WO2023008468A1 - Device, base station, and communication method - Google Patents

Device, base station, and communication method Download PDF

Info

Publication number
WO2023008468A1
WO2023008468A1 PCT/JP2022/028897 JP2022028897W WO2023008468A1 WO 2023008468 A1 WO2023008468 A1 WO 2023008468A1 JP 2022028897 W JP2022028897 W JP 2022028897W WO 2023008468 A1 WO2023008468 A1 WO 2023008468A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbs
message
session
pdu session
smf
Prior art date
Application number
PCT/JP2022/028897
Other languages
French (fr)
Japanese (ja)
Inventor
美聡 森
輝文 ▲高▼田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023008468A1 publication Critical patent/WO2023008468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/20Support for services
    • H04L49/201Multicast operation; Broadcast operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]

Definitions

  • the present disclosure relates to devices, base stations and communication methods.
  • Non-Patent Document 1 In the Third Generation Partnership Project (3GPP), an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation Radio Access Technology (RAT), and LTE-Advanced, which is the 4th generation RAT As a successor, Release 15 of New Radio (NR), which is a fifth generation (5G) RAT, has been specified (for example, Non-Patent Document 1).
  • LTE Long Term Evolution
  • RAT Radio Access Technology
  • NR New Radio
  • Release 15 of 5G Core Network which is the 5th generation CN, has been specified as a successor to Evolved Packet Core (EPC), which is the 4th generation Core Network (CN) (for example, , Non-Patent Document 2).
  • EPC Evolved Packet Core
  • CN 4th generation Core Network
  • MBS Multicast Broadcast Service
  • 5GC 5MBS and the like.
  • MBS supports an individual mode that transmits multicast data and/or broadcast data (hereinafter referred to as "MBS data") via protocol data unit (PDU) sessions set for each terminal. is being considered.
  • MBS data multicast data and/or broadcast data
  • PDU protocol data unit
  • One object of the present disclosure is to provide an apparatus, a base station, and a communication method capable of appropriately controlling changes in PDU sessions used for transmission of MBS data.
  • a device includes a receiver that receives information about a multicast broadcast service (MBS) session, and a controller that identifies a plurality of terminals associated with the MBS session based on the information about the MBS session. and a transmission unit configured to transmit a message including one or more pieces of notification information regarding changes in each of the plurality of PDU sessions used for transmission of MBS data to the plurality of terminals.
  • MBS multicast broadcast service
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • FIG. 2 is a diagram showing an example of a transmission mode of MBS data according to this embodiment.
  • FIG. 3 is a diagram illustrating an example of a procedure for notifying a change of a PDU session related to MBS.
  • FIG. 4 is a diagram illustrating an example of an MBS-related PDU session change response procedure.
  • FIG. 5 is a diagram illustrating an example of a first notification integration procedure according to this embodiment.
  • FIG. 6A is a diagram showing an example of a UE list according to this embodiment.
  • FIGS. 6B to 6D are diagrams showing an example of a message including a PDU session change command according to this embodiment.
  • FIG. 7 is a diagram illustrating an example of a second notification integration procedure according to this embodiment.
  • FIG. 8 is a diagram illustrating an example of a third notification integration procedure according to this embodiment.
  • FIG. 9 is a diagram showing an example of the first response integration procedure according to this embodiment.
  • FIGS. 10A and 10B are diagrams showing an example of a message including a PDU session change command ACK according to this embodiment.
  • FIG. 11 is a diagram showing an example of the second response integration procedure according to this embodiment.
  • FIG. 12 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment.
  • FIG. 13 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
  • FIG. 14 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
  • FIG. 15 is a diagram showing an example of the functional block configuration of the CN device according to this embodiment.
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • a communication system 1 includes a terminal 10, a base station 20, a core network (CN) 30, and provides MBS.
  • CN core network
  • the terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like.
  • Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on.
  • the terminal 10 may be mobile or stationary.
  • the terminal 10 is configured to be able to communicate using at least one of LTE, LTE-Advanced, NR, etc. as a radio access technology (Radio Access Technology: RAT) for the base station 20, but not limited to this, It may be configured to be communicable using RAT of the sixth generation or later.
  • RAT Radio Access Technology
  • the terminal 10 is not limited to the access network defined by 3GPP as described above (3GPP access network). may access.
  • the base station 20 forms one or more cells and communicates with the terminal 10 using the cell.
  • Base station 20 includes gNodeB (gNB), en-gNB, radio access network (RAN), access network (AN), next generation radio access network (Next Generation-Radio Access Network: NG-RAN ) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), integrated access and back It may also be called a hall (Integrated Access and Backhaul/Backhauling: IAB) node, device, or the like.
  • the base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
  • the CN 30 is, for example, 5GC, but is not limited to this, and may be an EPC or a 6th generation or later core network.
  • CN 30 for example, Access and Mobility Management Function (AMF) 31, Session Management Function (SMF) 32, User Plane Function (UPF) 33, Multicast Broadcast (MB)-SMF 34, Multicast Broadcast (MB)-UPF 35, Multicast Broadcast Service Function (MBSF) 36, Network Exposure Function (NEF) 37, Application Function (AF) and/or Application Server (AS) (hereinafter referred to as "AF/AS”) 38, Policy and Charging Control Function (PCF) 39, etc.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • MB Multicast Broadcast
  • MBSF Multicast Broadcast Service Function
  • NEF Network Exposure Function
  • AF Application Function
  • AS Application Server
  • PCF Policy and Charging Control Function
  • CN functions are not limited to those shown in FIG.
  • names of the functions and interfaces shown in FIG. 1 are merely examples, and other names may be used as long as they have equivalent or similar functions.
  • a plurality of CN functions shown in FIG. 1 may be provided in a single device, or one CN function shown in FIG. 1 may be configured by a plurality of devices.
  • a device that constitutes part or all of each function of the core network 30 is called a “CN device”.
  • An interface may also be referred to as a reference point.
  • the number of terminals 10, base stations 20, and CN devices shown in FIG. 1 may be one or more. It goes without saying that one or more terminals 10 may be connected to one base station 20 . Also, multiple base stations 20 may be connected via an Xn interface. Also, each of the plurality of base stations 20 may be connected to the AMF 31 via the N2 interface. Also, a plurality of AMFs 31 may be connected to the SMF 32 via the N11 interface and to the MB-SMF 34 via the N11mb interface.
  • the AMF 31 is a CN device that manages access and/or mobility of the terminal 10.
  • the AMF 31 is connected to the base station 20 via the N2 interface and to the terminal 10 via the N1 interface.
  • the AMF 31 performs non-access stratum (NAS)-related C-plane processing (for example, registration management, connection management, mobility management), etc., and transmits and/or receives NAS messages to and from the terminal 10 .
  • NAS non-access stratum
  • the SMF 32 is a CN device that manages sessions, and controls, for example, session establishment, update and release.
  • the SMF 32 is connected to the AMF 31 via the N11 interface and to the UPF 33 via the N4 interface.
  • the UPF 33 is a CN device that serves as a connection point to a data network (DN) (not shown), and performs, for example, routing and transfer of packets.
  • the UPF 33 is connected to the SMF 32 via the N4 interface and to the base station 20 via the N3 interface.
  • the UPF 33 is the first user plane device that performs processing related to the U plane.
  • a logical connection relationship between the terminal 10 and the DN via the UPF 33 may be called a PDU session.
  • Information about each PDU session is stored within a given context (eg, "SM context" and/or "N4 session context").
  • SM context may be maintained in SMF32 and AMF31.
  • the N4 session context may be maintained in SMF32 and UPF33.
  • Downlink data from the DN is transmitted from the UPF 33 to the base station 20 via the N3 tunnel, and transmitted from the base station 20 to the terminal 10 via the radio bearer.
  • uplink data from the terminal 10 is transmitted from the terminal 10 to the base station 20 via the radio bearer, transmitted from the base station 20 to the UPF 33 via the N3 tunnel, and transmitted from the UPF 33 to the DN.
  • the N3 tunnel is a tunnel for transmitting encapsulated IP (Encapsulated Internet Protocol) packets, and may be called a U-plane tunnel or the like.
  • the PDU session may be configured by connecting the radio bearer between the terminal 10 and the base station 20 and the N3 tunnel between the base station 20 and the UPF 33 .
  • the MB-SMF 34 is a CN device that manages MBS sessions, and controls, for example, establishment, update and release of MBS sessions.
  • MB-SMF 34 is connected to AMF 31 via the N11mb interface and to MB-UPF 35 via the N4mb interface.
  • the MB-SMF 34 is also connected to the SMF 32 via the N16mb interface, to the MBSF 36 via the Nmb1 interface, to the NEF 37 via the N29mb interface, and to the AF/AS 38 via the Nmb13 interface.
  • An MBS session is also called a multicast broadcast (MB) session or the like.
  • MB multicast broadcast
  • joining (joining) to an MBS session includes a NAS message from the terminal 10 to the AMF 31 (for example, "UL NAS MB Session Join Request"), a request message from the AMF 31 to the MB-SMF 34 (for example, "MB Session Request” ), a response message from MB-SMF 34 to AMF 31 in response to the request message (eg, “MB Session Response”), a NAS message from AMF 31 to terminal 10 in response to the response message (eg, “DL NAS MB Session Join Accept ”) may be accepted.
  • a NAS message from the terminal 10 to the AMF 31 for example, "UL NAS MB Session Join Request"
  • a request message from the AMF 31 to the MB-SMF 34 for example, "MB Session Request”
  • a response message from MB-SMF 34 to AMF 31 in response to the request message eg, “MB Session Response”
  • the MB-UPF 35 is a CN device that controls transmission of MBS data from a DN (not shown). Downlink MBS data from a DN (not shown) is transmitted from MB-UPF 35 to base station 20 or UPF 33 .
  • the MB-UPF 35 is connected to the base station 20 via the N3mb interface and to the AF/AS 38 via the N6mb interface. Also, the MB-UPF 35 is connected to the UPF 33 via the N19mb interface, and is connected to the UPF 33 via the N9 interface.
  • MB-UPF 35 is a second user plane device that performs processing related to the U plane.
  • the NEF 37 provides an interface to the AF/AS 38 for MBS procedures including MBS session and QoS management.
  • the NEF 37 is connected to the MB-SMF 34 via the N29mb interface and to the AF/AS 38 via the N33 interface.
  • the NEF 37 is connected to the PCF 39 via the N30 interface.
  • MBSF 36 provides service-level functions for supporting MBS, such as selection of MB-SMF for MBS sessions.
  • MBSF 36 is connected to NEF 37 via Nmb5 interface and to PCF 39 via Nmb12 interface.
  • the AF/AS 38 is a CN device used for at least one of MBS session configuration, distribution of information on service reception, session establishment, session release, and data transfer.
  • Information about service reception may be, for example, an IP multicast address, parameters about the service (eg, service start time), and the like.
  • AF/AS 38 is connected to NEF 37 via N33 interface and to MB-UPF 35 via N6mb interface.
  • AF/AS 38 is also connected to MBSF 36 via at least one of the Nmb10 interface, the xMB-C interface and the MB2-C interface.
  • the PCF 39 is a CN device that controls policy and/or charging.
  • a policy is information about priorities for Quality of Service (QoS).
  • QoS Quality of Service
  • the PCF 39 may notify the SMF 32 and/or the MB-SMF 34 of the policy indicating the updated priority.
  • the PCF 39 is also connected to the SMF 32 via the N7 interface and to the MB-SMF 34 via the N7mb interface.
  • MBS data is registered by a message (e.g., join or leave message) of a multicast distribution control protocol (e.g., Internet Group Management Protocol (IGMP) or Multicast Listener Discovery (MLD)). It is distributed to each terminal 10 that has been (registered). Supporting an individual mode and a shared mode as MBS data delivery modes for each terminal 10 is under consideration.
  • IGMP Internet Group Management Protocol
  • MLD Multicast Listener Discovery
  • MBS data (a single copy of MBS data) received by CN 30 is sent to each terminal 10 via a PDU session for each terminal 10 (for example, a single unicast PDU session with each terminal 10). is transmitted to The individual mode is also called the first transmission mode, Individual MBS Traffic delivery, Ind-mode, and so on.
  • a terminal 10 in dedicated mode can receive MBS data regardless of whether the base station 20 forming the serving cell supports MBS.
  • MBS data (a single copy of MBS data) received by CN 30 is transmitted to base station 20 via a shared transport (Shared Transport) with base station 20, and a terminal under the control of base station 20 10 is transmitted by Point To Point (PTP) or Point To Multi-point (PTM).
  • the shared mode is also called a second transmission mode, Shared MBS Traffic delivery, Shared-mode, and so on.
  • a terminal 10 in shared mode can receive MBS data when a base station 20 forming a serving cell supports MBS.
  • FIG. 2 is a diagram showing an example of the MBS data transmission mode according to this embodiment.
  • MBS data from a DN (not shown) is received by MB-UPF 35 within CN 30 .
  • the MB-UPF 35 transmits received MBS data to the base station 20 via shared transport.
  • a shared transport is a shared tunnel within the CN 30, also called a shared downlink CN tunnel (Shred downlink CN Tunnel), N3 tunnel, and so on.
  • the base station 20 transmits the MBS data received from the MB-UPF 35 via the shared transport to the terminal 10 under its control by PTM or PTP.
  • shared mode MBS data for a large number of terminals 10 are bundled into one stream, so U-plane overhead in CN 30 can be reduced compared to dedicated mode.
  • MB-UPF 35 transfers the received MBS data to UPF 33 via the N9 tunnel.
  • the N9 tunnel is the tunnel of the N9 interface.
  • the UPF 33 replicates the MBS data received from the MB-UPF 35 and transmits the replicated MBS data to each terminal 10 through a PDU session individually established with each terminal 10 .
  • the terminal 10 can continue to receive MBS data.
  • MBS data is transmitted using a PDU session set for each terminal 10 . Therefore, for example, when the PDU session for each terminal 10 is changed due to various factors such as changing the QoS of the MBS session, the change procedure for each PDU session is performed for each terminal 10, resulting in consumption of network resources. may increase.
  • changing each PDU session means changing at least one of policy, priority and QoS rule of each PDU session, for example.
  • step Sxxx (x is an arbitrary number) indicate one or more steps included in step Sxxx, and the one or more steps are collectively referred to as step Sxxx.
  • FIG. 3 shows an example of a notification procedure for changing PDU sessions related to MBS.
  • FIG. 4 shows an example of a PDU session change response procedure for MBS.
  • terminals 10A to 10C participate in the same MBS session, but the number of terminals 10 is not limited to this, and may be one or more.
  • the terminals 10A to 10C are connected to the same base station 20 and AMF 31, but the present invention is not limited to this.
  • Multiple terminals 10 may participate in the MBS session via the same and/or different base stations 20 and the same and/or different SMFs 32 .
  • step S100 a procedure for updating the AF session with required QoS (AF session with required QoS update procedure) is performed.
  • the AF 38 transmits to the NEF 37 a message (for example, "Nnef_AFsessionWithQoSUpdate request") requesting MBS session prioritization according to the requested QoS.
  • the message may include, for example, information about the MBS session (hereinafter referred to as "MBS session information").
  • the MBS session information includes at least one of, for example, an MBS session identifier (hereinafter referred to as "MBS session ID”), an MBS session priority (hereinafter referred to as "MBS session priority”), and QoS rules. It's okay.
  • step S100b the NEF 37 authenticates the MBS session priority request from the AF 38 and applies a policy to control QoS for the authenticated AF.
  • step S100c the NEF 37 implements a policy update procedure with the PCF 39. Specifically, the NEF 37 transmits to the PCF 39 a message requesting policy update (for example, “Npcf_PolicyAuthorization Update request”). When approving the request from NEF 37, PCF 39 derives the parameters for the requested QoS, determines whether the QoS is allowed, and sends a response message indicating the decision result (for example, "Npcf_PolictAuthorization Update response" ) to NEF37
  • a message requesting policy update for example, “Npcf_PolicyAuthorization Update request”.
  • PCF 39 derives the parameters for the requested QoS, determines whether the QoS is allowed, and sends a response message indicating the decision result (for example, "Npcf_PolictAuthorization Update response" ) to NEF37
  • step S100d the NEF 37 sends a response message (for example, "Nnef_AFsessionWithQoSUpdateresponse") to the priority request in step S100a to the AF38.
  • a response message for example, "Nnef_AFsessionWithQoSUpdateresponse"
  • step S100e when the PCF 39 succeeds or fails to change the resource corresponding to the QoS update, it sends a notification message (for example, "Npcf_PolicyAuthorization Notify") to the NEF 37 to notify the success or failure of the change.
  • a notification message for example, "Npcf_PolicyAuthorization Notify"
  • step S100f the NEF 37 transmits a notification message (for example, "Nnef_AFsessionWithQoS Notify") to the AF 38 in response to the notification message from the PCF 39 to notify the success or failure of the QoS update of the AF session.
  • a notification message for example, "Nnef_AFsessionWithQoS Notify”
  • the policy update by the PCF 39 triggers the PDU session change procedure.
  • step S101 the PCF 39-led policy modification procedure (hereinafter referred to as "PCF initiated Service Management (SM) policy association modification procedure”) is implemented.
  • the PCF 39 may generate a policy for the MBS session and notify the SMF 32 of the generated policy.
  • the policy may include, for example, MBS session priority and/or MBS session ID.
  • step S102 a procedure is performed to transfer the N1 message to the terminal 10 and/or the N2 message to the base station 20 via the AMF31.
  • the SMF 32 transmits to the AMF 31 a message for transferring the N1 message and/or the N2 message (for example, "Namf_Communication_N1N2MessageTransfer").
  • the transfer message includes, for example, the MBS session priority for which QoS is updated, the MBS session ID, and the notification information regarding the modification of the PDU session (hereinafter referred to as "PDU Session Modification Command"). At least one may be included.
  • the AMF 31 may transmit to the SMF 32 a response message (for example, "Namf_Communication_N1N2MessageTransferResponse") to the transfer message.
  • the PDU session change command includes, for example, a PDU session identifier (hereinafter referred to as “PDU session ID”), priority (hereinafter referred to as “PDU session priority”), and information on QoS (eg, QoS rule etc.).
  • PDU session ID a PDU session identifier
  • PDU session priority priority
  • QoS information on QoS (eg, QoS rule etc.).
  • step S103 the SMF 32 generates RAN parameters related to the change of the PDU session, and transmits a message notifying the generated parameters (for example, "Nsmf_PDU_Session_SMContextStatusNotify") to the AMF 31.
  • a message notifying the generated parameters for example, "Nsmf_PDU_Session_SMContextStatusNotify"
  • step S104 the AMF 31 transmits a message (hereinafter referred to as "N2 message") via the N2 interface to the base station 20.
  • the N2 message may include a PDU session change command.
  • the N2 message may also be called "N2 PDU Session Request”.
  • the base station 20 and the terminal 10 carry out a procedure for modifying Access Network (AN)-specific resources (hereinafter referred to as "AN-specific resource modification of transport").
  • AN-specific resource modification of transport For example, the base station 20 may implement RRC Connection Reconfiguration, which changes necessary RAN resources related to PDU sessions with the UE.
  • the base station 20 transmits to the terminal 10 an RRC message including a PDU session change command (for example, a message used for reconfiguring an RRC connection, which is referred to as an “RRC Reconfiguration message”). good too.
  • the terminal 10 transmits an RRC message.
  • the RRC message from the terminal 10 may include response information regarding the modification of the PDU session (hereinafter referred to as "PDU Session Modification Command ACK").
  • An RRC message including a command ACK (for example, a message used for notifying the completion of RRC connection reconfiguration, which is referred to as an “RRC reconfiguration complete (RRCReconfigurationComplete) message”) may be transmitted to the terminal 10 .
  • step S107 the base station 20 transmits to the AMF 31 an N2 message (for example, "N2 NAS uplink transfer” or "N2 PDU Session Ack") including the PDU session change command ACK received in step S106.
  • N2 message for example, "N2 NAS uplink transfer” or "N2 PDU Session Ack"
  • step S108 update the association between AMF 31 and SMF 32 to support the PDU session and/or provide SMF 32 with information (eg, N1/N2 SM information) received from terminal 10 or base station 20
  • a procedure hereafter, "Nsmf_PDUSession_UpdateSMContext service operation"
  • the AMF 31 transmits to the SMF 32 a message (eg, “Nsmf_PDUSession_UpdateSMContextRequest”) including the information received from the base station 20 (eg, PDU session change command ACK).
  • step S108b the AMF 31 receives from the SMF 32 a response message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") to the message.
  • the SM context may be updated in AMF 31 and/or SMF 32 in step S108.
  • step S109 an N4 Session Modification procedure is implemented.
  • the SMF 32 receives a trigger to update the existing PDU session (for example, receives "Nsmf_PDUSession_UpdateSMContext Request" in step S108a)
  • the SMF 32 sends a request message (for example, "N4 session Modification Request”).
  • UPF 33 updates the parameters of the N4 session context in response to the request message.
  • the parameters may include QoS-related rules (eg, QoS Enforcement Rule (QER)) and the like.
  • the SMF 32 receives from the UPF 33 a response message (for example, "N4 session Modification Response") to the request message.
  • the N4 session context may be updated in SMF 32 and/or UPF 33 in step S109.
  • step S110 the SMF 32 notifies the PCF 39 of whether or not the policy has been changed in accordance with step S101.
  • steps S101 to S105 may be repeated for each of the terminals 10A to 10C.
  • steps S106-S110 may be repeated for each of the terminals 10A-10C. This may result in increased consumption of network resources.
  • a plurality of terminals 10 associated with an MBS session are specified, and a plurality of PDU session change commands for each of the plurality of terminals 10 are collectively transmitted instead of individually transmitted (hereinafter, ““Notification Consolidation”) to prevent increased consumption of network resources.
  • Notification Consolidation a plurality of PDU session change commands for each of the plurality of terminals 10 are collectively transmitted instead of individually transmitted (hereinafter, "“Notification Consolidation") to prevent increased consumption of network resources.
  • PDU session change command ACK by collectively transmitting the PDU session change command ACK from at least one of the plurality of terminals 10 instead of transmitting them individually (hereinafter referred to as "response integration"), network resources are consumed. Prevent growth.
  • notification integration In notification integration, a CN device (eg, SMF 32 or AMF 31) receives MBS session information and identifies multiple terminals 10 associated with the MBS session indicated by the MBS session information. The CN device also sends a message containing multiple PDU session change commands for multiple terminals 10 respectively. Thus, in notification aggregation, a message containing multiple PDU session change commands is transmitted.
  • SMF 32 or AMF 31 receives MBS session information and identifies multiple terminals 10 associated with the MBS session indicated by the MBS session information.
  • the CN device also sends a message containing multiple PDU session change commands for multiple terminals 10 respectively.
  • notification aggregation a message containing multiple PDU session change commands is transmitted.
  • the MBS session ID will be described below as an example of the MBS session information, it is not limited to this.
  • the MBS session information may include any information regarding the MBS session, such as, for example, MBS session ID and/or MBS session priority.
  • the MBS session ID hereinafter can be rephrased as MBS session information.
  • the SMF 32 receives the MBS session ID and identifies each terminal 10 associated with the MBS session indicated by the MBS session ID.
  • the CN device also sends a message containing each PDU session change command for each identified terminal 10 .
  • the SMF 32 transmits to the AMF 31 a message containing information about each identified terminal 10 and each PDU session change command for each identified terminal 10 . Also, SMF 32 may receive the MBS session ID from PCF 39 via MB-SMF 34 .
  • FIG. 5 is a diagram showing an example of the first notification integration procedure according to this embodiment.
  • FIG. 5 will be described with a focus on differences from FIG. Step S200 in FIG. 5 is the same as step S100 in FIG.
  • Step S201 in FIG. 5 differs from step S101 in FIG. 3 in that the "PCF initiated SM policy association modification procedure" is performed between the PCF 39 and MB-SMF 34.
  • the PCF 39 sends a message containing the MBS session ID to the MB-SMF 34.
  • the message may be a message for notification of policy update for the MBS session (eg, "Npcf_SMPolicyControl_UpdateNotify request").
  • step S201b MB-SMF 34 sends to PCF 39 a response message (for example, "Npcf_SMPolicyControl_UpdateNotifyresponse") to the message received in step S201a.
  • MB-SMF 34 transmits a message including the MBS session ID to SMF 32 in response to the message received from PCF 39 in step S201a.
  • the message may be a message for notifying the SMF 32 of policy update.
  • SMF 32 based on the MBS session ID notified from MB-SMF 34, SMF 32 identifies terminals 10A to 10C associated with the MBS session indicated by the MBS session ID.
  • the SMF 32 generates a list (hereinafter referred to as "UE list") including information on the identified terminals 10A-10C.
  • the information about each terminal 10 may include, for example, at least one of an identifier of each terminal 10 (hereinafter referred to as "terminal ID”) and an identifier of a PDU session of each terminal 10 (hereinafter referred to as "PDU session ID"). .
  • the terminal ID may be, for example, at least one of a Global Unique Temporary Identifier (GUTI), a Permanent Equipment Identifier (PEI), a Subscription Concealed Identifier (SUCI), and the IP address of the terminal 10.
  • GUI Global Unique Temporary Identifier
  • PEI Permanent Equipment Identifier
  • SUCI Subscription Concealed Identifier
  • the UE list may be generated for each AMF 31 that has terminals 10 participating in the MBS session under its control.
  • FIG. 6(A) is a diagram showing an example of a UE list according to this embodiment.
  • the SMF 32 determines the terminal IDs of the terminals 10A to 10C participating in the MBS session and the PDU session IDs of the PDU sessions set in the terminals 10A to 10C. may generate a UE list containing
  • step S204 the SMF 32 transmits to the AMF 31 a message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") including the UE list generated in step S203.
  • a message for example, "Nsmf_PDUSession_UpdateSMContextResponse"
  • step S205a the SMF 32 sends to the AMF 31 a message (for example, "Namf_Communication_N1N2MessageTransfer") containing a single PDU session change command corresponding to the MBS session of the MBS session ID received in step S202.
  • FIG. 6B is a diagram showing an example of a message including multiple PDU session change commands according to this embodiment. As shown in FIG. 6B, the message from SMF 32 to AMF 31 may contain a single PDU session change command corresponding to a single MBS session. Steps S205b and S206 in FIG. 5 are the same as steps S102b and S103 in FIG.
  • the PDU session change command may include information about QoS corresponding to the MBS session.
  • step S207 the AMF 31 duplicates (copies) the PDU session change command received in step S205a based on the UE list received in step S204, and generates PDU session change commands #1 to #3.
  • the AMF 31 may include terminal 10-specific PDU session information (eg, PDU session ID, etc.) in the PDU session change commands #1 to #3 based on the UE list.
  • FIG. 6(C) is a diagram showing another example of a message including multiple PDU session change commands according to this embodiment.
  • the message (for example, "Namf_Communication_N1N2MessageTransfer") may include PDU session change commands #1 to #3 for the PDU sessions of the terminals 10A to 10C, respectively.
  • PDU session change commands #1-#3 may be included within the S1 SM container within the message.
  • a single PDU session change command contained in "Namf_Communication_N1N2MessageTransfer” is duplicated into multiple PDU session change commands for each of multiple terminals 10 identified in the UE list.
  • AMF 31 sends to base station 20 a message (eg, “N2 message”) containing each PDU session change command for each terminal 10 identified in the UE list.
  • the N2 message in step S207 may include PDU session change commands #1 to #3 for the PDU sessions of the terminals 10A to 10C, respectively.
  • steps S208a to S208c based on the N2 message from the AMF 31, the base station 20 sends PDU session change commands #1 to #3 including PDU session change commands #1 to #3 to the terminals 10A to 10C, respectively. (eg, three RRC reconfiguration messages shown in FIG. 6(C)) are transmitted.
  • the PDU session change commands #1 to #3 are included in separate messages in the RAN between the base station 20 and the terminals 10A to 10C.
  • the PDU session change command corresponding to the MBS session is duplicated in PDU session change commands #1 to #3 for the terminals 10A to 10C, and the duplicated PDU session change commands #1 to #3 are combined into a single It is included in a message and transmitted from SMF 32 to AMF 31 and from AMF 31 to base station 20 .
  • PDU session change commands #1 to #3 of 10A to 10C are duplicated, the present invention is not limited to this.
  • PDU session change commands #1 to #3 may be included in the message (for example, Namf_Communication_N1N2MessageTransfer) from SMF 32 to AMF 31 in step S205a.
  • the notification of the UE list in step S204 may be omitted.
  • the PDU session change notification procedure is repeated for each terminal 10 corresponding to the same MBS session (for example, the terminals 10A to 10C in FIG. 3). Steps S101 to S105 are repeated for each) can be prevented. Therefore, consumption of network resources can be reduced.
  • the second notification integration procedure differs from the first notification integration procedure in that SMF 32 receives the MBS session ID from PCF 39 without going through MB-SMF 34 . Differences from the first notification integration procedure will be mainly described below.
  • FIG. 7 is a diagram showing an example of the second notification integration procedure according to this embodiment.
  • FIG. 7 will be described with a focus on differences from FIG. Steps S300 and S302-S307 of FIG. 7 are the same as steps S200 and S203-S208 of FIG.
  • Step S301 in FIG. 7 differs from step S201 in FIG. 5 in that the "PCF initiated SM policy association modification procedure" is performed between the PCF 39 and SMF 32.
  • the PCF 39 sends a message containing the MBS session ID to the SMF 32.
  • the message may be a message for notification of policy update for the MBS session (eg, "Npcf_SMPolicyControl_UpdateNotify request").
  • the SMF 32 sends to the PCF 39 a response message (for example, "Npcf_SMPolicyControl_UpdateNotifyresponse") to the message received in step S301a.
  • the message including the MBS session ID is transmitted from the PCF 39 to the SMF 32 without going through the MB-SMF 34. Therefore, for example, as shown in FIG.
  • the consumption of network resources can be reduced compared to transmitting the MBS session ID to the SMF 32 via the SMF 32 .
  • the third notification integration procedure differs from the first and second modification integration procedures in that the AMF 31 instead of the SMF 32 identifies each terminal 10 associated with the MBS session indicated by the MBS session ID.
  • the third notification integration procedure can be combined with the first or second change integration procedure. Differences from the first and second change integration procedures will be mainly described below.
  • the AMF 31 receives the MBS session ID from the SMF 32 and identifies each terminal 10 associated with the MBS session indicated by the MBS session ID. Also, the AMF 31 transmits to the base station 20 a message containing each PDU session change command used for transmission of MBS data for each identified terminal 10 .
  • the SMF 32 may receive the MBS session ID from the PCF 39 via the MB-SMF 34. Alternatively, SMF 32 may receive the MBS session ID from PCF 39 without going through MB-SMF 34 .
  • FIG. 8 is a diagram showing an example of a third notification integration procedure according to this embodiment.
  • the description will focus on differences from FIG. 5 or FIG. 8, steps S200 to S202 in FIG. 5 or steps S300 to S301 in FIG. 7 are performed before step S400.
  • step S400 of FIG. 8 the SMF 32 transmits a message containing the MBS session ID (for example, "Nsmf_PDUSession_UpdateSMContextResponse"), which is different from step S204 or S303 of FIG. 5 for transmitting the message containing the UE list.
  • the MBS session ID for example, "Nsmf_PDUSession_UpdateSMContextResponse”
  • step S401a the SMF 32 transfers the PDU session change commands #1 to #3 of the terminals 10A to 10C identified based on the MBS session ID to separate messages (eg, "Namf_Communication_N1N2MessageTransfer" of the terminals 10A to 10C). may be sent including That is, steps S401a-S402 may be performed by terminals 10A-10C, respectively.
  • steps S401a-S402 may be performed by terminals 10A-10C, respectively.
  • AMF 31 based on the MBS session ID notified from SMF 32, AMF 31 identifies terminals 10A to 10C associated with the MBS session indicated by the MBS session ID. AMF 31 generates the UE list. A UE list may be generated for each base station 20 that has a terminal 10 participating in the MBS session under its control.
  • step S404 the AMF 31 transmits to the base station 20 a message (eg, "N2 message") including PDU session change commands #1-#3 for the terminals 10A-10C identified in the UE list.
  • Steps S405a-405c are similar to steps 208a-208c of FIG. 5 or steps S307a-S307c of FIG.
  • the UE list is generated by the AMF 31, and the PDU session change command for each terminal 10 in the UE list is included in a single message and transmitted to the base station 20. Therefore, for example, as shown in FIG. 3, the consumption of network resources can be reduced compared to the case where the PDU session change command for each terminal 10 is transmitted from the AMF 31 to the base station 20 in separate messages.
  • a specific device receives at least one of multiple PDU session change command ACKs (response information) of multiple terminals 10 identified based on MBS session information. do.
  • a particular device uses a timer to control transmission of a message including at least one of the plurality of PDU session change command ACK.
  • multiple PDU session change command ACKs are combined and transmitted in one message instead of being transmitted in separate messages. Therefore, consumption of network resources can be reduced compared to the case where a plurality of messages are transmitted.
  • a first response aggregation procedure the base station 20 receives from the AMF 31 a message containing multiple PDU session change commands for each of multiple terminals 10 identified based on the MBS session ID.
  • the base station 20 receives at least one of a plurality of PDU session change command ACKs corresponding to each of the plurality of PDU session change commands.
  • the base station 20 uses a timer to control the transmission of messages containing at least one of a plurality of PDU session change command ACK.
  • the first response integration procedure can be combined with at least one of the first through third change integration procedures.
  • FIG. 9 is a diagram showing an example of the first response integration procedure according to this embodiment.
  • steps S200 to S206 in FIG. 5, steps S300 to S305 in FIG. 7, or steps S400 to S403 in FIG. 8 are performed before step S500.
  • Steps S500 and S501 of FIG. 9 are similar to steps S207 and S208 of FIG. 5, steps S306 and S307 of FIG. 7, and steps S404 and S405 of FIG.
  • the base station 20 starts a timer.
  • the base station 20 may start a timer upon receiving an N2 message containing PDU session change commands #1-#3 in step S500.
  • the set value of the timer may be determined in advance by specifications, or may be notified from another device (for example, AMF 31).
  • the base station 20 transmits a plurality of RRC messages (for example, three RRC reconfiguration complete messages shown in FIG. 10A) including PDU session change commands ACK#1 to #3, respectively, to the terminals 10A to 503c. Receive from 10C.
  • RRC messages for example, three RRC reconfiguration complete messages shown in FIG. 10A
  • PDU session change commands ACK#1 to #3 respectively, to the terminals 10A to 503c.
  • the base station 20 determines whether the timer started at step S502 expires. Also, the base station 20 determines whether PDU session change commands ACK#1 to #3 have been received from the terminals 10A to 10C before the timer expires. If the timer has not expired and the PDU session change commands ACK#1 to #3 have not been received, the base station 20 repeats step S504. On the other hand, when the timer expires or receives the PDU session change commands ACK#1 to #3 before the timer expires, the base station 20 proceeds to step S505.
  • the base station 20 When the timer expires, the base station 20 identifies UEs from messages (for example, N2 messages) containing one or more PDU session change command ACKs received before the timer expires, and checks them against the UE list. Base station 20 sends a response message containing the UE list to AMF 31 . On the other hand, if all of the PDU session change commands ACK#1 to #3 are received before the timer expires, the base station 20 identifies the PDU session change commands ACK#1 to #3 and compares them with the UE list. do. Send a message to the AMF 31 containing the UE list. In FIG.
  • step S505 the base station 20 receives the PDU session change commands as shown in FIG. 10B.
  • ACKs from #1 to #3 are identified and checked against the UE list. Send the N2 message containing the UE list to the AMF31.
  • step S506a the AMF 31 identifies UEs from one or more PDU session change command ACKs (here, PDU session change command ACKs #1 to #3) received from the base station 20, and checks them against the UE list. Send a message containing the UE list (eg, “Nsmf_PDUSession_UpdateSMContextRequest”) to SMF32.
  • step S506b the SMF 32 sends a response message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") to the message to the AMF 31.
  • the PDU session change commands ACK#1 to #3 are included in separate messages in the RAN between the base station 20 and the terminals 10A to 10C.
  • the PDU session change commands ACK#1-#3 for the terminals 10A-10C are included in a single message and transmitted from the base station 20 to the AMF31 and from the AMF31 to the SMF32.
  • UEs are identified from the PDU session change command ACKs received from multiple terminals 10 in the UE list and compared with the UE list, which are received before the timer expires.
  • the list of UEs is contained in a single message and transmitted on the network side (eg from base station 20 to AMF 31, from AMF 31 to SMF 32). Therefore, for example, as shown in FIG. 5, consumption of network resources can be reduced compared to the case where the PDU session change command ACK of a plurality of terminals 10 is transmitted in separate messages on the network side.
  • the AMF 31 on behalf of the base station 20 includes in a single message at least one PDU session change command ACK of the terminals 10 identified in the UE list. Different from the integration procedure.
  • the second response integration procedure can be combined with at least one of the first through third change integration procedures. Differences from the first response integration procedure will be mainly described below.
  • the AMF 31 transmits to the base station 20 a message containing multiple PDU session change commands for each of the multiple terminals 10 identified based on the MBS session IDs.
  • the base station 20 receives at least one of a plurality of PDU session change command ACKs corresponding to each of the plurality of PDU session change commands.
  • AMF 31 uses a timer to control the transmission of a message containing at least one of a plurality of PDU session change command ACK.
  • FIG. 11 is a diagram showing an example of the second response integration procedure according to this embodiment.
  • steps S200 to S206 in FIG. 5, steps S300 to S305 in FIG. 7, or steps S400 to S403 in FIG. 8 are performed before step S600.
  • Steps S600 and S601 of FIG. 11 are the same as steps S207 and S208 of FIG. 5, steps S306 and S307 of FIG. 7, and steps S404 and S405 of FIG.
  • the AMF 31 starts a timer.
  • AMF 31 may start a timer in response to sending a message (eg, N2 message) including PDU session change commands #1-#3 in step S600.
  • AMF 31 may start a timer in response to receiving a message (not shown) containing PDU session change commands #1-#3 from SMF 32 .
  • the set value of the timer may be determined in advance by specifications, or may be notified from another device (for example, AMF 31).
  • Steps S603a-603c are the same as steps S503a-503c in FIG.
  • the base station 20 sends the PDU session change commands ACK#1-#3 received from the terminals 10A-10C, respectively, to the AMF 31 in separate N2 messages.
  • the AMF 31 determines whether the timer started at step S602 expires. Also, the AMF 31 determines whether PDU session change commands ACK#1 to #3 have been received from the terminals 10A to 10C before the timer expires. If the timer has not expired and the PDU session change commands ACK#1 to #3 have not been received, the AMF 31 repeats step S605. On the other hand, when the timer expires or receives the PDU session change commands ACK#1 to #3 before the timer expires, the AMF 31 proceeds to step S606a.
  • the AMF 31 identifies the UE from one or more PDU session change command ACKs received until the timer expires, and checks it against the UE list. AMF 31 sends a message (eg, “Nsmf_PDUSession_UpdateSMContextRequest”) containing the UE list to SMF 32 . On the other hand, if the PDU session change command ACK#1-#3 is received before the timer expires, the AMF 31 identifies the UE from the PDU session change command ACK#1-#3 and checks it against the UE list. Send a message to SMF 32 containing the UE list.
  • a message eg, “Nsmf_PDUSession_UpdateSMContextRequest”
  • PDU session change commands ACK#1 to #3 are received before the timer expires. Identify UEs from 1 to #3 and check against the UE list. Send a message to SMF 32 containing the UE list. In step S606b, the SMF 32 sends a response message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") to the message to the AMF 31.
  • a response message for example, "Nsmf_PDUSession_UpdateSMContextResponse
  • the PDU session change commands ACK#1 to #3 are included in separate messages in the RAN between the base station 20 and the terminals 10A to 10C.
  • the PDU session change commands ACK#1-#3 for the terminals 10A-10C are included in a single message and transmitted from the AMF 31 to the SMF 32.
  • UEs are identified from the PDU session change command ACKs received from multiple terminals 10 in the UE list and compared with the UE list, which are received before the timer expires.
  • the UE list is included in a single message and transmitted on the network side (eg from AMF 31 to SMF 32). Therefore, for example, as shown in FIG. 5, consumption of network resources can be reduced compared to the case where the PDU session change command ACK of a plurality of terminals 10 is transmitted in separate messages on the network side.
  • FIG. 12 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment.
  • Each device within the communication system 1 can be any device shown in FIG. Reference numeral “30” in FIG. 12 denotes a CN device in CN 30, and generically refers to AMF 31, SMF 32, UPF 33, MB-SMF 34, MB-UPF 35, MBSF 36, NEF 37, AF/AS 38, and PCF 39.
  • Each device in the communication system 1 includes a processor 11, a storage device 12, a communication device 13 for wired or wireless communication, an input device for receiving various input operations, and an input/output device 14 for outputting various information.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the communication system 1 .
  • the processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment.
  • Each device within the communication system 1 may be configured with one or more processors 11 .
  • Each device may also be called a computer.
  • the storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive).
  • the storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
  • the communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. Further, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
  • RF Radio Frequency
  • BB BaseBand
  • the RF device generates a radio signal to be transmitted from the antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna, and transmits the digital baseband signal to the BB device.
  • the BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
  • the input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
  • Each device in the communication system 1 may omit part of the hardware shown in FIG. 11, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 12 may be configured by one or a plurality of chips.
  • FIG. 13 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment.
  • terminal 10 includes receiver 101 , transmitter 102 , and controller 103 .
  • the receiving unit 101 and the transmitting unit 102 may be collectively referred to as a "communication unit”.
  • All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 101 receives MBS data. Specifically, the receiving unit 101 receives MBS data via a PDU session for each terminal 10 in the individual mode. On the other hand, in the shared mode, receiving section 101 receives MBS data transmitted from MB-UPF 35 to base station 20 via the shared tunnel from base station 20 .
  • the receiving section 101 receives various messages from the base station 20 or the CN device.
  • the receiver 101 may receive PDU session change commands, N1 messages, NAS messages and RRC messages.
  • the receiving unit 101 may receive an RRC reconfiguration message including a PDU session change command.
  • receiving may include, for example, performing processing related to reception, such as at least one of signal reception, demapping, demodulation, decoding, and measurement.
  • receiving section 101 may measure a downlink signal and generate the terminal state information based on the result of the measurement.
  • the transmission unit 102 transmits various messages to the base station 20 or CN device.
  • the transmitter 102 may transmit PDU session change command ACK, N1 message, NAS message and RRC message. Also, the transmitting unit 102 may transmit an RRC reconfiguration complete message including the PDU session change command ACK. Note that "transmitting” may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and signal transmission.
  • the control unit 103 performs various controls in the terminal 10. Specifically, the control unit 103 may control reception of MBS data using a PDU session for each terminal 10 . Also, the control unit 103 may control the change of the PDU session for each terminal 10 according to the PDU session change command for each terminal 10 .
  • FIG. 14 is a diagram showing an example of the functional block configuration of the base station according to this embodiment.
  • the base station 20 includes a receiver 201, a transmitter 202, and a controller 203.
  • All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 201 receives various messages from the terminal 10, another base station 20, or the CN device. Specifically, the receiving unit 201 receives a message (eg, N2 message) including a plurality of PDU session change commands (notification information) from the CN device (eg, AMF 31). Each PDU session change command is notification information regarding the change of each PDU session for transmission of MBS data for each terminal 10 identified based on the MBS session information.
  • a message eg, N2 message
  • PDU session change commands notification information
  • the receiving unit 201 receives a message (eg, RRC reconfiguration complete message) including the PDU session change command ACK (response information) from each terminal 10 specified based on the MBS session information.
  • a message eg, RRC reconfiguration complete message
  • PDU session change command ACK response information about changing each PDU session for transmission of MBS data for each terminal 10 identified based on the MBS session information.
  • the transmission unit 202 transmits various messages from the terminal 10, other base stations 20, or CN devices. Specifically, the transmitting unit 202 transmits a message (eg, N2 message) including at least one of a plurality of PDU session change command ACKs to the CN device (eg, AMF 31).
  • a message eg, N2 message
  • the CN device eg, AMF 31
  • the transmitting unit 202 may transmit a message including one or more PDU session command ACKs received by the receiving unit 201 before the timer expires (eg, FIG. 9). Further, when the receiving unit 201 receives the plurality of PDU session change command ACKs before the timer expires, the transmitting unit 202 may transmit a message including the plurality of PDU session change command ACKs ( For example, FIG. 9).
  • the transmitting unit 202 transmits a message (eg, RRC reconfiguration message) including a PDU session change command to each terminal 10 identified based on the MBS session information.
  • a message eg, RRC reconfiguration message
  • the control unit 203 performs various controls in the base station 20. Specifically, the control unit 203 may use a timer to control transmission of a message including at least one of the plurality of PDU session change commands ACK (eg, FIG. 9). Also, the control unit 203 may start the timer in response to receiving a message including multiple PDU session change commands.
  • FIG. 15 is a diagram showing an example of the functional block configuration of the CN device according to this embodiment.
  • the CN device in FIG. 15 is, for example, SMF32 or AMF31, but other CN devices may have similar functional block configurations.
  • the CN device comprises a receiver 301 , a transmitter 302 and a controller 303 . Note that the receiving unit 301 and the transmitting unit 302 may be collectively referred to as a "communication unit".
  • All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 and the control unit 303 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 301 receives various messages from the terminal 10, the base station 20, or other CN devices. Specifically, receiving section 301 receives MBS session information from other CN devices. For example, the receiver 301 of the SMF 32 may receive MBS session information from the PCF 39 via the MB-SMF 34 (eg, FIG. 5). Alternatively, the receiver 301 of the SMF 32 may receive MBS session information from the PCF 39 without going through the MB-SMF 34 (eg, FIG. 7). Also, the receiving unit 301 of the AMF 31 may receive MBS session information from the SMF 32 (eg, FIG. 8).
  • the receiving unit 301 receives at least one of a plurality of PDU session commands ACK.
  • the multiple PDU session command ACKs may correspond to multiple PDU sessions used for transmission of MBS data for multiple terminals 10 identified based on the MBS session information.
  • the receiver 301 of the AMF 31 may receive a message (eg, "N2 message") including at least one of the plurality of PDU session command ACKs from the base station 20 (eg, FIG. 9).
  • the receiving unit 301 of the SMF 32 may receive a message (for example, “Nsmf_PDUSession_UpdateSMContextRequest”) including at least one of the plurality of PDU session command ACKs from the AMF 31 (for example, FIG. 9 or 11).
  • the transmission unit 302 transmits various messages to the terminal 10, the base station 20, or other CN devices. Specifically, the transmitter 302 transmits a message including multiple PDU session change commands. For example, the transmitting unit 302 of the SMF 32 transmits a message (eg, "Nsmf_PDUSession_UpdateSMContext Response") including the UE list (information on multiple terminals 10) identified based on the MBS session information to the AMF 31 (eg, FIG. 5 or 7).
  • a message eg, "Nsmf_PDUSession_UpdateSMContext Response"
  • the transmission unit 302 of the SMF 32 transmits a message (eg, "Namf_Communication_N1N2MessageTransfer") including multiple PDU session change commands to the AMF 31 (eg, FIGS. 5, 7, or 8).
  • the sending unit 302 of the AMF 31 sends a message (eg, “N2 message”) containing multiple PDU session change commands to the AMF 31 (eg, FIG. 5 or 7).
  • the transmitting unit 302 of the AMF 31 may transmit a message (eg, "Nsmf_PDUSession_UpdateSMContextRequest") including at least one of the plurality of PDU session command ACKs to the SMF 32 (eg, FIG. 9 or 11).
  • a message eg, "Nsmf_PDUSession_UpdateSMContextRequest”
  • the SMF 32 eg, FIG. 9 or 11
  • the control unit 303 performs various controls in the CN device. Specifically, the control unit 303 identifies one or more terminals 10 associated with the MBS session based on the MBS session information. For example, the control unit 303 of the SMF 32 may identify the terminal 10 based on MBS session information (eg, FIG. 5 or 7). Alternatively, the control unit 303 of the AMF 31 may identify the terminal 10 based on MBS session information (eg, FIG. 8).
  • a plurality of pieces of information (for example, a plurality of PDU session change commands or Multiple PDUs Session Change Command ACK) are transmitted in a single message on the network side. Therefore, it is possible to improve the utilization efficiency of resources on the network side.
  • multiple pieces of information are included in a single message on the network side, but the present invention is not limited to this.
  • a single PDU session change command from SMF 32 may be replicated into multiple PDU session change commands at base station 20 .
  • multiple PDU session change command ACKs from each of multiple terminals 10 may be integrated into a single PDU session change command ACK at the base station 20 or AMF 31 .
  • Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
  • a slot may be named any unit of time having a predetermined number of symbols.
  • RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers.
  • the use of the terminal 10 in the above embodiment is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to- Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like.
  • singularity and plurality in the above embodiments may be interchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This device comprises: a reception unit that receives information pertaining to a multicast broadcast service (MBS) session; a control unit that identifies, on the basis of the information pertaining to the MBS session, a plurality of terminals associated with the MBS session; and a transmission unit that transmits a message including a plurality of items of notification information pertaining to a change in each of a plurality of PDU sessions used in the transmission of MBS data to the plurality of terminals.

Description

装置、基地局及び通信方法Apparatus, base station and communication method 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年7月29日に出願された日本国特許出願2021-124662号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2021-124662 filed on July 29, 2021, and claims the benefit of its priority. incorporated herein by reference.
 本開示は、装置、基地局及び通信方法に関する。 The present disclosure relates to devices, base stations and communication methods.
 国際標準化団体であるThird Generation Partnership Project(3GPP)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLong Term Evolution(LTE)、第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNew Radio(NR)のリリース15が仕様化されている(例えば、非特許文献1)。 In the Third Generation Partnership Project (3GPP), an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation Radio Access Technology (RAT), and LTE-Advanced, which is the 4th generation RAT As a successor, Release 15 of New Radio (NR), which is a fifth generation (5G) RAT, has been specified (for example, Non-Patent Document 1).
 また、第4世代のコアネットワーク(Core Network:CN)であるEvolved Packet Core(EPC)の後継として、第5世代のCNである5G Core Network(5GC)のリリース15も仕様化されている(例えば、非特許文献2)。 In addition, Release 15 of 5G Core Network (5GC), which is the 5th generation CN, has been specified as a successor to Evolved Packet Core (EPC), which is the 4th generation Core Network (CN) (for example, , Non-Patent Document 2).
 現在、3GPPでは、マルチキャストデータ及び/又はブロードキャストデータの伝送サービスであるMulticast Broadcast Service(MBS)をサポートすることが検討されている。5GCにおけるMBSは、5MBS等とも呼ばれる。MBSでは、端末毎に設定されるプロトコルデータユニット(Protocol Data Unit:PDU)セッションを介してマルチキャストデータ及び/又はブロードキャストデータ(以下、「MBSデータ」という)を伝送する個別モード(Individual mode)をサポートすることが検討されている。  Currently, 3GPP is considering supporting the Multicast Broadcast Service (MBS), which is a transmission service for multicast data and/or broadcast data. MBS in 5GC is also called 5MBS and the like. MBS supports an individual mode that transmits multicast data and/or broadcast data (hereinafter referred to as "MBS data") via protocol data unit (PDU) sessions set for each terminal. is being considered.
 しかしながら、例えば、MBS用のセッション(以下、「MBSセッションという」)のQoSの更新(update)等の種々の要因によって、各端末に対するMBSデータの伝送に用いられる各PDUセッションが変更される場合、当該各PDUセッションの変更(modification)に関する手順が端末毎に実施される結果、ネットワーク側におけるリソース(以下、「ネットワークリソース」という)の消費が増大する恐れがある。
 本開示は、MBSデータの伝送に用いられるPDUセッションの変更を適切に制御可能な装置、基地局及び通信方法を提供することを目的の一つとする。
However, for example, when each PDU session used for transmitting MBS data to each terminal is changed due to various factors such as update of QoS of session for MBS (hereinafter referred to as "MBS session"), As a result of the procedure for modification of each PDU session being performed for each terminal, resource consumption on the network side (hereinafter referred to as "network resources") may increase.
One object of the present disclosure is to provide an apparatus, a base station, and a communication method capable of appropriately controlling changes in PDU sessions used for transmission of MBS data.
 本開示の一態様に係る装置は、マルチキャストブロードキャストサービス(MBS)セッションに関する情報を受信する受信部と、前記MBSセッションに関する情報に基づいて、前記MBSセッションに関連付けられた複数の端末を特定する制御部と、前記複数の端末に対するMBSデータの伝送に用いられる複数のPDUセッションであって、前記複数のPDUセッションそれぞれの変更に関する一つ又は複数の通知情報を含むメッセージを送信する送信部と、を備える。 A device according to an aspect of the present disclosure includes a receiver that receives information about a multicast broadcast service (MBS) session, and a controller that identifies a plurality of terminals associated with the MBS session based on the information about the MBS session. and a transmission unit configured to transmit a message including one or more pieces of notification information regarding changes in each of the plurality of PDU sessions used for transmission of MBS data to the plurality of terminals. .
 本開示の一態様によれば、MBSデータの伝送に用いられるPDUセッションの変更を適切に制御できる。 According to one aspect of the present disclosure, it is possible to appropriately control changes in PDU sessions used for transmission of MBS data.
図1は、本実施形態に係る通信システムの概要の一例を示す図である。FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment. 図2は、本実施形態に係るMBSデータの伝送モードの一例を示す図である。FIG. 2 is a diagram showing an example of a transmission mode of MBS data according to this embodiment. 図3は、MBSに係るPDUセッションの変更の通知手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a procedure for notifying a change of a PDU session related to MBS. 図4は、MBSに係るPDUセッションの変更の応答手順の一例を示す図である。FIG. 4 is a diagram illustrating an example of an MBS-related PDU session change response procedure. 図5は、本実施形態に係る第1の通知統合手順の一例を示す図である。FIG. 5 is a diagram illustrating an example of a first notification integration procedure according to this embodiment. 図6(A)は、本実施形態に係るUEリストの一例を示す図である。図6(B)~(D)は、本実施形態に係るPDUセッション変更コマンドを含むメッセージの一例を示す図である。FIG. 6A is a diagram showing an example of a UE list according to this embodiment. FIGS. 6B to 6D are diagrams showing an example of a message including a PDU session change command according to this embodiment. 図7は、本実施形態に係る第2の通知統合手順の一例を示す図である。FIG. 7 is a diagram illustrating an example of a second notification integration procedure according to this embodiment. 図8は、本実施形態に係る第3の通知統合手順の一例を示す図である。FIG. 8 is a diagram illustrating an example of a third notification integration procedure according to this embodiment. 図9は、本実施形態に係る第1の応答統合手順の一例を示す図である。FIG. 9 is a diagram showing an example of the first response integration procedure according to this embodiment. 図10(A)及び(B)は、本実施形態に係るPDUセッション変更コマンドACKを含むメッセージの一例を示す図である。FIGS. 10A and 10B are diagrams showing an example of a message including a PDU session change command ACK according to this embodiment. 図11は、本実施形態に係る第2の応答統合手順の一例を示す図である。FIG. 11 is a diagram showing an example of the second response integration procedure according to this embodiment. 図12は、本実施形態に係る通信システム内の各装置のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment. 図13は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。FIG. 13 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment. 図14は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。FIG. 14 is a diagram showing an example of the functional block configuration of the base station according to this embodiment. 図15は、本実施形態に係るCN装置の機能ブロック構成の一例を示す図である。FIG. 15 is a diagram showing an example of the functional block configuration of the CN device according to this embodiment.
 添付図面を参照して、本開示の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。 An embodiment of the present disclosure will be described with reference to the accompanying drawings. In addition, in each figure, the thing which attached|subjected the same code|symbol may have the same or the same structure.
 図1は、本実施形態に係る通信システムの概要の一例を示す図である。図1に示すように、通信システム1は、端末10と、基地局20と、コアネットワーク(CN)30と、を含み、MBSを提供する。 FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment. As shown in FIG. 1, a communication system 1 includes a terminal 10, a base station 20, a core network (CN) 30, and provides MBS.
 端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置、テレマティクス制御ユニット(Telematics control unit:TCU)等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)、移動局(Mobile Station:MS)、端末(User Terminal)、無線装置(Radio apparatus)、加入者端末、アクセス端末等と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。 The terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like. Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on. The terminal 10 may be mobile or stationary.
 端末10は、基地局20に対する無線アクセス技術(Radio Access Technology:RAT)として、例えば、LTE、LTE-Advanced、NR等の少なくとも一つを用いて通信可能に構成されるが、これに限られず、第6世代以降のRATを用いて通信可能に構成されてもよい。また、端末10は、上記のような3GPPが規定したアクセス網(3GPP access network)に限られず、例えば、Wi-Fi等の非3GPPアクセス網(non-3GPP access network)を介して基地局20にアクセスしてもよい。 The terminal 10 is configured to be able to communicate using at least one of LTE, LTE-Advanced, NR, etc. as a radio access technology (Radio Access Technology: RAT) for the base station 20, but not limited to this, It may be configured to be communicable using RAT of the sixth generation or later. In addition, the terminal 10 is not limited to the access network defined by 3GPP as described above (3GPP access network). may access.
 基地局20は、一以上のセルを形成し、当該セルを用いて端末10と通信する。基地局20は、gNodeB(gNB)、en-gNB、無線アクセスネットワーク(Radio Access Network:RAN)、アクセスネットワーク(Access Network:AN)、次世代無線アクセスネットワーク(Next Generation‐Radio Access Network:NG-RAN)ノード、低電力ノード(low-power node)、中央ユニット(Central Unit:CU)、分散ユニット(Distributed Unit:DU)、gNB-DU、リモート無線ヘッド(Remote Radio Head:RRH)、統合アクセス及びバックホール(Integrated Access and Backhaul/Backhauling:IAB)ノード、又は、装置等と呼ばれてもよい。基地局20は、一つのノードに限られず、複数のノード(例えば、DU等の下位ノードとCU等の上位ノードの組み合わせ)で構成されてもよい。 The base station 20 forms one or more cells and communicates with the terminal 10 using the cell. Base station 20 includes gNodeB (gNB), en-gNB, radio access network (RAN), access network (AN), next generation radio access network (Next Generation-Radio Access Network: NG-RAN ) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), integrated access and back It may also be called a hall (Integrated Access and Backhaul/Backhauling: IAB) node, device, or the like. The base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
 CN30は、例えば、5GCであるが、これに限られず、EPC又は第6世代以降のコアネットワーク等であってもよい。CN30は、例えば、Access and Mobility Management Function(AMF)31、Session Management Function(SMF)32、User Plane Function(UPF)33、Multicast Broadcast(MB)-SMF34、Multicast Broadcast(MB)-UPF35、Multicast Broadcast Service Function(MBSF)36、Network Exposure Function(NEF)37、Application Function(AF)及び/又はApplication Server(AS)(以下、「AF/AS」という)38、Policy and Charging Control Function(PCF)39等の機能を含む。 The CN 30 is, for example, 5GC, but is not limited to this, and may be an EPC or a 6th generation or later core network. CN 30, for example, Access and Mobility Management Function (AMF) 31, Session Management Function (SMF) 32, User Plane Function (UPF) 33, Multicast Broadcast (MB)-SMF 34, Multicast Broadcast (MB)-UPF 35, Multicast Broadcast Service Function (MBSF) 36, Network Exposure Function (NEF) 37, Application Function (AF) and/or Application Server (AS) (hereinafter referred to as "AF/AS") 38, Policy and Charging Control Function (PCF) 39, etc. Including function.
 なお、CN30に含まれる機能(以下、「CN機能」ともいう)は、図1に示すものに限られない。また、図1に示す各機能及びインタフェースの名称は例示にすぎず、同等又は類似の機能を有すれば、他の名称が用いられてもよい。また、図1に示す複数のCN機能が単一の装置内に設けられてもよいし、図1に示す一つのCN機能が複数の装置で構成されてもよい。コアネットワーク30の各機能の一部又は全部を構成する装置を、「CN装置」と称する。また、インタフェースは参照ポイント(reference point)と言い換えられてもよい。 Note that the functions included in the CN 30 (hereinafter also referred to as "CN functions") are not limited to those shown in FIG. Also, the names of the functions and interfaces shown in FIG. 1 are merely examples, and other names may be used as long as they have equivalent or similar functions. Moreover, a plurality of CN functions shown in FIG. 1 may be provided in a single device, or one CN function shown in FIG. 1 may be configured by a plurality of devices. A device that constitutes part or all of each function of the core network 30 is called a “CN device”. An interface may also be referred to as a reference point.
 また、図1に示す端末10、基地局20及びCN装置の数は、一以上であればよい。一つの基地局20に一以上の端末10が接続されてもよいことは勿論である。また、複数の基地局20は、Xnインタフェースを介して接続されてもよい。また、複数の基地局20は、それぞれ、N2インタフェースを介してAMF31に接続されてもよい。また、複数のAMF31が、それぞれ、N11インタフェースを介してSMF32に接続されN11mbインタフェースを介してMB-SMF34に接続されてもよい。 Also, the number of terminals 10, base stations 20, and CN devices shown in FIG. 1 may be one or more. It goes without saying that one or more terminals 10 may be connected to one base station 20 . Also, multiple base stations 20 may be connected via an Xn interface. Also, each of the plurality of base stations 20 may be connected to the AMF 31 via the N2 interface. Also, a plurality of AMFs 31 may be connected to the SMF 32 via the N11 interface and to the MB-SMF 34 via the N11mb interface.
 AMF31は、端末10のアクセス及び/又はモビリティ(mobility)を管理するCN装置である。AMF31は、N2インタフェースで基地局20に接続されるとともに、N1インタフェースで端末10に接続される。AMF31は、Non-access stratum(NAS)に関するCプレーン処理(例えば、登録管理、コネクション管理、モビリティ管理)等を行い、NASメッセージを端末10との間で送信及び/又は受信する。 The AMF 31 is a CN device that manages access and/or mobility of the terminal 10. The AMF 31 is connected to the base station 20 via the N2 interface and to the terminal 10 via the N1 interface. The AMF 31 performs non-access stratum (NAS)-related C-plane processing (for example, registration management, connection management, mobility management), etc., and transmits and/or receives NAS messages to and from the terminal 10 .
 SMF32は、セッションを管理するCN装置であり、例えば、セッションの確立、更新及び解放等を制御する。SMF32は、N11インタフェースを介してAMF31に接続されるとともに、N4インタフェースを介してUPF33に接続される。 The SMF 32 is a CN device that manages sessions, and controls, for example, session establishment, update and release. The SMF 32 is connected to the AMF 31 via the N11 interface and to the UPF 33 via the N4 interface.
 UPF33は、データネットワーク(Data Network:DN)(不図示)に対する接続ポイントとなるCN装置であり、例えば、パケットのルーティング、転送等を行う。UPF33は、N4インタフェースを介してSMF32に接続されるとともに、N3インタフェースを介して基地局20に接続される。UPF33は、Uプレーンに関する処理を行う第1のユーザプレーン装置である。UPF33を介した端末10とDNとの論理的な接続関係がPDUセッションと呼ばれてもよい。各PDUセッションに関する情報は、所定の(given)コンテクスト(例えば、「SMコンテクスト」及び/又は「N4セッションコンテクスト」)内に格納される。SMコンテクストは、SMF32及びAMF31で保持されてもよい。N4セッションコンテクストは、SMF32及びUPF33で保持されてもよい。 The UPF 33 is a CN device that serves as a connection point to a data network (DN) (not shown), and performs, for example, routing and transfer of packets. The UPF 33 is connected to the SMF 32 via the N4 interface and to the base station 20 via the N3 interface. The UPF 33 is the first user plane device that performs processing related to the U plane. A logical connection relationship between the terminal 10 and the DN via the UPF 33 may be called a PDU session. Information about each PDU session is stored within a given context (eg, "SM context" and/or "N4 session context"). SM context may be maintained in SMF32 and AMF31. The N4 session context may be maintained in SMF32 and UPF33.
 DNからの下りデータは、UPF33からN3トンネルを介して基地局20に伝送され、基地局20から無線ベアラを介して端末10に伝送される。一方、端末10からの上りデータは、無線ベアラを介して端末10から基地局20に伝送され、基地局20からN3トンネルを介してUPF33に伝送され、UPF33からDNに伝送される。なお、N3トンネルは、カプセル化されたIP(Encapsulated Internet Protocol)パケットを伝送するトンネルであり、Uプレーントンネル等と呼ばれてもよい。上記PDUセッションは、端末10と基地局20との間の無線ベアラと、基地局20とUPF33との間のN3トンネルとを連結して構成されてもよい。 Downlink data from the DN is transmitted from the UPF 33 to the base station 20 via the N3 tunnel, and transmitted from the base station 20 to the terminal 10 via the radio bearer. On the other hand, uplink data from the terminal 10 is transmitted from the terminal 10 to the base station 20 via the radio bearer, transmitted from the base station 20 to the UPF 33 via the N3 tunnel, and transmitted from the UPF 33 to the DN. Note that the N3 tunnel is a tunnel for transmitting encapsulated IP (Encapsulated Internet Protocol) packets, and may be called a U-plane tunnel or the like. The PDU session may be configured by connecting the radio bearer between the terminal 10 and the base station 20 and the N3 tunnel between the base station 20 and the UPF 33 .
 MB-SMF34は、MBSセッションを管理するCN装置であり、例えば、MBSセッションの確立、更新及び解放等を制御する。MB-SMF34は、N11mbインタフェースを介してAMF31に接続されるとともに、N4mbインタフェースを介してMB-UPF35に接続される。また、MB-SMF34は、N16mbインタフェースを介してSMF32に接続され、Nmb1インタフェースを介してMBSF36に接続され、N29mbインタフェースを介してNEF37に接続され、Nmb13インタフェースを介してAF/AS38に接続される。なお、MBSセッションは、マルチキャストブロードキャスト(Multicast Broadcast:MB)セッション等とも呼ばれる。 The MB-SMF 34 is a CN device that manages MBS sessions, and controls, for example, establishment, update and release of MBS sessions. MB-SMF 34 is connected to AMF 31 via the N11mb interface and to MB-UPF 35 via the N4mb interface. The MB-SMF 34 is also connected to the SMF 32 via the N16mb interface, to the MBSF 36 via the Nmb1 interface, to the NEF 37 via the N29mb interface, and to the AF/AS 38 via the Nmb13 interface. An MBS session is also called a multicast broadcast (MB) session or the like.
 なお、MBSセッションへの参加(join)は、端末10からAMF31へのNASメッセージ(例えば、「UL NAS MB Session Join Request」)、AMF31からMB-SMF34への要求メッセージ(例えば、「MB Session Request」)、当該要求メッセージに応じたMB-SMF34からAMF31への応答メッセージ(例えば、「MB Session Response」)、当該応答メッセージに応じたAMF31から端末10に対するNASメッセージ(例えば、「DL NAS MB Session Join Accept」)により、受付られてもよい。 Note that joining (joining) to an MBS session includes a NAS message from the terminal 10 to the AMF 31 (for example, "UL NAS MB Session Join Request"), a request message from the AMF 31 to the MB-SMF 34 (for example, "MB Session Request" ), a response message from MB-SMF 34 to AMF 31 in response to the request message (eg, “MB Session Response”), a NAS message from AMF 31 to terminal 10 in response to the response message (eg, “DL NAS MB Session Join Accept ”) may be accepted.
 MB-UPF35は、不図示のDNからのMBSデータの伝送を制御するCN装置である。不図示のDNからの下りのMBSデータは、MB-UPF35から基地局20又はUPF33に伝送される。MB-UPF35は、N3mbインタフェースを介して基地局20に接続され、N6mbインタフェースを介してAF/AS38に接続される。また、MB-UPF35は、N19mbインタフェースを介してUPF33に接続され、N9インタフェースを介してUPF33に接続される。MB-UPF35は、Uプレーンに関する処理を行う第2のユーザプレーン装置である。 The MB-UPF 35 is a CN device that controls transmission of MBS data from a DN (not shown). Downlink MBS data from a DN (not shown) is transmitted from MB-UPF 35 to base station 20 or UPF 33 . The MB-UPF 35 is connected to the base station 20 via the N3mb interface and to the AF/AS 38 via the N6mb interface. Also, the MB-UPF 35 is connected to the UPF 33 via the N19mb interface, and is connected to the UPF 33 via the N9 interface. MB-UPF 35 is a second user plane device that performs processing related to the U plane.
 NEF37は、MBSセッション及びQoS管理を含むMBS手順(MBS procedure)用のAF/AS38に対するインタフェースを提供する。NEF37は、N29mbインタフェースを介してMB-SMF34に接続され、N33インタフェースを介してAF/AS38に接続される。また、NEF37は、N30インタフェースを介してPCF39に接続される。MBSF36は、MBSセッション用のMB-SMFの選択等、MBSをサポートするためのサービスレベルの機能を提供する。MBSF36は、Nmb5インタフェースを介してNEF37に接続され、Nmb12インタフェースを介してPCF39に接続される。 The NEF 37 provides an interface to the AF/AS 38 for MBS procedures including MBS session and QoS management. The NEF 37 is connected to the MB-SMF 34 via the N29mb interface and to the AF/AS 38 via the N33 interface. Also, the NEF 37 is connected to the PCF 39 via the N30 interface. MBSF 36 provides service-level functions for supporting MBS, such as selection of MB-SMF for MBS sessions. MBSF 36 is connected to NEF 37 via Nmb5 interface and to PCF 39 via Nmb12 interface.
 AF/AS38は、MBSセッションの設定(configuration)、サービス受信に関する情報の配信、セッションの確立、解放及データ転送の少なくとも一つに用いられるCN装置である。サービス受信に関する情報は、例えば、IPマルチキャストアドレス、サービスに関するパラメータ(例えば、サービス開始時間)等であってもよい。AF/AS38は、N33インタフェースを介してNEF37に接続され、N6mbインタフェースを介してMB-UPF35に接続される。また、AF/AS38は、Nmb10インタフェース、xMB-Cインタフェース及びMB2-Cインタフェースの少なくとも一つを介してMBSF36に接続される。 The AF/AS 38 is a CN device used for at least one of MBS session configuration, distribution of information on service reception, session establishment, session release, and data transfer. Information about service reception may be, for example, an IP multicast address, parameters about the service (eg, service start time), and the like. AF/AS 38 is connected to NEF 37 via N33 interface and to MB-UPF 35 via N6mb interface. AF/AS 38 is also connected to MBSF 36 via at least one of the Nmb10 interface, the xMB-C interface and the MB2-C interface.
 PCF39は、ポリシー及び/又は課金を制御するCN装置である。ポリシーとは、Quality of Service(QoS)のための優先度に関する情報である。PCF39は、MBSセッションのQoSを更新(update)する場合、更新後の優先度を示すポリシーをSMF32及び/又はMB-SMF34に通知してもよい。また、PCF39は、N7インタフェースを介してSMF32に接続され、N7mbインタフェースを介してMB-SMF34に接続される。 The PCF 39 is a CN device that controls policy and/or charging. A policy is information about priorities for Quality of Service (QoS). When updating the QoS of the MBS session, the PCF 39 may notify the SMF 32 and/or the MB-SMF 34 of the policy indicating the updated priority. The PCF 39 is also connected to the SMF 32 via the N7 interface and to the MB-SMF 34 via the N7mb interface.
 以上のような通信システム1において、MBSデータは、マルチキャストの配信制御用のプロトコル(例えば、Internet Group Management Protocol(IGMP)又はMulticast Listener Discovery(MLD))のメッセージ(例えば、join又はleaveメッセージ)により登録(register)された各端末10に配信される。各端末10に対するMBSデータの伝送モード(delivery mode)としては、個別モードと共有モードとをサポートすることが検討されている。 In the communication system 1 as described above, MBS data is registered by a message (e.g., join or leave message) of a multicast distribution control protocol (e.g., Internet Group Management Protocol (IGMP) or Multicast Listener Discovery (MLD)). It is distributed to each terminal 10 that has been (registered). Supporting an individual mode and a shared mode as MBS data delivery modes for each terminal 10 is under consideration.
 個別モードでは、CN30で受信されたMBSデータ(a single copy of MBS data)は、端末10毎のPDUセッション(例えば、各端末10との単一のユニキャストPDUセッション)を介して、各端末10に伝送される。個別モードは、第1の伝送モード、Individual MBS Traffic delivery、Ind-mode等とも呼ばれる。個別モードの端末10は、在圏セルを形成する基地局20がMBSをサポートするか否かに関係なく、MBSデータを受信できる。 In individual mode, MBS data (a single copy of MBS data) received by CN 30 is sent to each terminal 10 via a PDU session for each terminal 10 (for example, a single unicast PDU session with each terminal 10). is transmitted to The individual mode is also called the first transmission mode, Individual MBS Traffic delivery, Ind-mode, and so on. A terminal 10 in dedicated mode can receive MBS data regardless of whether the base station 20 forming the serving cell supports MBS.
 共有モードでは、CN30で受信されたMBSデータ(a single copy of MBS data)は、基地局20との共有トランスポート(Shared Transport)を介して基地局20に伝送され、基地局20から配下の端末10に対して、ポイント・ツー・ポイント(Point To Point:PTP)又はポイント・ツー・マルチポイント(Point To Multi-point:PTM)により伝送される。共有モードは、第2の伝送モード、Shared MBS Traffic delivery、Shared-mode等とも呼ばれる。共有モードの端末10は、在圏セルを形成する基地局20がMBSをサポートする場合に、MBSデータを受信できる。 In shared mode, MBS data (a single copy of MBS data) received by CN 30 is transmitted to base station 20 via a shared transport (Shared Transport) with base station 20, and a terminal under the control of base station 20 10 is transmitted by Point To Point (PTP) or Point To Multi-point (PTM). The shared mode is also called a second transmission mode, Shared MBS Traffic delivery, Shared-mode, and so on. A terminal 10 in shared mode can receive MBS data when a base station 20 forming a serving cell supports MBS.
 図2は、本実施形態に係るMBSデータの伝送モードの一例を示す図である。図2に示すように、不図示のDNからのMBSデータは、CN30内のMB-UPF35で受信される。 FIG. 2 is a diagram showing an example of the MBS data transmission mode according to this embodiment. As shown in FIG. 2, MBS data from a DN (not shown) is received by MB-UPF 35 within CN 30 .
 共有モードでは、MB-UPF35は、受信したMBSデータを、共有トランスポートを介して基地局20に送信する。共有トランスポートは、CN30内の共有トンネルであり、共有下りCNトンネル(Shred downlink CN Tunnel)、N3トンネル等とも呼ばれる。基地局20は、共有トランスポートを介してMB-UPF35から受信したMBSデータを、PTM又はPTPにより配下の端末10に送信する。共有モードでは、多数の端末10に対するMBSデータが一つのストリームに束ねられるため、CN30内のUプレーンのオーバヘッドを個別モードに比べて減少できる。 In shared mode, the MB-UPF 35 transmits received MBS data to the base station 20 via shared transport. A shared transport is a shared tunnel within the CN 30, also called a shared downlink CN tunnel (Shred downlink CN Tunnel), N3 tunnel, and so on. The base station 20 transmits the MBS data received from the MB-UPF 35 via the shared transport to the terminal 10 under its control by PTM or PTP. In shared mode, MBS data for a large number of terminals 10 are bundled into one stream, so U-plane overhead in CN 30 can be reduced compared to dedicated mode.
 個別モードでは、MB-UPF35は、受信したMBSデータを、N9トンネルを介してUPF33に転送する。なお、N9トンネルは、N9インタフェースのトンネルである。UPF33は、MB-UPF35から受信したMBSデータを複製(replicate)して、各端末10と個別に設定されるPDUセッションを介して各端末10に送信する。個別モードでは、MBSをサポートしていない基地局20に端末10がハンドオーバーする場合であっても、端末10は継続してMBSデータを受信できる。 In individual mode, MB-UPF 35 transfers the received MBS data to UPF 33 via the N9 tunnel. Note that the N9 tunnel is the tunnel of the N9 interface. The UPF 33 replicates the MBS data received from the MB-UPF 35 and transmits the replicated MBS data to each terminal 10 through a PDU session individually established with each terminal 10 . In the individual mode, even if the terminal 10 is handed over to the base station 20 that does not support MBS, the terminal 10 can continue to receive MBS data.
 個別モードでは、端末10毎に設定されるPDUセッションを用いてMBSデータが伝送される。このため、例えば、MBSセッションのQoSの変更等の種々の要因によって、端末10毎のPDUセッションが変更される場合、各PDUセッションの変更手順が端末10毎に実施される結果、ネットワークリソースの消費が増大する恐れがある。ここで、各PDUセッションの変更とは、例えば、各PDUセッションのポリシー、優先度及びQoSルールの少なくとも一つを変更することである。 In the individual mode, MBS data is transmitted using a PDU session set for each terminal 10 . Therefore, for example, when the PDU session for each terminal 10 is changed due to various factors such as changing the QoS of the MBS session, the change procedure for each PDU session is performed for each terminal 10, resulting in consumption of network resources. may increase. Here, changing each PDU session means changing at least one of policy, priority and QoS rule of each PDU session, for example.
 図3及び4を参照し、MBSセッションのQoSを更新する場合における各PDUセッションの変更手順の一例を説明する。なお、以下において、ステップSxxx(xは任意の数字)の後ろのアルファベット(a、b、c…)はステップSxxxに包含される一以上のステップを示し、当該一以上のステップはステップSxxxと総称されてもよい。 An example of a change procedure for each PDU session when updating the QoS of the MBS session will be described with reference to FIGS. In the following, alphabetical letters (a, b, c...) after step Sxxx (x is an arbitrary number) indicate one or more steps included in step Sxxx, and the one or more steps are collectively referred to as step Sxxx. may be
 図3は、MBSに係るPDUセッションの変更の通知手順の一例を示す。図4は、MBSに係るPDUセッションの変更の応答手順の一例を示す。なお、図3及び4では、一例として、同一のMBSセッションに端末10A~10Cが参加するものとするが、端末10の数はこれ限られず、一以上であればよい。また、図3では、端末10A~10Cが同一の基地局20、AMF31に接続するものとするが、これに限られない。複数の端末10は、同一及び/又は異なる基地局20、同一の及び/又は異なるSMF32を介して、MBSセッションに参加してもよい。 FIG. 3 shows an example of a notification procedure for changing PDU sessions related to MBS. FIG. 4 shows an example of a PDU session change response procedure for MBS. In FIGS. 3 and 4, as an example, it is assumed that terminals 10A to 10C participate in the same MBS session, but the number of terminals 10 is not limited to this, and may be one or more. Also, in FIG. 3, it is assumed that the terminals 10A to 10C are connected to the same base station 20 and AMF 31, but the present invention is not limited to this. Multiple terminals 10 may participate in the MBS session via the same and/or different base stations 20 and the same and/or different SMFs 32 .
 図3に示すように、ステップS100では、要求されたQoSでAFセッションを更新する手順(AF session with required QoS update procedure)が実施される。 As shown in FIG. 3, in step S100, a procedure for updating the AF session with required QoS (AF session with required QoS update procedure) is performed.
 ステップS100aにおいて、AF38は、要求されたQoSに応じたMBSセッションの優先(prioritization)を要求するメッセージ(例えば、「Nnef_AFsessionWithQoSUpdate request」)を、NEF37に対して送信する。当該メッセージは、例えば、MBSセッションに関する情報(以下、「MBSセッション情報」という)を含んでもよい。MBSセッション情報は、例えば、MBSセッションの識別子(以下、「MBSセッションID」という)、MBSセッションの優先度(以下、「MBSセッション優先度」という)、及び、QoSルール等の少なくとも一つを含んでもよい。 In step S100a, the AF 38 transmits to the NEF 37 a message (for example, "Nnef_AFsessionWithQoSUpdate request") requesting MBS session prioritization according to the requested QoS. The message may include, for example, information about the MBS session (hereinafter referred to as "MBS session information"). The MBS session information includes at least one of, for example, an MBS session identifier (hereinafter referred to as "MBS session ID"), an MBS session priority (hereinafter referred to as "MBS session priority"), and QoS rules. It's okay.
 ステップS100bにおいて、NEF37は、AF38からの上記MBSセッションの優先の要求を認証し、認証されたAFのためにQoSを制御するポリシーを適用する。 In step S100b, the NEF 37 authenticates the MBS session priority request from the AF 38 and applies a policy to control QoS for the authenticated AF.
 ステップS100cにおいて、NEF37は、PCF39との間で、ポリシーの更新手順を実施する。具体的には、NEF37は、PCF39に対して、ポリシーの更新を要求するメッセージ(例えば、「Npcf_PolictAuthorization Update request」)を送信する。PCF39は、NEF37からの要求を承認する場合、要求されたQoS用のパラメータを導出し、当該QoSが許容されるか否かを決定し、決定結果を示す応答メッセージ(例えば、「Npcf_PolictAuthorization Update response」)をNEF37に送信する In step S100c, the NEF 37 implements a policy update procedure with the PCF 39. Specifically, the NEF 37 transmits to the PCF 39 a message requesting policy update (for example, “Npcf_PolicyAuthorization Update request”). When approving the request from NEF 37, PCF 39 derives the parameters for the requested QoS, determines whether the QoS is allowed, and sends a response message indicating the decision result (for example, "Npcf_PolictAuthorization Update response" ) to NEF37
 ステップS100dにおいて、NEF37は、ステップS100aにおける優先要求に対する応答メッセージ(例えば、「Nnef_AFsessionWithQoSUpdate response」)をAF38に送信する。 In step S100d, the NEF 37 sends a response message (for example, "Nnef_AFsessionWithQoSUpdateresponse") to the priority request in step S100a to the AF38.
 ステップS100eにおいて、PCF39は、QoS更新に対応するリソースの変更に成功又は失敗した場合、NEF37に対して、当該変更の成功又は失敗を通知する通知メッセージ(例えば、「Npcf_PolicyAuthorization Notify」)を送信する。 In step S100e, when the PCF 39 succeeds or fails to change the resource corresponding to the QoS update, it sends a notification message (for example, "Npcf_PolicyAuthorization Notify") to the NEF 37 to notify the success or failure of the change.
 ステップS100fにおいて、NEF37は、PCF39からの通知メッセージに応じて、AF38に対して、AFセッションのQoS更新の成功又は失敗を通知する通知メッセージ(例えば、「Nnef_AFsessionWithQoS Notify」)を送信する。以上のようにステップS100におけるAFセッションの更新手順が完了すると、PCF39によるポリシーの更新によってPDUセッションの変更手順がトリガーされる。 In step S100f, the NEF 37 transmits a notification message (for example, "Nnef_AFsessionWithQoS Notify") to the AF 38 in response to the notification message from the PCF 39 to notify the success or failure of the QoS update of the AF session. When the AF session update procedure in step S100 is completed as described above, the policy update by the PCF 39 triggers the PDU session change procedure.
 ステップS101において、PCF39主導でポリシーを変更する手順(以下、「PCF initiated Service Management(SM) policy association modification procedure」という)が実施される。PCF39は、MBSセッション用のポリシーを生成し、生成したポリシーをSMF32に通知してもよい。当該ポリシーは、例えば、MBSセッション優先度及び/又はMBSセッションID等を含んでもよい。 In step S101, the PCF 39-led policy modification procedure (hereinafter referred to as "PCF initiated Service Management (SM) policy association modification procedure") is implemented. The PCF 39 may generate a policy for the MBS session and notify the SMF 32 of the generated policy. The policy may include, for example, MBS session priority and/or MBS session ID.
 ステップS102において、AMF31を介した端末10に対するN1メッセージ及び/又は基地局20に対するN2メッセージを転送するための手順が実施される。具体的には、ステップS102aにおいて、SMF32は、N1メッセージ及び/又はN2メッセージの転送用のメッセージ(例えば、「Namf_Communication_N1N2MessageTransfer」)をAMF31に送信する。当該転送用のメッセージは、例えば、QoSが更新されるMBSセッション優先度、MBSセッションID、及び、PDUセッションの変更に関する通知情報(以下、「PDUセッション変更コマンド(PDU Session Modification Command)」という)の少なくとも一つを含んでもよい。ステップS102bにおいて、AMF31は、当該転送用のメッセージに対する応答メッセージ(例えば、「Namf_Communication_N1N2Message Transfer Response」という)をSMF32に送信してもよい。 In step S102, a procedure is performed to transfer the N1 message to the terminal 10 and/or the N2 message to the base station 20 via the AMF31. Specifically, in step S102a, the SMF 32 transmits to the AMF 31 a message for transferring the N1 message and/or the N2 message (for example, "Namf_Communication_N1N2MessageTransfer"). The transfer message includes, for example, the MBS session priority for which QoS is updated, the MBS session ID, and the notification information regarding the modification of the PDU session (hereinafter referred to as "PDU Session Modification Command"). At least one may be included. In step S102b, the AMF 31 may transmit to the SMF 32 a response message (for example, "Namf_Communication_N1N2MessageTransferResponse") to the transfer message.
 ここで、PDUセッション変更コマンドは、例えば、PDUセッションの識別子(以下、「PDUセッションID」という)、優先度(以下、「PDUセッション優先度」という)、及び、QoSに関する情報(例えば、QoSルール等)の少なくとも一つを含んでもよい。 Here, the PDU session change command includes, for example, a PDU session identifier (hereinafter referred to as “PDU session ID”), priority (hereinafter referred to as “PDU session priority”), and information on QoS (eg, QoS rule etc.).
 ステップS103において、SMF32は、PDUセッションの変更に関するRAN用のパラメータを生成し、生成されたパラメータを通知するメッセージ(例えば、「Nsmf_PDU_Session_SMContextStatusNotify」)をAMF31に送信する。 In step S103, the SMF 32 generates RAN parameters related to the change of the PDU session, and transmits a message notifying the generated parameters (for example, "Nsmf_PDU_Session_SMContextStatusNotify") to the AMF 31.
 ステップS104において、AMF31は、N2インタフェースを介したメッセージ(以下、「N2メッセージ」という)を基地局20に対して送信する。当該N2メッセージは、PDUセッション変更コマンドを含んでもよい。また、当該N2メッセージは、「N2 PDUセッション要求(N2 PDU Session Request)」と呼ばれてもよい。 In step S104, the AMF 31 transmits a message (hereinafter referred to as "N2 message") via the N2 interface to the base station 20. The N2 message may include a PDU session change command. The N2 message may also be called "N2 PDU Session Request".
 ステップS105において、基地局20は、端末10との間で、アクセスネットワーク(Access Network:AN)固有のリソースを変更する手順(以下、「AN-specific resource modification of transport」という)を実施する。例えば、基地局20は、UEとの間でPDUセッションに関連する必要なRANリソースを変更する、RRCコネクション再設定(RRC Connection Reconfiguration)を実施してもよい。具体的には、基地局20は、PDUセッション変更コマンドを含むRRCメッセージ(例えば、RRCコネクションの再設定に用いられるメッセージである「RRC再設定(RRCReconfiguration)メッセージ」という)を端末10に送信してもよい。 In step S105, the base station 20 and the terminal 10 carry out a procedure for modifying Access Network (AN)-specific resources (hereinafter referred to as "AN-specific resource modification of transport"). For example, the base station 20 may implement RRC Connection Reconfiguration, which changes necessary RAN resources related to PDU sessions with the UE. Specifically, the base station 20 transmits to the terminal 10 an RRC message including a PDU session change command (for example, a message used for reconfiguring an RRC connection, which is referred to as an “RRC Reconfiguration message”). good too.
 図4のステップS106において、端末10は、RRCメッセージ送信する。端末10からのRRCメッセージは、PDUセッションの変更に関する応答情報(以下、「PDUセッション変更コマンドACK(PDU Session Modification Command ACK)という」を含んでもよい。このように、基地局20は、PDUセッション変更コマンドACKを含むRRCメッセージ(例えば、RRCコネクションの再設定の完了通知に用いられるメッセージである「RRC再設定完了(RRCReconfigurationComplete)メッセージ」という)を端末10に送信してもよい。 In step S106 of FIG. 4, the terminal 10 transmits an RRC message. The RRC message from the terminal 10 may include response information regarding the modification of the PDU session (hereinafter referred to as "PDU Session Modification Command ACK"). An RRC message including a command ACK (for example, a message used for notifying the completion of RRC connection reconfiguration, which is referred to as an “RRC reconfiguration complete (RRCReconfigurationComplete) message”) may be transmitted to the terminal 10 .
 ステップS107において、基地局20は、ステップS106で受信したPDUセッション変更コマンドACKを含むN2メッセージ(例えば、「N2 NAS uplink transfer」又は「N2 PDU Session Ack」)をAMF31に対して送信する。 In step S107, the base station 20 transmits to the AMF 31 an N2 message (for example, "N2 NAS uplink transfer" or "N2 PDU Session Ack") including the PDU session change command ACK received in step S106.
 ステップS108において、PDUセッションをサポートするためのAMF31とSMF32との関連付けを更新する、及び/又は、端末10又は基地局20から受信される情報(例えば、N1/N2 SM情報)をSMF32に提供する手順(以下、「Nsmf_PDUSession_UpdateSMContext service operation」)が実施される。具体的には、ステップS108aにおいて、AMF31は、基地局20から受信した情報(例えば、PDUセッション変更コマンドACK)を含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Request」)をSMF32に送信する。ステップS108bにおいて、AMF31は、当該メッセージに対する応答メッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Response」)をSMF32から受信する。ステップS108においてAMF31及び/又はSMF32においてSMコンテクストが更新されてもよい。 In step S108, update the association between AMF 31 and SMF 32 to support the PDU session and/or provide SMF 32 with information (eg, N1/N2 SM information) received from terminal 10 or base station 20 A procedure (hereafter, "Nsmf_PDUSession_UpdateSMContext service operation") is performed. Specifically, in step S108a, the AMF 31 transmits to the SMF 32 a message (eg, “Nsmf_PDUSession_UpdateSMContextRequest”) including the information received from the base station 20 (eg, PDU session change command ACK). In step S108b, the AMF 31 receives from the SMF 32 a response message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") to the message. The SM context may be updated in AMF 31 and/or SMF 32 in step S108.
 ステップS109において、N4セッション更新手順(N4 Session Modification procedure)が実施される。SMF32は、既存のPDUセッションの更新のトリガーを受信すると(例えば、ステップS108aにおいて「Nsmf_PDUSession_UpdateSMContext Request」を受信すると)、ステップS109aにおいて、UPF33に対して、N4セッションの更新を要求する要求メッセージ(例えば、「N4 session Modification Request」)を送信する。UPF33は、当該要求メッセージに応じてN4セッションコンテクストのパラメータを更新する。当該パラメータは、QoSに関するルール(例えば、QoS Enforcement Rule(QER))等を含んでもよい。ステップS109bにおいて、SMF32は、当該要求メッセージに対する応答メッセージ(例えば、「N4 session Modification Response」)をUPF33から受信する。ステップS109においてSMF32及び/又はUPF33においてN4セッションコンテクストが更新されてもよい。 In step S109, an N4 Session Modification procedure is implemented. When the SMF 32 receives a trigger to update the existing PDU session (for example, receives "Nsmf_PDUSession_UpdateSMContext Request" in step S108a), in step S109a, the SMF 32 sends a request message (for example, "N4 session Modification Request"). UPF 33 updates the parameters of the N4 session context in response to the request message. The parameters may include QoS-related rules (eg, QoS Enforcement Rule (QER)) and the like. In step S109b, the SMF 32 receives from the UPF 33 a response message (for example, "N4 session Modification Response") to the request message. The N4 session context may be updated in SMF 32 and/or UPF 33 in step S109.
 ステップS110において、SMF32は、PCF39に対して、ステップS101に応じてポリシーが変更されたか否かを通知する。 In step S110, the SMF 32 notifies the PCF 39 of whether or not the policy has been changed in accordance with step S101.
 以上のように、図3に示すPDUセッションの変更の通知手順では、端末10A~10CそれぞれについてステップS101~S105が繰り返される恐れがある。同様に、図4に示すPDUセッションの変更の応答手順では、端末10A~10CそれぞれについてステップS106~S110が繰り返される恐れがある。この結果、ネットワークリソースの消費が増大する恐れがある。 As described above, in the PDU session change notification procedure shown in FIG. 3, steps S101 to S105 may be repeated for each of the terminals 10A to 10C. Similarly, in the PDU session change response procedure shown in FIG. 4, steps S106-S110 may be repeated for each of the terminals 10A-10C. This may result in increased consumption of network resources.
 そこで、本実施形態では、MBSセッションに関連付けられた複数の端末10を特定し、当該複数の端末10それぞれに対する複数のPDUセッション変更コマンドを個別に伝送する代わりにまとめて伝送すること(以下、「通知統合」という)で、ネットワークリソースの消費増大を防止する。また、本実施形態では、当該複数の端末10の少なくとも一つからのPDUセッション変更コマンドACKを個別に伝送する代わりにまとめて伝送すること(以下、「応答統合」という)で、ネットワークリソースの消費増大を防止する。 Therefore, in the present embodiment, a plurality of terminals 10 associated with an MBS session are specified, and a plurality of PDU session change commands for each of the plurality of terminals 10 are collectively transmitted instead of individually transmitted (hereinafter, " "Notification Consolidation") to prevent increased consumption of network resources. In addition, in the present embodiment, by collectively transmitting the PDU session change command ACK from at least one of the plurality of terminals 10 instead of transmitting them individually (hereinafter referred to as "response integration"), network resources are consumed. Prevent growth.
 (通知統合)
 通知統合では、CN装置(例えば、SMF32又はAMF31)は、MBSセッション情報を受信し、当該MBSセッション情報が示すMBSセッションに関連付けられた複数の端末10を特定する。また、CN装置は、複数の端末10それぞれに対する複数のPDUセッション変更コマンドを含むメッセージを送信する。このように、通知統合では、複数のPDUセッション変更コマンドを含むメッセージが伝送される。
(notification integration)
In notification integration, a CN device (eg, SMF 32 or AMF 31) receives MBS session information and identifies multiple terminals 10 associated with the MBS session indicated by the MBS session information. The CN device also sends a message containing multiple PDU session change commands for multiple terminals 10 respectively. Thus, in notification aggregation, a message containing multiple PDU session change commands is transmitted.
 なお、以下では、MBSセッション情報の一例として、MBSセッションIDを説明するが、これに限られない。上記の通り、MBSセッション情報は、例えば、MBSセッションID及び/又はMBSセッション優先度等、MBSセッションに関するどのような情報を含んでもよい。また、以下におけるMBSセッションIDは、MBSセッション情報と言い換えることができる。 Although the MBS session ID will be described below as an example of the MBS session information, it is not limited to this. As noted above, the MBS session information may include any information regarding the MBS session, such as, for example, MBS session ID and/or MBS session priority. Also, the MBS session ID hereinafter can be rephrased as MBS session information.
 <第1の通知統合手順>
 第1の通知統合手順では、SMF32が、MBSセッションIDを受信し、当該MBSセッションIDが示すMBSセッションに関連付けられた各端末10を特定する。また、CN装置は、特定された各端末10に対する各PDUセッション変更コマンドを含むメッセージを送信する。
<First notification integration procedure>
In the first notification integration procedure, the SMF 32 receives the MBS session ID and identifies each terminal 10 associated with the MBS session indicated by the MBS session ID. The CN device also sends a message containing each PDU session change command for each identified terminal 10 .
 また、SMF32は、AMF31に対して、特定された各端末10に関する情報と、特定された各端末10に対する各PDUセッション変更コマンドを含むメッセージを送信する。また、SMF32は、PCF39からMB-SMF34を経由してMBSセッションIDを受信してもよい。 Also, the SMF 32 transmits to the AMF 31 a message containing information about each identified terminal 10 and each PDU session change command for each identified terminal 10 . Also, SMF 32 may receive the MBS session ID from PCF 39 via MB-SMF 34 .
 図5は、本実施形態に係る第1の通知統合手順の一例を示す図である。図5では、図3との相違点を中心に説明する。図5のステップS200は、図3のステップS100と同様である。 FIG. 5 is a diagram showing an example of the first notification integration procedure according to this embodiment. FIG. 5 will be described with a focus on differences from FIG. Step S200 in FIG. 5 is the same as step S100 in FIG.
 図5のステップS201は、「PCF initiated SM policy association modification procedure」がPCF39とMB-SMF34との間において実施される点で図3のステップS101と異なる。ステップS201aにおいて、PCF39は、MBSセッションIDを含むメッセージをMB-SMF34に送信する。当該メッセージは、MBSセッション用のポリシーの更新の通知用のメッセージ(例えば、「Npcf_SMPolicyControl_UpdateNotify request」)あってもよい。ステップS201bにおいて、MB-SMF34は、ステップS201aで受信されたメッセージに対する応答メッセージ(例えば、「Npcf_SMPolicyControl_UpdateNotify response」)をPCF39に送信する。 Step S201 in FIG. 5 differs from step S101 in FIG. 3 in that the "PCF initiated SM policy association modification procedure" is performed between the PCF 39 and MB-SMF 34. In step S201a, the PCF 39 sends a message containing the MBS session ID to the MB-SMF 34. The message may be a message for notification of policy update for the MBS session (eg, "Npcf_SMPolicyControl_UpdateNotify request"). In step S201b, MB-SMF 34 sends to PCF 39 a response message (for example, "Npcf_SMPolicyControl_UpdateNotifyresponse") to the message received in step S201a.
 ステップS202において、MB-SMF34は、ステップS201aでPCF39から受信されたメッセージに応じて、SMF32に対して、MBSセッションIDを含むメッセージをSMF32に送信する。当該メッセージは、ポリシーの更新をSMF32に通知するためのメッセージであってもよい。 In step S202, MB-SMF 34 transmits a message including the MBS session ID to SMF 32 in response to the message received from PCF 39 in step S201a. The message may be a message for notifying the SMF 32 of policy update.
 ステップ203において、SMF32は、MB-SMF34から通知されたMBSセッションIDに基づいて、当該MBSセッションIDが示すMBSセッションに関連付けられた端末10A~10Cを特定する。SMF32は、特定された端末10A~10Cに関する情報を含むリスト(以下、「UEリスト」という)を生成する。各端末10に関する情報は、例えば、各端末10の識別子(以下、「端末ID」という)及び各端末10のPDUセッションの識別子(以下、「PDUセッションID」という)の少なくとも一つを含んでもよい。端末IDは、例えば、Global Unique Temporary Identifier(GUTI)、Permanent Equipment Identifier(PEI)、Subscription Concealed Identifier(SUCI)及び端末10のIPアドレスの少なくとも一つ等であってもよい。当該UEリストは、当該MBSセッションに参加する端末10を配下に有するAMF31毎に生成されてもよい。 At step 203, based on the MBS session ID notified from MB-SMF 34, SMF 32 identifies terminals 10A to 10C associated with the MBS session indicated by the MBS session ID. The SMF 32 generates a list (hereinafter referred to as "UE list") including information on the identified terminals 10A-10C. The information about each terminal 10 may include, for example, at least one of an identifier of each terminal 10 (hereinafter referred to as "terminal ID") and an identifier of a PDU session of each terminal 10 (hereinafter referred to as "PDU session ID"). . The terminal ID may be, for example, at least one of a Global Unique Temporary Identifier (GUTI), a Permanent Equipment Identifier (PEI), a Subscription Concealed Identifier (SUCI), and the IP address of the terminal 10. The UE list may be generated for each AMF 31 that has terminals 10 participating in the MBS session under its control.
 図6(A)は、本実施形態に係るUEリストの一例を示す図である。例えば、図6(A)に示すように、図5のステップS203において、SMF32は、MBSセッションに参加する端末10A~10Cの端末ID及び端末10A~10Cにそれぞれ設定されたPDUセッションのPDUセッションIDを含むUEリストを生成してもよい。 FIG. 6(A) is a diagram showing an example of a UE list according to this embodiment. For example, as shown in FIG. 6A, in step S203 of FIG. 5, the SMF 32 determines the terminal IDs of the terminals 10A to 10C participating in the MBS session and the PDU session IDs of the PDU sessions set in the terminals 10A to 10C. may generate a UE list containing
 ステップS204において、SMF32は、ステップS203で生成されたUEリストを含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Response」)を、AMF31に対して送信する。 In step S204, the SMF 32 transmits to the AMF 31 a message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") including the UE list generated in step S203.
 ステップS205aでは、SMF32は、ステップS202で受信されたMBSセッションIDのMBSセッションに対応する単一のPDUセッション変更コマンドを含むメッセージ(例えば、「Namf_Communication_N1N2Message Transfer」)を、AMF31に送信する。図6(B)は、本実施形態に係る複数のPDUセッション変更コマンドを含むメッセージの一例を示す図である。図6(B)に示すように、SMF32からAMF31に対するメッセージには、単一のMBSセッションに対応する単一のPDUセッション変更コマンドが含まれてもよい。図5のステップS205b及びS206は、図3のステップS102b及びS103と同様である。当該PDUセッション変更コマンドは、MBSセッションに対応するQoSに関する情報等を含んでもよい。 In step S205a, the SMF 32 sends to the AMF 31 a message (for example, "Namf_Communication_N1N2MessageTransfer") containing a single PDU session change command corresponding to the MBS session of the MBS session ID received in step S202. FIG. 6B is a diagram showing an example of a message including multiple PDU session change commands according to this embodiment. As shown in FIG. 6B, the message from SMF 32 to AMF 31 may contain a single PDU session change command corresponding to a single MBS session. Steps S205b and S206 in FIG. 5 are the same as steps S102b and S103 in FIG. The PDU session change command may include information about QoS corresponding to the MBS session.
 ステップS207では、AMF31は、ステップS204で受信されたUEリストに基づいて、ステップS205aで受信したPDUセッション変更コマンドを複製(コピー)し、PDUセッション変更コマンド#1~#3を生成する。例えば、AMF31は、UEリストに基づいて端末10固有のPDUセッションに関する情報(例えば、PDUセッションID等)をPDUセッション変更コマンド#1~#3に含めてもよい。 In step S207, the AMF 31 duplicates (copies) the PDU session change command received in step S205a based on the UE list received in step S204, and generates PDU session change commands #1 to #3. For example, the AMF 31 may include terminal 10-specific PDU session information (eg, PDU session ID, etc.) in the PDU session change commands #1 to #3 based on the UE list.
 図6(C)は、本実施形態に係る複数のPDUセッション変更コマンドを含むメッセージの他の例を示す図である。図6(C)に示すように、当該メッセージ(例えば、「Namf_Communication_N1N2Message Transfer」)は、端末10A~10CそれぞれのPDUセッションのPDUセッション変更コマンド#1~#3を含んでもよい。PDUセッション変更コマンド#1~#3は、当該メッセージ内のS1 SMコンテナ内に含まれてもよい。このように、図5のステップS207では、「Namf_Communication_N1N2Message Transfer」に含まれる単一のPDUセッション変更コマンドが、UEリストで識別される複数の端末10それぞれに対する複数のPDUセッション変更コマンドに複製される。AMF31は、UEリストで識別される各端末10に対する各PDUセッション変更コマンドを含むメッセージ(例えば、「N2メッセージ」)を基地局20に送信する。図6(C)に示すように、ステップS207のN2メッセージは、端末10A~10CそれぞれのPDUセッションのPDUセッション変更コマンド#1~#3を含んでもよい。 FIG. 6(C) is a diagram showing another example of a message including multiple PDU session change commands according to this embodiment. As shown in FIG. 6C, the message (for example, "Namf_Communication_N1N2MessageTransfer") may include PDU session change commands #1 to #3 for the PDU sessions of the terminals 10A to 10C, respectively. PDU session change commands #1-#3 may be included within the S1 SM container within the message. Thus, in step S207 of FIG. 5, a single PDU session change command contained in "Namf_Communication_N1N2MessageTransfer" is duplicated into multiple PDU session change commands for each of multiple terminals 10 identified in the UE list. AMF 31 sends to base station 20 a message (eg, “N2 message”) containing each PDU session change command for each terminal 10 identified in the UE list. As shown in FIG. 6(C), the N2 message in step S207 may include PDU session change commands #1 to #3 for the PDU sessions of the terminals 10A to 10C, respectively.
 ステップS208a~208cにおいて、基地局20は、AMF31からのN2メッセージに基づいて、端末10A~10Cそれぞれに対して、PDUセッション変更コマンド#1~#3をそれぞれ含むPDUセッション変更コマンド#1~#3をそれぞれ含む複数のRRCメッセージ(例えば、図6(C)に示す3つのRRC再設定メッセージ)を送信する。 In steps S208a to S208c, based on the N2 message from the AMF 31, the base station 20 sends PDU session change commands #1 to #3 including PDU session change commands #1 to #3 to the terminals 10A to 10C, respectively. (eg, three RRC reconfiguration messages shown in FIG. 6(C)) are transmitted.
 以上のように、図5では、基地局20と端末10A~10Cとの間のRANにおいては、PDUセッション変更コマンド#1~#3がそれぞれ別々のメッセージに含められる。一方、ネットワーク側では、MBSセッションに対応するPDUセッション変更コマンドが端末10A~10Cに対するPDUセッション変更コマンド#1~#3に複製され、複製されたPDUセッション変更コマンド#1~#3が単一のメッセージに含められて、SMF32からAMF31に、AMF31から基地局20に伝送される。 As described above, in FIG. 5, the PDU session change commands #1 to #3 are included in separate messages in the RAN between the base station 20 and the terminals 10A to 10C. On the other hand, on the network side, the PDU session change command corresponding to the MBS session is duplicated in PDU session change commands #1 to #3 for the terminals 10A to 10C, and the duplicated PDU session change commands #1 to #3 are combined into a single It is included in a message and transmitted from SMF 32 to AMF 31 and from AMF 31 to base station 20 .
 なお、図5のステップS205aにおけるSMF32からAMF31に対するメッセージ内に、端末10A~10Cに共通のPDUセッション変更コマンドが含まれ、ステップS207におけるAMF31においてUEリストに基づいて当該共通のPDUセッション変更コマンドが端末10A~10CそれぞれのPDUセッション変更コマンド#1~#3に複製されるものとしたが、これに限られない。ステップS205aのSMF32からAMF31に対するメッセージ(例えば、Namf_Communication_N1N2Message Transfer)内にPDUセッション変更コマンド#1~#3が含まれてもよい。この場合、ステップS204におけるUEリストの通知は省略されてもよい。 Note that the message from SMF 32 to AMF 31 in step S205a of FIG. Although it is assumed that the PDU session change commands #1 to #3 of 10A to 10C are duplicated, the present invention is not limited to this. PDU session change commands #1 to #3 may be included in the message (for example, Namf_Communication_N1N2MessageTransfer) from SMF 32 to AMF 31 in step S205a. In this case, the notification of the UE list in step S204 may be omitted.
 第1の変更統合手順によれば、SMF32によってUEリストが生成されるので、同一のMBSセッションに対応する端末10毎のPDUセッションの変更の通知手順の繰り返し(例えば、図3の端末10A~10CそれぞれについてステップS101~S105が繰り返し)を防止できる。したがって、ネットワークリソースの消費を低減できる。 According to the first change integration procedure, since the UE list is generated by the SMF 32, the PDU session change notification procedure is repeated for each terminal 10 corresponding to the same MBS session (for example, the terminals 10A to 10C in FIG. 3). Steps S101 to S105 are repeated for each) can be prevented. Therefore, consumption of network resources can be reduced.
 <第2の通知統合手順>
 第2の通知統合手順では、SMF32が、PCF39からMB-SMF34を経由せずにMBSセッションIDを受信する点で、第1の通知統合手順と異なる。以下では、第1の通知統合手順との相違点を中心に説明する。
<Second notification integration procedure>
The second notification integration procedure differs from the first notification integration procedure in that SMF 32 receives the MBS session ID from PCF 39 without going through MB-SMF 34 . Differences from the first notification integration procedure will be mainly described below.
 図7は、本実施形態に係る第2の通知統合手順の一例を示す図である。図7では、図5との相違点を中心に説明する。図7のステップS300及びS302~S307は、図5のステップS200及びS203~S208と同様である。 FIG. 7 is a diagram showing an example of the second notification integration procedure according to this embodiment. FIG. 7 will be described with a focus on differences from FIG. Steps S300 and S302-S307 of FIG. 7 are the same as steps S200 and S203-S208 of FIG.
 図7のステップS301では、「PCF initiated SM policy association modification procedure」がPCF39とSMF32との間において実施される点で図5のステップS201と異なる。ステップS301aにおいて、PCF39は、MBSセッションIDを含むメッセージをSMF32に送信する。当該メッセージは、MBSセッション用のポリシーの更新の通知用のメッセージ(例えば、「Npcf_SMPolicyControl_UpdateNotify request」)あってもよい。ステップS301bにおいて、SMF32は、ステップS301aで受信されたメッセージに対する応答メッセージ(例えば、「Npcf_SMPolicyControl_UpdateNotify response」)をPCF39に送信する。 Step S301 in FIG. 7 differs from step S201 in FIG. 5 in that the "PCF initiated SM policy association modification procedure" is performed between the PCF 39 and SMF 32. In step S301a, the PCF 39 sends a message containing the MBS session ID to the SMF 32. The message may be a message for notification of policy update for the MBS session (eg, "Npcf_SMPolicyControl_UpdateNotify request"). In step S301b, the SMF 32 sends to the PCF 39 a response message (for example, "Npcf_SMPolicyControl_UpdateNotifyresponse") to the message received in step S301a.
 第2の変更統合手順によれば、MB-SMF34を経由せずに、MBSセッションIDを含むメッセージがPCF39からSMF32に伝送されるので、例えば、図5に示すように、MB-SMF34を経由してMBSセッションIDをSMF32に伝送する場合と比較して、ネットワークリソースの消費を低減できる。 According to the second change integration procedure, the message including the MBS session ID is transmitted from the PCF 39 to the SMF 32 without going through the MB-SMF 34. Therefore, for example, as shown in FIG. The consumption of network resources can be reduced compared to transmitting the MBS session ID to the SMF 32 via the SMF 32 .
 <第3の通知統合手順>
 第3の通知統合手順では、SMF32の代わりにAMF31が、MBSセッションIDが示すMBSセッションに関連付けられた各端末10を特定する点で、第1及び第2の変更統合手順と異なる。第3の通知統合手順は、第1又は第2の変更統合手順と組み合わせることができる。以下では、第1及び第2の変更統合手順との相違点を中心に説明する。
<Third notification integration procedure>
The third notification integration procedure differs from the first and second modification integration procedures in that the AMF 31 instead of the SMF 32 identifies each terminal 10 associated with the MBS session indicated by the MBS session ID. The third notification integration procedure can be combined with the first or second change integration procedure. Differences from the first and second change integration procedures will be mainly described below.
 具体的には、第3の通知統合手順において、AMF31は、MBSセッションIDをSMF32から受信し、当該MBSセッションIDが示すMBSセッションに関連付けられた各端末10を特定する。また、AMF31は、特定された各端末10に対するMBSデータの伝送に用いられる各PDUセッション変更コマンドを含むメッセージを基地局20に送信する。 Specifically, in the third notification integration procedure, the AMF 31 receives the MBS session ID from the SMF 32 and identifies each terminal 10 associated with the MBS session indicated by the MBS session ID. Also, the AMF 31 transmits to the base station 20 a message containing each PDU session change command used for transmission of MBS data for each identified terminal 10 .
 なお、SMF32は、PCF39からMB-SMF34を経由してMBSセッションIDを受信してもよい。又は、SMF32が、PCF39からMB-SMF34を経由せずにMBSセッションIDを受信してもよい。 The SMF 32 may receive the MBS session ID from the PCF 39 via the MB-SMF 34. Alternatively, SMF 32 may receive the MBS session ID from PCF 39 without going through MB-SMF 34 .
 図8は、本実施形態に係る第3の通知統合手順の一例を示す図である。図8では、図5又は図7との相違点を中心に説明する。図8では、ステップS400の前に、図5のステップS200~S202又は図7のステップS300~S301が実施されるものとする。 FIG. 8 is a diagram showing an example of a third notification integration procedure according to this embodiment. In FIG. 8, the description will focus on differences from FIG. 5 or FIG. 8, steps S200 to S202 in FIG. 5 or steps S300 to S301 in FIG. 7 are performed before step S400.
 図8のステップS400において、SMF32は、MBSセッションIDを含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Response」)を送信する点で、UEリストを含むメッセージを送信する図5のステップS204又はS303と異なる。  In step S400 of FIG. 8, the SMF 32 transmits a message containing the MBS session ID (for example, "Nsmf_PDUSession_UpdateSMContextResponse"), which is different from step S204 or S303 of FIG. 5 for transmitting the message containing the UE list.
 ステップS401aにおいて、SMF32は、MBSセッションIDに基づいて特定される端末10A~10CそれぞれのPDUセッション変更コマンド#1~#3を別々のメッセージ(例えば、端末10A~10Cそれぞれの「Namf_Communication_N1N2Message Transfer」)に含めて送信してもよい。すなわち、ステップS401a~S402は、端末10A~10Cでそれぞれ実施されてもよい。 In step S401a, the SMF 32 transfers the PDU session change commands #1 to #3 of the terminals 10A to 10C identified based on the MBS session ID to separate messages (eg, "Namf_Communication_N1N2MessageTransfer" of the terminals 10A to 10C). may be sent including That is, steps S401a-S402 may be performed by terminals 10A-10C, respectively.
 ステップS403において、AMF31は、SMF32から通知されたMBSセッションIDに基づいて、当該MBSセッションIDが示すMBSセッションに関連付けられた端末10A~10Cを特定する。AMF31は、上記UEリストを生成する。UEリストは、当該MBSセッションに参加する端末10を配下に有する基地局20毎に生成されてもよい。 In step S403, based on the MBS session ID notified from SMF 32, AMF 31 identifies terminals 10A to 10C associated with the MBS session indicated by the MBS session ID. AMF 31 generates the UE list. A UE list may be generated for each base station 20 that has a terminal 10 participating in the MBS session under its control.
 ステップS404では、AMF31は、UEリストで識別される端末10A~10Cそれぞれに対するPDUセッション変更コマンド#1~#3を含むメッセージ(例えば、「N2メッセージ」)を基地局20に送信する。ステップS405a~405cは、図5のステップ208a~208c又は図7のステップS307a~S307cと同様である。 In step S404, the AMF 31 transmits to the base station 20 a message (eg, "N2 message") including PDU session change commands #1-#3 for the terminals 10A-10C identified in the UE list. Steps S405a-405c are similar to steps 208a-208c of FIG. 5 or steps S307a-S307c of FIG.
 第3の変更統合手順によれば、AMF31によってUEリストが生成され、UEリスト内の各端末10のPDUセッション変更コマンドが単一のメッセージに含められて、基地局20に伝送される。このため、例えば、図3に示すように、各端末10のPDUセッション変更コマンドが別々のメッセージでAMF31から基地局20に伝送される場合と比較して、ネットワークリソースの消費を低減できる。 According to the third change integration procedure, the UE list is generated by the AMF 31, and the PDU session change command for each terminal 10 in the UE list is included in a single message and transmitted to the base station 20. Therefore, for example, as shown in FIG. 3, the consumption of network resources can be reduced compared to the case where the PDU session change command for each terminal 10 is transmitted from the AMF 31 to the base station 20 in separate messages.
 (応答統合)
 応答統合では、特定の装置(例えば、AMF31又は基地局20)は、MBSセッション情報に基づいて特定された複数の端末10それぞれの複数のPDUセッション変更コマンドACK(応答情報)の少なくとも一つを受信する。特定の装置は、タイマを用いて、当該複数のPDUセッション変更コマンドACKの少なくとも一つを含むメッセージの送信を制御する。このように、応答統合では、複数のPDUセッション変更コマンドACKが別々のメッセージで伝送される代わりに、一つのメッセージにまとめられて伝送される。このため、複数のメッセージが伝送される場合と比較して、ネットワークリソースの消費を低減できる。
(response integration)
In response aggregation, a specific device (eg, AMF 31 or base station 20) receives at least one of multiple PDU session change command ACKs (response information) of multiple terminals 10 identified based on MBS session information. do. A particular device uses a timer to control transmission of a message including at least one of the plurality of PDU session change command ACK. Thus, in response aggregation, multiple PDU session change command ACKs are combined and transmitted in one message instead of being transmitted in separate messages. Therefore, consumption of network resources can be reduced compared to the case where a plurality of messages are transmitted.
 <第1の応答統合手順>
 第1の応答統合手順では、基地局20は、MBSセッションIDに基づいて特定された複数の端末10それぞれの複数のPDUセッション変更コマンドを含むメッセージをAMF31から受信する。基地局20は、当該複数のPDUセッション変更コマンドそれぞれに対応する複数のPDUセッション変更コマンドACKの少なくとも一つを受信する。基地局20は、タイマを用いて、複数のPDUセッション変更コマンドACKの少なくとも一つを含むメッセージの送信を制御する。第1の応答統合手順は、第1~第3の変更統合手順の少なくとも一つと組み合わせることができる。
<First response integration procedure>
In a first response aggregation procedure, the base station 20 receives from the AMF 31 a message containing multiple PDU session change commands for each of multiple terminals 10 identified based on the MBS session ID. The base station 20 receives at least one of a plurality of PDU session change command ACKs corresponding to each of the plurality of PDU session change commands. The base station 20 uses a timer to control the transmission of messages containing at least one of a plurality of PDU session change command ACK. The first response integration procedure can be combined with at least one of the first through third change integration procedures.
 図9は、本実施形態に係る第1の応答統合手順の一例を示す図である。図9では、図5、7又は8との相違点を中心に説明する。図9では、ステップS500の前に、図5のステップS200~S206、図7のステップS300~S305、又は、図8のステップS400~S403が実施されるものとする。図9のステップS500及びS501は、図5のステップS207及びS208、図7のステップS306及びS307、及び、図8のステップS404及びS405と同様である。 FIG. 9 is a diagram showing an example of the first response integration procedure according to this embodiment. In FIG. 9, the description will focus on the differences from FIGS. 9, steps S200 to S206 in FIG. 5, steps S300 to S305 in FIG. 7, or steps S400 to S403 in FIG. 8 are performed before step S500. Steps S500 and S501 of FIG. 9 are similar to steps S207 and S208 of FIG. 5, steps S306 and S307 of FIG. 7, and steps S404 and S405 of FIG.
 図9のステップS502において、基地局20は、タイマを開始する。例えば、基地局20は、ステップS500におけるPDUセッション変更コマンド#1~#3を含むN2メッセージの受信に応じてタイマを開始してもよい。当該タイマの設定値は、予め仕様で定められてもよいし、又は、他の装置(例えば、AMF31)から通知されてもよい。 At step S502 in FIG. 9, the base station 20 starts a timer. For example, the base station 20 may start a timer upon receiving an N2 message containing PDU session change commands #1-#3 in step S500. The set value of the timer may be determined in advance by specifications, or may be notified from another device (for example, AMF 31).
 ステップS503a~503cにおいて、基地局20は、PDUセッション変更コマンドACK#1~#3それぞれを含む複数のRRCメッセージ(例えば、図10(A)に示す3つのRRC再設定完了メッセージ)を端末10A~10Cから受信する。 In steps S503a to S503c, the base station 20 transmits a plurality of RRC messages (for example, three RRC reconfiguration complete messages shown in FIG. 10A) including PDU session change commands ACK#1 to #3, respectively, to the terminals 10A to 503c. Receive from 10C.
 ステップS504において、基地局20は、ステップS502で開始されたタイマが満了するか否かを判定する。また、基地局20は、タイマが満了するまでに端末10A~10CからPDUセッション変更コマンドACK#1~#3が受信されたか否かを判定する。基地局20は、タイマが満了しておらず、かつ、PDUセッション変更コマンドACK#1~#3を受信していない場合、ステップS504を繰り返す。一方、基地局20は、タイマが満了、又は、タイマが満了する前にPDUセッション変更コマンドACK#1~#3を受信した場合、ステップS505に進む。 At step S504, the base station 20 determines whether the timer started at step S502 expires. Also, the base station 20 determines whether PDU session change commands ACK#1 to #3 have been received from the terminals 10A to 10C before the timer expires. If the timer has not expired and the PDU session change commands ACK#1 to #3 have not been received, the base station 20 repeats step S504. On the other hand, when the timer expires or receives the PDU session change commands ACK#1 to #3 before the timer expires, the base station 20 proceeds to step S505.
 タイマが満了した場合、基地局20は、タイマが満了するまでに受信された一以上のPDUセッション変更コマンドACKを含むメッセージ(例えば、N2メッセージ)からUEを特定し、UEリストと照合する。基地局20はUEリストを含む応答メッセージをAMF31に送信する。一方、タイマが満了する前にPDUセッション変更コマンドACK#1~#3の全てを受信した場合、基地局20は、当該PDUセッション変更コマンドACK#1~#3からを特定し、UEリストと照合する。UEリストを含むメッセージをAMF31に送信する。図9では、タイマが満了する前にPDUセッション変更コマンドACK#1~#3を受信しているので、ステップS505において、基地局20は、図10(B)に示すように、PDUセッション変更コマンドACK#1~#3からを特定し、UEリストと照合する。UEリストを含むN2メッセージをAMF31に送信する。 When the timer expires, the base station 20 identifies UEs from messages (for example, N2 messages) containing one or more PDU session change command ACKs received before the timer expires, and checks them against the UE list. Base station 20 sends a response message containing the UE list to AMF 31 . On the other hand, if all of the PDU session change commands ACK#1 to #3 are received before the timer expires, the base station 20 identifies the PDU session change commands ACK#1 to #3 and compares them with the UE list. do. Send a message to the AMF 31 containing the UE list. In FIG. 9, PDU session change commands ACK#1 to #3 are received before the timer expires, so in step S505, the base station 20 receives the PDU session change commands as shown in FIG. 10B. ACKs from #1 to #3 are identified and checked against the UE list. Send the N2 message containing the UE list to the AMF31.
 ステップS506aにおいて、AMF31は、基地局20から受信した一以上のPDUセッション変更コマンドACK(ここでは、PDUセッション変更コマンドACK#1~#3)からUEを特定し、UEリストと照合する。UEリスト含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Request」)をSMF32に送信する。ステップS506bにおいて、SMF32は、当該メッセージに対する応答メッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Response」)をAMF31に送信する。 In step S506a, the AMF 31 identifies UEs from one or more PDU session change command ACKs (here, PDU session change command ACKs #1 to #3) received from the base station 20, and checks them against the UE list. Send a message containing the UE list (eg, “Nsmf_PDUSession_UpdateSMContextRequest”) to SMF32. In step S506b, the SMF 32 sends a response message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") to the message to the AMF 31.
 以上のように、図9では、基地局20と端末10A~10Cとの間のRANにおいては、PDUセッション変更コマンドACK#1~#3がそれぞれ別々のメッセージに含められる。一方、ネットワーク側では、端末10A~10Cに対するPDUセッション変更コマンドACK#1~#3が単一のメッセージに含められて、基地局20からAMF31に、AMF31からSMF32に伝送される。 As described above, in FIG. 9, the PDU session change commands ACK#1 to #3 are included in separate messages in the RAN between the base station 20 and the terminals 10A to 10C. On the other hand, on the network side, the PDU session change commands ACK#1-#3 for the terminals 10A-10C are included in a single message and transmitted from the base station 20 to the AMF31 and from the AMF31 to the SMF32.
 第1の応答統合手順によれば、タイマが満了するまでに受信された、UEリスト内の複数の端末10からのPDUセッション変更コマンドACKからUEを特定し、UEリストと照合する。UEのリストが単一のメッセージに含められて、ネットワーク側で(例えば、基地局20からAMF31へ、AMF31からSMF32へ)伝送される。このため、例えば、図5に示すように、ネットワーク側で複数の端末10のPDUセッション変更コマンドACKが別々のメッセージで伝送される場合と比較して、ネットワークリソースの消費を低減できる。 According to the first response integration procedure, UEs are identified from the PDU session change command ACKs received from multiple terminals 10 in the UE list and compared with the UE list, which are received before the timer expires. The list of UEs is contained in a single message and transmitted on the network side (eg from base station 20 to AMF 31, from AMF 31 to SMF 32). Therefore, for example, as shown in FIG. 5, consumption of network resources can be reduced compared to the case where the PDU session change command ACK of a plurality of terminals 10 is transmitted in separate messages on the network side.
 <第2の応答統合手順>
 第2の応答統合手順では、基地局20の代わりにAMF31が、UEリストで識別された複数の端末10の少なくとも一つのPDUセッション変更コマンドACKを単一のメッセージに含める点で、第1の応答統合手順と異なる。第2の応答統合手順は、第1~第3の変更統合手順の少なくとも一つと組み合わせることができる。以下では、第1の応答統合手順との相違点を中心に説明する。
<Second response integration procedure>
In the second response aggregation procedure, the AMF 31 on behalf of the base station 20 includes in a single message at least one PDU session change command ACK of the terminals 10 identified in the UE list. Different from the integration procedure. The second response integration procedure can be combined with at least one of the first through third change integration procedures. Differences from the first response integration procedure will be mainly described below.
 具体的には、第2の応答統合手順において、AMF31は、MBSセッションIDに基づいて特定された複数の端末10それぞれの複数のPDUセッション変更コマンドを含むメッセージを基地局20に送信する。基地局20は、当該複数のPDUセッション変更コマンドそれぞれに対応する複数のPDUセッション変更コマンドACKの少なくとも一つを受信する。AMF31は、タイマを用いて、複数のPDUセッション変更コマンドACKの少なくとも一つを含むメッセージの送信を制御する。 Specifically, in the second response integration procedure, the AMF 31 transmits to the base station 20 a message containing multiple PDU session change commands for each of the multiple terminals 10 identified based on the MBS session IDs. The base station 20 receives at least one of a plurality of PDU session change command ACKs corresponding to each of the plurality of PDU session change commands. AMF 31 uses a timer to control the transmission of a message containing at least one of a plurality of PDU session change command ACK.
 図11は、本実施形態に係る第2の応答統合手順の一例を示す図である。図11では、図5、7、8又は9との相違点を中心に説明する。図11では、ステップS600の前に、図5のステップS200~S206、図7のステップS300~S305、又は、図8のステップS400~S403が実施されるものとする。図11のステップS600及びS601は、図5のステップS207及びS208、図7のステップS306及びS307、及び、図8のステップS404及びS405と同様である。 FIG. 11 is a diagram showing an example of the second response integration procedure according to this embodiment. In FIG. 11, the description will focus on the differences from FIGS. 11, steps S200 to S206 in FIG. 5, steps S300 to S305 in FIG. 7, or steps S400 to S403 in FIG. 8 are performed before step S600. Steps S600 and S601 of FIG. 11 are the same as steps S207 and S208 of FIG. 5, steps S306 and S307 of FIG. 7, and steps S404 and S405 of FIG.
 図11のステップS602において、AMF31は、タイマを開始する。例えば、AMF31は、ステップS600におけるPDUセッション変更コマンド#1~#3を含むメッセージ(例えば、N2メッセージ)の送信に応じてタイマを開始してもよい。又は、AMF31は、PDUセッション変更コマンド#1~#3を含むメッセージ(不図示)のSMF32からの受信に応じてタイマを開始してもよい。当該タイマの設定値は、予め仕様で定められてもよいし、又は、他の装置(例えば、AMF31)から通知されてもよい。 At step S602 in FIG. 11, the AMF 31 starts a timer. For example, AMF 31 may start a timer in response to sending a message (eg, N2 message) including PDU session change commands #1-#3 in step S600. Alternatively, AMF 31 may start a timer in response to receiving a message (not shown) containing PDU session change commands #1-#3 from SMF 32 . The set value of the timer may be determined in advance by specifications, or may be notified from another device (for example, AMF 31).
 ステップS603a~603cは、図9のステップS503a~503cと同様である。ステップS604a~604cにおいて、基地局20は、端末10A~10Cからそれぞれ受信されるPDUセッション変更コマンドACK#1~#3を別々のN2メッセージで、AMF31に送信する。 Steps S603a-603c are the same as steps S503a-503c in FIG. In steps S604a-604c, the base station 20 sends the PDU session change commands ACK#1-#3 received from the terminals 10A-10C, respectively, to the AMF 31 in separate N2 messages.
 ステップS605において、AMF31は、ステップS602で開始されたタイマが満了するか否かを判定する。また、AMF31は、タイマが満了するまでに端末10A~10CからPDUセッション変更コマンドACK#1~#3が受信されたか否かを判定する。AMF31は、タイマが満了しておらず、かつ、PDUセッション変更コマンドACK#1~#3を受信していない場合、ステップS605を繰り返す。一方、AMF31は、タイマが満了、又は、タイマが満了する前にPDUセッション変更コマンドACK#1~#3を受信した場合、ステップS606aに進む。 At step S605, the AMF 31 determines whether the timer started at step S602 expires. Also, the AMF 31 determines whether PDU session change commands ACK#1 to #3 have been received from the terminals 10A to 10C before the timer expires. If the timer has not expired and the PDU session change commands ACK#1 to #3 have not been received, the AMF 31 repeats step S605. On the other hand, when the timer expires or receives the PDU session change commands ACK#1 to #3 before the timer expires, the AMF 31 proceeds to step S606a.
 タイマが満了した場合、AMF31は、タイマが満了するまでに受信された一以上のPDUセッション変更コマンドACKからUEを特定し、UEリストと照合する。AMF31はUEリスト含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Request」)をSMF32に送信する。一方、タイマが満了する前にPDUセッション変更コマンドACK#1~#3を受信した場合、AMF31は、当該PDUセッション変更コマンドACK#1~#3からUEを特定し、UEリストと照合する。UEリストを含むメッセージをSMF32に送信する。図11では、タイマが満了する前にPDUセッション変更コマンドACK#1~#3を受信しているので、ステップS606aにおいて、AMF31は、図10(B)に示すように、PDUセッション変更コマンドACK#1~#3からUEを特定し、UEリストと照合する。UEリストを含むメッセージをSMF32に送信する。ステップS606bにおいて、SMF32は、当該メッセージに対する応答メッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Response」)をAMF31に送信する。 When the timer expires, the AMF 31 identifies the UE from one or more PDU session change command ACKs received until the timer expires, and checks it against the UE list. AMF 31 sends a message (eg, “Nsmf_PDUSession_UpdateSMContextRequest”) containing the UE list to SMF 32 . On the other hand, if the PDU session change command ACK#1-#3 is received before the timer expires, the AMF 31 identifies the UE from the PDU session change command ACK#1-#3 and checks it against the UE list. Send a message to SMF 32 containing the UE list. In FIG. 11, PDU session change commands ACK#1 to #3 are received before the timer expires. Identify UEs from 1 to #3 and check against the UE list. Send a message to SMF 32 containing the UE list. In step S606b, the SMF 32 sends a response message (for example, "Nsmf_PDUSession_UpdateSMContextResponse") to the message to the AMF 31.
 以上のように、図11では、基地局20と端末10A~10Cとの間のRANにおいては、PDUセッション変更コマンドACK#1~#3がそれぞれ別々のメッセージに含められる。一方、ネットワーク側では、端末10A~10Cに対するPDUセッション変更コマンドACK#1~#3が単一のメッセージに含められて、AMF31からSMF32に伝送される。 As described above, in FIG. 11, the PDU session change commands ACK#1 to #3 are included in separate messages in the RAN between the base station 20 and the terminals 10A to 10C. On the other hand, on the network side, the PDU session change commands ACK#1-#3 for the terminals 10A-10C are included in a single message and transmitted from the AMF 31 to the SMF 32. FIG.
 第2の応答統合手順によれば、タイマが満了するまでに受信された、UEリスト内の複数の端末10からのPDUセッション変更コマンドACKからUEを特定し、UEリストと照合する。UEリストが単一のメッセージに含められて、ネットワーク側で(例えば、AMF31からSMF32へ)伝送される。このため、例えば、図5に示すように、ネットワーク側で複数の端末10のPDUセッション変更コマンドACKが別々のメッセージで伝送される場合と比較して、ネットワークリソースの消費を低減できる。 According to the second response integration procedure, UEs are identified from the PDU session change command ACKs received from multiple terminals 10 in the UE list and compared with the UE list, which are received before the timer expires. The UE list is included in a single message and transmitted on the network side (eg from AMF 31 to SMF 32). Therefore, for example, as shown in FIG. 5, consumption of network resources can be reduced compared to the case where the PDU session change command ACK of a plurality of terminals 10 is transmitted in separate messages on the network side.
 (通信システムの構成)
 次に、以上のような通信システム1の各装置の構成について説明する。なお、以下の構成は、本実施形態の説明において必要な構成を示すためのものであり、各装置が図示以外の機能ブロックを備えることを排除するものではない。
(Configuration of communication system)
Next, the configuration of each device of the communication system 1 as described above will be described. Note that the following configuration is for showing the configuration required in the description of the present embodiment, and does not exclude that each device has functional blocks other than those illustrated.
 <ハードウェア構成>
 図12は、本実施形態に係る通信システム内の各装置のハードウェア構成の一例を示す図である。通信システム1内の各装置は、図1に示されるどの装置であってもよく、例えば、端末10、基地局20、CN30内のCN装置である。図12における符号「30」は、CN30内のCN装置を意味し、AMF31、SMF32、UPF33、MB-SMF34、MB-UPF35、MBSF36、NEF37、AF/AS38、PCF39を総称するものとする。
<Hardware configuration>
FIG. 12 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment. Each device within the communication system 1 can be any device shown in FIG. Reference numeral “30” in FIG. 12 denotes a CN device in CN 30, and generically refers to AMF 31, SMF 32, UPF 33, MB-SMF 34, MB-UPF 35, MBSF 36, NEF 37, AF/AS 38, and PCF 39.
 通信システム1内の各装置は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。 Each device in the communication system 1 includes a processor 11, a storage device 12, a communication device 13 for wired or wireless communication, an input device for receiving various input operations, and an input/output device 14 for outputting various information.
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、通信システム1内の各装置を制御する。プロセッサ11は、プログラムを記憶装置12から読み出して実行することで、本実施形態で説明する各種の処理を実行してもよい。通信システム1内の各装置は、1又は複数のプロセッサ11により構成されていてもよい。また、当該各装置は、コンピュータと呼ばれてもよい。 The processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the communication system 1 . The processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment. Each device within the communication system 1 may be configured with one or more processors 11 . Each device may also be called a computer.
 記憶装置12は、例えば、メモリ、HDD(Hard Disk Drive)及び/又はSSD(Solid State Drive)等のストレージから構成される。記憶装置12は、プロセッサ11による処理の実行に必要な各種情報(例えば、プロセッサ11によって実行されるプログラム等)を記憶してもよい。 The storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive). The storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
 通信装置13は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュール、チップ、アンテナ等を含んでもよい。また、通信装置13には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. Further, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing.
 RF装置は、例えば、BB装置から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、電力増幅等を行うことで、アンテナAから送信する無線信号を生成する。また、RF装置は、アンテナから受信した無線信号に対して、周波数変換、復調、A/D変換等を行うことでデジタルベースバンド信号を生成してBB装置に送信する。BB装置は、デジタルベースバンド信号をパケットに変換する処理、及び、パケットをデジタルベースバンド信号に変換する処理を行う。 For example, the RF device generates a radio signal to be transmitted from the antenna A by performing D/A conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB device. Further, the RF device generates a digital baseband signal by performing frequency conversion, demodulation, A/D conversion, etc. on the radio signal received from the antenna, and transmits the digital baseband signal to the BB device. The BB device performs a process of converting a digital baseband signal into a packet and a process of converting the packet into a digital baseband signal.
 入出力装置14は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等の入力装置と、例えば、ディスプレイ及び/又はスピーカ等の出力装置とを含む。 The input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
 以上説明したハードウェア構成は一例に過ぎない。通信システム1内の各装置は、図11に記載したハードウェアの一部が省略されていてもよいし、図12に記載されていないハードウェアを備えていてもよい。また、図12に示すハードウェアが1又は複数のチップにより構成されていてもよい。 The hardware configuration described above is just an example. Each device in the communication system 1 may omit part of the hardware shown in FIG. 11, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 12 may be configured by one or a plurality of chips.
 <機能ブロック構成>
 ≪端末≫
 図13は、本実施形態に係る端末の機能ブロック構成の一例を示す図である。図13に示すように、端末10は、受信部101と、送信部102と、制御部103と、を備える。なお、受信部101及び送信部102は、「通信部」と総称されてもよい。
<Functional block configuration>
≪Device≫
FIG. 13 is a diagram showing an example of a functional block configuration of a terminal according to this embodiment. As shown in FIG. 13 , terminal 10 includes receiver 101 , transmitter 102 , and controller 103 . Note that the receiving unit 101 and the transmitting unit 102 may be collectively referred to as a "communication unit".
 なお、受信部101と送信部102とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部101と送信部102とが実現する機能の全部又は一部と、制御部103とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a non-transitory computer readable medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部101は、MBSデータを受信する。具体的には、受信部101は、個別モードの場合、端末10毎のPDUセッションを介してMBSデータを受信する。一方、受信部101は、共有モードの場合、MB-UPF35から共有トンネルを介して基地局20に伝送されたMBSデータを、基地局20から受信する。 The receiving unit 101 receives MBS data. Specifically, the receiving unit 101 receives MBS data via a PDU session for each terminal 10 in the individual mode. On the other hand, in the shared mode, receiving section 101 receives MBS data transmitted from MB-UPF 35 to base station 20 via the shared tunnel from base station 20 .
 受信部101は、基地局20又はCN装置から、各種メッセージを受信する。例えば、受信部101は、PDUセッション変更コマンド、N1メッセージ、NASメッセージ及びRRCメッセージを受信してもよい。また、受信部101は、PDUセッション変更コマンドを含むRRC再設定メッセージを受信してもよい。 The receiving section 101 receives various messages from the base station 20 or the CN device. For example, the receiver 101 may receive PDU session change commands, N1 messages, NAS messages and RRC messages. Also, the receiving unit 101 may receive an RRC reconfiguration message including a PDU session change command.
 なお、「受信する」とは、例えば、信号の受信、デマッピング、復調、復号、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。例えば、受信部101は、下り信号を測定し、当該測定の結果に基づいて上記端末状態情報を生成してもよい。 Note that "receiving" may include, for example, performing processing related to reception, such as at least one of signal reception, demapping, demodulation, decoding, and measurement. For example, receiving section 101 may measure a downlink signal and generate the terminal state information based on the result of the measurement.
 送信部102は、基地局20又はCN装置に対して、各種メッセージを送信する。送信部102は、PDUセッション変更コマンドACK、N1メッセージ、NASメッセージ及びRRCメッセージを送信してもよい。また、送信部102は、PDUセッション変更コマンドACKを含むRRC再設定完了メッセージを送信してもよい。なお、「送信する」とは、例えば、符号化、変調、マッピング、信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。 The transmission unit 102 transmits various messages to the base station 20 or CN device. The transmitter 102 may transmit PDU session change command ACK, N1 message, NAS message and RRC message. Also, the transmitting unit 102 may transmit an RRC reconfiguration complete message including the PDU session change command ACK. Note that "transmitting" may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and signal transmission.
 制御部103は、端末10における各種制御を行う。具体的には、制御部103は、端末10毎のPDUセッションを用いたMBSデータの受信を制御してもよい。また、制御部103は、端末10毎のPDUセッション変更コマンドに応じて、端末10毎のPDUセッションの変更を制御してもよい。 The control unit 103 performs various controls in the terminal 10. Specifically, the control unit 103 may control reception of MBS data using a PDU session for each terminal 10 . Also, the control unit 103 may control the change of the PDU session for each terminal 10 according to the PDU session change command for each terminal 10 .
 ≪基地局≫
 図14は、本実施形態に係る基地局の機能ブロック構成の一例を示す図である。図14に示すように、基地局20は、受信部201と、送信部202と、制御部203と、を備える。なお、受信部201及び送信部202は、「通信部」と総称されてもよい。
≪Base station≫
FIG. 14 is a diagram showing an example of the functional block configuration of the base station according to this embodiment. As shown in FIG. 14, the base station 20 includes a receiver 201, a transmitter 202, and a controller 203. FIG. Note that the receiving unit 201 and the transmitting unit 202 may be collectively referred to as a "communication unit".
 なお、受信部201と送信部202とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部201と送信部202とが実現する機能の全部又は一部と、制御部203とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部201は、端末10、他の基地局20又はCN装置からの各種メッセージを受信する。具体的には、受信部201は、複数のPDUセッション変更コマンド(通知情報)を含むメッセージ(例えば、N2メッセージ)をCN装置(例えば、AMF31)から受信する。各PDUセッション変更コマンドは、MBSセッション情報に基づいて特定された各端末10に対するMBSデータの伝送用の各PDUセッションの変更に関する通知情報である。 The receiving unit 201 receives various messages from the terminal 10, another base station 20, or the CN device. Specifically, the receiving unit 201 receives a message (eg, N2 message) including a plurality of PDU session change commands (notification information) from the CN device (eg, AMF 31). Each PDU session change command is notification information regarding the change of each PDU session for transmission of MBS data for each terminal 10 identified based on the MBS session information.
 また、受信部201は、MBSセッション情報に基づいて特定された各端末10から、PDUセッション変更コマンドACK(応答情報)を含むメッセージ(例えば、RRC再設定完了メッセージ)を受信する。各PDUセッションコマンドACKは、MBSセッション情報に基づいて特定された各端末10に対するMBSデータの伝送用の各PDUセッションの変更に関する応答情報である。 Also, the receiving unit 201 receives a message (eg, RRC reconfiguration complete message) including the PDU session change command ACK (response information) from each terminal 10 specified based on the MBS session information. Each PDU session command ACK is response information about changing each PDU session for transmission of MBS data for each terminal 10 identified based on the MBS session information.
 送信部202は、端末10、他の基地局20又はCN装置からの各種メッセージを送信する。具体的には、送信部202は、複数のPDUセッション変更コマンドACKの少なくとも一つを含むメッセージ(例えば、N2メッセージ)をCN装置(例えば、AMF31)に送信する。 The transmission unit 202 transmits various messages from the terminal 10, other base stations 20, or CN devices. Specifically, the transmitting unit 202 transmits a message (eg, N2 message) including at least one of a plurality of PDU session change command ACKs to the CN device (eg, AMF 31).
 例えば、送信部202は、タイマが満了する場合、当該タイマが満了するまでに受信部201によって受信された一以上のPDUセッションコマンドACKを含むメッセージを送信してもよい(例えば、図9)。また、送信部202は、当該タイマが満了するまでに上記複数のPDUセッション変更コマンドACKが受信部201によって受信される場合、当該複数のPDUセッション変更コマンドACKを含むメッセージを送信してもよい(例えば、図9)。 For example, when the timer expires, the transmitting unit 202 may transmit a message including one or more PDU session command ACKs received by the receiving unit 201 before the timer expires (eg, FIG. 9). Further, when the receiving unit 201 receives the plurality of PDU session change command ACKs before the timer expires, the transmitting unit 202 may transmit a message including the plurality of PDU session change command ACKs ( For example, FIG. 9).
 また、送信部202は、MBSセッション情報に基づいて特定された各端末10に対して、PDUセッション変更コマンドを含むメッセージ(例えば、RRC再設定メッセージ)を送信する。 Also, the transmitting unit 202 transmits a message (eg, RRC reconfiguration message) including a PDU session change command to each terminal 10 identified based on the MBS session information.
 制御部203は、基地局20における各種制御を行う。具体的には、制御部203は、タイマを用いて、上記複数のPDUセッション変更コマンドACKの少なくとも一つを含むメッセージの送信を制御してもよい(例えば、図9)。また、制御部203は、複数のPDUセッション変更コマンドを含むメッセージの受信に応じて、当該タイマを開始してもよい。 The control unit 203 performs various controls in the base station 20. Specifically, the control unit 203 may use a timer to control transmission of a message including at least one of the plurality of PDU session change commands ACK (eg, FIG. 9). Also, the control unit 203 may start the timer in response to receiving a message including multiple PDU session change commands.
 ≪CN装置≫
 図15は、本実施形態に係るCN装置の機能ブロック構成の一例を示す図である。図15のCN装置は、例えば、SMF32又はAMF31であるものとするが、他のCN装置が同様の機能ブロック構成を備えてもよい。CN装置は、受信部301と、送信部302と、制御部303と、を備える。なお、受信部301及び送信部302は、「通信部」と総称されてもよい。
<<CN device>>
FIG. 15 is a diagram showing an example of the functional block configuration of the CN device according to this embodiment. The CN device in FIG. 15 is, for example, SMF32 or AMF31, but other CN devices may have similar functional block configurations. The CN device comprises a receiver 301 , a transmitter 302 and a controller 303 . Note that the receiving unit 301 and the transmitting unit 302 may be collectively referred to as a "communication unit".
 なお、受信部301と送信部302とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部301と送信部302とが実現する機能の全部又は一部と、制御部303とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 and the control unit 303 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部301は、端末10、基地局20又は他のCN装置からの各種メッセージを受信する。具体的には、受信部301は、MBSセッション情報を他のCN装置から受信する。例えば、SMF32の受信部301は、PCF39からMB-SMF34を経由して、MBSセッション情報を受信してもよい(例えば、図5)。又は、SMF32の受信部301は、PCF39からMB-SMF34を経由せずに、MBSセッション情報を受信してもよい(例えば、図7)。また、AMF31の受信部301は、SMF32から、MBSセッション情報を受信してもよい(例えば、図8)。 The receiving unit 301 receives various messages from the terminal 10, the base station 20, or other CN devices. Specifically, receiving section 301 receives MBS session information from other CN devices. For example, the receiver 301 of the SMF 32 may receive MBS session information from the PCF 39 via the MB-SMF 34 (eg, FIG. 5). Alternatively, the receiver 301 of the SMF 32 may receive MBS session information from the PCF 39 without going through the MB-SMF 34 (eg, FIG. 7). Also, the receiving unit 301 of the AMF 31 may receive MBS session information from the SMF 32 (eg, FIG. 8).
 受信部301は、複数のPDUセッションコマンドACKの少なくとも一つを受信する。当該複数のPDUセッションコマンドACKは、それぞれ、MBSセッション情報に基づいて特定された複数の端末10に対するMBSデータの伝送に用いられる複数のPDUセッションに対応してもよい。例えば、AMF31の受信部301は、当該複数のPDUセッションコマンドACKの少なくとも一つを含むメッセージ(例えば、「N2メッセージ」)を基地局20から受信してもよい(例えば、図9)。また、SMF32の受信部301は、当該複数のPDUセッションコマンドACKの少なくとも一つを含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Request」)をAMF31から受信してもよい(例えば、図9又は11)。 The receiving unit 301 receives at least one of a plurality of PDU session commands ACK. The multiple PDU session command ACKs may correspond to multiple PDU sessions used for transmission of MBS data for multiple terminals 10 identified based on the MBS session information. For example, the receiver 301 of the AMF 31 may receive a message (eg, "N2 message") including at least one of the plurality of PDU session command ACKs from the base station 20 (eg, FIG. 9). Also, the receiving unit 301 of the SMF 32 may receive a message (for example, “Nsmf_PDUSession_UpdateSMContextRequest”) including at least one of the plurality of PDU session command ACKs from the AMF 31 (for example, FIG. 9 or 11).
 送信部302は、端末10、基地局20又は他のCN装置に対して、各種メッセージを送信する。具体的には、送信部302は、複数のPDUセッション変更コマンドを含むメッセージを送信する。例えば、SMF32の送信部302は、MBSセッション情報に基づいて特定されたUEリスト(複数の端末10に関する情報)を含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Response」)をAMF31に送信する(例えば、図5又は7)。 The transmission unit 302 transmits various messages to the terminal 10, the base station 20, or other CN devices. Specifically, the transmitter 302 transmits a message including multiple PDU session change commands. For example, the transmitting unit 302 of the SMF 32 transmits a message (eg, "Nsmf_PDUSession_UpdateSMContext Response") including the UE list (information on multiple terminals 10) identified based on the MBS session information to the AMF 31 (eg, FIG. 5 or 7).
 また、SMF32の送信部302は、複数のPDUセッション変更コマンドを含むメッセージ(例えば、「Namf_Communication_N1N2Message Transfer」)をAMF31に送信する(例えば、図5、7又は8)。AMF31の送信部302は、複数のPDUセッション変更コマンドを含むメッセージ(例えば、「N2メッセージ」)をAMF31に送信する(例えば、図5又は7)。 In addition, the transmission unit 302 of the SMF 32 transmits a message (eg, "Namf_Communication_N1N2MessageTransfer") including multiple PDU session change commands to the AMF 31 (eg, FIGS. 5, 7, or 8). The sending unit 302 of the AMF 31 sends a message (eg, “N2 message”) containing multiple PDU session change commands to the AMF 31 (eg, FIG. 5 or 7).
 また、AMF31の送信部302は、当該複数のPDUセッションコマンドACKの少なくとも一つを含むメッセージ(例えば、「Nsmf_PDUSession_UpdateSMContext Request」)をSMF32に送信してもよい(例えば、図9又は11)。 Also, the transmitting unit 302 of the AMF 31 may transmit a message (eg, "Nsmf_PDUSession_UpdateSMContextRequest") including at least one of the plurality of PDU session command ACKs to the SMF 32 (eg, FIG. 9 or 11).
 制御部303は、CN装置における各種制御を行う。具体的には、制御部303は、MBSセッション情報に基づいて、MBSセッションに関連付けられた一つ又は複数の端末10を特定する。例えば、SMF32の制御部303は、MBSセッション情報に基づいて当該端末10を特定してもよい(例えば、図5又は7)。又は、AMF31の制御部303は、MBSセッション情報に基づいて当該端末10を特定してもよい(例えば、図8)。 The control unit 303 performs various controls in the CN device. Specifically, the control unit 303 identifies one or more terminals 10 associated with the MBS session based on the MBS session information. For example, the control unit 303 of the SMF 32 may identify the terminal 10 based on MBS session information (eg, FIG. 5 or 7). Alternatively, the control unit 303 of the AMF 31 may identify the terminal 10 based on MBS session information (eg, FIG. 8).
 以上のように、本実施形態に係る通信システム1によれば、基地局20と複数の端末10との間でそれぞれ個別のメッセージで伝送される複数の情報(例えば、複数のPDUセッション変更コマンド又は複数のPDUセッション変更コマンドACK)が、ネットワーク側では単一のメッセージに含められて伝送される。このため、ネットワーク側におけるリソースの利用効率を向上できる。 As described above, according to the communication system 1 according to the present embodiment, a plurality of pieces of information (for example, a plurality of PDU session change commands or Multiple PDUs Session Change Command ACK) are transmitted in a single message on the network side. Therefore, it is possible to improve the utilization efficiency of resources on the network side.
 (変形例)
 上記実施形態では、ネットワーク側では、複数の情報(例えば、複数のPDUセッション変更コマンド又は複数のPDUセッション変更コマンドACK)が単一のメッセージに含められるものとしたが、これに限られない。例えば、SMF32からの単一のPDUセッション変更コマンドが、基地局20において複数のPDUセッション変更コマンドに複製されてもよい。又は、複数の端末10それぞれからの複数のPDUセッション変更コマンドACKは、基地局20又はAMF31において単一のPDUセッション変更コマンドACKに統合されてもよい。
(Modification)
In the above embodiments, multiple pieces of information (for example, multiple PDU session change commands or multiple PDU session change command ACKs) are included in a single message on the network side, but the present invention is not limited to this. For example, a single PDU session change command from SMF 32 may be replicated into multiple PDU session change commands at base station 20 . Alternatively, multiple PDU session change command ACKs from each of multiple terminals 10 may be integrated into a single PDU session change command ACK at the base station 20 or AMF 31 .
 (補足)
 上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、Non Access Stratum(NAS)レイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。
(supplement)
Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
 また、上記実施形態における各種の信号、情報、パラメータ、IE、チャネル、時間単位及び周波数単位の名称は、例示にすぎず、他の名称に置き換えられてもよい。例えば、スロットは、所定数のシンボルを有する時間単位であれば、どのような名称であってもよい。また、RBは、所定数のサブキャリアを有する周波数単位であれば、どのような名称であってもよい。 Also, the names of various signals, information, parameters, IEs, channels, time units, and frequency units in the above embodiments are merely examples, and may be replaced with other names. For example, a slot may be named any unit of time having a predetermined number of symbols. Also, RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers.
 また、上記実施形態における端末10の用途(例えば、RedCap、IoT向け等)は、例示するものに限られず、同様の機能を有する限り、どのような用途(例えば、eMBB、URLLC、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)等)で利用されてもよい。また、各種情報の形式は、上記実施形態に限られず、ビット表現(0又は1)、真偽値(Boolean:true又はfalse)、整数値、文字等適宜変更されてもよい。また、上記実施形態における単数、複数は相互に変更されてもよい。 In addition, the use of the terminal 10 in the above embodiment (for example, for RedCap, IoT, etc.) is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to- Device (D2D), Vehicle-to-Everything (V2X), etc.). Also, the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like. Also, singularity and plurality in the above embodiments may be interchanged.
 以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、インデックス、条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、上記実施形態で説明した少なくとも一部の構成を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating understanding of the present disclosure, and are not for limiting interpretation of the present disclosure. Flowcharts, sequences, elements included in the embodiments, their arrangement, indexes, conditions, and the like described in the embodiments are not limited to those illustrated and can be changed as appropriate. Moreover, it is possible to partially replace or combine at least part of the configurations described in the above embodiments.

Claims (7)

  1.  マルチキャストブロードキャストサービス(MBS)セッションに関する情報を受信する受信部と、
     前記MBSセッションに関する情報に基づいて、前記MBSセッションに関連付けられた複数の端末を特定する制御部と、
     前記複数の端末に対するMBSデータの伝送に用いられる複数のPDUセッションであって、前記複数のPDUセッションそれぞれの変更に関する一つ又は複数の通知情報を含むメッセージを送信する送信部と、
     を備える装置。
    a receiver for receiving information about a Multicast Broadcast Service (MBS) session;
    a control unit that identifies a plurality of terminals associated with the MBS session based on information about the MBS session;
    a transmission unit for transmitting a message including one or more notification information regarding changes in each of a plurality of PDU sessions used for transmission of MBS data to the plurality of terminals;
    A device comprising
  2.  前記装置は、Session Management Function(SMF)であり、
     前記送信部は、Access and Mobility Management Function(AMF)に対して、前記複数の端末に関する情報と、前記一つ又は複数の通知情報を含む前記メッセージとを送信する、
     請求項1に記載の装置。
    the device is a Session Management Function (SMF);
    The transmitting unit transmits information about the plurality of terminals and the message including the one or more notification information to an Access and Mobility Management Function (AMF).
    A device according to claim 1 .
  3.  前記受信部は、Policy and Charging Control Function(PCF)からMulticast Broadcast(MB)-SMFを経由して、前記MBSセッションに関する情報を受信する、
     請求項2に記載の装置。
    The receiving unit receives information about the MBS session from Policy and Charging Control Function (PCF) via Multicast Broadcast (MB)-SMF;
    3. Apparatus according to claim 2.
  4.  前記受信部は、Policy and Charging Control Function(PCF)からMulticast Broadcast(MB)-SMFを経由せずに、前記MBSセッションに関する情報を受信する、
     請求項2に記載の装置。
    The receiving unit receives information about the MBS session from Policy and Charging Control Function (PCF) without going through Multicast Broadcast (MB)-SMF;
    3. Apparatus according to claim 2.
  5.  前記装置は、Access and Mobility Management Function(AMF)であり、
     前記送信部は、基地局に対して、前記複数の通知情報を含む前記メッセージを送信する、
     請求項1に記載の装置。
    the device is an Access and Mobility Management Function (AMF);
    wherein the transmission unit transmits the message including the plurality of notification information to a base station;
    A device according to claim 1 .
  6.  マルチキャストブロードキャストサービス(MBS)セッションに関する情報に基づいて特定された複数の端末に対するMBSデータの伝送に用いられる複数のPDUセッションであって、前記複数のPDUセッションそれぞれの変更に関する複数の通知情報を含むメッセージを受信する受信部と、
     前記複数の端末に対して、前記複数の通知情報をそれぞれ含む複数のメッセージを送信する送信部と、
     を備える基地局。
    A message of multiple PDU sessions used for transmission of MBS data to multiple terminals identified based on information about a Multicast Broadcast Service (MBS) session, the message including multiple notification information about changes in each of the multiple PDU sessions. a receiver for receiving
    a transmission unit that transmits a plurality of messages each including the plurality of notification information to the plurality of terminals;
    base station.
  7.  マルチキャストブロードキャストサービス(MBS)セッションに関する情報を受信する工程と、
     前記MBSセッションに関する情報に基づいて、前記MBSセッションに関連付けられた複数の端末を特定する工程と、
     前記複数の端末に対するMBSデータの伝送に用いられる複数のPDUセッションであって、前記複数のPDUセッションそれぞれの変更に関する一つ又は複数の通知情報を含むメッセージを送信する工程と、
     を有する装置における通信方法。
    receiving information about a Multicast Broadcast Service (MBS) session;
    identifying a plurality of terminals associated with the MBS session based on information about the MBS session;
    transmitting a message containing one or more notification information regarding changes in each of a plurality of PDU sessions used for transmission of MBS data to the plurality of terminals;
    A communication method in a device having
PCT/JP2022/028897 2021-07-29 2022-07-27 Device, base station, and communication method WO2023008468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124662A JP2023019720A (en) 2021-07-29 2021-07-29 Device, base station, and communication method
JP2021-124662 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008468A1 true WO2023008468A1 (en) 2023-02-02

Family

ID=85087744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028897 WO2023008468A1 (en) 2021-07-29 2022-07-27 Device, base station, and communication method

Country Status (2)

Country Link
JP (1) JP2023019720A (en)
WO (1) WO2023008468A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063383A1 (en) * 2019-10-04 2021-04-08 Huawei Technologies Co., Ltd. Support group communications with shared downlink data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063383A1 (en) * 2019-10-04 2021-04-08 Huawei Technologies Co., Ltd. Support group communications with shared downlink data

Also Published As

Publication number Publication date
JP2023019720A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US11425537B2 (en) Communications system, communication method, and apparatus thereof
JP4734412B2 (en) MBMS service transmission / reception method in mobile communication system
US20180192257A1 (en) Mobile communication system, core network node, control station, base station, communication method and program
US9936481B2 (en) Mobile communication system, control station, base station, communication method and program
WO2022085717A1 (en) Communication control method
WO2015018232A1 (en) Device-to-device connection management method and apparatus, and base station
WO2016184102A1 (en) Method and device for base station selection
CN115699816A (en) Method for sidelink relay communication under dual connectivity
CN112804767A (en) Base station for mobile communication system and data transmission method thereof
WO2023008468A1 (en) Device, base station, and communication method
WO2023008469A1 (en) Device and communication method
WO2022172820A1 (en) Base station, core network device, terminal, and communication method
WO2023008520A1 (en) Core network device and communication method
WO2022080230A1 (en) Communication control method
WO2022172818A1 (en) Relay terminal, core network device, and communication method
WO2022172819A1 (en) Relay terminal, core network device, and communication method
WO2023008518A1 (en) Terminal, relay terminal, and communication method
WO2023008519A1 (en) Relay terminal and communication method
WO2023008410A1 (en) Communication control method and base station
WO2022085644A1 (en) Communication control method
JP6645677B2 (en) Link establishment method and device
CN115706935A (en) Communication tunnel management method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE