WO2023066349A1 - 光模块功率调整方法、光模块及存储介质 - Google Patents

光模块功率调整方法、光模块及存储介质 Download PDF

Info

Publication number
WO2023066349A1
WO2023066349A1 PCT/CN2022/126505 CN2022126505W WO2023066349A1 WO 2023066349 A1 WO2023066349 A1 WO 2023066349A1 CN 2022126505 W CN2022126505 W CN 2022126505W WO 2023066349 A1 WO2023066349 A1 WO 2023066349A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
optical
power
module
optical power
Prior art date
Application number
PCT/CN2022/126505
Other languages
English (en)
French (fr)
Inventor
张德朝
王东
李允博
蔡谦
李晗
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023066349A1 publication Critical patent/WO2023066349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate

Definitions

  • the present application relates to the technical field of communication, and in particular to an optical module power adjustment method, an optical module and a storage medium.
  • the centralized radio access network (C-RAN, Centralized Radio Access Network) architecture is expected to become a typical scenario.
  • C-RAN Centralized Radio Access Network
  • AAU Active Antenna Unit
  • DU Distributed Unit
  • WDM Wavelength Division Multiplexing
  • WDM Wavelength Division Multiplexing
  • the transmit optical power of each optical module is in a certain interval of normal distribution, and the specific transmit optical power value depends on the manufacturing process of the laser.
  • the core indicators such as transmit optical power and receive sensitivity of the optical module must strictly meet the link power budget requirements.
  • the transmit optical power of the optical modules used in the fronthaul network cannot be adjusted as required, that is, the link power budget requirements cannot be strictly met.
  • embodiments of the present application provide a method for adjusting power of an optical module, an optical module, and a storage medium.
  • An embodiment of the present application provides a method for adjusting the power of an optical module, including:
  • the second optical module receives the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module sent by the first optical module, wherein the second optical module is located in the WDM device, and the first optical module Modules are located at AAU;
  • the second optical module adjusts the transmitting unit of the first optical module and /or the transmit optical power of the transmitting unit of the second optical module.
  • the second optical module adjusts the first optical module according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof.
  • the transmitting optical power of the transmitting unit of the optical module and/or the transmitting unit of the second optical module including:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the second optical module The transmit optical power of the unit;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the first optical module The transmit optical power of the unit.
  • the method also includes:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the first optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the second optical module can meet the link transmission capacity, adjust the second optical module’s Sending optical power of the transmitting unit to the original sending optical power before adjustment;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the second optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the first optical module can meet the link transmission capacity, adjust the first optical module’s The sending optical power of the transmitting unit is the original sending optical power before adjustment.
  • the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module transmitted by the first optical module are obtained through operation management and maintenance (OAM, Operation Administration and Maintenance) ) channel OAM information sent.
  • OAM Operation Administration and Maintenance
  • the adjustment of the transmitting optical power of the transmitting unit of the second optical module includes:
  • the main control unit of the WDM device calculates the transmit optical power value of the second optical module that needs to be increased or decreased, writes it into the register of the second optical module, and controls the adjustment of the transmit optical power.
  • the adjustment of the transmitting optical power of the transmitting unit of the first optical module includes:
  • the main control unit of the WDM device calculates the transmit optical power value of the first optical module that needs to be increased or decreased, writes it into the OAM frame of the second optical module, and sends it to the first optical module for demodulation by the first optical module Output the OAM information of the second optical module, write it into the register of the first optical module, and control the adjustment of the sending optical power.
  • the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module is adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the method when adjusting the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module, the method further includes:
  • the embodiment of the present application also provides a method for adjusting the power of an optical module, including:
  • the first optical module detects the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module;
  • the first optical module sends the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module to the second optical module for the second optical module to adjust the transmission of the first optical module unit and/or the transmit optical power of the transmitting unit of the second optical module; wherein, the second optical module is located in the WDM device, and the first optical module is located in the AAU.
  • the method also includes:
  • the first optical module adjusts the sending optical power of the transmitting unit of the first optical module according to the power adjustment information sent by the second optical module.
  • the first optical module adjusts the transmission optical power of the transmitting unit of the first optical module according to the power adjustment information sent by the second optical module, including:
  • the first optical module receives the OAM information sent by the second optical module to the first optical module
  • the first optical module demodulates the OAM information of the second optical module, writes it into the register of the first optical module, and controls the adjustment of the sending optical power.
  • the first optical module sends the transmitting optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module to the second optical module, including:
  • the first optical module sends the sending optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module to the second optical module through the OAM information of the OAM channel.
  • the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module is adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the method when adjusting the transmit optical power of the transmitting unit of the first optical module, the method further includes:
  • the embodiment of the present application also provides a second optical module located in the WDM device, including:
  • a processor configured to read a program in memory and perform the following processes:
  • a transceiver configured to receive and transmit data under control of the processor.
  • the processor is further configured to:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the second optical module The transmit optical power of the unit;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the first optical module The transmit optical power of the unit.
  • the processor is further configured to:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the first optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the second optical module can meet the link transmission capacity, adjust the second optical module’s Sending optical power of the transmitting unit to the original sending optical power before adjustment;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the second optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the first optical module can meet the link transmission capacity, adjust the first optical module’s The sending optical power of the transmitting unit is the original sending optical power before adjustment.
  • the sending optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module sent by the first optical module are sent through OAM information of an OAM channel.
  • the processor is further configured to:
  • the processor is further configured to:
  • Calculate the transmit optical power value of the first optical module that needs to be increased or decreased write it into the OAM frame of the second optical module, and send it to the first optical module through the transceiver for demodulation of the second optical module by the first optical module.
  • the OAM information of the optical module is written into the register of the first optical module to control the adjustment of the sending optical power.
  • the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module is adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the processor when adjusting the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module, is further configured to:
  • An alarm indication is issued through the transceiver.
  • the embodiment of the present application also provides a second optical module located in the WDM device, including:
  • the second optical module receiving unit is configured to receive the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module sent by the first optical module, wherein the first optical module is located in the AAU ;
  • the second optical module adjustment module is configured to adjust the first optical module according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof
  • the transmit optical power of the transmitting unit of the module and/or the transmitting unit of the second optical module is configured to adjust the first optical module according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof.
  • the second optical module adjustment module is further configured as:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the second optical module The transmit optical power of the unit;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the first optical module The transmit optical power of the unit.
  • the second optical module adjustment module is further configured as:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the first optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the second optical module can meet the link transmission capacity, adjust the second optical module’s Sending optical power of the transmitting unit to the original sending optical power before adjustment;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the second optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the first optical module can meet the link transmission capacity, adjust the first optical module’s The sending optical power of the transmitting unit is the original sending optical power before adjustment.
  • the receiving module of the second optical module is further configured to receive the sending optical power of the transmitting unit of the first optical module sent by the first optical module through the OAM information of the OAM channel and/or the receiving unit of the first optical module received optical power.
  • the second optical module adjustment module is further configured as:
  • the second optical module adjustment module is further configured as:
  • Calculate the transmit optical power value of the first optical module that needs to be increased or decreased write it into the OAM frame of the second optical module, and send it to the first optical module for the first optical module to demodulate the OAM information of the second optical module, Write the register of the first optical module to control the adjustment of the sending optical power.
  • the second optical module adjustment module is further configured to adjust the transmitting light of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module by adjusting the temperature value and/or adjusting the laser bias point power.
  • the second optical module further includes:
  • the alarm module is configured to send out an alarm indication when the transmitting optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module is adjusted.
  • the embodiment of the present application also provides a first optical module located in the AAU, including:
  • a processor configured to read a program in memory and perform the following processes:
  • a transceiver configured to receive and transmit data under control of the processor.
  • the processor is further configured to:
  • the sending optical power of the transmitting unit of the first optical module is adjusted according to the power adjustment information sent by the second optical module.
  • the processor is further configured to:
  • Demodulate the OAM information of the second optical module write it into the register of the first optical module, and control the adjustment of the sending optical power.
  • the processor is further configured to:
  • the sending optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module are sent to the second optical module through the OAM information of the OAM channel.
  • the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module is adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the processor when adjusting the transmit optical power of the transmitting unit of the first optical module, the processor is further configured to:
  • An alarm indication is issued through the transceiver.
  • the embodiment of the present application also provides a first optical module located in the AAU, including:
  • the first optical module detection module is configured to detect the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module;
  • the sending module of the first optical module is configured to send the transmitting optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module to the second optical module for the second optical module to adjust the second optical module
  • the first optical module further includes:
  • the first optical module adjustment module is configured to adjust the transmission optical power of the transmitting unit of the first optical module according to the power adjustment information sent by the second optical module.
  • the first optical module adjustment module is further configured as:
  • Demodulate the OAM information of the second optical module write it into the register of the first optical module, and control the adjustment of the sending optical power.
  • the sending module of the first optical module is further configured to send the sending optical power of the transmitting unit of the first optical module and/or the receiving unit of the first optical module to the second optical module through the OAM information of the OAM channel received optical power.
  • the first optical module adjustment module is further configured to adjust the temperature of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module by adjusting the temperature value and/or adjusting the laser bias point. transmit optical power.
  • the first optical module further includes:
  • the alarm module is configured to issue an alarm indication when adjusting the transmit optical power of the transmitting unit of the first optical module.
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program for implementing any optical module power adjustment method on the side of the first optical module and/or the second optical module.
  • the second optical module located in the WDM device will receive the transmitted optical power of the transmitting unit of the first optical module sent by the first optical module located in the AAU, and the transmitted optical power of the receiving unit of the first optical module.
  • Received optical power, the functional module (such as the main control unit (also called the control unit)) of the second optical module located in the WDM equipment can be based on the bit error rate, packet loss rate, and the received light of the receiving unit of the first optical module.
  • One of the power, the received optical power of the receiving unit of the second optical module, or a combination thereof adjusts the transmitting optical power of the transmitting unit of the first optical module or the second optical module.
  • the central optical module and the remote optical module can dynamically calculate the optical power adjustment value of the optical module by transmitting the optical power information, the optical power of the optical module can be increased or decreased as needed when the application scenario changes, so as to at least solve the problem of the fronthaul network.
  • the transmit optical power of the optical module used cannot be adjusted as needed and cannot strictly meet the link power budget requirements, that is, it can support flexible adjustment of the transmit optical power so that the transmit optical power can strictly meet the link power budget requirements.
  • the transmitting optical power of the transmitting unit can be adjusted by controlling the temperature control unit to adjust the temperature value and/or adjust the laser bias point, or directly adjust the output optical power of the transmitting unit, the transmitting optical power of the transmitting unit of the optical module can be adjusted increase or decrease accordingly.
  • optical power information of the optical module at one end can be transmitted to the optical module at the other end through low-frequency OAM information, no additional channels are occupied and resources are saved.
  • Figure 1 is a schematic diagram of a typical 5G fronthaul scenario in related technologies
  • FIG. 2 is a schematic diagram of the implementation process of the optical module power adjustment method of the second optical module located in the WDM device in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of the implementation flow of the optical module power adjustment method of the first optical module located in the AAU in the embodiment of the present application;
  • optical module ie, the first optical module and the second optical module
  • Figure 5 is a schematic diagram of the system architecture including the first optical module and the second optical module in the embodiment of the present application;
  • FIG. 6 is a schematic diagram of the architecture of the first optical module in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second optical module and a core unit in an active device in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second optical module in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first optical module in an embodiment of the present application.
  • optical modules used in the fronthaul network have the transmission optical power determined before leaving the factory, and do not support online power adjustment.
  • optical modules of the same specification are usually used, such as optical modules for typical scenarios with a link budget of 10 kilometers (km).
  • the situation of optical fiber links is more complicated.
  • adding an optical attenuator with fixed attenuation at the receiving end can prevent the receiver from being damaged due to optical power overload.
  • the optical attenuator can be increased or decreased as needed.
  • there are various types of optical attenuators with fixed attenuation and the values are large and small. It is necessary to rely on a lot of construction experience to select the attenuation value, which increases the construction difficulty of the construction personnel.
  • the registers of the optical module store a set of optimal laser parameters, which do not support configuration and recovery of the transmit optical power by the registers, and the optical module does not have the function of adjusting the transmit optical power.
  • the optical module can temporarily increase the transmit optical power, even if other signal indicators such as eye diagram and extinction ratio are sacrificed (the optimal laser parameters stored in the register are usually not corresponding to the maximum transmit optical power value), if business errors can be avoided, it will reduce business interruption time, buy time for operation and maintenance personnel, and improve the convenience of operation and maintenance through online alarms and other means.
  • the embodiment of the present application proposes a scheme for self-adaptation of the optical power of the optical module.
  • the optical module can automatically adjust the transmission power through automatic measurement, calculation, comparison and adjustment according to the actual link conditions.
  • Optical power so that the transmitted optical power of the optical module automatically adapts to the link, that is, it strictly meets the corresponding link power budget requirements.
  • the implementation of the second optical module located (that is, set in) the WDM equipment and the first optical module located (that is, set) in the AAU will be described respectively, and then the implementation of the two together will be given. Examples are used to better understand the implementation of the schemes given in the Examples of the present application. This way of explanation does not mean that the two must be implemented together, or must be implemented separately. In fact, when they are implemented separately, they also solve their own problems, and when the two are used in combination, they will get better results. technical effect.
  • Fig. 2 is positioned at (being arranged on) the schematic flow chart of the optical module power adjustment method implementation of the second optical module of WDM equipment, as shown in Fig. 2, this method can comprise:
  • Step 201 The second optical module receives the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module sent by the first optical module, wherein the second optical module is located (that is, set In) WDM equipment, the first optical module is located (that is, set) at the AAU;
  • Step 202 The second optical module adjusts the power of the first optical module according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof. Sending optical power of the transmitting unit and/or the transmitting unit of the second optical module.
  • the second optical module is based on one or more of the bit error rate, packet loss rate, received optical power of the receiving unit of the first optical module, and received optical power of the receiving unit of the second optical module (ie combination) to adjust the sending optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module.
  • the transmitting optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module may also be referred to as luminous power, transmitting power, transmitter power, output optical power, etc.
  • the received optical power of the receiving unit of an optical module and/or the receiving unit of the second optical module may also be called received power, etc.; the embodiment of the present application does not limit the name of the power, as long as its function is realized.
  • the WDM device provided with the second optical module may be an active WDM device.
  • Fig. 3 is a schematic diagram of the implementation process of the optical module power adjustment method of the first optical module located in (that is, arranged in) AAU. As shown in Fig. 3, the method may include:
  • Step 301 The first optical module detects the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module;
  • Step 302 The first optical module sends the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module to the second optical module for the second optical module to adjust the first optical power.
  • the Methods can also include:
  • Step 303 The first optical module adjusts the sending optical power of the transmitting unit of the first optical module according to the power adjustment information sent by the second optical module.
  • the following is mainly divided into two parts to describe the optical module power adjustment method shown in Figure 2 and Figure 3 in detail, one part is the specific process of sending the power value in OAM mode, and the other part is the specific adjustment process of the power.
  • the optical power information of an optical module at one end can be transmitted to the optical module at the other end through a low-frequency OAM frame (referred to as OAM information in the subsequent description), without additional channel occupation, which can save resources.
  • OAM information a low-frequency OAM frame
  • the transmitted optical power of the transmitting unit (that is, the transmitting unit of the first optical module and the second optical module) and the received optical power of the receiving unit (that is, the receiving unit of the first optical module and the second optical module) can be Read through the digital diagnostic monitoring (DDM, Digital Diagnostic Monitoring) interface inside the corresponding optical module (that is, the first optical module and the second optical module).
  • DDM Digital Diagnostic Monitoring
  • the optical module ie, the first optical module and the second optical module
  • the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit transmitted between the first optical module and the second optical module may be carried by OAM information; in other words , the first optical module can send the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module to the second optical module through OAM information (such as a low-frequency OAM frame), correspondingly , the second optical module may receive the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module through OAM information (such as a low-frequency OAM frame).
  • OAM information such as a low-frequency OAM frame
  • the transmission optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit are carried by the OAM information, which can be understood as using the low-frequency top adjustment technology to convert the transmitting optical power and/or the receiving optical power of the transmitting unit of the first optical module.
  • the received optical power of the receiving unit is written into the OAM frame.
  • the first optical module may write the read power value of the transmitted optical power of the transmitting unit and/or the received optical power of the receiving unit into the OAM frame by using the low-frequency top adjustment technology, and then send the OAM frame to The optical module at the opposite end (that is, the second optical module).
  • the OAM information may also be called an OAM frame.
  • the embodiment of the present application does not limit the name of the OAM information, as long as its function is realized.
  • the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module transmitted by the first optical module may be transmitted through the OAM channel.
  • the control unit in the first optical module can read the transmitted optical power of the transmitting unit of the first optical module and/or the received light of the receiving unit of the first optical module through the DDM interface inside the first optical module. Power, write the read power value (that is, the transmit optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module) into the OAM frame by using low-frequency top adjustment technology, and then pass the OAM channel, and send the OAM frame to the peer optical module (second optical module).
  • the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module may be adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the transmit optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module can be adjusted by the temperature control unit, that is, the temperature control unit can adjust the temperature value and/or Or adjust the bias point of the laser, so that the transmitted optical power of the corresponding transmitting unit increases or decreases correspondingly, so as to achieve the purpose of power adjustment.
  • Figure 4 is a schematic diagram of the architecture of an optical module (ie, the first optical module and the second optical module).
  • the optical module ie, the first optical module and the second optical module in the embodiment of the present application includes: a control unit, a temperature control unit (which can optional), transmitting unit and receiving unit; where,
  • the control unit can read the transmitted optical power of the corresponding transmitting unit and the received optical power of the corresponding receiving unit through the DDM interface inside the corresponding optical module; and can read the transmitted optical power and/or received optical power
  • the power value of the power value is written into the OAM frame using the low-frequency top-tuning technology, and the OAM frame is sent to the optical module at the other end by means of link (ie OAM channel) transmission;
  • the control unit can also compare the transmission power (i.e. the transmission optical power of the transmitting unit of the peer optical module) and the receiving power (i.e. the receiving optical power of the receiving unit of the local end), and calculate the link budget and the transmission power that needs to be increased or decreased.
  • the optical power value; and the calculated transmission optical power adjustment value can be written into the OAM frame by using the low-frequency top adjustment technology, and transmitted through the link (that is, the OAM channel), Send the OAM frame to the optical module at the other end;
  • the control unit can also receive and analyze the OAM frame, and control the temperature control unit to adjust the output optical power (ie, transmit optical power) of the corresponding transmitting unit according to the optical power adjustment value obtained by analyzing the OAM frame, or directly adjust the corresponding transmitting unit
  • the output optical power that is, the transmitted optical power
  • the OAM information (that is, the OAM frame) transmitted between the first optical module and the second optical module through the OAM channel may include (that is, carry) one of the following:
  • the transmitting optical power of the transmitting unit and/or the receiving optical power of the receiving unit of the first optical module are configured to be used as the transmitting optical power of the transmitting unit and/or the receiving optical power of the receiving unit of the first optical module;
  • the optical power adjustment value of the first optical module calculated by the second optical module (that is, the transmit optical power value that needs to be increased or decreased by the transmitting unit of the first optical module).
  • control unit that is, the control unit of the first optical module and the second optical module
  • the control unit can support loading and extraction of low-frequency control information, support reading register information, and support writing register information, thereby supporting the configuration of corresponding optical modules.
  • the transmit optical power of the transmit unit of the module can support loading and extraction of low-frequency control information, support reading register information, and support writing register information, thereby supporting the configuration of corresponding optical modules.
  • the temperature control unit is an optional unit, in other words, the optical modules (ie, the first optical module and the second optical module) may or may not include the temperature control unit.
  • the control unit of the optical module can adjust the output optical power of the corresponding transmitting unit (i.e. optical power); in the case that the optical module (i.e. the first optical module, the second optical module) does not include the temperature control unit, the control unit of the optical module can directly adjust the output optical power of the corresponding transmitting unit (i.e. the sending light power).
  • the control unit of the optical module i.e. the first optical module, the second optical module
  • the temperature control unit i.e. the first optical module
  • the temperature control unit of the second optical module can adjust the temperature value and/or adjust the laser bias point according to the instructions issued by the control unit of the corresponding optical module, so that the transmission optical power of the transmitting unit of the corresponding optical module increases correspondingly or decrease.
  • the transmitting unit (that is, the transmitting unit of the first optical module and the second optical module) can convert electrical layer services and low-frequency OAM frames into optical signals and transmit them to the opposite optical module.
  • the transmitting unit can support the measurement of the transmitted optical power, and report the measured transmitted optical power value to the corresponding control unit through DDM; in addition, the transmitting unit can support the configuration of the transmitted optical power according to the information of the control unit. , so that the transmitted optical power increases or decreases accordingly.
  • the receiving unit (that is, the receiving unit of the first optical module and the second optical module) can receive the optical signal sent by the opposite optical module, and convert the optical signal into an electrical layer service and a low-frequency OAM frame.
  • the receiving unit may support the measurement of received optical power, and report the measured value of received optical power to a corresponding control unit through DDM.
  • control unit that is, the control unit of the first optical module and the second optical module
  • the control unit may be a micro-control unit.
  • the embodiment of the present application does not limit the type of the control unit, as long as its function is realized.
  • FIG. 5 is a schematic diagram of a system architecture including a first optical module and a second optical module.
  • Main control unit supports storage and calculation of optical power information.
  • the control unit in the WDM device can also be understood as the control unit of the second optical module of the WDM device, that is, the control unit of the WDM device and the control unit of the second optical module may refer to the same control unit, or may refer to Two control units capable of direct information exchange.
  • the system can include AAU colored light modules, passive wavelength division multiplexers on the AAU side, and active WDM equipment on the DU side, so as to realize a unified fronthaul network.
  • a passive multiplexer/demultiplexer can be used at the remote end to achieve flexible deployment; the AAU optical module can use top-tuning technology to load OAM information, thereby achieving lightweight management and control at low cost.
  • Figure 6 is a schematic diagram of the architecture of the first optical module.
  • the first optical module may include: an optical transmitting sub-module (TOSA, Transmitter Optical Subassembly), an optical receiving sub-assembly (ROSA, Receiver Optical Subassembly), a control unit and Data and clock recovery (CDR, clock and data recovery).
  • the control unit can support loading and extracting low-frequency control information, and can support reading the register information in the optical module and controlling the CDR; the CDR can support the return function of the line side.
  • FIG. 7 is a schematic diagram of the core unit of the second optical module in the active WDM device, as shown in Figure 7, the active WDM device may include: a second optical module, a pseudo random binary sequence (PRBS, Pseudo Random Binary Sequence) processing unit (option) and the main control unit (i.e. the control unit).
  • the core unit of the second optical module may include: TOSA, ROSA, control unit and CDR.
  • the control unit of the second optical module can support loading and extracting low-frequency control information, and can support reading register information;
  • the main control unit of the active WDM device can support sending control commands, sending PRBS data streams, and can compare and send and receive PRBS.
  • control unit of the second optical module and the main control unit of the active WDM device can be realized by the same processor, or can also be realized by different processors; in other words, the control unit of the second optical module and the active WDM
  • the main control unit of the device may refer to the same control unit/main control unit, or may refer to two control units/main control units that can directly exchange information.
  • the second optical module is adjusted according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof
  • the transmitting optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module may include:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the second optical module
  • the output optical power of the unit that is, the transmitted optical power
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the first optical module
  • the output optical power of the unit that is, the transmitted optical power
  • the above-mentioned multiple thresholds refer to preset thresholds with different meanings corresponding to different parameters such as received optical power, bit error rate and packet loss rate, and the specific size of each threshold can be preset according to needs. Examples are not limited to this.
  • the adjusting the output optical power (that is, the transmitted optical power) of the transmitting unit of the second optical module may include:
  • the control unit calculates the transmitted optical power value of the second optical module that needs to be increased or decreased, and calculates the calculated value of the second optical module that needs to be increased or decreased Write the transmit optical power value of the second optical module register to control the adjustment of the transmit optical power, that is, control the transmit optical power adjustment according to the transmit optical power value of the second optical module that needs to be increased or decreased.
  • the adjusting the output optical power (that is, the transmitted optical power) of the transmitting unit of the first optical module may include:
  • the control unit calculates the transmit optical power value of the first optical module that needs to be increased or decreased, and calculates the value of the first optical module that needs to be increased or decreased.
  • the transmitted optical power value of the second optical module is written into the OAM frame of the second optical module, and the OAM frame of the second optical module is sent to the first optical module for the first optical module to demodulate the OAM information of the second optical module (that is, to upgrade or The lowered transmit optical power value of the first optical module), writes the transmit optical power value of the first optical module to be increased or decreased into the register of the first optical module, thereby controlling the adjustment of the transmit optical power.
  • the main control unit of the active WDM device can calculate the luminous power value of the second optical module that needs to be increased; If the received power of the first optical module is higher than a certain threshold, the main control unit of the active WDM device can calculate the luminous power value of the second optical module that needs to be reduced. After calculating the luminous power value of the second optical module that needs to be increased or decreased, the main control unit of the active WDM device can write the obtained luminous power value of the second optical module that needs to be increased or decreased into the second optical module register, And control the adjustment of the sending optical power according to the luminous power value in the register of the second optical module.
  • the main control unit of the active WDM device can calculate the luminous power value of the first optical module that needs to be increased; If the received power of the second optical module is higher than a certain threshold, the main control unit of the active WDM device may calculate the luminous power value of the first optical module that needs to be reduced.
  • the main control unit of the active WDM device can write the obtained luminous power value of the first optical module that needs to be increased or decreased into the OAM frame of the second optical module , the OAM frame of the second optical module is sent to the first optical module; the first optical module can obtain the OAM information of the second optical module by demodulating the OAM frame of the second optical module (that is, the first The luminous power value of the optical module), and the luminous power value of the first optical module to be increased or decreased can be written into the first optical module register, and the adjustment of the transmission optical power is controlled according to the power value in the first optical module register.
  • control unit calculates the specific method of the transmitted optical power value of the second optical module that needs to be increased or decreased
  • control The specific way for the unit that is, the control unit of the second optical module or the main control unit of the active WDM device to calculate the value of the transmitted optical power of the first optical module that needs to be increased or decreased can be set according to needs. This is not limited.
  • the method may further include:
  • the first optical module adjusts the sending optical power of the transmitting unit of the first optical module according to the power adjustment information (ie, OAM information/OAM frame) sent by the second optical module.
  • the power adjustment information ie, OAM information/OAM frame
  • the first optical module adjusts the transmission optical power of the transmitting unit of the first optical module according to the power adjustment information sent by the second optical module, which may include:
  • the first optical module receives the OAM information sent to the first optical module by the second optical module (that is, the OAM frame of the second optical module);
  • the first optical module demodulates the OAM information of the second optical module from the OAM frame of the second optical module (that is, the transmit optical power value of the first optical module that needs to be increased or decreased), and the first optical module that needs to be increased or decreased Write the transmit optical power value of the first optical module register to control the adjustment of the transmit optical power, that is, control the transmit optical power adjustment according to the transmit optical power value of the first optical module that needs to be increased or decreased.
  • the first optical module can detect its transmitted optical power (that is, detect the transmitted optical power of the transmitting unit of the first optical module) and received power (that is, detect the received light of the receiving unit of the first optical module).
  • Power that is, the control unit in the first optical module can read the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module through the DDM interface inside the first optical module ;
  • the first optical module can send the transmit optical power and/or receive power to the second optical module through the OAM information (that is, the OAM frame) of the OAM channel.
  • the second optical module can demodulate the OAM information sent by the first optical module, read the transmitted optical power and/or received optical power of the first optical module, and detect the transmitted optical power and/or received optical power of the second optical module. Receive the optical power, and report the power information of the first optical module and the second optical module to the main control unit of the active WDM device.
  • the main control unit of the active WDM device can calculate the luminous power value of the second optical module that needs to be increased; if the first optical module When the receiving power of the module is higher than a certain threshold, the main control unit of the active WDM device can calculate the luminous power value of the second optical module that needs to be reduced. After calculating the luminous power value of the second optical module that needs to be increased or decreased, the main control unit of the active WDM device can write the obtained luminous power value of the second optical module that needs to be increased or decreased into the second optical module register, And control the adjustment of the sending optical power according to the luminous power value in the register of the second optical module.
  • the main control unit of the active WDM device can calculate the luminous power value of the first optical module that needs to be increased; if the second optical module When the received power of the module is higher than a certain threshold, the main control unit of the active WDM device can calculate the luminous power value of the first optical module that needs to be reduced.
  • the main control unit of the active WDM device can write the obtained luminous power value of the first optical module that needs to be increased or decreased into the OAM frame of the second optical module , the OAM frame of the second optical module is sent to the first optical module; the first optical module can obtain the OAM information of the second optical module by demodulating the OAM frame of the second optical module (that is, the first The luminous power value of the optical module), and the luminous power value of the first optical module to be increased or decreased can be written into the first optical module register, and the adjustment of the transmission optical power is controlled according to the power value in the first optical module register.
  • the method may further include:
  • the second optical module sends out an alarm indication.
  • the method may further include:
  • the first optical module sends out an alarm indication.
  • the corresponding optical module may generate an alarm indication while increasing the transmit optical power of the corresponding optical module.
  • the second optical module can issue an alarm indication; if the received power of the second optical module is lower than a certain threshold and /or when a code error and/or packet loss occurs, the first optical module can issue an alarm indication.
  • the transmission power recovery process (which can be understood as another transmission power adjustment process) of the optical modules (ie, the first optical module and the second optical module) is described in detail.
  • the transmitting optical power of the transmitting unit of the second optical module after adjusting the transmitting optical power of the transmitting unit of the second optical module, that is, after adjusting the transmitting optical power of the transmitting unit of the second optical module from the original transmitting optical power to a new transmitting optical power, if the first When the received optical power of the receiving unit of the optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the transmitted optical power of the second optical module (that is, the adjusted new transmit optical power), the received optical power of the first optical module to calculate the link budget, if the link budget is improved to the original transmit optical power of the second optical module before adjustment can meet the link transmission capacity , adjust the output optical power of the transmitting unit of the second optical module (that is, the transmitting optical power) to the original transmitting optical power before adjustment, that is, restore the transmitting optical power of the transmitting unit of the second optical module from the new transmitting optical power to
  • the transmitting optical power of the transmitting unit of the first optical module that is, after adjusting the transmitting optical power of the transmitting unit of the first optical module from the original transmitting optical power to the new transmitting optical power
  • the receiving unit of the second optical module When the received optical power is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the transmitted optical power of the first optical module (that is, the adjusted new The link budget is calculated based on the transmitted optical power) and the received optical power of the second optical module.
  • the link budget is improved to the point where the original transmitted optical power of the first optical module can meet the link transmission capacity, adjust the first optical module
  • the output optical power of the transmitting unit of the module (that is, the transmitting optical power) is restored to the original transmitting optical power before adjustment, that is, the transmitting optical power of the transmitting unit of the first optical module is restored from the new transmitting optical power to the original transmitting optical power.
  • the received power of the first optical module is lower than a certain threshold and/or bit errors and/or packet loss occur so as to increase the transmitted optical power of the second optical module, it can be improved by comparing the second optical module.
  • the link budget is calculated based on the final transmit optical power and the receive optical power of the first optical module.
  • the main controller of the active WDM device can issue the transmit optical power recovery information of the second optical module (that is, the transmit optical power value of the second optical module that needs to be reduced), and write the transmit optical power value of the second optical module that needs to be reduced into the register, and control the transmit optical power of the second optical module to be adjusted to the original transmit optical power value according to the transmit optical power value of the second optical module that needs to be reduced.
  • the received power of the second optical module when it is lower than a certain threshold and/or there is a bit error and/or packet loss to increase the transmitted optical power of the first optical module, it can be compared with the increased transmission of the first optical module.
  • the optical power of the second optical module and the received optical power of the second optical module are used to calculate the link budget.
  • the main control unit of the active WDM device can be down Send the transmit optical power recovery information of the first optical module (that is, the transmit optical power value of the first optical module that needs to be reduced), write the transmit optical power value of the first optical module that needs to be reduced into the OAM frame of the second optical module, Send the OAM frame to the first optical module; the first optical module can obtain the OAM information of the second optical module (that is, the transmitted optical power value of the first optical module that needs to be reduced) by demodulating the received OAM frame.
  • the transmit optical power value of the first optical module is written into the first optical module register, and the optical power can be adjusted to the original transmit optical power value according to the transmit optical power value of the first optical module that needs to be reduced.
  • control unit and the temperature control unit of the second optical module can be realized by the processor in the second optical module (also can be understood as the processor of the WDM device); the transmitting unit and the receiving unit of the second optical module
  • the unit may be implemented by a transceiver in the second optical module (also may be understood as a transceiver of the WDM device).
  • the control unit and temperature control unit of the first optical module can be realized by the processor in the first optical module (also can be understood as the processor of AAU); the transmitting unit and the receiving unit of the first optical module can be implemented by the first optical module
  • the transceiver in the module (also can be understood as the AAU transceiver) is implemented.
  • the first optical module and the second optical module adjust the transmission optical power
  • only the division of the above-mentioned program modules that is, the above-mentioned control unit, transmitting unit, receiving unit and temperature control unit
  • the above processing allocation can be completed by different program modules according to needs, that is, the internal structures of the first optical module and the second optical module are divided into different program modules, so as to complete all or part of the above-described processing.
  • the embodiment of the present application also provides a second optical module, located in the WDM device (that is, set in the WDM device), such as As shown in Figure 8, the second optical module includes:
  • the processor 800 is configured to read the program in the memory 820 and execute the following processes (i.e. execute the following operations by running the program in the memory 820):
  • the transceiver 810 is configured to receive and send data under the control of the processor 800 .
  • processor 800 is further configured to:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the second optical module The transmit optical power of the unit;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the first optical module The transmit optical power of the unit.
  • processor 800 is further configured to:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the first optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the second optical module can meet the link transmission capacity, adjust the second optical module’s Sending optical power of the transmitting unit to the original sending optical power before adjustment;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the second optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the first optical module can meet the link transmission capacity, adjust the first optical module’s The sending optical power of the transmitting unit is the original sending optical power before adjustment.
  • processor 800 is further configured to:
  • processor 800 is further configured to:
  • processor 800 is further configured to:
  • Calculate the transmitted optical power value of the first optical module that needs to be increased or decreased write it into the OAM frame of the second optical module, and send it to the first optical module through the transceiver 810, so that the first optical module can demodulate the second optical module.
  • the module OAM information is written into the register of the first optical module to control the adjustment of the sending optical power.
  • processor 800 is further configured to:
  • Adjust the transmitted optical power by adjusting the temperature value and/or adjusting the laser bias point.
  • processor 800 is further configured to:
  • An alarm indication is sent through the transceiver 810 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 820 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are not further described in this application.
  • the bus interface provides the interface.
  • Transceiver 810 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 when performing operations.
  • the embodiment of the present application also provides a second optical module, located in the WDM equipment (that is, set in the WDM equipment), including:
  • the second optical module receiving unit is configured to receive the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module sent by the first optical module, wherein the first optical module is located in the AAU ;
  • the second optical module adjustment module is configured to adjust the first optical module according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof
  • the transmit optical power of the transmitting unit of the module and/or the transmitting unit of the second optical module is configured to adjust the first optical module according to one of the bit error rate, the packet loss rate, the received optical power of the receiving unit of the first optical module, the received optical power of the receiving unit of the second optical module, or a combination thereof.
  • the second optical module adjustment module is further configured as:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the second optical module The transmit optical power of the unit;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, adjust the emission of the first optical module The transmit optical power of the unit.
  • the second optical module adjustment module is further configured as:
  • the received optical power of the receiving unit of the first optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the first optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the second optical module can meet the link transmission capacity, adjust the second optical module’s Sending optical power of the transmitting unit to the original sending optical power before adjustment;
  • the received optical power of the receiving unit of the second optical module is lower than the preset threshold, and/or the bit error rate is higher than the preset threshold, and/or the packet loss rate is higher than the preset threshold, by comparing the The transmit optical power and the receive optical power of the second optical module are used to calculate the link budget. If the link budget is improved to the point where the original transmit optical power of the first optical module can meet the link transmission capacity, adjust the first optical module’s The sending optical power of the transmitting unit is the original sending optical power before adjustment.
  • the receiving module of the second optical module is further configured to receive the transmitted optical power of the transmitting unit sent by the first optical module and/or the received power of the receiving unit of the first optical module through the OAM information of the OAM channel. Optical power.
  • the second optical module adjustment module is further configured as:
  • the second optical module adjustment module is further configured as:
  • Calculate the transmit optical power value of the first optical module that needs to be increased or decreased write it into the OAM frame of the second optical module, and send it to the first optical module for the first optical module to demodulate the OAM information of the second optical module, Write the register of the first optical module to control the adjustment of the sending optical power.
  • the second optical module adjustment module is further configured to adjust the transmit optical power of the transmitting unit by adjusting the temperature value and/or adjusting the laser bias point.
  • the second optical module may also include:
  • the alarm module is configured to send out an alarm indication when the transmitting optical power of the transmitting unit of the first optical module and/or the transmitting unit of the second optical module is adjusted.
  • each module or unit is described separately.
  • the functions of each module or unit can be implemented in one or more pieces of software or hardware.
  • the embodiment of the present application also provides a first optical module, as shown in FIG. 9 , the first optical module includes:
  • the processor 900 is configured to read the program in the memory 920, and execute the following processes (i.e. perform the following operations by running the program in the memory 920):
  • the transceiver 910 is configured to receive and send data under the control of the processor 900 .
  • the processor 900 is further configured to:
  • the processor 900 is further configured to:
  • Demodulate the OAM information of the second optical module write it into the register of the first optical module, and control the adjustment of the sending optical power.
  • the processor 900 is further configured to:
  • the sending optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module are sent to the second optical module through the OAM information of the OAM channel.
  • the processor 900 is further configured to:
  • the transmitting optical power of the transmitting unit is adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the processor 900 is further configured to:
  • An alarm indication is sent through the transceiver 910 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are not further described in this application.
  • the bus interface provides the interface.
  • Transceiver 910 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 when performing operations.
  • the embodiment of the present application also provides a first optical module located in AAU, including:
  • the first optical module detection module is configured to detect the transmitted optical power of the transmitting unit of the first optical module and/or the received optical power of the receiving unit of the first optical module;
  • the sending module of the first optical module is configured to send the transmitting optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module to the second optical module for the second optical module to adjust the second optical module
  • the first optical module may further include:
  • the first optical module adjustment module is configured to adjust the transmission optical power of the transmitting unit of the first optical module according to the power adjustment information sent by the second optical module.
  • the first optical module adjustment module is further configured as:
  • Demodulate the OAM information of the second optical module write it into the register of the first optical module, and control the adjustment of the sending optical power.
  • the sending module of the first optical module is further configured as:
  • the sending optical power of the transmitting unit of the first optical module and/or the receiving optical power of the receiving unit of the first optical module are sent to the second optical module through the OAM information of the OAM channel.
  • the first optical module adjustment module is further configured as:
  • the transmitting optical power of the transmitting unit is adjusted by adjusting the temperature value and/or adjusting the bias point of the laser.
  • the first optical module may further include:
  • the alarm module is configured to issue an alarm indication when adjusting the transmit optical power of the transmitting unit of the first optical module.
  • each module or unit is described separately.
  • the functions of each module or unit can be implemented in one or more pieces of software or hardware.
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program for implementing the method for adjusting the power of the optical module at the side of the first optical module and/or the second optical module.
  • an optical module solution that supports self-adaptation of transmit optical power is provided, and a solution for self-adaptation of transmit optical power of optical modules is also provided.
  • the module and the remote optical module transmit optical power information through OAM frames, and can dynamically calculate the optical power adjustment value of the optical module, so that the transmitted optical power strictly meets the link power budget requirements.
  • Adjust the transmit optical power of the transmitting unit by controlling the temperature control unit to adjust the temperature value and/or adjust the laser bias point, or directly adjust the output optical power of the transmitting unit, so that the transmitting optical power of the transmitting unit of the optical module can be increased or increased accordingly Reduction, that is, to achieve flexible adjustment of the transmitted optical power.
  • optical power information of the optical module at one end can be transmitted to the optical module at the other end in the form of low-frequency OAM frames, no additional channels are occupied and resources are saved.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光模块功率调整方法、光模块及存储介质。其中,方法包括:第二光模块接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第二光模块位于WDM设备,第一光模块位于AAU;第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。

Description

光模块功率调整方法、光模块及存储介质
相关申请的交叉引用
本申请基于申请号为202111226701.3、申请日为2021年10月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,特别涉及一种光模块功率调整方法、光模块及存储介质。
背景技术
在5G前传网络中,集中式无线接入网络(C-RAN,Centralized Radio Access Network)架构有望成为典型场景。如图1所示,在该架构下,光纤资源丰富、集中站点较少时,有源天线单元(AAU,Active Antenna Unit)可以通过光纤直连分布式单元(DU,Distributed Unit)设备;在光纤资源紧张的区域,采用波分复用(WDM,Wavelength Division Multiplexing)技术可节省光纤资源,在AAU侧和DU侧配置光复用器/解复用器,AAU侧光模块与DU侧光模块分别与本侧光复用器/解复用器连接。
对于AAU/DU中使用的光模块,各光模块的发送光功率处于正态分布的某段区间,其具体发送光功率值取决于激光器的制造工艺。光模块的发送光功率、接收灵敏度等核心指标需严格满足链路功率预算要求。
然而,相关技术中,前传网络采用的光模块,发送光功率不能按需调整,即无法严格满足链路功率预算要求。
发明内容
为解决相关技术问题,本申请实施例提供一种光模块功率调整方法、光模块及存储介质。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种光模块功率调整方法,包括:
第二光模块接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第二光模块位于WDM设备,第一光模块位于AAU;
第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
上述方案中,所述第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,包括:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的发送光功率。
上述方案中,所述方法还包括:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的发送光功率至调整前的原发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的发送光功率至调整前的原发送光功率。
上述方案中,所述第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,是通过操作管理维护(OAM,Operation Administration and Maintenance)通道的OAM信息发送的。
上述方案中,所述调整第二光模块的发射单元的发送光功率,包括:
所述WDM设备的主控单元计算需提升或降低的第二光模块的发送光功率值,写入第二光模块寄存器,控制发送光功率调整。
上述方案中,所述调整第一光模块的发射单元的发送光功率,包括:
所述WDM设备的主控单元计算需提升或降低的第一光模块的发送光功率值,写入第二光模块OAM帧中,发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
上述方案中,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,是通过调节温度值和/或调整激光器偏置点来调整的。
上述方案中,调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率时,所述方法还包括:
发出告警指示。
本申请实施例还提供了一种光模块功率调整方法,包括:
第一光模块检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
第一光模块向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备,第一光模块位于AAU。
上述方案中,所述方法还包括:
第一光模块根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率。
上述方案中,所述第一光模块根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率,包括:
第一光模块接收第二光模块发送给第一光模块的OAM信息;
第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
上述方案中,所述第一光模块向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,包括:
第一光模块通过OAM通道的OAM信息,向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
上述方案中,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,是通过调节温度值和/或调整激光器偏置点来调整的。
上述方案中,调整第一光模块的发射单元的发送光功率时,所述方法还包括:
发出告警指示。
本申请实施例还提供了一种第二光模块,位于WDM设备,包括:
处理器,配置为读取存储器中的程序,执行下列过程:
接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第一光模块位于AAU;
根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;
收发机,配置为在处理器的控制下接收和发送数据。
上述方案中,所述处理器还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的 发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的发送光功率。
上述方案中,所述处理器还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的发送光功率至调整前的原发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的发送光功率至调整前的原发送光功率。
上述方案中,所述第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,是通过OAM通道的OAM信息发送的。
上述方案中,所述处理器还配置为:
计算需提升或降低的第二光模块的发送光功率值,写入第二光模块寄存器,控制发送光功率调整。
上述方案中,所述处理器还配置为:
计算需提升或降低的第一光模块的发送光功率值,写入第二光模块OAM帧中,通过所述收发机发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
上述方案中,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,是通过调节温度值和/或调整激光器偏置点来调整的。
上述方案中,调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率时,所述处理器还配置为:
通过所述收发机发出告警指示。
本申请实施例还提供了一种第二光模块,位于WDM设备,包括:
第二光模块接收单元,配置为接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第一光模块位于AAU;
第二光模块调整模块,配置为根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
上述方案中,所述第二光模块调整模块,还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的发送光功率。
上述方案中,所述第二光模块调整模块,还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的发送光功率至调整前的原发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的发送光功率至调整前的原发送光功率。
上述方案中,所述第二光模块接收模块,还配置为接收第一光模块通过OAM通道的OAM信息发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
上述方案中,所述第二光模块调整模块,还配置为:
计算需提升或降低的第二光模块的发送光功率值,写入第二光模块寄存器,控制发送光功率调整。
上述方案中,所述第二光模块调整模块,还配置为:
计算需提升或降低的第一光模块的发送光功率值,写入第二光模块OAM帧中,发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
上述方案中,所述第二光模块调整模块,还配置为通过调节温度值和/或调整激光器偏置点来调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
上述方案中,所述第二光模块还包括:
告警模块,配置为调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率时,发出告警指示。
本申请实施例还提供了一种第一光模块,位于AAU,包括:
处理器,配置为读取存储器中的程序,执行下列过程:
检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模 块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备;
收发机,配置为在处理器的控制下接收和发送数据。
上述方案中,所述处理器还配置为:
根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率。
上述方案中,所述处理器还配置为:
通过所述收发机接收第二光模块发送给第一光模块的OAM信息;
解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
上述方案中,所述处理器还配置为:
通过OAM通道的OAM信息,向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
上述方案中,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,是通过调节温度值和/或调整激光器偏置点来调整的。
上述方案中,调整第一光模块的发射单元的发送光功率时,所述处理器还配置为:
通过所述收发机发出告警指示。
本申请实施例还提供了一种第一光模块,位于AAU,包括:
第一光模块检测模块,配置为检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
第一光模块发送模块,配置为向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备。
上述方案中,所述第一光模块还包括:
第一光模块调整模块,配置为根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率。
上述方案中,所述第一光模块调整模块,还配置为:
接收第二光模块发送给第一光模块的OAM信息;
解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
上述方案中,所述第一光模块发送模块,还配置为通过OAM通道的OAM信息,向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
上述方案中,所述第一光模块调整模块,还配置为通过调节温度值和/或调整激光器偏置点来调整所述第一光模块的发射单元和/或第二光模块的 发射单元的发送光功率。
上述方案中,所述第一光模块,还包括:
告警模块,配置为调整第一光模块的发射单元的发送光功率时,发出告警指示。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有用于实现上述第一光模块和/或第二光模块侧的任一光模块功率调整方法的计算机程序。
本申请的有益效果如下:
在本申请实施例提供的技术方案中,位于WDM设备的第二光模块会接收位于AAU的第一光模块发送的第一光模块的发射单元的发送光功率、第一光模块的接收单元的接收光功率,位于WDM设备的第二光模块的功能模块(例如主控单元(也可以称为控制单元))即可根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块或者第二光模块的发射单元的发送光功率。由于局端光模块与远端光模块能够通过传递光功率信息来动态计算光模块光功率调整值,因而可以在应用场景改变时,按需增加或减少光模块光功率,从而至少能够解决前传网络采用的光模块的发送光功率不能按需调整、无法严格满足链路功率预算要求的问题,即能够支持发送光功率的灵活调整,使发送光功率严格满足链路功率预算要求。
同时,由于可以通过控制温度控制单元调节温度值和/或调整激光器偏置点来调整发射单元的发送光功率,或直接调整发射单元的输出光功率,从而能够使光模块发射单元的发送光功率相应增大或减小。
另外,由于可以将一端光模块的光功率信息,通过低频OAM信息的方式传到另一端光模块,因而可以不额外占用信道,节省资源。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为相关技术中5G前传典型场景示意图;
图2为本申请实施例中位于WDM设备的第二光模块的光模块功率调整方法实施流程示意图;
图3为本申请实施例中位于AAU的第一光模块的光模块功率调整方法实施流程示意图;
图4为本申请实施例中光模块(即第一光模块、第二光模块)架构示意图;
图5为本申请实施例中包括第一光模块以及第二光模块的系统架构示 意图;
图6为本申请实施例中第一光模块架构示意图;
图7为本申请实施例中有源设备中的第二光模块及核心单元示意图;
图8为本申请实施例中第二光模块结构示意图;
图9为本申请实施例中第一光模块结构示意图。
具体实施方式
光纤直连、WDM两种方案的链路预算通常差异较大,对光模块的发送光功率要求不同。相关技术中,前传网络采用的光模块,在出厂时发送光功率均已确定,不支持功率的在线调节。为了减少备品备件种类、共享产业链,通常采用同一规格的光模块,如面向10千米(km)链路预算的典型场景的光模块。而实际应用中,光纤链路情况较为复杂,对于链路预算要求低的场景,在接收端添加固定衰减的光衰减器,可防止接收机由于光功率过载而损坏。对于应用场景改变时,可按需增加或减少光衰减器。然而固定衰减的光衰减器类型多种多样,数值有大有小,需要凭借大量施工经验选择衰减值,增加了施工人员的施工难度。
此外,伴随链路熔接点增多和发射机老化等情况,链路传输性能逐步恶化,一旦接收光功率低于接收机灵敏度,业务将出现误码,固定衰减的方法无法支持提升发射机功率的需求。同时,相关技术中,光模块的寄存器存储一组较优激光器参数,不支持寄存器对发送光功率的配置、恢复,光模块不具备发送光功率调节功能。对于链路性能突然恶化至接收机灵敏度以下的情况,如果光模块可临时增加发送光功率,即使牺牲眼图、消光比等其他信号指标(寄存器存储的较优激光器参数通常不是对应发送光功率最大值情况),若可避免出现业务误码,则将减少业务中断时间,为运维人员争取时间、通过在线告警等手段提升运维的便利性。
基于此,本申请实施例提出了一种光模块发送光功率自适配的方案,在该方案中,光模块可根据实际的链路情况,经自动测量、计算、比较和调整,自动调整发送光功率,使光模块发送光功率自动适配该链路,即严格满足对应的链路功率预算要求。
下面结合附图对本申请的具体实施方式进行说明。
在说明过程中,将分别从位于(即设置于)WDM设备的第二光模块与位于(即设置于)AAU的第一光模块侧的实施进行说明,然后还将给出二者配合实施的实例以更好地理解本申请实施例中给出的方案的实施。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当它们分开实施时,其也各自解决自身一侧的问题,而二者结合使用时,会获得更好的技术效果。
图2为位于(即设置于)WDM设备的第二光模块的光模块功率调整方 法实施流程示意图,如图2所示,该方法可以包括:
步骤201:第二光模块接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第二光模块位于(即设置于)WDM设备,第一光模块位于(即设置于)AAU;
步骤202:第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
这里,可以理解,第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率中的一项或多项(即组合)调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
实际应用时,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,也可以称为发光功率、发送功率、发射机功率、输出光功率等;所述第一光模块的接收单元和/或第二光模块的接收单元的接收光功率,也可以称为接收功率等;本申请实施例对功率名称不作限定,只要实现其功能即可。
实际应用时,设置有所述第二光模块的所述WDM设备可以是有源WDM设备。
图3为位于(即设置于)AAU的第一光模块的光模块功率调整方法实施流程示意图,如图3所示,该方法可以包括:
步骤301:第一光模块检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
步骤302:第一光模块向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于(即设置于)WDM设备,第一光模块位于(即设置于)AAU。
在一实施例中,当第二光模块确定第一光模块需要调整功率时(即第二光模块确定需要调整第一光模块的发射单元的发送光功率时),如图3所示,该方法还可以包括:
步骤303:第一光模块根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率。
下面主要分为两个部分对图2和图3所示的光模块功率调整方法进行详细说明,一部分为采用OAM的方式发送功率值的具体流程,一部分为对功率的具体调整流程。
首先,对采用OAM的方式发送功率值的具体流程进行详细说明。
具体地,实际应用时,可以将一端光模块的光功率信息,通过低频OAM帧(后续描述中可以记作OAM信息)的方式传到另一端光模块,不额外占 用信道,可以节省资源。
实际应用时,发射单元(即第一光模块、第二光模块的发射单元)的发送光功率、以及接收单元(即第一光模块、第二光模块的接收单元)的接收光功率,可以通过对应光模块(即第一光模块、第二光模块)内部的数字诊断监控(DDM,Digital Diagnostic Monitoring)接口读取。换句话说,光模块(即第一光模块、第二光模块)可以通过内部的DDM接口,读取自身包含的发射单元的发送光功率和自身包含的接收单元的接收光功率。
实际应用时,第一光模块和第二光模块之间传输的、第一光模块的发射单元的发送光功率和/或接收单元的接收光功率,可以是通过OAM信息携带的;换句话说,第一光模块可以通过OAM信息(比如低频OAM帧),向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,相应地,第二光模块可以通过OAM信息(比如低频OAM帧),接收第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
实际应用时,通过OAM信息携带第一光模块的发射单元的发送光功率和/或接收单元的接收光功率,可以理解为采用低频调顶技术将第一光模块的发射单元的发送光功率和/或接收单元的接收光功率写入OAM帧中。具体地,所述第一光模块可以将读取的发射单元的发送光功率和/或接收单元的接收光功率的功率数值,采用低频调顶技术写入OAM帧中,然后将OAM帧发送至对端的光模块(即第二光模块)。
实际应用时,所述OAM信息也可以称为OAM帧,本申请实施例对OAM信息的名称不作限定,只要实现其功能即可。
实际应用时,可以理解,所述第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,可以是通过OAM通道发送的。具体地,所述第一光模块中的控制单元可以通过第一光模块内部的DDM接口,读取第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,将读取的功率数值(即第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率)采用低频调顶技术写入OAM帧中,再通过OAM通道,将该OAM帧发送至对端光模块(第二光模块)。
其次,对功率的具体调整流程进行详细说明。
实际应用时,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,可以是通过调节温度值和/或调整激光器偏置点来调整的。
示例性地,可以通过温度控制单元调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,即温度控制单元可以根据控制单元下发的指令,调节温度值和/或调整激光器偏置点,从而使对应发射单元的发送光功率相应增大或减小,从而达到功率调节的目的。
下面以具体实例进一步说明对功率的调整流程,说明中,先对实施的 系统进行说明,再对实施的流程进行说明。
图4为光模块(即第一光模块、第二光模块)架构示意图,本申请实施例中的光模块(即第一光模块、第二光模块)包括:控制单元、温度控制单元(可选)、发射单元和接收单元;其中,
所述控制单元,可以通过对应光模块内部的DDM接口,读取对应的发射单元的发送光功率、对应的接收单元的接收光功率;并可以将读取的发送光功率和/或接收光功率的功率数值,采用低频调顶技术写入OAM帧中,通过链路(即OAM通道)传输的方式,将OAM帧发送给另一端光模块;
所述控制单元,还可以比较发送功率(即对端光模块的发射单元的发送光功率)与接收功率(即本端的接收单元的接收光功率),计算链路预算及需要增加或减少的发送光功率值;并可以将计算的发送光功率调整值(即需要增加或减少的发送光功率值),采用低频调顶技术写入OAM帧中,通过链路(即OAM通道)传输的方式,将OAM帧发送给另一端光模块;
所述控制单元,还可以接收并解析OAM帧,根据解析OAM帧所得到的光功率调整值,控制温度控制单元调整对应发射单元的输出光功率(即发送光功率),或直接调整对应发射单元的输出光功率(即发送光功率)。
从上面的描述可以看出,在本申请的各种实施例中,所述第一光模块和第二光模块之间通过OAM通道传输的OAM信息(即OAM帧),可以包括(即携带)以下之一:
所述第一光模块的发射单元的发送光功率和/或接收单元的接收光功率;
所述第二光模块所计算的第一光模块的光功率调整值(即第一光模块的发射单元需要增加或减少的发送光功率值)。
实际应用时,所述控制单元(即第一光模块、第二光模块的控制单元)可以支持加载和提取低频管控信息,支持读取寄存器信息,并支持写入寄存器信息,从而支持配置对应光模块的发射单元的发送光功率。
实际应用时,所述温度控制单元是可选单元,换句话说,光模块(即第一光模块、第二光模块)可以包含或不包含所述温度控制单元。在光模块(即第一光模块、第二光模块)包含所述温度控制单元的情况下,该光模块的控制单元可以通过控制所述温度控制单元调整对应发射单元的输出光功率(即发送光功率);在光模块(即第一光模块、第二光模块)不包含所述温度控制单元的情况下,该光模块的控制单元可以直接调整对应发射单元的输出光功率(即发送光功率)。
实际应用时,在光模块(即第一光模块、第二光模块)的控制单元通过控制温度控制单元调整对应发射单元的发送光功率的过程中,所述温度控制单元(即第一光模块、第二光模块的温度控制单元)可以根据对应光模块的控制单元下发的指令,调节温度值和/或调整激光器偏置点,从而使对应光模块的发射单元的发送光功率相应增大或减小。
实际应用时,所述发射单元(即第一光模块、第二光模块的发射单元)可以将电层业务和低频OAM帧转化为光信号,传输给对端光模块。并且,所述发射单元可以支持发送光功率的测量,并将测量得到的发送光功率数值通过DDM上报给对应的控制单元;另外,所述发射单元可以支持根据控制单元的信息,配置发送光功率,从而使发送光功率相应增大或减小。
实际应用时,所述接收单元(即第一光模块、第二光模块的接收单元)可以接收对端光模块发送来的光信号,将光信号转换为电层业务和低频OAM帧。并且,所述接收单元可以支持接收光功率的测量,并将测量得到的接收光功率数值通过DDM上报给对应的控制单元。
实际应用时,所述控制单元(即第一光模块、第二光模块的控制单元)可以是微控制单元,本申请实施例对控制单元的类型不作限定,只要实现其功能即可。
图5为包括第一光模块以及第二光模块的系统架构示意图,如图5所示,第一光模块位于AAU,第二光模块位于WDM设备,WDM设备中的控制单元(也可以称为主控单元)支持存储和计算光功率信息。另外,WDM设备中的控制单元也可以理解为设置在该WDM设备的第二光模块的控制单元,即WDM设备的控制单元和第二光模块的控制单元可以指同一个控制单元,或者可以指能够直接进行信息交互的两个控制单元。
该系统可以包括AAU彩光模块、AAU侧无源波分复用器、DU侧有源WDM设备,从而实现统一管控的前传网络。该方案中,远端可以采用无源合分波器,从而实现灵活部署;AAU光模块可以采用调顶技术加载OAM信息,从而低成本实现轻量级管控。
图6为第一光模块架构示意图,如图6所示,第一光模块可以包括:光发射次模块(TOSA,Transmitter Optical Subassembly)、光接收次组件(ROSA,Receiver Optical Subassembly)、控制单元和数据和时钟恢复(CDR,clock and data recovery)。其中,控制单元可以支持加载和提取低频管控信息,并可以支持读取光模块中寄存器信息并控制CDR;CDR可以支持线路侧还回功能。
图7为有源WDM设备中第二光模块的核心单元示意图,如图7所示,有源WDM设备可以包括:第二光模块、伪随机二进制序列(PRBS,Pseudo Random Binary Sequence)处理单元(可选)和主控单元(即控制单元)。第二光模块的核心单元可以包括:TOSA、ROSA、控制单元和CDR。其中,第二光模块的控制单元可以支持加载和提取低频管控信息,并可以支持读取寄存器信息;有源WDM设备的主控单元可以支持发送控制指令,发送PRBS数据流,并可以比对发送和接收PRBS。实际应用时,第二光模块的控制单元和有源WDM设备的主控单元可由同一处理器实现,也可也由不同处理器实现;换句话说,第二光模块的控制单元和有源WDM设备的主控单元可以指同一个控制单元/主控单元,或者可以指能够直接进行信息交 互的两个控制单元/主控单元。
下面对光模块(即第一光模块、第二光模块)的发射单元的发送光功率调整及恢复的具体实施例进行详细说明。
首先,对光模块(即第一光模块、第二光模块)的发送功率调整流程进行详细说明。
在一实施例中,所述第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,可以包括:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的输出光功率(即发送光功率);
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的输出光功率(即发送光功率)。
这里,可以理解,上述多个阈值是指接收光功率、误码率及丢包率这些不同参数所对应的不同含义的预设阈值,各阈值的具体大小可以根据需要来预先设置,本申请实施例对此不作限定。
在一实施例中,所述调整第二光模块的发射单元的输出光功率(即发送光功率),可以包括:
控制单元(即第二光模块的控制单元或有源WDM设备的主控单元)计算需提升或降低的第二光模块的发送光功率值,将计算得到的需提升或降低的第二光模块的发送光功率值写入第二光模块寄存器,从而控制发送光功率调整,即根据需提升或降低的第二光模块的发送光功率值控制发送光功率调整。
在一实施例中,所述调整第一光模块的发射单元的输出光功率(即发送光功率),可以包括:
控制单元(即第二光模块的控制单元或有源WDM设备的主控单元)计算需提升或降低的第一光模块的发送光功率值,将计算得到的需提升或降低的第一光模块的发送光功率值写入第二光模块OAM帧中,将第二光模块OAM帧发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息(即需提升或降低的第一光模块的发送光功率值),将需提升或降低的第一光模块的发送光功率值写入第一光模块寄存器,从而控制发送光功率调整。
实际应用时,若第一光模块的接收功率低于某阈值和/或出现误码和/或丢包,有源WDM设备的主控单元可以计算需提升的第二光模块的发光功率值;若第一光模块的接收功率高于某阈值,有源WDM设备的主控单元可以计算需降低的第二光模块的发光功率值。计算出需提升或降低的第 二光模块的发光功率值之后,有源WDM设备的主控单元可以将得到的需提升或降低的第二光模块的发光功率值写入第二光模块寄存器,并根据第二光模块寄存器中的发光功率值控制发送光功率调整。
实际应用时,若第二光模块的接收功率低于某阈值和/或出现误码和/或丢包,有源WDM设备的主控单元可以计算需提升的第一光模块的发光功率值;若第二光模块的接收功率高于某阈值,有源WDM设备的主控单元可以计算需降低的第一光模块发光功率值。计算出需提升或降低的第一光模块的发光功率值之后,有源WDM设备的主控单元可以将得到的需提升或降低的第一光模块的发光功率值写入第二光模块OAM帧中,将第二光模块OAM帧发送给第一光模块;第一光模块可以通过对第二光模块OAM帧进行解调的方式得到第二光模块OAM信息(即需提升或降低的第一光模块的发光功率值),并可以将需提升或降低的第一光模块的发光功率值写入第一光模块寄存器,并根据第一光模块寄存器中的功率值控制发送光功率调整。
实际应用时,所述控制单元(即第二光模块的控制单元或有源WDM设备的主控单元)计算需提升或降低的第二光模块的发送光功率值的具体方式,以及所述控制单元(即第二光模块的控制单元或有源WDM设备的主控单元)计算需提升或降低的第一光模块的发送光功率值的具体方式,可以根据需要来设置,本申请实施例对此不作限定。
相应地,在一实施例中,对于所述第一光模块侧的光模块功率调整方法,该方法还可以包括:
第一光模块根据第二光模块发送的功率调整信息(即OAM信息/OAM帧)调整第一光模块的发射单元的发送光功率。
在一实施例中,所述第一光模块根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率,可以包括:
第一光模块接收第二光模块发送给第一光模块的OAM信息(即上述第二光模块OAM帧);
第一光模块从第二光模块OAM帧中解调出第二光模块OAM信息(即上述需提升或降低的第一光模块的发送光功率值),将需提升或降低的第一光模块的发送光功率值写入第一光模块寄存器,以控制发送光功率调整,即根据需提升或降低的第一光模块的发送光功率值控制发送光功率调整。
具体地,实际应用时,所述第一光模块可以检测其发送光功率(即检测第一光模块的发射单元的发送光功率)和接收功率(即检测第一光模块的接收单元的接收光功率),即第一光模块中的控制单元可以通过第一光模块内部的DDM接口,读取第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;所述第一光模块可以通过OAM通道的OAM信息(即OAM帧),将发送光功率和/或接收功率发送至第二光模块。
其中,所述第二光模块可以解调第一光模块发送的OAM信息,读取第 一光模块的发送光功率和/或接收光功率,并检测第二光模块的发送光功率和/或接收光功率,将第一光模块和第二光模块的功率信息报送给有源WDM设备的主控单元。
若第一光模块的接收功率低于某阈值和/或出现误码和/或丢包,有源WDM设备的主控单元可以计算需提升的第二光模块的发光功率值;若第一光模块的接收功率高于某阈值,有源WDM设备的主控单元可以计算需降低的第二光模块的发光功率值。计算出需提升或降低的第二光模块的发光功率值之后,有源WDM设备的主控单元可以将得到的需提升或降低的第二光模块的发光功率值写入第二光模块寄存器,并根据第二光模块寄存器中的发光功率值控制发送光功率调整。
若第二光模块的接收功率低于某阈值和/或出现误码和/或丢包,有源WDM设备的主控单元可以计算需提升的第一光模块的发光功率值;若第二光模块的接收功率高于某阈值,有源WDM设备的主控单元可以计算需降低的第一光模块发光功率值。计算出需提升或降低的第一光模块的发光功率值之后,有源WDM设备的主控单元可以将得到的需提升或降低的第一光模块的发光功率值写入第二光模块OAM帧中,将第二光模块OAM帧发送给第一光模块;第一光模块可以通过对第二光模块OAM帧进行解调的方式得到第二光模块OAM信息(即需提升或降低的第一光模块的发光功率值),并可以将需提升或降低的第一光模块的发光功率值写入第一光模块寄存器,并根据第一光模块寄存器中的功率值控制发送光功率调整。
在一实施例中,第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率时,该方法还可以包括:
第二光模块发出告警指示。
相应地,第一光模块调整第一光模块的发射单元的发送光功率时,该方法还可以包括:
第一光模块发出告警指示。
具体地,实际应用时,对于接收功率低于某阈值和/或出现误码和/或丢包的场景,在提升对应光模块的发送光功率的同时,对应光模块可以产生告警指示。示例性地,若第一光模块的接收功率低于某阈值和/或出现误码和/或丢包,第二光模块可以发出告警指示;若第二光模块的接收功率低于某阈值和/或出现误码和/或丢包,第一光模块可以发出告警指示。
其次,对光模块(即第一光模块、第二光模块)的发送功率恢复流程(可以理解为另一种发送功率调整流程)进行详细说明。
在一实施例中,在调整第二光模块的发射单元的发送光功率之后,即将第二光模块的发射单元的发送光功率由原发送光功率调整为新的发送光功率之后,若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率(即调整后的新的发送光功率)、第一光模块的接收光功率来计 算链路预算,若链路预算改善至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的输出光功率(即发送光功率)至调整前的原发送光功率,即将第二光模块的发射单元的发送光功率由新的发送光功率恢复为原发送光功率;
在调整第一光模块的发射单元的发送光功率之后,即将第一光模块的发射单元的发送光功率由原发送光功率调整为新的发送光功率之后,若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率(即调整后的新的发送光功率)、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的输出光功率(即发送光功率)至调整前的原发送光功率,即将第一光模块的发射单元的发送光功率由新的发送光功率恢复为原发送光功率。
具体地,实际应用时,对于第一光模块的接收功率低于某阈值和/或出现误码和/或丢包从而提升第二光模块发送光功率的情况,可以通过比较第二光模块提升后的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善至第二光模块的原发送光功率可满足链路传输能力时,有源WDM设备的主控单元可以下发第二光模块的发送光功率恢复信息(即需要降低的第二光模块的发送光功率值),将需要降低的第二光模块的发送光功率值写入第二光模块的寄存器,并根据需要降低的第二光模块的发送光功率值控制第二光模块的发送光功率调整至原发送光功率值。
实际应用时,对于第二光模块的接收功率低于某阈值和/或出现误码和/或丢包从而提升第一光模块发送光功率的情况,可以通过比较第一光模块提升后的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的原发送光功率可满足链路传输能力时,有源WDM设备的主控单元可以下发第一光模块的发送光功率恢复信息(即需要降低的第一光模块的发送光功率值),将需要降低的第一光模块的发送光功率值写入第二光模块OAM帧中,将OAM帧发送给第一光模块;第一光模块通过解调接收到的OAM帧可以得到第二光模块OAM信息(即需要降低的第一光模块的发送光功率值),将即需要降低的第一光模块的发送光功率值写入第一光模块寄存器,并可以根据需要降低的第一光模块的发送光功率值控制光功率调整至原发送光功率值。
实际应用时,所述第二光模块的控制单元和温度控制单元可由第二光模块中的处理器(也可以理解为WDM设备的处理器)实现;所述第二光模块的发射单元和接收单元可由第二光模块中的收发机(也可以理解为WDM设备的收发机)实现。所述第一光模块的控制单元和温度控制单元可由第一光模块中的处理器(也可以理解为AAU的处理器)实现;所述第一光模块的发射单元和接收单元可由第一光模块中的收发机(也可以理解为 AAU的收发机)实现。
需要说明的是:第一光模块和第二光模块调整发送光功率时,仅以上述各程序模块(即上述控制单元、发射单元、接收单元和温度控制单元)的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将第一光模块和第二光模块的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。
基于上述程序模块的硬件实现,且为了实现本申请实施例第二光模块侧的方法,本申请实施例还提供了一种第二光模块,位于WDM设备(即设置在WDM设备中),如图8所示,第二光模块中包括:
处理器800,配置为读取存储器820中的程序,执行下列过程(即通过运行存储器820中的程序执行以下操作):
接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第一光模块位于AAU;
根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;
收发机810,配置为在处理器800的控制下接收和发送数据。
在一实施例中,所述处理器800,还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的发送光功率。
在一实施例中,所述处理器800,还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的发送光功率至调整前的原发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的发送光功率至调整前的原发送光功率。
在一实施例中,所述处理器800,还配置为:
通过OAM通道的OAM信息,接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
在一实施例中,所述处理器800,还配置为:
计算需提升或降低的第二光模块的发送光功率值,写入第二光模块寄存器,控制发送光功率调整。
在一实施例中,所述处理器800,还配置为:
计算需提升或降低的第一光模块的发送光功率值,写入第二光模块OAM帧中,通过收发机810发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
在一实施例中,所述处理器800,还配置为:
通过调节温度值和/或调整激光器偏置点来调整发送光功率。
在一实施例中,所述处理器800,还配置为:
通过所述收发机810发出告警指示。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,本申请不再对其进行进一步描述。总线接口提供接口。收发机810可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器800负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
本申请实施例还提供了一种第二光模块,位于WDM设备(即设置在WDM设备中),包括:
第二光模块接收单元,配置为接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第一光模块位于AAU;
第二光模块调整模块,配置为根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
在一实施例中,所述第二光模块调整模块,还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的发送光功率。
在一实施例中,所述第二光模块调整模块还配置为:
若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善 至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的发送光功率至调整前的原发送光功率;
若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的发送光功率至调整前的原发送光功率。
在一实施例中,所述第二光模块接收模块,还配置为通过OAM通道的OAM信息,接收第一光模块发送的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
在一实施例中,所述第二光模块调整模块,还配置为:
计算需提升或降低的第二光模块的发送光功率值,写入第二光模块寄存器,控制发送光功率调整。
在一实施例中,所述第二光模块调整模块,还配置为:
计算需提升或降低的第一光模块的发送光功率值,写入第二光模块OAM帧中,发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
在一实施例中,所述第二光模块调整模块,还配置为通过调节温度值和/或调整激光器偏置点来调整发射单元的发送光功率。
在一实施例中,第二光模块还可以包括:
告警模块,配置为调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率时,发出告警指示。
为了描述的方便,对各模块或单元分别进行了描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
基于上述程序模块的硬件实现,且为了实现本申请实施例第一光模块侧的方法,本申请实施例还提供了一种第一光模块,如图9所示,第一光模块中包括:
处理器900,配置为读取存储器920中的程序,执行下列过程(即通过运行存储器920中的程序执行以下操作):
检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备;
收发机910,配置为在处理器900的控制下接收和发送数据。
在一实施例中,所述处理器900还配置为:
根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发 送光功率。
在一实施例中,所述处理器900还配置为:
通过收发机910接收第二光模块发送给第一光模块的OAM信息;
解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
在一实施例中,所述处理器900还配置为:
通过OAM通道的OAM信息,向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
在一实施例中,所述处理器900还配置为:
通过调节温度值和/或调整激光器偏置点来调整发射单元的发送光功率。
在一实施例中,所述处理器900还配置为:
通过所述收发机910发出告警指示。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,本申请不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
本申请实施例中还提供了一种第一光模块,位于AAU,包括:
第一光模块检测模块,配置为检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
第一光模块发送模块,配置为向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备。
在一实施例中,第一光模块还可以包括:
第一光模块调整模块,配置为根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率。
在一实施例中,所述第一光模块调整模块还配置为:
接收第二光模块发送给第一光模块的OAM信息;
解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
在一实施例中,所述第一光模块发送模块还配置为:
通过OAM通道的OAM信息,向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
在一实施例中,所述第一光模块调整模块还配置为:
通过调节温度值和/或调整激光器偏置点来调整发射单元的发送光功率。
在一实施例中,第一光模块还可以包括:
告警模块,配置为调整第一光模块的发射单元的发送光功率时,发出告警指示。
为了描述的方便,对各模块或单元分别进行了描述。当然,在实施本申请时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本申请实施例中还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有用于实现上述第一光模块和/或第二光模块侧的光模块功率调整方法的计算机程序。
具体实施可以参见位于AAU的第一光模块和/或位于WDM设备的第二光模块侧的光模块功率调整方法的实施。
综上所述,在本申请实施例提供的技术方案中,提供了支持发送光功率自适配的光模块方案,还提供了光模块发送光功率自适配的方案,具体地,局端光模块与远端光模块通过OAM帧传递光功率信息,可以动态计算光模块光功率调整值,使发送光功率严格满足链路功率预算要求。
通过控制温度控制单元调节温度值和/或调整激光器偏置点来调整发射单元的发送光功率,或直接调整发射单元的输出光功率,从而能够使光模块发射单元的发送光功率相应增大或减小,即实现发送光功率的灵活调整。
另外,由于可以将一端光模块的光功率信息,通过低频OAM帧的方式传到另一端光模块,因而可以不额外占用信道,节省资源。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个 流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种光模块功率调整方法,包括:
    第二光模块接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第二光模块位于波分复用WDM设备,第一光模块位于有源天线单元AAU;
    第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
  2. 如权利要求1所述的方法,其中,所述第二光模块根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,包括:
    若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第二光模块的发射单元的发送光功率;
    若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,调整第一光模块的发射单元的发送光功率。
  3. 如权利要求2所述的方法,其中,所述方法还包括:
    若第一光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第二光模块的发送光功率、第一光模块的接收光功率来计算链路预算,若链路预算改善至第二光模块的调整前的原发送光功率可满足链路传输能力时,调整第二光模块的发射单元的发送光功率至调整前的原发送光功率;
    若第二光模块的接收单元的接收光功率低于预设阈值、和/或误码率高于预设阈值、和/或丢包率高于预设阈值时,通过比较第一光模块的发送光功率、第二光模块的接收光功率来计算链路预算,若链路预算改善至第一光模块的调整前的原发送光功率可满足链路传输能力时,调整第一光模块的发射单元的发送光功率至调整前的原发送光功率。
  4. 如权利要求1至3任一项所述的方法,其中,所述第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,是通过操作管理维护OAM通道的OAM信息发送的。
  5. 如权利要求1至3任一项所述的方法,其中,所述调整第二光模块的发射单元的发送光功率,包括:
    所述WDM设备的主控单元计算需提升或降低的第二光模块的发送光功率值,写入第二光模块寄存器,控制发送光功率调整。
  6. 如权利要求1至3任一项所述的方法,其中,所述调整第一光模块的发射单元的发送光功率,包括:
    所述WDM设备的主控单元计算需提升或降低的第一光模块的发送光功率值,写入第二光模块OAM帧中,发送给第一光模块,用以供第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
  7. 如权利要求1至3任一项所述的方法,其中,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,是通过调节温度值和/或调整激光器偏置点来调整的。
  8. 如权利要求1至3任一项所述的方法,其中,调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率时,所述方法还包括:
    发出告警指示。
  9. 一种光模块功率调整方法,包括:
    第一光模块检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
    第一光模块向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备,第一光模块位于AAU。
  10. 如权利要求9所述的方法,其中,所述方法还包括:
    第一光模块根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率。
  11. 如权利要求10所述的方法,其中,所述第一光模块根据第二光模块发送的功率调整信息调整第一光模块的发射单元的发送光功率,包括:
    第一光模块接收第二光模块发送给第一光模块的OAM信息;
    第一光模块解调出第二光模块OAM信息,写入第一光模块寄存器,控制发送光功率调整。
  12. 如权利要求9至11任一项所述的方法,其中,所述第一光模块向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,包括:
    第一光模块通过OAM通道的OAM信息,向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率。
  13. 如权利要求9至11任一项所述的方法,其中,所述第一光模块的发射单元和/或第二光模块的发射单元的发送光功率,是通过调节温度值和/或调整激光器偏置点来调整的。
  14. 如权利要求9至11任一项所述的方法,其中,调整第一光模块 的发射单元的发送光功率时,所述方法还包括:
    发出告警指示。
  15. 一种第二光模块,位于WDM设备,包括:
    处理器,配置为读取存储器中的程序,执行下列过程:
    接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第一光模块位于AAU;
    根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;
    收发机,配置为在处理器的控制下接收和发送数据。
  16. 一种第二光模块,位于WDM设备,包括:
    第二光模块接收单元,配置为接收第一光模块发送的第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,其中,第一光模块位于AAU;
    第二光模块调整模块,配置为根据误码率、丢包率、第一光模块的接收单元的接收光功率、第二光模块的接收单元的接收光功率之一或者其组合调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率。
  17. 一种第一光模块,位于AAU,包括:
    处理器,配置为读取存储器中的程序,执行下列过程:
    检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
    向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备;
    收发机,配置为在处理器的控制下接收和发送数据。
  18. 一种第一光模块,位于AAU,包括:
    第一光模块检测模块,配置为检测第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率;
    第一光模块发送模块,配置为向第二光模块发送第一光模块的发射单元的发送光功率和/或第一光模块的接收单元的接收光功率,用以供第二光模块调整第一光模块的发射单元和/或第二光模块的发射单元的发送光功率;其中,第二光模块位于WDM设备。
  19. 一种计算机可读存储介质,所述计算机可读存储介质存储有用于实现权利要求1至14任一项所述方法的计算机程序。
PCT/CN2022/126505 2021-10-21 2022-10-20 光模块功率调整方法、光模块及存储介质 WO2023066349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111226701.3 2021-10-21
CN202111226701.3A CN116017660A (zh) 2021-10-21 2021-10-21 一种光模块功率调整方法、光模块及存储介质

Publications (1)

Publication Number Publication Date
WO2023066349A1 true WO2023066349A1 (zh) 2023-04-27

Family

ID=86030357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126505 WO2023066349A1 (zh) 2021-10-21 2022-10-20 光模块功率调整方法、光模块及存储介质

Country Status (2)

Country Link
CN (1) CN116017660A (zh)
WO (1) WO2023066349A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054841A (zh) * 2019-06-06 2020-12-08 中国移动通信有限公司研究院 有源模块、移动通信前传系统和移动通信前传管控方法
CN112055271A (zh) * 2019-06-06 2020-12-08 中国移动通信有限公司研究院 一种无线接入网的控制方法、网络设备及系统
CN112118070A (zh) * 2019-06-20 2020-12-22 中国移动通信有限公司研究院 一种前传网络的控制方法、网络设备及系统
CN112118048A (zh) * 2019-06-20 2020-12-22 中国移动通信有限公司研究院 一种前传网络的控制方法、网络设备及系统
WO2021004471A1 (zh) * 2019-07-10 2021-01-14 烽火通信科技股份有限公司 Wdm-pon系统及其管控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054841A (zh) * 2019-06-06 2020-12-08 中国移动通信有限公司研究院 有源模块、移动通信前传系统和移动通信前传管控方法
CN112055271A (zh) * 2019-06-06 2020-12-08 中国移动通信有限公司研究院 一种无线接入网的控制方法、网络设备及系统
CN112118070A (zh) * 2019-06-20 2020-12-22 中国移动通信有限公司研究院 一种前传网络的控制方法、网络设备及系统
CN112118048A (zh) * 2019-06-20 2020-12-22 中国移动通信有限公司研究院 一种前传网络的控制方法、网络设备及系统
WO2021004471A1 (zh) * 2019-07-10 2021-01-14 烽火通信科技股份有限公司 Wdm-pon系统及其管控方法

Also Published As

Publication number Publication date
CN116017660A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN102625922B (zh) 用于分布式故障感应和恢复的系统和方法
AU669530B2 (en) Group facility protection in digital telecommunication system
US9391693B2 (en) Protection for distributed radio access networks
CN103959717B (zh) 用于分支型光网络中的故障恢复的方法和系统
WO2021213239A1 (zh) 光模块及其监控方法、前传系统、电子设备以及计算机可读存储介质
AU2009347673A1 (en) Lossless adjustment method of oduflex channel bandwidth and oduflex channel
WO2009048643A1 (en) Method and system for power stability control in wavelength division multiplexing networks
CN101146039A (zh) 自动调整带宽的装置及其调整方法
CN112752173A (zh) 一种用于m-otn系统动态无损带宽调整的方法与装置
WO2020181549A1 (en) Power saving mechanisms for high speed passive optical network
TW201531108A (zh) 電光信號傳輸技術
US20140029937A1 (en) Method, apparatus, and system for monitoring and adjusting optical power
JP5849911B2 (ja) 通信システムおよび光伝送装置
WO2022262573A1 (zh) 无源波分设备故障检测方法、装置、服务器和存储介质
US9590736B2 (en) Using floating transport card for best effort traffic
WO2023066349A1 (zh) 光模块功率调整方法、光模块及存储介质
CN102265640B (zh) 光线路传输保护系统和方法
CN110440391B (zh) 环路网络保护方法、空调系统
CN101253712A (zh) 自动光学链路功率控制
US8724660B2 (en) Transmission and reception apparatus for dynamic lane operation in multi-lane based ethernet system, and method of controlling the same
WO2016188228A1 (zh) 一种分布式自动功率优化系统及方法
US11265080B2 (en) Submarine cable fault determining method and apparatus
US9143263B2 (en) Method and system for monitoring performance of wavelength path, and node device
US7471896B2 (en) Optical transponder and method for detecting and treating errors in optical channel sublayer of the optical transponder
WO2023011039A1 (zh) 光通道功率调节方法、系统和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE