WO2023011040A1 - 光复用段功率调节方法、系统和网络设备 - Google Patents

光复用段功率调节方法、系统和网络设备 Download PDF

Info

Publication number
WO2023011040A1
WO2023011040A1 PCT/CN2022/100926 CN2022100926W WO2023011040A1 WO 2023011040 A1 WO2023011040 A1 WO 2023011040A1 CN 2022100926 W CN2022100926 W CN 2022100926W WO 2023011040 A1 WO2023011040 A1 WO 2023011040A1
Authority
WO
WIPO (PCT)
Prior art keywords
ots
power
adjustment
information
attenuation
Prior art date
Application number
PCT/CN2022/100926
Other languages
English (en)
French (fr)
Inventor
肖述超
张明超
李晓建
张成兴
方瑜
贾殷秋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023011040A1 publication Critical patent/WO2023011040A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the embodiments of the present application relate to the field of optical transmission network communications, and in particular to a method, system and network equipment for adjusting power of an optical multiplex section.
  • the basic wavelength division multiplexing (Wavelength Division Multiplex, referred to as WDM) transmission system consists of an optical converter (Optical Transform Unit, referred to as OTU), an optical multiplexer (Optical Multiplexer Unit, referred to as OMU), an optical amplifier (Optical Amplifier, referred to as OA) , line fiber and optical demultiplexer (ODU, Optical Demultiplexer Unit).
  • OTU optical Transform Unit
  • OMU optical multiplexer
  • OA optical amplifier
  • ODU optical demultiplexer
  • OMU Optical Multiplex Section
  • ODU Optical Demultiplexer Unit
  • optical fiber lines are used to connect optical multiplexing sections, but the loss of optical fiber lines will change due to factors such as temperature and construction, and effective measures must be taken to compensate for the line fiber
  • the change of loss matches the gain and loss, so that the optical power is maintained at the reference value.
  • the network management system when used to manage the power of the WDM system in a centralized manner, since the network management system uses a periodic query mechanism, it has strict requirements on the query interval. The network management system crashes, and if the query interval is too long, it will not be able to respond quickly to the power of the WDM system, resulting in a delay in power adjustment; when using distributed management of the power of the WDM system on the device side, since whether to adjust and the amount of adjustment are determined by the device Each network element node in the network is calculated by itself, and a large amount of message interaction between network element nodes is required, which leads to excessive occupation of communication bandwidth and CPU processing time of network element nodes, resulting in communication congestion between network elements, and in turn leading to low power regulation efficiency.
  • the embodiment of the present application provides a method for adjusting the power of an optical multiplexing section, which is applied to the head node of an optical multiplexing section, and the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node, and the method includes : Obtain the power parameters of the OTS, wherein the power parameters include upstream output power, downstream input power, and OTS actual gain value; obtain the The power difference information of the OTS; when the power difference information satisfies the preset startup adjustment condition, obtain the power adjustment information of the OTS according to the power parameter of the OTS; send the power adjustment information to the corresponding OTS on the OTS node of the OTS, so that the OTS node corresponding to the OTS performs power adjustment according to the power adjustment information.
  • the embodiment of the present application also provides an optical multiplexing section power adjustment system, which is applied to the head node of the optical multiplexing section, and the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node.
  • the device Including: a first acquisition module, configured to acquire the power parameters of the OTS, wherein the power parameters include upstream output power, downstream input power, and an actual gain value of the OTS; a second acquisition module, configured to , the downstream input power and the actual gain value of the OTS acquire the power difference information of the OTS; a third acquisition module is configured to, when the power difference information satisfies a preset startup adjustment condition, according to the power of the OTS The parameter acquires the power adjustment information of the OTS; the sending module is configured to send the power adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS can adjust the power according to the power adjustment information. information for power regulation.
  • the embodiment of the present application also provides a network device, which includes: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be processed by the at least one processor. Instructions executed by the processor, the instructions are executed by the at least one processor, so that the at least one processor can execute the power adjustment method for the optical multiplex section described in any one of the above.
  • Fig. 1 is a schematic structural diagram of an optical multiplexing section of a wavelength division multiplexing transmission system provided by an embodiment of the present application;
  • Fig. 2 is the flow chart of the optical multiplexing section power adjustment method provided by one embodiment of the present application
  • FIG. 3A is a flow chart of an optical multiplexing section power adjustment method describing different acquisition modes of power parameters of the OTS provided by an embodiment of the present application;
  • FIG. 3B is an interactive flow chart of acquiring power parameters in a serial mode provided by an embodiment of the present application.
  • FIG. 3C is an interactive flow chart of acquiring power parameters in a parallel mode provided by an embodiment of the present application.
  • FIG. 4A is a flow chart of an optical multiplex section power adjustment method provided in an embodiment of the present application in a deployment scenario
  • FIG. 4B is a flow chart of the specific implementation of the adjustment action execution in step 406;
  • FIG. 5 is a flowchart of an optical multiplex section power adjustment method provided in an embodiment of the present application in an operation and maintenance scenario
  • FIG. 6 is a flow chart of step 404 in the optical multiplexing section power adjustment method provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of step 505 in the optical multiplexing section power adjustment method provided by an embodiment of the present application.
  • FIG. 8 is a flow chart of a method for adjusting the power of an optical multiplex section capable of cyclic adjustment provided by an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of an optical multiplexing section power adjustment system provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the main purpose of the embodiment of the present application is to propose a method, system and network equipment for adjusting the power of the optical multiplex section, aiming to realize the power adjustment control of the optical multiplex section on the first node of the optical multiplex section, so that the power adjustment control of the optical multiplex section can be performed more efficiently. Power regulation control of the optical multiplexing section.
  • an appropriate variable optical attenuator (Variable Optical Attenuator, VOA for short) can be added between the OMU and OA in the optical multiplexing section, so that the initial end of the system can output normal optical power. That is, the reference power optimized for the OMS power of the optical multiplexing section; as shown in Figure 1, the optical multiplexing section of the wavelength division multiplexing transmission system can include an optical conversion unit OTU, an optical multiplexing unit OMU, an optical amplifier OA, an adjustable optical attenuator ( Variable Optical Attenuator (VOA for short) and optical demultiplexing unit ODU.
  • VOA Variable Optical Attenuator
  • NE1 identifies the first node of the optical multiplexing section
  • NE2 indicates the OTS node of the first optical transmission section OTS
  • NE3 indicates the OTS node of the second optical transmission section OTS.
  • Each embodiment of the present application is based on the optical multiplexing section of the wavelength division multiplexing transmission system shown in Figure 1. If there is no VOA between the OMU and the OA of the optical multiplexing section of the wavelength division multiplexing transmission system, then this The application does not need to calculate the attenuation adjustment information, but only needs to calculate the gain adjustment information.
  • the embodiment of the present application relates to a method for adjusting the power of the optical multiplexing section, which is applied to the head node of the optical multiplexing section.
  • the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node, as shown in Figure 2, specifically including :
  • step 201 power parameters of the OTS are acquired, where the power parameters include upstream output power, downstream input power, and an actual gain value of the OTS.
  • the optical multiplexing section shown in FIG. 1 includes two optical transmission sections, OTS1 and OTS2.
  • the power parameter of each OTS comes from the upstream node and the downstream node.
  • the power parameters of OTS1 are derived from NE1 and NE2.
  • the power parameters of OTS2 come from NE2 and NE3.
  • the power parameters of each OTS include: upstream output power from upstream nodes, downstream input power from downstream nodes, OTS actual gain value, OTS gain range, OTS actual attenuation value, and OTS attenuation range.
  • the first node needs to obtain the power parameters of OTS1 and OTS2.
  • the power parameter of OTS1 is obtained by the first power parameter of the first node NE1 and the second power parameter of the OTS1 node NE2.
  • the power parameter of OTS2 is obtained by the OTS1 node NE2
  • the second power parameter of OTS2 and the second power parameter of OTS2 node NE3 are acquired.
  • the power parameters of each OTS include upstream output power, downstream input power, OTS actual gain value, OTS gain range, OTS actual attenuation value, OTS attenuation range, Among them, the upstream output power, the downstream input power parameters and the actual gain value of the OTS are used to judge whether the OTS needs power adjustment.
  • This application uses the power parameters of OTS1 and OTS2 obtained in different scenarios in Table 1 and Table 2 as examples for illustration.
  • the deployment scenario refers to the scenario of building an OTN network
  • the operation and maintenance scenario refers to the operation scenario after the OTN network is built.
  • step 202 the power difference information of the OTS is obtained according to the upstream output power, the downstream input power and the actual gain value of the OTS.
  • the calculation method of the power difference information of each OTS is the same in different scenarios.
  • the power loss of each OTS segment is obtained according to the difference between the upstream output power and the downstream input power, and then according to the actual gain of the OTS
  • the cumulative power difference information of each OTS (the cumulative power of OTS1 The difference information is itself, the cumulative power difference information of OTS2 is the sum of the power difference information of OTS1 and OTS2, and so on)
  • the power difference information calculated according to the power parameters of OTS1 and OTS2 given in Table 1 and Table 2 and cumulative power difference information are shown in Table 3:
  • OTS Power Difference Information OTS cumulative power difference information
  • Step 203 when the power difference information satisfies the preset startup adjustment condition, the power adjustment information of the OTS is acquired according to the power parameter of the OTS.
  • this application can also make judgments based on the OTS cumulative power difference information.
  • Different judgment methods correspond to different judgment conditions, and two types can be preset.
  • Judgment conditions the start-up adjustment condition of the power difference (corresponding to the OTS power difference information) and the start-up adjustment condition of the accumulated power difference (corresponding to the OTS accumulated power difference threshold).
  • the OTS power difference information is used as the condition to judge first. If the power difference does not meet the start condition, then the judgment is made based on the OTS accumulated power difference information.
  • the start adjustment condition of the power difference and the start adjustment of the accumulated power difference If one of the conditions is met, the entire OMS starts power regulation.
  • the start adjustment condition of the power difference includes that the power difference information is greater than the preset power difference threshold, and the start adjustment condition of the accumulated power difference includes that the accumulated power difference information is greater than the preset accumulated power difference threshold; if the power difference threshold and the accumulated power The difference thresholds are all set to 5db, so the power difference of each OTS segment and the sum of the power differences of each OTS segment are required to be no greater than 5db; as can be seen from Table 3, in the deployment scenario, the power difference information of OTS1 satisfies the adjustment condition, so the entire OMS needs to start adjustment; in the operation and maintenance scenario, although the power difference information of OTS1 and OTS2 does not meet the adjustment conditions, the cumulative power difference of OTS2 meets the adjustment conditions, so the entire OMS needs to start adjustment.
  • the fiber loss value of the OTS needs to be obtained first according to the upstream output power and downstream input power of the OTS and the actual attenuation value of the OTS, and then according to the fiber loss value , the preset OTS attenuation value, OTS gain range, OTS attenuation range and OTS actual gain value to calculate the OTS target gain value and OTS target attenuation value of OTS respectively, and then according to the OTS actual gain value, OTS actual attenuation value, OTS target The gain value and the OTS target attenuation value are used to calculate the OTS power adjustment information.
  • the power adjustment information includes attenuation adjustment information and gain adjustment information.
  • Step 204 sending the power adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS performs power adjustment according to the power adjustment information.
  • OTS nodes corresponding to OTS there are two OTS nodes corresponding to OTS, which are the originating node and the receiving node.
  • NE1 is the originating node of OTS1
  • NE2 is the receiving node of OTS1
  • NE2 is the originating node of OTS2
  • NE3 is the receiving node of OTS2
  • the power adjustment information needs to be sent to the receiving OTS node corresponding to each OTS.
  • the power adjustment information of OTS1 is sent to OTS1 node NE2, and the power adjustment information of OTS2 is sent to OTS2 node NE3.
  • the head node can Send power adjustment information in parallel, that is, the first node transmits power adjustment information to OTS1 node NE2 and OTS2 node NE3 respectively, and the attenuation adjustment information and gain adjustment information in the power adjustment information include not only the size to be adjusted, but also the corresponding OTS node identification to ensure the correctness of the power adjustment information; after the OTS node receives the power adjustment information, it will adjust the gain of the optical amplifier OA according to the gain adjustment information in the power adjustment information, and adjust the gain of the optical amplifier OA according to the attenuation adjustment information in the power adjustment information.
  • the attenuation of the optical attenuator VOA is used to complete the power adjustment of each optical transmission section. After the adjustment is completed, the next round of adjustment can be performed or the adjustment can be stopped.
  • the power parameter of the optical transmission section OTS is obtained through the head node of the optical multiplexing section, wherein the power parameter includes upstream output power, downstream input power, and OTS actual gain value; according to The upstream output power, the downstream input power and the actual gain value of the OTS obtain the power difference information of the OTS; when the power difference information meets the preset start-up adjustment conditions, the power adjustment information of the OTS is obtained according to the power parameters of the OTS; the power adjustment information is sent to The OTS node corresponding to the OTS is used for the OTS node corresponding to the OTS to perform power adjustment according to the power adjustment information; so that the application can quickly obtain the power parameters of each OTS and respond when the first node has service transmission, and the power adjustment is turned on and The calculation of the power adjustment amount is completed by the first node, which solves the technical problems of slow response of power parameters of the optical transmission section and low efficiency of power adjustment of the optical transmission
  • the embodiment of the present application relates to a method for adjusting the power of an optical multiplexing section, which is applied to the first node of the optical multiplexing section.
  • the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node, as shown in FIG. 3A , specifically including :
  • Step 301 acquire the first power parameter of the head node, and send parameter request information to the OTS node corresponding to the OTS.
  • Step 302 receiving the second power parameter returned by the OTS node corresponding to the OTS.
  • the head node when obtaining the power parameters of each OTS, the head node first needs to obtain its own first power parameter, and then sends a parameter request message to the OTS node corresponding to each OTS to obtain the OTS power parameter on the OTS node, in order to
  • the initial node NE1, OTS1 node NE2, and OTS2 node NE3 shown in Figure 1 are examples to illustrate the power parameter acquisition process. After the initial node NE1 acquires its own first power parameter, there are two types of transmissions to the OTS1 node NE2 and the OTS2 node NE3.
  • the method of parameter request information serial mode and parallel mode.
  • the head node NE1 Since the head node NE1 has two ways of sending parameter request information to the OTS1 node NE2 and the OTS2 node NE3, there are also two ways for the OTS1 node NE2 and the OTS2 node NE3 to return the second power parameter: serial mode and parallel mode. That is, when sending the parameter request information in a serial manner, the returned second power parameter is also in a serial manner; when sending the parameter request information in a parallel manner, the returned second power parameter is also in a parallel manner.
  • the optical multiplexing section includes n OTSs, and there are n+1 OTS nodes, and the first node is the first OTS node; the n is a natural number greater than or equal to 2.
  • the OMS includes an initial node NE1 , an OTS1 node NE2 , and an OTS2 node NE3 .
  • the first node NE1 reads its own power parameters, and sends parameter request information to OTS1 node NE2, OTS1 node NE2 reads its own power parameters after receiving the parameter request information, and sends parameter request information to OTS2 node NE3, OTS2 node NE3 receives After receiving the parameter request information, read its own power parameters.
  • OTS2 node NE3 After OTS2 node NE3 reads its own power parameters, it sends its own power parameters to OTS1 node NE2, and OTS1 node NE2 receives the power parameters of OTS2 node NE3, and sends its own power parameters Node NE1. That is, the current node will send the power parameters of the current node and the downstream node to the upstream node together.
  • the head node sends parameter request information to other OTS nodes except the head node among the n+1 OTS nodes.
  • the OTS1 node NE2 and the OTS2 node NE3 respectively return the power parameters to the head node NE1 after obtaining their own power parameters.
  • the OMS includes an initial node NE1 , an OTS1 node NE2 , and an OTS2 node NE3 .
  • the head node NE1 sends parameter request information to the OTS1 node NE2 and the OTS2 node NE3 at the same time, and the OTS1 node NE2 and the OTS2 node NE3 obtain their own power parameters after receiving the parameter request information, wherein the parameter request information specifies the obtained node The location, the parameter type to be returned, and the location where the power parameter is obtained.
  • Step 303 generating a power parameter of the OTS according to the first power parameter and the second power parameter.
  • the first power parameter is the output power of the first node NE1
  • the second power parameter actually contains multiple sets of power parameter information
  • each set of power parameter information represents the upstream output power, downstream input power, and actual gain of an OTS segment.
  • Value, gain range, actual attenuation value, attenuation range and status information taking the structure of the optical multiplexing section shown in Figure 1 as an example, the obtained first power parameter and second power parameter are shown in Table 4:
  • the upstream output power is the output power of the upstream optical amplifier OA
  • the downstream input power is the downstream optical amplifier OA input power.
  • the output power is obtained at the exit of the optical amplifier OA of each node, the input power, the actual gain value and the gain range are obtained at the entrance of the optical amplifier OA of the node, and the actual attenuation value and attenuation range are obtained at the optical amplifier OA Acquired at the attenuator VOA.
  • Table 1 shows the power parameters of the OTS obtained based on the first power parameter and the second power parameter obtained in Table 4.
  • step 304 the power difference information of the OTS is obtained according to the upstream output power, the downstream input power and the actual gain value of the OTS.
  • this step is substantially the same as step 102 provided in the embodiment of the present application, and details are not repeated here.
  • Step 305 when the power difference information satisfies the preset startup adjustment condition, the power adjustment information of the OTS is acquired according to the power parameter of the OTS.
  • this step is substantially the same as step 203 provided in the embodiment of the present application, and details are not repeated here.
  • Step 306 sending the power adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS performs power adjustment according to the power adjustment information.
  • this step is substantially the same as step 104 provided in the embodiment of the present application, and details are not repeated here.
  • the power parameters of each optical transmission section OTS can also be acquired in parallel acquisition mode, which can reduce the time for the head node to acquire each optical transmission OTS power parameter, and further improve the performance of the OTS.
  • the power adjustment speed of the applied optical multiplex section can reduce the time for the head node to acquire each optical transmission OTS power parameter, and further improve the performance of the OTS.
  • the embodiment of this application relates to a method for adjusting the power of an optical multiplexing section, which is applied to the first node of the optical multiplexing section.
  • the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node.
  • OTS optical transmission section
  • FIG. 4A is a flow chart in a deployment scenario, and details are as follows.
  • step 401 power parameters of the OTS are obtained, where the power parameters include upstream output power, downstream input power, and an actual gain value of the OTS.
  • this step is substantially the same as step 201 provided in the embodiment of the present application, and details are not repeated here.
  • step 402 the power difference information of the OTS is obtained according to the upstream output power, the downstream input power and the actual gain value of the OTS.
  • this step is substantially the same as step 202 provided in the embodiment of the present application, and details are not repeated here.
  • Step 403 when the power difference information satisfies the preset start-up adjustment condition, obtain the optical fiber loss of the OTS according to the upstream output power, the downstream input power and the actual attenuation value of the OTS.
  • the judgment that the power difference information satisfies the preset start-up adjustment is roughly the same as the judgment step in step 203 provided in the embodiment of the present application, and will not be described here one by one; when obtaining the power difference information of each OTS segment, First, it is necessary to obtain the fiber loss of the OTS according to the upstream output power, downstream input power and OTS actual attenuation value of each OTS section.
  • the specific calculation process is as follows: the first step is to obtain the OTS section according to the difference between the upstream output power and the downstream input power In the second step, the optical fiber loss of the OTS is obtained according to the difference between the power loss of the OTS segment and the actual attenuation value of the OTS.
  • Step 404 Obtain an OTS target gain value and an OTS target attenuation value of the OTS according to the optical fiber loss of the OTS, the OTS gain range, and the preset OTS attenuation value.
  • the power parameters also include the OTS gain range and the actual OTS attenuation value.
  • the OTS target gain value and the OTS target attenuation value of the OTS segment are obtained through the optical fiber loss of the OTS, the OTS gain range and the preset OTS attenuation value.
  • step 405 the difference between the OTS target gain value and the OTS actual gain value is used as the OTS gain adjustment information, and the difference between the OTS target attenuation value and the OTS actual attenuation value is used as the OTS attenuation adjustment information.
  • the OTS gain adjustment information can be obtained according to the difference between the OTS target gain value and the OTS actual gain value, and the OTS gain adjustment information can be obtained according to the OTS target
  • the difference between the attenuation values obtains the OTS attenuation adjustment information.
  • the values of the OTS gain adjustment information and the OTS attenuation adjustment information may be positive or negative. A positive value indicates an increase, and a negative value indicates a decrease.
  • Step 406 Send the OTS gain adjustment information and the OTS attenuation adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS can perform power adjustment according to the OTS gain adjustment information and the OTS attenuation adjustment information.
  • the OMS includes an initial node NE1 , an OTS1 node NE2 , and an OTS2 node NE3 .
  • the head node NE1 will send adjustment requests to OTS1 node NE2 and OTS2 node NE3 respectively; the adjustment request includes the OA and VOA ports that need to be adjusted, and the OTS gain adjustment information corresponding to the OA that needs to be adjusted, the need to adjust
  • the VOA corresponds to the OTS attenuation adjustment information. That is, the head node sends adjustment requests to downstream nodes in parallel, which is beneficial for each node to obtain adjustment requests at the same time as possible, thereby achieving synchronous adjustment, and improving adjustment speed and adjustment accuracy as much as possible.
  • the OTS1 node NE2 and the OTS2 node NE3 perform gain adjustment or attenuation adjustment according to the port specified in the adjustment request.
  • OTS1 node NE2 and OTS2 node NE3 will return a successful or failed adjustment response to the first node NE1 after the adjustment is completed.
  • FIG. 5 shows the flow chart in the operation and maintenance scenario, and the details are as follows.
  • Step 501 when the power difference information satisfies the preset start-up adjustment condition, obtain the optical fiber loss of the OTS according to the upstream output power, the downstream input power and the actual attenuation value of the OTS.
  • step 502 the power difference information of the OTS is obtained according to the upstream output power, the downstream input power and the actual gain value of the OTS.
  • Step 503 when the power difference information satisfies the preset start-up adjustment condition, the optical fiber loss of the OTS is obtained according to the upstream output power, the downstream input power and the actual attenuation value of the OTS.
  • Step 504 Obtain an OTS target gain value and an OTS target attenuation value of the OTS according to the actual OTS gain value, the OTS fiber loss, and the OTS attenuation range.
  • the power parameters also include the actual OTS attenuation value and the OTS attenuation range.
  • the OTS target gain value and the OTS target attenuation value of the OTS segment are obtained through the optical fiber loss of the OTS, the actual gain value of the OTS, and the OTS attenuation range.
  • step 505 the difference between the OTS target gain value and the OTS actual gain value is used as the OTS gain adjustment information, and the difference between the OTS target attenuation value and the OTS actual attenuation value is used as the OTS attenuation adjustment information.
  • Step 506 Send the OTS gain adjustment information and the OTS attenuation adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS can perform power adjustment according to the OTS gain adjustment information and the OTS attenuation adjustment information.
  • step 506 is similar to the specific implementation manner of step 406, please refer to FIG. 4B.
  • each step in Fig. 5 is different from each step in Fig. 4, and the only difference is that the parameters used in calculating the target gain value and the OTS target attenuation value in step 504 and step 404 are different; and the specific realization of the remaining steps is akin.
  • the deployment scenario refers to the new OTN network scenario. Since the business is not officially in operation, the impact of adjustment on the business does not need to be considered. However, in the operation and maintenance scenario, the service has been officially operated, and the impact of adjustment on the business needs to be considered; therefore, in different scenarios In this case, the parameters used to calculate the target gain value and the OTS target attenuation value are different.
  • each OTS node can know the scene it is currently in, and based on the scene it is in, use the parameters corresponding to the scene to calculate the target gain value and OTS target attenuation value.
  • the power parameters of the OTS obtained by the first node can be the same, that is, the obtained power parameters include: upstream output power, downstream input power, OTS actual gain value, OTS gain range, OTS actual attenuation value, OTS Actual attenuation value, OTS attenuation range; and then calculate the target gain value and OTS target attenuation value according to the parameters corresponding to the scene selected in different scenarios.
  • the first node obtains different parameters, that is, only obtains the parameters required for calculating the target gain value and the OTS target attenuation value in this scenario.
  • adaptive adjustments can be made to each optical transmission section according to the power of each optical transmission section, thereby avoiding the unified adjustment of each optical transmission section and ensuring The power of each optical transmission section on the multiplexing section meets the system design requirements.
  • the embodiment of the present application relates to a method for adjusting the power of an optical multiplexing section, which is applied to a head node of an optical multiplexing section.
  • the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node.
  • This embodiment mainly describes the specific implementation manners of obtaining the OTS target gain value and the OTS target attenuation value in different scenarios.
  • Step 404 obtaining the OTS target gain value and the OTS target attenuation value according to the optical fiber loss of the OTS, the OTS gain range, and the preset OTS attenuation value, which specifically includes the following steps.
  • step 601 the sum of the optical fiber loss of the OTS and a preset attenuation value of the OTS is used as an ideal gain value of the OTS.
  • Step 602 judging whether the ideal gain value belongs to the OTS gain range.
  • Step 603 compare the obtained ideal gain value with the gain range of the OTS to see whether the obtained ideal gain value is within the gain range of the OTS, if the ideal gain value does not belong to the gain range of the OTS, then Step 603 is executed, and if the ideal gain value belongs to the gain range of the OTS, step 604 is executed.
  • step 603 the minimum gain value within the OTS gain range is used as the OTS target gain value, and the difference between the OTS target gain value and the optical fiber loss of the OTS is used as the OTS target attenuation value.
  • the ideal gain value does not belong to the OTS gain range, it means that the ideal gain value is smaller than the minimum value in the OTS gain range, indicating that the ideal gain value is too small, and the ideal gain value cannot be used.
  • OTS The minimum gain value within the gain range is used as the OTS target gain value of the OTS; after the OTS target gain value is determined, the difference between the OTS target gain value and the OTS fiber loss is used as the OTS target attenuation value.
  • step 604 the ideal gain value is used as the OTS target gain value, and the preset OTS attenuation value is used as the OTS target attenuation value.
  • the ideal gain value belongs to the OTS gain range, it indicates that the size of the ideal gain value is the size of the gain value required by the current OTS, therefore, the obtained ideal gain value can be used as the OTS target gain value of the OTS , and use the preset OTS attenuation value as the OTS target attenuation value.
  • Table 8-1-2 shows the power parameters of each network element read in this example
  • Table 8-1-3 shows the power difference information of OTS1 and OTS2 obtained in this example
  • Table 8-1-4 is the power adjustment information calculated in this example
  • the OTS attenuation adjustment value is OTS attenuation adjustment information
  • the OTS gain adjustment value is OTS gain adjustment information
  • Step 504 obtaining the OTS target gain value and the OTS target attenuation value of the OTS according to the actual OTS gain value, the OTS optical fiber loss, and the OTS attenuation range, which specifically includes the following steps.
  • step 701 the difference between the actual gain value of the OTS and the optical fiber loss of the OTS is used as the ideal attenuation value of the OTS.
  • the difference between the optical fiber loss of the OTS and the actual gain value of the OTS can be used as the ideal attenuation value of the OTS.
  • Step 702 judging whether the ideal attenuation value belongs to the OTS attenuation range.
  • step 704 compare the acquired ideal attenuation value with the attenuation range of the OTS to see whether the acquired ideal attenuation value is within the attenuation range of the OTS, and if the ideal attenuation value belongs to the attenuation range of the OTS, execute In step 703, if the ideal attenuation value does not belong to the attenuation range of the OTS, then step 704 is executed.
  • Step 703 Use the actual OTS gain value as the OTS target gain value, and use the ideal attenuation value as the OTS target attenuation value.
  • the ideal attenuation value belongs to the attenuation range of the OTS, it means that the size of the ideal attenuation value is the size of the attenuation value required by the current OTS, that is, it can be considered that the actual gain value at this time is the same as the target gain value, and the required The adjustment value of is 0, therefore, the OTS actual gain value can be used as the OTS target gain value, and the ideal attenuation value can be used as the OTS target attenuation value.
  • step 704 the minimum attenuation value within the OTS attenuation range is used as the OTS target attenuation value, and the sum of the OTS target attenuation value and the optical fiber loss of the OTS is used as the OTS target gain value.
  • the ideal attenuation value does not belong to the OTS attenuation range, it means that the ideal attenuation value is too small, and the ideal attenuation value cannot be used, and the minimum attenuation value within the OTS attenuation range needs to be used as the OTS target attenuation value of the OTS; After the OTS target attenuation value is determined, the sum of the OTS target attenuation value and the OTS fiber loss is used as the OTS target gain value.
  • step 507 the difference between the OTS target gain value and the OTS actual gain value is used as the OTS gain adjustment information, and the difference between the OTS target attenuation value and the OTS actual attenuation value is used as the OTS attenuation adjustment information.
  • this step is substantially the same as step 405 provided in the embodiment of the present application, and details are not repeated here.
  • Step 508 Send the OTS gain adjustment information and the OTS attenuation adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS can perform power adjustment according to the OTS gain adjustment information and the OTS attenuation adjustment information.
  • this step is substantially the same as step 404 provided in the embodiment of the present application, and details are not repeated here.
  • Table 8-2-3 is the power difference information of OTS1 and OTS2 obtained in this example
  • Table 8-2-4 is the power adjustment information calculated in this example
  • VOA target attenuation value VOA minimum attenuation 1db
  • the adjustment method can also be different when the optical transmission section is not in use.
  • the optical transmission section is in the starting state, by adjusting the gain and attenuation of the optical transmission section, the The power of each optical transmission section meets the system design requirements, thereby ensuring the normal operation of the receiver of the wavelength division multiplexing system; when the optical transmission section is in the operation and maintenance state, the power information of each optical transmission section on the multiplexing section is regularly monitored , to ensure that the power of each optical transmission section on the multiplexing section meets the system design requirements, and when adjusting the power of each optical transmission section, the power adjustment information can be obtained by combining the gain attribute and attenuation attribute of the optical transmission section itself, so that The accuracy of the power adjustment information obtained in the present application is better, and the power adjustment effect on the optical transmission section is better.
  • the embodiment of the present application relates to a method for adjusting the power of an optical multiplexing section, which is applied to the head node of the optical multiplexing section.
  • the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node, as shown in FIG. 8 , specifically including :
  • Step 801 acquire power parameters of the OTS, where the power parameters include upstream output power, downstream input power, and an actual gain value of the OTS.
  • this step is substantially the same as step 101 provided in the embodiment of the present application, and details are not repeated here.
  • Step 802 acquire the power difference information of the OTS according to the upstream output power, the downstream input power and the actual gain value of the OTS.
  • this step is substantially the same as step 102 provided in the embodiment of the present application, and details are not repeated here.
  • Step 803 when the power difference information satisfies the preset startup adjustment condition, the power adjustment information of the OTS is acquired according to the power parameter of the OTS.
  • this step is substantially the same as step 103 provided in the embodiment of the present application, and details are not repeated here.
  • Step 804 sending the power adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS performs power adjustment according to the power adjustment information.
  • this step is substantially the same as step 104 provided in the embodiment of the present application, and details are not repeated here.
  • Step 805 obtain the adjustment times of the optical multiplex section OMS.
  • the number of adjustments is for the entire OMS adjustment. Every time a round of adjustment is performed, the number of adjustments is increased by 1. In each round of adjustment, each OTS of the OMS is adjusted. After each round of adjustment, 1 will be added to the original number of adjustments, and this number of adjustments can be saved on the first node.
  • Step 806 when the number of adjustments is less than the preset number of adjustments, obtain updated power parameters of each OTS, and obtain updated power difference information of the OTSs according to the updated power parameters.
  • the OMS can also perform power adjustment.
  • the updated power parameters returned by each OTS after power adjustment are obtained, and according to the updated The power parameter is used to obtain the power difference information.
  • This step obtains the updated power parameter and obtains the power difference information according to the updated power parameter. They will be described one by one in detail; and when the number of adjustments of the OMS is greater than or equal to the preset number of adjustments, it means that the OMS can no longer perform power adjustment.
  • the number of adjustments will be compared with the preset number of adjustments, and as long as the number of adjustments is less than the preset number of adjustments, it will enter step 807; until a certain power adjustment, The power adjustment will stop only when the number of adjustments is greater than or equal to the preset number of adjustments.
  • Step 807 when the updated power difference information satisfies the preset stop adjustment condition, stop the power adjustment of the network element node corresponding to the OTS.
  • the updated power difference information and accumulated power difference information meet the preset stop adjustment condition, it means that the power of each OTS segment at this time meets the system requirement and no further adjustment is required.
  • the number of adjustments and the power information of the adjusted optical transmission section can be automatically judged, so that when certain conditions are met,
  • the application can automatically stop the power adjustment of each optical transmission section on the multiplexing section, so that the application has a higher degree of automation.
  • the embodiment of the present application relates to an optical multiplexing section power adjustment system, which is applied to the first node of the optical multiplexing section.
  • the optical multiplexing section includes at least one optical transmission section OTS, and the OTS includes an OTS node, as shown in FIG. 9 , including:
  • the first acquisition module 901 is configured to acquire power parameters of the OTS, where the power parameters include upstream output power, downstream input power, and an actual gain value of the OTS.
  • the second obtaining module 902 is configured to obtain the power difference information of the OTS according to the upstream output power, the downstream input power and the actual gain value of the OTS.
  • the third acquiring module 903 is configured to acquire the power adjustment information of the OTS according to the power parameters of the OTS when the power difference information satisfies a preset start-up adjustment condition.
  • the sending module 904 is configured to send the power adjustment information to the OTS node corresponding to the OTS, so that the OTS node corresponding to the OTS performs power adjustment according to the power adjustment information.
  • this embodiment is a system embodiment corresponding to other embodiments of the present application, and this embodiment can be implemented in cooperation with other embodiments. Relevant technical details mentioned in other embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition. Correspondingly, the relevant technical details mentioned in this embodiment can also be applied in other embodiments.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • the embodiment of the present application relates to a network device, as shown in FIG. 10 , including: including at least one processor 1001; and a memory 1002 communicatively connected to at least one processor 1001; Instructions executed by the processor 1001, the instructions are executed by at least one processor 1001, so that the at least one processor 1001 can execute the optical multiplex section power adjustment method described in any one of the above method embodiments.
  • the memory 1002 and the processor 1001 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 1001 and various circuits of the memory 1002 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 1001 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 1001 .
  • the processor 1001 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management and other control functions.
  • the memory 1002 can be used to store data used by the processor 1001 when performing operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提出了一种光复用段功率调节方法、系统和网络设备,涉及光网络传输领域,所述方法包括:获取OTS的功率参数,其中,功率参数包括上游输出功率、下游输入功率和OTS实际增益值;根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息;当功率差信息满足预设的启动调节条件时,根据OTS的功率参数获取OTS的功率调节信息;将功率调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据功率调节信息进行功率调节。

Description

光复用段功率调节方法、系统和网络设备
相关申请的交叉引用
本申请基于申请号为“202110898073.7”、申请日为2021年08月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及光传输网络通信领域,特别涉及一种光复用段功率调节方法、系统和网络设备。
背景技术
基本的波分复用(Wavelength Division Multiplex,简称WDM)传输系统由光转换器(Optical Transform Unit,简称OTU)、光合波器(Optical Multiplexer Unit,简称OMU)、光放大器(Optical Amplifier,简称OA)、线路光纤和光分波器(ODU,Optical Demultiplexer Unit)组成。从OMU的输出到ODU的输入为光复用段(Optical Multiplex Section,OMS),前一个OA的输出到后一个OA的输入为光传输段(Optical Transmission Section,简称OTS)。在波分复用传输系统的实际运行中,光复用段之间是采用光纤线路连接的,但光纤线路由于受温度、施工等因素影响会导致其损耗会发生变化,需采取有效措施补偿线路光纤损耗的变化,使增益与损耗匹配,从而使光功率维持在基准值。为了对WDM系统的功率损耗进行自动在线调节,通常可以在网络管理系统上对WDM系统的功率进行集中式管理和在设备侧对WDM系统的功率进行分布式管理,保证系统的光复用段OMS光功率维持在最优状态。
然而,在采用在网络管理系统对WDM系统的功率进行集中式管理时,由于网络管理系统采用的是定期查询机制,对查询间隔有着严格的要求,查询间隔过短会占有网络管理系统大量资源导致网络管理系统崩溃,查询间隔过大会无法对WDM系统的功率进行快速响应导致功率调节有时延;在采用在设备侧对WDM系统的功率进行分布式管理时,由于是否调节以及调节量都是由设备内各个网元节点自行计算的,网元节点间需要进行大量的消息交互导致过多占用网元节点的通信带宽和CPU处理时间,造成网元间通信阻塞,进而导致功率调节效率低下。
发明内容
本申请实施例提供了一种光复用段功率调节方法,应用在光复用段的首节点上,所述光复用段至少包含一个光传输段OTS,所述OTS包含有OTS节点,所述方法包括:获取所述OTS的功率参数,其中,所述功率参数包括上游输出功率、下游输入功率、OTS实际增益值;根据所述上游输出功率、所述下游输入功率和所述OTS实际增益值获取所述OTS的功率差信息;当所述功率差信息满足预设的启动调节条件时,根据所述OTS的功率参数获取所述OTS的功率调节信息;将所述功率调节信息发送至所述OTS对应的所述OTS节点上,以供所述OTS对应的所述OTS节点上根据所述功率调节信息进行功率调节。
本申请实施例还提供了一种光复用段功率调节系统,应用在光复用段的首节点上,所述光复用段至少包含一个光传输段OTS,所述OTS包含有OTS节点,所述装置包括:第一获取模块,用于获取所述OTS的功率参数,其中,所述功率参数包括上游输出功率、下游输入功率、OTS实际增益值;第二获取模块,用于根据所述上游输出功率、所述下游输入功率和所述OTS实际增益值获取所述OTS的功率差信息;第三获取模块,用于当所述功率差信息满足预设的启动调节条件时,根据所述OTS的功率参数获取所述OTS的功率调节信息;发送模块,用于将所述功率调节信息发送至所述OTS对应的所述OTS节点上,以供所述OTS对应的所述OTS节点根据所述功率调节信息进行功率调节。
本申请实施例还提供了一种网络设备,所述设备包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述任意一项所述的光复用段功率调节方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是本申请一个实施例提供波分复用传输系统的光复用段的结构示意图;
图2是本申请一个实施例提供的光复用段功率调节方法的流程图;
图3A是本申请一个实施例提供的描述OTS的功率参数的不同获取方式的光复用段功率调节方法的流程图;
图3B是本申请一个实施例提供的串行方式下的获取功率参数的交互流程图;
图3C是本申请一个实施例提供的并行方式下的获取功率参数的交互流程图;
图4A是本申请一个实施例提供的光复用段功率调节方法在开局场景中的流程图;
图4B是步骤406的具体实现的调节动作执行流程图;
图5是本申请一个实施例提供的光复用段功率调节方法在运维场景中的流程图;
图6是本申请一个实施例提供的光复用段功率调节方法中步骤404的流程图;
图7是本申请一个实施例提供的光复用段功率调节方法中步骤505的流程图;
图8是本申请一个实施例提供的能够循环调节的光复用段功率调节方法的流程图;
图9是本申请一个实施例提供的光复用段功率调节系统的结构示意图;
图10是本申请一个实施例提供的网络设备的结构示意图。
具体实施方式
本申请实施例的主要目的在于提出一种光复用段功率调节方法、系统和网络设备,旨在实现可以在光复用段的首节点上实现光复用段的功率调节控制,使得可以更高效的进行光复用段的功率调节控制。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的 前提下可以相互结合相互引用。
通常在波分复用传输系统的调试时,可以在光复用段的OMU与OA间加入适当的可调光衰减器(Variable Optical Attenuator,简称VOA),使系统的开始端输出正常的光功率,即为光复用段OMS功率优化的基准功率;如图1所示,波分复用传输系统的光复用段可以包含光转换单元OTU、光复用单元OMU、光放大器OA、可调光衰减器(Variable Optical Attenuator,简称VOA)和光解复用单元ODU组成,图中NE1标识光复用段的首节点,NE2表示第一光传输段OTS的OTS节点,NE3表示第二光传输段OTS的OTS节点,本申请的各个实施例是以图1所示的波分复用传输系统的光复用段基础上进行,若波分复用传输系统的光复用段的OMU与OA之间没有设置VOA,则本申请不需要进行衰减调节信息的计算,只需要计算增益调节信息即可。
本申请的实施例涉及一种光复用段功率调节方法,应用在光复用段的首节点上,光复用段至少包含一个光传输段OTS,OTS包含有OTS节点,如图2所示,具体包括:
步骤201,获取OTS的功率参数,其中,功率参数包括上游输出功率、下游输入功率和OTS实际增益值。
图1所示的光复用段包含有OTS1和OTS2两个光传输段。其中,每个OTS的功率参数来源于上游节点和下游节点。比如图1所示。OTS1的功率参数来源于NE1,NE2。OTS2的功率参数来源于NE2,NE3。对于节点NE2来说,既包含OTS1的功率参数,也包含OTS2的功率参数。首节点NE1向NE2请求功率参数时,NE2会返回这两部分的功率参数。即,每个OTS的功率参数包括:来自上游节点的上游输出功率,来自下游节点的下游输入功率、OTS实际增益值、OTS增益范围、OTS实际衰减值、OTS衰减范围。
具体的,首节点需要获取OTS1和OTS2的功率参数,OTS1的功率参数是由首节点NE1上的第一功率参数和OTS1节点NE2的第二功率参数获取的,OTS2的功率参数是由OTS1节点NE2的第二功率参数和OTS2节点NE3的第二功率参数获取的,每个OTS的功率参数包括上游输出功率、下游输入功率、OTS实际增益值、OTS增益范围、OTS实际衰减值、OTS衰减范围,其中,上游输出功率、下游输入功率参数和OTS实际增益值用于判断该OTS是否需要进行功率调节,本申请以表1和表2不同场景下获取的OTS1和OTS2的功率参数为例进行说明。其中,开局场景是指新建OTN网络的场景,运维场景是指OTN网络建好后的运营场景。
表1 开局场景下OTS1、OTS2的功率参数
Figure PCTCN2022100926-appb-000001
表2 运维场景下OTS1、OTS2的功率参数
Figure PCTCN2022100926-appb-000002
步骤202,根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息。
具体地说,每一个OTS的功率差信息的在不同场景下的计算方式都是相同的,首先根据上游输出功率和下游输入功率的差值获取每一个OTS段的功率损耗,之后根据OTS实际增益值和功率损耗的差值获取该OTS段对应的功率差信息,除此之外,在每一个OTS的功率差信息获取到之后,还可以获取每一个OTS的累计功率差信息(OTS1的累计功率差信息是它本身,OTS2的累计功率差信息是OTS1和OTS2的功率差信息之和,以此类推),根据表1和表2所给出的OTS1、OTS2的功率参数所计算的功率差信息和累计功率差信息如表3所示:
表3 不同场景下的各个OTS的功率差信息和累计功率差信息
OTS段 调节场景 OTS功率损耗 OTS功率差信息 OTS累计功率差信息
OTS1 开局场景 28db -8db -8db
OTS2 开局场景 24db -2db -10db
OTS1 运维场景 24db -4db -4db
OTS2 运维场景 24db -3db -7db
步骤203,当功率差信息满足预设的启动调节条件时,根据OTS的功率参数获取OTS的功率调节信息。
具体地说,本申请除了可以根据OTS功率差信息来判断是否开启功率调节时,还可以根据OTS累计功率差信息来进行判断,不同的判断方式所对应的判断条件不相同,可以预设两种判断条件:功率差的启动调节条件(对应OTS功率差信息)和累计功率差的启动调节条件(对应OTS累计功率差门限)。在一个调节流程中先以OTS功率差信息为条件进行判断,如果功率差不满足启动条件,则再根据OTS累计功率差信息为条件进行判断,功率差的启动调节条件和累计功率差的启动调节条件有一个满足,则整个OMS启动功率调节。此时功率差的启动调节条件包括功率差信息大于预设的功率差阈值,累计功率差的启动调节条件包括累计功率差信息大于预设的累计功率差阈值;如该功率差阈值与该累计功率差阈值都设为5db,那么就要求各个OTS段的功率差和各个OTS段的功率差之和都不得大于5db;由表3可知,开局场景下,OTS1的功率差信息满足调节条件,所以整个OMS需要启动调节;而运维场景下,虽然OTS1,OTS2的功率差信息不满足调节条件,但是OTS2的累计功率差满足调节条件,所以整个OMS需要启动调节。而在完成是否启动功率调节的判断之后,在需要进行功率调节时,首先需要根据OTS的上游输出功率和下游输入功率和OTS实际衰减值来获取该OTS的光纤损耗值,之后再根据光纤损耗值、预设的OTS衰减值、OTS增益范围、OTS衰减范围和OTS实际增益值来分别计算OTS的OTS目标增益值和OTS目标衰减值,之后再根据OTS实际增益值、OTS实际衰减值、OTS目标增益值和OTS目标衰减值来计算OTS的功率调节信息,功率调节信息包含衰减调节信息和增益调节信息两种;而在OTS功率差信息和OTS累计功率差信息都不满足启动调节条件时,说明光复用段一切正常,不需要进行调节。
此处需要注意的是,无论是根据OTS功率差信息还是根据OTS累计功率差信息进行判断时,都是根据OTS功率差信息或根据OTS累计功率差信息的绝对值进行判断的。
步骤204,将功率调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据功率调节信息进行功率调节。
具体地说,OTS对应的OTS节点包括两个,分别是发端节点和收端节点,如NE1是OTS1发端节点,NE2是OTS1收端节点;NE2是OTS2发端节点,NE3是OTS2收端节点;在对 各个OTS进行调节时,需要将功率调节信息发送至各个OTS对应的收端OTS节点,如,OTS1的功率调节信息发送至OTS1节点NE2,OTS2的功率调节信息发送至OTS2节点NE3,首节点可以以并行方式发送功率调节信息,即首节点分别向OTS1节点NE2和OTS2节点NE3传输功率调节信息,功率调节信息中的衰减调节信息和增益调节信息除了包括要调节的大小之外还包括各自对应的OTS节点标识,以保证功率调节信息的正确性;OTS节点在接受到功率调节信息后,会根据功率调节信息中的增益调节信息调节光放大器OA的增益,根据功率调节信息中的衰减调节信调节光衰减器VOA的衰减,以此来完成对各个光传输段的功率调节,调节完成之后可进行下一轮调节或者停止调节。
本申请实施例,在光复用段功率调节的过程中,通过光复用段的首节点获取光传输段OTS的功率参数,其中,功率参数包括上游输出功率、下游输入功率、OTS实际增益值;根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息;当功率差信息满足预设的启动调节条件时,根据OTS的功率参数获取OTS的功率调节信息;将功率调节信息发送至OTS对应的OTS节点,以供OTS对应的OTS节点根据功率调节信息进行功率调节;使得本申请可以在首节点有业务传输时,快速获取各个OTS的功率参数并进行响应,且功率调节的开启和功率调节量的计算都是由首节点完成的,解决了行业内光复用段功率调节方法所带来的光传输段的功率参数响应慢和光传输段的功率调节效率低下的技术问题。
本申请的实施例涉及一种光复用段功率调节方法,应用在光复用段的首节点上,光复用段至少包含一个光传输段OTS,OTS包含有OTS节点,如图3A所示,具体包括:
步骤301,获取首节点的第一功率参数,并向OTS对应的OTS节点发送参数请求信息。
步骤302,接收OTS对应的OTS节点返回的第二功率参数。
具体地说,在获取各个OTS的功率参数时,首节点首先需要获取自身的第一功率参数,之后再向各个OTS对应的OTS节点发送参数请求消息,来获取OTS节点上的OTS功率参数,以图1所示的首节点NE1、OTS1节点NE2和OTS2节点NE3为例说明功率参数的获取过程,首节点NE1先获取自身的第一功率参数之后,有两种向OTS1节点NE2和OTS2节点NE3发送参数请求信息的方法:串行方式和并行方式。由于首节点NE1向OTS1节点NE2和OTS2节点NE3有两种发送参数请求信息的方式,因此OTS1节点NE2和OTS2节点NE3在返回第二功率参数时,也有两种方法:串行方式和并行方式。即,当发送参数请求信息采用串行方式时,返回的第二功率参数也采用串行方式;当发送参数请求信息采用并行方式时,返回的第二功率参数也采用并行方式。
光复用段包含n个OTS,且所述OTS节点有n+1个,所述首节点为第1个OTS节点;所述n为大于或等2的自然数。
串行方式下,第i个OTS节点向第i+1个OTS节点发送参数请求信息,其中,i=1,2,3……n;第i个节点会接收第i+1个节点的功率参数,并将读取的自身的功率参数和接收的第i+1个节点的功率参数一同发送至第i-1个节点。
请参考图3B,该OMS中包含首节点NE1、OTS1节点NE2、OTS2节点NE3。首节点NE1读取自身的功率参数,并向OTS1节点NE2发送参数请求信息,OTS1节点NE2接收到参数请求信息之后读取自身的功率参数,并向OTS2节点NE3发送参数请求信息,OTS2节点NE3接收到参数请求信息之后读取自身的功率参数。OTS2节点NE3读取自身的功率参数后,将自身的功率参数发送至OTS1节点NE2,OTS1节点NE2接收OTS2节点NE3的功率 参数后,把自身的功率参数和OTS2节点NE3的功率参数一同发送至首节点NE1。即,本节点会将本节点和下游节点的功率参数一同发给上游节点。
并行方式下,首节点向n+1个所述OTS节点中除所述首节点外的其他所述OTS节点发送参数请求信息。OTS1节点NE2和OTS2节点NE3在获取到自身的功率参数之后,分别向首节点NE1返回功率参数。
请参考图3C,该OMS中包含首节点NE1、OTS1节点NE2、OTS2节点NE3。首节点NE1同时向OTS1节点NE2和OTS2节点NE3分别发送参数请求信息,OTS1节点NE2和OTS2节点NE3在接收到参数请求信息之后获取自身的功率参数,其中,参数请求信息中规定了所获取的节点位置、所需要返回的参数类型、功率参数的获取位置。
步骤303,根据第一功率参数和第二功率参数生成OTS的功率参数。
具体地说,第一功率参数是首节点NE1的输出功率,第二功率参数实际上包含多组功率参数信息,每一组功率参数信息代表一个OTS段的上游输出功率、下游输入功率、实际增益值、增益范围、实际衰减值、衰减范围和状态信息,以图1所示的光复用段的结构为例,所获取的第一功率参数和第二功率参数如表4所示:
表4 第一功率参数和第二功率参数
Figure PCTCN2022100926-appb-000003
其中,“-”表示不需要获取该节点的该参数或者获取之后并不需要使用;对于每个OTS段来说,上游输出功率就是上游光放大器OA的输出功率,而下游输入功率就是下游光放大器OA的输入功率。输出功率是在每个节点的光放大器OA的出口处获取的,输入功率、实际增益值和增益范围是在该节点的光放大器OA的入口处获取的,而实际衰减值和衰减范围是在光衰减器VOA处获取的。以表4所获取的第一功率参数和第二功率参数为依据所获取的OTS的功率参数如表1所示。
步骤304,根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息。
具体地说,本步骤与本申请实施例所提供的步骤102大致相同,此处不一一赘述。
步骤305,当功率差信息满足预设的启动调节条件时,根据OTS的功率参数获取OTS的功率调节信息。
具体地说,本步骤与本申请实施例所提供的步骤203大致相同,此处不一一赘述。
步骤306,将功率调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据功率调节信息进行功率调节。
具体地说,本步骤与本申请实施例所提供的步骤104大致相同,此处不一一赘述。
本实施例,在其他实施例地基础上,还可以在获取各个光传输段OTS的功率参数时以并行获取方式获取,可以使得首节点可以减少获取各个光传输OTS功率参数的时间,进一步提 升本申请的光复用段的功率调节速度。
本申请的实施例涉及一种光复用段功率调节方法,应用在光复用段的首节点上,光复用段至少包含一个光传输段OTS,OTS包含有OTS节点,本实施中具体两种不同场景下的流程图。
如图4A所示为开局场景下的流程图,具体如下。
步骤401,获取OTS的功率参数,其中,功率参数包括上游输出功率、下游输入功率和OTS实际增益值。
具体地说,本步骤与本申请实施例所提供的步骤201大致相同,此处不一一赘述。
步骤402,根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息。
具体地说,本步骤与本申请实施例所提供的步骤202大致相同,此处不一一赘述。
步骤403,当功率差信息满足预设的启动调节条件时,根据上游输出功率、下游输入功率和OTS实际衰减值获取OTS的光纤损耗。
具体地说,功率差信息满足预设的启动调节调节的判断与本申请实施例提供的步骤203的判断步骤大致相同,此处不一一赘述;在获取每个OTS段的功率差信息时,首先需要根据各个OTS段的上游输出功率、下游输入功率和OTS实际衰减值获取该OTS的光纤损耗,具体的计算过程为:第一步,根据上游输出功率和下游输入功率的差值获取OTS段的功率损耗,第二步,根据OTS段的功率损耗和OTS实际衰减值的差值获取OTS的光纤损耗。
步骤404,根据OTS的光纤损耗、OTS增益范围、预设的OTS衰减值获取OTS的OTS目标增益值和OTS目标衰减值。
当处于开局场景时,功率参数还包括OTS增益范围、OTS实际衰减值。该OTS段的OTS目标增益值和OTS目标衰减值是通过OTS的光纤损耗、OTS增益范围和预设的OTS衰减值获取的。
步骤405,将OTS目标增益值和OTS实际增益值的差值作为OTS增益调节信息,并将OTS目标衰减值和OTS实际衰减值的差值作为OTS衰减调节信息。
具体地说,在OTS段的OTS目标增益值和OTS目标衰减值获取到之后,就可以根据OTS目标增益值和OTS实际增益值的差值获取OTS增益调节信息,根据OTS目标衰减值和OTS实际衰减值的差值获取OTS衰减调节信息,OTS增益调节信息和OTS衰减调节信息的值可能是正值,也可能是负值,正值表示调大,负值则表示调小。
步骤406,将OTS增益调节信息和OTS衰减调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据OTS增益调节信息和OTS衰减调节信息进行功率调节。
具体的,请参考图4B,该OMS中包含首节点NE1、OTS1节点NE2、OTS2节点NE3。
首先,首节点NE1会分别向OTS1节点NE2、OTS2节点NE3发送调节请求;该调节请求中包含会指出需要调节的OA、VOA端口,以及该需要调节的OA对应的OTS增益调节信息、该需要调节的VOA对应的OTS衰减调节信息。即,首节点采用并行方式向下游节点发送调节请求,该种方式有利于各节点能够尽可能同时获得调节请求,从而实现同步调节,尽可能提高调节速度以及调节准确度。
其次,OTS1节点NE2、OTS2节点NE3在收到调节请求后,根据调节请求中指定的端口进行增益调节或衰减调节。
再次,OTS1节点NE2、OTS2节点NE3在调节完成后,会向首节点NE1返回成功或失 败的调节响应。
如图5所示为运维场景下的流程图,具体如下。
步骤501,当功率差信息满足预设的启动调节条件时,根据上游输出功率、下游输入功率和OTS实际衰减值获取OTS的光纤损耗。
步骤502,根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息。
步骤503,当功率差信息满足预设的启动调节条件时,根据上游输出功率、下游输入功率和OTS实际衰减值获取OTS的光纤损耗。
步骤504,根据OTS实际增益值、OTS的光纤损耗和OTS衰减范围获取OTS的OTS目标增益值和OTS目标衰减值。
当处于运维场景时,功率参数还包括OTS实际衰减值、OTS衰减范围。该OTS段的OTS目标增益值和OTS目标衰减值是通过OTS的光纤损耗、OTS实际增益值和OTS衰减范围获取的。
步骤505,将OTS目标增益值和OTS实际增益值的差值作为OTS增益调节信息,并将OTS目标衰减值和OTS实际衰减值的差值作为OTS衰减调节信息。
步骤506,将OTS增益调节信息和OTS衰减调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据OTS增益调节信息和OTS衰减调节信息进行功率调节。
具体的,该步骤506的具体实现方式与步骤406的具体实现方式类似,请参考图4B。
其中,图5中的各步骤与图4中的各步骤,唯一不同的是,步骤504与步骤404中计算目标增益值和OTS目标衰减值所用到的参数不同;而其余步骤的具体实现都是类似的。开局场景即是指新建OTN网络场景,由于业务没有正式运营,不用考虑调节对业务造成的影响,而运维场景下,业务已经正式运营,需要考虑调节对业务造成的影响;因此,在不同场景下,用于计算目标增益值和OTS目标衰减值所用到的参数是不同的。
在不同的场景下,光复用段内会被预置不同的场景参数,各OTS节点可以知晓自己目前所处的场景,并基于自己所处的场景,利用与场景对应的参数计算目标增益值和OTS目标衰减值。其中,不同的场景下,首节点获取的OTS的功率参数可以是相同的,即获取的功率参数包括:上游输出功率、下游输入功率、OTS实际增益值、OTS增益范围、OTS实际衰减值、OTS实际衰减值、OTS衰减范围;然后根据不同场景下选取与该场景对应的参数计算目标增益值和OTS目标衰减值。也可以,不同的场景下,首节点获取不同的参数,即仅获取该场景下计算目标增益值和OTS目标衰减值所需的参数。
本实施例,在其他实施例地基础上,还可以根据各个光传输段的自身的功率情况,对各个光传输段进行自适应的调节,从而避免了对各个光传输段的统一化调节,保证复用段上各个光传输段的功率满足系统设计要求。
本申请的实施例涉及一种光复用段功率调节方法,应用在光复用段的首节点上,光复用段至少包含一个光传输段OTS,OTS包含有OTS节点。本实施例中主要描述不同场景下,获取OTS目标增益值和OTS目标衰减值的具体实现方式。
如图6所示为图4所示的实施例中步骤404的具体实现过程。步骤404,根据OTS的光纤损耗、OTS增益范围、预设的OTS衰减值获取OTS目标增益值和OTS目标衰减值,具体包括如下步骤。
步骤601,将OTS的光纤损耗和预设的OTS衰减值的和作为OTS的理想增益值。
步骤602,判断理想增益值是否属于OTS增益范围。
具体地说,将所获取的理想增益值跟该OTS的增益范围进行比较,看所获取的理想增益值是否在该OTS的增益范围内,若该理想增益值不属于该OTS的增益范围,则执行步骤603,若该理想增益值属于该OTS的增益范围,则执行步骤604。
步骤603,将OTS增益范围内的最小增益值作为OTS目标增益值,将OTS目标增益值和OTS的光纤损耗的差值作为OTS目标衰减值。
具体地说,当理想增益值不属于该OTS增益范围时,表示理想增益值比OTS增益范围内的最小值还小,说明该理想增益值偏小,不能够使用该理想增益值,需要将OTS增益范围内的最小增益值作为OTS的OTS目标增益值;OTS目标增益值确定之后,根据OTS目标增益值和OTS光纤损耗的差值作为OTS目标衰减值。
步骤604,将理想增益值作为OTS目标增益值,将预设的OTS衰减值作为OTS目标衰减值。
具体地说,当理想增益值属于该OTS增益范围时,说明该理想增益值的大小是当前OTS所需要的增益值的大小,因此,可以将所获取的理想增益值作为OTS的OTS目标增益值,并将预设的OTS衰减值作为OTS目标衰减值。
示例的,下面为一个具体例子。
表8-1-2 为该例子中读取的各网元的功率参数
站点 端口 输出功率 输入功率 增益db 增益范围 衰减 衰减范围
NE1 OA1出口 2dbm - - - - -
NE2 VOA2 - - - - 8db [0,20]db
NE2 OA2入口 - -26dbm 20db [10,40]db - -
NE2 OA2出口 -6dbm - - - - -
NE3 VOA3 - - - - 6db [0,20]db
NE3 OA3入口 - -30dbm 22db [10,40]db - -
表8-1-3 为该例子获取的OTS1、OTS2的功率差信息
Figure PCTCN2022100926-appb-000004
表8-1-4 为该例子中计算的功率调节信息
Figure PCTCN2022100926-appb-000005
以OTS1段为例:
光纤损耗=上游输出功率-下游输入功率-VOA衰减实际值=2-(-26)-8=20db
OTS目标衰减值=5db
因OTS的最小增益值(10db)<光纤损耗(20db)+OTS目标衰减值(8db),所以OTS目标增益值=光纤损耗(20db)+OTS目标衰减值(5db)=25db
OTS衰减调节值=OTS衰减目标值-OTS衰减实际值=5-8=-3db
OTS增益调节值=OTS增益目标值-OTS增益实际值=25-20=5db
这里的OTS衰减调节值即为OTS衰减调节信息,OTS增益调节值即为OTS增益调节信息。
如图7所示为图5所示的实施例中步骤504的具体实现过程。步骤504,根据OTS实际增益值、OTS的光纤损耗和OTS衰减范围获取OTS的OTS目标增益值和OTS目标衰减值,具体包括如下步骤。
步骤701,将OTS实际增益值和OTS的光纤损耗的差值作为OTS的理想衰减值。
具体地说,可以先将OTS的光纤损耗和OTS实际增益值的差值作为OTS的理想衰减值。
步骤702,判断理想衰减值是否属于OTS衰减范围。
具体地说,将所获取的理想衰减值跟该OTS的衰减范围进行比较,看所获取的理想衰减值是否在该OTS的衰减范围内,若该理想衰减值属于该OTS的衰减范围,则执行步骤703,若该理想衰减值不属于该OTS的衰减范围,则执行步骤704。
步骤703,将OTS实际增益值作为OTS目标增益值,将理想衰减值作为OTS目标衰减值。
具体地说,当理想衰减值属于该OTS衰减范围时,说明该理想衰减值的大小是当前OTS所需要的衰减值的大小,即可以认为此时的实际增益值和目标增益值相同,所需的调节量为0,因此,可以将OTS实际增益值作为OTS目标增益值,将理想衰减值作为OTS目标衰减值。
步骤704,将OTS衰减范围内的最小衰减值作为OTS目标衰减值,将OTS目标衰减值和OTS的光纤损耗的和作为OTS目标增益值。
具体地说,当理想衰减值不属于该OTS衰减范围时,说明该理想衰减值偏小,不能够使用该理想衰减值,需要将OTS衰减范围内的最小衰减值作为OTS的OTS目标衰减值;OTS目标衰减值确定之后,根据OTS目标衰减值和OTS光纤损耗的和值作为OTS目标增益值。
步骤507,将OTS目标增益值和OTS实际增益值的差值作为OTS增益调节信息,并将OTS目标衰减值和OTS实际衰减值的差值作为OTS衰减调节信息。
具体地说,本步骤与本申请实施例所提供的步骤405大致相同,此处不一一赘述。
步骤508,将OTS增益调节信息和OTS衰减调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据OTS增益调节信息和OTS衰减调节信息进行功率调节。
具体地说,本步骤与本申请实施例所提供的步骤404大致相同,此处不一一赘述。
示例的,下面为一个具体例子。
表8-2-2 该例子中读取的各网元的功率参数
站点 端口 输出功率 输入功率 增益db 增益范围 衰减 衰减范围
NE1 OA1出口 2dbm - - - - -
NE2 VOA2 - - - - 4db [1,20]db
NE2 OA2入口 - -22dbm 20db [10,40]db - -
NE2 OA2出口 -2dbm - - - - -
NE3 VOA3 - - - - 6db [1,20]db
NE3 OA3入口 - -26dbm 21db [10,40]db - -
表8-2-3 为该例子获取的OTS1、OTS2的功率差信息
Figure PCTCN2022100926-appb-000006
Figure PCTCN2022100926-appb-000007
表8-2-4 为该例子中计算的功率调节信息
Figure PCTCN2022100926-appb-000008
以OTS1段为例:
光纤损耗=上游输出功率-下游输入功率-OTS衰减实际值=2-(-22)-4=20db
OTS目标衰减值=OTS增益值-光纤损耗=20-20=0db
因OTS目标衰减值0db<OTS最小衰减1db,所以
VOA目标衰减值=VOA最小衰减1db
OTS目标增益值=光纤损耗+OTS目标衰减值=20+1=21db
OTS衰减调节值=OTS目标衰减值-OTS实际衰减值=1-4=-3db
OTS增益调节值=21-20=1db
本实施例,在其他实施例地基础上,还可以在光传输段处于不用阶段时的调节方法并不相同,当光传输段属于开始状态时,通过调节光传输段上的增益和衰减,使每个光传输段的功率满足系统设计要求,从而保证波分复用系统的接收机的正常工作;当光传输段属于运维状态时,在定期监测复用段上各个光传输段的功率信息,保证复用段上各个光传输段的功率满足系统设计要求,且还可以在对各个光传输段进行功率调节时,可以结合光传输段自身的增益属性和衰减属性来获取功率调节信息,使得本申请所获取的功率调节信息的准确性更好,对光传输段进行的功率调节效果更佳。
本申请的实施例涉及一种光复用段功率调节方法,应用在光复用段的首节点上,光复用段至少包含一个光传输段OTS,OTS包含有OTS节点,如图8所示,具体包括:
步骤801,获取OTS的功率参数,其中,功率参数包括上游输出功率、下游输入功率和OTS实际增益值。
具体地说,本步骤与本申请实施例所提供的步骤101大致相同,此处不一一赘述。
步骤802,根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息。
具体地说,本步骤与本申请实施例所提供的步骤102大致相同,此处不一一赘述。
步骤803,当功率差信息满足预设的启动调节条件时,根据OTS的功率参数获取OTS的功率调节信息。
具体地说,本步骤与本申请实施例所提供的步骤103大致相同,此处不一一赘述。
步骤804,将功率调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点上根据功率调节信息进行功率调节。
具体地说,本步骤与本申请实施例所提供的步骤104大致相同,此处不一一赘述。
步骤805,获光复用段OMS的调节次数。
具体地说,调节次数是针对整个OMS调节而言,每进行一轮调节,调节次数就加1,每一轮调节中,会对OMS的各个OTS进行调节。在每进行一轮调节后,就会在原先的调节次数上加1,这个调节次数可以保存在首节点上。
步骤806,当调节次数小于预设的调节次数时,获取各OTS的更新后的功率参数,并根据更新后的功率参数获取OTS的更新后的功率差信息。
具体地说,当OMS的调节次数小于预设的调节次数时,说明该OMS还可以进行功率调节,此时就获取各OTS经过功率调节后所返回的更新后的功率参数,并根据更新后的功率参数来获取功率差信息,本步骤获取更新后的功率参数和根据更新后的功率参数来获取功率差信息与本申请实施例所提供的步骤101和步骤102的获取步骤大致相同,此处不一一赘述;而当OMS的调节次数大于或等于预设的调节次数时,说明该OMS不可以再进行功率调节。需要强调的是,在每一轮的功率调节之后,都会将调节次数与预设的调节次数进行比较,只要调节次数小于预设的调节次数,就会进入步骤807;直至某一次功率调节后,调节次数大于或等于预设的调节次数,才会停止功率调节。
步骤807,当更新后的功率差信息满足预设的停止调节条件时,停止对OTS对应的网元节点的功率调节。
具体地说,当更新后的功率差信息、累积功率差信息满足预设的停止调节条件时,则说明此时的各个OTS段的功率时满足系统需求的,不需要再进行调节。
另外,当更新后的功率差信息不满足预设的停止调节条件时,继续进行下一轮调节。
本实施例,在其他实施例地基础上,还可以每次对光传输段进行功率调节之后,可以自动对调节次数和调节之后的光传输段的功率信息进行判断,使得在满足一定条件时,本申请可以自动停止对复用段上各个光传输段的功率调节,使得本申请的自动化程度更高。
此外,应当理解的是,上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请实施例涉及一种光复用段功率调节系统,应用在光复用段的首节点上,光复用段至少包含一个光传输段OTS,OTS包含有OTS节点,如图9所示,包括:
第一获取模块901,用于获取OTS的功率参数,其中,功率参数包括上游输出功率、下游输入功率、OTS实际增益值。
第二获取模块902,用于根据上游输出功率、下游输入功率和OTS实际增益值获取OTS的功率差信息。
第三获取模块903,用于当功率差信息满足预设的启动调节条件时,根据OTS的功率参数获取OTS的功率调节信息。
发送模块904,用于将功率调节信息发送至OTS对应的OTS节点上,以供OTS对应的OTS节点根据功率调节信息进行功率调节。
不难发现,本实施例为与本申请其他实施例相对应的系统实施例,本实施例可与其他实施例互相配合实施。其他实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在其他实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请的实施例涉及一种网络设备,如图10所示,包括:包括至少一个处理器1001;以及,与至少一个处理器1001通信连接的存储器1002;其中,存储器1002存储有可被至少一个处理器1001执行的指令,指令被至少一个处理器1001执行,以使至少一个处理器1001能够执行上述任一方法实施例所描述的光复用段功率调节方法。
其中,存储器1002和处理器1001采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器1001和存储器1002的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1001处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传输给处理器1001。
处理器1001负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1002可以被用于存储处理器1001在执行操作时所使用的数据。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (14)

  1. 一种光复用段功率调节方法,应用在光复用段的首节点上,所述光复用段至少包含一个光传输段OTS,所述OTS包含有OTS节点,所述方法包括:
    获取所述OTS的功率参数,其中,所述功率参数包括上游输出功率、下游输入功率和OTS实际增益值;
    根据所述上游输出功率、所述下游输入功率和所述OTS实际增益值获取所述OTS的功率差信息;
    当所述功率差信息满足预设的启动调节条件时,根据所述OTS的功率参数获取所述OTS的功率调节信息;
    将所述功率调节信息发送至所述OTS对应的所述OTS节点上,以供所述OTS对应的所述OTS节点上根据所述功率调节信息进行功率调节。
  2. 根据权利要求1所述的光复用段功率调节方法,其中,当处于开局场景时,所述功率参数还包括OTS增益范围、OTS实际衰减值,所述功率调节信息包括增益调节信息和衰减调节信息;
    所述根据所述OTS的功率参数获取所述OTS的功率调节信息,包括:
    根据所述上游输出功率、所述下游输入功率和所述OTS实际衰减值获取所述OTS的光纤损耗;
    根据所述OTS的光纤损耗、所述OTS增益范围、预设的OTS衰减值获取所述OTS的OTS目标增益值和OTS目标衰减值;
    将所述OTS目标增益值和所述OTS实际增益值的差值作为所述OTS增益调节信息;
    将所述OTS目标衰减值和所述OTS实际衰减值的差值作为所述OTS衰减调节信息。
  3. 根据权利要求1所述的光复用段功率调节方法,其中,当处于运维场景时,所述功率参数还包括OTS实际衰减值、OTS衰减范围,所述功率调节信息包括增益调节信息和衰减调节信息;
    所述根据所述OTS的功率参数获取所述OTS的功率调节信息,包括:
    根据所述上游输出功率、所述下游输入功率和所述OTS实际衰减值获取所述OTS的光纤损耗;
    根据所述OTS实际增益值、所述OTS的光纤损耗和所述OTS衰减范围获取所述OTS的OTS目标增益值和OTS目标衰减值;
    将所述OTS目标增益值和所述OTS实际增益值的差值作为所述OTS增益调节信息;
    将所述OTS目标衰减值和所述OTS实际衰减值的差值作为所述OTS衰减调节信息。
  4. 根据权利要求2所述的光复用段功率调节方法,其中,所述根据所述OTS的光纤损耗、所述OTS增益范围和预设的OTS衰减值获取所述OTS的OTS目标增益值和OTS目标衰减值,包括:
    将所述OTS的光纤损耗和预设的OTS衰减值的和作为所述OTS的理想增益值;
    当所述理想增益值不属于所述OTS增益范围时,则将所述OTS增益范围内的最小增益 值作为所述OTS目标增益值,将所述OTS目标增益值和所述OTS的光纤损耗的差值作为所述OTS目标衰减值;
    若所述理想增益值属于所述OTS增益范围时,则将所述理想增益值作为所述OTS目标增益值,将所述预设的OTS衰减值作为所述OTS目标衰减值。
  5. 根据权利要求3所述的光复用段功率调节方法,其中,所述根据所述OTS实际增益值、所述OTS的光纤损耗和所述OTS衰减范围获取所述OTS的OTS目标增益值和OTS目标衰减值,包括:
    将所述OTS实际增益值和所述OTS的光纤损耗的差值作为所述OTS的理想衰减值;
    当所述理想衰减值属于所述OTS衰减范围时,则将所述OTS实际增益值作为所述OTS目标增益值,将所述理想衰减值作为所述OTS目标衰减值;
    当所述理想衰减值不属于所述OTS衰减范围时,则将所述OTS衰减范围内的最小衰减值作为所述OTS目标衰减值,将所述OTS目标衰减值和所述OTS的光纤损耗的和作为所述OTS目标增益值。
  6. 根据权利要求1至5中任一项所述的光复用段功率调节方法,其中,所述根据所述上游输出功率、所述下游输入功率和所述OTS实际增益获取所述OTS的功率差信息,包括:
    根据所述上游输出功率和所述下游输入功率获取所述OTS的功率损耗;
    根据所述OTS实际增益和所述功率损耗获取所述OTS的功率差信息。
  7. 根据权利要求1至6中任一项所述的光复用段功率调节方法,其中,所述获取所述OTS的功率参数,包括:
    获取所述首节点的第一功率参数,并向所述OTS对应的所述OTS节点发送参数请求信息;
    接收所述OTS对应的所述OTS节点返回的第二功率参数;
    根据所述第一功率参数和所述第二功率参数生成所述OTS的功率参数。
  8. 根据权利要求1至7中任一项所述的光复用段功率优化方法,其中,将所述功率调节信息发送至所述OTS之后还包括:
    获取光复用段的调节次数;其中,所述光复用段中的各OTS被调节一次后,所述光复用段的调节次数递增一次;
    当所述调节次数小于预设的调节次数时,获取所述OTS的更新后的功率参数,并根据所述更新后的功率参数获取所述OTS的更新后的功率差信息;
    当所述更新后的功率差信息满足预设的停止调节条件时,停止对所述OTS对应的所述OTS节点的功率调节;
    当所述更新后的功率差信息不满足预设的停止调节条件时,继续进行下一轮调节。
  9. 根据权利要求7所述的光复用段功率优化方法,其中,所述光复用段包含n个OTS,且所述OTS节点有n+1个,所述首节点为第1个所述OTS节点;所述n为大于或等2的自然数;
    所述向所述OTS对应的所述OTS节点发送参数请求信息,包括:第i个所述OTS节点向第i+1个所述OTS节点发送所述参数请求信息;i=1,2,3……n;
    或者;
    所述向所述OTS对应的所述OTS节点发送参数请求信息,包括:所述首节点向n+1个所述OTS节点中除所述首节点外的其他所述OTS节点分别发送参数请求信息。
  10. 根据权利要求1至9中任一项所述的光复用段功率优化方法,其中,所述光复用段包含n个OTS,且每个所述OTS包含有发端OTS节点和收端OTS节点;
    所述将所述功率调节信息发送至所述OTS对应的所述OTS节点,包括:将所述功率调节信息分别发送至各所述OTS对应的收端OTS节点。
  11. 根据权利要求1至9中任一项所述的光复用段功率优化方法,其中,所述光复用段包含依次连接的多个OTS;所述根据所述上游输出功率、所述下游输入功率和所述OTS实际增益值获取所述OTS的功率差信息之后,还包括:
    根据各所述OTS的功率差信息,计算各所述OTS的累计功率差信息;其中,所述OTS的累计功率差信息是指所述OTS及位于所述OTS上游的OTS的功率差信息总和;
    所述预设的启动调节条件包括所述功率差的启动调节条件和所述累计功率差的启动调节条件;所述当所述功率差信息满足预设的启动调节条件时,根据所述OTS的功率参数获取所述OTS的功率调节信息,包括:
    当所述功率差信息满足所述功率差的启动调节条件,或所述OTS的累计功率差信息满足所述累计功率差的启动调节条件时,根据所述OTS的功率参数获取所述OTS的功率调节信息。
  12. 根据权利要求11所述的光复用段功率优化方法,其中,所述功率差的启动调节条件包括所述功率差信息大于预设的功率差阈值,所述累计功率差的启动调节条件包括所述累计功率差信息大于预设的累计功率差阈值。
  13. 一种光复用段功率调节系统,应用在光复用段的首节点上,所述光复用段至少包含一个光传输段OTS,所述OTS包含有OTS节点,所述装置包括:
    第一获取模块,用于获取所述OTS的功率参数,其中,所述功率参数包括上游输出功率、下游输入功率、OTS实际增益值;
    第二获取模块,用于根据所述上游输出功率、所述下游输入功率和所述OTS实际增益值获取所述OTS的功率差信息;
    第三获取模块,用于当所述功率差信息满足预设的启动调节条件时,根据所述OTS的功率参数获取所述OTS的功率调节信息;
    发送模块,用于将所述功率调节信息发送至所述OTS对应的所述OTS节点上,以供所述OTS对应的所述OTS节点根据所述功率调节信息进行功率调节。
  14. 一种网络设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至12中任意一项所述光复用段功率调节方法。
PCT/CN2022/100926 2021-08-05 2022-06-23 光复用段功率调节方法、系统和网络设备 WO2023011040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110898073.7 2021-08-05
CN202110898073.7A CN115913383A (zh) 2021-08-05 2021-08-05 光复用段功率调节方法、系统和网络设备

Publications (1)

Publication Number Publication Date
WO2023011040A1 true WO2023011040A1 (zh) 2023-02-09

Family

ID=85154252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100926 WO2023011040A1 (zh) 2021-08-05 2022-06-23 光复用段功率调节方法、系统和网络设备

Country Status (2)

Country Link
CN (1) CN115913383A (zh)
WO (1) WO2023011040A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146306A1 (en) * 2003-01-14 2004-07-29 Eci Telecom Ltd. Technique for power control in optical networks
CN101043288A (zh) * 2006-03-20 2007-09-26 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法
CN106330302A (zh) * 2015-06-17 2017-01-11 中兴通讯股份有限公司 一种分布式自动功率优化的方法及装置
CN112583489A (zh) * 2019-09-30 2021-03-30 中兴通讯股份有限公司 一种光网络功率控制自动方法及装置、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146306A1 (en) * 2003-01-14 2004-07-29 Eci Telecom Ltd. Technique for power control in optical networks
CN101043288A (zh) * 2006-03-20 2007-09-26 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法
CN106330302A (zh) * 2015-06-17 2017-01-11 中兴通讯股份有限公司 一种分布式自动功率优化的方法及装置
CN112583489A (zh) * 2019-09-30 2021-03-30 中兴通讯股份有限公司 一种光网络功率控制自动方法及装置、存储介质

Also Published As

Publication number Publication date
CN115913383A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN101043288B (zh) 一种光复用层功率优化系统及其方法
US9509429B2 (en) Energy conservation by means of traffic shaping
WO2005019970B1 (en) Communication system and method for an optical local area network
US10985838B1 (en) Handling compensation for losses in optical fiber links
CN106211306B (zh) 一种通信网络延时抖动平滑方法、装置及系统
US20130279918A1 (en) Power saving control method and node device in optical communication network
CN100581294C (zh) 以太网无源光网络多业务动态带宽请求的方法
US20090214209A1 (en) Bandwidth allocation method, optical line terminator, optical network unit, communication system, and recording medium recording program of device
WO2023011040A1 (zh) 光复用段功率调节方法、系统和网络设备
CN100488175C (zh) 串行级联总线上行流控方法及节点设备
CN102263591B (zh) 一种光通道层功率管理优化系统及方法
CN101719793B (zh) 基于优先级动态调整的单向光总线网络访问控制系统
US20170005724A1 (en) Station-side device and pon system
CN112866146A (zh) 端到端带宽调整方法、系统、电子设备及存储介质
JP2012175654A (ja) 光通信システムおよび通信制御方法
CN101686417B (zh) 分布式控制型被动光网络系统与频宽控制方法
CN111800823B (zh) 一种基于优先级的电力无线终端数据传输方法及装置
US20220239996A1 (en) Bandwidth Assignment Method and Apparatus, and Bandwidth Check Method and Apparatus
WO2023011039A1 (zh) 光通道功率调节方法、系统和网络设备
WO2016188228A1 (zh) 一种分布式自动功率优化系统及方法
CN111600671A (zh) 时间同步方法和系统
WO2023066349A1 (zh) 光模块功率调整方法、光模块及存储介质
CN104468409A (zh) 一种基于非固定多线程轮询的动态带宽分配方法
WO2022113167A1 (ja) 光通信制御装置、光通信制御方法、および光通信制御プログラム
WO2023050936A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE