从S开始的连续符号个数;S与L由开始与长度指示SLIV来决定。在K>1时,在K个连续时隙上应用相同的符号分配。协议中规定有效的S与L组合的设计,使得PUSCH重复类型A不会跨越时隙边界。如果分配的某一组符号中,有符号不能用于发送该PUSCH重复,则取消此次PUSCH重复的发送。
示例性的,参见图2,图2为PUSCH repetition Type A的映射图案示意图。可以理解的,在图2中,S=0,L=10,K=4。在每个时隙中,从起始符号S(S=0)开始连续L(L=10)个符号用于发送PUSCH。如,在时隙1,从左往右第0个符号开始连续10个符号用于发送PUSCH,即Rep#1;在时隙2,从左往右第0个符号开始连续10个符号用于发送PUSCH,即Rep#2;在时隙3,从左往右第0个符号开始连续10个符号用于发送PUSCH,即Rep#3;在时隙4,从左往右第0个符号开始连续10个符号用于发送PUSCH,即Rep#4。因此,可以看出,PUSCH以时隙为单元重复4次,即Rep#1至Rep#4。
其中,PUSCH repetition Type B以网络侧指示的长度L为单位重复K次,起始符号S 是相对时隙的开始位置;L是分配给PUSCH的,从S开始的连续符号个数。PUSCH重复类型B相比较PUSCH重复类型A更为灵活,可能会出现一个repetition跨越时隙边界,或一个repetition中包含无效符号(invalid symbol(s))的情况,此时,该repetition会出现分裂。协议中将分裂前的repetition称为名义重复(nominal repetition),将分裂后的repetition称为实际重复(actual repetition),网络侧指示的重复次数K指的是nominal repetition的总次数。
示例性的,参见图3,图3为一种PUSCH repetition Type B的映射图案示意图。可以理解的,在图3中,S=11,L=7,K=4。由图3可见,4次nominal repetition,由于时隙边界的存在,分裂成6次actual repetition。
当PUSCH重复类型B的repetition遇到无效符号,比如下行符号时,nominal repetition会首先将这些无效符号去掉。如果一个nominal repetition中的潜在有效符号数大于0,那么该nominal repetition会包括一个或多个actual repetition,每个actual repetition利用连续的有效符号传输(除非L=1,否则单符号的actual repetition被忽略)。
示例性的,参见图4,图4为又一种PUSCH repetition Type B的映射图案示意图。可以理解的,在图4中,S=0,L=7,K=2。在图4中,2次nominal repetition,由于无效符号(即下行符号)的存在,分裂成3次actual repetition,且用于PUSCH传输的有效符号数目也降低。
7.PUSCH传输数据速率的限制
在一个小区组中,第j个服务小区,j=0,1,2,…,J-1,如果时隙s j上的任一时刻,以下条件不满足,则终端设备不需要在第j个服务小区中时隙s j中处理PUSCH的传输:
Figure PCTCN2022101295-appb-000050
其中,J为属于一个频率范围(frequency range,FR)的配置服务小区个数;对第j个服务小区,M为时隙s j中传输的TB数目。对PUSCH repetition Type B,每个actual repetition被分别计算。
其中,
Figure PCTCN2022101295-appb-000051
为一个时隙的持续时间,μ(j)为在第j个服务小区中时隙s j中的PUSCH的子载波间隔配置。NR中子载波间隔配置μ与子载波间隔Δf的关系如下表所示:
μ Δf=2 μ×15[kHz] 循环前缀(cyclic prefix,CP)
0 15 Normal
1 30 Normal
2 60 Normal,Extended
3 120 Normal
4 240 Normal
其中,对于第m个TB,有
Figure PCTCN2022101295-appb-000052
A为该传输块的比特数,如上述5中的有效载荷大小。C为该传输块的总码块数,如上述5中的总码块数。C′为该传输块的调度的码块数。具体来说,如果在调度该TB的DCI中,没有码块组传输信息(code block group transmission information,CBGTI)域的话,则C′=C;如果调度该TB的DCI中,有CBGTI域的话,则C′为传输块的调度的码块数。
DataRate为对所有载波求和后的最大数据速率,单位为兆比特每秒(megabits per second,Mbps)。其计算公式为对多个分量载波(component carrier,CC)求和的形式,参数都是由高层给定的,终端设备最大能支持的参数,由此计算出终端设备支持的最大数据速率。
示例性的,参见图5,图5为在不同载波上传输的TB的数据速率示意图。如图5所示,共有3个服务小区,3个CC对应的子载波间隔分别为60kHz、30kHz、15kHz,TB0、TB1、TB2分别在CC0、CC1、CC2上传输。在时刻1,不同载波上传输的TB的数据速率满足以下公式:
Figure PCTCN2022101295-appb-000053
其中,TB0、TB1和TB2分别表示各个TB所传输的比特数。
除了上述在一整个小区组中对终端设备数据速率的限制,针对第j个服务小区,也有对终端设备数据速率的限制。具体包括以下任意一种条件:
条件1.如果对该服务小区,高层参数PUSCH-ServingCellConfig中的processingType2Enabled被配置了,且被配置为enable;(也就是终端设备支持处理能力2);或,
条件2.当终端设备使用编码调制方式(modulation and coding scheme,MCS)表5.1.3.1-1或5.1.3.1-3时,W=28;当终端设备使用MCS表5.1.3.1-2,6.1.4.1-1,或6.1.4.1-2时,W=27:如果对一个PUSCH,至少有一个I MCS>W。换句话来说,该PUSCH为混合自动重传(hybrid automatic repeat request,HARQ);或,
条件3.如果对PUSCH repetition Type B是一次实际重复;
可以理解的,在上述任意一个条件的限制下,在以下条件不满足时,终端设备不需要处理PUSCH的传输:
Figure PCTCN2022101295-appb-000054
其中,L为分配给PUSCH的符号数;M为PUSCH中的TB数;
Figure PCTCN2022101295-appb-000055
为一个时隙内的符号数,μ为PUSCH的子载波间隔配置;V j,m可以参考上述相关描述,在此不加赘述。DataRateCC为一个载波的最大数据速率,单位为Mbps。
8.多时隙PUSCH的传输块处理
在NR R-15/R-16协议版本中,在绝大多数情况下,一个传输块只在一个时隙上传输(除非对PUSCH repetition Type B,在名义重复被时隙边界分割为实际重复时,相同传输块在至多两个时隙上传输)。也就是说,目前NR协议中,基站不会主动调度一个传输块在多个slot上传输。
在R-17覆盖增强(coverage enhancement,CE)的讨论中,多时隙PUSCH传输块处理(transport block processing over multi-slot PUSCH,TBoMS)工作项描述(work item description,WID)被审批通过,TBoMS指基站侧调度一个TB对应在多个slot上发送PUSCH。
TBoMS的优势可总结如下:在上行覆盖受限的场景下,通过在多个时隙聚合较小的包(packet),TBoMS可以提升信道编码增益;通过在多个时隙上传输单个TB,只有一个TB循环冗余校验码附着,降低了TB CRC所占的比特数;TBoMS的单个TB在时域上拉长,降低了频域所占RB数,从而提升功率谱密度。
9.TBoMS的时域资源分配
在最近的RAN1#105-e会议讨论中,将TBoMS的时域资源分配(time domain resource allocation,TDRA)方式确定为PUSCH repetition Type A的TDRA方式,将该结论写入协议。此外,对于非成对频谱(也就是TDD)场景下,在S时隙分配传输TBoMS所用的资源,S时隙的TDRA是否有必要优化,仍待讨论。
10.TBoMS的传输块大小
在RAN1#105-e会议讨论中,确定TBoMS的传输块大小(transport block size,TBS)的计算方式为:首先基于TBoMS传输分配的前L个符号确定RE数目,之后再乘以K≥1。此处,L为PUSCH的TDRA的SLIV中的L,代表符号数目;K的定义仍待讨论。
此外,在RAN1#104-e会议讨论中,将TBoMS的最大TBS不变写入协议。也就是说,虽然TBoMS的单个TB被拓展到多个slot上发送,但TBoMS的单个TB的最大尺寸,仍与R-15/R-16中在一个时隙上发送的TB的最大尺寸一致。
11.TBoMS的传输时机
在NR R-15/R-16协议版本中,PUSCH的传输时机(transmission occasion,TO),对非重复的PUSCH,以及PUSCH repetition Type A给出了规定,TO为一个时隙中PUSCH的一次重复。TO是功率控制(power control)、冗余版本(redundancy version,RV)循环(cycling)的基本单元。
在RAN1#104-bis-e的会议讨论中,提出为TBoMS定义传输时机的工作假设(working assumption),即为TOT(transmission occasion for TBoMS)。在RAN1#105-e会议讨论中,将TOT确定为由至少一个或多个连续的用于上行传输的物理时隙构成。同时,TOT与信号生成相关的设计层面,比如速率匹配(rate matching,RM)、RV cycling、功率控制、冲突处理(collision handling)等的关系,仍待讨论。
12.TBoMS的速率匹配与RV
在RAN1#105-e会议讨论中,确定了以下三种速率匹配的方式,考虑在下一次会议,也就是RAN1#106-e会议中筛选,最终只选出一种RM的方式:
(1)速率匹配逐时隙执行;
(2)速率匹配逐TOT执行,亦即RM在一个TOT分配的所有时隙上连续地执行;
(3)速率匹配在TBoMS分配的所有时隙/所有TOT上连续地执行。
在NR协议流程中,冗余版本的确定属于比特选择的部分。对于TBoMS的RV cycling,在整个TBoMS上,可能用单个RV,也可能用多个RV,仍待后续会议讨论。
目前,在计算物理上行共享信道对应的数据速率时,针对的是一个传输块不跨越时隙传输的场景。然而,如果针对一个TB跨越多个时隙传输的场景(即对于R-17将要引入的TBoMS),依旧按照一个TB不跨越时隙传输的场景来计算数据速率的话,往往会存在计算出来的数据速率误差较大的问题。换句话来说,如果一个TB跨越多个时隙传输时,依旧采用上述7中涉及到的数据速率计算公式(分子仍为该TB被调度传输的比特数,而分母为一个时隙的持续时间(多CC公式)或一个时隙中L个符号的持续时间(单CC公式)),从而导致计算出来的数据速率远大于TBoMS实际传输的数据速率,这也限制TBoMS传输的TBS或限制TBoMS的调度。另外,上述7中涉及到的数据速率计算公式
Figure PCTCN2022101295-appb-000056
是对多个服务小区上的TB求和的,对TBoMS计算出的数据速率比真实值要大,也会限制其他CC上PUSCH传输的数据速率小于终端设备能够支持的最大数据速率,从而限制了其他CC上TB的调度或限制了其他TB的TBS。因此,针对一个TB跨越多个时隙传输的场景,如何精准确定数据速率成为当前阶段亟待解决的技术问题。
基于此,本申请提供一种数据速率确定方法,以解决上述技术问题,下面对本申请实施例进行详细介绍。
应理解,本申请实施例的技术方案可以应用于第五代移动通信技术(5th generation mobile networks,5G)等。本申请实施例的技术方案还可以应用于未来其它的通信系统,例如6G通信系统等,在未来通信系统中,可能保持功能相同,但名称可能会改变。
下面介绍本申请实施例提供的通信系统的基础架构。参见图6,图6为本申请实施例提供的通信系统的基础架构。如图6所示,该通信系统可以包括一个或多个接入网设备10(图 6中仅示出了1个)以及与每一接入网设备10通信的一个或多个终端设备20。图6仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
其中,接入网设备10为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。接入网设备10可以为部署在无线接入网(radio access network,RAN)中为终端设备20提供无线通信功能的装置,例如可以为传输接收点(transmission reception point,TRP)、基站、各种形式的控制节点。例如,网络控制器、无线控制器、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等。具体的,接入网设备可以为各种形式的宏基站、微基站(也称为小站)、中继站、接入点(access point,AP)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心)等,也可以为基站的天线面板。控制节点可以连接多个基站,并为多个基站覆盖下的多个终端配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,可以是5G中的gNB,或者5G之后的网络中的网络侧设备或未来演进的PLMN网络中的接入网设备等,本申请对接入网设备的具体名称不作限定。另外,接入网设备10还可以包括集成在gNB上的中心单元(central unit,CU)和分布单元(distributed unit,DU)。可以理解的,接入网设备10也可以称为无线接入网设备,在此不做限制。
其中,终端设备20是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备20用于向用户提供语音服务和数据连通性服务中的一种或多种。终端设备20可以为包含无线收发功能、且可以与接入网设备配合为用户提供通讯服务的设备。具体地,终端设备20可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置。终端设备20也可以是无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备20也可以是设备到设备(device to device,D2D)设备,例如,电表、水表等。终端设备20还可以为5G系统中的终端,也可以为下一代通信系统中的终端,本申请实施例对此不作限定。
其中,该通信系统还可以包括核心网设备30。终端设备20通过无线的方式与接入网设备相连,接入网设备通过无线或有线方式与核心网设备连接。核心网设备与接入网设备可以是独立的不同的物理设备,或可以是将核心网设备的功能与接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的接入网设 备的功能。终端设备可以是固定位置的,也可以是可移动的。图6只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图6中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、接入网设备和终端设备的数量不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例信号的传输方向不做限定。
接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对接入网设备和终端设备之间所使用的频谱资源不做限定。
此外,本申请实施例提供的技术方案可适用于多种系统架构。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
可选的,图6中的各网元(例如接入网设备10、终端设备20、核心网设备30等)可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图6中的各设备均可以通过图7中的通信装置700来实现。图7所示为可适用于本申请实施例提供的通信装置的硬件结构示意图。该通信装置700包括至少一个处理器701,通信线路702以及至少一个通信接口704。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,在上述组件之间传送信息。
通信接口704,是任何收发器一类的装置(如天线等),用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
可选的,通信装置700还包括存储器703,存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路702与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其 中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在一种可能的实施方式中,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在一种可能的实施方式中,通信装置700可以包括多个处理器,例如图7中的处理器701和处理器707。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在一种可能的实施方式中,通信装置700还可以包括输出设备705和输入设备706。输出设备705和处理器701通信,可以以多种方式来显示信息。例如,输出设备705可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备706和处理器701通信,可以以多种方式接收用户的输入。例如,输入设备706可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置700可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置700可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图7中类似结构的设备。本申请实施例不限定通信装置700的类型。
以下结合附图,说明本申请实施例提供的技术方案。
参见图8,图8为本申请实施例提供的一种数据速率确定方法的流程示意图。例如,图8中的接入网设备为图6中的接入网设备10,图8中的终端设备为图6中的终端设备20。如图8所示,该方法包括但不限于以下步骤:
801.接入网设备获取第一物理上行数据信道的传输参数。
可选的,关于第一物理上行数据信道的传输参数可以通过以下任意方式实现:
方式1、第一物理上行数据信道的传输参数包括第一时间单元的数目,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码。
方式2、第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,第一物理上行数据信道在第一时间单元上至多附着一个传输块循环冗余校验码,第一时隙数为第一时间单元内包含的时隙个数,第一符号数为第一时间单元内包含的每个时隙内用于传输第一物理上行数据信道的正交频分复用OFDM符号个数。
示例性的,针对方式一可以参见图9A,图9A为本申请实施例提供一种第一物理上行数据信道的传输参数的示意图。如图9A所示,第一时间单元的数目为2,每个第一时间单元上附着一个TB CRC码。另外,一个第一时间单元可以包括4个时隙,第一时间单元的符号数可以为第一时间单元中一个时隙所包括的用于传输第一物理上行数据信道的符号数,即图9A中的L。
又示例性的,针对方式二可以参见图9B,图9B为本申请实施例提供又一种第一物理上行数据信道的传输参数的示意图。如图9B所示,第一时间单元的数目为2,每个第一时间单 元上附着一个TB CRC码。另外,一个第一时间单元对应的第一时隙数为4,一个第一时间单元对应的第一符号数为L。换句话来说,第一时间单元的符号数可以为第一时间单元中一个时隙所包括的用于传输第一物理上行数据信道的符号数,即图9B中的L。
可选的,在本申请中,第一物理上行数据信道可以为PUSCH或其他信道,在此不做限制。可以理解的,第一物理上行数据信道可以承载第一传输块,第一传输块占用第一时间单元。第一传输块可以为TBoMS或其他传输块,在此不做限制。
可选的,第一时间单元包括以下一项或多项:第一物理上行数据信道对应的总时隙;第一物理上行数据信道对应的可用时隙;为第一物理上行数据信道进行时域资源分配时对应的时隙;确定第一物理上行数据信道所传输的传输块的大小时对应的时隙;第一物理上行数据信道的一个传输时机对应的时隙;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;第一物理上行数据信道的一次冗余版本映射所对应的时隙;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
可选的,第一物理上行数据信道对应的总时隙,包括以下一项或多项:第一物理上行数据信道对应的总名义(nominal)时隙、第一物理上行数据信道对应的总物理(physical)时隙、第一物理上行数据信道对应的总连续时隙、第一传输块对应的总名义时隙、第一传输块对应的总物理时隙、第一传输块对应的总连续时隙,在此不做限制。
可选的,第一物理上行数据信道对应的可用时隙,包括以下一项或多项:第一物理上行数据信道对应的用于发送第一物理上行数据信道的时隙、第一物理上行数据信道对应的实际用于发送第一物理上行数据信道的时隙、第一物理上行数据信道对应的用于发送第一传输块的时隙、第一物理上行数据信道对应的实际用于发送第一传输块的时隙,在此不做限制。
可选的,为第一物理上行数据信道进行时域资源分配时对应的时隙,包括:为第一传输块进行时域资源分配时对应的时隙。其中,为第一传输块进行时域资源分配时对应的时隙,可以理解为:第一传输块使用repetition Type A的TDRA中的K,在此不做限制。
可选的,确定第一物理上行数据信道所传输的传输块的大小时对应的时隙,包括:确定第一传输块的大小时对应的时隙。其中,确定第一传输块的大小时对应的时隙,可以理解为:第一传输块计算传输块的大小时涉及的K,如第一传输块计算传输块的大小时乘以的K,在此不做限制。
可选的,第一物理上行数据信道所传输的传输块的大小根据第一物理上行数据信道的传输参数确定。
可选的,第一物理上行数据信道的一个传输时机对应的时隙,包括以下一项或多项:第一传输块的一个传输时机对应的名义时隙、第一传输块的一个传输时机对应的可用时隙,在此不做限制。
可选的,对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙,包括以下一项或多项:第一传输块一个速率匹配单元对应的名义时隙、第一传输块的一个速率匹配单元对应的可用时隙,在此不做限制,速率匹配单元指比特选择与比特交织的单元。
可选的,第一物理上行数据信道的一次冗余版本映射所对应的时隙,包括以下一项或多项:第一传输块的一个冗余版本映射所对应的名义时隙、第一传输块的一个冗余版本映射所对应的可用时隙,在此不做限制。
可选的,第一时间单元包括以下一项或多项:第一物理上行数据信道对应的总符号;第一物理上行数据信道对应的可用符号;为第一物理上行数据信道进行时域资源分配时对应的符号;确定第一物理上行数据信道所传输的传输块的大小时对应的符号;第一物理上行数据 信道的一个传输时机对应的符号;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号;第一物理上行数据信道的一次冗余版本映射所对应的符号;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号。
可选的,第一物理上行数据信道对应的总符号,包括以下一项或多项:第一物理上行数据信道对应的总名义(nominal)符号、第一物理上行数据信道对应的总物理(physical)符号、第一物理上行数据信道对应的总连续符号、第一传输块对应的总名义符号,第一传输块对应的总物理符号、第一传输块对应的总连续符号,在此不做限制。
可选的,第一物理上行数据信道对应的可用符号,包括以下一项或多项:第一物理上行数据信道对应的用于发送第一物理上行数据信道的符号、第一物理上行数据信道对应的实际用于发送第一物理上行数据信道的符号、第一物理上行数据信道对应的用于发送第一传输块的符号、第一物理上行数据信道对应的实际用于发送第一传输块的符号,在此不做限制。
可选的,为第一物理上行数据信道进行时域资源分配时对应的符号,包括:为第一物理上行数据信道进行时域资源分配时对应的时隙和为第一物理上行数据信道进行时域资源分配时每个时隙的符号之间的乘积。其中,为第一物理上行数据信道进行时域资源分配时对应的时隙和为第一物理上行数据信道进行时域资源分配时每个时隙的符号之间的乘积,可以理解为:为第一传输块进行时域资源分配时对应的时隙和为第一传输块进行时域资源分配时每个时隙的符号之间的乘积。为第一传输块进行时域资源分配时对应的时隙,可以理解为:第一传输块使用repetition Type A的TDRA中的K,在此不做限制。为第一传输块进行时域资源分配时每个时隙的符号,可以理解为:第一传输块使用repetition Type A的TDRA中的L,在此不做限制。
可选的,确定第一物理上行数据信道所传输的传输块的大小时对应的符号,包括:确定第一物理上行数据信道所传输的传输块的大小时对应的时隙和确定第一物理上行数据信道所传输的传输块的大小时每个时隙对应的符号之间的乘积。
其中,确定第一物理上行数据信道所传输的传输块的大小时对应的时隙和确定第一物理上行数据信道所传输的传输块的大小时每个时隙的符号之间的乘积,可以理解为:确定第一传输块的大小时对应的时隙和确定第一传输块的大小时每个时隙的符号之间的乘积。确定第一传输块的传输块的大小时对应的时隙,可以理解为:第一传输块计算传输块的大小时使用的K,在此不做限制。确定第一传输块的大小时每个时隙的符号,可以理解为:第一传输块计算传输块的大小时使用的L,在此不做限制。
可选的,第一物理上行数据信道的一个传输时机对应的符号,包括以下一项或多项:第一传输块的一个传输时机对应的名义符号、第一传输块的一个传输时机对应的可用符号,在此不做限制。
可选的,对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号,包括以下一项或多项:第一传输块一个速率匹配单元对应的名义符号,第一传输块的一个速率匹配单元对应的可用符号,在此不做限制,速率匹配单元指比特选择与比特交织的单元。
可选的,第一物理上行数据信道的一次冗余版本映射所对应的符号,包括以下一项或多项:第一传输块的一个冗余版本映射所对应的名义符号、第一传输块的一个冗余版本映射所对应的可用时隙,在此不做限制。
可选的,第一时间单元不包括S时隙。
示例性的,第一物理上行数据信道对应的总时隙不包括S时隙;第一物理上行数据信道对应的可用时隙不包括S时隙;为第一物理上行数据信道进行时域资源分配时对应的时隙不 包括S时隙;确定第一物理上行数据信道所传输的传输块的大小时对应的时隙不包括S时隙;第一物理上行数据信道的一个传输时机对应的时隙不包括S时隙;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙不包括S时隙;第一物理上行数据信道的一次冗余版本映射所对应的时隙不包括S时隙;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙不包括S时隙。
可选的,第一时间单元不包括以下一项或多项:S时隙中的符号;S时隙中的非下行符号;S时隙中的可用符号;S时隙中分配给解调参考信号的符号。其中,S时隙中的非下行符号可以包括:S时隙中的灵活符号和S时隙中的上行符号,在此不做限制。
示例性的,第一物理上行数据信道对应的总符号不包括S时隙中的符号;第一物理上行数据信道对应的可用符号不包括S时隙中的符号;为第一物理上行数据信道进行时域资源分配时对应的符号不包括S时隙中的符号;确定第一物理上行数据信道所传输的传输块的大小时对应的符号不包括S时隙中的符号;第一物理上行数据信道的一个传输时机对应的符号不包括S时隙中的符号;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号不包括S时隙中的符号;第一物理上行数据信道的一次冗余版本映射所对应的符号不包括S时隙中的符号;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号不包括S时隙中的符号。
又示例性的,第一物理上行数据信道对应的总符号不包括S时隙中的非下行符号;第一物理上行数据信道对应的可用符号不包括S时隙中的非下行符号;为第一物理上行数据信道进行时域资源分配时对应的符号不包括S时隙中的非下行符号;确定第一物理上行数据信道所传输的传输块的大小时对应的符号不包括S时隙中的非下行符号;第一物理上行数据信道的一个传输时机对应的符号不包括S时隙中的非下行符号;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号不包括S时隙中的非下行符号;第一物理上行数据信道的一次冗余版本映射所对应的符号不包括S时隙中的非下行符号;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号不包括S时隙中的非下行符号。
又示例性的,第一物理上行数据信道对应的总符号不包括S时隙中的可用符号;第一物理上行数据信道对应的可用符号不包括S时隙中的可用符号;为第一物理上行数据信道进行时域资源分配时对应的符号不包括S时隙中的可用符号;确定第一物理上行数据信道所传输的传输块的大小时对应的符号不包括S时隙中的可用符号;第一物理上行数据信道的一个传输时机对应的符号不包括S时隙中的可用符号;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号不包括S时隙中的可用符号;第一物理上行数据信道的一次冗余版本映射所对应的符号不包括S时隙中的可用符号;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号不包括S时隙中的可用符号。
又示例性的,第一物理上行数据信道对应的总符号不包括S时隙中分配给解调参考信号的符号;第一物理上行数据信道对应的可用符号不包括S时隙中分配给解调参考信号的符号;为第一物理上行数据信道进行时域资源分配时对应的符号不包括S时隙中分配给解调参考信号的符号;确定第一物理上行数据信道所传输的传输块的大小时对应的符号不包括S时隙中分配给解调参考信号的符号;第一物理上行数据信道的一个传输时机对应的符号不包括S时隙中分配给解调参考信号的符号;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号不包括S时隙中分配给解调参考信号的符号;第一物理上行数据信道的一次冗余版本映射所对应的符号不包括S时隙中分配给解调参考信号的符号;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号不包括S时隙中分配给解调参考 信号的符号。
可选的,第一物理上行数据信道的传输参数还包括第一时间单元的符号数,第一时间单元的符号包括以下一项或多项:第一物理上行数据信道在一个时隙分配的符号;为第一物理上行数据信道进行时域资源分配时每个时隙的符号;确定第一物理上行数据信道所传输的传输块的大小时每个时隙的符号。如图9A所示,第一时间单元的符号数为图9A中的L。
其中,第一物理上行数据信道在一个时隙分配的符号,可以理解为:第一传输块在一个时隙分配的符号。
其中,为第一物理上行数据信道进行时域资源分配时每个时隙的符号,可以理解为:为第一传输块进行时域资源分配时每个时隙的符号。
其中,确定第一物理上行数据信道所传输的传输块的大小时每个时隙的符号,可以理解为:确定第一传输块的大小时每个时隙的符号。
可选的,第一时隙数为大于或等于2的正整数。
可选的,第一时隙数为接入网设备从时隙数候选集合中获取并发送给终端设备的,时隙数候选集合可以由接入网设备通过高层信令配置给终端设备或者协议预定义,在此不做限制。另外,时隙数候选集合中至少包含一个大于或等于2的正整数。
可选的,第一时隙数由终端设备根据接入网设备下发的第一参数和第二参数确定,第二参数可以是第一时间单元的数目,第一参数由第一时隙数与第二参数确定。终端设备接收到第一参数和第二参数后,可以通过第二参数得到第一时间单元的数目,可以通过第一参数和第二参数确定第一时隙数。一种实现方式是,第一参数由第一时隙数和第二参数相乘得到。另一种实现方式是,第一参数由第一时隙数和第二参数联合编码得到。
可选的,第一时隙数为第一时间单元内包含的时隙个数,其中,时隙可以是协议中标称的时隙,即不考虑该时隙是否有效;其中,时隙也可以是有效时隙(available slot)。有效时隙是指不存在某些RRC配置使得该时隙无效,可以使时隙无效的RRC配置包括但不限于:将该时隙全部或部分OFDM符号配置为下行传输或更高优先级的上行传输,或者将该时隙中用于第一物理上行数据信道传输的L个符号的全部或部分符号配置为下行传输或更高优先级的上行传输,更高优先级的上行传输是指传输优先级高于第一物理上行数据信道的上行传输,传输优先级可以是物理层优先级或MAC层优先级或其它优先级。
802.终端设备从接入网设备接收第一物理上行数据信道的传输参数。相应的,接入网设备向终端设备发送第一物理上行数据信道的传输参数。
可选的,在本申请中,第一物理上行数据信道的传输参数可以包含在第一无线资源控制(radio resource control,RRC)信令中;或,第一物理上行数据信道的传输参数可以包含在第一下行控制信息(downlink control information,DCI)中;或,第一物理上行数据信道的传输参数中的部分参数可以包含在第一RRC信令中,第一物理上行数据信道的传输参数中的剩余部分参数可以包含在第一DCI中,在此不做限制。
示例性的,第一时间单元可以包含在第一RRC信令中,第一时间单元的符号数可以包括在第一DCI中。
803.终端设备根据第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率。
可选的,针对方式1,第一物理上行数据信道对应的数据速率满足以下公式(1)或公式(2)或公式(3):
Figure PCTCN2022101295-appb-000057
Figure PCTCN2022101295-appb-000058
Figure PCTCN2022101295-appb-000059
其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000060
为第j个服务小区中一个时隙的持续时间,
Figure PCTCN2022101295-appb-000061
为第j个服务小区中一个符号的持续时间,μ(j)为第j个服务小区对应的子载波间隔配置,N j为第j个服务小区中第一时间单元的数目,L 1为第j个服务小区中第一时间单元的符号数,V j,m为第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,服务小区是为终端设备提供服务的小区。
其中,针对公式(1)至公式(3)中的N j,第一时间单元包括以下一项或多项:第一物理上行数据信道对应的总时隙;第一物理上行数据信道对应的可用时隙;为第一物理上行数据信道进行时域资源分配时对应的时隙;确定第一物理上行数据信道所传输的传输块的大小时对应的时隙;第一物理上行数据信道的一个传输时机对应的时隙;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;第一物理上行数据信道的一次冗余版本映射所对应的时隙;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
可选的,针对方式1,第一物理上行数据信道对应的数据速率满足以下公式(4)或公式(5):
Figure PCTCN2022101295-appb-000062
Figure PCTCN2022101295-appb-000063
其中,L 2为第j个服务小区中第一时间单元的数目。可以理解的,针对公式(4)和公式(5)中的L 2,第一时间单元包括以下一项或多项:第一物理上行数据信道对应的总符号;第一物理上行数据信道对应的可用符号;为第一物理上行数据信道进行时域资源分配时对应的符号;确定第一物理上行数据信道所传输的传输块的大小时对应的符号;第一物理上行数据信道的一个传输时机对应的符号;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号;第一物理上行数据信道的一次冗余版本映射所对应的符号;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号。
可选的,公式(1)至公式(5)中
Figure PCTCN2022101295-appb-000064
其中,A为传输块的比特数(即A为第j个服务小区中第m个传输块的比特数),C为传输块的总码块数(即C为第j个服务小区中第m个传输块的总码块数),C′为传输块的调度的码块数(即C′为第j个服务小区中第m个传输块的调度的码块数)。C′为第j个服务小区中第m个传输块的调度的码块数,可以理解为:若调度第j个服务小区中第m个传输块的第一DCI不包含第一CBGTI域,则C′=C;若调度第j个服务小区中第m个传输块的第一DCI包含第一CBGTI域,则C′为第j个服务小区中第m个传输块的调度的码块数。
可选的,针对方式1,第一物理上行数据信道对应的数据速率满足以下公式(6):
Figure PCTCN2022101295-appb-000065
其中,公式(6)中
Figure PCTCN2022101295-appb-000066
或,
Figure PCTCN2022101295-appb-000067
可以理解的,公式(6)中V j,m所涉及的N j,第一时间单元包括以下一项或多项:第一物理上行数据信道对应的总时隙;第一物理上行数据信道对应的可用时隙;为第一物理上行数据信道进行时域资源分配时对应 的时隙;确定第一物理上行数据信道所传输的传输块的大小时对应的时隙;第一物理上行数据信道的一个传输时机对应的时隙;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;第一物理上行数据信道的一次冗余版本映射所对应的时隙;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
可选的,针对方式1,第一物理上行数据信道对应的数据速率满足以下公式(7):
Figure PCTCN2022101295-appb-000068
其中,L 3为第j个服务小区中第一时间单元的符号数(即图9A中的L),公式(7)中
Figure PCTCN2022101295-appb-000069
或,
Figure PCTCN2022101295-appb-000070
或,
Figure PCTCN2022101295-appb-000071
可以理解的,公式(7)中V j,m所涉及的N j,第一时间单元包括以下一项或多项:第一物理上行数据信道对应的总时隙;第一物理上行数据信道对应的可用时隙;为第一物理上行数据信道进行时域资源分配时对应的时隙;确定第一物理上行数据信道所传输的传输块的大小时对应的时隙;第一物理上行数据信道的一个传输时机对应的时隙;对第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;第一物理上行数据信道的一次冗余版本映射所对应的时隙;第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
可选的,在本申请中,公式(2)、公式(3)、公式(5)中的V j,m和公式(7)中的V j,m(公式(7)中
Figure PCTCN2022101295-appb-000072
或,
Figure PCTCN2022101295-appb-000073
)在满足第一条件时成立,第一条件为以下一项:
对第j个服务小区,高层参数PUSCH-ServingCellConfig中的processingType2Enabled被配置了,且被配置为enable(终端设备支持能力2);当终端设备使用MCS表5.1.3.1-1或5.1.3.1-3时,W=28,或,终端设备使用MCS表5.1.3.1-2,6.1.4.1-1,或6.1.4.1-2时,W=27:如果对一个PUSCH,至少有一个I MCS>W。换句话来说,该PUSCH为混合自动重传。
可选的,针对方式2,第一物理上行数据信道对应的数据速率满足以下公式(8):
Figure PCTCN2022101295-appb-000074
其中,M为第一物理上行数据信道上传输的传输块的数目,
Figure PCTCN2022101295-appb-000075
为传输第一物理上行数据信道的一个符号的持续时间,L 3为第一物理上行数据信道对应的第一符号数,DataRateCC为一个分量载波对应的最大数据速率。
其中,公式(8)中
Figure PCTCN2022101295-appb-000076
V j,m为第一物理上行数据信道上承载的第m个传输块的调度的比特数,A为传输块的比特数,C为传输块的总码块数,C′为传输块的调度的码块数。
可以看出,上述技术方案中,终端设备可以根据从接入网设备接收的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,因为第一物理上行数据信道的传输参数包括第一时间单元的数目,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码,所以终端设备是根据跨越时隙边界的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,这实现了在跨越时隙边界的情况下,精准确定第一物理上行数据信道的数据速率,即实现了一个TB跨越多个时隙传输的场景下精准确定数据速率。另外,也提升了调度的灵活性。
可选的,接入网设备还可以获取第二物理上行数据信道的传输参数,第二物理上行数据信道在每一个第二时间单元上至少附着一个传输块循环冗余校验码。其中,第二物理上行数据信道可以为PUSCH或其他信道,在此不做限制。可以理解的,第二物理上行数据信道可以 承载第二传输块,第二传输块占用第二时间单元。第二传输块可以为TB或其他传输块,在此不做限制。第二时间单元为第j个服务小区中一个时隙。
其中,第二物理上行数据信道的传输参数包括以下一项或多项:第j个服务小区中一个时隙内传输的传输块的数目、第j个服务小区中第m个传输块的比特数、第j个服务小区中第m个传输块的总码块数、第j个服务小区中第m个传输块的调度的码块数。可以理解的,第二物理上行数据信道的传输参数可以包括在第二RRC信令中;或,第二物理上行数据信道的传输参数可以包括在第二DCI中;或,第二物理上行数据信道的传输参数中的部分参数可以包括在第二RRC信令中,第二物理上行数据信道的传输参数中的剩余部分参数可以包括在第二DCI中,在此不做限制。
可选的,当接入网设备获取第二物理上行数据信道的传输参数后,接入网设备还可以向终端设备发送第二物理上行数据信道的传输参数,相应的,终端设备还可以从接入网设备接收第二物理上行数据信道的传输参数。可以理解的,终端设备从接入网设备接收第二物理上行数据信道的传输参数后,终端设备还可以根据第二物理上行数据信道的传输参数确定第二物理上行数据信道对应的数据速率。
可选的,第二物理上行数据信道对应的数据速率和第一物理上行数据信道对应的数据速率满足以下公式(9):
Figure PCTCN2022101295-appb-000077
其中,J′为属于第一频率范围的配置的服务小区个数,M′为第j′个服务小区中一个时隙中传输的传输块的数目,
Figure PCTCN2022101295-appb-000078
为第j′个服务小区中一个时隙的持续时间,μ(j′)为第j′个服务小区对应的子载波间隔配置,V j′,m′为第j′个服务小区中第m′个传输块的调度的比特数。
其中,V j′,m′与上述公式(1)至公式(5)中V j,m类似,区别在于,V j′,m′中的A为第j′个服务小区中第m′个传输块的比特数,V j′,m′中的C为第j′个服务小区中第m′个传输块的总码块数,V j′,m′中的C为第j′个服务小区中第m′个传输块的调度的码块数。
其中,公式(9)中的N j与公式(1)至公式(3)中的N j相同,在此不加赘述。
需要说明的,在本申请中,公式(8)中
Figure PCTCN2022101295-appb-000079
为第二物理上行数据信道对应的数据速率,公式(9)中
Figure PCTCN2022101295-appb-000080
为第一物理上行数据信道对应的数据速率。
示例性的,结合图5,可以看出,TB0共跨越3个时隙(即TB0采用TBoMS方式传输)。在这种情况下,时刻1不同载波上传输的TB的数据速率满足以下公式(10):
Figure PCTCN2022101295-appb-000081
可选的,第二物理上行数据信道对应的数据速率和第一物理上行数据信道对应的数据速率满足以下公式(11):
Figure PCTCN2022101295-appb-000082
其中,公式(11)中的L 2与公式(4)至公式(5)中的L 2相同,在此不加赘述。
其中,公式(11)中
Figure PCTCN2022101295-appb-000083
为第二物理上行数据信道对应的数据速率,公式(11)中
Figure PCTCN2022101295-appb-000084
为第一物理上行数据信道对应的数据速率。
可选的,在步骤803之后,终端设备还可以向接入网设备发送第一物理上行数据信道,相应的,接入网设备还可以从终端设备接收第一物理上行数据信道。其中,终端设备向接入网设备发送第一物理上行数据信道,包括:终端设备在第一物理上行数据信道对应的数据速 率满足公式(1)至公式(9)、公式(11)中的任意一个公式时,向接入网设备发送第一物理上行数据信道。
可选的,若公式(1)中的N j=1,则公式(1)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(2)中的N j=1,则公式(2)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(3)中的N j=1,则公式(3)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(4)中的L 2为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数,则公式(4)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(5)中的L 2为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数,则公式(5)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(6)中V j,m涉及的N j=1,则公式(6)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(7)中
Figure PCTCN2022101295-appb-000085
且公式(7)中L 3为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数,则公式(7)为第二物理上行数据信道对应的数据速率所满足的公式;若公式(7)中V j,m涉及的N j=1,且公式(7)中L 3为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数,则公式(7)为第二物理上行数据信道对应的数据速率所满足的公式。
可选的,终端设备还可以向接入网设备发送第二物理上行数据信道,相应的,接入网设备还可以从终端设备接收第二物理上行数据信道。其中,终端设备向接入网设备发送第二物理上行数据信道,包括:终端设备在第二物理上行数据信道对应的数据速率满足公式(1)(公式(1)中的N j=1)、公式(2)(公式(2)中的N j=1)、公式(3)(公式(3)中的N j=1)、公式(4)(公式(4)中的L 2为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数)、公式(5)(公式(5)中的L 2为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数)、公式(6)(公式(6)中V j,m涉及的N j=1)、公式(7)(公式(7)中V j,m涉及的N j=1,且公式(7)中L 3为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数;或,公式(7)中
Figure PCTCN2022101295-appb-000086
且公式(7)中L 3为第j个服务小区中第二物理上行数据信道在一个时隙分配的符号数)、公式(9)和公式(11)中的任意一个公式时,向接入网设备发送第一物理上行数据信道。
可选的,第一物理上行数据信道分配的资源块的数目,小于或等于第一资源块数目的1/N j,N j为第j个服务小区中第一时间单元的数目,第一资源块包括以下一项或多项:一个载波所包含的资源块;进行数据传输时载波使用的资源块;带宽部分的资源块;进行数据传输时载波中所使用的带宽部分的资源块;终端设备所支持的资源块。
可选的,接入网设备获取第一物理上行数据信道的传输参数;接入网设备根据第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率。可以看出,接入网设备可以自发根据第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,因为第一物理上行数据信道的传输参数包括第一时间单元的数目,第一物理上行数据信道在每一个第一时间单元上至多附着一个传输块循环冗余校验码,所以接入网设备是根据跨越时隙边界的第一物理上行数据信道的传输参数确定第一物理上行数据信道对应的数据速率,这实现了在跨越时隙边界的情况下,精准确定第一物理上行数据信道的数据速率,即实现了一个TB跨越多个时隙传输的场景下精准确定数据速率。另外,也提升了调度的灵活性,减少了交互过程,提高了在确定第一物理上行数据信道对应的数据速率时的效率。
可选的,接入网设备还可以根据第一物理上行数据信道对应的数据速率调度终端设备发送第一物理上行数据信道。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是, 上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或接入网设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中,上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,参见图10,图10为本申请实施例提供的一种通信装置的结构示意图。该通信装置1000可应用于上述图8所示的方法中,如图10所示,该通信装置1000包括:处理模块1001和收发模块1002。处理模块1001可以是一个或多个处理器,收发模块1002可以是收发器或者通信接口。该通信装置可用于实现上述任一方法实施例中涉及终端设备或接入网设备,或用于实现上述任一方法实施例中涉及网元的功能。该网元或者网络功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,该通信装置1000还可以包括存储模块1003,用于存储通信装置1000的程序代码和数据。
一种实例,当该通信装置作为终端设备或为应用于终端设备中的芯片,并执行上述方法实施例中由终端设备执行的步骤。收发模块1002用于支持与接入网设备等之间的通信,收发模块具体执行图8中由终端设备执行的发送和/或接收的动作,例如支持终端设备执行本文中所描述的技术的其他过程。处理模块1001可用于支持通信装置1000执行上述方法实施例中的处理动作,例如,支持终端设备执行步骤803,和/或本文所描述的技术的其它过程。
一种实例,当该通信装置作为接入网设备或为应用于接入网设备中的芯片,并执行上述方法实施例中由接入网设备执行的步骤。收发模块1002,用于支持与终端设备等之间的通信,具体执行图8中由接入网设备执行的发送和/或接收的动作,例如支持接入网设备执行步骤802,和/或用于本文中所描述的技术的其他过程。
在一种可能的实施方式中,当终端设备或接入网设备为芯片时,收发模块1002可以是接口、管脚或电路等。接口可用于输入待处理的数据至处理器,并可以向外输出处理器的处理结果。具体实现中,接口可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(radio frequency,RF)模块、天线等等)连接。接口通过总线与处理器相连。
处理模块1001可以是处理器,该处理器可以执行存储模块存储的计算机执行指令,以使该芯片执行图8实施例涉及的方法。
进一步的,处理器可以包括控制器、运算器和寄存器。示例性的,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、无互锁管道阶段架构的微处理器(microprocessor without interlocked piped stages architecture,MIPS) 架构、进阶精简指令集机器(advanced RISC machines,ARM)架构或者网络处理器(network processor,NP)架构等等。处理器可以是单核的,也可以是多核的。
该存储模块可以为该芯片内的存储模块,如寄存器、缓存等。存储模块也可以是位于芯片外部的存储模块,如只读存储器(Read Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)等。
需要说明的,处理器、接口各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
图11为本申请实施例提供的一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括至少一个处理器,还可以包括射频电路、天线以及输入输出装置。其中,处理器可用于对通信协议以及通信数据进行处理,还可以用于对终端设备进行控制,执行软件程序,处理软件程序的数据等。该终端设备还可以包括存储器,存储器主要用于存储软件程序和数据,这些涉及的程序可以在该通信装置出厂时即装载再存储器中,也可以在后期需要的时候再装载入存储器。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号,且天线为本申请实施例提供的天线。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括接收模块31、处理模块32和发送模块33。接收模块31也可以称为接收器、接收机、接收电路等,发送模块33也可以称为发送器、发射器、发射机、发射电路等。处理模块32也可以称为处理器、处理单板、处理装置等。
例如,处理模块32用于执行图8所示实施例中终端设备的功能。
图12为本申请实施例提供的一种简化的接入网设备的结构示意图。接入网设备包括射频信号收发及转换部分以及42部分,该射频信号收发及转换部分又包括接收模块41部分和发送模块43部分(也可以统称为收发模块)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;42部分主要用于基带处理,对接入网设备进行控制等。接收模块41也可以称为接收器、接收机、接收电路等,发送模块43也可以称为发送器、发射器、发射机、发射电路等。42部分通常是接入网设备的控制中心,通常可以称为处理模块,用于控制接入网设备执行上述图8中关于接入网设备所执行的步骤。具体可参见上述相关部分的描述。
42部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存 储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对接入网设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,针对于接入网设备,发送模块43用于执行图8所示实施例中接入网设备的功能。
本申请实施例还提供一种通信装置,包括处理器、存储器、输入接口和输出接口,输入接口用于接收来自通信装置之外的其它通信装置的信息,输出接口用于向通信装置之外的其它通信装置输出信息,处理器调用存储器中存储的计算机程序实现如图8所示实施例。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当计算机程序被运行时,实现如图8所示实施例。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机可执行指令,当计算机可执行指令被运行时,如图8所示实施例。
本申请实施例还提供一种包含指令的计算机程序产品,当计算机读取并执行计算机程序产品中的指令时,使得计算机执行实现如图8所示实施例。
本申请实施例还提供一种通信装置,包括处理器,用于执行存储器中存储的计算机程序(或计算机可执行指令),当计算机程序(或计算机可执行指令)被执行时,使得该装置执行如图8所示实施例。
本申请实施例还提供了一种包括计算机可执行指令的计算机程序产品,当该计算机程序产品被运行时,使得图8所示实施例的部分或全部步骤被执行。
本申请实施例还提供了一种包括计算机可执行指令的计算机程序,当该计算机程序被运行时,使得图8所示实施例的部分或全部步骤被执行。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,云服务器,或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种数据速率确定方法,其特征在于,所述方法包括:
    从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
    根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
  2. 一种数据速率确定方法,其特征在于,所述方法包括:
    获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
    向终端设备发送所述第一物理上行数据信道的传输参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一时间单元包括以下一项或多项:
    所述第一物理上行数据信道对应的总时隙;
    所述第一物理上行数据信道对应的可用时隙;
    为所述第一物理上行数据信道进行时域资源分配时对应的时隙;
    确定所述第一物理上行数据信道所传输的传输块的大小时对应的时隙;
    所述第一物理上行数据信道的一个传输时机对应的时隙;
    对所述第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的时隙;
    所述第一物理上行数据信道的一次冗余版本映射所对应的时隙;
    所述第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的时隙。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一时间单元包括以下一项或多项:
    所述第一物理上行数据信道对应的总符号;
    所述第一物理上行数据信道对应的可用符号;
    为所述第一物理上行数据信道进行时域资源分配时对应的符号;
    确定所述第一物理上行数据信道所传输的传输块的大小时对应的符号;
    所述第一物理上行数据信道的一个传输时机对应的符号;
    对所述第一物理上行数据信道所传输的传输块进行一次速率匹配时对应的符号;
    所述第一物理上行数据信道的一次冗余版本映射所对应的符号;
    所述第一物理上行数据信道所传输的传输块附着一次循环冗余校验码时对应的符号。
  5. 根据权利要求1或2或3所述的方法,其特征在于,所述第一时间单元不包括S时隙。
  6. 根据权利要求1或2或4所述的方法,其特征在于,所述第一时间单元不包括以下一项或多项:
    S时隙中的符号;
    所述S时隙中的非下行符号;
    所述S时隙中的可用符号;
    所述S时隙中分配给解调参考信号的符号。
  7. 根据权利要求1或2或3或5所述的方法,其特征在于,所述第一物理上行数据信道的传输参数还包括所述第一时间单元的符号数,所述第一时间单元的符号包括以下一项或多 项:
    所述第一物理上行数据信道在一个时隙分配的符号;
    为所述第一物理上行数据信道进行时域资源分配时每个时隙的符号;
    确定所述第一物理上行数据信道所传输的传输块的大小时每个时隙的符号。
  8. 根据权利要求1或3或5或7所述的方法,其特征在于,所述第一物理上行数据信道对应的数据速率满足以下公式:
    Figure PCTCN2022101295-appb-100001
    或,
    Figure PCTCN2022101295-appb-100002
    或,
    Figure PCTCN2022101295-appb-100003
    其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
    Figure PCTCN2022101295-appb-100004
    为所述第j个服务小区中一个时隙的持续时间,
    Figure PCTCN2022101295-appb-100005
    为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,N j为所述第j个服务小区中所述第一时间单元的数目,L 1为所述第j个服务小区中所述第一时间单元的符号数,V j,m为所述第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区。
  9. 根据权利要求1或4或6所述的方法,其特征在于,所述第一物理上行数据信道对应的数据速率满足以下公式:
    Figure PCTCN2022101295-appb-100006
    或,
    Figure PCTCN2022101295-appb-100007
    其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
    Figure PCTCN2022101295-appb-100008
    为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,L 2为所述第j个服务小区中所述第一时间单元的数目,V j,m为所述第j个服务小区中第m个传输块的调度的比特数,DataRate为J个分量载波对应的最大数据速率,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区。
  10. 根据权利要求1或3或5所述的方法,其特征在于,所述第一物理上行数据信道对应的数据速率满足以下公式:
    Figure PCTCN2022101295-appb-100009
    其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
    Figure PCTCN2022101295-appb-100010
    为所述第j个服务小区中一个时隙的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,DataRate为J个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区;
    Figure PCTCN2022101295-appb-100011
    或,
    Figure PCTCN2022101295-appb-100012
    V j,m为所述第j个服务小区中第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数,N j为所述第j个服务小区中所述第一时间单元的数目。
  11. 根据权利要求1或3或5或7所述的方法,其特征在于,所述第一物理上行数据信道对应的数据速率满足以下公式:
    Figure PCTCN2022101295-appb-100013
    其中,J为属于第一频率范围的配置的服务小区个数,M为第j个服务小区中一个时隙中传输的传输块的数目,
    Figure PCTCN2022101295-appb-100014
    为所述第j个服务小区中一个符号的持续时间,μ(j)为所述第j个服务小区对应的子载波间隔配置,L 3为所述第j个服务小区中所述第一时间单元的符号数,DataRateCC为一个分量载波对应的最大数据速率,所述服务小区是为所述终端设备提供服务的小区;
    Figure PCTCN2022101295-appb-100015
    或,
    Figure PCTCN2022101295-appb-100016
    或,
    Figure PCTCN2022101295-appb-100017
    V j,m为所述第j个服务小区中第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数,N j为所述第j个服务小区中所述第一时间单元的数目。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述第一物理上行数据信道分配的资源块的数目,小于或等于第一资源块数目的1/N j,N j为所述第j个服务小区中所述第一时间单元的数目,所述第一资源块包括以下一项或多项:
    一个载波所包含的资源块;
    进行数据传输时载波使用的资源块;
    带宽部分的资源块;
    进行数据传输时载波中所使用的带宽部分的资源块;
    所述终端设备所支持的资源块。
  13. 一种数据速率确定方法,其特征在于,所述方法包括:
    从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用OFDM符号个数;
    根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
  14. 一种数据速率确定方法,其特征在于,所述方法包括:
    获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用OFDM符号个数;
    向终端设备发送所述第一物理上行数据信道的传输参数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一物理上行数据信道所传输的传输块的大小根据所述第一物理上行数据信道的传输参数确定。
  16. 根据权利要求13-15任意一项所述的方法,其特征在于,所述第一物理上行数据信道对应的数据速率满足以下公式:
    Figure PCTCN2022101295-appb-100018
    其中,M为所述第一物理上行数据信道上传输的传输块的数目,
    Figure PCTCN2022101295-appb-100019
    为传输所述第一物理上行数据信道的一个符号的持续时间,L 3为所述第一物理上行数据信道对应的所述第一符号数,DataRateCC为一个分量载波对应的最大数据速率;
    Figure PCTCN2022101295-appb-100020
    V j,m为所述第一物理上行数据信道上承载的第m个传输块的调度的比特数,A为所述传输块的比特数,C为所述传输块的总码块数,C′为所述传输块的调度的码块数。
  17. 一种通信装置,其特征在于,所述装置包括收发模块和处理模块,
    所述收发模块,用于从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
    所述处理模块,用于根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
  18. 一种通信装置,其特征在于,所述装置包括收发模块,
    所述收发模块,用于获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元的数目,所述第一物理上行数据信道在每一个所述第一时间单元上至多附着一个传输块循环冗余校验码;
    所述收发模块,用于向终端设备发送所述第一物理上行数据信道的传输参数。
  19. 一种通信装置,其特征在于,所述装置包括收发模块和处理模块,
    所述收发模块,用于从接入网设备接收第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用OFDM符号个数;
    所述处理模块,用于根据所述第一物理上行数据信道的传输参数确定所述第一物理上行数据信道对应的数据速率。
  20. 一种通信装置,其特征在于,所述装置包括收发模块,
    所述收发模块,用于获取第一物理上行数据信道的传输参数;所述第一物理上行数据信道的传输参数包括第一时间单元对应的第一时隙数和第一符号数,所述第一物理上行数据信道在所述第一时间单元上至多附着一个传输块循环冗余校验码,所述第一时隙数为所述第一时间单元内包含的时隙个数,所述第一符号数为所述第一时间单元内包含的每个时隙内用于传输所述第一物理上行数据信道的正交频分复用OFDM符号个数;
    所述收发模块,用于向终端设备发送所述第一物理上行数据信道的传输参数。
  21. 一种通信装置,其特征在于,包括处理器,处理器调用存储器中存储的计算机程序使得如权利要求1-16任一项所述的方法被执行。
  22. 一种计算机可读存储介质,其特征在于,计算机可读存储介质中存储有计算机程序,当计算机程序被运行时,使得如权利要求1-16任一项所述的方法被执行。
PCT/CN2022/101295 2021-08-06 2022-06-24 一种数据速率确定方法及相关装置 WO2023011046A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110904542 2021-08-06
CN202110904542.1 2021-08-06
CN202111146785.XA CN115913452A (zh) 2021-08-06 2021-09-28 一种数据速率确定方法及相关装置
CN202111146785.X 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023011046A1 true WO2023011046A1 (zh) 2023-02-09

Family

ID=85155171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101295 WO2023011046A1 (zh) 2021-08-06 2022-06-24 一种数据速率确定方法及相关装置

Country Status (1)

Country Link
WO (1) WO2023011046A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238305A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Uplink channel design for slot-based transmission time interval (tti)
CN110036682A (zh) * 2016-09-14 2019-07-19 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN110380814A (zh) * 2018-04-12 2019-10-25 维沃移动通信有限公司 信息指示方法、终端设备和网络设备
CN110944399A (zh) * 2017-05-19 2020-03-31 Oppo广东移动通信有限公司 上行控制信息传输方法、装置及系统
CN111356236A (zh) * 2018-12-24 2020-06-30 华为技术有限公司 上行传输的方法、上行传输的装置、以及终端设备
CN111935845A (zh) * 2017-12-06 2020-11-13 Oppo广东移动通信有限公司 数据传输的方法和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170238305A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Uplink channel design for slot-based transmission time interval (tti)
CN110036682A (zh) * 2016-09-14 2019-07-19 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN110944399A (zh) * 2017-05-19 2020-03-31 Oppo广东移动通信有限公司 上行控制信息传输方法、装置及系统
CN111935845A (zh) * 2017-12-06 2020-11-13 Oppo广东移动通信有限公司 数据传输的方法和终端设备
CN110380814A (zh) * 2018-04-12 2019-10-25 维沃移动通信有限公司 信息指示方法、终端设备和网络设备
CN111356236A (zh) * 2018-12-24 2020-06-30 华为技术有限公司 上行传输的方法、上行传输的装置、以及终端设备

Similar Documents

Publication Publication Date Title
US11641249B2 (en) Method and apparatus for determining a duration of a repetition of a transport block
US11552685B2 (en) Apparatus, system and method of asymmetric beamforming training
CN106664702A (zh) 一种数据传输方法、装置及系统
WO2020221321A1 (zh) 通信方法以及通信装置
WO2013004159A1 (zh) 传输控制信道指示信息的方法、基站和用户设备
CN104380645A (zh) 灵活的harq ack/nack传输
CN113747588B (zh) 信息传输方法及装置
JP2020537852A (ja) ダウンリンク制御情報の伝送方法、ブラインド検出回数を取得するための方法及び装置
CN111770577A (zh) 确定传输资源的方法及装置
WO2019095334A1 (zh) 一种下行控制信息的发送方法、终端设备和网络设备
CN112968756B (zh) 参考信号配置方法和装置
US20240030964A1 (en) Communication method and apparatus
CN112020145A (zh) 一种通信方法及装置
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2022051311A1 (en) Apparatus, system, and method of advanced wireless communication
JP7189207B2 (ja) 信号送信方法、関連する装置及びシステム
CN111406431A (zh) 指示连续的资源分配
CN107710848A (zh) 数据传输方法、装置及系统
JP2023517980A (ja) 通信方法および装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
CN110612684B (zh) 一种应答反馈方法、终端及网络设备
WO2023011046A1 (zh) 一种数据速率确定方法及相关装置
CN115104277B (zh) 用于无线通信中的多分量载波物理下行链路共享信道调度的方法和装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
CN113938902A (zh) 小区选择方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE