WO2023011014A1 - 无线通信方法、装置及系统 - Google Patents

无线通信方法、装置及系统 Download PDF

Info

Publication number
WO2023011014A1
WO2023011014A1 PCT/CN2022/099034 CN2022099034W WO2023011014A1 WO 2023011014 A1 WO2023011014 A1 WO 2023011014A1 CN 2022099034 W CN2022099034 W CN 2022099034W WO 2023011014 A1 WO2023011014 A1 WO 2023011014A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling offset
minimum scheduling
pdcch
time slot
limit
Prior art date
Application number
PCT/CN2022/099034
Other languages
English (en)
French (fr)
Inventor
高飞
焦淑蓉
黄雯雯
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011014A1 publication Critical patent/WO2023011014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the communication field, in particular to a wireless communication method, device and system.
  • the base station When downlink scheduling the physical downlink shared channel (PDSCH), the base station will send downlink control information (DCI) to the user equipment (user equipment, UE) through the physical downlink control channel (physical downlink control channel, PDCCH) ).
  • the DCI includes time-domain position information of the PDSCH, specifically, the time-domain position information of the PDSCH includes a slot offset (slot offset) K 0 .
  • the time slot offset K 0 represents the number of time slots between the time slot where the scheduled PDSCH is located and the time slot where the DCI scheduling the PDSCH is located. As shown in FIG. 1 , the time slot in which the DCI is located is time slot n, and the time slot in which the PDSCH scheduled by the DCI is located is time slot n+1. Then, the value of K 0 included in the DCI is 1.
  • the minimum scheduling offset limit K 0min is introduced to limit the minimum value of K 0 .
  • the minimum value of K 0 is K 0min .
  • the associated two candidate PDCCHs are used for repeated PDCCH transmission.
  • the repeated PDCCH transmission means that the same DCI load bits are transmitted in the PDCCH
  • the inter-slot PDCCH repeated transmission means that two candidate PDCCHs used for the PDCCH repeated transmission are located in different time slots.
  • the content of the first DCI transmitted through the first candidate PDCCH is the same as that of the second DCI transmitted through the second candidate PDCCH.
  • Embodiments of the present application provide a wireless communication method, device, and system, which are used to solve the problem of inconsistency in determining whether a scheduling scenario is expected by a UE in a scenario of repeated PDCCH transmission between timeslots.
  • a wireless communication method is provided, and the device for performing the wireless communication method may be a terminal device, and may be a module applied to the terminal device, such as chip or system-on-a-chip.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives the first physical downlink control channel PDCCH from the network device on the first time slot, and the first time slot is associated with the first minimum scheduling offset restriction; the terminal device receives the PDCCH from the network device on the second time slot The second PDCCH of the device, the second time slot is associated with the second minimum scheduling offset limit; the terminal device determines the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit Scheduling offset limitation, the third minimum scheduling offset limitation is used to limit the time slot offset K 0 or K 2 in the first PDCCH and the second PDCCH; wherein, the first time slot is different from the second time slot slot, the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the terminal device when the terminal device receives the first PDCCH and the second PDCCH used for PDCCH repeated transmission on two different time slots, that is, in the inter-slot PDCCH repeated transmission scenario, and the two When different time slots are associated with different minimum scheduling offset constraints, the terminal device can determine the third minimum scheduling offset constraint according to the aforementioned different minimum scheduling offset constraints, thus clarifying that the two same PDCCHs contain K 0 or K 2 is constrained by the third minimum scheduling offset constraint, which overcomes the unclear problem of which minimum scheduling offset constraint K 0 is constrained by, and thus determines whether the unified scheduling scenario is expected by the UE.
  • the above wireless communication method is executed on both the network device side and the terminal device side, so as to unify the understanding of the network device and the terminal device that K 0 or K 2 is subject to the constraint of the third minimum scheduling offset.
  • the terminal device determines a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The terminal device determines the first minimum scheduling offset limit as the third minimum scheduling offset.
  • the terminal device determines a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The terminal device determines the second minimum scheduling offset limit as the third minimum scheduling offset limit.
  • the terminal device determines a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The terminal device determines that the third minimum scheduling offset limit is the maximum value or the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the third minimum scheduling offset limit is determined according to the maximum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit, combined with the definitions of the slot offset and the minimum scheduling offset limit, There are more time slots between the time slot where the scheduled PDSCH is located and the time slot where the PDCCH that schedules the PDSCH is located.
  • the terminal equipment does not need to receive the PDSCH and can be in an idle or dormant state, which is conducive to saving Power consumption, but more time slots apart will increase the scheduling delay.
  • the third minimum scheduling offset limit is determined according to the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit, the time slot where the scheduled PDSCH is located is different from the time slot where the PDCCH that schedules the PDSCH is located The number of time slots between them is less, which is beneficial to reduce the scheduling delay, but will increase the power consumption.
  • An apparatus for performing the wireless communication method may be a terminal device, or may be a module applied to the terminal device, such as a chip or a chip system.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives the first physical downlink control channel PDCCH from the network device on the first time slot, and the first time slot is associated with the first minimum scheduling offset restriction; the terminal device receives the PDCCH from the network device on the second time slot
  • the second PDCCH of the device receives the second time slot is associated with the second minimum scheduling offset limit; wherein, the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit, and the first time slot is different from In the second time slot, the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the two minimum scheduling offset restrictions associated with two different time slots are the same, that is, the first PDCCH and the second PDCCH transmitted by the network device are not allowed to be subject to different minimum scheduling The limit of the offset limit. Therefore, it is clarified that K 0 or K 2 contained in the two same PDCCHs is constrained by the first minimum scheduling offset restriction or the second minimum scheduling offset restriction, thereby overcoming which minimum scheduling offset K 0 or K 2 is subject to The constraint of the restriction is an unclear issue, so whether the unified scheduling scenario is a decision desired by the UE.
  • An apparatus for performing the wireless communication method may be a terminal device, or may be a module applied to the terminal device, such as a chip or a chip system.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives the first physical downlink control channel PDCCH from the network device on the first time slot, and the first time slot is associated with the first minimum scheduling offset restriction; the terminal device receives the PDCCH from the network device on the second time slot A second PDCCH of the device, the second time slot is associated with a second minimum scheduling offset constraint, wherein the first time slot is earlier than the second time slot; the first PDCCH and the second PDCCH are used for PDCCH repetition transmission; if the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, the terminal device takes the first time slot or the second time slot as a reference, Or, the terminal device uses the first PDCCH or the second PDCCH as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • the terminal device when the fourth minimum scheduling offset limit is different from the second minimum scheduling offset limit, the terminal device can select the time slot or PDCCH as a reference to determine the fourth minimum scheduling offset limit effective time. Therefore, it is possible to solve the problem of which one to use when there are multiple possible valid times in the repeated transmission of the PDCCH between slots.
  • the above wireless communication method is executed on both the network device side and the terminal device side, so as to unify the understanding of the effective time by the network device and the terminal device.
  • a wireless communication method is provided, and an apparatus for performing the wireless communication method may be a network device, or may be a module applied to the network device, such as a chip or a chip system.
  • the following description is made by taking the execution subject as a network device as an example.
  • the network device sends the first physical downlink control channel PDCCH to the terminal device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the network device sends the terminal device on the second time slot The second PDCCH, the second time slot is associated with the second minimum scheduling offset limit; the network device determines the third minimum scheduling offset according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit Offset limitation, the third minimum scheduling offset limitation is used to limit the time slot offset K 0 or K 2 in the first PDCCH and the second PDCCH; wherein, the first time slot is different from the second time slot, The first PDCCH and the second PDCCH are used for repeated PDCCH transmission.
  • the network device determines a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The network device determines the first minimum scheduling offset limit as the third minimum scheduling offset.
  • the network device determines a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The network device determines the second minimum scheduling offset limit as the third minimum scheduling offset limit.
  • the network device determines a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The network device determines that the third minimum scheduling offset limit is the maximum value or the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the technical effect brought by any possible implementation manner in the fourth aspect may refer to the above-mentioned first aspect or the technical effect brought by different implementation manners of the first aspect, which will not be repeated here.
  • a device for performing the wireless communication method may be a network device, or may be a module applied to the network device, such as a chip or a chip system.
  • the following takes the execution subject as a network device as an example for description.
  • the network device sends the first physical downlink control channel PDCCH to the terminal device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the network device sends the terminal device on the second time slot
  • the second PDCCH the second time slot is associated with the second minimum scheduling offset limit; wherein, the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit, and the first time slot is different from the first For two time slots, the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the technical effect brought about by the fifth aspect can refer to the technical effect brought about by the above-mentioned second aspect, which will not be repeated here.
  • a device for performing the wireless communication method may be a network device, or may be a module applied to the network device, such as a chip or a chip system.
  • the following description is made by taking the execution subject as a network device as an example.
  • the network device sends the first physical downlink control channel PDCCH to the terminal device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the network device sends the terminal device on the second time slot A second PDCCH, the second time slot is associated with a second minimum scheduling offset restriction, wherein the first time slot is earlier than the second time slot; the first PDCCH and the second PDCCH are used for PDCCH repeated transmission; If the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, the network device uses the first time slot or the second time slot as a reference, or, The network device uses the first PDCCH or the second PDCCH as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus includes: a transceiver module and a processing module; the transceiver module is configured to receive a first physical downlink control channel PDCCH from a network device in a first time slot , the first time slot is associated with the first minimum scheduling offset limit; the transceiver module is also used to receive the second PDCCH from the network device on the second time slot, the second time slot is related to the second minimum scheduling offset
  • the offset limit is associated;
  • the processing module is configured to determine a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, and the third minimum scheduling offset limit Used to limit the time slot offset K 0 or K 2 in the first PDCCH and the second PDCCH; wherein, the first time slot is different from the second time slot, and the first PDCCH and the second PDCCH are used for The PDCCH is repeatedly transmitted.
  • the processing module is configured to determine a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit , including: determining the first minimum scheduling offset constraint as the third minimum scheduling offset.
  • the processing module is configured to determine a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit , including: determining the second minimum scheduling offset constraint as the third minimum scheduling offset constraint.
  • the processing module is configured to determine a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit , including: determining that the third minimum scheduling offset limit is the maximum value or the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the processing module may be a processor
  • the transceiver module may be a communication module connected via a communication interface.
  • the technical effect brought by any possible implementation manner in the seventh aspect may refer to the above-mentioned first aspect or the technical effect brought by different implementation manners of the first aspect, and details are not repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus includes: a transceiver module; the transceiver module is configured to receive a first physical downlink control channel PDCCH from a network device in a first time slot, the first A time slot is associated with the first minimum scheduling offset limit; the transceiver module is also used to receive the second PDCCH from the network device on the second time slot, the second time slot is related to the second minimum scheduling offset limit Associated; wherein, the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit, the first time slot is different from the second time slot, and the first PDCCH and the second PDCCH are used for PDCCH repetition transmission.
  • the transceiver module may be a communication module connected via a communication interface.
  • the technical effect brought about by the eighth aspect can refer to the technical effect brought about by the above-mentioned second aspect, which will not be repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus includes: a transceiver module and a processing module; the transceiver module is configured to receive a first physical downlink control channel PDCCH from a network device in a first time slot , the first time slot is associated with the first minimum scheduling offset limit; the transceiver module is also used to receive the second PDCCH from the network device on the second time slot, the second time slot is related to the second minimum scheduling offset Offset limitation is associated, wherein, the first time slot is earlier than the second time slot; the first PDCCH and the second PDCCH are used for PDCCH repeated transmission; the processing module is used for if the first PDCCH and the second PDCCH The fourth minimum scheduling offset constraint in the second PDCCH is different from the second minimum scheduling offset constraint, the first time slot or the second time slot is used as a reference, or the first PDCCH or the second PDCCH is used as Reference to determine the effective time of the fourth minimum scheduling offset constraint.
  • the processing module may be a processor
  • the transceiver module may be a communication module connected via a communication interface.
  • the technical effect brought about by the ninth aspect can refer to the technical effect brought about by the third aspect above, and will not be repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus includes: a transceiver module and a processing module; the transceiver module is configured to send a first physical downlink control channel PDCCH to a terminal device in a first time slot, The first time slot is associated with the first minimum scheduling offset limit; the transceiver module is further configured to send a second PDCCH to the terminal device on the second time slot, and the second time slot is related to the second minimum scheduling offset
  • the constraints are associated;
  • the processing module is configured to determine a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint, and the third minimum scheduling offset constraint is used for Limiting the time slot offset K 0 or K 2 in the first PDCCH and the second PDCCH; wherein the first time slot is different from the second time slot, and the first PDCCH and the second PDCCH are used for PDCCH repetition transmission.
  • the processing module is configured to determine a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint , including: determining the first minimum scheduling offset constraint as the third minimum scheduling offset.
  • the processing module is configured to determine a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint , including: determining the second minimum scheduling offset constraint as the third minimum scheduling offset constraint.
  • the processing module is configured to determine a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint , including: determining that the third minimum scheduling offset limit is the maximum value or the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the processing module may be a processor
  • the transceiver module may be a communication module connected via a communication interface.
  • the technical effect brought by any possible implementation manner in the tenth aspect may refer to the above-mentioned first aspect or the technical effect brought by different implementation manners of the first aspect, and details are not repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus includes: a transceiver module; the transceiver module is configured to send a first physical downlink control channel PDCCH to a terminal device in a first time slot, and the first A time slot is associated with the first minimum scheduling offset restriction; the transceiver module is further configured to send a second PDCCH to the terminal device on a second time slot, and the second time slot is related to the second minimum scheduling offset restriction wherein, the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit, the first time slot is different from the second time slot, and the first PDCCH and the second PDCCH are used for PDCCH repeated transmission .
  • the transceiver module may be a communication module connected via a communication interface.
  • the technical effect brought about by the eleventh aspect can refer to the technical effect brought about by the above-mentioned second aspect, which will not be repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication apparatus includes: a transceiver module and a processing module; the transceiver module is configured to send a first physical downlink control channel PDCCH to a terminal device in a first time slot , the first time slot is associated with the first minimum scheduling offset limit; the transceiver module is further configured to send the second PDCCH to the terminal device on the second time slot, the second time slot is related to the second minimum scheduling offset shift restriction, wherein the first time slot is earlier than the second time slot; the first PDCCH and the second PDCCH are used for PDCCH repeated transmission; the processing module is used for if the first PDCCH and the second The fourth minimum scheduling offset constraint in the PDCCH is different from the second minimum scheduling offset constraint, the first slot or the second slot is used as a reference, or the first PDCCH or the second PDCCH is used as a reference , to determine the effective time of the fourth minimum scheduling offset restriction.
  • the processing module may be a processor
  • the transceiver module may be a communication module connected via a communication interface.
  • a thirteenth aspect provides a communication system, including: a terminal device that executes the method described in the first aspect above, and a network device that executes the method described in the fourth aspect above; or, executes the method described in the second aspect above
  • a communication device including: a processor; the processor is used to be coupled with a memory, and after reading the computer instructions stored in the memory, execute the above-mentioned first aspect, second aspect or The method described in the third aspect.
  • the communication device further includes a memory; the memory is used to store computer instructions.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the communication device may be a chip or a chip system.
  • the communication device when the communication device is a system-on-a-chip, the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • the above communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuits, pins or related circuits, etc.
  • the aforementioned processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device including: a processor; the processor is used to be coupled with a memory, and after reading the computer instructions stored in the memory, execute the above-mentioned fourth aspect, fifth aspect or The method described in the sixth aspect.
  • the communication device further includes a memory; the memory is used to store computer instructions.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the communication device may be a chip or a chip system.
  • the communication device when the communication device is a system-on-a-chip, the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • the above communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuits, pins or related circuits, etc.
  • the aforementioned processor may also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the computer-readable storage medium is run on a computer, the computer can execute the method described in any one of the above aspects.
  • a computer program product containing instructions, which, when run on a computer, enable the computer to execute the method described in any one of the above aspects.
  • FIG. 1 is a schematic diagram of DCI scheduling PDSCH according to time slot offset K 0 in the prior art
  • FIG. 2 is a schematic diagram of the problem of fuzzy K 0 min of the minimum scheduling offset limit in the prior art under the scenario of repeated PDCCH transmission between slots;
  • FIG. 3 is a flow chart of PDCCH repeated transmission in the prior art
  • FIG. 4 is a schematic diagram of PDCCH repeated transmission based on multi-TPR transmission in the prior art
  • FIG. 5 is a schematic diagram of PDCCH repeated transmission between two search space sets in the prior art
  • FIG. 6 is a schematic diagram of repeated transmission of PDCCH between adjacent time slots in the prior art
  • FIG. 7 is a schematic diagram of the minimum scheduling offset limit K 0min limiting the value of the time slot offset K 0 in the prior art
  • Fig. 8 is a schematic diagram 1 of determining the effective time of the minimum scheduling offset limit K 0min in the prior art under the scenario of self-scheduling and no BWP switching;
  • Fig. 9 is a schematic diagram 2 of determining the effective time of the minimum scheduling offset limit K 0min in the prior art under the scenario of self-scheduling and no BWP switching;
  • FIG. 10 is a schematic diagram of determining the effective time of the minimum scheduling offset limit K 0min in the cross-carrier scheduling scenario in the prior art
  • FIG. 11 is a schematic diagram of DCI scheduling PUSCH according to time slot offset K 2 in the prior art
  • FIG. 12 is a schematic diagram of the problem of fuzzy effective time of the minimum scheduling offset limitation in the prior art in the scenario of repeated PDCCH transmission between slots;
  • FIG. 13 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device and a terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a specific structure of a terminal device provided by an embodiment of the present application.
  • FIG. 16 is a flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 17 is a flowchart of another wireless communication method provided by the embodiment of the present application.
  • FIG. 18 is a flowchart of another wireless communication method provided by the embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a physical downlink control channel (physical downlink control channel, PDCCH) is repeatedly transmitted.
  • one PDCCH repeated transmission means two PDCCH transmissions, that is, the first PDCCH transmission and the second PDCCH transmission.
  • the first PDCCH transmission and the second PDCCH transmission both use the same aggregation level (aggregation level, AL) and the same number of control channel elements (Control Channel Element, CCE), to repeatedly transmit the same downlink control information (downlink control information, DCI) load bits.
  • aggregation level aggregation level
  • CCE Control Channel Element
  • Fig. 3 shows the main steps in the repeated transmission of PDCCH.
  • DCI load bits are first generated, and a cyclic redundancy check (CRC) is attached, and then coded to form coded bits, followed by rate matching, scrambling and modulation, and finally, the modulated signal is mapped to to the first time-frequency resource, and send the first PDCCH transmission on the first time-frequency resource; and map the modulated signal to the second time-frequency resource, and send the second PDCCH transmission on the second time-frequency resource PDCCH transmission.
  • the first PDCCH transmission and the second PDCCH transmission thus formed use the same number of ALs or CCEs, and contain the same DCI load or coding bits.
  • multiple transmission reception points may transmit encoded coded bits on different time-frequency resources respectively.
  • the reliability of the transmission can be improved because the encoded bits are sent multiple times, which is equivalent to increasing the signal strength or signal-to-noise ratio.
  • the user equipment user equipment, UE
  • receives the multiple coded bits on the above-mentioned different time-frequency resources it performs a joint parsing operation to obtain the DCI information bits.
  • the joint analysis operation may be as follows: UE performs channel estimation on each of the above-mentioned different time-frequency resources and demodulates the received signal to obtain a likelihood value on each time-frequency resource, and finally, the UE will obtain Combine multiple likelihood values for . Since the likelihood value can also be called soft information, the operation in the above example can also be called a soft combining operation.
  • FIG. 4 shows a schematic diagram of PDCCH repeated transmission based on multi-TPR transmission.
  • the first TRP and the second TRP serve the same UE as coordinated base stations.
  • CRC attachment, coding, rate matching, scrambling and modulation are performed on the DCI load bits as shown in Figure 3, and then the modulated signal is transmitted to the other TRP, and then the Each of the two TRPs performs a PDCCH transmission; or, in each of the two TRPs, performs CRC attachment, encoding, rate matching, scrambling and modulation as shown in Figure 3 on the same load bits, and then, similarly,
  • Each of the two TRPs performs one PDCCH transmission, which is not limited in this embodiment of the present application.
  • the UE may acquire DCI information bits through a soft combining operation.
  • the DCI issued by the first TRP corresponds to the first control resource set (CORESET)
  • the DCI issued by the second TRP corresponds to the second CORESET
  • the first CORESET and the second CORESET are configured to completely overlap or partially overlap.
  • CORESET is a group of specific time-frequency resources among the downlink resources, which are used to carry PDCCH or DCI.
  • the two DCIs sent on the two CORESETs are respectively carried on the two candidate PDCCHs, and the two DCIs schedule the same physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the frequency resources occupied by the two candidate PDCCHs may be different, when one of the candidate PDCCHs experiences severe frequency selective fading during transmission, the other candidate PDCCH may not experience the same severe frequency selective fading. During the transmission process, the ability to resist frequency selective fading can be improved.
  • search space set SS set
  • the parameter configuration of the search space set includes index information of CORESET.
  • the base station configures the association relationship between the two search space sets used for the repeated transmission of the PDCCH through radio resource control (radio resource control, RRC) parameters.
  • RRC radio resource control
  • the two search space sets may be referred to as associated search space sets, and the two candidate PDCCHs used for PDCCH repeated transmission belong to one of the associated search space sets respectively.
  • the two PDCCH transmissions used for PDCCH repeated transmission use the same AL, that is to say, PDCCH repeated transmission can only be realized through two AL8 candidate PDCCHs , but cannot be realized through one AL8 candidate PDCCH and one AL16 candidate PDCCH.
  • FIG. 5 is a schematic diagram of repeated transmission of PDCCH between two sets of search spaces.
  • the first search space set and the second search space set are associated search space sets
  • the first search space set includes two AL8 candidate PDCCHs and one AL16 candidate PDCCH
  • the second search space set also includes two AL8 candidate PDCCH and one AL16 candidate PDCCH.
  • the candidate PDCCH with index 1 in the first search space set and the candidate PDCCH with index 1 in the second search space set may be associated candidate PDCCHs, and the candidate PDCCH with index 2 in the first search space set and the second search space set
  • the candidate PDCCH with index 2 in the search space set may be an associated candidate PDCCH; for AL16, the candidate PDCCH with index 1 in the first search space set and the candidate PDCCH with index 1 in the second search space set may be associated candidates PDCCH.
  • the associated candidate PDCCH is used for repeated transmission of the PDCCH. It can be seen that each candidate PDCCH in each search space set in FIG. Candidate PDCCHs for an independent PDCCH transmission. If the base station wants to send an independent PDCCH, it can only be realized through other specially configured search space sets, for example, an additionally configured third search space set.
  • PDCCH repeated transmission can be divided into intra-slot PDCCH repetition (intra-slot PDCCH repetition) and inter-slot PDCCH repetition (inter-slot PDCCH repetition).
  • the associated candidate PDCCHs belong to two associated search space sets respectively.
  • Figure 6 shows the situation of PDCCH repetition between slots. Specifically, the first candidate PDCCH and the second candidate PDCCH are associated, the time slot in which the first candidate PDCCH is located is time slot n, the time slot in which the second candidate PDCCH is located is time slot n+1, and the time slot n and time slot Slot n+1 is a different time slot. It should be noted that, FIG. 6 only shows the situation that the time slots where the two associated PDCCH candidates are located are adjacent, and in addition, the time slots where the two associated PDCCH candidates are located may also be non-adjacent.
  • the minimum scheduling offset restriction (minimum scheduling offset restriction) K 0min .
  • the DCI formats used for downlink scheduling include DCI format 1_0, DCI format 1_1 and DCI format 1_2, wherein DCI format 1_0, DCI format 1_1 and DCI format 1_2 can carry time slot offset K 0 information, DCI format 1_1 can contain The indication field "minimum applicable scheduling offset indicator (minimum applicable scheduling offset indicator)" is used for dynamically switching K 0min .
  • K 0min The purpose of introducing K 0min is to limit the minimum value of K 0 .
  • the K 0 contained in the DCI needs to satisfy the following formula (1)
  • K 0min , ⁇ and ⁇ ′ are all corresponding values in the scheduled cell, and the scheduled cell refers to the cell where the scheduled PDSCH is located.
  • K 0min represents the minimum scheduling offset restriction effective in the scheduled cell.
  • represents the subcarrier spacing type (numerology/subcarrier spacing) of the active downlink (active downlink) bandwidth part (bandwidth part, BWP) of the scheduled cell when DCI is received, and the subcarrier spacing type is determined according to the subcarrier spacing The value is determined, for example, if the subcarrier spacing is 15kHz, the corresponding subcarrier spacing type is 0; if the subcarrier spacing is 30kHz, the corresponding subcarrier spacing type is 1; if the subcarrier spacing is 60kHz, the corresponding subcarrier spacing type is 2 ;The subcarrier spacing is 120kHz, and the corresponding subcarrier spacing type is 3.
  • ⁇ ' represents the subcarrier spacing type of the newly activated downlink BWP of the scheduled cell when BWP switching occurs.
  • ⁇ ′ ⁇ , K 0 ⁇ K 0min .
  • the above formula can be regarded as a restriction on the scheduling of the base station. If the DCI sent by the base station contains K 0 that does not satisfy the above formula, then the UE can process it arbitrarily after receiving the DCI. For example, the UE regards the DCI as a false alarm and does not or, the UE determines that it is an error scene, and discards the DCI.
  • K 0min The limiting effect of K 0min on the value of K 0 will be described below in conjunction with specific examples.
  • the scenario shown in FIG. 7 is the scheduling scenario expected by the UE, and the UE will normally process the DCI. If on the second BWP, the time slot in which the PDSCH scheduled by the DCI is located is earlier than the time slot m+4, it is a scheduling scenario not expected by the UE, and the UE will process the DCI arbitrarily.
  • the embodiment of the present application does not discuss the determination of the time slot where the scheduled PDSCH is located, and the specific determination process may refer to existing protocols, which will be described uniformly here and will not be described in detail below.
  • the main scheduling cell is the cell where the DCI for scheduling the PDSCH is located; the "current" refers to when the DCI is received on the time slot n, which will be described in a unified manner here, and will not be described in detail below;
  • X is the delay value of the application (the value of application delay), and according to different situations, X can take different values.
  • K 0minOld and ⁇ PDSCH are corresponding values in the scheduled cell
  • Z ⁇ and ⁇ PDCCH are corresponding values in the primary scheduling cell.
  • K 0minOld represents the currently effective K 0min value on the activated downlink BWP of the scheduled cell
  • the value of Z ⁇ is shown in Table 1, where ⁇ is the type of subcarrier spacing corresponding to time slot n on the activated downlink BWP of the primary scheduling cell
  • ⁇ PDCCH is the subcarrier spacing type corresponding to the PDCCH on the activated downlink BWP of the primary scheduling cell
  • ⁇ PDSCH is the subcarrier spacing type corresponding to the PDSCH on the activated downlink BWP of the scheduled cell.
  • FIG. 8 shows an example of determining the effective time of K 0min .
  • FIG. 9 shows another example of determining the effective time of K 0min .
  • the DCI received by the user equipment on time slot n indicates BWP switching and indicates the value of K 0min on the target BWP
  • the time slot where the scheduled PDSCH is located cannot be earlier than the effective time slot of K 0min on the target BWP, where , the target BWP is the BWP where the PDSCH is located. Since this scenario can be well combined with the repeated transmission of the PDCCH, there is no technical problem, so this embodiment does not describe this scenario in detail.
  • cross-carrier scheduling means that the scheduled PDSCH and the DCI that schedules the PDSCH are located in different cells.
  • the difference between the cross-carrier scheduling and the BWP switching scenario is that in the BWP switching scenario, the target BWP does not have a valid K 0min , but in the cross-carrier scheduling, the scheduled cell has a valid K 0min .
  • the BWP switching scenario since only one BWP can be active at the same time, there is no data sending and receiving on the inactive BWP, therefore, there is no effective K 0min on the target BWP.
  • the DCI on the first component carrier (CC) schedules the PDSCH on the second CC, where, in this embodiment of the application, the CC can be equivalent to a cell, that is, the first CC can understand The primary scheduling cell, and the second CC may be understood as a scheduled cell. Then, both the first CC and the second CC are activated cells, and both have effective K 0min .
  • Fig. 10 shows another example of determining the effective time of K 0min , which is used to illustrate the application of formula (3) in the cross-carrier scheduling scenario.
  • the K 0min value currently effective on the second CC is 1, that is, the parameter K 0minOld in the scheduled cell is 1, the K 0min value currently effective on the first CC is 2, and the newly indicated K 0min value is 3.
  • the starting time slot n+X where K 0min takes effect is the time slot in the primary scheduling cell.
  • the DCI of format 1_1 for downlink scheduling only includes the indication field "minimum applied scheduling offset indicator".
  • the indication field occupies 1 bit and is used to indicate a K 0min value configured by the base station for the UE, or one of two K 0min values. specifically:
  • an indication field of "0” may indicate the first K 0min value configured by the application; an indication field of "1” may indicate the first K 0min value configured by the application.
  • the base station configures only one K 0min value for the UE, then, for example, if the indication field is "0", it may indicate the K 0min value configured by the application; if the indication field is "1", it may indicate that the K 0min value of the application is 0.
  • the above second to fourth introductions are the time slot offset K 0 in the downlink transmission, and K 0min used to limit the minimum value of K 0 .
  • a time slot offset K 2 and a minimum scheduling offset limit K 2min for limiting the minimum value of K 2 are also introduced.
  • the base station when it performs uplink scheduling, it will send DCI to the UE through the PDCCH.
  • the DCI includes time-domain position information of the PUSCH, specifically, the time-domain position information of the PUSCH includes a time slot offset K 2 .
  • the time slot offset K 2 represents the number of time slots between the time slot where the scheduled PUSCH is located and the time slot where the DCI that schedules the PUSCH is located. As shown in FIG. 11 , the time slot in which the DCI is located is time slot n, and the time slot in which the PUSCH scheduled by the DCI is located is time slot n+2. Then, the value of K 2 included in the DCI is 2.
  • the DCI formats used for uplink scheduling include DCI format 0_0, DCI format 0_1 and DCI format 0_2, wherein DCI format 0_0, DCI format 0_1 and DCI format 0_2 can be used to carry time slot offset K 2 , DCI format 0_1 can contain The indication field "minimum applied scheduling offset indicator" is used for dynamically switching K 2min .
  • the DCI of the format 1_1 used for downlink scheduling includes an indication field "minimum applied scheduling offset indicator”. If the base station configures the minimum scheduling offset K 2 (minimumSchedulingOffsetK2) at the same time, then the DCI format 0_1 for uplink scheduling also includes the indication field "minimum applied scheduling offset indicator”. At this time, K can be dynamically switched at the same time.
  • the DCI of the format 0_1 used for uplink scheduling does not include the indication field "minimum applied scheduling offset indicator", at this time, only through the DCI Format 1_1 realizes the dynamic switching of K 0min , but cannot realize the dynamic switching of K 2min .
  • the DCI of format 0_1 used for uplink scheduling includes an indication field "minimum applied scheduling offset indicator”. If the base station configures the minimum scheduling offset K 0 at the same time, then the DCI format 1_1 for downlink scheduling also includes the indication field "minimum applied scheduling offset indicator”.
  • K 0min and K 0min can be dynamically switched at the same time 2min ; if the base station does not configure the minimum scheduling offset K 0 , then the DCI format 1_1 for downlink scheduling does not include the indication field "minimum applied scheduling offset indicator", at this time, it can only be realized through DCI format 0_1 The dynamic switching of K 2min , but the dynamic switching of K 0min cannot be realized.
  • the effective time of K 0min calculated according to these two different time slots is also different, and the effective time of K 0min is ambiguous question.
  • the content of the first DCI transmitted through the first candidate PDCCH is the same as that of the second DCI transmitted through the second candidate PDCCH
  • the time slot where the first DCI is located is time slot n
  • the second DCI The time slot it is in is time slot n+1
  • K 0minOld 3
  • K 0minOld 3
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • the embodiments of the present application may be applicable to the LTE system or the NR system, and may also be applicable to other future-oriented new systems, etc., which are not specifically limited in the embodiments of the present application. Also, the term “system” and “network” may be used interchangeably.
  • the embodiments of the present application can also be applied to various mobile communication scenarios, such as point-to-point transmission between a base station and a UE, multi-hop/relay (relay) transmission between a base station and a UE, dual connectivity (dual connectivity) between multiple base stations and a UE. connectivity (DC) or multiple connections, etc., which are not specifically limited in this embodiment of the present application.
  • the embodiments of the present application are applicable to uplink, downlink, access link, backhaul (backhaul) link, sidelink (sidelink) and other transmissions.
  • the communication system 13 includes a network device 132 and one or more terminal devices 131 connected to the network device 132 .
  • the terminal device 131 is connected to the network device 132 in a wireless manner.
  • different terminal devices 131 may communicate with each other.
  • the terminal device 131 may be fixed or mobile.
  • FIG. 13 is only a schematic diagram.
  • the communication system 13 may also include other network devices.
  • the communication system 13 may also include core network devices, wireless relay devices and wireless backhaul devices. One or more of them are not specifically limited here.
  • the network device may be connected to the core network device in a wireless or wired manner.
  • the core network device and the network device 132 can be independent and different physical devices, or the functions of the core network device and the logical functions of the network device 132 can be integrated on the same physical device, or a physical device can integrate some
  • the functions of the core network device and the functions of some network devices 132 are not specifically limited in this embodiment of the present application.
  • the network device 132 is used to communicate A first PDCCH is sent, and the first time slot is associated with a first minimum scheduling offset constraint.
  • the terminal device 131 is configured to receive the first PDCCH from the network device 132 on the first time slot.
  • the network device 132 is further configured to send a second PDCCH to the terminal device 131 on a second time slot, where the second time slot is associated with a second minimum scheduling offset constraint, and the first time slot is different from the second time slot,
  • the first PDCCH and the second PDCCH are used for repeated transmission of the PDCCH.
  • the terminal device 131 is further configured to receive the second PDCCH from the network device 132 on the second time slot.
  • the network device 132 is further configured to determine a third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, where the third minimum scheduling offset limit is used to limit the first PDCCH and the second minimum scheduling offset limit.
  • the slot offset in two PDCCHs is K 0 or K 2 .
  • the terminal device 131 is further configured to determine a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint.
  • the network device 132 is used to communicate 131 Send a first PDCCH, and the first time slot is associated with a first minimum scheduling offset constraint.
  • the terminal device 131 is configured to receive the first PDCCH from the network device 132 on the first time slot.
  • the network device 132 is further configured to send a second PDCCH to the terminal device 131 on a second time slot, where the second time slot is associated with a second minimum scheduling offset constraint, and the first minimum scheduling offset constraint is associated with the second minimum scheduling offset constraint.
  • the scheduling offset restriction is the same, the first time slot is different from the second time slot, and the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the terminal device 131 is further configured to receive the second PDCCH from the network device 132 on the second time slot.
  • the terminal device 131 is configured to receive the first PDCCH from the network device 132 on the first time slot.
  • the network device 132 is further configured to send a second PDCCH to the terminal device 131 on a second time slot, where the second time slot is associated with a second minimum scheduling offset constraint, and the first time slot is earlier than the second time slot,
  • the first PDCCH and the second PDCCH are used for repeated transmission of the PDCCH.
  • the terminal device 131 is further configured to receive the second PDCCH from the network device 132 on the second time slot.
  • the network device 132 is further configured to use the first time slot or the second time slot as a reference if the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, or set The first PDCCH or the second PDCCH is used as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • the terminal device 131 is further configured to use the first time slot or the second time slot as a reference if the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, or set The first PDCCH or the second PDCCH is used as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • the network device 132 in the embodiment of the present application is a device for connecting the terminal device 131 to a wireless network, and may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a sending and receiving point (transmission reception point, TRP), next generation base station (next generation NodeB, gNB) in 5G mobile communication system, base station in future mobile communication system or access in wireless-fidelity (wireless-fidelity, Wi-Fi) system A node, etc.; it may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • network equipment refers to radio access network equipment.
  • the terminal device 131 in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that may be used in a terminal.
  • the above-mentioned terminals may be UEs, access terminals, terminal units, terminal stations, mobile stations, mobile stations, remote stations, remote terminals, Mobile devices, wireless communication devices, terminal agents or terminal devices, etc.
  • An access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, industrial control ( Wireless terminals in industrial control or self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device 131 may be fixed or movable, which is not specifically limited in this embodiment of the present application.
  • the terminal device 131 includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application. method to communicate.
  • the execution subject of the method provided by the embodiment of the present application may be the terminal device 131, or a functional module in the terminal device 131 that can call the program and execute the program; or, the execution subject of the method provided by the embodiment of the present application may be a network device 132, or a functional module in the network device 132 capable of calling a program and executing the program.
  • the relevant functions of the terminal device 131 or the network device 132 in the embodiment of the present application can be realized by one device, or by multiple devices, or by one or more functional modules in one device.
  • the embodiment of the application does not specifically limit this. It can be understood that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) virtualization capabilities.
  • FIG. 14 it is a schematic structural diagram of a network device 132 and a terminal device 131 provided in this embodiment of the present application.
  • the terminal device 131 includes at least one processor 1311 and at least one transceiver 1313 .
  • the terminal device 131 may further include at least one memory 1312 , at least one output device 1314 or at least one input device 1315 .
  • the processor 1311, the memory 1312 and the transceiver 1313 are connected through communication lines.
  • Communication lines may include pathways that carry information between the aforementioned components.
  • Processor 1311 may be a general-purpose central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuits, ASICs), on-site Programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor 1311 may also include multiple CPUs, and the processor 1311 may be a single-core processor or a multi-core processor.
  • a processor here may refer to one or more devices, circuits, or processing cores for processing data.
  • the storage 1312 may be a device having a storage function.
  • it may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • Dynamic storage devices can also be programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory , EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other A magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory 1312 may exist independently and be
  • the memory 1312 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 1311 .
  • the processor 1311 is configured to execute computer-executed instructions stored in the memory 1312, so as to implement the wireless communication method described in the embodiment of the present application.
  • the processor 1311 may also perform processing-related functions in the wireless communication method provided in the following embodiments of the present application, and the transceiver 1313 is responsible for communicating with other devices or communication networks.
  • the embodiment of the application does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the transceiver 1313 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), or wireless local area networks (wireless local area networks, WLAN) wait.
  • the transceiver 1313 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • Output device 1314 is in communication with processor 1311 and can display information in a variety of ways.
  • the output device 1314 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 1315 communicates with the processor 1311 and can accept user input in various ways.
  • the input device 1315 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the network device 132 includes at least one processor 1321 , at least one transceiver 1323 and at least one network interface 1324 .
  • the network device 132 may further include at least one memory 1322 .
  • the processor 1321, the memory 1322, the transceiver 1323 and the network interface 1324 are connected through communication lines.
  • the network interface 1324 is used to connect to the core network equipment through a link (such as an S1 interface), or to connect to a network interface (not shown in FIG. 14 ) of other network equipment through a wired or wireless link (such as an X2 interface).
  • the embodiment of the application does not specifically limit this.
  • FIG. 15 shows a specific structural form of the terminal device 131 provided in the embodiment of the present application.
  • the function of the processor 1311 in FIG. 14 may be implemented by the processor 110 in FIG. 15 .
  • the functions of the transceiver 1313 in FIG. 14 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160 and the like in FIG. 15 .
  • the mobile communication module 150 can provide a solution including wireless communication technologies such as LTE, NR or future mobile communication applied on the terminal device 131 .
  • the wireless communication module 160 can provide WLAN (such as Wi-Fi network), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM) applied on the terminal device 131. ), near field communication (near field communication, NFC), infrared and other wireless communication technology solutions.
  • the antenna 1 of the terminal device 131 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal device 131 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 1312 in FIG. 14 can be implemented by the internal memory 121 in FIG. 15 or an external memory connected to the external memory interface 120, etc.
  • the functions of the output device 1314 in FIG. 14 can be implemented by the display screen 194 in FIG. 15 .
  • the function of the input device 1315 in FIG. 14 can be realized by a mouse, a keyboard, a touch screen device or the sensor module 180 in FIG. 15 .
  • the terminal device 131 may further include an audio module 170 , a camera 193 , a key 1132 , a SIM card interface 195 , a USB interface 130 , a charging management module 140 , a power management module 141 and a battery 142 one or more of the .
  • the structure shown in FIG. 15 does not constitute a specific limitation on the terminal device 131 .
  • the terminal device 131 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the wireless communication method includes the following steps:
  • the network device sends the first PDCCH to the terminal device on the first time slot, and correspondingly, the terminal device receives the first PDCCH from the network device on the first time slot.
  • the first time slot is associated with the first minimum scheduling offset constraint.
  • the first PDCCH means that the terminal device determines through blind detection that the first PDCCH bears DCI corresponding to the terminal device.
  • the first PDCCH is one of multiple candidate PDCCHs determined by the terminal device for which the corresponding DCI may be received, and the blind detection is a process of determining the first PDCCH from the aforementioned multiple candidate PDCCHs.
  • the plurality of candidate PDCCHs are time-frequency resources for carrying PDCCHs or DCIs determined by the base station through RRC parameters. The terminal device monitors the plurality of candidate PDCCHs.
  • the terminal device determines a candidate PDCCH from the plurality of candidate PDCCHs through correct channel estimation, demodulation, decoding and CRC check on the plurality of candidate PDCCHs, namely
  • the PDCCH or DCI sent by the network device can be detected on the first PDCCH. That is to say, at the terminal device side, the first PDCCH is a candidate PDCCH, which can be understood as the first candidate PDCCH.
  • PDCCH is a general term for physical downlink control channels, and candidate PDCCHs also belong to PDCCHs.
  • receiving the first PDCCH from the network device by the terminal device includes the above blind detection process.
  • the terminal device performs channel estimation, demodulation, decoding and CRC check on multiple candidate PDCCHs, if the channel estimation, demodulation, decoding and CRC check can be performed correctly on one or some candidate PDCCHs , it means that the blind detection of the terminal device is successful, that is, the terminal device can receive the PDCCH sent by the network device on this or these candidate PDCCHs.
  • the first minimum scheduling offset limit is the number of a time slot
  • the UE can determine the position that can normally receive the PDSCH according to the first minimum scheduling offset limit, or the UE can determine the location that can normally receive the PDSCH according to the first minimum scheduling offset limit
  • the position where the PDSCH cannot be normally received is determined by shifting the limit.
  • the first time slot is associated with the first minimum scheduling offset restriction, and it can be understood that the first time slot is within the effective range of the first minimum scheduling offset restriction.
  • the effective range can be understood as one or more time slots corresponding to a certain signaling, or the UE can directly determine the one or more time slots according to the signaling, and the one or more time slots are applied to the The first minimum scheduling offset limit is used to limit the values of the received slot offsets on the one or more slots.
  • the time slot where the first PDCCH is received is one of one or more time slots in the effective range.
  • the effective range can also be understood as the number of a time slot, and the received time slot offsets on these time slots are limited by the minimum scheduling offset limit corresponding to the effective range.
  • the network device sends the second PDCCH to the terminal device on the second time slot, and correspondingly, the terminal device receives the second PDCCH from the network device on the second time slot.
  • the second time slot is associated with the second minimum scheduling offset restriction
  • the first time slot is different from the second time slot
  • the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the meaning of "second PDCCH” is the same as that of the above-mentioned “first PDCCH”
  • the meaning of "second minimum scheduling offset limit” is the same as that of the above-mentioned "first minimum scheduling offset limit”.
  • the relationship between the first time slot and the first minimum scheduling offset limit is the same as the relationship between the second time slot and the second minimum scheduling offset limit.
  • the first time slot is different from the second time slot, that is, the time domain resources occupied by the first PDCCH and the second PDCCH are different.
  • the frequency domain resources occupied by the first PDCCH and the second PDCCH may be the same or different, and this application does not impose any limitation on this.
  • the first PDCCH and the second PDCCH are used for PDCCH repeated transmission, which means that the DCI contained in the first PDCCH and the second PDCCH are completely the same.
  • step S1601 may be executed first, and then step S1602 may be executed; or, step S1602 may be executed first, and then step S1601 may be executed, which is not specifically limited in this embodiment of the present application.
  • the terminal device determines a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint.
  • the third minimum scheduling offset limitation is used to limit the slot offset K 0 or K 2 in the first PDCCH and the second PDCCH.
  • “restriction” can be understood as the expectation that the third minimum scheduling offset limit and the time slot offset K 0 satisfy the above formula (1). If satisfied, the UE can normally schedule the time slot including the If the PDSCH corresponding to the DCI with offset K 0 is not satisfied, the UE can process it arbitrarily after receiving the DCI containing the time slot offset K 0. For example, the UE treats the DCI as a false alarm DCI and does not process it, or , the UE determines that it is an error scene and discards the DCI.
  • the terminal device determines the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: the terminal device determines the first minimum scheduling offset limit as the third Minimum scheduling offset.
  • the first time slot may be n, and the first minimum scheduling offset may be limited to 1; the second time slot may be n+1, and the second minimum scheduling offset may be limited to 2.
  • the terminal device determines the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: the terminal device determines the second minimum scheduling offset limit as the third Minimum scheduling offset limit.
  • the first time slot may be n, and the first minimum scheduling offset may be limited to 1; the second time slot may be n+1, and the second minimum scheduling offset may be limited to 2.
  • the terminal device determines the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: the terminal device determines that the third minimum scheduling offset limit is the first minimum The maximum or minimum value in the schedule offset limit and the second minimum schedule offset limit. If the third minimum scheduling offset limit is determined according to the maximum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit, combined with the definition of the slot offset and the minimum scheduling offset limit, the scheduled PDSCH is located There are more time slots between the time slot and the time slot where the PDCCH that schedules the PDSCH is located.
  • the terminal device does not need to receive the PDSCH and can be in an idle or dormant state, which is beneficial to save power consumption, but the interval More slots increase the scheduling delay.
  • the third minimum scheduling offset limit is determined according to the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit, the time slot where the scheduled PDSCH is located is different from the time slot where the PDCCH that schedules the PDSCH is located The number of time slots between them is less, which is beneficial to reduce the scheduling delay, but will increase the power consumption.
  • the first time slot can be n, and the first minimum scheduling offset is limited to 1; the second time slot can be n+1, and the second minimum scheduling offset is limited to 2.
  • 2 is The maximum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit, 1 is the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the third minimum scheduling offset may be 1 or 2.
  • the network device determines a third minimum scheduling offset constraint according to the first minimum scheduling offset constraint and/or the second minimum scheduling offset constraint.
  • the method for the network device to determine the third minimum scheduling offset limit is the same as the method for the terminal device to determine the third minimum scheduling offset limit.
  • the network device determines the third minimum scheduling offset limit, so as to generate DCI that meets the limit condition as much as possible.
  • step S1603 can be performed first, and then step S1604 can be performed; or, step S1604 can be performed first, and then step S1603 can be performed; or step S1603 and step S1604 can be performed simultaneously, which is not specifically limited in this embodiment of the present application.
  • the terminal device when the terminal device receives the first PDCCH and the second PDCCH used for PDCCH repeated transmission in two different time slots, and the two different time slots are respectively associated with different minimum
  • the terminal device can determine the third minimum scheduling offset constraint according to the aforementioned different minimum scheduling offset constraints, thus making it clear that K 0 contained in the two same PDCCHs is subject to the third minimum scheduling offset constraint.
  • the constraints of the shift limit and then overcome the problem that K 0 is not clear which minimum scheduling shift constraint is constrained.
  • the above wireless communication method is performed on both the network device side and the terminal device side, so as to unify the understanding of the network device and the terminal device on the constraint that K 0 is restricted by the third minimum scheduling offset.
  • the wireless communication method includes the following steps:
  • the network device sends the first PDCCH to the terminal device on the first time slot, and correspondingly, the terminal device receives the first PDCCH from the network device on the first time slot.
  • the first time slot is associated with the first minimum scheduling offset constraint.
  • step S1701 For the relevant description of step S1701, refer to the relevant description of the above-mentioned step S1601, which will not be repeated here.
  • the network device sends the second PDCCH to the terminal device on the second time slot, and correspondingly, the terminal device receives the second PDCCH from the network device on the second time slot.
  • the second time slot is associated with the second minimum scheduling offset limit
  • the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit
  • the first time slot is different from the second time slot
  • the first PDCCH is associated with the second minimum scheduling offset limit.
  • Two PDCCHs are used for repeated transmission of PDCCHs.
  • step S1702 For the relevant description of step S1702, refer to the relevant description of the above-mentioned step S1602, which will not be repeated here.
  • the two minimum scheduling offset restrictions associated with two different time slots are the same, that is, the first PDCCH and the second PDCCH transmitted by the network device are not allowed to be subject to different minimum scheduling The limit of the offset limit. Therefore, it is clear that K 0 contained in these two same PDCCHs is constrained by the first minimum scheduling offset constraint or the second minimum scheduling offset constraint, and then it is not clear which minimum scheduling offset constraint K 0 is subject to The problem.
  • the wireless communication method includes the following steps:
  • the network device sends the first PDCCH to the terminal device on the first time slot, and correspondingly, the terminal device receives the first PDCCH from the network device on the first time slot.
  • the first time slot is associated with the first minimum scheduling offset constraint.
  • step S1801 For the relevant description of step S1801, refer to the relevant description of the above-mentioned step S1601, which will not be repeated here.
  • the network device sends the second PDCCH to the terminal device on the second time slot, and correspondingly, the terminal device receives the second PDCCH from the network device on the second time slot.
  • the second time slot is associated with the second minimum scheduling offset restriction
  • the first time slot is earlier than the second time slot
  • the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • step S1802 refers to the relevant description of the above-mentioned step S1602, which will not be repeated here.
  • the terminal device uses the first time slot or the second time slot as a reference, or the terminal device uses the first time slot A PDCCH or the second PDCCH is used as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • the terminal device takes the first time slot or the second time slot as a reference, which may be understood as the terminal device takes the first time slot or the second time slot as a reference time slot (reference slot).
  • the received first PDCCH or second PDCCH is a candidate PDCCH. Therefore, taking the first PDCCH or the second PDCCH as a reference can be understood as taking the first PDCCH or the second PDCCH as a reference.
  • the PDCCH or the second PDCCH is used as a reference PDCCH candidate (reference PDCCH candidate).
  • the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, that is, the newly indicated minimum scheduling offset limit is different from the currently applied minimum scheduling offset limit. shift limit, the value of the minimum scheduling shift limit needs to be updated.
  • the first time slot is time slot n
  • the second time slot is time slot n+1
  • the first minimum scheduling offset limit and the second minimum scheduling offset limit are both 3
  • the first PDCCH and the fourth minimum scheduling offset limit included in the second PDCCH is 2
  • the fourth minimum scheduling offset limit is different from the second minimum scheduling offset limit.
  • the second time slot n+1 may be used as a reference, or the second PDCCH may be used as a reference, in this case, the fourth minimum scheduling offset restriction takes effect from time slot n+1+3, that is, time slot n+4 .
  • time slot n may be used as a reference, or the first PDCCH may be used as a reference. In this case, the fourth minimum scheduling offset restriction takes effect from time slot n+3.
  • the network device uses the first time slot or the second time slot as a reference, or the network device uses the first time slot A PDCCH or the second PDCCH is used as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • step S1803 can be performed first, and then step S1804 can be performed; or, step S1804 can be performed first, and then step S1803 can be performed; or step S1803 and step S1804 can be performed simultaneously, which is not specifically limited in this embodiment of the present application.
  • the terminal device when the fourth minimum scheduling offset limit is different from the second minimum scheduling offset limit, the terminal device can select the time slot or PDCCH as a reference to determine the fourth minimum scheduling offset limit effective time. Therefore, it is possible to solve the problem of which one to use when there are multiple possible valid times in the repeated transmission of the PDCCH between slots.
  • the above wireless communication method is executed on both the network device side and the terminal device side, so as to unify the understanding of the effective time by the network device and the terminal device.
  • the time slot offset is K 0 used for downlink scheduling as an example for illustration, and the time slot offset can also be K 2 used for uplink scheduling, and this embodiment of the application does not make any limited.
  • the actions of the terminal device in the above embodiment can be executed by the processor 1311 in the terminal device 131 shown in FIG.
  • the processor 110 in the terminal device 131 shown in FIG. 15 can call the application code stored in the memory (including the internal memory 121 and/or the external memory 120) to instruct the terminal device to execute;
  • the actions of the network device in the above-mentioned embodiments can be
  • the processor 1321 in the network device 132 shown in FIG. 14 invokes the application program code stored in the memory 1322 to instruct the network device to execute. This embodiment does not impose any limitation on this.
  • the methods and/or steps implemented by the terminal equipment may also be implemented by components (such as chips or circuits) that can be used in the terminal equipment or equipment that includes the terminal equipment;
  • the methods and/or steps may also be implemented by components (such as chips or circuits) that can be used in network devices or devices that include network devices.
  • the terminal device or network device includes corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the terminal device or network device according to the above method embodiments, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module .
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the terminal device or network device in the embodiment of the present application may be implemented in the form of the communication device 190 shown in FIG. 19 .
  • the communication device 190 includes a transceiver module 191 .
  • the transceiver module 191 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the communication device 190 also includes a processing module 192 .
  • the transceiver module 191 is configured to receive the first physical downlink control channel PDCCH from the network device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the transceiver module 191 is also configured to The second PDCCH from the network device is received on the time slot, and the second time slot is associated with the second minimum scheduling offset limit; the processing module 192 is configured to limit the first minimum scheduling offset and/or the second minimum scheduling offset Limit, determine the third minimum scheduling offset limit, the third minimum scheduling offset limit is used to limit the time slot offset K 0 or K 2 in the first PDCCH and the second PDCCH; wherein, the first time slot is different from the second time slot, the first PDCCH and the second PDCCH are used for repeated transmission of the PDCCH.
  • the processing module 192 is configured to determine the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The schedule offset limit is determined as the third smallest schedule offset.
  • the processing module 192 is configured to determine the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The schedule offset limit is determined to be the third smallest schedule offset limit.
  • the processing module 192 is configured to determine the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: determining the third minimum The scheduling offset limit is the maximum value or the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the transceiver module 191 is configured to receive the first physical downlink control channel PDCCH from the network device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the transceiver module 191 is also configured to The second PDCCH from the network device is received on the time slot, and the second time slot is associated with the second minimum scheduling offset limit; wherein, the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit, and the first time slot Different from the second time slot, the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the communication device 190 also includes a processing module 192 .
  • the transceiver module 191 is configured to receive the first physical downlink control channel PDCCH from the network device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the transceiver module 191 is also configured to A second PDCCH from the network device is received on a time slot, and the second time slot is associated with a second minimum scheduling offset constraint, wherein the first time slot is earlier than the second time slot; the first PDCCH and the second PDCCH are used for the PDCCH Repeated transmission; the processing module 192 is configured to use the first time slot or the second time slot as a reference if the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, or , using the first PDCCH or the second PDCCH as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • the communication device 190 also includes a processing module 192 .
  • the transceiver module 191 is configured to send the first physical downlink control channel PDCCH to the terminal device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the transceiver module 191 is also configured to Send the second PDCCH to the terminal device on the slot, and the second slot is associated with the second minimum scheduling offset limit; the processing module 192 is configured to, according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, Determine a third minimum scheduling offset limit, the third minimum scheduling offset limit is used to limit the time slot offset K 0 or K 2 in the first PDCCH and the second PDCCH; wherein the first time slot is different from the second time slot , the first PDCCH and the second PDCCH are used for PDCCH repeated transmission.
  • the processing module 192 is configured to determine the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The schedule offset limit is determined as the third smallest schedule offset.
  • the processing module 192 is configured to determine the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: The schedule offset limit is determined to be the third smallest schedule offset limit.
  • the processing module 192 is configured to determine the third minimum scheduling offset limit according to the first minimum scheduling offset limit and/or the second minimum scheduling offset limit, including: determining the third minimum The scheduling offset limit is the maximum value or the minimum value of the first minimum scheduling offset limit and the second minimum scheduling offset limit.
  • the transceiver module 191 is configured to send the first physical downlink control channel PDCCH to the terminal device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the transceiver module 191 is also configured to The second PDCCH is sent to the terminal device on the slot, and the second time slot is associated with the second minimum scheduling offset limit; wherein, the first minimum scheduling offset limit is the same as the second minimum scheduling offset limit, and the first time slot is different from In the second time slot, the first PDCCH and the second PDCCH are used for repeated transmission of the PDCCH.
  • the communication device 190 also includes a processing module 192 .
  • the transceiver module 191 is configured to send the first physical downlink control channel PDCCH to the terminal device on the first time slot, and the first time slot is associated with the first minimum scheduling offset limit; the transceiver module 191 is also configured to Send the second PDCCH to the terminal device on the second slot, the second slot is associated with the second minimum scheduling offset limit, wherein the first slot is earlier than the second slot; the first PDCCH and the second PDCCH are used for PDCCH repeated transmission ;
  • the processing module 192 is configured to use the first time slot or the second time slot as a reference if the fourth minimum scheduling offset limit in the first PDCCH and the second PDCCH is different from the second minimum scheduling offset limit, or, set The first PDCCH or the second PDCCH is used as a reference to determine the effective time of the fourth minimum scheduling offset restriction.
  • the communication device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device 190 is the terminal device in the above method embodiment, in a simple embodiment, those skilled in the art can imagine that the communication device 190 can take the form of the terminal device 131 shown in FIG. 14 .
  • the processor 1311 in the terminal device 131 shown in FIG. 14 may invoke the computer-executed instructions stored in the memory 1312, so that the terminal device 131 executes the wireless communication method in the foregoing method embodiments.
  • the function/implementation process of the processing module 192 in FIG. 19 can be implemented by the processor 1311 in the terminal device 131 shown in FIG. 14 calling the computer-executed instructions stored in the memory 1312 .
  • the function/implementation process of the transceiver module 191 in FIG. 19 can be realized by the transceiver 1313 shown in FIG. 14 .
  • the communication device 190 is the terminal device in the above method embodiment, in a simple embodiment, those skilled in the art can imagine that the communication device 190 may take the form of the terminal device 131 shown in FIG. 15 .
  • the processor 110 in the terminal device 131 shown in FIG. 15 can call the computer-executed instructions stored in the memory (including the internal memory 120 or the external memory connected to the external memory interface 121), so that the terminal device 131 executes the above method.
  • Examples of wireless communication methods can be implemented by the processor 110 in the terminal device 131 shown in FIG. 15 calling the computer-executed instructions stored in the memory.
  • the function/implementation process of the processing module 192 in FIG. 19 can be realized by the processor 110 in the terminal device 131 shown in FIG.
  • the implementation process can be realized through the wireless communication module 160 shown in FIG. 15 .
  • the communication device 190 is the network device in the above method embodiment, in a simple embodiment, those skilled in the art can imagine that the communication device 190 may take the form of the network device 132 shown in FIG. 14 .
  • the processor 1321 in the network device 132 shown in FIG. 14 may invoke the computer-executed instructions stored in the memory 1322, so that the network device 132 executes the wireless communication method in the foregoing method embodiments.
  • the function/implementation process of the processing module 192 in FIG. 19 may be implemented by the processor 1321 in the network device 132 shown in FIG. 14 invoking computer-executed instructions stored in the memory 1322 .
  • the function/implementation process of the transceiver module 191 in FIG. 19 can be realized by the transceiver 1323 shown in FIG. 14 .
  • the communication device 190 provided in this embodiment can execute the above wireless communication method, the technical effect it can obtain can refer to the above method embodiment, which will not be repeated here.
  • one or more of the above modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and can further include necessary hardware accelerators, such as field programmable gate array (field programmable gate array, FPGA), PLD (programmable logic device) , or a logic circuit that implements a dedicated logic operation.
  • the hardware can be CPU, microprocessor, digital signal processing (digital signal processing, DSP) chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device, which can run necessary software or not depend on software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC artificial intelligence processor
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory When, the method in any one of the above method embodiments is executed.
  • the first device further includes a memory.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供无线通信方法、装置及系统,用于解决时隙间PDCCH重复传输场景下调度场景是否为UE期望的判定存在不一致的问题。方法包括:终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;终端设备在第二时隙上接收来自网络设备的第二PDCCH,第二时隙与第二最小调度偏移限制相关联;终端设备根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,第三最小调度偏移限制用于限制第一PDCCH和第二PDCCH中的时隙偏移K 0或K 2;其中,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。

Description

无线通信方法、装置及系统
本申请要求于2021年08月06日提交国家知识产权局、申请号为202110903178.7、申请名称为“无线通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及无线通信方法、装置及系统。
背景技术
基站下行调度物理下行共享信道(physical downlink shared channel,PDSCH)时,会通过物理下行控制信道(physical downlink control channel,PDCCH)向用户设备(user equipment,UE)发送下行控制信息(downlink control information,DCI)。其中,DCI中包含PDSCH的时域位置信息,具体地,PDSCH的时域位置信息包含时隙偏移(slot offset)K 0。其中,时隙偏移K 0表示被调度的PDSCH所在时隙与调度该PDSCH的DCI所在时隙之间间隔的时隙个数。如图1所示,DCI所在的时隙为时隙n,该DCI调度的PDSCH所在时隙为时隙n+1,那么,DCI中包含的K 0的取值为1。
在第五代(5th generation,5G)新空口(new radio,NR)版本16(release-16,Rel-16)中,引入最小调度偏移限制K 0min用于限制K 0的最小取值。例如,当被调度的PDSCH与调度的DCI位于同一小区且没有部分带宽(bandwidth part,BWP)切换时,K 0的最小取值为K 0min
在时隙间PDCCH重复传输的场景下,关联的两个候选PDCCH用于PDCCH重复传输。其中,PDCCH重复传输是指PDCCH中传输相同的DCI负载比特,时隙间PDCCH重复传输是指用于PDCCH重复传输的两个候选PDCCH位于不同的时隙。如图2所示,通过第一候选PDCCH传输的第一DCI与通过第二候选PDCCH传输的第二DCI的内容相同,第一DCI所在的时隙为时隙n,时隙n在K 0min=1的生效范围内,第二DCI所在的时隙为时隙n+1,时隙n+1在K 0min=2的生效范围内,第一DCI和第二DCI中包含的K 0均为1,第一DCI和第二DCI调度的PDSCH所在的时隙为时隙n+2。
图2中,假设被调度的PDSCH与调度该PDSCH的DCI位于同一小区且不存在BWP切换,K 0的最小取值为K 0min。若K 0受第一DCI所在的时隙n上生效的K 0min的限制,由于K 0=1,K 0min=1,因此,K 0≥K 0min,符合预定条件或规则,属于UE期望的调度场景;若K 0受第二DCI所在的时隙n+1上生效的K 0min的限制,由于K 0=1,K 0min=2,因此,不满足K 0≥K 0min,不符合预定条件或规则,属于UE不期望的调度场景。换言之,若两个重复的DCI分别位于不同数值的K 0min的生效范围内,调度场景是否为UE期望的判定结果可能发生矛盾。
发明内容
本申请实施例提供无线通信方法、装置及系统,用于解决时隙间PDCCH重复传输场景下调度场景是否为UE期望的判定存在不一致的问题。
为达到上述目的,本申请的实施例采用如下技术方案:第一方面,提供了一种无线通信方法,执行该无线通信方法的装置可以为终端设备,可以为应用于终端设备中的模块, 例如芯片或芯片系统。下面以执行主体为终端设备为例进行描述。终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该终端设备在第二时隙上接收来自该网络设备的第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;该终端设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,该第三最小调度偏移限制用于限制该第一PDCCH和该第二PDCCH中的时隙偏移K 0或K 2;其中,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
在本申请提供的无线通信方法中,当终端设备在两个不同的时隙上接收到用于PDCCH重复传输的第一PDCCH和第二PDCCH,即时隙间PDCCH重复传输场景下,并且这两个不同的时隙分别与不同的最小调度偏移限制相关联时,终端设备能够根据前述不同的最小调度偏移限制确定出第三最小调度偏移限制,从而明确了这两个相同的PDCCH中包含的K 0或K 2受到第三最小调度偏移限制的约束,进而克服了K 0受到哪个最小调度偏移限制的约束是不清楚的问题,从而统一调度场景是否为UE期望的判定。此外,上述无线通信方法在网络设备侧和终端设备侧均执行,以统一网络设备和终端设备对于K 0或K 2受到第三最小调度偏移限制的约束的理解。
结合上述第一方面,在一种可能的实现方式中,该终端设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:该终端设备将该第一最小调度偏移限制确定为该第三最小调度偏移。
结合上述第一方面,在一种可能的实现方式中,该终端设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:该终端设备将该第二最小调度偏移限制确定为该第三最小调度偏移限制。
结合上述第一方面,在一种可能的实现方式中,该终端设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:该终端设备确定该第三最小调度偏移限制为该第一最小调度偏移限制和该第二最小调度偏移限制中的最大值或最小值。在该方案中,若根据第一最小调度偏移限制和第二最小调度偏移限制中的最大值来确定第三最小调度偏移限制,结合时隙偏移和最小调度偏移限制的定义,被调度的PDSCH所在时隙与调度该PDSCH的PDCCH所在时隙之间间隔的时隙数更多,在间隔的时隙上,终端设备不需要接收PDSCH,可处于空闲或休眠状态,有利于节省功耗,但间隔更多时隙会增加调度时延。相应地,若根据第一最小调度偏移限制和第二最小调度偏移限制中的最小值来确定第三最小调度偏移限制,被调度的PDSCH所在时隙与调度该PDSCH的PDCCH所在时隙之间间隔的时隙数更少,有利于减小调度时延,但会增加功耗。
第二方面,提供了一种无线通信方法,执行该无线通信方法的装置可以为终端设备,可以为应用于终端设备中的模块,例如芯片或芯片系统。下面以执行主体为终端设备为例进行描述。终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该终端设备在第二时隙上接收来自该网络设备的第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;其中,该第一最小调度偏移限制与该第二最小调度偏移限制相同,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。在本申请提供的无线通信方法中,与两个不同时隙相关联的两个最小调度偏移限制相同,也就是说,不允许网络设备发送的第一PDCCH和第二PDCCH 分别受到不同最小调度偏移限制的限制。因此,明确了这两个相同的PDCCH中包含的K 0或K 2受到第一最小调度偏移限制或第二最小调度偏移限制的约束,进而克服K 0或K 2受到哪个最小调度偏移限制的约束是不清楚的问题,从而统一调度场景是否为UE期望的判定。
第三方面,提供了一种无线通信方法,执行该无线通信方法的装置可以为终端设备,可以为应用于终端设备中的模块,例如芯片或芯片系统。下面以执行主体为终端设备为例进行描述。终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该终端设备在第二时隙上接收来自该网络设备的第二PDCCH,该第二时隙与第二最小调度偏移限制相关联,其中,该第一时隙早于该第二时隙;该第一PDCCH与该第二PDCCH用于PDCCH重复传输;若该第一PDCCH和该第二PDCCH中的第四最小调度偏移限制不同于该第二最小调度偏移限制,该终端设备将该第一时隙或该第二时隙作为参考,或者,该终端设备将该第一PDCCH或该第二PDCCH作为参考,以确定该第四最小调度偏移限制的生效时间。
在本申请提供的无线通信方法中,当第四最小调度偏移限制不同于第二最小调度偏移限制时,终端设备能够选择作为参考的时隙或PDCCH,以确定第四最小调度偏移限制的生效时间。因此,能够解决时隙间PDCCH重复传输中,存在多种可能的生效时间时使用哪一个的问题。此外,上述无线通信方法在网络设备侧和终端设备侧均执行,以统一网络设备和终端设备对于生效时间的理解。
第四方面,提供了一种无线通信方法,执行该无线通信方法的装置可以为网络设备,可以为应用于网络设备中的模块,例如芯片或芯片系统。下面以执行主体为网络设备为例进行描述。网络设备在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该网络设备在第二时隙上向该终端设备发送第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;该网络设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,该第三最小调度偏移限制用于限制该第一PDCCH和该第二PDCCH中的时隙偏移K 0或K 2;其中,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
结合上述第四方面,在一种可能的实现方式中,该网络设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:该网络设备将该第一最小调度偏移限制确定为该第三最小调度偏移。
结合上述第四方面,在一种可能的实现方式中,该网络设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:该网络设备将该第二最小调度偏移限制确定为该第三最小调度偏移限制。
结合上述第四方面,在一种可能的实现方式中,该网络设备根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:该网络设备确定该第三最小调度偏移限制为该第一最小调度偏移限制和该第二最小调度偏移限制中的最大值或最小值。
其中,第四方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面或第一方面的不同实现方式所带来的技术效果,此处不再赘述。
第五方面,提供了一种无线通信方法,执行该无线通信方法的装置可以为网络设备,可以为应用于网络设备中的模块,例如芯片或芯片系统。下面以执行主体为网络设备为例 进行描述。网络设备在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该网络设备在第二时隙上向该终端设备发送第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;其中,该第一最小调度偏移限制与该第二最小调度偏移限制相同,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
其中,第五方面所带来的技术效果可参见上述第二方面所带来的技术效果,此处不再赘述。
第六方面,提供了一种无线通信方法,执行该无线通信方法的装置可以为网络设备,可以为应用于网络设备中的模块,例如芯片或芯片系统。下面以执行主体为网络设备为例进行描述。网络设备在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该网络设备在第二时隙上向该终端设备发送第二PDCCH,该第二时隙与第二最小调度偏移限制相关联,其中,该第一时隙早于该第二时隙;该第一PDCCH与该第二PDCCH用于PDCCH重复传输;若该第一PDCCH和该第二PDCCH中的第四最小调度偏移限制不同于该第二最小调度偏移限制,该网络设备将该第一时隙或该第二时隙作为参考,或者,该网络设备将该第一PDCCH或该第二PDCCH作为参考,以确定该第四最小调度偏移限制的生效时间。
其中,第六方面所带来的技术效果可参见上述第三方面所带来的技术效果,此处不再赘述。
第七方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第七方面,在一种可能的实现方式中,该通信装置包括:收发模块和处理模块;该收发模块,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该收发模块,还用于在第二时隙上接收来自该网络设备的第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,该第三最小调度偏移限制用于限制该第一PDCCH和该第二PDCCH中的时隙偏移K 0或K 2;其中,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
结合上述第七方面,在一种可能的实现方式中,该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将该第一最小调度偏移限制确定为该第三最小调度偏移。
结合上述第七方面,在一种可能的实现方式中,该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将该第二最小调度偏移限制确定为该第三最小调度偏移限制。
结合上述第七方面,在一种可能的实现方式中,该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于确定该第三最小调度偏移限制为该第一最小调度偏移限制和该第二最小调度偏移限制中的 最大值或最小值。
结合上述第七方面,在一种可能的实现方式中,处理模块可以为处理器,收发模块可以为经由通信接口连接的通信模块。
其中,第七方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面或第一方面的不同实现方式所带来的技术效果,此处不再赘述。
第八方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第八方面,在一种可能的实现方式中,该通信装置包括:收发模块;该收发模块,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该收发模块,还用于在第二时隙上接收来自该网络设备的第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;其中,该第一最小调度偏移限制与该第二最小调度偏移限制相同,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
结合上述第八方面,在一种可能的实现方式中,收发模块可以为经由通信接口连接的通信模块。
其中,第八方面所带来的技术效果可参见上述第二方面所带来的技术效果,此处不再赘述。
第九方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第九方面,在一种可能的实现方式中,该通信装置包括:收发模块和处理模块;该收发模块,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该收发模块,还用于在第二时隙上接收来自该网络设备的第二PDCCH,该第二时隙与第二最小调度偏移限制相关联,其中,该第一时隙早于该第二时隙;该第一PDCCH与该第二PDCCH用于PDCCH重复传输;该处理模块,用于若该第一PDCCH和该第二PDCCH中的第四最小调度偏移限制不同于该第二最小调度偏移限制,将该第一时隙或该第二时隙作为参考,或者,将该第一PDCCH或该第二PDCCH作为参考,以确定该第四最小调度偏移限制的生效时间。
结合上述第九方面,在一种可能的实现方式中,处理模块可以为处理器,收发模块可以为经由通信接口连接的通信模块。
其中,第九方面所带来的技术效果可参见上述第三方面所带来的技术效果,此处不再赘述。
第十方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第十方面,在一种可能的实现方式中,该通信装置包括:收发模块和处理模块;该收发模块,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该收发模块,还用于在第二时隙上向该终端设备发送第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,该第三最小调度偏移限制用于限制该第一PDCCH和该第二PDCCH中的时隙偏移K 0或K 2;其中,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
结合上述第十方面,在一种可能的实现方式中,该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将该第一最小调度偏移限制确定为该第三最小调度偏移。
结合上述第十方面,在一种可能的实现方式中,该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将该第二最小调度偏移限制确定为该第三最小调度偏移限制。
结合上述第十方面,在一种可能的实现方式中,该处理模块,用于根据该第一最小调度偏移限制和/或该第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于确定该第三最小调度偏移限制为该第一最小调度偏移限制和该第二最小调度偏移限制中的最大值或最小值。
结合上述第十方面,在一种可能的实现方式中,处理模块可以为处理器,收发模块可以为经由通信接口连接的通信模块。
其中,第十方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面或第一方面的不同实现方式所带来的技术效果,此处不再赘述。
第十一方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第十一方面,在一种可能的实现方式中,该通信装置包括:收发模块;该收发模块,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该收发模块,还用于在第二时隙上向该终端设备发送第二PDCCH,该第二时隙与第二最小调度偏移限制相关联;其中,该第一最小调度偏移限制与该第二最小调度偏移限制相同,该第一时隙不同于该第二时隙,该第一PDCCH与该第二PDCCH用于PDCCH重复传输。
结合上述第十一方面,在一种可能的实现方式中,收发模块可以为经由通信接口连接的通信模块。
其中,第十一方面所带来的技术效果可参见上述第二方面所带来的技术效果,此处不再赘述。
第十二方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第十二方面,在一种可能的实现方式中,该通信装置包括:收发模块和处理模块;该收发模块,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,该第一时隙与第一最小调度偏移限制相关联;该收发模块,还用于在第二时隙上向该终端设备发送第二PDCCH,该第二时隙与第二最小调度偏移限制相关联,其中,该第一时隙早于该第二时隙;该第一PDCCH与该第二PDCCH用于PDCCH重复传输;该处理模块,用于若该第一PDCCH和该第二PDCCH中的第四最小调度偏移限制不同于该第二最小调度偏移限制,将该第一时隙或该第二时隙作为参考,或者,将该第一PDCCH或该第二PDCCH作为参考,以确定该第四最小调度偏移限制的生效时间。
结合上述第十二方面,在一种可能的实现方式中,处理模块可以为处理器,收发模块可以为经由通信接口连接的通信模块。
其中,第十二方面所带来的技术效果可参见上述第三方面所带来的技术效果,此处不再赘述。
第十三方面,提供了一种通信系统,包括:执行上述第一方面所述的方法的终端设备,以及执行上述第四方面所述的方法的网络设备;或者,执行上述第二方面所述的方法的终端设备,以及执行上述第五方面所述的方法的网络设备;或者,执行上述第三方面所述的方法的终端设备,以及执行上述第六方面所述的方法的网络设备。
第十四方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述第一方面、第二方面或第三方面所述的方法。
结合上述第十四方面,在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
结合上述第十四方面,在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第十四方面,在一种可能的实现方式中,该通信装置可以是芯片或芯片系统。其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
结合上述第十四方面,在一种可能的实现方式中,当通信装置为芯片或芯片系统时,上述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。上述处理器也可以体现为处理电路或逻辑电路。
第十五方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述第四方面、第五方面或第六方面所述的方法。
结合上述第十五方面,在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
结合上述第十五方面,在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第十五方面,在一种可能的实现方式中,该通信装置可以是芯片或芯片系统。 其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
结合上述第十五方面,在一种可能的实现方式中,当通信装置为芯片或芯片系统时,上述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。上述处理器也可以体现为处理电路或逻辑电路。
第十六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第十七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
其中,第十三方面至第十七方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面或第一方面的不同实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术中DCI根据时隙偏移K 0调度PDSCH的示意图;
图2为时隙间PDCCH重复传输场景下现有技术中存在最小调度偏移限制模糊K 0min的问题的示意图;
图3为现有技术中PDCCH重复传输的流程图;
图4为现有技术中基于多TPR传输的PDCCH重复传输的示意图;
图5为现有技术中两个搜索空间集合之间PDCCH重复传输的示意图;
图6为现有技术中相邻时隙间PDCCH重复传输的示意图;
图7为现有技术中最小调度偏移限制K 0min限制时隙偏移K 0取值的示意图;
图8为自调度且没有BWP切换场景下现有技术中确定最小调度偏移限制K 0min的生效时间的示意图一;
图9为自调度且没有BWP切换场景下现有技术中确定最小调度偏移限制K 0min的生效时间的示意图二;
图10为现有技术中跨载波调度场景下确定最小调度偏移限制K 0min的生效时间的示意图;
图11为现有技术中DCI根据时隙偏移K 2调度PUSCH的示意图;
图12为时隙间PDCCH重复传输场景下现有技术中存在最小调度偏移限制的生效时间模糊的问题的示意图;
图13为本申请实施例提供的一种通信系统的架构示意图;
图14为本申请实施例提供的网络设备和终端设备的结构示意图;
图15为本申请实施例提供的终端设备的具体结构的示意图;
图16为本申请实施例提供的一种无线通信方法的流程图;
图17为本申请实施例提供的另一种无线通信方法的流程图;
图18为本申请实施例提供的又一种无线通信方法的流程图;
图19为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,物理下行控制信道(physical downlink control channel,PDCCH)重复传输。
在本申请实施例中,1个PDCCH重复传输表示两次PDCCH传输,即第一PDCCH传输和第二PDCCH传输。在第五代(5th generation,5G)新空口(new radio,NR)版本17(release-17,Rel-17)中,第一PDCCH传输和第二PDCCH传输均采用相同的聚集级别(aggregation level,AL)和相同的控制信道单元(Control Channel Element,CCE)数量,来重复传输相同的下行控制信息(downlink control information,DCI)负载比特。
图3示出了PDCCH重复传输中的主要步骤。在基站侧,首先产生DCI负载比特,并附着循环冗余校验(cyclic redundancy check,CRC),然后经过编码形成编码比特,再进行速率匹配、加扰和调制,最后,将调制后的信号映射到第一时频资源上,并在该第一时频资源上发送第一PDCCH传输;并且将调制后的信号映射到第二时频资源上,并在该第二时频资源上发送第二PDCCH传输。如此形成的第一PDCCH传输和第二PDCCH传输采用的AL或CCE数量相同,包含的DCI负载或编码比特也相同。
为了提升DCI传输的可靠性,可以由多个传输接收点(transmission reception point,TRP)分别在不同的时频资源上发送经过编码后的编码比特。之所以能够提升传输的可靠性,是因为编码比特被多次发送,相当于增加了信号强度或信噪比。用户设备(user equipment,UE)在上述不同的时频资源上接收到多份编码比特之后,进行联合解析操作,以获取DCI信息比特。示例性地,联合解析操作可以为:UE分别在上述不同时频资源中的每一个上做信道估计并解调接收信号,以在每个时频资源上获取似然值,最后,UE将得到的多个似然值进行合并。由于似然值也可以被称为软信息,因此,上述示例中的操作也可以被称为软合并操作。
以两个TRP为例,图4示出了基于多TPR传输的PDCCH重复传输的示意图。第一TRP和第二TRP作为协作基站,为同一个UE服务。具体地,在两个TRP中的其中一个,对DCI负载比特执行如图3所示的CRC附着、编码、速率匹配、加扰和调制,再将调制后的信号传输至另外一个TRP,然后由两个TRP各执行一次PDCCH传输;或者,在两个TRP中的每一个,对相同的负载比特执行如图3所示的CRC附着、编码、速率匹配、加扰和调制,然后,相同地,由两个TRP各执行一次PDCCH传输,本申请实施例对此不作任何限定。UE接收到来自第一TRP和第二TRP的PDCCH重复传输后,可以通过软合并操作来获取DCI信息比特。
在图4中,第一TRP下发的DCI对应第一控制资源集合(control resource set,CORESET),第二TRP下发的DCI对应第二CORESET,第一CORESET和第二CORESET被配置成完全重叠或部分重叠。其中,CORESET是下行资源中一组特定的时频资源,用于承载PDCCH或DCI。两个CORESET上发送的两个DCI分别承载在两个候选PDCCH上,两个DCI调度同一个物理下行共享信道(physical downlink shared channel,PDSCH)。由于两个候选PDCCH占用的频率资源可能不同,因此,当其中一个候选PDCCH在传输过程中经历严重的频率选择性衰落时,另外一个候选PDCCH可能不会经历同样严重的频率选择性衰落,进而在传输过程中能够提高对抗频率选择性衰落的能力。
为了便于UE判断哪两次PDCCH传输属于1个PDCCH重复传输,以针对这1个PDCCH重复传输执行软合并操作,需要定义两个CORESET分别对应的候选PDCCH(PDCCH candidates)之间的关联关系。这样,UE仅需要对关联的候选PDCCH进行软合并,从而能 够避免UE错误地尝试对非关联的候选PDCCH进行软合并操作,进而降低UE的复杂度。
目前,1个搜索空间集合(search space set,SS set)内所有的候选PDCCH都用于PDCCH重复传输。其中,搜索空间集合的参数配置中包含CORESET的索引信息。基站通过无线资源控制(radio resource control,RRC)参数,来配置用于PDCCH重复传输的两个搜索空间集合的关联关系。两个搜索空间集合可以被称为关联的搜索空间集合,用于PDCCH重复传输的两个候选PDCCH分别属于关联的搜索空间集合之一。在关联的搜索空间集合中,根据PDCCH重复传输的定义,用于PDCCH重复传输的两次PDCCH传输的采用相同的AL,也就是说,PDCCH重复传输例如只能通过两个AL8的候选PDCCH来实现,而无法通过1个AL8的候选PDCCH和1个AL16的候选PDCCH来实现。
示例性地,图5为两个搜索空间集合之间PDCCH重复传输的示意图。其中,第一搜索空间集合和第二搜索空间集合为关联的搜索空间集合,第一搜索空间集合包括2个AL8的候选PDCCH和1个AL16的候选PDCCH,第二搜索空间集合也包括2个AL8的候选PDCCH和1个AL16的候选PDCCH。针对AL8,第一搜索空间集合中索引为1的候选PDCCH和第二搜索空间集合中索引为1的候选PDCCH可以是关联的候选PDCCH,第一搜索空间集合中索引为2的候选PDCCH和第二搜索空间集合中索引为2的候选PDCCH可以是关联的候选PDCCH;针对AL16,第一搜索空间集合中索引为1的候选PDCCH和第二搜索空间集合中索引为1的候选PDCCH可以是关联的候选PDCCH。其中,关联的候选PDCCH用于PDCCH重复传输。可以看出,图5中每个搜索空间集合中每个候选PDCCH都有与之关联的候选PDCCH,也就是说,1个搜索空间集合内所有的候选PDCCH都用于PDCCH重复传输,而不包含用于一次独立PDCCH传输的候选PDCCH。若基站要发送独立PDCCH,只能通过专门配置的其他搜索空间集合来实现,例如,另外配置的第三搜索空间集合。
根据两个关联的候选PDCCH所在的时隙是否相同,可以将PDCCH重复传输分为时隙内PDCCH重复(intra-slot PDCCH repetition)和时隙间PDCCH重复(inter-slot PDCCH repetition),其中,两个关联的候选PDCCH分别属于两个关联的搜索空间集合中。图6示出了时隙间PDCCH重复的情形。具体地,第一候选PDCCH和第二候选PDCCH是相关联的,第一候选PDCCH所在的时隙为时隙n,第二候选PDCCH所在的时隙为时隙n+1,时隙n与时隙n+1是不同的时隙。需要说明的是,图6仅示出了两个关联的候选PDCCH所在的时隙相邻的情形,此外,两个关联的候选PDCCH所在的时隙还可以是不相邻的。
第二,最小调度偏移限制(minimum scheduling offset restriction)K 0min
用于下行调度的DCI格式包括DCI格式1_0,DCI格式1_1和DCI格式1_2,其中,DCI格式1_0,DCI格式1_1和DCI格式1_2均可携带时隙偏移K 0信息,DCI格式1_1中可以包含指示域“最小应用的调度偏移指示符(minimum applicable scheduling offset indicator)”,用于动态切换K 0min
需要说明的是,在本申请实施例中,“生效”与“应用”为同一概念,可以相互替换。
引入K 0min的目的在于限制K 0的最小取值。具体地,DCI中包含的K 0需满足如下公式(1)
Figure PCTCN2022099034-appb-000001
其中,
Figure PCTCN2022099034-appb-000002
表示上取整,K 0min,μ和μ′均为被调度小区中对应的值,所述被调度小区是指被调度的PDSCH所在的小区。K 0min表示被调度小区中生效的最小调度偏移限制。μ表示 当接收到DCI时被调度小区的激活下行(active downlink)带宽部分(bandwidth part,BWP)的子载波间隔类型(numerology/subcarrier spacing),所述子载波间隔类型是根据子载波间隔的取值确定的,例如,子载波间隔为15kHz,对应的子载波间隔类型为0;子载波间隔为30kHz,对应的子载波间隔类型为1;子载波间隔为60kHz,对应的子载波间隔类型为2;子载波间隔为120kHz,对应的子载波间隔类型为3。μ′表示当出现BWP切换时被调度小区的新的激活下行BWP的子载波间隔类型。特别地,如果没有BWP切换,μ′=μ,K 0≥K 0min。上述公式可以视为对基站调度的一个限制,若基站发送的DCI包含不满足上述公式的K 0,那么,UE接收到该DCI之后可以任意处理,例如,UE将该DCI当作虚警,不加以处理,或者,UE判定为错误场景,并丢弃该DCI。
下面将结合具体示例阐述K 0min对K 0取值的限制作用。如图7所示,被调度小区中当前生效的K 0min的值为2,接收到DCI时被调度小区的激活下行BWP的子载波间隔为15kHz,即μ=0,切换后激活下行BWP的子载波间隔为30kHz,即μ′=1,代入上述公式(1)的右侧,得到
Figure PCTCN2022099034-appb-000003
也就是说,DCI中包含的K 0需要至少要等于或大于4。图7中所示的场景为UE期望的调度场景,UE会正常处理DCI。如果在第二BWP上,DCI调度的PDSCH所在的时隙早于时隙m+4,则为UE不期望的调度场景,UE将任意处理DCI。
需要说明的是,本申请实施例不讨论被调度的PDSCH所在时隙的确定,具体确定过程可参考现有协议,在此统一说明,以下不再赘述。
第三,K 0min的生效时间。
下面将阐述在不同场景下如何确定K 0min的生效时间。
场景一:DCI指示没有BWP切换
如果用户设备在时隙n上接收到DCI且该DCI没有指示BWP切换,也就是说,DCI中指示的K 0min值作用于当前的激活下行BWP,该K 0min从主调度小区的时隙n+X开始生效。其中,主调度小区为调度PDSCH的DCI所在的小区;所述“当前”是指在时隙n上接收到DCI时,在此统一说明,以下不再赘述;X为应用的时延取值(the value of application delay),并且根据不同的情况,X可以采用不同的取值。
例如,当DCI位于时隙n的前三个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内时,X满足如下公式(2):
Figure PCTCN2022099034-appb-000004
其中,
Figure PCTCN2022099034-appb-000005
表示上取整;K 0minOld和μ PDSCH为被调度小区中对应的值,Z μ和μ PDCCH为主调度小区中对应的值。具体地,K 0minOld表示被调度小区的激活下行BWP上当前生效的K 0min值;Z μ的取值如下表1,其中μ为主调度小区的激活下行BWP上时隙n对应的子载波间隔类型;μ PDCCH为主调度小区的激活下行BWP上PDCCH对应的子载波间隔类型;μ PDSCH为被调度小区的激活下行BWP上PDSCH对应的子载波间隔类型。
表1Z μ的取值
μ Z μ
0 1
1 1
2 2
3 2
图8示出了确定K 0min的生效时间的一个示例。在该示例中,格式1_1的DCI中包含的指示域“最小应用的调度偏移指示符”指示了与当前生效的K 0min值不同的K 0min值以及K 0=3,并且该DCI位于时隙n的前三个OFDM符号内。其中,当前生效的K 0min值为1,也就是说,K 0minOld=1,新指示的K 0min值为2;假设在自调度且没有BWP切换的情形下,即
Figure PCTCN2022099034-appb-000006
所述“自调度”是指被调度的PDSCH与调度该PDSCH的DCI位于同一小区。在此情形下,若小区的子载波间隔为15kHz,则根据表1可得,μ=0,Z μ=1。那么,由公式(2)可以计算出,
Figure PCTCN2022099034-appb-000007
因此,如图8所示,新指示的K 0min值从时隙n+1开始生效。
又例如,当DCI位于时隙n的除前三个OFDM符号之外的其他OFDM符号时,X满足如下公式(3):
Figure PCTCN2022099034-appb-000008
其中,公式(3)中各个参数或符号的含义与公式(2)中对应参数或符号的含义相同,具体可参见针对公式(2)的相关描述,在此不再赘述。
结合图8所示的示例中的条件,图9示出了确定K 0min的生效时间的另一个示例。在该示例中,格式1_1的DCI中包含的指示域“最小应用的调度偏移指示符”指示了与当前生效的K 0min值不同的K 0min值以及K 0=3,并且该DCI位于时隙n的除前三个OFDM符号之外的其他OFDM符号,即,该DCI不在时隙n的前三个OFDM符号内。其中,当前生效的K 0min值为1,也就是说,K 0minOld=1,新指示的K 0min值为2;假设在自调度且没有BWP切换的情形下,即
Figure PCTCN2022099034-appb-000009
在此情形下,若小区的子载波间隔为15kHz,则根据表1可得,μ=0,Z μ=1。那么,由公式(3)可以计算出,
Figure PCTCN2022099034-appb-000010
因此,如图9所示,新指示的K 0min值从时隙n+2开始生效。
场景二:DCI指示了BWP切换
如果用户设备在时隙n上接收到的DCI指示了BWP切换,并且指示了目标BWP上的K 0min值,被调度的PDSCH所在的时隙不能早于目标BWP上K 0min的生效时隙,其中,目标BWP为PDSCH所在的BWP。由于该场景可与PDCCH重复传输很好地结合,不存在技术问题,因此,本实施例对该场景不作具体描述。
场景三:跨载波调度(cross-carrier scheduling)
在本申请实施例中,与自调度不同,跨载波调度是指被调度的PDSCH与调度该PDSCH的DCI位于不同的小区内。跨载波调度与BWP切换场景的区别在于,BWP切换场景中,目标BWP上没有已经生效的K 0min,而在跨载波调度中,被调度小区具有已经生效的K 0min。具体地,BWP切换场景中,由于同一时刻仅能有一个BWP处于激活状态,在未激活的BWP上不存在数据的发送和接收,因此,目标BWP上没有已经生效的K 0min。在跨载波调度中,假 设第一成员载波(component carrier,CC)上的DCI调度第二CC上的PDSCH,其中,在本申请实施例中,CC可以等同于小区,即,第一CC可以理解为主调度小区,第二CC可以理解为被调度小区。那么,第一CC和第二CC均为激活的小区,都具有已经生效的K 0min
上述公式(1)、(2)和(3)均可应用于跨载波调度场景。跨载波调度场景下,当主调度小区的子载波间隔类型与被调度小区的子载波间隔类型不同时,会影响到公式(1)、(2)、(3)中μ PDCCH,μ PDSCH,μ和μ′的取值。
图10示出了确定K 0min的生效时间的又一个示例,该示例用于阐述公式(3)在跨载波调度场景下的应用。在图10中,格式1_1的DCI中包含的指示域“最小应用的调度偏移指示符”指示了与第一CC上当前生效的K 0min值不同的K 0min值以及K 0=3,并且该DCI位于时隙n的除前三个OFDM符号之外的其他OFDM符号。其中,第二CC上当前生效的K 0min值为1,也就是说,被调度小区中的参数K 0minOld=1,第一CC上当前生效的K 0min值为2,新指示的K 0min值为3。DCI所在的第一CC的子载波间隔为15kHz,即μ=μ PDCCH=0,被调度的PDSCH所在的第二CC的子载波间隔为30kHz,即μ PDSCH=1。那么,由上述公式(3)可以计算出,
Figure PCTCN2022099034-appb-000011
因此,如图10所示,新指示的K 0min值从主调度小区的时隙n+2开始生效。
需要注意的是,K 0min生效的起始时隙n+X是主调度小区中的时隙。
在图10所示的示例中,假设不存在BWP切换,那么使用公式(1)计算K 0的最小取值时,K 0min=1,μ′=μ=1,因此,K 0的最小取值为
Figure PCTCN2022099034-appb-000012
即DCI中包含的K 0需要大于或等于1。本示例中的K 0=3满足该要求,因此,DCI能够正常调度PDSCH。
第四,K 0min的动态指示。
当基站通过高层参数,例如RRC参数,配置最小调度偏移K0(minimumSchedulingOffsetK0)时,用于下行调度的格式1_1的DCI中才会包含指示域“最小应用的调度偏移指示符”。该指示域占用1个比特,用于指示基站为UE配置的一个K 0min值,或者两个K 0min值之一。具体地:
若基站为UE配置了两个K 0min值,那么,示例性地,指示域为“0”可以指示应用配置好的第一个K 0min值;指示域为“1”可以指示应用配置好的第二个K 0min值。
若基站为UE仅配置了一个K 0min值,那么,示例性地,指示域为“0”可以指示应用配置好的K 0min值;指示域为“1”可以指示应用的K 0min的取值为0。
第五,动态指示的条件。
以上第二至第四介绍的是下行传输中的时隙偏移K 0,以及用于限制K 0最小取值的K 0min。类似地,上行传输中,也引入了时隙偏移K 2,以及用于限制K 2的最小取值的最小调度偏移限制K 2min。具体地,当基站进行上行调度时,会通过PDCCH向UE发送DCI。其中,DCI中包含PUSCH的时域位置信息,具体地,PUSCH的时域位置信息包含时隙偏移K 2。其中,时隙偏移K 2表示被调度的PUSCH所在时隙与调度该PUSCH的DCI所在时隙之间间隔的时隙个数。如图11所示,DCI所在的时隙为时隙n,该DCI调度的PUSCH所在时隙为时隙n+2,那么,DCI中包含的K 2的取值为2。
用于上行调度的DCI格式包括DCI格式0_0,DCI格式0_1和DCI格式0_2,其中,DCI格式0_0,DCI格式0_1和DCI格式0_2均可用于携带时隙偏移K 2,DCI格式0_1中可以包 含指示域“最小应用的调度偏移指示符”,用于动态切换K 2min
当基站通过高层参数,配置了最小调度偏移K 0时,用于下行调度的格式1_1的DCI中包含指示域“最小应用的调度偏移指示符”。若基站同时配置了最小调度偏移K 2(minimumSchedulingOffsetK2),那么,用于上行调度的格式0_1的DCI中也包含指示域“最小应用的调度偏移指示符”,此时,可以同时动态切换K 0min和K 2min;若基站未配置最小调度偏移K 2,那么,用于上行调度的格式0_1的DCI中不包含指示域“最小应用的调度偏移指示符”,此时,只能通过DCI格式1_1实现K 0min的动态切换,而无法实现K 2min的动态切换。
类似地,当基站通过高层参数,配置了最小调度偏移K 2时,用于上行调度的格式0_1的DCI中包含指示域“最小应用的调度偏移指示符”。若基站同时配置了最小调度偏移K 0,那么,用于下行调度的格式1_1的DCI中也包含指示域“最小应用的调度偏移指示符”,此时,可以同时动态切换K 0min和K 2min;若基站未配置最小调度偏移K 0,那么,用于下行调度的格式1_1的DCI中不包含指示域“最小应用的调度偏移指示符”,此时,只能通过DCI格式0_1实现K 2min的动态切换,而无法实现K 0min的动态切换。
第六,K 0min在时隙间PDCCH重复下存在的模糊问题。
现有协议中,讨论的是时隙内PDCCH重复的情况,但在时隙间PDCCH重复的情况下,K 0min会存在模糊的问题。具体地:
一方面,如背景技术所述,若两个相同的候选PDCCH所在的时隙分别位于不同的K 0min的生效范围内,那么,这两个相同的候选PDCCH中包含的K 0受到哪个K 0min的约束,是不清楚的。
另一方面,由于包含同一K 0min的两个相同的候选PDCCH所在的时隙不同,因此,根据这两个不同时隙计算出的K 0min的生效时间也不同,存在K 0min的生效时间模糊的问题。示例性地,如图12所示,通过第一候选PDCCH传输的第一DCI与通过第二候选PDCCH传输的第二DCI的内容相同,第一DCI所在的时隙为时隙n,第二DCI所在的时隙为时隙n+1,时隙n和时隙n+1均在K 0min=3的生效范围内,第一DCI和第二DCI中包含的K 0min均为2。假设在自调度且没有BWP切换的情形下,即
Figure PCTCN2022099034-appb-000013
当前生效的K 0min值为3,也就是说,K 0minOld=3,在此情形下,若小区的子载波间隔为15kHz,则根据表1可得,μ=0,Z μ=1。那么,由上述公式(2)可以计算出,
Figure PCTCN2022099034-appb-000014
如果根据第一DCI所在的时隙n计算K 0min=2的生效时间,那么K 0min=2从时隙n+3开始生效;如果根据第一DCI所在的时隙n+1计算K 0min=2的生效时间,那么K 0min=2从时隙n+1+3,即时隙n+4开始生效。究竟采用哪一个生效时间,也是不清楚的。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中, 采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于LTE系统或NR系统,也可以适用于其他面向未来的新系统等,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
本申请实施例还可以应用于多种移动通信场景,例如基站和UE之间的点对点传输,基站和UE之间的多跳/中继(relay)传输,多个基站和UE的双连接(dual connectivity,DC)或多连接等场景,本申请实施例对此不作具体限定。此外,本申请实施例适用于上行、下行、接入链路、回传(backhaul)链路、侧行链路(sidelink)等传输。
如图13所示,为本申请实施例提供的一种通信系统13。该通信系统13包括网络设备132,以及与该网络设备132连接的一个或多个终端设备131。其中,终端设备131通过无线的方式与网络设备132相连。可选的,不同的终端设备131之间可以相互通信。终端设备131可以是固定位置的,也可以是可移动的。
需要说明的是,图13仅是示意图,虽然未示出,但是该通信系统13中还可以包括其它网络设备,如该通信系统13还可以包括核心网设备、无线中继设备和无线回传设备中的一个或多个,在此不做具体限定。其中,网络设备可以通过无线或有线方式与核心网设备连接。核心网设备与网络设备132可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备132的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备132的功能,本申请实施例对此不做具体限定。
以图13所示的网络设备132与任一终端设备131进行交互为例,本申请实施例中,一种可能的实现方式中,网络设备132,用于在第一时隙上向终端设备131发送第一PDCCH,第一时隙与第一最小调度偏移限制相关联。终端设备131,用于在第一时隙上接收来自网络设备132的第一PDCCH。网络设备132,还用于在第二时隙上向终端设备131发送第二PDCCH,其中,第二时隙与第二最小调度偏移限制相关联,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。终端设备131,还用于在第二时隙上接收来自网络设备132的第二PDCCH。网络设备132,还用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,第三最小调度偏移限制用于限制第一PDCCH和第二PDCCH中的时隙偏移K 0或K 2。终端设备131,还用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
以图13所示的网络设备132与任一终端设备131进行交互为例,本申请实施例中,另一种可能的实现方式中,网络设备132,用于在第一时隙上向终端设备131发送第一PDCCH,第一时隙与第一最小调度偏移限制相关联。终端设备131,用于在第一时隙上接收来自网络设备132的第一PDCCH。网络设备132,还用于在第二时隙上向终端设备131发送第二 PDCCH,其中,第二时隙与第二最小调度偏移限制相关联,第一最小调度偏移限制与第二最小调度偏移限制相同,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。终端设备131,还用于在第二时隙上接收来自网络设备132的第二PDCCH。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
以图13所示的网络设备132与任一终端设备131进行交互为例,本申请实施例中,又一种可能的实现方式中,网络设备132,用于在第一时隙上向终端设备131发送第一PDCCH,第一时隙与第一最小调度偏移限制相关联。终端设备131,用于在第一时隙上接收来自网络设备132的第一PDCCH。网络设备132,还用于在第二时隙上向终端设备131发送第二PDCCH,其中,第二时隙与第二最小调度偏移限制相关联,第一时隙早于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。终端设备131,还用于在第二时隙上接收来自网络设备132的第二PDCCH。网络设备132,还用于若第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,将第一时隙或第二时隙作为参考,或者,将第一PDCCH或第二PDCCH作为参考,以确定第四最小调度偏移限制的生效时间。终端设备131,还用于若第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,将第一时隙或第二时隙作为参考,或者,将第一PDCCH或第二PDCCH作为参考,以确定第四最小调度偏移限制的生效时间。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的网络设备132,是一种将终端设备131接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端设备131可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,上述终端可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的UE、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SI P)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端或无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备131可以是固定位置的,也可以是可移动的,本申请实施例对此不做具体限定。
可选的,在本申请实施例中,终端设备131包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备131,或是终端设备131中能够调用程序并执行程序的功能模块;或者,本申请实施例提供的方法的执行主体可以是网络设备132,或是网络设备132中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的终端设备131或网络设备132的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
可选的,如图14所示,为本申请实施例提供的网络设备132和终端设备131的结构示意图。
其中,终端设备131包括至少一个处理器1311和至少一个收发器1313。可选的,终端设备131还可以包括至少一个存储器1312、至少一个输出设备1314或至少一个输入设备1315。
处理器1311、存储器1312和收发器1313通过通信线路相连接。通信线路可包括通路,在上述组件之间传送信息。
处理器1311可以是通用中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。在具体实现中,作为一种实施例,处理器1311也可以包括多个CPU,并且处理器1311可以是单核处理器或多核处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据的处理核。
存储器1312可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1312可以是独立存在, 通过通信线路与处理器1311相连接。存储器1312也可以和处理器1311集成在一起。
其中,存储器1312用于存储执行本申请方案的计算机执行指令,并由处理器1311来控制执行。具体的,处理器1311用于执行存储器1312中存储的计算机执行指令,从而实现本申请实施例中所述的无线通信方法。
或者,可选的,本申请实施例中,也可以是处理器1311执行本申请下述实施例提供的无线通信方法中的处理相关的功能,收发器1313负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器1313可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器1313包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备1314和处理器1311通信,可以以多种方式来显示信息。例如,输出设备1314可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备1315和处理器1311通信,可以以多种方式接受用户的输入。例如,输入设备1315可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备132包括至少一个处理器1321、至少一个收发器1323和至少一个网络接口1324。可选的,网络设备132还可以包括至少一个存储器1322。其中,处理器1321、存储器1322、收发器1323和网络接口1324通过通信线路相连接。网络接口1324用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图14中未示出),本申请实施例对此不作具体限定。另外,处理器1321、存储器1322和收发器1323的相关描述可参考终端设备131中处理器1311、存储器1312和收发器1313的描述,在此不再赘述。
结合图14所示的终端设备131的结构示意图,示例性的,图15为本申请实施例提供的终端设备131的一种具体结构形式。
其中,在一些实施例中,图14中的处理器1311的功能可以通过图15中的处理器110实现。
在一些实施例中,图14中的收发器1313的功能可以通过图15中的天线1,天线2,移动通信模块150,无线通信模块160等实现。移动通信模块150可以提供应用在终端设备131上的包括LTE、NR或者未来移动通信等无线通信技术的解决方案。无线通信模块160可以提供应用在终端设备131上的包括WLAN(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外等无线通信技术的解决方案。在一些实施例中,终端设备131的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备131可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图14中的存储器1312的功能可以通过图15中的内部存储器121或者 外部存储器接口120连接的外部存储器等实现。
在一些实施例中,图14中的输出设备1314的功能可以通过图15中的显示屏194实现。
在一些实施例中,图14中的输入设备1315的功能可以通过鼠标、键盘、触摸屏设备或图15中的传感器模块180来实现。
在一些实施例中,如图15所示,该终端设备131还可以包括音频模块170、摄像头193、按键1132、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个。
可以理解的是,图15所示的结构并不构成对终端设备131的具体限定。比如,在本申请另一些实施例中,终端设备131可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图15对本申请实施例提供的无线通信方法进行具体阐述。
如图16所示,为本申请实施例提供的一种无线通信方法,该无线通信方法包括如下步骤:
S1601、网络设备在第一时隙上向终端设备发送第一PDCCH,相应地,终端设备在第一时隙上接收来自网络设备的第一PDCCH。其中,第一时隙与第一最小调度偏移限制相关联。
在本申请实施例中,对于终端设备,“第一PDCCH”的含义是终端设备通过盲检测确定该第一PDCCH上承载了该终端设备对应的DCI。第一PDCCH是终端设备确定的可能接收到其对应的DCI的多个候选PDCCH之一,盲检测是从前述多个候选PDCCH中确定第一PDCCH的过程。其中,多个候选PDCCH是基站通过RRC参数确定的用于承载PDCCH或DCI的时频资源。终端设备监听该多个候选PDCCH,可以理解为终端设备在该多个候选PDCCH上通过正确信道估计、解调、译码和CRC校验,从该多个候选PDCCH中确定某个候选PDCCH,即第一PDCCH,上能够检测到网络设备发送的PDCCH或DCI。也就是说,在终端设备侧,第一PDCCH是候选PDCCH,可以理解为第一候选PDCCH。
需要说明的是,PDCCH是物理下行控制信道的统称,候选PDCCH也属于PDCCH。
在本申请实施例中,终端设备接收来自网络设备的第一PDCCH包括上述盲检测过程。具体地,终端设备在多个候选PDCCH上进行信道估计、解调、译码和CRC校验,如果在某个或某些候选PDCCH上能够正确信道估计、解调、译码并通过CRC校验,则表示终端设备盲检测成功,即终端设备能够在这个或这些候选PDCCH上接收到网络设备发送的PDCCH。在本申请实施例中,第一最小调度偏移限制是一个时隙的数量,UE可以根据第一最小调度偏移限制确定出能够正常接收PDSCH的位置,或者,UE可以根据第一最小调度偏移限制确定出能够无法正常接收PDSCH的位置。
示例性地,第一时隙与第一最小调度偏移限制相关联,可以理解为,第一时隙在第一最小调度偏移限制的生效范围内。具体地,生效范围可以理解为某个信令对应的一个或多个时隙,或者,UE可以直接根据该信令确定出该一个或多个时隙,该一个或多个时隙应用于通过第一最小调度偏移限制来限制该一个或多个时隙上接收到的时隙偏移的取值。这里,接收到第一PDCCH的所在的时隙是生效范围中一个或多个时隙之一。或者,生效范围还可以理解为,是一个时隙的数量,在这些时隙上接收到的时隙偏移受到该生效范围对应的最小调度偏移限制的限制。
S1602、网络设备在第二时隙上向终端设备发送第二PDCCH,相应地,终端设备在第二时隙上接收来自网络设备的第二PDCCH。其中,第二时隙与第二最小调度偏移限制相关联,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
在本申请实施例中,“第二PDCCH”的含义与上述“第一PDCCH”的含义相同,“第二最小调度偏移限制”的含义与上述“第一最小调度偏移限制”的含义相同,第一时隙和第一最小调度偏移限制的关系与第二时隙和第二最小调度偏移限制的关系相同,具体可参照上述步骤S1601中的相关描述,在此不再赘述。
需要说明的是,第一时隙不同于第二时隙,也就是说,第一PDCCH和第二PDCCH所占用的时域资源不同。第一PDCCH和第二PDCCH所占用的频域资源可以相同,也可以不同,本申请对此不作任何限制。
在本申请实施例中,第一PDCCH与第二PDCCH用于PDCCH重复传输,是指第一PDCCH与第二PDCCH中包含的DCI完全相同。
可选地,可以先执行步骤S1601,再执行步骤S1602;或者,可以先执行步骤S1602,再执行步骤S1601,本申请实施例对此不做具体限定。
S1603、终端设备根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制。第三最小调度偏移限制用于限制第一PDCCH和第二PDCCH中的时隙偏移K 0或K 2
在本申请实施例中,示例性地,“限制”可以理解为期望第三最小调度偏移限制与时隙偏移K 0满足上述公式(1),若满足,UE可以正常调度包含该时隙偏移K 0的DCI所对应的PDSCH,若不满足,UE接收到包含该时隙偏移K 0的DCI之后可以任意处理,例如,UE将该DCI当作虚警DCI,不加以处理,或者,UE判定为错误场景,并丢弃该DCI。
可选地,终端设备根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:终端设备将第一最小调度偏移限制确定为第三最小调度偏移。
结合图2所示的示例,例如,第一时隙可以为n,第一最小调度偏移限制为1;第二时隙可以为n+1,第二最小调度偏移限制为2。那么,第三最小调度偏移可以为1,也就是说,K 0=1的调度是UE期望的调度。
可选地,终端设备根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:终端设备将第二最小调度偏移限制确定为第三最小调度偏移限制。
结合图2所示的示例,例如,第一时隙可以为n,第一最小调度偏移限制为1;第二时隙可以为n+1,第二最小调度偏移限制为2。那么,第三最小调度偏移可以为2,也就是说,K 0=1的调度是UE不期望的调度。
可选地,终端设备根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:终端设备确定第三最小调度偏移限制为第一最小调度偏移限制和第二最小调度偏移限制中的最大值或最小值。若根据第一最小调度偏移限制和第二最小调度偏移限制中的最大值来确定第三最小调度偏移限制,结合时隙偏移和最小调度偏移限制的定义,被调度的PDSCH所在时隙与调度该PDSCH的PDCCH所在时隙之间间隔的时隙数更多,在间隔的时隙上,终端设备不需要接收PDSCH,可处于空闲或休眠状态,有 利于节省功耗,但间隔更多时隙会增加调度时延。相应地,若根据第一最小调度偏移限制和第二最小调度偏移限制中的最小值来确定第三最小调度偏移限制,被调度的PDSCH所在时隙与调度该PDSCH的PDCCH所在时隙之间间隔的时隙数更少,有利于减小调度时延,但会增加功耗。
结合图2所示的示例,例如,第一时隙可以为n,第一最小调度偏移限制为1;第二时隙可以为n+1,第二最小调度偏移限制为2。2是第一最小调度偏移限制和第二最小调度偏移限制中的最大值,1是第一最小调度偏移限制和第二最小调度偏移限制中的最小值。那么,第三最小调度偏移可以为1或者2。
S1604、网络设备根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制。
在本申请实施例中,网络设备确定第三最小调度偏移限制的方法与终端设备确定第三最小调度偏移限制的方法相同,具体可参见上述步骤S1603的相关描述,在此不再赘述。
在本申请实施例中,网络设备确定第三最小调度偏移限制,以尽量生成满足限制条件的DCI。
可选地,可以先执行步骤S1603,再执行步骤S1604;或者,可以先执行步骤S1604,再执行步骤S1603;或者可以同时执行步骤S1603和步骤S1604,本申请实施例对此不做具体限定。
在本申请提供的无线通信方法中,当终端设备在两个不同的时隙上接收到用于PDCCH重复传输的第一PDCCH和第二PDCCH,并且这两个不同的时隙分别与不同的最小调度偏移限制相关联时,终端设备能够根据前述不同的最小调度偏移限制确定出第三最小调度偏移限制,从而明确了这两个相同的PDCCH中包含的K 0受到第三最小调度偏移限制的约束,进而克服了K 0受到哪个最小调度偏移限制的约束是不清楚的问题。此外,上述无线通信方法在网络设备侧和终端设备侧均执行,以统一网络设备和终端设备对于K 0受到第三最小调度偏移限制的约束的理解。
如图17所示,为本申请实施例提供的另一种无线通信方法,该无线通信方法包括如下步骤:
S1701、网络设备在第一时隙上向终端设备发送第一PDCCH,相应地,终端设备在第一时隙上接收来自网络设备的第一PDCCH。其中,第一时隙与第一最小调度偏移限制相关联。
步骤S1701的相关描述可参见上述步骤S1601的相关描述,在此不再赘述。
S1702、网络设备在第二时隙上向终端设备发送第二PDCCH,相应地,终端设备在第二时隙上接收来自网络设备的第二PDCCH。其中,第二时隙与第二最小调度偏移限制相关联,第一最小调度偏移限制与第二最小调度偏移限制相同,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
步骤S1702的相关描述可参见上述步骤S1602的相关描述,在此不再赘述。
在本申请提供的无线通信方法中,与两个不同时隙相关联的两个最小调度偏移限制相同,也就是说,不允许网络设备发送的第一PDCCH和第二PDCCH分别受到不同最小调度偏移限制的限制。因此,明确了这两个相同的PDCCH中包含的K 0受到第一最小调度偏移限制或第二最小调度偏移限制的约束,进而克服K 0受到哪个最小调度偏移限制的约束是不清楚的问题。
如图18所示,为本申请实施例提供的又一种无线通信方法,该无线通信方法包括如下步骤:
S1801、网络设备在第一时隙上向终端设备发送第一PDCCH,相应地,终端设备在第一时隙上接收来自网络设备的第一PDCCH。其中,第一时隙与第一最小调度偏移限制相关联。
步骤S1801的相关描述可参见上述步骤S1601的相关描述,在此不再赘述。
S1802、网络设备在第二时隙上向终端设备发送第二PDCCH,相应地,终端设备在第二时隙上接收来自网络设备的第二PDCCH。其中,第二时隙与第二最小调度偏移限制相关联,第一时隙早于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
步骤S1802的相关描述可参见上述步骤S1602的相关描述,在此不再赘述。
S1803、若第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,终端设备将第一时隙或第二时隙作为参考,或者,终端设备将第一PDCCH或第二PDCCH作为参考,以确定第四最小调度偏移限制的生效时间。
在本申请实施例中,终端设备将第一时隙或第二时隙作为参考,可以理解为,终端设备将第一时隙或第二时隙作为参考时隙(reference slot)。
在本申请实施例中,由于终端设备侧涉及盲检测过程,接收到的第一PDCCH或第二PDCCH是候选PDCCH,因此,将第一PDCCH或第二PDCCH作为参考,可以理解为,将第一PDCCH或第二PDCCH作为参考候选PDCCH(reference PDCCH candidate)。
在本申请实施例中,第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,即新指示的最小调度偏移限制不同于当前应用的最小调度偏移限制,最小调度偏移限制的取值需要更新。
在本申请实施例中,生效时间的理解可参考上述步骤S1601,在此不再赘述。
结合图12所示的示例,第一时隙为时隙n,第二时隙为时隙n+1,第一最小调度偏移限制和第二最小调度偏移限制均为3,第一PDCCH和第二PDCCH中包含的第四最小调度偏移限制为2,第四最小调度偏移限制不同于第二最小调度偏移限制。在自调度且没有BWP切换的情形下,可以计算出X=3。可以将第二时隙n+1作为参考,或者,将第二PDCCH作为参考,在这种情况下,第四最小调度偏移限制从时隙n+1+3,即时隙n+4开始生效。或者,可以将时隙n作为参考,或者,将第一PDCCH作为参考,在这种情况下,第四最小调度偏移限制从时隙n+3开始生效。
S1804、若第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,网络设备将第一时隙或第二时隙作为参考,或者,网络设备将第一PDCCH或第二PDCCH作为参考,以确定第四最小调度偏移限制的生效时间。
可选地,可以先执行步骤S1803,再执行步骤S1804;或者,可以先执行步骤S1804,再执行步骤S1803;或者可以同时执行步骤S1803和步骤S1804,本申请实施例对此不做具体限定。
在本申请提供的无线通信方法中,当第四最小调度偏移限制不同于第二最小调度偏移限制时,终端设备能够选择作为参考的时隙或PDCCH,以确定第四最小调度偏移限制的生效时间。因此,能够解决时隙间PDCCH重复传输中,存在多种可能的生效时间时使用哪一个的问题。此外,上述无线通信方法在网络设备侧和终端设备侧均执行,以统一网络设备和终端设备对于生效时间的理解。
需要说明的是,以上实施例均以时隙偏移是用于下行调度的K 0为例进行说明,时隙偏移还可以是用于上行调度的K 2,本申请实施例对此不作任何限定。
其中,上述实施例中终端设备的动作可以由图14所示的终端设备131中的处理器1311调用存储器1312中存储的应用程序代码以指令终端设备执行,或者,上述实施例中终端设备的动作可以由图15所示的终端设备131中的处理器110调用存储器(包括内部存储器121和/或外部存储器120)中存储的应用程序代码以指令终端设备执行;上述实施例中网络设备的动作可以由图14所示的网络设备132中的处理器1321调用存储器1322中存储的应用程序代码以指令网络设备执行。本实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)或者包含终端设备的设备实现;由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)或者包含网络设备的设备实现。
可以理解的是,终端设备或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对终端设备或网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
示例性的,本申请实施例中的终端设备或网络设备可以采用图19所示的通信装置190的形式来实现。该通信装置190包括收发模块191。所述收发模块191,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
以通信装置190为上述方法实施例中的终端设备为例,则:
该通信装置190还包括处理模块192。收发模块191,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;收发模块191,还用于在第二时隙上接收来自网络设备的第二PDCCH,第二时隙与第二最小调度偏移限制相关联;处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,第三最小调度偏移限制用于限制第一PDCCH和第二PDCCH中的时隙偏移K 0或K 2;其中,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
一种可能的实现方式中,处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将第一最小调度偏移限制确定为第三最小调度偏移。
一种可能的实现方式中,处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将第二最小调度偏移限制确定 为第三最小调度偏移限制。
一种可能的实现方式中,处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于确定第三最小调度偏移限制为第一最小调度偏移限制和第二最小调度偏移限制中的最大值或最小值。
收发模块191,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;收发模块191,还用于在第二时隙上接收来自网络设备的第二PDCCH,第二时隙与第二最小调度偏移限制相关联;其中,第一最小调度偏移限制与第二最小调度偏移限制相同,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
该通信装置190还包括处理模块192。收发模块191,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;收发模块191,还用于在第二时隙上接收来自网络设备的第二PDCCH,第二时隙与第二最小调度偏移限制相关联,其中,第一时隙早于第二时隙;第一PDCCH与第二PDCCH用于PDCCH重复传输;处理模块192,用于若第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,将第一时隙或第二时隙作为参考,或者,将第一PDCCH或第二PDCCH作为参考,以确定第四最小调度偏移限制的生效时间。
以通信装置190为上述方法实施例中的网络设备为例,则:
该通信装置190还包括处理模块192。收发模块191,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;收发模块191,还用于在第二时隙上向终端设备发送第二PDCCH,第二时隙与第二最小调度偏移限制相关联;处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,第三最小调度偏移限制用于限制第一PDCCH和第二PDCCH中的时隙偏移K 0或K 2;其中,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
一种可能的实现方式中,处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将第一最小调度偏移限制确定为第三最小调度偏移。
一种可能的实现方式中,处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于将第二最小调度偏移限制确定为第三最小调度偏移限制。
一种可能的实现方式中,处理模块192,用于根据第一最小调度偏移限制和/或第二最小调度偏移限制,确定第三最小调度偏移限制,包括:用于确定第三最小调度偏移限制为第一最小调度偏移限制和第二最小调度偏移限制中的最大值或最小值。
收发模块191,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;收发模块191,还用于在第二时隙上向终端设备发送第二PDCCH,第二时隙与第二最小调度偏移限制相关联;其中,第一最小调度偏移限制与第二最小调度偏移限制相同,第一时隙不同于第二时隙,第一PDCCH与第二PDCCH用于PDCCH重复传输。
该通信装置190还包括处理模块192。收发模块191,用于在第一时隙上向终端设备 发送第一物理下行控制信道PDCCH,第一时隙与第一最小调度偏移限制相关联;收发模块191,还用于在第二时隙上向终端设备发送第二PDCCH,第二时隙与第二最小调度偏移限制相关联,其中,第一时隙早于第二时隙;第一PDCCH与第二PDCCH用于PDCCH重复传输;处理模块192,用于若第一PDCCH和第二PDCCH中的第四最小调度偏移限制不同于第二最小调度偏移限制,将第一时隙或第二时隙作为参考,或者,将第一PDCCH或第二PDCCH作为参考,以确定第四最小调度偏移限制的生效时间。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
当通信装置190为上述方法实施例中的终端设备时,在一个简单的实施例中,本领域的技术人员可以想到通信装置190可以采用图14所示的终端设备131的形式。
比如,图14所示的终端设备131中的处理器1311可以通过调用存储器1312中存储的计算机执行指令,使得终端设备131执行上述方法实施例中的无线通信方法。具体的,图19中的处理模块192的功能/实现过程可以通过图14所示的终端设备131中的处理器1311调用存储器1312中存储的计算机执行指令来实现。图19中的收发模块191的功能/实现过程可以通过图14中所示的收发器1313来实现。
或者,当通信装置190为上述方法实施例中的终端设备时,在一个简单的实施例中,本领域的技术人员可以想到通信装置190可以采用图15所示的终端设备131的形式。
比如,图15所示的终端设备131中的处理器110可以通过调用存储器(包括内部存储器120或与外部存储器接口121连接的外部存储器)中存储的计算机执行指令,使得终端设备131执行上述方法实施例中的无线通信方法。具体的,图19中的收发模块191和处理模块192的功能/实现过程可以通过图15所示的终端设备131中的处理器110调用存储器中存储的计算机执行指令来实现。或者,图19中的处理模块192的功能/实现过程可以通过图15所示的终端设备131中的处理器110调用存储器中存储的计算机执行指令来实现,图19中的收发模块191的功能/实现过程可以通过图15中所示的无线通信模块160来实现。
或者,当通信装置190为上述方法实施例中的网络设备时,在一个简单的实施例中,本领域的技术人员可以想到通信装置190可以采用图14所示的网络设备132的形式。
比如,图14所示的网络设备132中的处理器1321可以通过调用存储器1322中存储的计算机执行指令,使得网络设备132执行上述方法实施例中的无线通信方法。具体的,图19中的处理模块192的功能/实现过程可以通过图14所示的网络设备132中的处理器1321调用存储器1322中存储的计算机执行指令来实现。图19中的收发模块191的功能/实现过程可以通过图14中所示的收发器1323来实现。
由于本实施例提供的通信装置190可执行上述无线通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存 储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该第一设备还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述终端设备在第二时隙上接收来自所述网络设备的第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    所述终端设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,所述第三最小调度偏移限制用于限制所述第一PDCCH和所述第二PDCCH中的时隙偏移K 0或K 2
    其中,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    所述终端设备将所述第一最小调度偏移限制确定为所述第三最小调度偏移。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    所述终端设备将所述第二最小调度偏移限制确定为所述第三最小调度偏移限制。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    所述终端设备确定所述第三最小调度偏移限制为所述第一最小调度偏移限制和所述第二最小调度偏移限制中的最大值或最小值。
  5. 一种无线通信方法,其特征在于,包括:
    终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述终端设备在第二时隙上接收来自所述网络设备的第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    其中,所述第一最小调度偏移限制与所述第二最小调度偏移限制相同,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  6. 一种无线通信方法,其特征在于,包括:
    终端设备在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述终端设备在第二时隙上接收来自所述网络设备的第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联,其中,所述第一时隙早于所述第二时隙;所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输;
    若所述第一PDCCH和所述第二PDCCH中的第四最小调度偏移限制不同于所述第二最小调度偏移限制,所述终端设备将所述第一时隙或所述第二时隙作为参考,或者,所述终端设备将所述第一PDCCH或所述第二PDCCH作为参考,以确定所述第四最小调度偏移限制的生效时间。
  7. 一种无线通信方法,其特征在于,包括:
    网络设备在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述网络设备在第二时隙上向所述终端设备发送第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    所述网络设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,所述第三最小调度偏移限制用于限制所述第一PDCCH和所述第二PDCCH中的时隙偏移K 0或K 2
    其中,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  8. 根据权利要求7所述的方法,其特征在于,所述网络设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    所述网络设备将所述第一最小调度偏移限制确定为所述第三最小调度偏移。
  9. 根据权利要求7所述的方法,其特征在于,所述网络设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    所述网络设备将所述第二最小调度偏移限制确定为所述第三最小调度偏移限制。
  10. 根据权利要求7所述的方法,其特征在于,所述网络设备根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    所述网络设备确定所述第三最小调度偏移限制为所述第一最小调度偏移限制和所述第二最小调度偏移限制中的最大值或最小值。
  11. 一种无线通信方法,其特征在于,包括:
    网络设备在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述网络设备在第二时隙上向所述终端设备发送第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    其中,所述第一最小调度偏移限制与所述第二最小调度偏移限制相同,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  12. 一种无线通信方法,其特征在于,包括:
    网络设备在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述网络设备在第二时隙上向所述终端设备发送第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联,其中,所述第一时隙早于所述第二时隙;所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输;
    若所述第一PDCCH和所述第二PDCCH中的第四最小调度偏移限制不同于所述第二最小调度偏移限制,所述网络设备将所述第一时隙或所述第二时隙作为参考,或者,所述网络设备将所述第一PDCCH或所述第二PDCCH作为参考,以确定所述第四最小调度偏移限制的生效时间。
  13. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述收发模块,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述收发模块,还用于在第二时隙上接收来自所述网络设备的第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,所述第三最小调度偏移限制用于限制所述第一PDCCH和所述第二PDCCH中的时隙偏移K 0或K 2
    其中,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  14. 根据权利要求13所述的通信装置,其特征在于,所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    用于将所述第一最小调度偏移限制确定为所述第三最小调度偏移。
  15. 根据权利要求13所述的通信装置,其特征在于,所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    用于将所述第二最小调度偏移限制确定为所述第三最小调度偏移限制。
  16. 根据权利要求13所述的通信装置,其特征在于,所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    用于确定所述第三最小调度偏移限制为所述第一最小调度偏移限制和所述第二最小调度偏移限制中的最大值或最小值。
  17. 一种通信装置,其特征在于,所述通信装置包括:收发模块;
    所述收发模块,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述收发模块,还用于在第二时隙上接收来自所述网络设备的第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    其中,所述第一最小调度偏移限制与所述第二最小调度偏移限制相同,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  18. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述收发模块,用于在第一时隙上接收来自网络设备的第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述收发模块,还用于在第二时隙上接收来自所述网络设备的第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联,其中,所述第一时隙早于所述第二时隙;所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输;
    所述处理模块,用于若所述第一PDCCH和所述第二PDCCH中的第四最小调度偏移限制不同于所述第二最小调度偏移限制,将所述第一时隙或所述第二时隙作为参考,或者,将所述第一PDCCH或所述第二PDCCH作为参考,以确定所述第四最小调度偏移限制的生效时间。
  19. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述收发模块,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,所 述第一时隙与第一最小调度偏移限制相关联;
    所述收发模块,还用于在第二时隙上向所述终端设备发送第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,所述第三最小调度偏移限制用于限制所述第一PDCCH和所述第二PDCCH中的时隙偏移K 0或K 2
    其中,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  20. 根据权利要求19所述的通信装置,其特征在于,所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    用于将所述第一最小调度偏移限制确定为所述第三最小调度偏移。
  21. 根据权利要求19所述的通信装置,其特征在于,所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    用于将所述第二最小调度偏移限制确定为所述第三最小调度偏移限制。
  22. 根据权利要求19所述的通信装置,其特征在于,所述处理模块,用于根据所述第一最小调度偏移限制和/或所述第二最小调度偏移限制,确定第三最小调度偏移限制,包括:
    用于确定所述第三最小调度偏移限制为所述第一最小调度偏移限制和所述第二最小调度偏移限制中的最大值或最小值。
  23. 一种通信装置,其特征在于,包括:收发模块;
    所述收发模块,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述收发模块,还用于在第二时隙上向所述终端设备发送第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联;
    其中,所述第一最小调度偏移限制与所述第二最小调度偏移限制相同,所述第一时隙不同于所述第二时隙,所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输。
  24. 一种通信装置,其特征在于,包括:收发模块和处理模块;
    所述收发模块,用于在第一时隙上向终端设备发送第一物理下行控制信道PDCCH,所述第一时隙与第一最小调度偏移限制相关联;
    所述收发模块,还用于在第二时隙上向所述终端设备发送第二PDCCH,所述第二时隙与第二最小调度偏移限制相关联,其中,所述第一时隙早于所述第二时隙;所述第一PDCCH与所述第二PDCCH用于PDCCH重复传输;
    所述处理模块,用于若所述第一PDCCH和所述第二PDCCH中的第四最小调度偏移限制不同于所述第二最小调度偏移限制,将所述第一时隙或所述第二时隙作为参考,或者,将所述第一PDCCH或所述第二PDCCH作为参考,以确定所述第四最小调度偏移限制的生效时间。
  25. 一种通信系统,其特征在于,包括:执行如权利要求1-4中任一项所述的方法的 终端设备以及执行如权利要求7-10中任一项所述的方法的网络设备;或者,执行如权利要求5所述的方法的终端设备以及执行如权利要求11所述的方法的网络设备;或者执行如权利要求6所述的方法的终端设备以及执行如权利要求12所述的方法的网络设备。
  26. 一种通信装置,其特征在于,包括:存储器以及与所述存储器耦合的处理器,所述存储器用于存储程序,所述处理器用于执行所述存储器存储的所述程序;当所述通信装置运行时,所述处理器运行所述程序,使得所述通信装置执行上述权利要求1-4中任一项所述的方法;或者,使得所述通信装置执行上述权利要求5所述的方法;或者,使得所述通信装置执行上述权利要求6所述的方法。
  27. 一种通信装置,其特征在于,包括:存储器以及与所述存储器耦合的处理器,所述存储器用于存储程序,所述处理器用于执行所述存储器存储的所述程序;当所述通信装置运行时,所述处理器运行所述程序,使得所述通信装置执行上述权利要求7-10中任一项所述的方法;或者,使得所述通信装置执行上述权利要求11所述的方法;或者,使得所述通信装置执行上述权利要求12所述的方法。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求1-4、5、6、7-10、11或12中任一项所述的方法。
PCT/CN2022/099034 2021-08-06 2022-06-15 无线通信方法、装置及系统 WO2023011014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110903178.7A CN115884407A (zh) 2021-08-06 2021-08-06 无线通信方法、装置及系统
CN202110903178.7 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023011014A1 true WO2023011014A1 (zh) 2023-02-09

Family

ID=85154247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099034 WO2023011014A1 (zh) 2021-08-06 2022-06-15 无线通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN115884407A (zh)
WO (1) WO2023011014A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413745A (zh) * 2017-08-18 2019-03-01 普天信息技术有限公司 一种正交频分复用系统中上行数据传输方法
CN110521271A (zh) * 2019-07-10 2019-11-29 北京小米移动软件有限公司 物理下行控制信道的传输参数更新方法、装置及存储介质
CN111865541A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种调度切换方法及装置
WO2021023488A1 (en) * 2019-08-06 2021-02-11 Panasonic Intellectual Property Corporation Of America User equipment and base station involved in time-domain scheduling
WO2021091177A1 (ko) * 2019-11-07 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 변경된 최소 스케줄링 오프셋을 적용하는 시점을 결정하는 방법 및 상기 방법을 적용하는 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413745A (zh) * 2017-08-18 2019-03-01 普天信息技术有限公司 一种正交频分复用系统中上行数据传输方法
CN111865541A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种调度切换方法及装置
CN110521271A (zh) * 2019-07-10 2019-11-29 北京小米移动软件有限公司 物理下行控制信道的传输参数更新方法、装置及存储介质
WO2021023488A1 (en) * 2019-08-06 2021-02-11 Panasonic Intellectual Property Corporation Of America User equipment and base station involved in time-domain scheduling
WO2021091177A1 (ko) * 2019-11-07 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 변경된 최소 스케줄링 오프셋을 적용하는 시점을 결정하는 방법 및 상기 방법을 적용하는 장치

Also Published As

Publication number Publication date
CN115884407A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US20210250159A1 (en) Resource configuration method and apparatus
CN113261320B (zh) 通信方法、装置及系统
US11258476B2 (en) Frequency hopping processing method and device
WO2021204094A1 (zh) 一种通信方法、装置及系统
MX2014005391A (es) Programacion de recuros de enlace descendente.
CN110248412A (zh) 抢占信息的传输方法、设备及系统
CN111756504B (zh) 下行控制信息传输的方法、装置及系统
US20230171771A1 (en) Apparatus and method of wireless communication
WO2019037695A1 (zh) 一种通信方法及装置
WO2019223615A1 (zh) 上行控制信息的传输方法及设备
CN110365461A (zh) 一种信号发送、接收方法及设备
US20220248245A1 (en) Measurement method, apparatus, and system
CN114451044A (zh) 一种通信方法及装置
WO2022116458A1 (zh) 一种tbs确定方法
WO2023011014A1 (zh) 无线通信方法、装置及系统
CN114402657A (zh) 通信方法、设备及系统
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
WO2021007809A1 (zh) 信道质量上报方法、装置及系统
WO2021056595A1 (zh) 一种通信方法及装置
WO2021134226A1 (zh) 一种数据传输方法及装置
WO2018137510A1 (zh) 数据的传输方法和装置
CN112118633A (zh) 调度请求信息的传输方法、装置及系统
WO2024032735A1 (zh) 一种下行控制信息的检测方法及相关装置
WO2022067723A1 (zh) 信息发送和接收方法、装置及系统
WO2024055180A1 (zh) 数据传输的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE