WO2022211540A1 - Sensor array for sensing hydrogen and hydrogen sensing system using same - Google Patents

Sensor array for sensing hydrogen and hydrogen sensing system using same Download PDF

Info

Publication number
WO2022211540A1
WO2022211540A1 PCT/KR2022/004629 KR2022004629W WO2022211540A1 WO 2022211540 A1 WO2022211540 A1 WO 2022211540A1 KR 2022004629 W KR2022004629 W KR 2022004629W WO 2022211540 A1 WO2022211540 A1 WO 2022211540A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
sensor array
sensing
electrode
sensor
Prior art date
Application number
PCT/KR2022/004629
Other languages
French (fr)
Korean (ko)
Inventor
임보규
김예진
박종목
정서현
공호열
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022211540A1 publication Critical patent/WO2022211540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/129Diode type sensors, e.g. gas sensitive Schottky diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/005Specially adapted to detect a particular component for H2
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present invention relates to a hydrogen detection sensor array and a hydrogen detection system using the same, and more particularly, a sensor array for hydrogen detection capable of preventing leakage of an installation site and capable of high-sensitivity sensing at the same time, and through this, an accurate location of hydrogen leakage can be quickly detected It relates to a hydrogen detection system that can do this.
  • Hydrogen energy which is emerging due to the recent depletion of fossil fuels and environmental pollution, is likely to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. has a
  • Various hydrogen gas sensors have been developed, but they are large in size and complicated in structure, and are expensive.
  • Another object of the present invention is to provide a hydrogen detection system capable of quickly monitoring an accurate leak location in real time through a hydrogen detection sensor array installed in a high leak risk area.
  • a hydrogen sensor array for sensing hydrogen is a flexible film;
  • a plurality of unit sensors spaced apart from each other on the flexible film and sensing hydrogen; includes, wherein the unit sensor includes a tin oxide layer, a first electrode and a second electrode spaced apart from each other on the tin oxide layer, and the first It is characterized in that it contains a palladium nanoparticle layer located in a region where the electrode and the second electrode are spaced apart.
  • one end and the other end of the flexible film are connected to each other in the longitudinal direction and may be attached to a pipe through which hydrogen flows.
  • the surface of the tin oxide layer in a region where the first electrode and the second electrode are spaced apart from each other includes a first region where the palladium nanoparticle layer is located, and a palladium nanoparticle layer A second region not located may be included.
  • the area of the second region is 50% to 90% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode can
  • a polymer layer disposed on the tin oxide layer and the palladium nanoparticle layer may be further included.
  • a portion of the tin oxide layer may be in contact with the polymer layer.
  • the polymer of the polymer layer may be an acrylate-based polymer.
  • the polymer layer may be non-porous.
  • the polymer layer may include poly(C1-C4)alkyl methacrylate.
  • the polymer layer may include polymethyl methacrylate.
  • the polymer layer may have a flat surface.
  • the hydrogen detection system of the present invention includes a sensor unit including the sensor array for detecting hydrogen; and an output unit for outputting whether hydrogen leaks through the current or voltage value output from the sensor unit.
  • a control unit including a communication unit capable of generating sensing information by processing a current or voltage value output from the sensor unit, and capable of transmitting and receiving data with an external device;
  • the hydrogen detection system may further include a monitoring server for collecting and monitoring the sensing information received from the communication unit.
  • the sensor array for sensing hydrogen is a flexible material, the installation location is not limited, and as it can be directly installed in a location with a high risk of leakage, it prevents leakage of the installation site and provides high sensitivity to gas at the same time.
  • the sensor array for sensing hydrogen according to the present invention has high sensitivity to hydrogen gas, reliability and long-term stability, and sensing is possible in various environments.
  • the hydrogen detection system according to the present invention can quickly detect and monitor an accurate leak location in real time through a sensor array for detecting hydrogen installed in a location with a high risk of leakage, making repair and management easy, and the risk of hydrogen leak can be very low.
  • FIG. 1 is a photograph of a sensor array for sensing hydrogen according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of the sensor array for sensing hydrogen shown in Figure 1
  • FIG. 4 is a schematic diagram of a hydrogen detection system according to an embodiment of the present invention.
  • FIG. 5 is a graph of the detection test result for each hydrogen concentration of the sensor array for hydrogen detection shown in FIG. 1;
  • FIG. 6 is a graph of the hydrogen gas repeated sensitivity test result of the sensor array for sensing hydrogen shown in FIG. 1;
  • Figure 7 is a response-recovery time result graph for each hydrogen concentration of the sensor array for detecting hydrogen shown in Figure 1;
  • FIG. 8 is a graph of the hydrogen gas selectivity test result of the sensor array for sensing hydrogen shown in FIG. 1;
  • FIG. 9 is a graph of the long-term stability test result of the sensor array for sensing hydrogen shown in FIG. 1;
  • FIG. 10 is a hydrogen gas detection test result graph for each temperature of the sensor array for detecting hydrogen shown in FIG. 1;
  • FIG. 11 is a hydrogen gas detection test result graph for each humidity of the sensor array for detecting hydrogen shown in FIG. 1;
  • FIG. 14 is a graph showing a result of a repeated sensitivity test to hydrogen gas of a hydrogen gas sensor according to a comparative example.
  • the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
  • the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
  • the sensor array for sensing hydrogen is a flexible film; It includes; a plurality of unit sensors spaced apart from each other on the flexible film to detect gas.
  • the unit sensor contains a tin oxide layer, a first electrode and a second electrode spaced apart from each other on the tin oxide layer, and a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart from each other.
  • the sensor array for sensing hydrogen of the present invention can be installed at a desired location regardless of location through a flexible film.
  • a flexible film As shown in FIG. 2 as shown in FIG. 2 as it has high flexibility by the flexible film, it can be installed in a region that requires gas sensing, such as a gas cylinder, a gas pipe, and a gas storage tank, in a phenomenon corresponding to the region.
  • the sensor array itself occupies almost no space, so it can have high space efficiency, and as it is installed around the installation part, it can serve to prevent gas leakage of the installation part as well as being installed.
  • the leaking gas is supplied directly to each unit sensor without leaking to the outside, enabling rapid, high-sensitivity sensing of the sensor, and accurate identification of the leaked area, greatly reducing the risk of gas leak.
  • FIG. 1 is a photograph of a sensor array for sensing hydrogen according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the sensor array for sensing hydrogen shown in FIG. 1
  • FIG. 3 is a position of the sensor array for sensing hydrogen of the present invention It is a schematic diagram schematically illustrating the installation in
  • the sensor array for sensing hydrogen according to the present invention includes a flexible film, a plurality of unit sensors located on the flexible film.
  • the flexible film is not particularly limited as long as it is made of a material having insulation and flexibility.
  • it may be flexible polyimide or flexible polyethylene terephthalate.
  • Such a flexible film exhibits light transmittance while having flexibility and insulation properties, and can be applied to more diverse fields.
  • the flexible film has a high risk of leakage, and can be installed in close contact with a position forming a curved surface, so that it is possible to sense leakage and prevent the risk of leakage.
  • the flexible film may be a material that is flexible and can be contracted by an external force such as heat.
  • the flexible film is deformed into a shape corresponding to various installation positions, such as a pipe, a cylinder, and a storage tank, and can be installed without being limited to the installation position. Specifically, one end and the other end are connected to each other in the longitudinal direction and may be attached to a pipe through which hydrogen flows.
  • the flexible film is provided in the form of a film forming a surface having a width greater than or equal to the circumferential length of the installation location, and is installed to surround the installation location.
  • the lengthwise both ends of the overlapping flexible film may be bonded to each other by an adhesive where they come into contact with each other.
  • the flexible film may be provided as an annular film forming an inner diameter greater than or equal to the outer diameter of the installation position.
  • the flexible film may be formed in various ways without being limited in shape and size according to needs such as an installation location or installation conditions.
  • a plurality of unit sensors are provided on the flexible film, and as shown in the figure, they are spaced apart from each other at the same distance to form a constant pattern, but the present invention is not limited thereto, and may be arranged irregularly at a location with a risk of leakage.
  • each unit sensor includes a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; and a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart.
  • the unit sensor according to the present invention is a sensing unit, and by including a palladium nanoparticle layer in a specific area on the tin oxide layer, it is possible to quickly and accurately detect even a low concentration of hydrogen gas, and it is highly sensitive even when used repeatedly for a long time. can keep In addition, since it is possible to sense hydrogen gas even under various temperature and humidity conditions, industrial applicability is very high, and high hydrogen gas selectivity has the advantage that high sensitivity sensing is possible.
  • the tin oxide layer and the palladium nanoparticle layer are sensing units for sensing hydrogen, and hydrogen gas can be sensed by the tin oxide layer and the palladium nanoparticle layer.
  • hydrogen gas can be sensed by the tin oxide layer and the palladium nanoparticle layer.
  • the tin oxide layer is made of tin oxide (SnO x ), and O x may be selected from O 1 to O 10 depending on the degree of an oxide material, but is not limited thereto.
  • the tin oxide layer has a higher hydrogen adsorption rate compared to other oxide layers, making it possible to sense even low-concentration hydrogen gas.
  • the tin oxide layer specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
  • the palladium nanoparticle layer is positioned in a region in which the first and second electrodes are spaced apart on the tin oxide layer, and may be formed of palladium nanoparticles in the form of clusters or dispersed particles. As a specific example, it may be formed of cluster-type palladium nanoparticles having an average radius of 0.5 to 1 nm. As such a palladium nanoparticle layer has both conductivity and excellent hydrogen adsorption ability, it can adsorb a large amount of hydrogen gas and enables high-sensitivity sensing.
  • the palladium nanoparticle layer is located in a specific region, that is, in a region where the first electrode and the second electrode on the tin oxide layer are spaced apart.
  • the palladium nanoparticles may be uniformly or non-uniformly distributed in the region, and preferably, the palladium nanoparticles are distributed only in a partial region on the surface of the tin oxide layer in the region where the first electrode and the second electrode are spaced apart, the first electrode
  • the surface of the tin oxide layer in the region where the and second electrodes are spaced apart may include a first region in which the palladium nanoparticle layer is positioned and a second region in which the palladium nanoparticle layer is not positioned.
  • the area of the second region may be 50% to 90%, preferably 60% to 80%, of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode.
  • the hydrogen gas sensor including the tin oxide layer and the palladium nanoparticle layer as described above is capable of sensing hydrogen under various environmental conditions as well as high-sensitivity sensing. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
  • the first electrode and the second electrode are for measuring a change in current or resistance, and are spaced apart from each other on the tin oxide layer.
  • copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned, but are not limited thereto, and any material used as a general electrode may be used.
  • Each of the first and second electrodes may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
  • the polymer layer may be 100 nm or more, or 500 nm or more, specifically 1 ⁇ m to 10 ⁇ m, but is not limited thereto.
  • the metal oxide layer exposed to the outside, that is, the second region may be in direct contact with the polymer layer.
  • Such a hydrogen gas sensor may further increase hydrogen selectivity.
  • non-porous means that when the surface of the polymer layer is observed with a photograph of 25 ⁇ m X 20 ⁇ m measured with a scanning electron microscope, pores are not observed with the naked eye. Specifically, it may mean that pores having a size having a diameter of about 10 nm or more are not found.
  • the polymer layer may have a flat surface in terms of hydrogen selectivity.
  • having a flat surface may have higher hydrogen selectivity than having a non-planar surface.
  • the acrylate-based polymer may have a weight average molecular weight of 1,000 to 1,000,000 g/mol, specifically 5,000 to 500,000 g/mol, and more specifically 20,000 to 400,000 g/mol.
  • the polymer layer made of polymethyl methacrylate simultaneously satisfies a non-porous and flat surface, it is preferable because it can have very high hydrogen selectivity, high sensitivity and high reliability in hydrogen gas sensing.
  • FIG. 4 is a schematic diagram of a hydrogen sensing system according to an embodiment of the present invention.
  • the hydrogen detection system of the present invention is to accurately and quickly detect the location of hydrogen leakage through the above-described sensor array for hydrogen detection, and to quickly respond to hydrogen leakage, for the above-described hydrogen detection a sensor unit including a sensor array; and an output unit for outputting whether hydrogen leaks through the current or voltage value output from the sensor unit.
  • the sensor unit includes at least one or more sensor arrays, and may refer to an assembly of sensor arrays that are respectively installed in various locations where there is a risk of exposure.
  • the sensor unit is located in each sensor array, and a connection port electrically connected to each unit sensor is provided, and may be electrically connected to the output unit.
  • the hydrogen detection system may further include a control unit including a communication unit that generates sensing information by processing a current or voltage value output from the sensor unit, and is capable of transmitting and receiving data with an external device.
  • the communication unit may transmit/receive data wirelessly or by wire.
  • it may further include a monitoring server for collecting and monitoring the sensing information received from the communication unit.
  • the monitoring server can collect the sensed information and reprocess it into desired information, and quantify it to make it visually recognizable so that it can provide faster information to the manager. Through the monitoring server, a user can easily determine whether hydrogen is exposed in real time in a wireless terminal, etc.
  • the method of detecting hydrogen gas of the present invention through the hydrogen gas sensor of the present invention may be performed by measuring the current or resistance before and after exposing the detection target gas to the sensing unit.
  • measuring a drain current Ids(ref) of a hydrogen gas sensor to set a reference introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current Ids(detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on a drain current value changed (increased) before and after introduction of the detection target gas.
  • the detection of the detection gas may be performed with a changed resistance value instead of a changed drain current value before and after introduction of the detection target gas.
  • the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
  • Such a hydrogen gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
  • step by step It was prepared by baking while raising the temperature with a furnace. Each step was performed at a temperature of 60, 80, 150, 230 and 300°C, each step was performed for 30 minutes, but the last 300°C temperature was performed for 1 hour. A 0.1M SnCl2 solution using 2-methoxyethanol as a solvent was printed on a plurality of areas on the prepared polyimide substrate, and then annealed at 300°C for 1 hour to form a SnO2 layer.
  • PI liquid polyimide
  • first and second electrodes Al was deposited to a thickness of 90 nm and a width of 1000 ⁇ m through a shadow mask to form first and second electrodes. In this case, the separation distance between the first and second electrodes was 200 ⁇ m.
  • Pd was deposited at a rate of 0.1 ⁇ /s using a thermal evaporator to have an average thickness of 3 nm.
  • 4 mg/ml of PMMA in anisole was spin-coated (4,000 rpm, 30 seconds) and then heat treated at 175° C. for 10 minutes to prepare a sensor array.
  • Examples 2 to 9 were prepared with reference to Table 1 below. Examples 2 to 9 were carried out in the same manner as in Example 1, but each was carried out under the conditions described in Table 1 below.
  • Example 1 0.1M 3nm
  • Example 2 0.025M 3nm
  • Example 3 0.05M 3nm
  • Example 4 0.075M 3nm
  • Example 5 0.2M 3nm
  • Example 6 0.1M 1 nm
  • Example 7 0.1M 2nm
  • Example 8 0.1M 4nm
  • Example 9 0.1M 5nm
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the In 2 O 3 layer was formed instead of the SnO 2 layer.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that an IGO layer, not a SnO 2 layer, was formed.
  • Example 1 a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the WO 3 layer was formed instead of the SnO 2 layer.
  • Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of an MSTECH probe station with an MFC system.
  • the sensor array was placed at a distance of about 1 cm below the gas tube and directly exposed to the required concentration of gas.
  • the hydrogen gas detection test was conducted at room temperature. Using MFC, H2 gas (100ppm, 1%, 10% in N2) and dry air were mixed to produce hydrogen gas of the desired concentration. The detection characteristics were shown by comparing the current of the sensor array before and after exposure to hydrogen gas.
  • Example 5 is a graph showing the results of the detection test (experimental example) for each hydrogen concentration of the sensor array prepared in Example 1.
  • FIG. 6 is a graph showing the hydrogen gas repeated sensitivity test result of the sensor array of Example 1.
  • the hydrogen gas repeated sensitization test is to measure hydrogen gas of 0.1% and 2% concentration by the method of Experimental Example 5 times.
  • FIG. 3(a) is a graph showing the repeated sensitization test result of 0.1% concentration hydrogen gas
  • FIG. 3(b) is the repeated sensitization test result of 2% concentration hydrogen gas.
  • Example 7 is a response graph for each hydrogen concentration of the sensor array of Example 1 - recovery time results. Specifically, the response-recovery time results of the sensor at 0 to 2% hydrogen concentration are shown. Referring to FIG. 7 , it can be seen that the recovery speed is within 1 minute at room temperature and the response speed is fast.
  • Example 8 is a graph showing the hydrogen gas selectivity test result of the sensor array according to Example 1. Specifically, 10ppm of hydrogen gas, 100ppm of carbon dioxide (CO2), 100ppm of carbon monoxide (CO), 100ppm of methane gas (CH4), a mixed gas of 10ppm of hydrogen gas and 100ppm of carbon dioxide (CO2), 10ppm of hydrogen gas and 100 ppm of carbon monoxide (CO), a mixed gas of 10 ppm of hydrogen gas and 100 ppm of methane gas (CH4), a mixed gas of 10 ppm of hydrogen gas and 100 ppm of carbon dioxide, carbon monoxide, and methane gas was exposed to the sensor array to perform a detection test.
  • 10ppm of hydrogen gas, 100ppm of carbon dioxide (CO2), 100ppm of carbon monoxide (CO), 100ppm of methane gas (CH4) a mixed gas of 10 ppm of hydrogen gas and 100 ppm of carbon dioxide, carbon monoxide, and methane gas was exposed to the sensor array
  • FIG. 9 is a long-term stability test result graph of the sensor array according to Example 1. Long-term stability was tested by continuously exposing hydrogen at a concentration of 1000 ppm to the sensor array to perform a detection test according to time. Referring to FIG. 9 , hydrogen was stably detected without significant change even when measured for more than 50 days.
  • Example 10 is a graph showing the hydrogen detection ability measurement test result for each temperature of the sensor array according to Example 1. Specifically, it was performed at a hydrogen concentration of 1000 ppm, and the measurement temperature was set to -10 °C, 0 °C, 20 °C, 50 °C, 100 °C, 150 °C and 200 °C, respectively.
  • Example 11 is a graph showing the hydrogen gas detection ability measurement test result according to the humidity of the sensor array according to Example 1. Specifically, it was carried out at hydrogen concentrations of 0.01% and 0.1%, respectively, and measurements were made by setting the humidity to 0%, 20%, 40%, 60% and 80%.
  • FIG. 10 in which hydrogen detection ability was measured in various temperature conditions and FIG. 11 in which hydrogen gas detection ability was measured in various humidity conditions, it was confirmed that the sensor array of the present invention had hydrogen gas detection ability in various environments.
  • Examples 12 is a graph of hydrogen gas detection test results according to Examples 1 to 5; Specifically, the driving power was 1V and 5V, and was performed under a hydrogen concentration of 0.1%.
  • Example 1 using 0.1M concentration of SnCl 2 had excellent hydrogen gas detection ability.
  • Example 13 is a graph of hydrogen gas detection test results according to Example 1 and Examples 6 to 9;
  • FIG. 14 is a graph showing the hydrogen gas repeated sensitivity test result of the sensor array of Comparative Examples 1 to 3.
  • the hydrogen gas repeated sensitization test is to measure hydrogen gas with a concentration of 1% by the method of the experimental example 5 times.
  • FIG. 13(a) shows the results of Comparative Example 1
  • 13(b) shows the results of Comparative Example 2
  • 13(c) shows the results of Comparative Example 3.

Abstract

The present invention relates to a sensor array for sensing hydrogen and a hydrogen sensing system using same and, more specifically, to a sensor array for sensing hydrogen, which is capable of preventing leakage at an installation site and sensing at high sensitivity at the same time, and a hydrogen sensing system capable of quickly sensing an accurate leakage position of hydrogen through the sensor array. The sensor array of the present invention comprises: a flexible film; and a plurality of unit sensors which are spaced apart from each other on the flexible film and sense hydrogen, wherein the unit sensor comprises: a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; and a palladium nanoparticle layer located in a region where the first electrode and the second electrode are spaced apart from each other.

Description

수소 감지용 센서어레이 및 이를 이용한 수소 감지 시스템. A sensor array for hydrogen detection and a hydrogen detection system using the same.
본 발명은 수소 감지용 센서어레이 및 이를 이용한 수소 감지 시스템에 관한 것으로, 상세하게는 설치 부위의 누출을 방지함과 동시에 고감도 센싱이 가능한 수소 감지용 센서 어레이 및 이를 통해 수소의 정확한 누출위치를 신속히 감지할 수 있는 수소 감지 시스템에 관한 것이다.The present invention relates to a hydrogen detection sensor array and a hydrogen detection system using the same, and more particularly, a sensor array for hydrogen detection capable of preventing leakage of an installation site and capable of high-sensitivity sensing at the same time, and through this, an accurate location of hydrogen leakage can be quickly detected It relates to a hydrogen detection system that can do this.
최근 화석연료의 고갈 및 환경오염 문제로 인해 대두되고 있는 수소 에너지는 산업용 기초소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지, 핵융합에너지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 가능성을 지니고 있다. Hydrogen energy, which is emerging due to the recent depletion of fossil fuels and environmental pollution, is likely to be used in almost all fields used in the current energy system, from basic industrial materials to general fuels, hydrogen vehicles, hydrogen-powered airplanes, fuel cells, and nuclear fusion energy. has a
하지만, 수소가스는 폭발농도 범위가 넓고(4~75%), 발화에너지가 작아 미세한 정전기에도 쉽게 발화되기 때문에 누출된 양이 미량이라도 매우 위험할 수 있다. 이에, 수소 누출에 의한 대형사고 및 인명 피해를 줄이기 위해 수소가스를 빠르고 정확하게 탐지할 수 있는 고성능 센서가 요구된다. However, since hydrogen gas has a wide explosive concentration range (4 to 75%) and small ignition energy, it can be easily ignited even by minute static electricity, so even a small amount of leakage can be very dangerous. Accordingly, a high-performance sensor capable of quickly and accurately detecting hydrogen gas is required in order to reduce major accidents and human damage caused by hydrogen leakage.
현재까지 촉매연소 또는 열선을 사용한 센서, SiO2, AlN 금속산화(질화)물 반도체, 그리고 벌크 Pd, Pt에 SiC, GaN등을 이용하여 2극 구조의 숏키 장벽 다이오드(Schottky barrier diode)를 사용한 센서 등 다양한 수소 가스 센서가 개발되고 있지만, 이들은 크기가 크고 구조가 복잡할 뿐만 아니라 가격도 고가이다. 또한 300 ℃이상의 고온에서 동작하므로 소비전력이 클 뿐만 아니라 수소에 대한 민감도가 떨어지는 등의 한계성을 지니고 있다.Until now, sensors using catalytic combustion or hot wires, SiO2, AlN metal oxide (nitride) semiconductors, and sensors using a Schottky barrier diode with a bipolar structure using SiC, GaN, etc. in bulk Pd and Pt, etc. Various hydrogen gas sensors have been developed, but they are large in size and complicated in structure, and are expensive. In addition, since it operates at a high temperature of 300°C or higher, it has limitations such as not only high power consumption but also low sensitivity to hydrogen.
이에, 대한민국 등록특허공보 제10-0870126호 'Pd 나노와이어를 이용한 수소 가스 센서 제조방법'에 개시된 바와 같이, 수소 가스 센서로서 성능을 최적화할 수 있는 수소 가스 센서 재료 및 구조에 대한 연구가 진행중에 있으나, 여전히 상온에서 수소 가스에 대한 높은 민감도를 가질 수 있도록 작동하는 센서에 대한 개발이 필요한 실정이다.Accordingly, as disclosed in Korean Patent Publication No. 10-0870126 'Method for manufacturing hydrogen gas sensor using Pd nanowires', research on materials and structures for hydrogen gas sensors that can optimize performance as a hydrogen gas sensor is in progress. However, it is still necessary to develop a sensor that operates to have high sensitivity to hydrogen gas at room temperature.
게다가, 종래 수소센서는 비교적 경질의 소재로, 누출 위험 있는 수소봄베, 배관 및 저장탱크 등에 직접 설치가 불가능하여, 이들이 보관된 설치장소에 설치됨에 따라, 실제 가스배관에서 누출이 발생해도 수소의 빠른 확산능 때문에 검지하는데 어려움이 있다. 특히 밀폐공간이 아닌 개방된 공간인 경우, 고가의 고감도 수소가스센서임에도 불구하고 실질적으로 수소가스 누출을 감지하기 어려우며, 누출부위를 특정하기 어렵다는 단점이 있다.In addition, the conventional hydrogen sensor is a relatively hard material, and it is impossible to directly install it in a hydrogen cylinder, a pipe, a storage tank, etc. with a risk of leakage. It is difficult to detect because of its diffusivity. In particular, in the case of an open space rather than a closed space, it is difficult to detect a hydrogen gas leak in reality despite an expensive and highly sensitive hydrogen gas sensor, and it is difficult to specify a leaked area.
본 발명의 목적은 설치위치가 한정되지 않으며, 수소 가스에 대한 고감도 센싱이 가능한 수소 감지용 센서어레이를 제공하기 위한 것이다.It is an object of the present invention to provide a sensor array for detecting hydrogen that is not limited to an installation location, and is capable of high-sensitivity sensing of hydrogen gas.
그리고, 본 발명의 다른 목적은 누출위험도가 높은 부위에 설치된 수소 감지용 센서어레이를 통해, 실시간으로 정확한 누출위치를 신속히 모니터링할 수 있는 수소감지시스템을 제공하기 위한 것이다. Another object of the present invention is to provide a hydrogen detection system capable of quickly monitoring an accurate leak location in real time through a hydrogen detection sensor array installed in a high leak risk area.
본 발명에 따른 수소 감지용 수소센서어레이는 유연필름; 상기 유연필름 상에 서로 이격 위치하며 수소를 감지하는 복수개의 단위센서;를 포함하고, 상기 단위센서는 주석산화물층, 상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극 및 상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층을 함유하는 것을 특징으로 한다.A hydrogen sensor array for sensing hydrogen according to the present invention is a flexible film; A plurality of unit sensors spaced apart from each other on the flexible film and sensing hydrogen; includes, wherein the unit sensor includes a tin oxide layer, a first electrode and a second electrode spaced apart from each other on the tin oxide layer, and the first It is characterized in that it contains a palladium nanoparticle layer located in a region where the electrode and the second electrode are spaced apart.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 유연필름은 길이방향으로 일단과 타단이 서로 연결되어 수소가 유동하는 배관에 부착될 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, one end and the other end of the flexible film are connected to each other in the longitudinal direction and may be attached to a pipe through which hydrogen flows.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 제1전극과 제2전극이 이격된 영역의 상기 주석산화물층 표면은 상기 팔라듐 나노입자층이 위치하는 제1영역과, 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the surface of the tin oxide layer in a region where the first electrode and the second electrode are spaced apart from each other includes a first region where the palladium nanoparticle layer is located, and a palladium nanoparticle layer A second region not located may be included.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 제2영역의 면적은 상기 제1전극 및 제2전극에 의해 구획된 상기 주석산화물층 표면의 총 면적 중 50 % 내지 90%일 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the area of the second region is 50% to 90% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode can
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 주석산화물층과 상기 팔라듐 나노입자층 상에 위치하는 고분자층을 더 포함할 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, a polymer layer disposed on the tin oxide layer and the palladium nanoparticle layer may be further included.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 주석산화물층의 일부는 상기 고분자층과 접촉할 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, a portion of the tin oxide layer may be in contact with the polymer layer.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 고분자층의 고분자는 아크릴레이트계 고분자일 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the polymer of the polymer layer may be an acrylate-based polymer.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 고분자층은 비다공질 일 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the polymer layer may be non-porous.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 고분자층은 폴리(C1-C4)알킬메타크릴레이트를 포함할 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the polymer layer may include poly(C1-C4)alkyl methacrylate.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 고분자층은 폴리메틸메타크릴레이트를 포함할 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the polymer layer may include polymethyl methacrylate.
본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 있어서, 상기 고분자층은 평탄 표면을 가질 수 있다.In the sensor array for sensing hydrogen according to an embodiment of the present invention, the polymer layer may have a flat surface.
본 발명의 수소 감지 시스템은 상기 수소 감지용 센서어레이를 포함하는 센서부; 상기 센서부로부터 출력되는 전류 또는 전압값을 통해 수소 누출여부를 출력하는 출력부;를 포함한다.The hydrogen detection system of the present invention includes a sensor unit including the sensor array for detecting hydrogen; and an output unit for outputting whether hydrogen leaks through the current or voltage value output from the sensor unit.
본 발명의 일 실시예에 따른 수소 감지 시스템에 있어서, 상기 센서부로부터 출력된 전류 또는 전압값을 처리하여 센싱정보를 생성하며, 외부장치와 데이터 송수신이 가능한 통신부를 포함하는 제어부;를 더 구비할 수 있다.In the hydrogen detection system according to an embodiment of the present invention, a control unit including a communication unit capable of generating sensing information by processing a current or voltage value output from the sensor unit, and capable of transmitting and receiving data with an external device; can
본 발명의 일 실시예에 따른 수소 감지 시스템에 있어서, 상기 통신부로부터 수신된 센싱정보를 수집 및 모니터링하는 모니터링 서버를 더 포함할 수 있다. In the hydrogen detection system according to an embodiment of the present invention, it may further include a monitoring server for collecting and monitoring the sensing information received from the communication unit.
본 발명에 따른 수소 감지용 센서어레이는 유연한 소재로, 설치위치가 한정되지 않으며, 누출 위험도가 높은 위치에 직접 설치될 수 있음에 따라, 설치 부위의 누출을 방지함과 동시에 가스에 대한 높은 민감도를 가진다. The sensor array for sensing hydrogen according to the present invention is a flexible material, the installation location is not limited, and as it can be directly installed in a location with a high risk of leakage, it prevents leakage of the installation site and provides high sensitivity to gas at the same time. have
또한, 본 발명에 따른 수소 감지용 센서어레이는 수소 가스에 대한 높은 민감도, 신뢰성 및 장기안정성을 가지며, 다양한 환경에서도 센싱이 가능하다.In addition, the sensor array for sensing hydrogen according to the present invention has high sensitivity to hydrogen gas, reliability and long-term stability, and sensing is possible in various environments.
그리고, 본 발명에 따른 수소 감지 시스템은 누출위험도가 높은 부위에 설치된 수소 감지용 센서어레이를 통해, 실시간으로 정확한 누출위치를 신속히 감지 및 모니터링할 수 있어, 수리 및 관리가 용이하며, 수소 누출에 위험도를 매우 낮출 수 있다. In addition, the hydrogen detection system according to the present invention can quickly detect and monitor an accurate leak location in real time through a sensor array for detecting hydrogen installed in a location with a high risk of leakage, making repair and management easy, and the risk of hydrogen leak can be very low.
도 1은 본 발명의 일 실시예에 따른 수소 감지용 센서어레이의 사진,1 is a photograph of a sensor array for sensing hydrogen according to an embodiment of the present invention;
도 2는 도 1에 도시된 수소 감지용 센서어레이의 모식도, Figure 2 is a schematic diagram of the sensor array for sensing hydrogen shown in Figure 1,
도 3은 본 발명의 일 실시예에 따른 수소 감지용 센서어레이가 설치된 설치부위를 나타내는 모식도,Figure 3 is a schematic view showing an installation site for hydrogen detection sensor array is installed according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 수소 감지 시스템의 모식도,4 is a schematic diagram of a hydrogen detection system according to an embodiment of the present invention;
도 5는 도 1에 도시된 수소 감지용 센서어레이의 수소 농도별 검지테스트 결과 그래프,5 is a graph of the detection test result for each hydrogen concentration of the sensor array for hydrogen detection shown in FIG. 1;
도 6은 도 1에 도시된 수소 감지용 센서어레이의 수소 가스 반복 감응 테스트 결과 그래프,6 is a graph of the hydrogen gas repeated sensitivity test result of the sensor array for sensing hydrogen shown in FIG. 1;
도 7은 도 1에 도시된 수소 감지용 센서어레이의 수소농도별 응답-회복 시간 결과 그래프,Figure 7 is a response-recovery time result graph for each hydrogen concentration of the sensor array for detecting hydrogen shown in Figure 1;
도 8은 도 1에 도시된 수소 감지용 센서어레이의 수소가스 선택성 테스트 결과 그래프,8 is a graph of the hydrogen gas selectivity test result of the sensor array for sensing hydrogen shown in FIG. 1;
도 9는 도 1에 도시된 수소 감지용 센서어레이의 장기안정성 테스트 결과 그래프,9 is a graph of the long-term stability test result of the sensor array for sensing hydrogen shown in FIG. 1;
도 10은 도 1에 도시된 수소 감지용 센서어레이의 온도별 수소 가스 검지테스트 결과 그래프,10 is a hydrogen gas detection test result graph for each temperature of the sensor array for detecting hydrogen shown in FIG. 1;
도 11은 도 1에 도시된 수소 감지용 센서어레이의 습도별 수소 가스 검지테스트 결과그래프,11 is a hydrogen gas detection test result graph for each humidity of the sensor array for detecting hydrogen shown in FIG. 1;
도 12 내지 도 13은 본 발명의 실시예들에 따른 수소 가스 센서의 수소 가스 검지테스트 결과 비교 그래프,12 to 13 are graphs comparing hydrogen gas detection test results of a hydrogen gas sensor according to embodiments of the present invention;
도 14는 비교예에 따른 수소 가스 센서의 수소가스에 대한 반복 감응 테스트 결과 그래프이다.14 is a graph showing a result of a repeated sensitivity test to hydrogen gas of a hydrogen gas sensor according to a comparative example.
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Unless otherwise defined in technical terms and scientific terms used in this specification, those of ordinary skill in the art to which this invention belongs have the meanings commonly understood, and in the following description and accompanying drawings, the subject matter of the present invention Descriptions of known functions and configurations that may unnecessarily obscure will be omitted.
또한, 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular form used herein may be intended to include the plural form as well, unless the context specifically dictates otherwise.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.In addition, in the present specification, the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio, and weight % means any one component of the entire composition unless otherwise defined. It means % by weight in the composition.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다. In addition, the numerical range used herein includes the lower limit and upper limit and all values within the range, increments logically derived from the form and width of the defined range, all values defined therein, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
본 명세서의 용어, '포함한다'는 '구비한다', '함유한다', '가진다' 또는 '특징으로 한다' 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다. As used herein, the term 'comprising' is an open-ended description having an equivalent meaning to expressions such as 'comprising', 'containing', 'having' or 'characterized', and elements not listed in addition; Materials or processes are not excluded.
본 발명에 따른 수소 감지용 센서어레이는 유연필름; 상기 유연필름 상에 서로 이격 위치하며 가스를 감지하는 복수개의 단위센서;를 포함한다. 이때, 상기 단위센서는 주석산화물층, 상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극 및 상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층을 함유한다. The sensor array for sensing hydrogen according to the present invention is a flexible film; It includes; a plurality of unit sensors spaced apart from each other on the flexible film to detect gas. In this case, the unit sensor contains a tin oxide layer, a first electrode and a second electrode spaced apart from each other on the tin oxide layer, and a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart from each other.
종래 수소센서는 비교적 경질의 소재로, 누출 위험 있는 수소봄베, 배관 및 저장탱크 등에 직접 설치가 불가능하여, 이들이 보관된 설치장소에 설치됨에 따라, 실제 가스배관에서 누출이 발생해도 수소의 빠른 확산능 때문에 검지하는데 어려움이 있다. 특히 밀폐공간이 아닌 개방된 공간인 경우, 고가의 고감도 수소가스센서임에도 불구하고 실질적으로 수소가스 누출을 감지하기 어려우며, 누출부위를 특정하기 어렵다는 단점이 있다.Conventional hydrogen sensors are relatively hard materials and cannot be directly installed in hydrogen cylinders, pipes, and storage tanks, which are at risk of leakage. Therefore, it is difficult to detect. In particular, in the case of an open space rather than a closed space, it is difficult to detect a hydrogen gas leak in reality despite an expensive and highly sensitive hydrogen gas sensor, and it is difficult to specify a leaked area.
그러나, 본 발명의 수소 감지용 센서어레이는 유연필름을 통해 장소에 구애받지 않고 원하는 위치에 설치가 가능하다. 구체적으로 유연필름에 의해 높은 유연도를 가짐에 따라 도 2에 도시된 바와 같이, 가스 봄베, 가스배관 및 가스저장탱크 등 가스 센싱이 필요한 영역에 영역과 대응하는 현상으로 변형되어 설치될 수 있다. However, the sensor array for sensing hydrogen of the present invention can be installed at a desired location regardless of location through a flexible film. Specifically, as shown in FIG. 2 as shown in FIG. 2 as it has high flexibility by the flexible film, it can be installed in a region that requires gas sensing, such as a gas cylinder, a gas pipe, and a gas storage tank, in a phenomenon corresponding to the region.
이에, 센서어레이 자체가 공간을 거의 차지 않아 높은 공간효율성을 가질 수 있으며 설치부위를 감싸 설치됨에 따라, 설치됨과 동시에 설치부위의 가스누출을 방지하는 역할을 할 수 있다. 또한, 가스 누출 시, 누출되는 가스가 외부로 누출되지 않고 단위센서 각각에 직접 공급됨에 따라, 센서의 신속한 고감도 센싱이 가능하며, 누출부위를 정확하게 알 수 있어, 가스 누출에 대한 위험도를 매우 저하시킬 수 있다.Accordingly, the sensor array itself occupies almost no space, so it can have high space efficiency, and as it is installed around the installation part, it can serve to prevent gas leakage of the installation part as well as being installed. In addition, in the event of a gas leak, the leaking gas is supplied directly to each unit sensor without leaking to the outside, enabling rapid, high-sensitivity sensing of the sensor, and accurate identification of the leaked area, greatly reducing the risk of gas leak. can
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 수소 감지용 센서 어레이에 대해 상세히 설명한다. 첨부한 도면들은 통상의 기술자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 하기 위하여 어디까지나 예시적으로 제공되는 것으로서, 본 발명은 이하 제시되는 도면들로 한정되지 않는다.Hereinafter, a sensor array for sensing hydrogen according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The accompanying drawings are provided by way of example in order to sufficiently convey the technical idea of the present invention to those skilled in the art, and the present invention is not limited to the drawings presented below.
도 1은 본 발명의 일 실시예에 따른 수소 감지용 센서어레이의 사진이며, 도 2는 도 1에 도시된 수소 감지용 센서어레이의 모식도, 도 3은 본 발명의 수소 감지용 센서어레이가 다양한 위치에 설치되는 것을 모식화한 모식도이다.1 is a photograph of a sensor array for sensing hydrogen according to an embodiment of the present invention, FIG. 2 is a schematic diagram of the sensor array for sensing hydrogen shown in FIG. 1, FIG. 3 is a position of the sensor array for sensing hydrogen of the present invention It is a schematic diagram schematically illustrating the installation in
도 1 내지 도 3을 참조하면, 본 발명에 따른 수소 감지용 센서어레이는 유연필름, 유연필름 상에 위치하는 복수개의 단위센서를 포함한다. 1 to 3, the sensor array for sensing hydrogen according to the present invention includes a flexible film, a plurality of unit sensors located on the flexible film.
구체적으로, 유연필름은 절연성 및 유연성을 가지는 소재로 이루어진 것이라면 크게 제한되지 않는다. 일 예로, 도면에 도시된 바와 같이, 유연성 폴리이미드 또는 유연성 폴리에틸렌테레프탈레이트일 수 있다. 이와 같은 유연필름은 유연성 및 절연성을 가짐과 동시에 광투과성을 나타내며, 더욱 더 다양한 분야에 적용이 가능하도록 할 수 있다. 구체적으로, 유연필름은 도 3에 도시된 바와 같이, 누출위험도가 높으며, 곡면을 형성하는 위치에 밀착되어 설치될 수 있어, 누출을 센싱할 수 있음과 동시에, 누출위험을 방지할 수 있다.Specifically, the flexible film is not particularly limited as long as it is made of a material having insulation and flexibility. For example, as shown in the drawings, it may be flexible polyimide or flexible polyethylene terephthalate. Such a flexible film exhibits light transmittance while having flexibility and insulation properties, and can be applied to more diverse fields. Specifically, as shown in FIG. 3 , the flexible film has a high risk of leakage, and can be installed in close contact with a position forming a curved surface, so that it is possible to sense leakage and prevent the risk of leakage.
이와 달리, 유연필름은 유연함과 동시에 열과 같은 외력에 의해 수축이 가능한 소재일 수 있다. 구체적으로, 폴리에스테르(Polyester, PET), 배향성 폴리스티렌(Oriented polystyrene, OPS), 폴리염화비닐(Polyvinyl chloride, PVC) 및 폴리프로필렌(Polypropylene, PP)로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 고분자로 이루어진 소재일 수 있다. Alternatively, the flexible film may be a material that is flexible and can be contracted by an external force such as heat. Specifically, any one or two or more polymers selected from the group consisting of polyester (Polyester, PET), oriented polystyrene (OPS), polyvinyl chloride (PVC) and polypropylene (PP). It can be material.
유연필름은 배관, 봄베 및 저장탱크 등 여러 설치위치와 대응되는 형상으로 변형되어 설치위치에 한정되지 않고 설치될 수 있다. 구체적으로, 길이방향으로 일단과 타단이 서로 연결되어 수소가 유동하는 배관에 부착될 수 있다. 상세하게, 도3에 도시된 바와 같이, 유연필름은 설치위치의 둘레길이 이상의 너비를 가지는 면을 형성하는 필름형으로 구비되며, 설치위치를 감싸며 설치된다. 이때, 서로 겹치는 유연필름의 길이방향 양단은 각각 맞닿아 접촉되는 곳이 접착제에 의해 접착될 수 있다. The flexible film is deformed into a shape corresponding to various installation positions, such as a pipe, a cylinder, and a storage tank, and can be installed without being limited to the installation position. Specifically, one end and the other end are connected to each other in the longitudinal direction and may be attached to a pipe through which hydrogen flows. In detail, as shown in Figure 3, the flexible film is provided in the form of a film forming a surface having a width greater than or equal to the circumferential length of the installation location, and is installed to surround the installation location. In this case, the lengthwise both ends of the overlapping flexible film may be bonded to each other by an adhesive where they come into contact with each other.
이와 달리, 유연필름은 설치위치의 외경 이상의 내경을 형성하는 환형의 필름으로 구비될 수도 있다. 이처럼, 유연필름은 설치위치 또는 설치조건 등 필요에 따라 형상 및 크기가 한정되지 않고 다양하게 형성될 수 있다.Alternatively, the flexible film may be provided as an annular film forming an inner diameter greater than or equal to the outer diameter of the installation position. As such, the flexible film may be formed in various ways without being limited in shape and size according to needs such as an installation location or installation conditions.
단위센서는 상기 유연필름 상에 복수개로 구비되며, 도면에 도시된 바와 같이, 서로 동일간격으로 이격 배열되어 일정한 패턴을 형성할 수 있으나, 이에 한정되지 않고, 누출위험도가 있는 위치에 불규칙적으로 배열될 수 있다.A plurality of unit sensors are provided on the flexible film, and as shown in the figure, they are spaced apart from each other at the same distance to form a constant pattern, but the present invention is not limited thereto, and may be arranged irregularly at a location with a risk of leakage. can
구체적으로, 각 단위센서는 주석산화물층; 상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극; 및 상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층;을 포함한다.Specifically, each unit sensor includes a tin oxide layer; a first electrode and a second electrode spaced apart from each other on the tin oxide layer; and a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart.
본 발명에 따른 단위센서는 감지부로써, 주석산화물층 상 특정영역에 팔라듐 나노입자층을 포함함에 따라, 낮은 농도의 수소 가스에 대해서도 빠르고 정확한 검지가 가능하며, 장기적으로 반복하여 사용 시에도 고민감성을 유지할 수 있다. 또한, 다양한 온도 및 습도 조건에서도 수소 가스의 센싱이 가능하여 산업이용가능성이 매우 높으며, 높은 수소 가스 선택성을 나타내어 고감도 센싱이 가능하다는 장점이 있다.The unit sensor according to the present invention is a sensing unit, and by including a palladium nanoparticle layer in a specific area on the tin oxide layer, it is possible to quickly and accurately detect even a low concentration of hydrogen gas, and it is highly sensitive even when used repeatedly for a long time. can keep In addition, since it is possible to sense hydrogen gas even under various temperature and humidity conditions, industrial applicability is very high, and high hydrogen gas selectivity has the advantage that high sensitivity sensing is possible.
구체적으로, 주석산화물층 및 팔라듐 나노입자층은 수소를 감지하는 감지부로, 주석산화물층 및 팔라듐 나노입자층에 의해 수소 가스의 센싱이 가능하다. 제1 및 제2전극에 전원을 공급한 상태에서 주석산화물층 및 팔라듐 나노입자층에 수소가 노출될 경우, 수소가 흡착되며 전기적 특성이 변화되어 수소를 검지할 수 있다. Specifically, the tin oxide layer and the palladium nanoparticle layer are sensing units for sensing hydrogen, and hydrogen gas can be sensed by the tin oxide layer and the palladium nanoparticle layer. When hydrogen is exposed to the tin oxide layer and the palladium nanoparticle layer in a state in which power is supplied to the first and second electrodes, hydrogen is adsorbed and electrical properties are changed, so that hydrogen can be detected.
주석산화물층은 주석산화물(SnOx)로 이루어진 것으로, 산화 재질정도에 따라 Ox가 O1 내지 O10에서 선택될 수 있으나 이에 한정되진 않는다. 주석산화물층은 타 산화물층에 비해 면적대비 수소 흡착률이 높아 저농도 수소 가스도 센싱이 가능하도록 한다The tin oxide layer is made of tin oxide (SnO x ), and O x may be selected from O 1 to O 10 depending on the degree of an oxide material, but is not limited thereto. The tin oxide layer has a higher hydrogen adsorption rate compared to other oxide layers, making it possible to sense even low-concentration hydrogen gas.
주석산화물층의 5 내지 300 ㎚, 상세하게 30 내지 200 ㎚ 일 수 있으나 이에 한정되지 않는다. 다만, 상기 범위에서 두께 대비 높은 수소 감응을 나타낼 수 있다. 5 to 300 nm of the tin oxide layer, specifically 30 to 200 nm, but is not limited thereto. However, it may exhibit a high hydrogen sensitivity compared to the thickness in the above range.
팔라듐 나노입자층은 주석산화물층 상 제1,2전극이 이격된 영역에 위치하는 것으로, 클러스터 또는 분산된 입자형태의 팔라듐나노입자로 이루어질 수 있다. 구체예로, 평균 반경이 0.5 내지 1nm인 클러스터 형 팔라듐 나노입자로 이루어질 수 있다. 이와 같은 팔라듐 나노입자층은 전도성과 우수한 수소흡착능을 동시에 가짐에 따라 다량의 수소 가스를 흡착할 수 있으며, 고감도 센싱이 가능하도록 한다. The palladium nanoparticle layer is positioned in a region in which the first and second electrodes are spaced apart on the tin oxide layer, and may be formed of palladium nanoparticles in the form of clusters or dispersed particles. As a specific example, it may be formed of cluster-type palladium nanoparticles having an average radius of 0.5 to 1 nm. As such a palladium nanoparticle layer has both conductivity and excellent hydrogen adsorption ability, it can adsorb a large amount of hydrogen gas and enables high-sensitivity sensing.
구체적으로, 본 발명은 팔라듐 나노 입자층이 특정영역, 즉, 주석산화물층 상 제1전극 및 제2 전극이 이격된 영역에 위치함에 따라 높은 민감도로 수소가스 센싱이 가능하다. 팔라듐 나노입자는 상기 영역에서 균일 또는 불균일하게 분포되어 있을 수 있으며, 바람직하게, 팔라듐 나노입자는 제1전극과 제2전극이 이격된 영역의 주석산화물층 표면에 일부영역에만 분포되어, 제1전극과 제2전극이 이격된 영역의 주석산화물층 표면이 팔라듐 나노입자층이 위치하는 제1영역과, 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다. 상세하게, 제2영역의 면적은 제1전극 및 제2전극에 의해 구획된 주석산화물층 표면의 총 면적 중 50% 내지 90%, 바람직하게는 60% 내지 80%일 수 있다. 상기와 같은 주석산화물층 및 팔라듐 나노입자층을 포함하는 수소 가스 센서는 고민감도 센싱뿐만 아니라, 다양한 환경조건 하에서도 수소센싱이 가능하다. 구체적으로, 수소 가스 센서는 -50℃ 내지 300℃ 온도 10 내지 80% 의 습도 하에서도 고감도의 수소 센싱이 가능하다. Specifically, in the present invention, hydrogen gas sensing is possible with high sensitivity as the palladium nanoparticle layer is located in a specific region, that is, in a region where the first electrode and the second electrode on the tin oxide layer are spaced apart. The palladium nanoparticles may be uniformly or non-uniformly distributed in the region, and preferably, the palladium nanoparticles are distributed only in a partial region on the surface of the tin oxide layer in the region where the first electrode and the second electrode are spaced apart, the first electrode The surface of the tin oxide layer in the region where the and second electrodes are spaced apart may include a first region in which the palladium nanoparticle layer is positioned and a second region in which the palladium nanoparticle layer is not positioned. In detail, the area of the second region may be 50% to 90%, preferably 60% to 80%, of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode. The hydrogen gas sensor including the tin oxide layer and the palladium nanoparticle layer as described above is capable of sensing hydrogen under various environmental conditions as well as high-sensitivity sensing. Specifically, the hydrogen gas sensor is capable of high-sensitivity hydrogen sensing even at a temperature of -50°C to 300°C and a humidity of 10 to 80%.
일 실시예에 있어서, 팔라듐 나노입자층의 두께는 1 내지 5㎚일 수 있으나 이에 한정되진 않는다.In one embodiment, the thickness of the palladium nanoparticle layer may be 1 to 5 nm, but is not limited thereto.
제1전극 및 제2전극은 전류 또는 저항의 변화를 측정하기 위한 것으로, 주석산화물층 상에 서로 이격되어 위치한다. 일 예로, 구리, 알루미늄, 니켈, 티타늄, 은, 금, 백금 및 팔라듐 등을 들 수 있으나 이에 한정되는 것은 아니며, 일반적인 전극으로 사용되는 소재는 모두 사용 가능하다. 제1,2 전극의 각각 두께는 10㎚ 내지 200㎚ 구체적으로, 50㎚ 내지 150㎚일 수 있으나 이에 한정되지 않는다.The first electrode and the second electrode are for measuring a change in current or resistance, and are spaced apart from each other on the tin oxide layer. As an example, copper, aluminum, nickel, titanium, silver, gold, platinum, palladium, etc. may be mentioned, but are not limited thereto, and any material used as a general electrode may be used. Each of the first and second electrodes may have a thickness of 10 nm to 200 nm, specifically, 50 nm to 150 nm, but is not limited thereto.
본 발명의 일 실시예에 있어, 본 발명의 수소 가스 센서는 주석산화물층과 팔라듐 나노입자층 상에 형성되는 고분자층을 더 포함할 수 있다. In one embodiment of the present invention, the hydrogen gas sensor of the present invention may further include a polymer layer formed on the tin oxide layer and the palladium nanoparticle layer.
고분자층은 수소 가스를 선택적으로 투과할 수 있도록 하여 더욱 고감도의 수소 가스 센싱이 가능하도록 한다. 나아가 고분자층은 수분, 공기 등 외부 환경에서 팔라듐 나노입자의 이탈 방지 등 감지부를 보호하는 역할을 하여 장시간 동안 외부 노출 시 수분 등에 의해 수소 가스 민감도가 떨어지는 것을 방지한다. 즉, 고분자층은 감지부의 민감도, 수소선택성, 물리적 및 화학적 안정성을 현저히 향상시킬 수 있다. The polymer layer allows hydrogen gas to selectively permeate to enable more sensitive hydrogen gas sensing. Furthermore, the polymer layer serves to protect the sensing unit, such as preventing the escape of palladium nanoparticles from external environments such as moisture and air, and prevents the sensitivity of hydrogen gas from decreasing due to moisture when exposed to the outside for a long time. That is, the polymer layer can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit.
고분자층의 두께는 팔라듐 나노입자층을 충분히 보호할 수 있는 두께라면 특별히 한정되지 않는다. 다만, 상기 전극의 두께보다 두껍게 형성되어 고분자층의 가장자리가 전극 상에 위치할 수 있다. 이와 같은 고분자층은 감지부 뿐만 아니라, 수소 가스 센서의 전극도 외부 환경으로부터 보호함에 따라, 수소 가스 센서의 내구성을 더욱 높이는 역할을 할 수 있다. The thickness of the polymer layer is not particularly limited as long as it can sufficiently protect the palladium nanoparticle layer. However, since it is formed to be thicker than the thickness of the electrode, the edge of the polymer layer may be positioned on the electrode. As such a polymer layer protects not only the sensing unit but also the electrode of the hydrogen gas sensor from the external environment, it may serve to further enhance the durability of the hydrogen gas sensor.
구체적으로, 고분자층은 100㎚ 이상, 또는 500 nm 이상, 구체적으로 1㎛ 내지 10㎛ 일 수 있으나 이에 한정되지 않는다.Specifically, the polymer layer may be 100 nm or more, or 500 nm or more, specifically 1 μm to 10 μm, but is not limited thereto.
본 발명의 일양태에 있어서, 주석산화물 층 상에 고분자층이 형성될 시, 외부로 노출된 금속산화물층, 즉, 제2영역은 고분자층과 직접 접촉될 수 있다. 이와 같은 수소 가스 센서는 수소 선택성을 더욱 높일 수 있다.In one embodiment of the present invention, when the polymer layer is formed on the tin oxide layer, the metal oxide layer exposed to the outside, that is, the second region may be in direct contact with the polymer layer. Such a hydrogen gas sensor may further increase hydrogen selectivity.
고분자층은 팔라듐 나노입자층의 보호 및 수소 가스의 선택도를 높일 수 있는 구조라면 특별히 한정되지 않으나, 비다공질인 것이 수소 선택성에 있어서 유리할 수 있다. 고분자층이 동일한 고분자 소재로 이루어진 것일지라도 비다공질인 것이 다공질일 때보다 더욱 높은 수소 선택도를 가질 수 있다. The polymer layer is not particularly limited as long as it has a structure capable of protecting the palladium nanoparticle layer and increasing the selectivity of hydrogen gas, but a non-porous one may be advantageous in terms of hydrogen selectivity. Even if the polymer layer is made of the same polymer material, the non-porous one may have higher hydrogen selectivity than the porous one.
본 명세서에서, 비다공질이란 고분자층의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 기공이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 직경을 가지는 크기의 기공이 발견되지 않는 것을 의미할 수 있다. In the present specification, non-porous means that when the surface of the polymer layer is observed with a photograph of 25 μm X 20 μm measured with a scanning electron microscope, pores are not observed with the naked eye. Specifically, it may mean that pores having a size having a diameter of about 10 nm or more are not found.
또한, 고분자층은 평탄 표면을 가지는 것이 수소 선택성에 있어서 유리할 수 있다. 구체적으로, 고분자층이 동일한 비다공질 고분자 소재일 시, 평탄 표면을 가지는 것이 비 평탄 표면을 가지는 것 보다 더욱 높은 수소 선택도를 가질 수 있다.In addition, it may be advantageous for the polymer layer to have a flat surface in terms of hydrogen selectivity. Specifically, when the polymer layer is the same non-porous polymer material, having a flat surface may have higher hydrogen selectivity than having a non-planar surface.
본 명세서에서, 평탄 표면이란 스무드(smooth)한 표면을 일컫는 것으로, 고분자층의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 요철이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 최대 지름 및 최대 높이를 가지는 요철이 발견되지 않는 것을 의미할 수 있다. In the present specification, the flat surface refers to a smooth surface, and when the surface of the polymer layer is observed with a photograph of 25 μm X 20 μm measured with a scanning electron microscope, it means that irregularities are not observed with the naked eye. Specifically, it may mean that irregularities having a maximum diameter and maximum height of about 10 nm or more are not found.
고분자층은 상술한 바와 같이, 아크릴레이트계 고분자를 포함하는 것으로, 구체적으로, 폴리(C1-C4)알킬메타크릴레이트를 포함할 수 있다. 구체적으로, 폴리메타크릴레이트(polymethacrylate), 폴리메틸아크릴레이트(polymethylacrylate), 폴리메틸메타크릴레이트(PMMA), 폴리에틸아크릴레이트(polyethylacrylate), 폴리에틸메타크릴레이트(polyethylmetacrylate) 또는 이들의 혼합물에서 하나 이상 선택되는 것을 포함할 수 있다. 바람직하게 고분자층은 폴리메틸메타크릴레이트를 포함할 수 있다. 이와 같은 고분자층은 비다공질 구조를 통한 수소 선택도에 있어서 유리할 수 있다.As described above, the polymer layer includes an acrylate-based polymer, and specifically, may include poly(C1-C4)alkyl methacrylate. Specifically, one of polymethacrylate, polymethylacrylate, polymethylmethacrylate (PMMA), polyethylacrylate, polyethylmethacrylate, or a mixture thereof It may include those selected above. Preferably, the polymer layer may include polymethyl methacrylate. Such a polymer layer may be advantageous in terms of hydrogen selectivity through a non-porous structure.
상기 아크릴레이트계 고분자의 중량평균분자량은 1,000 내지 1,000,000 g/mol일 수 있고, 구체적으로 5,000 내지 500,000 g/mol, 보다 구체적으로 20,000 내지 400,000 g/mol, 일 수 있다.The acrylate-based polymer may have a weight average molecular weight of 1,000 to 1,000,000 g/mol, specifically 5,000 to 500,000 g/mol, and more specifically 20,000 to 400,000 g/mol.
특히, 폴리메틸메타크릴레이트로 이루어진 고분자층이 비다공질 및 평탄표면을 동시에 만족함에 따라 수소 가스 센싱에 있어 매우 높은 수소 선택성, 고감도 및 높은 신뢰성을 가질 수 있어 바람직하다..In particular, as the polymer layer made of polymethyl methacrylate simultaneously satisfies a non-porous and flat surface, it is preferable because it can have very high hydrogen selectivity, high sensitivity and high reliability in hydrogen gas sensing.
도 4에는 본 발명의 일 실시예에 따른 수소 감지 시스템의 모식도가 도시되어 있다.4 is a schematic diagram of a hydrogen sensing system according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 수소 감지 시스템은 상술한 수소 감지용 센서어레이를 통해, 수소 누출위치를 정확하고 신속하게 감지하여, 수소 누출에 대한 빠른 대응을 하기 위한 것으로, 상술한 수소 감지용 센서어레이를 포함하는 센서부; 및 센서부로부터 출력되는 전류 또는 전압값을 통해 수소 누출여부를 출력하는 출력부;를 포함한다.Referring to Figure 4, the hydrogen detection system of the present invention is to accurately and quickly detect the location of hydrogen leakage through the above-described sensor array for hydrogen detection, and to quickly respond to hydrogen leakage, for the above-described hydrogen detection a sensor unit including a sensor array; and an output unit for outputting whether hydrogen leaks through the current or voltage value output from the sensor unit.
센서부는 적어도 하나 이상의 센서어레이를 포함하는 것으로, 노출위험이 있는 여러 위치에 각각 설치되는 센서어레이들의 집합체를 의미할 수 있다. The sensor unit includes at least one or more sensor arrays, and may refer to an assembly of sensor arrays that are respectively installed in various locations where there is a risk of exposure.
센서부는 각 센서어레이들에 위치하며, 각 단위센서와 전기적으로 연결된 연결포트가 구비되어, 출력부와 전기적으로 연결될 수 있다. The sensor unit is located in each sensor array, and a connection port electrically connected to each unit sensor is provided, and may be electrically connected to the output unit.
출력부는 센서부로부터 출력되는 전류 또는 전압값을 통해 수소 누출여부를 출력하는 것으로, 미리 설정된 전류 및 전압값 이상의 전기자극이 인가되었을 시, 청각 및 시각을 통해 수소 누출여부를 출력하여 알릴 수 있다. 일 예로, 출력부는 일정한 전류가 흐를 때, 발광하는 발광체 일 수 있다. The output unit outputs whether hydrogen is leaking through the current or voltage value output from the sensor unit, and when an electric stimulus greater than a preset current and voltage value is applied, it can output and notify whether hydrogen leaks through the auditory or visual sense. For example, the output unit may be a light emitting body that emits light when a constant current flows.
본 발명의 일 실시예에 있어서, 수소 감지 시스템은 센서부로부터 출력된 전류 또는 전압값을 처리하여 센싱정보를 생성하며, 외부장치와 데이터 송수신이 가능한 통신부를 포함하는 제어부를 더 구비할 수 있다. 이때 통신부는 무선 또는 유선으로 데이터 송수신이 가능할 수 있다. In one embodiment of the present invention, the hydrogen detection system may further include a control unit including a communication unit that generates sensing information by processing a current or voltage value output from the sensor unit, and is capable of transmitting and receiving data with an external device. In this case, the communication unit may transmit/receive data wirelessly or by wire.
제어부는 출력된 전류 또는 전압값을 처리하여 상술한 출력부에 송신시킬 수 있다. 이때, 출력부는 시각적으로 센싱정보를 표시할 수 있는 모니터일 수 있다.The control unit may process the output current or voltage value and transmit it to the above-described output unit. In this case, the output unit may be a monitor capable of visually displaying the sensed information.
본 발명의 일 실시예에 있어서, 통신부로부터 수신된 센싱정보를 수집 및 모니터링 하는 모니터링 서버를 더 포함할 수 있다.In one embodiment of the present invention, it may further include a monitoring server for collecting and monitoring the sensing information received from the communication unit.
모니터링 서버는 센싱정보를 수집하여 원하는 정보로 재가공할 수 있으며, 시각적으로 인식성이 높도록 수치화하여 관리자에게 보다 빠른 정보를 제공할 수 있도록 한다. 모니터링 서버를 통해 무선단말기 등에서, 손쉽게 사용자가 실시간으로 수소 노출여부를 판단할 수 있다. The monitoring server can collect the sensed information and reprocess it into desired information, and quantify it to make it visually recognizable so that it can provide faster information to the manager. Through the monitoring server, a user can easily determine whether hydrogen is exposed in real time in a wireless terminal, etc.
상기한 본 발명의 수소 가스 센서를 통해 본 발명의 수소 가스를 검출하는 방법은 감지부에 검출 대상 가스를 노출시킨 전 후의 전류 또는 저항을 측정하여 이루어질 수 있다. 비한정적인 일 구체예로, 수소 가스 센서의 드레인 전류(Ids(ref))를 측정하여 기준을 설정하는 단계; 제1,2전극 사이에 위치하는 감지부에 검출 대상 가스를 도입하는 단계; 검출 대상 가스가 도입되었을 때의 드레인 전류(Ids(detect))를 측정하는 검출 단계; 및 측정된 드레인 전류값을 이용하여 검출 가스의 농도를 분석하는 단계;를 포함할 수 있으며, 검출 대상 가스의 도입 전 후 변화된(증가된) 드레인 전류값을 기준으로 검출 가스를 검출할 수 있다. 이와 달리, 검출 대상 가스의 도입 전 후에 따라 변화된 드레인 전류값이 아닌, 변화된 저항값으로 검출 가스의 검출이 이루어질 수 있음은 물론이다. The method of detecting hydrogen gas of the present invention through the hydrogen gas sensor of the present invention may be performed by measuring the current or resistance before and after exposing the detection target gas to the sensing unit. In one non-limiting embodiment, measuring a drain current Ids(ref) of a hydrogen gas sensor to set a reference; introducing a detection target gas to a sensing unit positioned between the first and second electrodes; a detection step of measuring a drain current Ids(detect) when a detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value, and the detection gas may be detected based on a drain current value changed (increased) before and after introduction of the detection target gas. Alternatively, it goes without saying that the detection of the detection gas may be performed with a changed resistance value instead of a changed drain current value before and after introduction of the detection target gas.
이때, 수소 가스 센서의 작동(검출) 온도는 -50 내지 300 ℃, 구체적으로 -10 내지 200 ℃, 보다 구체적으로 4 내지 100 ℃ 범위일 수 있다.In this case, the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, and more specifically 4 to 100 °C.
이와 같은 수소 가스 검출 방법은 0.1 내지 100000 ppm, 구체적으로 1 내지 80000 ppm의 농도 범위를 가지는 수소 가스를 검출할 수 있다.Such a hydrogen gas detection method may detect hydrogen gas having a concentration range of 0.1 to 100000 ppm, specifically, 1 to 80000 ppm.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail using examples, but the following examples are only illustrative to aid understanding of the present application, and the content of the present application is not limited to the following examples.
(실시예 1)(Example 1)
세척된 silicon wafer 기판(두께 : 500-550um, 비저항 : <0.005 ohm, SiO2두께 : 3000A (Dry))에 액상의 폴리이미드(polyimide,PI) 수지를 스핀코팅(1000rpm, 30초)한 후, 단계별로 온도를 높여가며 베이킹하여 제조하였다. 각 단계는 60, 80, 150, 230 및 300℃ 온도로 수행되었으며, 각 단계는 30분간 진행되었으나, 마지막 300℃ 온도는 1시간동안 수행되었다. 제조된 폴리이미드 기판 상에 2-methoxyethanol을 용매로 한 0.1M SnCl2용액을 복수개의 영역에 프린팅한 후 300℃ 에서 1시간동안 어닐링하여 SnO2층을 형성하였다. 그 다음, 섀도 마스크를 통해 Al을 두께 90nm , 너비 1000㎛로 증착하여 제1,2전극을 형성하였다. 이때, 제1,2전극의 이격거리는 200㎛였다. 그 다음 평균 3㎚ 두께를 갖도록 Pd을 thermal evaporator 이용하여 0.1Å/s의 속도로 증착하였다. 최종적으로 4mg/ml of PMMA in anisole을 스핀코팅 (4,000rpm, 30초) 후 175℃에서 10분간 열처리하여 센서어레이를 제조하였다.After spin-coating (1000rpm, 30 seconds) liquid polyimide (PI) resin on the cleaned silicon wafer substrate (thickness: 500-550um, resistivity: <0.005 ohm, SiO2 thickness: 3000A (Dry)), step by step It was prepared by baking while raising the temperature with a furnace. Each step was performed at a temperature of 60, 80, 150, 230 and 300°C, each step was performed for 30 minutes, but the last 300°C temperature was performed for 1 hour. A 0.1M SnCl2 solution using 2-methoxyethanol as a solvent was printed on a plurality of areas on the prepared polyimide substrate, and then annealed at 300°C for 1 hour to form a SnO2 layer. Then, Al was deposited to a thickness of 90 nm and a width of 1000 μm through a shadow mask to form first and second electrodes. In this case, the separation distance between the first and second electrodes was 200 μm. Then, Pd was deposited at a rate of 0.1 Å/s using a thermal evaporator to have an average thickness of 3 nm. Finally, 4 mg/ml of PMMA in anisole was spin-coated (4,000 rpm, 30 seconds) and then heat treated at 175° C. for 10 minutes to prepare a sensor array.
도 1에 제조한 수소 감지용 센서어레이를 도시하였다. A sensor array for sensing hydrogen prepared in FIG. 1 is shown.
이하, 실시예 2 내지 9를 하기 표 1을 참조하여 제조하였다. 실시예 2 내지 9는 실시예 1과 동일한 방법으로 진행하였으나, 하기 표 1에 기재된 조건으로 각각 진행하였다.Hereinafter, Examples 2 to 9 were prepared with reference to Table 1 below. Examples 2 to 9 were carried out in the same manner as in Example 1, but each was carried out under the conditions described in Table 1 below.
구분division SnCl2 용액 농도SnCl 2 solution concentration Pd 두께Pd thickness
실시예1Example 1 0.1M0.1M 3㎚3nm
실시예2Example 2 0.025M0.025M 3㎚3nm
실시예3Example 3 0.05M0.05M 3㎚3nm
실시예4Example 4 0.075M0.075M 3㎚3nm
실시예5Example 5 0.2M0.2M 3㎚3nm
실시예6Example 6 0.1M0.1M 1㎚1 nm
실시예7Example 7 0.1M0.1M 2㎚2nm
실시예8Example 8 0.1M0.1M 4㎚4nm
실시예9Example 9 0.1M0.1M 5㎚5nm
(비교예 1)(Comparative Example 1)
실시예 1에 있어서, SnO2층이아닌 In2O3층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the In 2 O 3 layer was formed instead of the SnO 2 layer.
(비교예 2)(Comparative Example 2)
실시예 1에 있어서, SnO2층이아닌 IGO층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that an IGO layer, not a SnO 2 layer, was formed.
(비교예 3)(Comparative Example 3)
실시예 1에 있어서, SnO2층이아닌 WO3층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로 수소 가스 센서를 제조하였다.In Example 1, a hydrogen gas sensor was manufactured in the same manner as in Example 1, except that the WO 3 layer was formed instead of the SnO 2 layer.
(실험예 1) 검지테스트 (Experimental Example 1) Detection test
가스 검지 특성은 MFC 시스템이 있는 MSTECH 프로브 스테이션의 반도체 매개변수 분석기 (B15000A, Agilent)를 사용하여 측정하였다. 센서어레이는 가스 튜브 아래 약 1cm 거리에 위치시키고, 요구되는 농도의 가스에 직접적으로 노출시켰다. 수소가스 검지 테스트는 상온에서 진행하였다. MFC를 이용해서 H2 gas (100ppm, 1%, 10% in N2) 와 dry air를 혼합하여 원하는 농도의 수소 가스 제작하였다. 검지 특성은 수소 가스에 노출되기 전과 후의 센서어레이 전류비교 통해 나타내었다. Gas detection characteristics were measured using a semiconductor parameter analyzer (B15000A, Agilent) of an MSTECH probe station with an MFC system. The sensor array was placed at a distance of about 1 cm below the gas tube and directly exposed to the required concentration of gas. The hydrogen gas detection test was conducted at room temperature. Using MFC, H2 gas (100ppm, 1%, 10% in N2) and dry air were mixed to produce hydrogen gas of the desired concentration. The detection characteristics were shown by comparing the current of the sensor array before and after exposure to hydrogen gas.
도 5는 실시예 1에서 제작한 센서어레이의 수소 농도별 검지테스트(실험예) 결과 그래프가 도시되어 있다. 5 is a graph showing the results of the detection test (experimental example) for each hydrogen concentration of the sensor array prepared in Example 1.
도 5를 참조하면, 저농도에서 고농도까지 수소 센싱이 가능하여 센싱범위가 매우 넓음을 확인할 수 있었다. Referring to FIG. 5 , it was confirmed that hydrogen sensing was possible from a low concentration to a high concentration, so that the sensing range was very wide.
도 6에는 실시예 1의 센서어레이의 수소 가스 반복 감응 테스트 결과 그래프가 도시되어 있다. 수소 가스 반복 감응 테스트는 0.1% 및 2% 농도의 수소가스를 5회간 실험예의 방법으로 측정한 것이다. 구체적으로, 도 3(a)는 0.1%농도 수소가스의 반복 감응 테스트 결과 그래프이며, 도 3(b)는 2%농도 수소가스의 반복 감응 테스트 결과이다.6 is a graph showing the hydrogen gas repeated sensitivity test result of the sensor array of Example 1. The hydrogen gas repeated sensitization test is to measure hydrogen gas of 0.1% and 2% concentration by the method of Experimental Example 5 times. Specifically, FIG. 3(a) is a graph showing the repeated sensitization test result of 0.1% concentration hydrogen gas, and FIG. 3(b) is the repeated sensitization test result of 2% concentration hydrogen gas.
도 6을 참조하면, 실시예에서 제조한 수소가스센서는 반복적인 수소 센서 측정 시, 반복측정 시에도 센싱 민감도가 저하되지 않으며, 감도가 유지됨을 확인할 수 있었다.Referring to FIG. 6 , it was confirmed that the hydrogen gas sensor manufactured in Example did not decrease the sensing sensitivity during repeated measurement of the hydrogen sensor, and the sensitivity was maintained.
도 7은 실시예 1의 센서어레이의 수소농도별 응답-회복 시간 결과 그래프이다. 구체적으로 0 내지 2% 수소 농도에서 센서의 응답-회복 시간 결과를 나타낸 것으로, 도 7을 참조하면 상온에서 회복속도가 거의 1분이내이며, 응답속도가 빠름을 확인할 수 있다. 7 is a response graph for each hydrogen concentration of the sensor array of Example 1 - recovery time results. Specifically, the response-recovery time results of the sensor at 0 to 2% hydrogen concentration are shown. Referring to FIG. 7 , it can be seen that the recovery speed is within 1 minute at room temperature and the response speed is fast.
도 8은 실시예 1에 따른 센서어레이의 수소가스 선택성 테스트 결과 그래프이다. 구체적으로 10ppm의 수소 가스, 100ppm의 이산화탄소(CO2), 100ppm의 일산화탄소(CO), 100ppm의 메탄가스(CH4), 10ppm의 수소 가스와 100ppm의 이산화탄소(CO2)를 혼합한 혼합가스, 10ppm의 수소 가스와 100ppm의 일산화탄소(CO)를 혼합한 혼합가스, 10ppm의 수소 가스와 100ppm의 메탄가스(CH4)를 혼합한 혼합가스, 10ppm의 수소 가스와 각각 100ppm인 이산화탄소, 일산화탄소, 메탄가스를 혼합한 혼합가스를 센서어레이에 노출시켜 검지테스트를 하였다.8 is a graph showing the hydrogen gas selectivity test result of the sensor array according to Example 1. Specifically, 10ppm of hydrogen gas, 100ppm of carbon dioxide (CO2), 100ppm of carbon monoxide (CO), 100ppm of methane gas (CH4), a mixed gas of 10ppm of hydrogen gas and 100ppm of carbon dioxide (CO2), 10ppm of hydrogen gas and 100 ppm of carbon monoxide (CO), a mixed gas of 10 ppm of hydrogen gas and 100 ppm of methane gas (CH4), a mixed gas of 10 ppm of hydrogen gas and 100 ppm of carbon dioxide, carbon monoxide, and methane gas was exposed to the sensor array to perform a detection test.
도 8을 참조하면, 일산화탄소, 이산화탄소, 메탄가스에 대한 감응은 거의 없는 반면 수소가스에는 높은 감응도를 나타내었다. 수소가스와 다른 가스를 혼합하여 공급할 시에도 감응도가 수소가스만 공급할 시와 비슷하였다.Referring to FIG. 8 , there was almost no sensitivity to carbon monoxide, carbon dioxide, and methane gas, whereas high sensitivity to hydrogen gas was exhibited. Even when a mixture of hydrogen gas and other gas was supplied, the sensitivity was similar to that when only hydrogen gas was supplied.
도 9는 실시예 1에 따른 센서어레이의 장기안정성 테스트 결과 그래프이다. 1000ppm의 농도의 수소를 센서어레이에 지속적으로 노출시켜 시간에 따른 검지테스트를 진행하여 장기 안정성을 테스트 하였다. 도 9를 참조하면 50일이상 측정시에도 큰 변화없이 안정적으로 수소를 검지하였다.9 is a long-term stability test result graph of the sensor array according to Example 1. Long-term stability was tested by continuously exposing hydrogen at a concentration of 1000 ppm to the sensor array to perform a detection test according to time. Referring to FIG. 9 , hydrogen was stably detected without significant change even when measured for more than 50 days.
도 10은 실시예 1에 따른 센서어레이의 온도별 수소 검지능 측정 테스트 결과 그래프이다. 구체적으로, 1000ppm의 수소 농도에서 수행되었으며, 측정온도를 -10℃, 0℃, 20℃, 50℃, 100℃, 150℃ 및 200℃로 각각 설정하여 측정하였다.10 is a graph showing the hydrogen detection ability measurement test result for each temperature of the sensor array according to Example 1. Specifically, it was performed at a hydrogen concentration of 1000 ppm, and the measurement temperature was set to -10 °C, 0 °C, 20 °C, 50 °C, 100 °C, 150 °C and 200 °C, respectively.
도 10을 참조하면, -10℃ 내지 200℃온도에서 모두 수소 가스 검지능을 가짐을 확인하였으며, 특히 100℃에서 우수한 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to Figure 10, it was confirmed that all of the hydrogen gas detection ability at a temperature of -10 °C to 200 °C, in particular, it was confirmed that it has an excellent hydrogen gas detection ability at 100 °C.
도 11은 실시예 1에 따른 센서어레이의 습도에 따른 수소 가스 검지능 측정 테스트 결과 그래프이다. 구체적으로, 0.01% 및 0.1%의 수소 농도 각각에서 수행되었으며, 0%, 20%, 40%, 60% 및 80%로 습도를 설정하여 측정하였다.11 is a graph showing the hydrogen gas detection ability measurement test result according to the humidity of the sensor array according to Example 1. Specifically, it was carried out at hydrogen concentrations of 0.01% and 0.1%, respectively, and measurements were made by setting the humidity to 0%, 20%, 40%, 60% and 80%.
도 11을 참조하면, 높은 습도에서도 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to FIG. 11 , it was confirmed that hydrogen gas detection ability was achieved even at high humidity.
다양한 온도 조건에서 수소 검지능을 측정한 도 10 및 다양한 습도 조건에서 수소 가스 검지능을 측정한 도 11을 참조하면, 본 발명의 센서어레이는 다양한 환경에서도 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to FIG. 10 in which hydrogen detection ability was measured in various temperature conditions and FIG. 11 in which hydrogen gas detection ability was measured in various humidity conditions, it was confirmed that the sensor array of the present invention had hydrogen gas detection ability in various environments.
도 12는 실시예 1 내지 실시예 5에 따른 수소 가스 검지 테스트 결과 그래프이다. 구체적으로 구동전력은 1V 및 5V이었으며, 0.1%의 수소농도 하에서 수행되었다.12 is a graph of hydrogen gas detection test results according to Examples 1 to 5; Specifically, the driving power was 1V and 5V, and was performed under a hydrogen concentration of 0.1%.
도 12를 참조하면, 실시예 모두 수소 가스 검지능을 가지나, 0.1M 농도의 SnCl2를 사용한 실시예 1이 우수한 수소 가스 검지능을 가짐을 확인할 수 있었다.Referring to FIG. 12 , all examples have hydrogen gas detection ability, but it was confirmed that Example 1 using 0.1M concentration of SnCl 2 had excellent hydrogen gas detection ability.
도 13은 실시예 1 및 실시예 6 내지 9에 따른 수소 가스 검지 테스트 결과 그래프이다.13 is a graph of hydrogen gas detection test results according to Example 1 and Examples 6 to 9;
도 13을 참조하면, 실시예 모두 수소 가스 검지능을 가지나, 3㎚의 두께에서 가장 우수한 수소 가스 검지능을 가짐을 확인하였다.Referring to FIG. 13 , it was confirmed that all of the Examples had hydrogen gas detection ability, but had the best hydrogen gas detection ability at a thickness of 3 nm.
도 14는 비교예 1 내지 3의 센서어레이의 수소 가스 반복 감응 테스트 결과 그래프가 도시되어 있다. 수소 가스 반복 감응 테스트는 1% 농도의 수소가스를 5회간 실험예의 방법으로 측정한 것이다. 구체적으로, 도 13(a)는 비교예1, 13(b)는 비교예 2 및 13(c)는 비교예 3의 결과를 나타낸다. 14 is a graph showing the hydrogen gas repeated sensitivity test result of the sensor array of Comparative Examples 1 to 3. The hydrogen gas repeated sensitization test is to measure hydrogen gas with a concentration of 1% by the method of the experimental example 5 times. Specifically, FIG. 13(a) shows the results of Comparative Example 1, 13(b) shows the results of Comparative Example 2, and 13(c) shows the results of Comparative Example 3.
도14를 참조하면, 비교예 모두 수소 가스 검지능을 가지나,1% 농도의 수소에서, Response가 90이하로, 0.1% 농도의 수소에서 300이상의 Response를 가지는 실시예1에 비해 검지능이 매우 떨어짐을 확인할 수 있었다.14, all of the comparative examples have hydrogen gas detection ability, but at 1% concentration of hydrogen, the Response is less than 90, and the detection ability is very low compared to Example 1, which has a response of 300 or more at 0.1% hydrogen. was able to confirm
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific matters and limited examples and drawings, but these are only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention is not limited to the above embodiments. Various modifications and variations are possible from these descriptions by those of ordinary skill in the art.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. Therefore, the spirit of the present invention should not be limited to the described embodiments, and not only the claims described below, but also all those with equivalent or equivalent modifications to the claims will be said to belong to the scope of the spirit of the present invention. .

Claims (14)

  1. 유연필름;flexible film;
    상기 유연필름 상에 서로 이격 위치하며 수소를 감지하는 복수개의 단위센서;를 포함하고,A plurality of unit sensors that are spaced apart from each other on the flexible film and detect hydrogen; including,
    상기 단위센서는 주석산화물층, 상기 주석산화물층 상 서로 이격 위치하는 제1전극과 제2전극 및 상기 제1전극과 제2전극이 이격된 영역에 위치하는 팔라듐 나노입자층을 함유하는 것을 특징으로 하는, 수소 감지용 센서어레이.The unit sensor is characterized in that it contains a tin oxide layer, a first electrode and a second electrode spaced apart from each other on the tin oxide layer, and a palladium nanoparticle layer positioned in a region where the first electrode and the second electrode are spaced apart from each other. , a sensor array for hydrogen detection.
  2. 제1항에 있어서, According to claim 1,
    상기 유연필름은 길이방향으로 일단과 타단이 서로 연결되어 수소가 유동하는 배관에 부착되는 것인, 수소 감지용 센서어레이.The flexible film has one end and the other end connected to each other in the longitudinal direction to be attached to a pipe through which hydrogen flows, a sensor array for sensing hydrogen.
  3. 제1항에 있어서,According to claim 1,
    상기 제1전극과 제2전극이 이격된 영역의 상기 주석산화물층 표면은 상기 팔라듐 나노입자층이 위치하는 제1영역과, 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함하는, 수소 감지용 센서어레이.The surface of the tin oxide layer in the area where the first electrode and the second electrode are spaced apart includes a first area where the palladium nanoparticle layer is located and a second area where the palladium nanoparticle layer is not located, a sensor array for sensing hydrogen .
  4. 제1항에 있어서,According to claim 1,
    상기 제2영역의 면적은 상기 제1전극 및 제2전극에 의해 구획된 상기 주석산화물층 표면의 총 면적 중 50 % 내지 90%인, 수소 감지용 센서어레이.The area of the second region is 50% to 90% of the total area of the surface of the tin oxide layer partitioned by the first electrode and the second electrode, a sensor array for sensing hydrogen.
  5. 제1항에 있어서,According to claim 1,
    상기 주석산화물층과 상기 팔라듐 나노입자층 상에 위치하는 고분자층을 더 포함하는, 수소 감지용 센서어레이.Further comprising a polymer layer positioned on the tin oxide layer and the palladium nanoparticle layer, a sensor array for sensing hydrogen.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 주석산화물층의 일부는 상기 고분자층과 접촉하는, 수소 감지용 센서어레이.A portion of the tin oxide layer is in contact with the polymer layer, a sensor array for sensing hydrogen.
  7. 제5항에 있어서,6. The method of claim 5,
    상기 고분자층의 고분자는 아크릴레이트계 고분자인, 수소 감지용 센서어레이.The polymer of the polymer layer is an acrylate-based polymer, a sensor array for sensing hydrogen.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 고분자층은 비다공질인, 수소 감지용 센서어레이.The polymer layer is non-porous, a sensor array for sensing hydrogen.
  9. 제5항에 있어서,6. The method of claim 5,
    상기 고분자층은 폴리(C1-C4)알킬메타크릴레이트를 포함하는, 수소 감지용 센서어레이.The polymer layer includes a poly (C1-C4) alkyl methacrylate, a sensor array for sensing hydrogen.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 고분자층은 폴리메틸메타크릴레이트를 포함하는, 수소 감지용 센서어레이.The polymer layer comprises a polymethyl methacrylate, a sensor array for sensing hydrogen.
  11. 제5항에 있어서,6. The method of claim 5,
    상기 고분자층은 평탄 표면을 가지는, 수소 감지용 센서어레이.The polymer layer has a flat surface, a sensor array for sensing hydrogen.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 수소 감지용 센서어레이를 포함하는 센서부;A sensor unit comprising a sensor array for detecting hydrogen according to any one of claims 1 to 11;
    상기 센서부로부터 출력되는 전류 또는 전압값을 통해 수소 누출여부를 출력하는 출력부;를 포함하는, 수소 감지 시스템.A hydrogen detection system comprising a;
  13. 제12항에 있어서,13. The method of claim 12,
    상기 센서부로부터 출력된 전류 또는 전압값을 처리하여 센싱정보를 생성하며, 외부장치와 데이터 송수신이 가능한 통신부를 포함하는 제어부;를 더 구비하는 수소 감지 시스템.A hydrogen detection system further comprising a; a control unit including a communication unit capable of generating sensing information by processing a current or voltage value output from the sensor unit, and capable of transmitting and receiving data with an external device.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 통신부로부터 수신된 센싱정보를 수집 및 모니터링하는 모니터링 서버를 더 포함하는 수소 감지 시스템. Hydrogen detection system further comprising a monitoring server for collecting and monitoring the sensing information received from the communication unit.
PCT/KR2022/004629 2021-03-31 2022-03-31 Sensor array for sensing hydrogen and hydrogen sensing system using same WO2022211540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210042356 2021-03-31
KR10-2021-0042356 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211540A1 true WO2022211540A1 (en) 2022-10-06

Family

ID=83459717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004629 WO2022211540A1 (en) 2021-03-31 2022-03-31 Sensor array for sensing hydrogen and hydrogen sensing system using same

Country Status (2)

Country Link
KR (1) KR20220136282A (en)
WO (1) WO2022211540A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259736A (en) * 1990-03-09 1991-11-19 Kurabe Ind Co Ltd Gaseous hydrogen detecting element
KR100186286B1 (en) * 1995-12-22 1999-05-15 한갑수 Sensor for methane gas using tin oxide and sensor for propane gas
KR20110100807A (en) * 2010-03-05 2011-09-15 전자부품연구원 Flexible gas sensor array, method of process
KR101339114B1 (en) * 2012-02-14 2013-12-09 인하대학교 산학협력단 Copper(Ⅱ) oxide nanonods coated with palladium, a preparation method thereof, and gas sensor using the same
KR20210001685A (en) * 2019-06-28 2021-01-06 엘지디스플레이 주식회사 Gas sensor operatable at room temperature, method of manufacturing the same and gas sensor array

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870126B1 (en) 2006-12-27 2008-11-25 연세대학교 산학협력단 A method for manufacturing hydrogen sensors by using Pd nano wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259736A (en) * 1990-03-09 1991-11-19 Kurabe Ind Co Ltd Gaseous hydrogen detecting element
KR100186286B1 (en) * 1995-12-22 1999-05-15 한갑수 Sensor for methane gas using tin oxide and sensor for propane gas
KR20110100807A (en) * 2010-03-05 2011-09-15 전자부품연구원 Flexible gas sensor array, method of process
KR101339114B1 (en) * 2012-02-14 2013-12-09 인하대학교 산학협력단 Copper(Ⅱ) oxide nanonods coated with palladium, a preparation method thereof, and gas sensor using the same
KR20210001685A (en) * 2019-06-28 2021-01-06 엘지디스플레이 주식회사 Gas sensor operatable at room temperature, method of manufacturing the same and gas sensor array

Also Published As

Publication number Publication date
KR20220136282A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
US5945069A (en) Gas sensor test chip
WO2012138054A9 (en) Humidity sensor, humidity-sensing method, and transistor for the humidity sensor
WO2011081245A1 (en) Hydrogen sensor, and method for fabricating same
WO2022211555A1 (en) Wrapping type gas sensor
WO2022211540A1 (en) Sensor array for sensing hydrogen and hydrogen sensing system using same
WO2017039356A1 (en) Allergen detection apparatus using electrochemical detection method
WO2015002426A1 (en) Organic solvent leak detection apparatus
CN110095522A (en) Monitor the organic transistor chemical sensor and preparation method thereof of lithium battery electrolytes
Wang et al. Study of polymer humidity sensor array on silicon wafer
Bonilla et al. A gas sensor for application as a propane leak detector
KR100851185B1 (en) Infrared thermographic screening technique for semiconductor-based chemical sensors
WO2022270810A1 (en) Gas heat conduction type hydrogen sensor having integrated structure
WO2023140470A1 (en) Hydrogen gas sensor and manufacturing method therefor
WO2022030932A1 (en) Gas sensor
WO2017200267A1 (en) Temperature measurement wafer sensor and method for manufacturing same
WO2022114660A1 (en) Capacitive gas sensor and method for manufacturing same
WO2022108428A1 (en) Hydrogen gas sensor
WO2021221425A1 (en) Electrode structure and ph sensor including same
De Wit et al. Application of poly (thienylene vinylene) as a chemiresistor for organic vapours
AU2002258354A1 (en) Infrared thermographic screening technique for semiconductor-based chemical sensors
AU2002258354A2 (en) Infrared thermographic screening technique for semiconductor-based chemical sensors
WO2019050233A1 (en) Oxygen-rich vanadium oxide electromagnetic wave sensor and system using same
US6709635B1 (en) Gas sensor test chip
WO2022005240A1 (en) Hydrogen sulfide gas detection sensor
KR100329806B1 (en) Gas sensors fabricated with p-type semiconducting materials doped wo3 solid solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781659

Country of ref document: EP

Kind code of ref document: A1