WO2023008729A1 - Gas sensor using polymer membrane structure comprising metal-organic framework and method for manufacturing same - Google Patents

Gas sensor using polymer membrane structure comprising metal-organic framework and method for manufacturing same Download PDF

Info

Publication number
WO2023008729A1
WO2023008729A1 PCT/KR2022/008062 KR2022008062W WO2023008729A1 WO 2023008729 A1 WO2023008729 A1 WO 2023008729A1 KR 2022008062 W KR2022008062 W KR 2022008062W WO 2023008729 A1 WO2023008729 A1 WO 2023008729A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
zif
metal
gas sensor
organic framework
Prior art date
Application number
PCT/KR2022/008062
Other languages
French (fr)
Korean (ko)
Inventor
조용건
정성용
문영국
조영무
윤지욱
Jong Heun LEE (이종흔)
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023008729A1 publication Critical patent/WO2023008729A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/129Diode type sensors, e.g. gas sensitive Schottky diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material

Definitions

  • the present invention relates to an oxide semiconductor type gas sensor and a method for manufacturing the same, and more particularly, by applying a polymer film including a metal organic framework on a gas sensitive layer made of an oxide semiconductor, thereby causing indoor harmful carcinogens that adversely affect the human body. It relates to a gas sensor capable of highly sensitively and selectively detecting phosphorus formaldehyde and a method for manufacturing the same.
  • Oxide semiconductor type gas sensor can be compact and integrated, economical, has high sensitivity and fast response, and has various advantages of being able to find out the gas concentration as an electrical signal using a simple circuit. It is widely used in various application fields such as driver's alcohol consumption measurement and industrial gas detection. Recently, as the industry has advanced and interest in human health and environmental pollution has deepened, the demand for ultra-small, low-power consumption gas sensors that can be used for more precise detection of indoor and outdoor environmental gases and self-diagnosis of diseases is rapidly increasing. In particular, there is an increasing need for an oxide semiconductor type gas sensor that detects a specific gas at a minute concentration with high sensitivity and high selectivity.
  • Formaldehyde is a group 1 carcinogen classified by the International Agency for Research on Cancer (IARC) under the World Health Organization (WHO). Formaldehyde is released into the air as it vaporizes from bond and paint used in furniture and floor coverings. In particular, it is pointed out as a cause of sick house syndrome and atopy, and it is very harmful to adults as well as children in particular, so the emission of indoor furniture is regulated in many countries including Korea.
  • the US Centers for Disease Control and Prevention (NIOSH) defines the exposure limit for formaldehyde as 0.016 ppm or less for 8 hours of work, and warns of the danger. Therefore, it is very important to detect such formaldehyde with high sensitivity and high selectivity.
  • oxide semiconductor type gas sensors that measure pollutants in indoor air react to various pollutants such as benzene, toluene, xylene, formaldehyde, carbon monoxide, and ethanol, and do not properly consider the effects of each gas on health. has a problem
  • the oxide semiconductor type gas sensor lacks the ability to selectively detect formaldehyde compared to ethanol, which is often present indoors in principle. Therefore, in order to detect the generation of formaldehyde and its pollutants, it is essential to detect formaldehyde with ultra-high selectivity and ultra-high sensitivity in comparison to other pollutant gases, but it remains a difficult problem that cannot be solved with current technology.
  • the present invention provides a gas sensor that is highly selective and sensitive to formaldehyde, a first-class carcinogen.
  • a gas sensor includes a gas sensitive layer; and a polymer layer disposed on the gas sensitive layer.
  • the polymer layer may include metal organic framework particles.
  • the gas sensitive layer may include titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ).
  • the metal-organic framework may include at least one selected from ZIF-7, ZIF-8, ZIF-67, ZIF-L, HKUST-1 and UIO-66.
  • the metal-organic framework may have a pore size of 0.28 nm to 0.45 nm.
  • the metal organic framework particles are added to the polymer, and the addition ratio of the metal organic framework particles in the polymer layer may be 1.0 wt% to 15 wt%.
  • a method for producing a gas according to an embodiment of the present invention includes forming a gas sensitive layer; and forming a polymer layer including metal organic framework particles on the gas sensitive layer.
  • a gas sensitive layer includes forming a gas sensitive layer; and forming a polymer layer including metal organic framework particles on the gas sensitive layer.
  • the gas sensitive layer may include titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ).
  • the metal-organic framework may include at least one selected from ZIF-7, ZIF-8, ZIF-67, ZIF-L HKUST-1 and UIO-66.
  • the metal-organic framework may have a pore size of 0.28 nm to 0.45 nm.
  • the metal organic framework particles are added to the polymer, and the addition ratio of the metal organic framework particles in the polymer layer may be 1.0 wt% to 15 wt%.
  • gases such as ethanol, benzene, toluene, and xylene, which have a large molecular size, cannot reach the sensitive layer and formaldehyde, an indoor gas that adversely affects the human body, is maintained at a high sensitivity while maintaining high sensitivity.
  • FIG. 1 is a structure of a gas sensor according to the present invention.
  • FIG. 2 is a flow chart of a gas sensor manufacturing method according to the present invention.
  • FIG. 3a is an SEM image of ZIF-7 nanopowder
  • FIG. 3b is a Brunauer-Emmett-Teller (BET) measurement result of ZIF-7 nanopowder.
  • BET Brunauer-Emmett-Teller
  • FIG. 4 is a SEM image of a sensor sensitive layer of an embodiment according to the present invention.
  • Figure 5 shows the dynamic gas response results for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene of the sensor under UV irradiation with a wavelength of 365 nm at room temperature in Examples 1-1 to 1-3 of the present invention. it's a graph
  • 6a is a graph showing the comparison results of the gas sensitivity of the gas sensor of Example 1-1 of the present invention to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature
  • 6b shows the gas sensor comparison results for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene of the sensor under UV irradiation with a wavelength of 365 nm at room temperature for the gas sensor of Example 1-2 of the present invention.
  • Figure 6c is a comparison of the gas sensitivity of the gas sensor of Example 1-3 of the present invention to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature
  • 6D is a graph showing the results
  • FIG. 6D is a comparison result of the gas sensitivity of the gas sensor of Comparative Example 1-1 to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature.
  • 6e is a graph showing the gas sensor of Comparative Example 1-2 under UV irradiation with a wavelength of 365 nm at room temperature, comparing the gas sensitivity of the sensor to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene.
  • 6f is a graph showing the gas sensor of Comparative Example 1-3 under UV irradiation with a wavelength of 365 nm at room temperature, and comparing the gas sensitivity of the sensor to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene.
  • 6g is a graph showing the comparison results of gas sensitivity of the gas sensors of Comparative Examples 1-4 to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature.
  • 6H is a graph showing the comparison results of the gas sensitivity of the gas sensor of Comparative Examples 1-5 to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature.
  • 6i shows the gas sensor of Comparative Examples 1-6 at room temperature with a wavelength of 365 nm. It is a graph showing the comparison result of the gas sensitivity of the sensor to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under external irradiation.
  • Figure 8a shows the gas sensitivity to various concentrations of formaldehyde for Example 1-2 of the present invention
  • Figure 8b is a graph of sensitivity stability for a gas concentration of 5 ppm for Example 1-2 of the present invention
  • 8C is the operational stability for 20 days at a gas concentration of 5 ppm for Examples 1-2
  • FIG. 8D is the stability of 11 repeated measurements at a gas concentration of 5 ppm for Examples 1-2. .
  • Figure 9a shows the sensitivity for a gas concentration of 5 ppm for Examples 1-4 of the present invention
  • Figure 9b is the resistance and selectivity according to the bending angle for a gas concentration of 5 ppm for Examples 1-4
  • 9C is a graph showing a comparison of response characteristics after bending 200 times and without bending for a gas concentration of 5 ppm for Examples 1-4.
  • Figure 10a is a graph showing the results of measuring the sensitivity to 5 ppm of formaldehyde and ethanol, a major interfering gas, for Examples 1-5 of the present invention under high humidity
  • Figure 10b is a graph showing the results of measuring the sensitivity of Examples 1-7 of the present invention It is a graph showing the results of measuring the sensitivity to 5 ppm of formaldehyde and ethanol, a major interfering gas, under high humidity.
  • ZIF-7 nanoparticles are formed on TiO 2 (P25, a mixture of rutile and anatase phases, average particle diameter: 21 nm, Degussa, Germany) or WO 3 (average particle diameter ⁇ 100 nm, sigma aldrich), which is an oxide-based gas-sensitive layer.
  • PEBA polymer
  • the sensitivity of interfering gases is made negligible, which makes it possible to detect formaldehyde, which impairs indoor air quality and adversely affects the human body, with high sensitivity and selectivity.
  • FIG. 1 is a structure of a gas sensor according to the present invention
  • FIG. 2 is a flow chart of a gas sensor manufacturing method according to the present invention.
  • the structure of the gas sensor according to the present invention is not limited to the one presented here, and any structure of the gas sensor disposed on the gas sensitive layer and having a polymer layer containing metal-organic framework particles corresponds to the present invention.
  • the method of manufacturing a gas sensor according to an embodiment of the present invention includes providing a substrate (S10), arranging a gas-sensitive layer (S20), and arranging a polymer layer including metal-organic framework particles. (S30) is included.
  • a support substrate 110 is provided on which the gas-sensitive layer 120 and the polymer layer 130 including the metal-organic framework particles are laminated.
  • the substrate 110 is preferably composed of a flexible substrate having bending properties, and the substrate includes a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyimide (PI) substrate, a polycarbonate (PC) substrate, It may be selected from the group consisting of a polypropylene (PP) substrate, a triacetyl cellulose (TAC) substrate, and a polyethersulfone (PES) substrate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PC polycarbonate
  • PP polypropylene
  • TAC triacetyl cellulose
  • PES polyethersulfone
  • the gas sensitive layer 120 may be disposed on the substrate 110 .
  • the gas sensitive layer 120 may be formed of TiO 2 (P25, a mixture of rutile phase and anatase phase, average particle size: 21 nm, Degussa, Germany) or WO 3 (average particle size ⁇ 100 nm, sigma aldrich). In addition, TiO 2 and WO 3 layers having different particle sizes and shapes may be used.
  • the gas sensitive layer 120 preferably has a thickness of 1 to 10 ⁇ m.
  • Two electrodes (111, 112) by evenly mixing fine powder of TiO 2 (P25, Rutile phase and Anatase phase, average particle size: 21 nm, Degussa, Germany) or WO 3 (average particle size ⁇ 100 nm, Sigma Aldrich) with an organic binder
  • TiO 2 P25, Rutile phase and Anatase phase, average particle size: 21 nm, Degussa, Germany
  • WO 3 average particle size ⁇ 100 nm, Sigma Aldrich
  • a gas-sensitive layer is applied on a substrate made of alumina, silicon, or silica.
  • the gas sensitive layer 120 may be formed by removing solvent and organic components through heat treatment.
  • the polymer layer 130 including the metal-organic framework particles may be disposed on the gas sensitive layer 120.
  • a polymer (PEBA) film containing ZIF-7 nanoparticles is applied through spin coating.
  • the coating method refers to various thin film formation methods such as dispensing, drop coating, and spin coating
  • the polymer layer refers to various materials such as polyimide, polyether ketone, polyether ether ketone, and polybenzimidazole in addition to (PEBA), and molecular sieve filtering.
  • PEBA polyether ketone
  • polybenzimidazole in addition to (PEBA)
  • molecular sieve filtering in addition to ZIF-7, other MOFs with similar pore sizes can be used, such as ZIF-8, ZIF-67, ZIF-L, HKUST-1 and UIO-66.
  • the upper membrane can be coated with a polymer membrane containing metal organic framework nanoparticles for molecular sieve filtering.
  • heating that is, heat treatment may be accompanied.
  • the thickness of the polymer layer 130 including the metal-organic framework particles may be 10 nm to 1000 nm.
  • the thickness of the polymer layer 130 is less than 10 nm, the injection of harmful gases other than formaldehyde into the gas sensitive layer 120 cannot be suppressed, and on the contrary, the polymer layer (130 If the thickness of ) is greater than 1000 nm, the formaldehyde transmittance is reduced, making it difficult for the gas-sensitive reaction in the gas-sensitive layer 120 to occur.
  • the polymer layer 130 may be formed by adding organic metal framework (MOFs) nanoparticles to a polymer base.
  • MOFs organic metal framework
  • the addition ratio of the organometallic framework particles to the polymer is preferably 1.0 wt% to 15 wt% in terms of weight ratio. More preferably, the addition ratio of the organometallic framework particles to the polymer is preferably 2.5 wt% to 10 wt%, in terms of weight ratio.
  • the addition ratio of the organic metal skeleton particles to the polymer is less than 1.0 wt%, it is difficult for gas to pass through the pure polymer layer having low permeability, so it is difficult to achieve a gas response reaction in the gas responsive layer 120.
  • the addition ratio of the organic metal framework particles to the polymer exceeds 15 wt%, the gas permeability is lowered due to the stress at the polymer-organic metal framework interface, resulting in a decrease in high sensitivity and selective response in the gas sensitive layer 120.
  • each organometallic framework has a micropore size of 0.28 nm to 0.45 nm.
  • the size of the micropores of the organometallic framework is less than 0.28 nm, the transmittance of formaldehyde is reduced and the selective sensitivity of the gas sensitive layer 120 is lowered. In this case, the introduction of harmful gases other than formaldehyde cannot be suppressed.
  • the polymer layer 130 is preferably disposed to cover the exposed entire surface of the gas sensitive layer 120 .
  • Table 1 is a comparison table comparing the process characteristics of Examples and Comparative Examples of the present invention.
  • fine powder of TiO2 (P25, a mixture of rutile phase and anatase phase, average particle diameter: 21 nm, Degussa, Germany) was mixed with an organic binder and screen-printed to a thickness of about 2 ⁇ m on a silicon oxide substrate on which two electrode platinum electrodes were formed, After drying at 450 °C for 2 hours, a TiO2 gas-sensitive layer was prepared. Then, PEBA (Pebax@1657, Arkema, France) to which 2.5 wt% of ZIF-7 was added was applied through spin coating, and dried at 70° C. for 24 hours, followed by PEBA (Pebax to which 2.5 wt% of ZIF-7 was added).
  • a TiO 2 gas sensor coated with a film was fabricated. Next, the fabricated sensor was placed on the quartz cube, and the change in resistance was measured while alternately injecting pure air or air + mixed gas. The gas was mixed in advance and then the concentration was rapidly changed using a 4-way valve.
  • a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film containing 5 wt% ZIF-7 was applied through spin coating, and dried at 70° C. for 24 hours to prepare a TiO 2 gas sensor coated with a PEBA film containing 5 wt% ZIF-7. The other sensor evaluation process is the same as in Example 1-1.
  • a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film to which 10 wt% ZIF-7 was added was applied through spin coating, and dried at 70 ° C. for 24 hours to prepare a TiO 2 gas sensor coated with a PEBA film to which 10 wt% ZIF-7 was added. The other sensor evaluation process is the same as in Example 1-1.
  • TiO 2 (P25, a mixture of rutile and anatase phases, average particle diameter: 21 nm, Degussa, Germany) fine powder was mixed with an organic binder to form a layer of about 2 ⁇ m on a PET flexible substrate on which two electrodes, platinum electrodes were formed. After screen printing and drying at 130 °C for 24 hours, a TiO2 gas-sensitive layer was prepared. Then, PEBA (Pebax@1657, Arkema, France) to which 5 wt% ZIF-7 was added was applied through spin coating, and dried at 70° C. for 24 hours to PEBA (Pebax@1657, Arkema, France) to which 5 wt% ZIF-7 was added. 1657, Arkema, France) film-coated TiO 2 flexible gas sensor was fabricated. The other sensor evaluation process is the same as in Example 1-1.
  • WO 3 average particle size ⁇ 100 nm, sigma aldrich fine powder was mixed with an organic binder, screen-printed to a thickness of about 2 ⁇ m on a PET flexible substrate on which two electrode platinum electrodes were formed, and dried at 130 ° C for 24 hours.
  • a WO3 gas sensitive layer was prepared.
  • PEBA Polyebax@1657, Arkema, France
  • PEBA Polyebax@1657, Arkema, France
  • 1657, Arkema, France film-coated WO 3 lead gas sensor was manufactured.
  • the other sensor evaluation process is the same as in Example 1-1.
  • a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a pure PEBA film was applied through spin coating, and dried at 70° C. for 24 hours to prepare a PEBA film-coated TiO2 gas sensor. The other sensor evaluation process is the same as in Example 1-1.
  • a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film containing 20 wt% ZIF-7 was applied through spin coating, and dried at 70° C. for 24 hours to prepare a TiO 2 gas sensor coated with a PEBA film containing 20 wt% ZIF-7. The other sensor evaluation process is the same as in Example 1-1.
  • a TiO2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film with 40 wt% ZIF-7 was applied through spin coating, and dried at 70 ° C for 24 hours to prepare a TiO2 gas sensor coated with a PEBA film with 40 wt% ZIF-7 added. The other sensor evaluation process is the same as in Example 1-1.
  • a TiO 2 sensitive layer was prepared through the same process as in Example 1-1.
  • the other sensor evaluation process is the same as in Example 1-1.
  • a TiO2 (Rutile) sensitive layer was prepared through the same process as in Example 1-1.
  • the other sensor evaluation process is the same as in Example 1-1.
  • a TiO2 (Anatase) responsive layer was prepared through the same process as in Example 1-1.
  • the other sensor evaluation process is the same as in Example 1-1.
  • a WO3 (average particle diameter ⁇ 100 nm, sigma aldrich) responsive layer was prepared through the same process as in Example 1-1.
  • the other sensor evaluation process is the same as in Example 1-1.
  • Example 1-1 to Comparative Example 1-7 were measured for ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene, Example 1-1, Example 1-2, Example Example 1-3, Example 1-4, Example 1-5, Comparative Example 1-1, Comparative Example 1-2, Comparative Example 1-3, Comparative Example 1-4, Comparative Example 1-5, Comparative Example 1 -6 and Comparative Examples 1-7 all exhibited n-type oxide semiconductor-type behavior in which resistance to reducing gases decreased.
  • the atmosphere in the quartz cube is changed by injecting the test gas (ethanol, formaldehyde, carbon monoxide, benzene, toluene, xylene, 5 ppm), and the resistance in the gas is constant.
  • the test gas ethanol, formaldehyde, carbon monoxide, benzene, toluene, xylene, 5 ppm
  • the resistance in the gas is constant.
  • it was dark (Rg) the resistance change was measured while changing the atmosphere by blowing air.
  • 3a and 3b are SEM images and BET analysis results of ZIF-7 nanoparticles used in Examples and Comparative Examples. Through this, the particle size of ZIF-7 and the existence of micropores (> 2 nm) in ZIF-7 could be confirmed.
  • Example 4 is a structural SEM image of a sensor according to Example 1-2 of the present invention.
  • the thickness of the sensitive layer was about 2 ⁇ m, and in the case of the PEBA film containing ZIF-7, it was about 200 nm thick.
  • Figure 5 shows the dynamic gas response results for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene of the sensor under ultraviolet irradiation with a wavelength of 365 nm at room temperature in Examples 1-1 to 1-3 of the present invention. It's a graph It was confirmed that Examples 1-1 to 1-3 showed n-type semiconductor gas sensitive behavior for the above gases and showed reversible behavior for all gases. In addition, it was confirmed that the sensors of Examples 1-4 and Comparative Examples 1-1 to 1-6 also showed n-type semiconductor gas responsive behavior.
  • 6a to 6i show the sensors of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-6 of the present invention under ultraviolet irradiation with a wavelength of 365 nm at room temperature, 5 ppm ethanol, formaldehyde, carbon monoxide of the sensor , It is a graph showing the comparison results of dynamic gas sensitivity for benzene, toluene, and xylene.
  • the sensitivity of formaldehyde is 60.1 to 5,500 times greater than that of the other five gases, indicating that formaldehyde present in the room can be detected ultra-selectively.
  • FIG. 7 is a graph showing comparison results of gas sensitivity to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene at operating temperatures of 300 ° C, 325 ° C, 350 ° C, and 375 ° C of Comparative Examples 1-4 of the present invention am.
  • FIGS. 8A to 8D are graphs of sensitivity and stability for a gas concentration of 5 ppm for Examples 1-2 of the present invention, respectively.
  • the sensor showed a reversible response to formaldehyde gas and showed different gas sensitivity depending on the concentration, showing that real-time concentration detection of formaldehyde present in the air is possible.
  • the gas sensitivity to formaldehyde was very high, it was confirmed that selective detection is possible even for a very small amount of gas (ppb level).
  • 9A to 9D are graphs of sensitivity and stability for a gas concentration of 5 ppm for Examples 1-4 of the present invention, respectively.
  • the sensor showed a reversible response to formaldehyde gas even under a flexible substrate and showed high sensitivity and selectivity regardless of the bending angle.
  • the sensor had excellent sensor stability even after 200 times of bending.
  • Figures 10a and 10b respectively show the results of measuring the sensitivity to 5 ppm of formaldehyde and ethanol, a major interfering gas, for Examples 1-5 and Comparative Examples 1-7 of the present invention under high humidity.
  • the gas sensor according to the present invention shows excellent characteristics of ultra-selective and highly sensitive detection of ppb level formaldehyde without being disturbed by other gases that may exist in the room, and even when manufactured as a flexible gas sensor, retain the characteristics. In particular, since it is operated at room temperature, power consumption is small and miniaturization is easy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Disclosed in an embodiment of the present invention is a gas sensor comprising: a gas sensitive layer; and a polymer layer provided on the gas sensitive layer, wherein the polymer layer includes metal-organic framework particles. Also, disclosed in an embodiment of the present invention is a method for manufacturing a gas sensor, comprising the steps of: forming a gas sensitive layer; and forming a polymer layer including metal-organic framework particles on the gas sensitive layer.

Description

금속유기골격체를 포함한 고분자막 구조를 이용한 가스 센서 및 그 제조 방법Gas sensor using a polymer membrane structure including a metal-organic framework and its manufacturing method
본 발명은 산화물 반도체형 가스센서 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 산화물 반도체로 이루어진 가스 감응층 상에 금속유기골격체를 포함하는 고분자막을 도포함으로써, 인체에 악영향을 주는 실내 유해 발암물질인 포름알데히드를 고감도, 고선택적으로 검지할 수 있는 가스센서 및 그 제조 방법에 관한 것이다.The present invention relates to an oxide semiconductor type gas sensor and a method for manufacturing the same, and more particularly, by applying a polymer film including a metal organic framework on a gas sensitive layer made of an oxide semiconductor, thereby causing indoor harmful carcinogens that adversely affect the human body. It relates to a gas sensor capable of highly sensitively and selectively detecting phosphorus formaldehyde and a method for manufacturing the same.
산화물 반도체형 가스센서는 소형 집적화가 가능하고 경제적이며 감도(sensitivity)가 높고 응답이 빠르면서도 간단한 회로를 이용하여 전기 신호로서 가스 농도를 알아낼 수 있는 다양한 이점이 있어, 폭발성 가스 검출, 자동차용 배기 가스, 운전자의 음주 측정, 산업용 가스 감지 등의 각종 응용 분야에서 널리 사용되고 있다. 최근 산업의 첨단화 및 인체 건강, 환경 오염에 대한 관심이 깊어짐에 따라 실내외 환경 가스의 보다 정밀한 검지, 질병 자가진단 등에 활용 가능한 초소형 저소비 전력 가스센서 등에 대한 수요가 급격히 증가하고 있다. 특히 미세 농도의 특정 가스를 고감도, 고선택성으로 검지하는 산화물 반도체형 가스 센서에 필요성이 증가되고 있다. Oxide semiconductor type gas sensor can be compact and integrated, economical, has high sensitivity and fast response, and has various advantages of being able to find out the gas concentration as an electrical signal using a simple circuit. It is widely used in various application fields such as driver's alcohol consumption measurement and industrial gas detection. Recently, as the industry has advanced and interest in human health and environmental pollution has deepened, the demand for ultra-small, low-power consumption gas sensors that can be used for more precise detection of indoor and outdoor environmental gases and self-diagnosis of diseases is rapidly increasing. In particular, there is an increasing need for an oxide semiconductor type gas sensor that detects a specific gas at a minute concentration with high sensitivity and high selectivity.
포름알데히드는 세계보건기구(WHO) 산하 국제암연구기관(IARC)에서 분류한 1군 발암물질이다. 포름알데히드는 가구나 장판 등에서 쓰인 본드와 페인트에서 기화되어 공기 중으로 방출된다. 특히, 새집증후군, 아토피의 원인으로 지목되고 있을 정도로 성인은 물론 특히 어린이에게 매우 유해하여 실내가구의 방출량은 한국을 포함한 각국에서 규제하고 있다. 미국 질병통제예방센터(NIOSH)에서는 포름알데히드에 대한 노출 한계를 8시간 작업 시 0.016 ppm이하로 규정하고, 그 위험성을 경고하고 있다. 따라서 이러한 포름알데히드를 고감도 및 고선택성으로 검출하는 것은 매우 중요하다. 그러나, 현재 실내공기의 오염원을 측정하는 산화물 반도체형 가스센서는 벤젠, 톨루엔, 자일렌, 포름알데히드, 일산화탄소, 에탄올 등 다양한 오염원에 대해 반응하는 것으로, 각 가스가 건강에 미치는 영향을 제대로 고려하지 못한다는 문제가 있다. 특히, 산화물 반도체형 가스센서의 원리상 실내에 자주 존재하는 에탄올에 대비하여 포름알데히드의 선택적이 검지 능력이 부족하다. 따라서 포름알데히드의 발생과 그 오염원을 검지하기 위해서는 포름알데히드를 다른 오염가스에 대비하여 초고선택성, 초고감도로 검지하는 것이 필수적이나 현재의 기술로는 풀지 못하는 난제로 남아있다.Formaldehyde is a group 1 carcinogen classified by the International Agency for Research on Cancer (IARC) under the World Health Organization (WHO). Formaldehyde is released into the air as it vaporizes from bond and paint used in furniture and floor coverings. In particular, it is pointed out as a cause of sick house syndrome and atopy, and it is very harmful to adults as well as children in particular, so the emission of indoor furniture is regulated in many countries including Korea. The US Centers for Disease Control and Prevention (NIOSH) defines the exposure limit for formaldehyde as 0.016 ppm or less for 8 hours of work, and warns of the danger. Therefore, it is very important to detect such formaldehyde with high sensitivity and high selectivity. However, current oxide semiconductor type gas sensors that measure pollutants in indoor air react to various pollutants such as benzene, toluene, xylene, formaldehyde, carbon monoxide, and ethanol, and do not properly consider the effects of each gas on health. has a problem In particular, the oxide semiconductor type gas sensor lacks the ability to selectively detect formaldehyde compared to ethanol, which is often present indoors in principle. Therefore, in order to detect the generation of formaldehyde and its pollutants, it is essential to detect formaldehyde with ultra-high selectivity and ultra-high sensitivity in comparison to other pollutant gases, but it remains a difficult problem that cannot be solved with current technology.
본 발명에서는 1급 발암물질인 포름알데히드를 초고선택적이면서도 초고감도로 감응하는 가스 센서를 제공한다. The present invention provides a gas sensor that is highly selective and sensitive to formaldehyde, a first-class carcinogen.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems that are not mentioned will become clear to those skilled in the art from the description below. You will be able to understand.
본 발명의 실시예에 따른 가스 센서는 가스 감응층; 및 상기 가스 감응층 상에 배치된 고분자층; 을 포함하고, 상기 고분자층은 금속유기골격체 입자를 포함할 수 있다.A gas sensor according to an embodiment of the present invention includes a gas sensitive layer; and a polymer layer disposed on the gas sensitive layer. Including, the polymer layer may include metal organic framework particles.
또한, 상기 가스 감응층은 산화티타늄(TiO2) 또는 산화텅스텐(WO3)을 포함할 수 있다.Also, the gas sensitive layer may include titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ).
또한, 상기 금속유기골격체는 ZIF-7, ZIF-8, ZIF-67, ZIF-L, HKUST-1 및 UIO-66 중에서 선택된 적어도 하나를 포함할 수 있다.In addition, the metal-organic framework may include at least one selected from ZIF-7, ZIF-8, ZIF-67, ZIF-L, HKUST-1 and UIO-66.
또한, 상기 금속유기골격체는 기공 크기가 0.28 nm 내지 0.45 nm 일 수 있다.In addition, the metal-organic framework may have a pore size of 0.28 nm to 0.45 nm.
또한, 상기 고분자층은 고분자에 상기 금속유기골격체 입자가 첨가되고, 상기 고분자층에서, 상기 금속유기골격체 입자의 첨가 비율은 1.0 wt% 내지 15 wt%일 수 있다.In addition, in the polymer layer, the metal organic framework particles are added to the polymer, and the addition ratio of the metal organic framework particles in the polymer layer may be 1.0 wt% to 15 wt%.
또한, 본 발명의 실시예에 따른 가스의 제조 방법은 가스 감응층을 형성하는 단계; 및 상기 가스 감응층 상에 금속유기골격체 입자를 포함하는 고분자층을 형성하는 단계; 를 포함할 수 있다.In addition, a method for producing a gas according to an embodiment of the present invention includes forming a gas sensitive layer; and forming a polymer layer including metal organic framework particles on the gas sensitive layer. can include
또한, 상기 가스 감응층은 산화티타늄(TiO2) 또는 산화텅스텐(WO3)을 포함할 수 있다.Also, the gas sensitive layer may include titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ).
또한, 상기 금속유기골격체는 ZIF-7, ZIF-8, ZIF-67, ZIF-L HKUST-1 및 UIO-66 중에서 선택된 적어도 하나를 포함할 수 있다.In addition, the metal-organic framework may include at least one selected from ZIF-7, ZIF-8, ZIF-67, ZIF-L HKUST-1 and UIO-66.
또한, 상기 금속유기골격체는 기공 크기가 0.28 nm 내지 0.45nm 일 수 있다.In addition, the metal-organic framework may have a pore size of 0.28 nm to 0.45 nm.
또한, 상기 고분자층은 고분자에 상기 금속유기골격체 입자가 첨가되고, 상기 고분자층에서, 상기 금속유기골격체 입자의 첨가 비율은 1.0 wt% 내지 15 wt%일 수 있다.In addition, in the polymer layer, the metal organic framework particles are added to the polymer, and the addition ratio of the metal organic framework particles in the polymer layer may be 1.0 wt% to 15 wt%.
본 발명의 실시예에 따르면, 분자의 크기가 큰 에탄올, 벤젠, 톨루엔, 자일렌 등의 가스를 감응층에 못 도달하게 하고 인체에 악영향을 주는 실내 가스인 포름알데히드의 가스 감도를 고감도로 유지하면서 다른 실내 공기질에 영향을 주는 가스인 에탄올, 벤젠, 톨루엔, 자일렌에 대한 감도는 현저히 줄여 포름알데히드 개별 가스의 선택적인 감응 및 고감도 감응을 가능하게 한다.According to an embodiment of the present invention, gases such as ethanol, benzene, toluene, and xylene, which have a large molecular size, cannot reach the sensitive layer and formaldehyde, an indoor gas that adversely affects the human body, is maintained at a high sensitivity while maintaining high sensitivity. Sensitivity to ethanol, benzene, toluene, and xylene, which are other gases that affect indoor air quality, is significantly reduced, enabling selective and high-sensitivity response of formaldehyde individual gases.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
도 1은 본 발명에 따른 가스 센서의 구조이다.1 is a structure of a gas sensor according to the present invention.
도 2는 본 발명에 따른 가스 센서 제조 방법의 순서도이다.2 is a flow chart of a gas sensor manufacturing method according to the present invention.
도 3a는 ZIF-7 나노미분말의 SEM 이미지이고, 도 3b는 ZIF-7 나노미분말의 BET(Brunauer-Emmett-Teller) 측정 결과이다.3a is an SEM image of ZIF-7 nanopowder, and FIG. 3b is a Brunauer-Emmett-Teller (BET) measurement result of ZIF-7 nanopowder.
도 4는 본 발명에 따른 실시예의 센서 감응층의 SEM 이미지이다. 4 is a SEM image of a sensor sensitive layer of an embodiment according to the present invention.
도 5는 본 발명의 실시예 1-1 내지 1-3의 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 동적 가스 감응 결과를 나타낸 그래프이다.Figure 5 shows the dynamic gas response results for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene of the sensor under UV irradiation with a wavelength of 365 nm at room temperature in Examples 1-1 to 1-3 of the present invention. it's a graph
도 6a은 본 발명의 실시예 1-1의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6b은 본 발명의 실시예 1-2의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6c은 본 발명의 실시예 1-3의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6d은 비교예 1-1의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6e는 비교예 1-2의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6f는 비교예 1-3의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6g는 비교예 1-4의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6h는 비교예 1-5의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이고, 도 6i는 비교예 1-6의 가스 센서를 상온에서 365 nm파장의 자외선 조사 하에 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이다.6a is a graph showing the comparison results of the gas sensitivity of the gas sensor of Example 1-1 of the present invention to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature 6b shows the gas sensor comparison results for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene of the sensor under UV irradiation with a wavelength of 365 nm at room temperature for the gas sensor of Example 1-2 of the present invention. Figure 6c is a comparison of the gas sensitivity of the gas sensor of Example 1-3 of the present invention to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature 6D is a graph showing the results, and FIG. 6D is a comparison result of the gas sensitivity of the gas sensor of Comparative Example 1-1 to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature. 6e is a graph showing the gas sensor of Comparative Example 1-2 under UV irradiation with a wavelength of 365 nm at room temperature, comparing the gas sensitivity of the sensor to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene. 6f is a graph showing the gas sensor of Comparative Example 1-3 under UV irradiation with a wavelength of 365 nm at room temperature, and comparing the gas sensitivity of the sensor to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene. 6g is a graph showing the comparison results of gas sensitivity of the gas sensors of Comparative Examples 1-4 to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature. 6H is a graph showing the comparison results of the gas sensitivity of the gas sensor of Comparative Examples 1-5 to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under UV irradiation with a wavelength of 365 nm at room temperature. 6i shows the gas sensor of Comparative Examples 1-6 at room temperature with a wavelength of 365 nm. It is a graph showing the comparison result of the gas sensitivity of the sensor to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene under external irradiation.
도 7은 본 발명의 비교예 1-4의 가스센서의 동작온도 300℃ , 325 ℃, 350 ℃, 375 ℃에서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이다. 7 is a comparison of gas sensitivity for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene at operating temperatures of 300 ° C, 325 ° C, 350 ° C, and 375 ° C of the gas sensor of Comparative Examples 1-4 of the present invention This is the graph showing the result.
도 8a는 본 발명의 실시예 1-2에 대한 다양한 농도의 포름알데히드에 대한 가스 감도를 나타내고, 도 8b는 본 발명의 실시예 1-2에 대한 5 ppm의 가스 농도에 대한 감도 안정성에 대한 그래프이고, 도 8c는 실시예 1-2에 대한 5 ppm의 가스 농도에 대한 20일 동안의 동작 안정성이고, 도 8d는 실시예 1-2에 대한 5 ppm의 가스 농도에 대한 11회 반복 측정 안정성이다. Figure 8a shows the gas sensitivity to various concentrations of formaldehyde for Example 1-2 of the present invention, Figure 8b is a graph of sensitivity stability for a gas concentration of 5 ppm for Example 1-2 of the present invention 8C is the operational stability for 20 days at a gas concentration of 5 ppm for Examples 1-2, and FIG. 8D is the stability of 11 repeated measurements at a gas concentration of 5 ppm for Examples 1-2. .
도 9a는 본 발명의 실시예 1-4에 대한 5 ppm의 가스 농도에 대한 감도를 나타내고, 도 9b는 실시예 1-4에 대한 5 ppm의 가스 농도에 대한 구부림 각도에 따른 저항과 선택성이고, 도 9c는 실시예 1-4에 대한 5 ppm의 가스 농도에 대한 200회 구부림 후 및 구부림이 없는 감응 특성 비교를 나타낸 그래프이다.Figure 9a shows the sensitivity for a gas concentration of 5 ppm for Examples 1-4 of the present invention, Figure 9b is the resistance and selectivity according to the bending angle for a gas concentration of 5 ppm for Examples 1-4, 9C is a graph showing a comparison of response characteristics after bending 200 times and without bending for a gas concentration of 5 ppm for Examples 1-4.
도 10a는 본 발명의 실시예 1-5에 대한 5 ppm의 포름알데히드 및 주요 방해 가스인 에탄올에 대한 감도를 고 습도 하에서 측정한 결과를 나타낸 그래프이고, 도 10b는 본 발명의 실시예 1-7에 대한 5 ppm의 포름알데히드 및 주요 방해 가스인 에탄올에 대한 감도를 고 습도 하에서 측정한 결과를 나타낸 그래프이다.Figure 10a is a graph showing the results of measuring the sensitivity to 5 ppm of formaldehyde and ethanol, a major interfering gas, for Examples 1-5 of the present invention under high humidity, and Figure 10b is a graph showing the results of measuring the sensitivity of Examples 1-7 of the present invention It is a graph showing the results of measuring the sensitivity to 5 ppm of formaldehyde and ethanol, a major interfering gas, under high humidity.
이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following examples. This embodiment is provided to more completely explain the present invention to those skilled in the art. Accordingly, the shapes of elements in the figures are exaggerated to emphasize clearer description.
본 발명이 해결하고자 하는 과제의 해결 방안을 명확하게 하기 위한 발명의 구성을 본 발명의 바람직한 실시 예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명 시 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다.The composition of the present invention for clarifying the solution to the problem to be solved by the present invention will be described in detail with reference to the accompanying drawings based on a preferred embodiment of the present invention, but the same reference numerals are assigned to the components of the drawings. For components, even if they are on other drawings, the same reference numerals have been given, and it is made clear in advance that components of other drawings can be cited if necessary in the description of the drawings.
본 발명에서는 산화물 기반 가스 감응층인 TiO2 (P25, Rutile상과 Anatase 상의 혼합체, 평균입경: 21 nm, Degussa, 독일) 또는 WO3 (평균입경 < 100nm, sigma aldrich) 상에 ZIF-7 나노입자가 함유된 고분자(PEBA)막을 도포함으로써 방해가스들의 감도를 무시할 수준으로 만들어 실내 공기질을 저해하고 인체에 악영향을 주는 포름알데하이드를 고감도 고선택적으로 검지할 수 있게 한다.In the present invention, ZIF-7 nanoparticles are formed on TiO 2 (P25, a mixture of rutile and anatase phases, average particle diameter: 21 nm, Degussa, Germany) or WO 3 (average particle diameter < 100 nm, sigma aldrich), which is an oxide-based gas-sensitive layer. By applying a polymer (PEBA) film containing , the sensitivity of interfering gases is made negligible, which makes it possible to detect formaldehyde, which impairs indoor air quality and adversely affects the human body, with high sensitivity and selectivity.
도 1은 본 발명에 따른 가스 센서의 구조이고, 도 2는 본 발명에 따른 가스 센서 제조 방법의 순서도이다.1 is a structure of a gas sensor according to the present invention, and FIG. 2 is a flow chart of a gas sensor manufacturing method according to the present invention.
한편, 본 발명에 따른 가스 센서의 구조는 여기 제시된 것에 한정되지 않으며 가스 감응층 상에 배치되며, 금속유기골격체 입자를 포함하는 고분자층을 구비한 가스 센서라면 어떠한 구조이든 본 발명에 해당한다.On the other hand, the structure of the gas sensor according to the present invention is not limited to the one presented here, and any structure of the gas sensor disposed on the gas sensitive layer and having a polymer layer containing metal-organic framework particles corresponds to the present invention.
도 1 내지 도 2를 참조하면, 본 발명의 실시예에 따른 가스센서의 제조 방법은 기판 제공 단계(S10), 가스 감응층 배치 단계(S20) 및 금속유기골격체 입자를 포함하는 고분자층 배치 단계(S30)를 포함한다.1 and 2, the method of manufacturing a gas sensor according to an embodiment of the present invention includes providing a substrate (S10), arranging a gas-sensitive layer (S20), and arranging a polymer layer including metal-organic framework particles. (S30) is included.
기판 제공 단계(S10)에서는 가스 감응층(120) 및 금속유기골격체 입자를 포함하는 고분자층 (130)이 적층되기 위한 지지 기판(110)을 제공한다.In the step of providing a substrate (S10), a support substrate 110 is provided on which the gas-sensitive layer 120 and the polymer layer 130 including the metal-organic framework particles are laminated.
기판(110)은 굽힘 특성이 있는 유연 기판으로 구성되는 것이 바람직하며, 기판은 폴리에틸렌 테레프탈레이트(PET) 기판, 폴리에틸렌나프탈레이트(PEN) 기판, 폴리이미드(PI) 기판, 폴리카보네이트(PC) 기판, 폴리프로필렌(PP) 기판, 트리아세틸셀룰로오스(TAC) 기판 및 폴리에테르술폰(PES) 기판으로 이루어지는 군으로부터 선택될 수 있다.The substrate 110 is preferably composed of a flexible substrate having bending properties, and the substrate includes a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, a polyimide (PI) substrate, a polycarbonate (PC) substrate, It may be selected from the group consisting of a polypropylene (PP) substrate, a triacetyl cellulose (TAC) substrate, and a polyethersulfone (PES) substrate.
가스 감응층 배치 단계(S20)에서는 기판(110) 상에 가스 감응층(120)을 배치할 수 있다.In the disposing of the gas sensitive layer ( S20 ), the gas sensitive layer 120 may be disposed on the substrate 110 .
가스 감응층(120)은 TiO2 (P25, Rutile상과 Anatase 상의 혼합체, 평균입경: 21 nm, Degussa, 독일) 또는 WO3 (평균입경 < 100nm, sigma aldrich)로 구성된 층을 구성될 수 있다. 이외에 다른 입자 크기와 모양을 가지는 TiO2, WO3 층을 이용할 수 있다. 가스 감응층(120)은 두께가 1~10 ㎛ 인 것이 바람직하다.The gas sensitive layer 120 may be formed of TiO 2 (P25, a mixture of rutile phase and anatase phase, average particle size: 21 nm, Degussa, Germany) or WO 3 (average particle size < 100 nm, sigma aldrich). In addition, TiO 2 and WO 3 layers having different particle sizes and shapes may be used. The gas sensitive layer 120 preferably has a thickness of 1 to 10 μm.
TiO2 (P25, Rutile상과 Anatase 상의 혼합체, 평균입경: 21 nm, Degussa, 독일) 혹은 WO3 (평균입경 < 100 nm, Sigma Aldrich) 미분말을 유기바인더와 고르게 혼합하여 두 전극(111, 112)이 있는 알루미나, 실리콘, 실리카 등의 기판 위에 가스 감응층을 도포한다. Two electrodes (111, 112) by evenly mixing fine powder of TiO 2 (P25, Rutile phase and Anatase phase, average particle size: 21 nm, Degussa, Germany) or WO 3 (average particle size < 100 nm, Sigma Aldrich) with an organic binder A gas-sensitive layer is applied on a substrate made of alumina, silicon, or silica.
여기서 도포란 프린팅(printing), 브러싱(brushing), 블레이드 코팅(bladecoating), 디스펜싱(dispensing), 마이크로 피펫 적하(dropping) 등 각종의 방법을 포함하는 의미로 사용되었다. 다음, 열처리를 통해 용매 및 유기물 성분을 제거하여 가스 감응층(120)을 형성할 수 있다.Here, application is used to mean including various methods such as printing, brushing, blade coating, dispensing, and micropipette dropping. Next, the gas sensitive layer 120 may be formed by removing solvent and organic components through heat treatment.
금속유기골격체 입자를 포함하는 고분자층 배치 단계(S30)에서는 가스 감응층(120) 상에 금속유기골격체 입자를 포함하는 고분자층(130)을 배치할 수 있다. In the step of arranging the polymer layer including the metal-organic framework particles (S30), the polymer layer 130 including the metal-organic framework particles may be disposed on the gas sensitive layer 120.
바람직한 예에서, 금속유기골격체 입자를 포함하는 고분자층 배치 단계(S30)에서는 스핀코팅을 통해 ZIF-7 나노입자가 함유된 고분자(PEBA)막을 도포한다.In a preferred example, in the step of arranging the polymer layer including the metal-organic framework particles (S30), a polymer (PEBA) film containing ZIF-7 nanoparticles is applied through spin coating.
여기서 코팅 방법은 디스펜싱, 드랍코팅, 스핀코팅 등 다양한 박막형성 방법을 의미하며, 고분자층은 (PEBA)이외에도 Polyimide, Polyether ketone, Polyether ether ketone, polybenzimidazole 등의 다양한 재료를 의미하며, 또 분자체거름을 위해서 ZIF-7 이외에 ZIF-8, ZIF-67, ZIF-L, HKUST-1 및 UIO-66 등의 이와 유사한 기공 크기를 가지는 다른 MOFs의 사용이 가능하다. Here, the coating method refers to various thin film formation methods such as dispensing, drop coating, and spin coating, and the polymer layer refers to various materials such as polyimide, polyether ketone, polyether ether ketone, and polybenzimidazole in addition to (PEBA), and molecular sieve filtering. In addition to ZIF-7, other MOFs with similar pore sizes can be used, such as ZIF-8, ZIF-67, ZIF-L, HKUST-1 and UIO-66.
따라서, 상기 상부막은 분자체거름을 위한 금속유기골격체 나노입자가 함유된 고분자막을 코팅하는 것이면 가능하다. 다음, 유기 오염물질 등을 제거하고 불완전한 상의 안정화를 위해 필요하다면 가열, 즉 열처리가 수반될 수 있으며, 예를 들어 고분자가 분해 또는 산화되지 않는 100℃정도 온도에서 열처리하는 과정을 거칠 수 있다.Therefore, the upper membrane can be coated with a polymer membrane containing metal organic framework nanoparticles for molecular sieve filtering. Next, if necessary for removing organic contaminants and stabilizing the incomplete phase, heating, that is, heat treatment may be accompanied.
한편, 금속유기골격체 입자를 포함하는 고분자층(130)의 두께는 10 nm ~ 1000 nm일 수 있다. 여기서, 고분자층(130)의 두께가 10 nm 미만인 경우, 가스 감응층(120)에 포름알데하이드 외 유해 가스가 투입되는 것을 억제할 수 없으며, 반대로, 금속유기골격체 입자를 포함하는 고분자층 (130)의 두께가 1000 nm 초과인 경우, 포름알데하이드의 투과율이 감소되어 가스 감응층(120)에서의 가스감응 반응이 어려워질 수 있다.Meanwhile, the thickness of the polymer layer 130 including the metal-organic framework particles may be 10 nm to 1000 nm. Here, when the thickness of the polymer layer 130 is less than 10 nm, the injection of harmful gases other than formaldehyde into the gas sensitive layer 120 cannot be suppressed, and on the contrary, the polymer layer (130 If the thickness of ) is greater than 1000 nm, the formaldehyde transmittance is reduced, making it difficult for the gas-sensitive reaction in the gas-sensitive layer 120 to occur.
고분자층(130)은 고분자 기반에 유기금속골격체(MOFs) 나노 입자가 첨가되어 구성될 수 있다.The polymer layer 130 may be formed by adding organic metal framework (MOFs) nanoparticles to a polymer base.
한편, 고분자 대비 유기금속골격체 입자의 첨가 비율은 중량 비율로, 1.0 wt% 내지 15 wt%인 것이 바람직하다. 더욱 바람직하게는 고분자 대비 유기금속골격체 입자의 첨가 비율은 중량 비율로, 2.5 wt% 내지 10 wt%인 것이 바람직하다.On the other hand, the addition ratio of the organometallic framework particles to the polymer is preferably 1.0 wt% to 15 wt% in terms of weight ratio. More preferably, the addition ratio of the organometallic framework particles to the polymer is preferably 2.5 wt% to 10 wt%, in terms of weight ratio.
여기서, 고분자 대비 유기금속골격체 입자의 첨가 비율이 1.0wt% 미만인 경우, 가스가 투과성이 낮은 순수 고분자층을 통해서 통과하기 어려워지므로 가스 감응층(120)에서 가스 감응반응이 이루어지기 힘들며, 반대로, 고분자 대비 유기금속골격체 입자의 첨가 비율이 15 wt% 초과인 경우에도 고분자-유기금속골격체 계면의 스트레스에 의해 가스의 투과성이 낮아져 가스 감응층(120)에서의 고감도 감응, 선택적 감응이 저하될 수 있다.Here, when the addition ratio of the organic metal skeleton particles to the polymer is less than 1.0 wt%, it is difficult for gas to pass through the pure polymer layer having low permeability, so it is difficult to achieve a gas response reaction in the gas responsive layer 120. Conversely, Even when the addition ratio of the organic metal framework particles to the polymer exceeds 15 wt%, the gas permeability is lowered due to the stress at the polymer-organic metal framework interface, resulting in a decrease in high sensitivity and selective response in the gas sensitive layer 120. can
한편, 유기금속골격체 각각은 미세 기공의 크기가 0.28 nm 내지 0.45 nm 인 것이 바람직하다. 여기서, 유기금속골격체의 미세 기공의 크기가 0.28nm 미만인 경우, 포름알데하이드의 투과율이 감소되어 가스 감응층(120)에서의 선택적인 감응성이 저하되고, 반대로, 미세 기공의 크기가 0.45nm 초과인 경우, 포름알데하이드 외 유해 가스가 투입되는 것을 억제할 수 없다.On the other hand, it is preferable that each organometallic framework has a micropore size of 0.28 nm to 0.45 nm. Here, when the size of the micropores of the organometallic framework is less than 0.28 nm, the transmittance of formaldehyde is reduced and the selective sensitivity of the gas sensitive layer 120 is lowered. In this case, the introduction of harmful gases other than formaldehyde cannot be suppressed.
한편, 고분자층(130)은 가스 감응층(120)의 노출되는 전면을 덮도록 배치되는 것이 바람직하다.Meanwhile, the polymer layer 130 is preferably disposed to cover the exposed entire surface of the gas sensitive layer 120 .
이하, 실시예 및 비교예를 통해서 본 발명을 더욱 구체적으로 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples, but the following Examples are only for helping understanding of the present invention, and do not limit the scope of the present invention.
[표 1]은 본 발명의 실시예 및 비교예의 공정 특징을 비교한 비교표이다.[Table 1] is a comparison table comparing the process characteristics of Examples and Comparative Examples of the present invention.
첨가 비율(wt%)
(ZIF-7 / PEBA)
Addition ratio (wt%)
(ZIF-7/PEBA)
가스 감응층gas sensitive layer 가스 감응층 건조 온도(℃) / 건조 시간(hr)Gas sensitive layer drying temperature (℃) / drying time (hr)
실시예 1-1Example 1-1 2.52.5 TiO2(Rutile상과 Anatase 상의 혼합체)TiO 2 (Mixture of Rutile phase and Anatase phase) 450 / 2450/2
실시예 1-2Example 1-2 55 TiO2(Rutile상과 Anatase 상의 혼합체)TiO 2 (Mixture of Rutile phase and Anatase phase) 450 / 2450/2
실시예 1-3Examples 1-3 1010 TiO2(Rutile상과 Anatase 상의 혼합체)TiO 2 (Mixture of Rutile phase and Anatase phase) 450 / 2450/2
실시예 1-4Example 1-4 55 TiO2(Rutile상과 Anatase 상의 혼합체)TiO 2 (Mixture of Rutile phase and Anatase phase) 130/ 24130/ 24
실시예 1-5Example 1-5 55 WO3 WO 3 130/ 24130/ 24
비교예 1-1Comparative Example 1-1 00 TiO2(Rutile상과 Anatase 상의 혼합체)TiO 2 (Mixture of Rutile phase and Anatase phase) 450 / 2450/2
비교예 1-2Comparative Example 1-2 2020 TiO2(Rutile상과 Anatase 상의 혼합체)TiO 2 (Mixture of Rutile phase and Anatase phase) 450 / 2450/2
비교예 1-3Comparative Example 1-3 4040 TiO2
(Rutile상과 Anatase 상의 혼합체)
TiO 2
(Mixture of Rutile phase and Anatase phase)
450 / 2450/2
비교예 1-4Comparative Example 1-4 -- TiO2
(Rutile상과 Anatase 상의 혼합체)
TiO 2
(Mixture of Rutile phase and Anatase phase)
130 / 24130 / 24
비교예 1-5Comparative Example 1-5 -- TiO2(Rutile)TiO 2 (Rutile) 450 / 2450/2
비교예 1-6Comparative Example 1-6 -- TiO2(Anatase)TiO 2 (anatase) 450 / 2450/2
비교예 1-7Comparative Example 1-7 -- WO3 WO 3 450 / 2450/2
실시예 1-1Example 1-1
먼저 TiO2(P25, Rutile상과 Anatase 상의 혼합체, 평균입경: 21 nm, Degussa, 독일) 미분말을 유기바인더와 혼합하여 두 전극 백금 전극이 형성되어 있는 실리콘옥사이드 기판에 약 2 ㎛ 두께로 스크린 인쇄하고, 450 ℃에서 2시간 건조한 다음 TiO2 가스 감응층을 제조했다. 그 뒤, 스핀 코팅을 통해 2.5 wt%의 ZIF-7이 첨가된 PEBA(Pebax@1657,Arkema, France)을 도포하였고, 70℃에서 24시간 건조하여 2.5 wt% ZIF-7이 첨가된 PEBA(Pebax@1657,Arkema, France)막이 도포된 TiO2 가스 센서를 제조하였다. 다음으로 제조한 센서를 쿼츠 큐브에 위치시키고 순수한 공기 또는 공기+혼합가스를 번갈아가며 주입하면서 저항의 변화를 측정했다. 가스는 미리 혼합시킨 후 4-웨이(way) 밸브를 이용하여 농도를 급격히 변화시켰다. First, fine powder of TiO2 (P25, a mixture of rutile phase and anatase phase, average particle diameter: 21 nm, Degussa, Germany) was mixed with an organic binder and screen-printed to a thickness of about 2 μm on a silicon oxide substrate on which two electrode platinum electrodes were formed, After drying at 450 °C for 2 hours, a TiO2 gas-sensitive layer was prepared. Then, PEBA (Pebax@1657, Arkema, France) to which 2.5 wt% of ZIF-7 was added was applied through spin coating, and dried at 70° C. for 24 hours, followed by PEBA (Pebax to which 2.5 wt% of ZIF-7 was added). @ 1657, Arkema, France) A TiO 2 gas sensor coated with a film was fabricated. Next, the fabricated sensor was placed on the quartz cube, and the change in resistance was measured while alternately injecting pure air or air + mixed gas. The gas was mixed in advance and then the concentration was rapidly changed using a 4-way valve.
실시예 1-2Example 1-2
먼저 실시예 1-1과 같은 과정을 거쳐 TiO2 감응층을 제조하였다. 그 뒤, 스핀코팅을 통해 5 wt%의 ZIF-7이 첨가된 PEBA막을 도포하였고, 70℃에서 24시간 건조하여 5 wt% ZIF-7이 첨가된 PEBA막이 도포된 TiO2 가스센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film containing 5 wt% ZIF-7 was applied through spin coating, and dried at 70° C. for 24 hours to prepare a TiO 2 gas sensor coated with a PEBA film containing 5 wt% ZIF-7. The other sensor evaluation process is the same as in Example 1-1.
실시예 1-3Examples 1-3
먼저 실시예 1-1과 같은 과정을 거쳐 TiO2 감응층을 제조하였다. 그 뒤, 스핀코팅을 통해 10 wt%의 ZIF-7이 첨가된 PEBA막을 도포하였고, 70℃에서 24시간 건조하여 10 wt% ZIF-7이 첨가된 PEBA막이 도포된 TiO2 가스센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film to which 10 wt% ZIF-7 was added was applied through spin coating, and dried at 70 ° C. for 24 hours to prepare a TiO 2 gas sensor coated with a PEBA film to which 10 wt% ZIF-7 was added. The other sensor evaluation process is the same as in Example 1-1.
실시예 1-4Example 1-4
먼저 TiO2(P25, Rutile상과 Anatase 상의 혼합체, 평균입경: 21 nm, Degussa, 독일) 미분말을 유기바인더와 혼합하여 두 전극 백금 전극이 형성되어 있는 PET 유연(flexible) 기판에 약 2 ㎛ 두께로 스크린 인쇄하고, 130 ℃에서 24시간 건조한 다음 TiO2 가스 감응층을 제조했다. 그 뒤, 스핀 코팅을 통해 5wt%의 ZIF-7이 첨가된 PEBA(Pebax@1657,Arkema, France)을 도포하였고, 70℃에서 24시간 건조하여 5 wt% ZIF-7이 첨가된 PEBA(Pebax@1657,Arkema, France)막이 도포된 TiO2 유연 가스 센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, TiO 2 (P25, a mixture of rutile and anatase phases, average particle diameter: 21 nm, Degussa, Germany) fine powder was mixed with an organic binder to form a layer of about 2 μm on a PET flexible substrate on which two electrodes, platinum electrodes were formed. After screen printing and drying at 130 °C for 24 hours, a TiO2 gas-sensitive layer was prepared. Then, PEBA (Pebax@1657, Arkema, France) to which 5 wt% ZIF-7 was added was applied through spin coating, and dried at 70° C. for 24 hours to PEBA (Pebax@1657, Arkema, France) to which 5 wt% ZIF-7 was added. 1657, Arkema, France) film-coated TiO 2 flexible gas sensor was fabricated. The other sensor evaluation process is the same as in Example 1-1.
실시예 1-5Example 1-5
먼저 WO3 (평균입경 < 100nm, sigma aldrich) 미분말을 유기바인더와 혼합하여 두 전극 백금 전극이 형성되어 있는 PET 유연(flexible) 기판에 약 2㎛ 두께로 스크린 인쇄하고, 130 ℃에서 24시간 건조한 다음 WO3 가스 감응층을 제조했다. 그 뒤, 스핀 코팅을 통해 5wt%의 ZIF-7이 첨가된 PEBA(Pebax@1657,Arkema, France)을 도포하였고, 70℃에서 24시간 건조하여 5 wt% ZIF-7이 첨가된 PEBA(Pebax@1657,Arkema, France)막이 도포된 WO3 유연 가스 센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, WO 3 (average particle size < 100 nm, sigma aldrich) fine powder was mixed with an organic binder, screen-printed to a thickness of about 2 μm on a PET flexible substrate on which two electrode platinum electrodes were formed, and dried at 130 ° C for 24 hours. A WO3 gas sensitive layer was prepared. Then, PEBA (Pebax@1657, Arkema, France) to which 5 wt% ZIF-7 was added was applied through spin coating, and dried at 70° C. for 24 hours to PEBA (Pebax@1657, Arkema, France) to which 5 wt% ZIF-7 was added. 1657, Arkema, France) film-coated WO 3 lead gas sensor was manufactured. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-1Comparative Example 1-1
먼저 실시예 1-1과 같은 과정을 거쳐 TiO2 감응층을 제조하였다. 그 뒤, 스핀코팅을 통해 순수한 PEBA막을 도포하였고, 70℃에서 24시간 건조하여 PEBA막이 도포된 TiO2 가스센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a pure PEBA film was applied through spin coating, and dried at 70° C. for 24 hours to prepare a PEBA film-coated TiO2 gas sensor. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-2Comparative Example 1-2
먼저 실시예 1-1과 같은 과정을 거쳐 TiO2 감응층을 제조하였다. 그 뒤, 스핀코팅을 통해 20 wt%의 ZIF-7이 첨가된 PEBA막을 도포하였고, 70℃에서 24시간 건조하여 20 wt% ZIF-7이 첨가된 PEBA막이 도포된 TiO2 가스 센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, a TiO 2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film containing 20 wt% ZIF-7 was applied through spin coating, and dried at 70° C. for 24 hours to prepare a TiO 2 gas sensor coated with a PEBA film containing 20 wt% ZIF-7. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-3Comparative Example 1-3
먼저 실시예 1-1과 같은 과정을 거쳐 TiO2 감응층을 제조하였다. 그 뒤, 스핀코팅을 통해 40 wt%의 ZIF-7이 첨가된 PEBA막을 도포하였고, 70℃에서 24시간 건조하여 40 wt% ZIF-7이 첨가된 PEBA막이 도포된 TiO2 가스센서를 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.First, a TiO2 sensitive layer was prepared through the same process as in Example 1-1. Then, a PEBA film with 40 wt% ZIF-7 was applied through spin coating, and dried at 70 ° C for 24 hours to prepare a TiO2 gas sensor coated with a PEBA film with 40 wt% ZIF-7 added. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-4Comparative Example 1-4
실시예 1-1과 같은 과정을 거쳐 TiO2 감응층을 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.A TiO 2 sensitive layer was prepared through the same process as in Example 1-1. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-5Comparative Example 1-5
실시예 1-1과 같은 과정을 거쳐 TiO2(Rutile) 감응층을 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.A TiO2 (Rutile) sensitive layer was prepared through the same process as in Example 1-1. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-6Comparative Example 1-6
실시예 1-1과 같은 과정을 거쳐 TiO2(Anatase) 감응층을 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.A TiO2 (Anatase) responsive layer was prepared through the same process as in Example 1-1. The other sensor evaluation process is the same as in Example 1-1.
비교예 1-7Comparative Example 1-7
실시예 1-1과 같은 과정을 거쳐 WO3(평균입경 < 100nm, sigma aldrich) 감응층을 제조하였다. 이외의 센서 평가 과정은 실시예 1-1과 동일하다.A WO3 (average particle diameter < 100 nm, sigma aldrich) responsive layer was prepared through the same process as in Example 1-1. The other sensor evaluation process is the same as in Example 1-1.
특성 평가Characteristic evaluation
실시예 1-1 내지 비교예 1-7과 같이 제조된 가스 센서들을 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대해 측정한 결과, 실시예 1-1, 실시예 1-2, 실시예 1-3, 실시예 1-4, 실시예 1-5, 비교예 1-1, 비교예 1-2, 비교예 1-3, 비교예 1-4, 비교예 1-5, 비교예 1-6, 비교예 1-7은 모두 환원성 가스에 대해서 저항이 감소하는 n형 산화물 반도체형 거동을 보였다. The gas sensors prepared in Example 1-1 to Comparative Example 1-7 were measured for ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene, Example 1-1, Example 1-2, Example Example 1-3, Example 1-4, Example 1-5, Comparative Example 1-1, Comparative Example 1-2, Comparative Example 1-3, Comparative Example 1-4, Comparative Example 1-5, Comparative Example 1 -6 and Comparative Examples 1-7 all exhibited n-type oxide semiconductor-type behavior in which resistance to reducing gases decreased.
따라서 환원성 가스에 대한 가스 감도를 S=Ra/Rg-1 (Ra: 공기 중에서의 센서 저항, Rg: 가스 중에서의 센서 저항)로 정의하였다.Therefore, the gas sensitivity to the reducing gas was defined as S=Ra/Rg-1 (Ra: sensor resistance in air, Rg: sensor resistance in gas).
공기 중에서 센서의 저항이 일정한 상태가 되었을 때(Ra) 피검 가스(에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌, 5 ppm)를 주입하여 쿼츠큐브 내의 분위기를 바꾸고, 가스 중에서의 저항이 일정해졌을 때(Rg) 공기를 흘려주어 분위기를 바꾸면서 저항 변화를 측정했다.When the resistance of the sensor in the air becomes constant (Ra), the atmosphere in the quartz cube is changed by injecting the test gas (ethanol, formaldehyde, carbon monoxide, benzene, toluene, xylene, 5 ppm), and the resistance in the gas is constant. When it was dark (Rg), the resistance change was measured while changing the atmosphere by blowing air.
도 3a 및 도 3b는 실시예 및 비교예에서 사용된 ZIF-7 나노입자(ZIF-7 nanoparticles)의 SEM이미지 및 BET분석 결과이다. 이를 통해 ZIF-7의 입자 크기와 ZIF-7내의 미세 기공(> 2 nm)을 존재를 확인할 수 있었다.3a and 3b are SEM images and BET analysis results of ZIF-7 nanoparticles used in Examples and Comparative Examples. Through this, the particle size of ZIF-7 and the existence of micropores (> 2 nm) in ZIF-7 could be confirmed.
도 4는 본 발명의 실시예 1-2에 따른 센서의 구조 SEM이미지이다. 감응층의 두께는 2 ㎛ 정도 였으며, ZIF-7이 함유된 PEBA막의 경우 약 200 nm의 두께였다. 4 is a structural SEM image of a sensor according to Example 1-2 of the present invention. The thickness of the sensitive layer was about 2 μm, and in the case of the PEBA film containing ZIF-7, it was about 200 nm thick.
도 5는 본 발명의 실시예 1-1 내지 1-3의 실온에서 365 nm파장의 자외선 조사 하 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 동적 가스 감응 결과를 나타낸 그래프이다. 실시예 1-1 내지 1-3은 상기 가스들에 대해서 n-형 반도체 가스 감응 거동을 보였으며 모든 가스에 대해 가역적인 거동을 보임을 확인하였다. 이 밖의 실시예 1-4, 비교예 1-1 내지 1-6 센서 역시 n-형 반도체 가스 감응 거동을 보임을 확인하였다.Figure 5 shows the dynamic gas response results for 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene of the sensor under ultraviolet irradiation with a wavelength of 365 nm at room temperature in Examples 1-1 to 1-3 of the present invention. it's a graph It was confirmed that Examples 1-1 to 1-3 showed n-type semiconductor gas sensitive behavior for the above gases and showed reversible behavior for all gases. In addition, it was confirmed that the sensors of Examples 1-4 and Comparative Examples 1-1 to 1-6 also showed n-type semiconductor gas responsive behavior.
도 6a 내지 도 6i는 본 발명의 실시예 1-1 내지 1-3 센서와 비교예 1-1내지 1-6 센서의 실온에서 365nm 파장의 자외선 조사 하에서, 센서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 동적 가스 감도 비교 결과를 나타낸 그래프이다. 6a to 6i show the sensors of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-6 of the present invention under ultraviolet irradiation with a wavelength of 365 nm at room temperature, 5 ppm ethanol, formaldehyde, carbon monoxide of the sensor , It is a graph showing the comparison results of dynamic gas sensitivity for benzene, toluene, and xylene.
비교예 1-4의 순수한 TiO2막을 자외선하에서 상온동작시킬 경우 포름알데히드에 대해 큰 감도를 나타내지만, 에탄올의 감도가 더 크게 나타나 포름알데히드를 선택적으로 검출할 수 없다. When the pure TiO 2 film of Comparative Examples 1-4 was operated at room temperature under UV light, it exhibited high sensitivity to formaldehyde, but showed greater sensitivity to ethanol, so formaldehyde could not be selectively detected.
반면, 실시예 1-1내지 1-3센서의 경우 ZIF-7이 첨가된 PEBA막이 도포 되었을 경우 에탄올, 벤젠, 톨루엔, 자일렌에 대한 감도가 크게 줄어 포름알데히드에 대한 선택성이 확보되는 것을 확인할 수 있다. On the other hand, in the case of the sensors of Examples 1-1 to 1-3, when the PEBA film to which ZIF-7 was added was applied, the sensitivity to ethanol, benzene, toluene, and xylene was greatly reduced, and it was confirmed that selectivity to formaldehyde was secured. there is.
특히, 실시예 1-2의 경우에는 포름알데히드의 감도가 다른 5종 가스의 감도에 비해 60.1 내지 5,500배 크게 나타나, 실내에 존재하는 포름알데히드를 초고선택적으로 검출할 수 있음을 보여준다. In particular, in the case of Examples 1-2, the sensitivity of formaldehyde is 60.1 to 5,500 times greater than that of the other five gases, indicating that formaldehyde present in the room can be detected ultra-selectively.
한편, 비교예 1-2, 1-3 센서의 경우 ZIF-7의 양이 너무 과량으로 함유되어 포름알데히드에 대한 감도도 같이 줄어 고감도, 고선택적 감응이 불가능함을 보였다. On the other hand, in the case of the sensors of Comparative Examples 1-2 and 1-3, the amount of ZIF-7 was too excessive, so the sensitivity to formaldehyde was also reduced, indicating that high sensitivity and high selective response were impossible.
ZIF-7이 함유되지 않은 PEBA막 만을 도포한 비교예 1-1의 경우에는 ZIF-7의 미세 기공에 따른 포름알데히드의 선택적 투과가 불가능하여 에탄올에 대한 감도가 큰 것을 확인할 수 있다. In the case of Comparative Example 1-1, in which only the PEBA membrane without ZIF-7 was applied, selective permeation of formaldehyde through the micropores of ZIF-7 was not possible, so it was confirmed that the sensitivity to ethanol was high.
또한, 비교예1-5, 1-6은 Rutile과 Anatase의 혼합상이 아닌 단일 상을 감응층으로 도포하였을 경우 에탄올과 포름알데히드에 대한 감도가 너무 낮아 고감도 감응이 어려움을 보인다.In addition, in Comparative Examples 1-5 and 1-6, when a single phase of rutile and anatase, not a mixed phase, was applied as a responsive layer, sensitivity to ethanol and formaldehyde was too low, and high sensitivity response was difficult.
도 7은 본 발명의 비교예 1-4 동작온도 300 ℃, 325 ℃, 350 ℃, 375 ℃에서의 5 ppm 에탄올, 포름알데히드, 일산화탄소, 벤젠, 톨루엔, 자일렌에 대한 가스 감도 비교 결과를 나타낸 그래프이다. 7 is a graph showing comparison results of gas sensitivity to 5 ppm ethanol, formaldehyde, carbon monoxide, benzene, toluene, and xylene at operating temperatures of 300 ° C, 325 ° C, 350 ° C, and 375 ° C of Comparative Examples 1-4 of the present invention am.
도 7에서 본 발명의 센서층인 TiO2를 고온에서 측정하더라도 포름알데히드에 대한 고감도와 고 선택성을 얻을 수 없음을 보여준다.7 shows that high sensitivity and high selectivity for formaldehyde cannot be obtained even when TiO 2 , which is the sensor layer of the present invention, is measured at a high temperature.
도 8a 내지 도 8d 각각은 본 발명의 실시예 1-2에 대한 5 ppm의 가스 농도에 대한 감도와 안정성에 대한 그래프이다. 이를 통해 포름알데히드 가스에 대해서 센서는 가역적인 반응을 하였으며, 농도에 따라 다른 가스 감도를 나타냄으로써 대기 중에 존재하는 포름알데히드에 대한 실시간 농도 검출이 가능함을 보여주었다. 또한, 포름알데히드에 대한 가스 감도가 매우 고감도를 나타내었으므로 매우 소량의 가스 (ppb 수준)에 대해서도 선택적인 검지가 가능함을 확인할 수 있었다.8A to 8D are graphs of sensitivity and stability for a gas concentration of 5 ppm for Examples 1-2 of the present invention, respectively. Through this, the sensor showed a reversible response to formaldehyde gas and showed different gas sensitivity depending on the concentration, showing that real-time concentration detection of formaldehyde present in the air is possible. In addition, since the gas sensitivity to formaldehyde was very high, it was confirmed that selective detection is possible even for a very small amount of gas (ppb level).
도 9a 내지 도 9d 각각은 본 발명의 실시예 1-4에 대한 5 ppm의 가스 농도에 대한 감도와 안정성에 대한 그래프이다. 이를 통해 유연 기판 하에서도 포름알데히드 가스에 대해서 센서는 가역적인 반응을 하였으며 구부림 각도에 관계없이 높은 감도와 선택성을 나타내었다. 또한, 200회의 구부림 이후에도 우수한 센서 안정성을 가지고 있음을 확인했다. 9A to 9D are graphs of sensitivity and stability for a gas concentration of 5 ppm for Examples 1-4 of the present invention, respectively. Through this, the sensor showed a reversible response to formaldehyde gas even under a flexible substrate and showed high sensitivity and selectivity regardless of the bending angle. In addition, it was confirmed that the sensor had excellent sensor stability even after 200 times of bending.
도 10a 및 도 10b 각각은 본 발명의 실시예 1-5 및 비교예 1-7에 대한 5 ppm의 포름알데히드 및 주요 방해 가스인 에탄올에 대한 감도를 고 습도 하에서 측정한 결과이다.Figures 10a and 10b respectively show the results of measuring the sensitivity to 5 ppm of formaldehyde and ethanol, a major interfering gas, for Examples 1-5 and Comparative Examples 1-7 of the present invention under high humidity.
이를 통해 ZIF-7/PEBA로 구성된 MMM의 범용성을 확인하였으며, WO3을 센서 감응층으로 사용할 시 변화하는 습도에 대해서도 안정적인 감응 특성을 보임을 확인했다.Through this, the versatility of the MMM composed of ZIF-7/PEBA was confirmed, and when WO3 was used as a sensor layer, it was confirmed that it showed stable response characteristics even to changing humidity.
이상과 같이 본 발명에 따른 가스 센서는 실내에 존재할 수 있는 다른 가스들의 방해를 거의 받지 않고 ppb 수준의 포름알데히드를 초고선택적, 고감도로 검출하는 우수한 특성을 보이며, 유연 가스 센서로 제조했을 경우에도 우수한 특성을 유지한다. 특히, 상온에서 동작되므로 소비전력이 작고, 초소형화도 용이하다.As described above, the gas sensor according to the present invention shows excellent characteristics of ultra-selective and highly sensitive detection of ppb level formaldehyde without being disturbed by other gases that may exist in the room, and even when manufactured as a flexible gas sensor, retain the characteristics. In particular, since it is operated at room temperature, power consumption is small and miniaturization is easy.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구 범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The above detailed description is illustrative of the present invention. In addition, the foregoing is intended to illustrate and describe preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications are possible within the scope of the concept of the invention disclosed in this specification, within the scope equivalent to the written disclosure and / or within the scope of skill or knowledge in the art. The written embodiment describes the best state for implementing the technical idea of the present invention, and various changes required in the specific application field and use of the present invention are also possible. Therefore, the above detailed description of the invention is not intended to limit the invention to the disclosed embodiments. Also, the appended claims should be construed to cover other embodiments as well.
[부호의 설명][Description of code]
110: 기판110: substrate
120: 가스 감응층120: gas sensitive layer
130: 고분자층130: polymer layer

Claims (10)

  1. 가스 감응층; 및a gas sensitive layer; and
    상기 가스 감응층 상에 배치된 고분자층; 을 포함하고,a polymer layer disposed on the gas sensitive layer; including,
    상기 고분자층은 금속유기골격체 입자를 포함하는 가스 센서.The polymer layer is a gas sensor comprising metal-organic framework particles.
  2. 제 1항에 있어서,According to claim 1,
    상기 가스 감응층은 산화티타늄(TiO2) 또는 산화텅스텐(WO3)을 포함하는 가스 센서.The gas sensor layer includes titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ).
  3. 제 1항에 있어서,According to claim 1,
    상기 금속유기골격체는 ZIF-7, ZIF-8, ZIF-67, ZIF-L, HKUST-1 및 UIO-66 중에서 선택된 적어도 하나를 포함하는 가스 센서.The metal-organic framework is a gas sensor comprising at least one selected from ZIF-7, ZIF-8, ZIF-67, ZIF-L, HKUST-1 and UIO-66.
  4. 제 1항에 있어서,According to claim 1,
    상기 금속유기골격체는 기공 크기가 0.28 nm 내지 0.45 nm 인 가스 센서.The metal-organic framework is a gas sensor having a pore size of 0.28 nm to 0.45 nm.
  5. 제 1항에 있어서,According to claim 1,
    상기 고분자층은 고분자에 상기 금속유기골격체 입자가 첨가되고,In the polymer layer, the metal organic framework particles are added to the polymer,
    상기 고분자층에서, 상기 금속유기골격체 입자의 첨가 비율은 1.0 wt% 내지 15 wt%인 가스 센서.In the polymer layer, the addition ratio of the metal-organic framework particles is 1.0 wt% to 15 wt% gas sensor.
  6. 가스 감응층을 형성하는 단계; 및forming a gas sensitive layer; and
    상기 가스 감응층 상에 금속유기골격체 입자를 포함하는 고분자층을 형성하는 단계; 를 포함하는 가스 센서의 제조 방법.forming a polymer layer including metal organic skeletal particles on the gas sensitive layer; Method for manufacturing a gas sensor comprising a.
  7. 제 6항에 있어서,According to claim 6,
    상기 가스 감응층은 산화티타늄(TiO2) 또는 산화텅스텐(WO3)을 포함하는 가스 센서의 제조 방법.The gas sensitive layer is a method of manufacturing a gas sensor comprising titanium oxide (TiO 2 ) or tungsten oxide (WO 3 ).
  8. 제 6항에 있어서,According to claim 6,
    상기 금속유기골격체는 ZIF-7, ZIF-8, ZIF-67, ZIF-L HKUST-1 및 UIO-66 중에서 선택된 적어도 하나를 포함하는 가스 센서의 제조 방법.The method of manufacturing a gas sensor, wherein the metal-organic framework includes at least one selected from ZIF-7, ZIF-8, ZIF-67, ZIF-L HKUST-1 and UIO-66.
  9. 제 6항에 있어서,According to claim 6,
    상기 금속유기골격체는 기공 크기가 0.28 nm 내지 0.45nm 인 가스 센서의 제조 방법.The method of manufacturing a gas sensor in which the metal-organic framework has a pore size of 0.28 nm to 0.45 nm.
  10. 제 6항에 있어서,According to claim 6,
    상기 고분자층은 고분자에 상기 금속유기골격체 입자가 첨가되고,In the polymer layer, the metal organic framework particles are added to the polymer,
    상기 고분자층에서, 상기 금속유기골격체 입자의 첨가 비율은 1.0 wt% 내지 15 wt%인 가스 센서의 제조 방법.In the polymer layer, the addition ratio of the metal-organic framework particles is 1.0 wt% to 15 wt% method of manufacturing a gas sensor.
PCT/KR2022/008062 2021-07-26 2022-06-08 Gas sensor using polymer membrane structure comprising metal-organic framework and method for manufacturing same WO2023008729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0098009 2021-07-26
KR1020210098009A KR102660809B1 (en) 2021-07-26 2021-07-26 Gas sensors with a polymer membrane overlayer including a Metal-Organic Framwork and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2023008729A1 true WO2023008729A1 (en) 2023-02-02

Family

ID=85087970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008062 WO2023008729A1 (en) 2021-07-26 2022-06-08 Gas sensor using polymer membrane structure comprising metal-organic framework and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102660809B1 (en)
WO (1) WO2023008729A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184531A1 (en) * 2014-06-30 2017-06-29 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Gas sensor array and method
KR101761838B1 (en) * 2016-04-29 2017-07-26 한국표준과학연구원 Method and apparatus for the detection of hydrogen gas concentration in transformer oil
KR101943084B1 (en) * 2016-11-01 2019-01-29 한국전자통신연구원 Manufacturing method of gas sensor
KR20190140388A (en) * 2018-06-11 2019-12-19 인천대학교 산학협력단 Transistor comprising metal-organic frameworks for sensing humidity and organic semiconductor compositions having water adsorption properties
KR102176119B1 (en) * 2019-06-24 2020-11-09 광주과학기술원 Self-powered gas sensor or humidity sensor comprising porous metal organic framework and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200099764A (en) * 2019-02-15 2020-08-25 주식회사 엘지화학 Gas sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170184531A1 (en) * 2014-06-30 2017-06-29 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Gas sensor array and method
KR101761838B1 (en) * 2016-04-29 2017-07-26 한국표준과학연구원 Method and apparatus for the detection of hydrogen gas concentration in transformer oil
KR101943084B1 (en) * 2016-11-01 2019-01-29 한국전자통신연구원 Manufacturing method of gas sensor
KR20190140388A (en) * 2018-06-11 2019-12-19 인천대학교 산학협력단 Transistor comprising metal-organic frameworks for sensing humidity and organic semiconductor compositions having water adsorption properties
KR102176119B1 (en) * 2019-06-24 2020-11-09 광주과학기술원 Self-powered gas sensor or humidity sensor comprising porous metal organic framework and preparation method thereof

Also Published As

Publication number Publication date
KR102660809B1 (en) 2024-04-24
KR20230016472A (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2019124625A1 (en) Chemiresistor gas sensor using mxene, and manufacturing method therefor
WO2016133245A1 (en) Methylbenzene gas sensor using palladium-added cobalt oxide nanostructure and method for manufacturing same
US10352726B2 (en) Thin-film resistive-based sensor
Liu et al. Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors
Chung et al. Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition
WO2018216952A1 (en) Method for preparing graphene-tin oxide nanocomposite, and graphene-tin oxide nanocomposite
JP4883624B2 (en) High sensitivity gas sensor and manufacturing method thereof
WO2019231066A1 (en) Gas detection complex and method for producing same, gas sensor comprising gas detection complex and method for manufacturing same
WO2019052037A1 (en) Capacitive sensor and preparation method therefor
JP6774127B2 (en) Formaldehyde detection sensor and system using it
CN110823965B (en) Room temperature detection NO2Preparation method of gas sensitive material
WO2023008729A1 (en) Gas sensor using polymer membrane structure comprising metal-organic framework and method for manufacturing same
WO2019221422A1 (en) Method for preparing coating composition for hazardous organic compound detection sensor and coating composition prepared thereby
WO2009131306A1 (en) A tungsten trioxide (wo3)-based gas sensor for sensing gaseous volatile organic compounds, and a production method therefor
WO2019164113A1 (en) Hydrogen-detecting composite particles and manufacturing method thereof
WO2022139090A1 (en) Gas sensor, gas analysis device including same, and manufacturing method for gas sensor
WO2021040208A1 (en) Gas sensor for selectively detecting xylene or toluene gas
WO2022114660A1 (en) Capacitive gas sensor and method for manufacturing same
Hattori et al. Ozone sensor made by dip coating method
Myasoedova et al. A study on a NO 2 sensor based on SiO 2-ZrO 2 composite film
WO2022108428A1 (en) Hydrogen gas sensor
AU2021100573A4 (en) Method for Detecting Organic Volatile Compounds Using Zirconium-based Sensor
Arshak et al. Screen-Printed Fe2O3/ZnO thick films for gas sensing applications
WO2024147536A1 (en) Nanobionic sers sensor for detecting airborne analytes, system comprising same, and method for detecting airborne analytes
WO2022211540A1 (en) Sensor array for sensing hydrogen and hydrogen sensing system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849708

Country of ref document: EP

Kind code of ref document: A1