WO2022172818A1 - Relay terminal, core network device, and communication method - Google Patents

Relay terminal, core network device, and communication method Download PDF

Info

Publication number
WO2022172818A1
WO2022172818A1 PCT/JP2022/003957 JP2022003957W WO2022172818A1 WO 2022172818 A1 WO2022172818 A1 WO 2022172818A1 JP 2022003957 W JP2022003957 W JP 2022003957W WO 2022172818 A1 WO2022172818 A1 WO 2022172818A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
terminal
relay terminal
qos request
information
Prior art date
Application number
PCT/JP2022/003957
Other languages
French (fr)
Japanese (ja)
Inventor
輝文 ▲高▼田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022172818A1 publication Critical patent/WO2022172818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to relay terminals, core network devices, and communication methods.
  • LTE Long Term Evolution
  • RAT Radio Access Technology
  • 4th generation RAT Long Term Evolution-Advanced
  • 5G New Radio
  • EPC Evolved Packet Core
  • Proximity based Services Proximity services being considered for 5G are also called 5G ProSe.
  • 5G ProSe 5G ProSe
  • relay communication in which a remote terminal (Remote UE) communicates with a network via a relay terminal (Relay UE).
  • the 5G network supports various types of communication, such as best-effort communication such as the Internet, communication that requires low latency, and communication that requires high reliability. It is possible to communicate by specifying QoS (Quality of Service).
  • QoS Quality of Service
  • the remote terminal communicates with the 5G network via the relay terminal, it is conceivable that the remote terminal specifies QoS corresponding to the desired communication quality and performs communication.
  • the remote terminal connects to the relay terminal, designates the desired QoS, and starts communication. There is the problem of waste.
  • An object of the present disclosure is to provide a relay terminal, a core network device, and a communication method that make it possible to eliminate wasteful processing procedures that may occur when QoS requested by a terminal cannot be satisfied.
  • a relay terminal when receiving a QoS request from a terminal, indicates a first transmission unit that transmits the QoS request to a network device, and a rejection of the QoS request from the network device.
  • a receiver that receives the first information, and a second transmitter that transmits a message including information indicating that the QoS request cannot be accepted when the first information is received.
  • the present disclosure it is possible to provide a relay terminal, a core network device, and a communication method that make it possible to eliminate wasteful processing procedures that may occur when QoS requested by a terminal cannot be satisfied.
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • FIG. 2 is a diagram for explaining problems in terminals and inter-network relays;
  • FIG. 3 is a sequence diagram showing an example of a processing procedure (pattern 1) when notifying a QoS state;
  • FIG. 4 is a sequence diagram showing an example of a processing procedure (pattern 2) when notifying a QoS state;
  • FIG. 5 is a sequence diagram showing an example of a processing procedure (pattern 3) when notifying a QoS state;
  • FIG. 6 is a sequence diagram showing an example of a processing procedure (pattern 1) in QoS control based on priority;
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • FIG. 2 is a diagram for explaining problems in terminals and inter-network relays;
  • FIG. 3 is a sequence diagram showing an example of a processing procedure (pattern 1) when notifying a QoS state
  • FIG. 7 is a sequence diagram showing an example of a processing procedure (pattern 2) in QoS control based on priority;
  • FIG. 8 is a sequence diagram showing an example of a processing procedure (pattern 3) in QoS control based on priority;
  • FIG. 9 is a sequence diagram showing an example of a processing procedure (pattern 4) in QoS control based on priority;
  • FIG. 10 is a diagram showing an example of the hardware configuration of each device in the communication system according to the embodiment;
  • FIG. 11 is a diagram illustrating a functional block configuration example of a relay terminal;
  • FIG. 12 is a diagram illustrating a functional block configuration example of a base station;
  • FIG. 13 is a diagram showing a functional block configuration example of an AMF;
  • FIG. 14 is a diagram showing a functional block configuration example of an SMF;
  • FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment.
  • the communication system 1 includes a relay terminal (relay terminal) 10A, a remote terminal 10B, a base station 20, a core network 30, and a Data Network (DN) 40.
  • the numbers of terminals 10, base stations 20, and nodes in the core network 30 shown in FIG. 1 are merely examples, and are not limited to the numbers shown.
  • terminal 10 when not distinguishing between the relay terminal (Relay UE) 10A and the remote terminal (Remote UE) 10B, they are described as "terminal 10".
  • the terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like.
  • Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on.
  • the terminal 10 may be mobile or stationary.
  • the terminal 10 is configured to be able to communicate using, for example, LTE, LTE-Advanced, NR, etc. as a radio access technology (RAT) RAT for the base station 20, but not limited to this, the sixth generation It may be configured to be communicable using the subsequent RATs.
  • the terminal 10 is not limited to the access network defined by 3GPP as described above (3GPP access network). may access.
  • the base station 20 forms one or more cells C and communicates with the terminal 10 using the cell C.
  • the interface between terminal 10 and base station 20 is called Uu.
  • Base station 20 includes gNodeB (gNB), en-gNB, radio access network (RAN), access network (AN), next generation radio access network (Next Generation-Radio Access Network: NG-RAN ) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), integrated access and back It may also be called a hole (Integrated Access and Backhaul/Backhauling: IAB) node or the like.
  • the base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
  • the core network 30 is, for example, 5GC, but is not limited to this, and may be an EPC, a sixth generation or later core network, or the like.
  • the core network 30 includes, for example, Access and Mobility Management Function (AMF) 31, Session Management Function (SMF) 32, User Plane Function (UPF) 33, Policy and Control Function (PCF) 34, Application Function (AF) 35, etc. include.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy and Control Function
  • AF Application Function
  • the AMF 31 is a mobility management device that manages the mobility of the terminal 10 .
  • the AMF 31 is connected to the base station 20 via the N2 interface and to the terminal 10 via the N1 interface.
  • the AMF 31 performs processing related to the control plane (for example, registration management, connection management, mobility management) and the like.
  • the AMF 31 also performs processing related to non-access stratum (NAS), and transmits and/or receives NAS messages to and from the terminal 10 .
  • NAS non-access stratum
  • the SMF 32 is a session management device that manages sessions, for example, selects the UPF 33 used by the terminal 10 to communicate with the DN 40, and establishes, updates, and updates a PDU (Protocol Data Unit) session between the terminal 10 and the DN 40. Control release, etc.
  • the SMF 32 is connected to the AMF 31 via the N11 interface and to the UPF 33 via the N4 interface.
  • the UPF 33 is a connection point to the DN 40 and performs, for example, packet routing and forwarding.
  • the UPF 33 is connected to the SMF 32 via the N4 interface and to the base station 20 via the N3 interface.
  • the UPF 33 performs packet routing and transfer according to the PDU session indicating the connection relationship between the terminal 10 and the DN 40 .
  • the PCF 34 is a policy management control device that manages and controls policies. For example, it determines QoS to be applied to traffic based on a predetermined policy.
  • the RCF 34 is connected to the SMF 32 via the N7 interface and to the AF 35 via the N5 interface.
  • the AF 35 is a device that provides the core network 30 with necessary information when providing services (such as ProSe). AF 35 is connected to PCF 34 via the N5 interface.
  • the DN 40 is, for example, the Internet, a corporate network, an IP Multimedia Subsystem (IMS), or the like.
  • IMS IP Multimedia Subsystem
  • the functions included in the core network 30 are not limited to those shown in FIG.
  • the names of the functions and interfaces shown in FIG. 1 are merely examples, and are not limited to those shown in FIG. 1, and other names may be used as long as they have equivalent or similar functions.
  • a plurality of core network functions shown in FIG. 1 may be provided in a single device, or one core network function shown in FIG. 1 may be configured by a plurality of devices.
  • a device that constitutes part or all of each function of the core network 30 is also called a “core network device”.
  • Downlink data from the DN 40 is transmitted from the UPF 33 to the base station 20 via the N3 tunnel, and transmitted from the base station 20 to the terminal 10 via the radio bearer.
  • uplink data from the terminal 10 is transmitted from the terminal 10 to the base station 20 via the radio bearer, transmitted from the base station 20 to the UPF 33 via the N3 tunnel, and transmitted from the UPF 33 to the DN 40 .
  • the N3 tunnel is a tunnel for transmitting encapsulated IP (Encapsulated Internet Protocol) packets, and may be called a user plane tunnel or the like.
  • QoS control QoS control in 5G is performed in units of one or multiple QoS flows (QoS Flows) defined within a PDU session.
  • QoS flow is uniquely identified using a QoS Flow ID (QFI).
  • QFI QoS Flow ID
  • each QoS flow is defined by a QoS Profile, a QoS Rule, and a UL/DL PDR (Uplink/Downlink Packet Detection Rule).
  • a QoS profile is information notified to the base station 20 from the SMF 32 via the AMF 31 .
  • the base station 20 maps QoS flows to data radio bearers (DRBs) and schedules the data radio bearers based on the QoS characteristics specified by the QoS profile.
  • the QoS profile includes QoS parameters such as 5G QoS Identifier (5QI), Allocation and Retention Priority (ARP), Reflective QoS Attribute (ROA) and Notification control.
  • 5QI is an indicator that identifies the QoS characteristics predefined by the 3GPP specifications.
  • QoS characteristics in 5G include, for example, resource type (guaranteed bit rate (GBR), non-guaranteed bit rate (Non-GBR), delay critical GBR), guaranteed flow bit rate (GFBR), maximum flow bit rate Rate (Maximum Flow Bit Rate: MFBR), priority level, packet delay budget, packet error rate, etc. are included.
  • the notification control is information indicating whether or not to request the base station 20 to notify the core network 30 when GFBR in the QoS flow cannot be guaranteed or can be guaranteed again.
  • a QoS rule is information notified to the terminal 10 from the SMF 32 via the AMF 31 .
  • the terminal 10 maps UL data to QoS flows based on QoS rules.
  • QoS rules include QFI, packet filter sets, and the like.
  • the PDR is information notified from the SMF 32 to the UPF 33.
  • the UPF 33 classifies the DL data received from the DN 40 and marks the QoS flow (appends QFI to the encapsulation header).
  • the QoS flow (QoS Flow) is managed by the SMF32.
  • QoS flow setting/modification is performed by a PDU Session Establishment procedure or a PDU Session Modification procedure. That is, the QoS rule, QoS profile and PDR are notified to the terminal 10, base station 20 and UPF 33 by the PDU session establishment procedure or PDU session change procedure, respectively.
  • one PDU session can be associated with one or more QoS flows.
  • a remote terminal 10B communicates with a network (base station 20 and core network 30) via a relay terminal 10A.
  • the remote terminal 10B may be called a Remote UE or a ProSe UE-to-Network Relay.
  • the relay terminal 10A and the remote terminal 10B support terminal-to-terminal communication (D2D communication, Sidelink communication).
  • the interface between the remote terminal 10B and the relay terminal 10A is called PC5.
  • the relay terminal 10A and the remote terminal 10B have the same functions, and it may be possible to arbitrarily switch between operating as the relay terminal 10A and operating as the remote terminal 10B.
  • the relay terminal 10A and the remote terminal 10B may be terminals 10 having different functions.
  • the relay terminal 10A and the remote terminal 10B may have a function of operating as a normal terminal 10. FIG.
  • Layer 3 UE-to-Network Relay and Layer 2 UE-to-Network Relay in which the remote terminal 10B terminates the NAS layer. Relay is being considered.
  • the relay terminal 10A terminates the NAS (Non Access Stratum) layer, and the relay terminal 10A establishes a PDU session used for communication with the remote terminal 10B.
  • NAS Non Access Stratum
  • the QoS flow for inter-terminal communication ⁇ PC5 QoS flow''
  • PQIs PC5 5QIs
  • a PFI PC5 QoS Flow Identifier
  • the QoS flow described in the above "QoS control” may be applied.
  • the QoS flow described in the above "QoS control” is referred to as "Uu QoS flow” for convenience in order to distinguish it from the PC5 QoS flow.
  • the relay terminal 10A maps the PQI of the "PC5 QoS flow” and the 5QI of the "Uu QoS flow” between the PQI and the 5QI. Mutual conversion is performed based on the information (hereinafter referred to as "mapping table"). Thereby, end-to-end QoS control between the remote terminal 10B and the DN 40 can be realized.
  • Layer 2 relay is a form in which the remote terminal 10B terminates the NAS layer and the remote terminal 10B itself establishes a PDU session applied to the communication of the remote terminal 10B.
  • the relay terminal 10A may perform QoS control of the radio bearer on the PC5 link according to the QoS profile used for QoS control of the radio bearer on the Uu link.
  • FIG. 2 is a diagram for explaining problems in terminals and inter-network relays.
  • step S11 for example, many remote terminals 10B-1 to 10B-n (n is an arbitrary positive integer) are connected to the network via the relay terminal 10A and are communicating.
  • step S12 a connection is established with the network via the relay terminal 10A in order for the new remote terminal 10B-X to start communication.
  • a default QoS QoS with non-guaranteed bit rate
  • the remote terminal 10B-X notifies the relay terminal 10A of the desired QoS.
  • the QoS desired by the remote terminal 10B-X is a QoS with stricter conditions than the default QoS, such as a guaranteed bit rate.
  • step S14 the relay terminal 10A notifies the network of the QoS desired by the remote terminal 10B-X. Since the relay terminal 10A and the network are already in a state where many remote terminals 10B-1 to 10B-n are communicating via the relay terminal 10A, it is impossible to accept the QoS request desired by the remote terminal 10B-X. recognize that you cannot.
  • step S15 the relay terminal 10A notifies the remote terminal 10B-X that it refuses to accept the QoS request desired by the remote terminal 10B-X.
  • step S16 when the request for the desired QoS is rejected, the remote terminal 10B-X gives up communication via the relay terminal 10A and attempts communication via another relay terminal 10A.
  • the remote terminal 10B-X is a terminal 10 that performs important communication with high priority such as mission-critical communication, it is considered undesirable to refuse to accept the QoS desired by the remote terminal 10B-X. (Second problem).
  • many remote terminals 10B-1 to 10B-n are connected to the network via the relay terminal 10A and are communicating, but the present invention is not limited to this. For example, even when the radio quality between the relay terminal 10A and the base station 20 is poor, or when the traffic of the core network 30 is tight, similar problems may occur.
  • the relay terminal 10A determines whether or not the network can accept a QoS request with stricter requirements. (hereinafter referred to as "QoS state information") is notified to terminals 10 existing in the vicinity.
  • QoS state information (hereinafter referred to as "QoS state information") is notified to terminals 10 existing in the vicinity.
  • the QoS of the remote terminal 10B which has a lower priority than the remote terminal 10B-X, is increased.
  • Change to QoS with looser requirements hereinafter referred to as “priority-based QoS control”.
  • priority-based QoS control Change to QoS with looser requirements
  • FIG. 3 is a sequence diagram showing an example of the processing procedure (pattern 1) when notifying the QoS status.
  • the SMF 32 rejects the QoS request (the PDU session change)
  • the relay terminal 10A determines that network resources are tight, and indicates that the QoS request cannot be accepted. Send the QoS state information indicated.
  • the remote terminal 10B establishes a connection for direct communication with the relay terminal 10A operating as a layer 3 relay. Such connections may be called L2 links, PC5 links, unicast links, and so on. Also, the remote terminal 10B establishes a "PC5 QoS flow" with the relay terminal 10A. Here, it is assumed that the default QoS is applied to the PC5 QoS flow.
  • the relay terminal 10A executes the PDU session establishment procedure and creates a Uu QoS flow corresponding to the remote terminal 10B (more specifically, a Uu QoS flow used to flow the traffic of the remote terminal 10B).
  • a Uu QoS flow used to flow the traffic of the remote terminal 10B.
  • the default QoS is applied to the Uu QoS flow that is created.
  • the relay terminal 10A has already established a PDU session, the Uu QoS flow corresponding to the remote terminal 10B may be created by executing the PDU session update procedure instead of the PDU session establishment procedure. .
  • the upstream data from the remote terminal 10B is carried to the DN 40 via the relay terminal 10A according to the PC5 QoS flow and the Uu QoS flow.
  • downlink data from DN 40 is carried to remote terminal 10B via relay terminal 10A according to the Uu QoS flow and PC5 QoS flow.
  • the relay terminal 10A may manage the end-to-end QoS flow in the remote terminal 10B by associating and managing the created QFI of the Uu QoS flow and the PFI of the PC5 QoS flow.
  • the remote terminal 10B changes the QoS applied to the PC5 QoS flow to the desired QoS (here, it is assumed to be a QoS with stricter requirements than the default QoS), so that the relay terminal 10A , an L2 link modification request including information indicating the desired QoS (hereinafter referred to as "QoS indicator") to the relay terminal 10A.
  • the QoS indicator may be called Requested QoS.
  • a QoS indicator may be, for example, a PQI corresponding to a desired QoS requirement or an identifier corresponding to an end-to-end QoS requirement.
  • the QoS indicator may also include other parameters specifying communication quality.
  • the relay terminal 10A converts the PQI included in the QoS indicator or the identifier corresponding to the end-to-end QoS requirement into 5QI based on the mapping table.
  • the mapping table may be set in the relay terminal 10A from the core network 30 via NAS messages or RRC (Radio Resource Control) messages, or may be preconfigured in the relay terminal 10A. .
  • the relay terminal 10A transmits a NAS message (PDU session modification request) to the AMF 31 via the base station 20 in order to change the QoS of the Uu QoS flow corresponding to the remote terminal 10B.
  • the PDU session change request includes, for example, the PDU session ID, the identifier of the Uu QoS flow corresponding to the remote terminal 10B, and the QoS indicator.
  • the "identifier of the Uu QoS flow corresponding to the remote terminal 10B" may be, for example, QFI or a packet filter (the same applies to the following description).
  • step S104 PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33.
  • the AMF 31 transmits various information included in the PDU session change request to the SMF 32 in a PDU session update request message (Nsmf_PDUSession_UpdateSMContext).
  • the SMF 32 determines whether or not the QoS request can be accepted based on network traffic conditions and the like.
  • the SMF 32 may determine by any method, but for example, accepts the QoS request according to the number of PDU sessions already established with each terminal 10 or the number of bit rate guaranteed QoS flows. You may make it determine whether it is possible.
  • the SMF 32 When the SMF 32 accepts the QoS request, it sends the QoS profile and QoS rules corresponding to the QoS request to the AMF 31 .
  • the AMF 31 includes the QoS profile in the N2 message and transmits it to the base station 20, and includes the QoS rule in the NAS message and transmits it to the relay terminal 10A. Also, SMF 32 transmits UL/DL PDR corresponding to the QoS request to UPF 33 .
  • the SMF 32 determines that the QoS request cannot be accepted, the SMF 32 provides the node (such as the AMF 31 or the PCF 34) that notified the QoS request with information indicating that the QoS request is to be rejected (hereinafter referred to as "QoS rejection information”).
  • QoS denial information may be referred to as QoS unchangeable information.
  • the QoS rejection information may be a PDU session change rejection message.
  • the QoS rejection information may also include information indicating the reason for rejecting the QoS request (for example, cause value).
  • the SMF 32 has determined that the QoS request received from the AMF 31 cannot be accepted. It is also assumed that the SMF 32 has transmitted a PDU session change rejection message to the AMF 31 .
  • step S110 the AMF 31 transmits a NAS message (PDU Session Modification Command) to the relay terminal 10A.
  • the PDU session modification command contains QoS denial information.
  • the relay terminal 10A may broadcast the QoS state information at a predetermined cycle. For example, the relay terminal 10A may transmit the QoS status information through a broadcast channel.
  • the relay terminal 10A, the QoS state information, physical sidelink discovery channel (Physical Sidelink Discovery Channel: PSDCH) may be transmitted in the physical sidelink common channel (Physical Sidelink Shared Channel: PSSCH) to transmit good too.
  • the relay terminal 10A may include the QoS state information in a predetermined area (field) within a discovery message (discovery message) and transmit it.
  • the relay terminal 10A transmits an L2 link modification response (L2 link Modification Accept) to the remote terminal 10B.
  • the L2 link change response contains QoS denial information.
  • the L2 Link Modification Response may be any message other than the L2 Link Modification Accept to convey connection rejection due to QoS conditions.
  • the base station 20 causes another remote terminal 10B connected to the relay terminal 10A to terminate the connection with the relay terminal 10A, or the relay terminal 10A to hand over to a band with a wider bandwidth.
  • the base station 20 sends information (hereinafter referred to as "QoS permission information") to the relay terminal 10A indicating that it is ready to accept a QoS request with stricter requirements.
  • QoS permission information information
  • An AN (Access Network) specific resource modification message (AN (Access Network) specific resource modification) may be sent.
  • the AN specific resource change message may be an RRC message.
  • SMF 32 when SMF 32 detects that it has become possible to accept QoS requests as a result of the availability of network resources, SMF 32 transmits a NAS message including QoS permission information to relay terminal 10A via AMF 31. You may make it The SMF 32 may transmit NAS messages including QoS grant information to all relay terminals 10A for which the SMF 32 manages PDU sessions.
  • step S151 when the relay terminal 10A receives an AN-specific resource change message or a NAS message from the base station 20 or the AMF 31 indicating that the QoS request can be accepted, the relay terminal 10A can accept the QoS request.
  • the remote terminal 10B when the remote terminal 10B is a layer 2 relay, the processing procedures of steps S102 and S112 are omitted. Further, in the processing procedure of step S103, the remote terminal 10B, not the relay terminal 10A, directly transmits to the AMF 31 a PDU session change request including a QoS indicator (for example, 5QI) corresponding to the desired QoS. Also, in the processing procedure of step S110, the AMF 31 transmits a PDU session change command including QoS rejection information to the remote terminal 10B.
  • a QoS indicator for example, 5QI
  • the AMF 31 transmits an N2 message (message on the N2 interface) containing the QoS rejection information to the base station 20, and the base station 20 transmits the MAC (Medium Access Message) containing the QoS rejection information.
  • Control message (MAC layer message, for example, MAC PDU (Protocol Data Unit) or MAC CE (Control Element)) may be notified to the relay terminal 10A.
  • the base station 20 may include the QoS permission information in the MAC message and transmit it to the relay terminal 10A.
  • FIG. 4 is a sequence diagram showing an example of the processing procedure (pattern 2) when notifying the QoS status.
  • pattern 2 when the QoS request is rejected by the base station 20, the relay terminal 10A determines that network resources are tight, and the QoS state indicating that the QoS request cannot be accepted. Send information.
  • steps S101 to S103 are the same as the processing procedures of steps S101 to S103 in FIG. 3, respectively, so description thereof will be omitted.
  • step S104 PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33.
  • the SMF 32 determines to accept the QoS request and sends the QoS profile and QoS rules corresponding to the QoS request to the AMF 31 .
  • the AMF 31 includes the QoS profile in the N2 message and transmits it to the base station 20, and includes the QoS rule in the NAS message and transmits it to the relay terminal 10A. Also, the SMF 32 transmits a PDR corresponding to the QoS request to the UPF 33 .
  • the base station 20 determines that it cannot accept any more QoS requests, for example, because the quality of the radio signal received from the relay terminal 10A is degraded.
  • the base station 20 transmits an AN specific resource modification message including QoS rejection information to the relay terminal 10A.
  • the AN specific resource change message may be an RRC message.
  • steps S122, S150, and S151 are the same as the processing procedures of steps S112, S150, and S151 in FIG. 3, so description thereof will be omitted.
  • the base station 20 may include QoS denial information in the MAC message and transmit it to the relay terminal 10A in the processing procedure of step S120.
  • FIG. 5 is a sequence diagram showing an example of the processing procedure (pattern 3) when notifying the QoS status.
  • the base station 20 rejects the QoS request
  • the base station 20 notifies the AMF 31 of the rejection of the QoS request
  • the AMF 31 notifies the relay terminal 10A of the rejection of the QoS request.
  • the relay terminal 10A determines that network resources are tight, and transmits QoS status information indicating that the QoS request cannot be accepted.
  • steps S101 to S104 are the same as the processing procedures of steps S101 to S104 in FIG. 4, respectively, so description thereof will be omitted.
  • the base station 20 that has received the N2 message including the QoS profile corresponding to the QoS request from the AMF 31 cannot accept the QoS request because, for example, the quality of the radio signal received from the relay terminal 10A is degraded. Suppose you decide that you can't. In this case, the base station 20 transmits an N2 message (RAN resource notification) including QoS rejection information to the AMF 31 in step S130.
  • N2 message RAN resource notification
  • the base station 20 detects that the QoS request cannot be satisfied after the PDU session change is completed, such as when the radio quality deteriorates after the fact, the Uu QoS An N2 message containing the flow's QFI and QoS rejection information may be sent to the AMF 31 .
  • the AMF 31 that has received the N2 message containing the QoS rejection information transmits a NAS message (PDU Session Modification Command) to the relay terminal 10A.
  • the PDU session modification command contains QoS denial information.
  • steps S132, S133, steps S150, and S151 are the same as the processing procedures of steps S111, S112, steps S150, and S151 in FIG. 3, respectively, so description thereof is omitted.
  • the AMF 31 transmits an N2 message (message on the N2 interface) including QoS rejection information to the base station 20 in the processing procedure of step 131, and the base station 20 receives the QoS A MAC message including the refusal information may be notified to the relay terminal 10A.
  • the relay terminal 10A determines that the resources of the network are tight, and the QoS state information indicating that the network cannot accept the QoS request. to send.
  • the remote terminal 10B searches for the relay terminal 10A and starts communication, the remote terminal 10B can select the relay terminal 10A that can accept the QoS request and attempt communication, and accepts the QoS request. It is possible to start communication without wastefully communicating with the relay terminal 10A that cannot communicate with the relay terminal 10A.
  • the QoS denial information may include information indicating acceptable QoS or unacceptable QoS.
  • information indicating acceptable QoS may include an identifier (such as 5QI) indicating acceptable QoS characteristics.
  • the information indicating unacceptable QoS may include an identifier indicating unacceptable QoS characteristics (such as the value of 5QI).
  • the relay terminal 10A may transmit the QoS status information including information indicating acceptable QoS or unacceptable QoS. At this time, when operating as a layer 3 relay, the relay terminal 10A uses the identifier indicating acceptable QoS characteristics or unacceptable QoS characteristics notified from the base station 20 in the PC5 interface based on the mapping table.
  • the QoS status information may be converted into an identifier (PQI or the like) indicating the QoS characteristics to be used, and the identifier indicating the QoS characteristics after conversion may be included in the QoS state information and transmitted.
  • FIG. 6 is a sequence diagram showing an example of a processing procedure (pattern 1) in QoS control based on priority.
  • pattern 1 a processing procedure in QoS control based on priority.
  • the relay terminal 10A has the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. Change or cancel the QoS of the remote terminal 10B-X to a QoS with looser requirements.
  • steps S201, S202, and S220 are the same as those in steps S101, S102, and S103 of FIG. 3, except that the remote terminal 10B is replaced with the remote terminal 10B-Y. omitted.
  • step S221 the AMF 31 transmits the QoS indicators and the like regarding the remote terminal 10B-Y included in the PDU session change request to the SMF 32 in a PDU session update request message (Nsmf_PDUSession_UpdateSMContext).
  • the SMF 32 determines whether or not the QoS request indicated by the QoS indicator included in the message can be accepted based on, for example, network traffic conditions.
  • the SMF 32 may determine by any method, but for example, accepts the QoS request according to the number of PDU sessions already established with each terminal 10 or the number of bit rate guaranteed QoS flows. You may make it determine whether it is possible. Assume here that the SMF 32 determines that the QoS request cannot be accepted.
  • step S223 the SMF 32 transmits to the AMF 31 a PDU session change response (Response of Nsmf_PDUSession_UpdateSMContext) containing QoS rejection information rejecting the QoS request of the remote terminal 10B-Y.
  • a PDU session change response (Response of Nsmf_PDUSession_UpdateSMContext) containing QoS rejection information rejecting the QoS request of the remote terminal 10B-Y.
  • the "QoS request of the remote terminal 10B-Y" means the QoS request for the Uu QoS flow corresponding to the remote terminal 10B-Y.
  • step S224 the AMF 31 transmits to the relay terminal 10A a PDU Session Modification Command including QoS rejection information rejecting the QoS request of the remote terminal 10B-Y.
  • the relay terminal 10A which has received the PDU session change command including the QoS refusal information from the AMF 31, selects a remote terminal with a lower priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. Select 10B-X.
  • the priority of the plurality of remote terminals 10B-X may be determined in any way. For example, the priority level indicated by the PQI (or 5QI after conversion) of each remote terminal 10B-X is -X priority may be supported.
  • step S226 the relay terminal 10A changes or cancels the QoS of the remote terminal 10B-X with a lower priority selected in the procedure of step S225 to a QoS with looser requirements.
  • step S227 PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-X is changed to QoS with looser requirements. or be released.
  • step S229 the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S228 into PQI based on the mapping table. Subsequently, the relay terminal 10A transmits to the remote terminal 10B-X an L2 link change signal including the converted PQI or information instructing release of the PC5 QoS flow. As a result, the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-X are changed to QoS with looser requirements or canceled. Note that releasing the PC5 QoS flow and/or the Uu QoS flow of the remote terminal 10B-X may be synonymous with disconnecting the communication of the remote terminal 10B-X.
  • the relay terminal 10A repeats the processing procedure of steps S220 to S229 until the QoS request of the remote terminal 10B-Y is permitted, thereby replacing the QoS of the remote terminal 10B-X with lower priority with the QoS with looser requirements. change to or cancel.
  • step S240 suppose that it is detected that the QoS of the remote terminal 10B-X, which has a low priority, is changed or canceled to a QoS with looser requirements, resulting in an empty network resource.
  • the SMF 32 permits the QoS request in the procedure of step S222. In this case, the process proceeds to step S240.
  • step S240 PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-Y is changed to the requested QoS. be.
  • step S241 the AMF 31 notifies the relay terminal 10A of the QoS value (5QI) of the remote terminal 10B-Y changed in the procedure of step S240 by including it in the PDU session change command.
  • step S242 the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S241 into PQI based on the mapping table, and converts the QoS of the PC5 QoS flow with the remote terminal 10B-Y to , to the converted PQI.
  • Relay terminal 10A then transmits an L2 link change response including the converted PQI to remote terminal 10B-Y.
  • the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-Y are changed to flows that reflect the stricter QoS requirements.
  • the relay terminal 10A repeats the processing procedure of steps S220 to S229 to change the QoS of all the remote terminals 10B-X with lower priority to QoS with looser requirements, or It is assumed that the disconnection processing of the terminals 10B-X did not result in free network resources (that is, the message shown in the processing procedure of step S241 could not be received). In this case, the process proceeds to step S260.
  • step S260 the relay terminal 10A transmits an L2 link change response including QoS rejection information to the remote terminal 10B-Y.
  • FIG. 7 is a sequence diagram showing an example of a processing procedure (pattern 2) in QoS control based on priority.
  • pattern 2 a processing procedure in QoS control based on priority.
  • the QoS of the remote terminal 10B-X with lower priority is changed to change the QoS of the remote terminal 10B-Y with higher priority. is changed or canceled to the SMF 32.
  • the SMF 32 can reduce the consumption of network resources and permit the QoS request of the remote terminal 10B-Y with high priority. determine whether there is When granting the QoS request of the remote terminal 10B-Y, the SMF 32 changes the QoS of the remote terminal 10B-X and the remote terminal 10B-Y or cancels the QoS of the remote terminal 10B-X.
  • step S321 the relay terminal 10A confirms that the QoS indicator of the remote terminal 10B-Y and the QoS of the remote terminal 10B-X with low priority selected in the procedure of step S320 are subject to QoS change.
  • QoS change means changing the QoS to a QoS with looser requirements (default QoS may be used), or disconnecting a terminal with a low priority (releasing the QoS flow). .
  • step S322 the AMF 31 transmits to the SMF 32 a PDU session update request including the QoS indicator of the remote terminal 10B-Y and information indicating that the QoS of the remote terminal 10B-X with low priority is subject to QoS change. do.
  • step S323 the SMF 32 permits the QoS request of the remote terminal 10B-Y with a high priority by changing the QoS of the remote terminal 10B-X with a low priority to a QoS with looser requirements or canceling the QoS flow. determine whether it is possible to If it is determined that permission is not possible, the process proceeds to step S324, and if it is determined that permission is possible, the process proceeds to step S340.
  • steps S324 and S325 are the same as the processing procedures of steps S306 and S307, respectively, so description thereof will be omitted.
  • step S340 PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-X is changed to QoS with looser requirements. or be released.
  • the AMF 31 includes the QoS value (5QI) of the remote terminal 10B-X or information instructing release of the Uu QoS flow, which has been changed in the processing procedure of step S340, in the PDU session change command and includes it in the relay terminal 10A. to notify.
  • step S342 the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S341 into PQI based on the mapping table, and converts the QoS of the PC5 QoS flow with the remote terminal 10B-X to , to the converted PQI. Subsequently, the relay terminal 10A transmits to the remote terminal 10B-X an L2 link change message including information instructing release of the converted PQI or PC5 QoS flow. As a result, the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-X are changed to QoS with looser requirements or canceled.
  • step S343 PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-Y is changed to the requested QoS. be.
  • step S344 the AMF 31 notifies the relay terminal 10A of the QoS value (5QI) of the remote terminal 10B-Y changed in the procedure of step S343 by including it in the PDU session change command.
  • step S345 the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S344 into PQI based on the mapping table, and converts the QoS of the PC5 QoS flow with the remote terminal 10B-Y to , to the converted PQI.
  • Relay terminal 10A then transmits an L2 link change response including the converted PQI to remote terminal 10B-Y.
  • the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-Y are changed to flows reflecting the requested QoS.
  • the relay terminal 10A repeats the processing procedure of steps S320 to S325 to change or cancel the QoS of all the remote terminals 10B with lower priority to QoS with looser requirements. It is assumed that there was no free space (that is, the message shown in the procedure of step S341 or step S344 could not be received). In this case, the process proceeds to step S360.
  • step S360 The processing procedure of step S360 is the same as that of step S260 in FIG. 6, so the description is omitted.
  • FIG. 8 is a sequence diagram showing an example of a processing procedure (pattern 3) in QoS control based on priority. If the SMF 32 cannot grant the QoS request of the remote terminal 10B-Y, the SMF 32 grants the QoS of the remote terminal 10B-X with the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. , change or cancel to a less stringent QoS.
  • steps S401, S402, S403 and S404 are the same as the processing procedures of steps S201, S202, S220 and S221 of FIG.
  • the SMF 32 determines whether or not the QoS request indicated by the QoS indicator included in the PDU session change request message can be accepted based on, for example, network traffic conditions. If it is determined that it is not acceptable, the process proceeds to step S421, and if it is determined that it is acceptable, the process proceeds to step S440.
  • the SMF 32 selects the remote terminal 10B-X with the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. For example, when the SMF 32 establishes (or changes) a PDU session in the procedure of step S401, it acquires from the relay terminal 10A a priority list of the plurality of remote terminals 10B-X communicating with the relay terminal 10A. You can do it. In the priority list, for example, QoS flows identified by PDU session IDs and QFIs may be associated with terminal priorities. The SMF 32 may select the remote terminal 10B-X with low priority (or the Uu QoS flow corresponding to the remote terminal 10B-X with low priority) based on the priority list.
  • the SMF 32 determines the priority level indicated by the value of 5QI in each QoS flow among all QoS flows (Uu QoS flows) associated with one or more PDU sessions established with the relay terminal 10A. may be considered to correspond to the priority of each remote terminal 10B-X. Also, if there are multiple QoS flows with the lowest priority level, the SMF 32 may select any one QoS flow from among these multiple QoS flows.
  • steps S422, S423, and S424 are the same as the processing procedures of steps S340, S341, and S342 in FIG. 7, respectively, so description thereof will be omitted.
  • the SMF 32 may repeatedly execute the processing procedures of steps S420 to S422 until it can determine that the QoS request of the remote terminal 10B-Y can be accepted in the processing procedure of step S420.
  • the processing procedure of steps S423 and S424 is executed for the remote terminal 10B-X with a low priority, and the QoS is changed to a less demanding QoS or the QoS flow is canceled.
  • the SMF 32 preliminarily selects one or more remote terminals 10B-X that need to be changed or canceled to QoS with looser requirements in order to accept the QoS request of the remote terminal 10B-Y.
  • step S422 It is also possible to determine and perform the procedure of step S422 for each of the determined one or more remote terminals 10B-X. As a result, the processing procedure of steps S423 and S424 is executed for the remote terminal 10B-X with a low priority, and the QoS is changed to a less demanding QoS or the QoS flow is canceled.
  • steps S440, S441, and S442 are the same as the processing procedures of steps S343, S344, and S345 in FIG. 7, respectively, so description thereof will be omitted.
  • the SMF 32 determined that the QoS request of the remote terminal 10B-Y could not be accepted even if the QoS of all the remote terminals 10B-X with lower priority were changed or canceled to the QoS with looser requirements. If so, the process proceeds to step S460.
  • steps S460, S461, and S462 are the same as the processing procedures of steps S306, S307, and S360 in FIG. 7, respectively, so description thereof will be omitted.
  • FIG. 9 is a sequence diagram showing an example of a processing procedure (pattern 4) in QoS control based on priority.
  • the AF 35 transmits the QoS request of the remote terminal 10B-Y.
  • the SMF 32 allows the QoS of the remote terminal 10B-X with the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. , change or cancel to a less stringent QoS.
  • step S501 is the same as the processing procedure of step S201 in FIG. 6, so the description is omitted.
  • step S502 the remote terminal 10B-Y performs a service setup procedure with the AF 35 using the application layer interface.
  • step S503 the AF 35 sends to the PCF 34 information specifying the Uu QoS flow of the remote terminal 10B-Y (for example, PDU session ID and QFI) and a service requirement including a QoS indicator for the Uu QoS flow. ) using messages on the N5 interface.
  • the PCF 34 information specifying the Uu QoS flow of the remote terminal 10B-Y (for example, PDU session ID and QFI) and a service requirement including a QoS indicator for the Uu QoS flow. ) using messages on the N5 interface.
  • the PCF 34 transmits to the SMF 32 a QoS modification request message (QoS Modification) including information specifying the Uu QoS flow of the remote terminal 10B-Y and the QoS indicator for the Uu QoS flow.
  • QoS Modification QoS modification request message
  • the SMF 32 determines whether or not the QoS request indicated by the QoS indicator included in the QoS change request message can be accepted, based on network traffic conditions and the like. If it is determined that it cannot be accepted, the process proceeds to step S521, and if it is determined that it is acceptable, the process proceeds to step S540.
  • step S521 is the same as the processing procedure of step S422 in FIG. 8, so the description is omitted.
  • step S522 the SMF 32 transmits to the AMF 31 a PDU session change notification message (Nsmf_PDUSession_SMContextStatusNotify) indicating that the QoS of the remote terminal 10B-X with lower priority is changed or canceled to a QoS with looser requirements.
  • Nsmf_PDUSession_SMContextStatusNotify indicating that the QoS of the remote terminal 10B-X with lower priority is changed or canceled to a QoS with looser requirements.
  • step S523 the AMF 31 transmits a NAS message (PDU Session Modification Command) indicating that the QoS of the Uu QoS flow corresponding to the remote terminal 10B-X is changed or released. 10A.
  • NAS message PDU Session Modification Command
  • the relay terminal 10A transmits to the AMF 31 a NAS message (PDU Session Modification Request) indicating that the QoS of the remote terminal 10B-X is to be changed or canceled.
  • NAS message PDU Session Modification Request
  • steps S525, S526, and S527 are the same as the processing procedures of steps S340, S341, and S342 in FIG. 7, respectively, so description thereof will be omitted.
  • steps S540, S541, and S542 are the same as the processing procedures of steps S343, S344, and S345 in FIG. 7, respectively, so description thereof will be omitted.
  • the SMF 32 determined that the QoS request of the remote terminal 10B-Y could not be accepted even if the QoS of all the remote terminals 10B-X with lower priority were changed or canceled to the QoS with looser requirements. If so, the process proceeds to step S560.
  • the SMF 32 transmits to the PCF 34 a QoS change response message containing QoS denial information.
  • the PCF 34 sends a service requirement response containing QoS denial information using a message on the N5 interface.
  • the remote terminal 10B which performs high-priority communication such as mission-critical communication, can start communication according to the QoS requirements desired by the network even when network resources are tight.
  • FIG. 10 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment.
  • Each device within the communication system 1 can be any device shown in FIG.
  • Reference numeral "30" in FIG. 10 denotes a core network device in the core network 30, and collectively refers to AMF 31, SMF 32, UPF 33, PCF 34 and AF 35.
  • FIG. 30 denotes a core network device in the core network 30, and collectively refers to AMF 31, SMF 32, UPF 33, PCF 34 and AF 35.
  • Each device in the communication system 1 includes a processor 11, a storage device 12, a communication device 13 for wired or wireless communication, an input device for receiving various input operations, and an input/output device 14 for outputting various information.
  • the processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the communication system 1 .
  • the processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment.
  • Each device within the communication system 1 may be configured with one or more processors 11 .
  • Each device may also be called a computer.
  • the storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive).
  • the storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
  • the communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like.
  • the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing. good.
  • RF Radio Frequency
  • BB BaseBand
  • the input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
  • Each device in the communication system 1 may omit part of the hardware shown in FIG. 10, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 10 may be configured by one or a plurality of chips.
  • FIG. 11 is a diagram showing a functional block configuration example of the relay terminal 10A. As shown in FIG. 11 , relay terminal 10A has receiving section 101 , transmitting section 102 and control section 103 .
  • All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a non-transitory computer readable medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 101 receives the downstream signal. Also, the receiving section 101 may receive information and/or data transmitted via a downlink signal.
  • “receiving” may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals.
  • the transmission unit 102 transmits an upstream signal. Also, the transmitting section 102 may transmit information and/or data transmitted via an uplink signal.
  • “transmitting” may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals.
  • QoS change includes QoS release (QoS flow release).
  • the control unit 103 performs various controls in the relay terminal 10A. For example, the control unit 103 performs control to relay communication between the remote terminal 10B, the base station 20, and the core network 30 (network device). In addition, the control unit 103 controls the value (first QoS value, PQI) indicating the QoS requirements of the QoS flow (first QoS flow, PC5 QoS flow) between the remote terminal 10B, the base station 20 and the core network 30 (network device), and A value (second QoS value, 5QI) indicating the QoS requirements of the QoS flow (second QoS flow, Uu QoS flow) between Uu QoS flows is converted to each other using a mapping table.
  • the transmitting unit 102 transmits the QoS request to the AMF 31 (network device) ( 3, 4 and 5).
  • the receiving unit 101 receives QoS rejection information (first information) indicating rejection of the QoS request from the AMF 31 (FIGS. 3, 4, and 5). Also, the receiving unit 101 may receive an RRC message including QoS rejection information (FIG. 4). Also, the receiving unit 101 may receive a NAS message including QoS rejection information (FIGS. 3 and 5).
  • the QoS rejection information is information indicating rejection of the QoS request, and may include information indicating the reason for rejecting the QoS request (S110 in FIG. 3).
  • the transmitting unit 102 when receiving the QoS rejection information, transmits QoS state information (message) including information indicating that the QoS request cannot be accepted (FIG. 3). , FIGS. 4 and 5). Note that the transmission unit 102 may broadcast the QoS state information to the terminals 10 in the vicinity.
  • QoS state information messages including information indicating that the QoS request cannot be accepted (FIG. 3). , FIGS. 4 and 5).
  • the transmission unit 102 may broadcast the QoS state information to the terminals 10 in the vicinity.
  • the receiving unit 101 may receive QoS permission information (second information) indicating permission of the QoS request from the AMF 31 (network device) or the base station 20 (FIGS. 3, 4 and 4). 5).
  • QoS permission information second information indicating permission of the QoS request from the AMF 31 (network device) or the base station 20 (FIGS. 3, 4 and 4). 5).
  • the transmitting unit 102 transmits QoS state information (message) indicating that the QoS request can be accepted. (Figs. 3, 4 and 5).
  • the transmitting unit 102 transmits the QoS request to the AMF 31 (network device) (S220 in FIG. 6). .
  • the receiving unit 101 receives QoS rejection information indicating rejection of the QoS request from the AMF 31 (network device) (S224 in FIG. 6).
  • the control unit 103 selects the remote terminal 10B-X (second terminal) from among the one or more remote terminals 10B communicating with the relay terminal 10A.
  • the control unit 103 may select a remote terminal 10B-X (second terminal) having a lower priority than the remote terminal 10B-Y (first terminal) from among one or more remote terminals 10B ( S225 in FIG. 6).
  • the transmitting unit (second transmitting unit) transmits a message (PDU session change request) requesting to change the QoS request of the remote terminal 10B-X (second terminal) to the AMF 31 (network device) ( S226 in FIG. 6).
  • FIG. 12 is a diagram showing a functional block configuration example of the base station 20. As shown in FIG. As shown in FIG. 12 , base station 20 has receiver 201 , transmitter 202 , and controller 203 .
  • All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 201 receives an upstream signal. Also, the receiving section 101 may receive information and/or data transmitted via an uplink signal.
  • “receiving” may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals.
  • the transmission unit 202 transmits a downlink signal. Also, the transmitting section 102 may transmit information and/or data transmitted via a downlink signal. Here, “transmitting” may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals.
  • the control unit 203 performs scheduling processing in the radio layer. Further, control section 203 detects whether or not there is a free wireless resource (network resource) with relay terminal 10A. More specifically, it may be a case where it is detected that the usage rate of radio resources has become equal to or less than a predetermined threshold. When control section 203 detects that a radio resource becomes available, transmitting section 202 transmits QoS permission information (second information) indicating that the QoS request is permitted to relay terminal 10A. can be Further, transmitting section 202 may transmit the QoS grant information to relay terminal 10A in an RRC message or may transmit it to relay terminal 10A in a MAC message.
  • QoS permission information second information
  • FIG. 13 is a diagram showing a functional block configuration example of the AMF 31. As shown in FIG. As shown in FIG. 13 , AMF 31 has receiver 301 , transmitter 302 , and controller 303 .
  • All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 and the control unit 303 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 301 receives signals from the base station 20 or other devices within the core network 30 . Further, receiving section 301 (first receiving section) receives a QoS request from relay terminal 10A (S103 in FIG. 5).
  • the transmitting unit 302 transmits signals to the base station 20 or other devices within the core network 30 . Also, the transmitter 302 (first transmitter) transmits the QoS request to the SMF 32 (another core network device) (S104 in FIG. 5).
  • the control unit 303 performs control necessary for the AMF 31 to perform various operations described in this embodiment.
  • the receiving unit 301 receives a QoS request from the SMF 32 (S104 in FIG. 5).
  • the transmission unit 302 (second transmission unit) transmits a QoS request to the base station 20 (S104 in FIG. 5). Further, when receiving section 301 receives information indicating that the QoS request is rejected from base station 20 (S130 in FIG. 5), transmitting section 302 (third transmitting section) sends relay terminal 10A to: QoS rejection information (first information) indicating rejection of the QoS request is transmitted to the relay terminal 10A (S131 in FIG. 5).
  • FIG. 14 is a diagram showing a functional block configuration example of the SMF 32. As shown in FIG. As shown in FIG. 14, the SMF 32 has a receiver 401, a transmitter 402, and a controller 403. FIG.
  • All or part of the functions realized by the receiving unit 401 and the transmitting unit 402 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 401 and the transmitting unit 402 and the control unit 403 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium.
  • the storage medium storing the program may be a computer-readable non-temporary storage medium.
  • the non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
  • the receiving unit 401 receives signals from other devices within the core network 30 .
  • the transmitter 402 transmits signals to other devices within the core network 30 .
  • the control unit 403 performs control necessary for the SMF 32 to perform various operations described in this embodiment. Also, the control unit 403 determines whether or not it is possible to accept the QoS request based on the traffic state of the network (S305 in FIG. 7).
  • the receiving unit 401 receives a QoS request from the remote terminal 10B-Y (first terminal) communicating with the relay terminal 10A and a QoS request from the remote terminal 10B-X (second terminal) from the relay terminal 10A via the AMF 31. (S321 in FIG. 7).
  • control unit 403 changes the QoS request of remote terminal 10B-X (second terminal).
  • - Perform processing to change the QoS of X (the second terminal) to a predetermined QoS (S340 in FIG. 7).
  • a predetermined QoS may be, for example, a default QoS.
  • the receiving unit 401 receives the QoS request of the remote terminal 10B-Y (first terminal) communicating with the relay terminal 10A from the relay terminal 10A or AF 35 (another core network device) via the AMF 31 or PCF 34 (Fig. 8, S503 and S504 in FIG. 9).
  • control unit 403 changes the QoS of one or more remote terminals 10B-X (second terminals) selected from one or more remote terminals 10B communicating with the relay terminal 10A, thereby
  • the QoS request of (the first terminal) can be accepted
  • the process of changing the QoS of the one or more remote terminals 10B-X (the second terminal) to a predetermined QoS is performed (S440 in FIG. 8, FIG. 9 S525).
  • a predetermined QoS may be, for example, a default QoS.
  • control unit 403 selects one or more remote terminals 10B-X (second terminal) having a lower priority than the remote terminal 10B-Y (first terminal) from among the one or more remote terminals 10B. can be Based on the priority level specified for each QoS flow corresponding to each remote terminal 10B, the control unit 403 selects one or more remote terminals 10B-X having a lower priority than the remote terminal 10B-Y (first terminal). (Second terminal) may be selected.
  • the transmission unit 402 may transmit to the AMF 31 information indicating that the QoS request is permitted.
  • Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
  • NAS Non Access Stratum
  • RRC Radio Resource Control
  • MAC Radio Resource Control
  • the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
  • a slot may be named any unit of time having a predetermined number of symbols.
  • RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers.
  • the use of the terminal 10 in the above embodiment is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to-Device (D2D), Vehicle-to- Everything (V2X), etc.).
  • the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like.
  • singularity and plurality in the above embodiments may be interchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a relay terminal comprising: a first transmission unit which, upon receiving a QoS request from a terminal, transmits the QoS request to a network device; a receiving unit which receives from the network device first information indicating rejection of the QoS request; and a second transmission unit which, upon receiving the first information, transmits a message including information indicating a state of being unable to accept the QoS request.

Description

中継端末、コアネットワーク装置及び通信方法Relay terminal, core network device and communication method 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年2月12日に出願された日本国特許出願2021-021252号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2021-021252 filed on February 12, 2021, and claims the benefit of priority, and the entire content of the patent application is incorporated herein by reference.
 本開示は、中継端末、コアネットワーク装置及び通信方法に関する。 The present disclosure relates to relay terminals, core network devices, and communication methods.
 国際標準化団体であるThird Generation Partnership Project(3GPP)では、第3.9世代の無線アクセス技術(Radio Access Technology:RAT)であるLong Term Evolution(LTE)、第4世代のRATであるLTE-Advancedの後継として、第5世代(Fifth Generation:5G)のRATであるNew Radio(NR)のリリース15が仕様化されている(例えば、非特許文献1)。
 また、第4世代のコアネットワーク(Core Network:CN)であるEvolved Packet Core(EPC)の後継として、第5世代のCNである5G Core Network(5GC)のリリース15も仕様化されている(例えば、非特許文献2)。
In the Third Generation Partnership Project (3GPP), an international standardization organization, Long Term Evolution (LTE), which is the 3.9th generation Radio Access Technology (RAT), and LTE-Advanced, which is the 4th generation RAT. As a successor, Release 15 of New Radio (NR), which is a fifth generation (5G) RAT, has been specified (for example, Non-Patent Document 1).
In addition, Release 15 of 5G Core Network (5GC), which is the 5th generation CN, has been specified as a successor to Evolved Packet Core (EPC), which is the 4th generation Core Network (CN) (for example, , Non-Patent Document 2).
 現在、近接サービス(Proximity based Services:ProSe)と呼ばれる、デバイス間通信の検討が進められている。5Gで検討されている近接サービスは、5G ProSeとも呼ばれる。また、5G ProSeでは、リモート端末(Remote UE)が、リレー端末(Relay UE)を経由してネットワークと通信を行う、リレー方式による通信の検討も進められている。  Currently, inter-device communication called Proximity based Services (ProSe) is being considered. Proximity services being considered for 5G are also called 5G ProSe. In addition, in 5G ProSe, research is also underway for relay communication, in which a remote terminal (Remote UE) communicates with a network via a relay terminal (Relay UE).
 ここで、5Gのネットワークは、インターネットなどのベストエフォート通信、低遅延が要求される通信、高信頼性が求められる通信など、多様な通信に対応しており、端末は、所望の通信品質に応じたQoS(Quality of Service)を指定して通信を行うことが可能である。 Here, the 5G network supports various types of communication, such as best-effort communication such as the Internet, communication that requires low latency, and communication that requires high reliability. It is possible to communicate by specifying QoS (Quality of Service).
 従って、リモート端末がリレー端末を経由して5Gネットワークと通信を行う場合においても、リモート端末は、所望の通信品質に対応するQoSを指定して通信を行うことが考えられる。 Therefore, even when the remote terminal communicates with the 5G network via the relay terminal, it is conceivable that the remote terminal specifies QoS corresponding to the desired communication quality and performs communication.
 しかしながら、ネットワークのリソースが十分ではなく、リモート端末が要求するQoSを満たすことができない場合、リモート端末がリレー端末に接続し、所望のQoSを指定して通信を開始するまでの一連の処理手順が無駄になってしまうという問題がある。 However, if the network resources are not sufficient and the QoS requested by the remote terminal cannot be satisfied, the remote terminal connects to the relay terminal, designates the desired QoS, and starts communication. There is the problem of waste.
 本開示は、端末が要求するQoSを満たすことができない場合に生じ得る処理手順の無駄を省くことを可能とする中継端末、コアネットワーク装置及び通信方法を提供することを目的とする。 An object of the present disclosure is to provide a relay terminal, a core network device, and a communication method that make it possible to eliminate wasteful processing procedures that may occur when QoS requested by a terminal cannot be satisfied.
 本開示の一態様に係る中継端末は、端末からQoS要求を受信した場合に、前記QoS要求をネットワーク装置に送信する第1送信部と、前記ネットワーク装置から、前記QoS要求を拒否することを示す第1情報を受信する受信部と、前記第1情報を受信した場合に、QoS要求を受け入れることができない状態であることを示す情報を含むメッセージを送信する第2送信部と、を有する。 A relay terminal according to an aspect of the present disclosure, when receiving a QoS request from a terminal, indicates a first transmission unit that transmits the QoS request to a network device, and a rejection of the QoS request from the network device. A receiver that receives the first information, and a second transmitter that transmits a message including information indicating that the QoS request cannot be accepted when the first information is received.
 本開示によれば、端末が要求するQoSを満たすことができない場合に生じ得る処理手順の無駄を省くことを可能とする中継端末、コアネットワーク装置及び通信方法を提供することができる。 According to the present disclosure, it is possible to provide a relay terminal, a core network device, and a communication method that make it possible to eliminate wasteful processing procedures that may occur when QoS requested by a terminal cannot be satisfied.
図1は、本実施形態に係る通信システムの概要の一例を示す図。FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment. 図2は、端末及びネットワーク間リレーにおける課題を説明するための図。FIG. 2 is a diagram for explaining problems in terminals and inter-network relays; 図3は、QoS状態を通知する際の処理手順の一例(パターン1)を示すシーケンス図。FIG. 3 is a sequence diagram showing an example of a processing procedure (pattern 1) when notifying a QoS state; 図4は、QoS状態を通知する際の処理手順の一例(パターン2)を示すシーケンス図。FIG. 4 is a sequence diagram showing an example of a processing procedure (pattern 2) when notifying a QoS state; 図5は、QoS状態を通知する際の処理手順の一例(パターン3)を示すシーケンス図。FIG. 5 is a sequence diagram showing an example of a processing procedure (pattern 3) when notifying a QoS state; 図6は、優先度に基づくQoS制御における処理手順の一例(パターン1)を示すシーケンス図。FIG. 6 is a sequence diagram showing an example of a processing procedure (pattern 1) in QoS control based on priority; 図7は、優先度に基づくQoS制御における処理手順の一例(パターン2)を示すシーケンス図。FIG. 7 is a sequence diagram showing an example of a processing procedure (pattern 2) in QoS control based on priority; 図8は、優先度に基づくQoS制御における処理手順の一例(パターン3)を示すシーケンス図。FIG. 8 is a sequence diagram showing an example of a processing procedure (pattern 3) in QoS control based on priority; 図9は、優先度に基づくQoS制御における処理手順の一例(パターン4)を示すシーケンス図。FIG. 9 is a sequence diagram showing an example of a processing procedure (pattern 4) in QoS control based on priority; 図10は、本実施形態に係る通信システム内の各装置のハードウェア構成の一例を示す図。FIG. 10 is a diagram showing an example of the hardware configuration of each device in the communication system according to the embodiment; 図11は、リレー端末の機能ブロック構成例を示す図。FIG. 11 is a diagram illustrating a functional block configuration example of a relay terminal; 図12は、基地局の機能ブロック構成例を示す図。FIG. 12 is a diagram illustrating a functional block configuration example of a base station; 図13は、AMFの機能ブロック構成例を示す図。FIG. 13 is a diagram showing a functional block configuration example of an AMF; 図14は、SMFの機能ブロック構成例を示す図。FIG. 14 is a diagram showing a functional block configuration example of an SMF;
 添付図面を参照して、本開示の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有してもよい。 An embodiment of the present disclosure will be described with reference to the accompanying drawings. In addition, in each figure, the thing which attached|subjected the same code|symbol may have the same or the same structure.
 <システム構成>
 図1は、本実施形態に係る通信システムの概要の一例を示す図である。図1に示すように、通信システム1は、リレー端末(中継端末)10Aと、リモート端末10Bと、基地局20と、コアネットワーク30と、Data Network(DN)40とを含む。なお、図1に示す端末10、基地局20、コアネットワーク30内の各ノードの数は例示にすぎず、図示する数に限られない。以下の説明において、リレー端末(Relay UE)10Aと、リモート端末(Remote UE)10Bとを区別しない場合、「端末10」と記載する。
<System configuration>
FIG. 1 is a diagram showing an example of an outline of a communication system according to this embodiment. As shown in FIG. 1, the communication system 1 includes a relay terminal (relay terminal) 10A, a remote terminal 10B, a base station 20, a core network 30, and a Data Network (DN) 40. Note that the numbers of terminals 10, base stations 20, and nodes in the core network 30 shown in FIG. 1 are merely examples, and are not limited to the numbers shown. In the following description, when not distinguishing between the relay terminal (Relay UE) 10A and the remote terminal (Remote UE) 10B, they are described as "terminal 10".
 端末10は、例えば、スマートフォンや、パーソナルコンピュータ、車載端末、車載装置、静止装置、テレマティクス制御ユニット(Telematics control unit:TCU)等、所定の端末又は装置である。端末10は、ユーザ装置(User Equipment:UE)、移動局(Mobile Station:MS)、端末(User Terminal)、無線装置(Radio apparatus)、加入者端末、アクセス端末等と呼ばれてもよい。端末10は、移動型であってもよいし、固定型であってもよい。 The terminal 10 is, for example, a predetermined terminal or device such as a smartphone, a personal computer, an in-vehicle terminal, an in-vehicle device, a stationary device, a telematics control unit (TCU), or the like. Terminal 10 may also be called a User Equipment (UE), a Mobile Station (MS), a User Terminal, a Radio apparatus, a subscriber terminal, an access terminal, and so on. The terminal 10 may be mobile or stationary.
 端末10は、基地局20に対する無線アクセス技術(Radio Access Technology:RAT)RATとして、例えば、LTE、LTE-Advanced、NR等を用いて通信可能に構成されるが、これに限られず、第6世代以降のRATを用いて通信可能に構成されてもよい。また、端末10は、上記のような3GPPが規定したアクセス網(3GPP access network)に限られず、例えば、Wi-Fi等の非3GPPアクセス網(non-3GPP access network)を介して基地局20にアクセスしてもよい。 The terminal 10 is configured to be able to communicate using, for example, LTE, LTE-Advanced, NR, etc. as a radio access technology (RAT) RAT for the base station 20, but not limited to this, the sixth generation It may be configured to be communicable using the subsequent RATs. In addition, the terminal 10 is not limited to the access network defined by 3GPP as described above (3GPP access network). may access.
 基地局20は、一以上のセルCを形成し、当該セルCを用いて端末10と通信する。端末10と基地局20間のインタフェースはUuと呼ばれる。基地局20は、gNodeB(gNB)、en-gNB、無線アクセスネットワーク(Radio Access Network:RAN)、アクセスネットワーク(Access Network:AN)、次世代無線アクセスネットワーク(Next Generation‐Radio Access Network:NG-RAN)ノード、低電力ノード(low-power node)、中央ユニット(Central Unit:CU)、分散ユニット(Distributed Unit:DU)、gNB-DU、リモート無線ヘッド(Remote Radio Head:RRH)、統合アクセス及びバックホール(Integrated Access and Backhaul/Backhauling:IAB)ノード等と呼ばれてもよい。基地局20は、一つのノードに限られず、複数のノード(例えば、DU等の下位ノードとCU等の上位ノードの組み合わせ)で構成されてもよい。 The base station 20 forms one or more cells C and communicates with the terminal 10 using the cell C. The interface between terminal 10 and base station 20 is called Uu. Base station 20 includes gNodeB (gNB), en-gNB, radio access network (RAN), access network (AN), next generation radio access network (Next Generation-Radio Access Network: NG-RAN ) node, low-power node, Central Unit (CU), Distributed Unit (DU), gNB-DU, Remote Radio Head (RRH), integrated access and back It may also be called a hole (Integrated Access and Backhaul/Backhauling: IAB) node or the like. The base station 20 is not limited to one node, and may be composed of a plurality of nodes (for example, a combination of a lower node such as DU and an upper node such as CU).
 コアネットワーク30は、例えば、5GCであるが、これに限られず、EPC又は第6世代以降のコアネットワーク等であってもよい。コアネットワーク30は、例えば、Access and Mobility Management Function(AMF)31、Session Management Function(SMF)32、User Plane Function(UPF)33、Policy and Control Function(PCF)34、Application Function(AF)35等を含む。 The core network 30 is, for example, 5GC, but is not limited to this, and may be an EPC, a sixth generation or later core network, or the like. The core network 30 includes, for example, Access and Mobility Management Function (AMF) 31, Session Management Function (SMF) 32, User Plane Function (UPF) 33, Policy and Control Function (PCF) 34, Application Function (AF) 35, etc. include.
 AMF31は、端末10のモビリティ(mobility)管理を行うモビリティ管理装置である。AMF31は、N2インタフェースで基地局20に接続されるとともに、N1インタフェースで端末10に接続される。AMF31は、制御プレーンに関する処理(例えば、登録管理、コネクション管理、モビリティ管理)等を行う。また、AMF31は、Non-access stratum(NAS)に関する処理を行い、NASメッセージを端末10との間で送信及び/又は受信する。 The AMF 31 is a mobility management device that manages the mobility of the terminal 10 . The AMF 31 is connected to the base station 20 via the N2 interface and to the terminal 10 via the N1 interface. The AMF 31 performs processing related to the control plane (for example, registration management, connection management, mobility management) and the like. The AMF 31 also performs processing related to non-access stratum (NAS), and transmits and/or receives NAS messages to and from the terminal 10 .
 SMF32は、セッションを管理するセッション管理装置であり、例えば、端末10がDN40と通信を行うために用いるUPF33を選択し、端末10及びDN40の間におけるPDU(Protocol Data Unit)セッションの確立、更新及び解放等を制御する。SMF32は、N11インタフェースを介してAMF31に接続されるとともに、N4インタフェースを介してUPF33に接続される。 The SMF 32 is a session management device that manages sessions, for example, selects the UPF 33 used by the terminal 10 to communicate with the DN 40, and establishes, updates, and updates a PDU (Protocol Data Unit) session between the terminal 10 and the DN 40. Control release, etc. The SMF 32 is connected to the AMF 31 via the N11 interface and to the UPF 33 via the N4 interface.
 UPF33は、DN40に対する接続ポイントであり、例えば、パケットのルーティング、転送等を行う。UPF33は、N4インタフェースを介してSMF32に接続されるとともに、N3インタフェースを介して基地局20に接続される。UPF33は、端末10及びDN40間の接続関係を示すPDUセッションに従い、パケットのルーティングや転送を行う。 The UPF 33 is a connection point to the DN 40 and performs, for example, packet routing and forwarding. The UPF 33 is connected to the SMF 32 via the N4 interface and to the base station 20 via the N3 interface. The UPF 33 performs packet routing and transfer according to the PDU session indicating the connection relationship between the terminal 10 and the DN 40 .
 PCF34は、ポリシーの管理及び制御を行う、ポリシー管理制御装置であり、例えば、所定のポリシーに基づいてトラフィックに適用すべきQoSの決定等を行う。RCF34は、N7インタフェースを介してSMF32に接続されるとともに、N5インタフェースを介してAF35に接続される。 The PCF 34 is a policy management control device that manages and controls policies. For example, it determines QoS to be applied to traffic based on a predetermined policy. The RCF 34 is connected to the SMF 32 via the N7 interface and to the AF 35 via the N5 interface.
 AF35は、サービス(例えばProSeなど)を提供する際に必要な情報をコアネットワーク30に提供する装置である。AF35は、N5インタフェースを介してPCF34に接続される。 The AF 35 is a device that provides the core network 30 with necessary information when providing services (such as ProSe). AF 35 is connected to PCF 34 via the N5 interface.
 DN40は、例えば、インターネット、企業ネットワーク、IP Multimedia Subsystem(IMS)などである。 The DN 40 is, for example, the Internet, a corporate network, an IP Multimedia Subsystem (IMS), or the like.
 なお、コアネットワーク30に含まれる機能は、図1に示すものに限られない。また、図1に示す各機能及びインタフェースの名称は例示にすぎず、図1に示すものに限られず、同等又は類似の機能を有すれば、他の名称が用いられてもよい。また、図1に示す複数のコアネットワーク機能が単一の装置内に設けられてもよいし、図1に示す一つのコアネットワーク機能が複数の装置で構成されてもよい。コアネットワーク30の各機能の一部又は全部を構成する装置を、「コアネットワーク装置」ともいう。 The functions included in the core network 30 are not limited to those shown in FIG. Also, the names of the functions and interfaces shown in FIG. 1 are merely examples, and are not limited to those shown in FIG. 1, and other names may be used as long as they have equivalent or similar functions. Also, a plurality of core network functions shown in FIG. 1 may be provided in a single device, or one core network function shown in FIG. 1 may be configured by a plurality of devices. A device that constitutes part or all of each function of the core network 30 is also called a “core network device”.
 DN40からの下りデータは、UPF33からN3トンネルを介して基地局20に伝送され、基地局20から無線ベアラを介して端末10に伝送される。一方、端末10からの上りデータは、無線ベアラを介して端末10から基地局20に伝送され、基地局20からN3トンネルを介してUPF33に伝送され、UPF33からDN40に伝送される。なお、N3トンネルは、カプセル化されたIP(Encapsulated Internet Protocol)パケットを伝送するトンネルであり、ユーザプレーントンネル等と呼ばれてもよい。 Downlink data from the DN 40 is transmitted from the UPF 33 to the base station 20 via the N3 tunnel, and transmitted from the base station 20 to the terminal 10 via the radio bearer. On the other hand, uplink data from the terminal 10 is transmitted from the terminal 10 to the base station 20 via the radio bearer, transmitted from the base station 20 to the UPF 33 via the N3 tunnel, and transmitted from the UPF 33 to the DN 40 . Note that the N3 tunnel is a tunnel for transmitting encapsulated IP (Encapsulated Internet Protocol) packets, and may be called a user plane tunnel or the like.
 (QoS制御)
 5GにおけるQoS制御は、PDUセッション内で定義される、1又は複数QoSフロー(QoS Flow)の単位で行われる。QoSフローは、QoS Flow ID(QFI)を用いて一意に識別される。また、各QoSフローは、QoSプロファイル(QoS Profile)と、QoSルール(QoS Rule)と、UL/DL PDR(Uplink/Downlink Packet Detection Rule)により定められる。
(QoS control)
QoS control in 5G is performed in units of one or multiple QoS flows (QoS Flows) defined within a PDU session. A QoS flow is uniquely identified using a QoS Flow ID (QFI). Also, each QoS flow is defined by a QoS Profile, a QoS Rule, and a UL/DL PDR (Uplink/Downlink Packet Detection Rule).
 QoSプロファイルは、SMF32からAMF31を介して基地局20に通知される情報である。基地局20は、QoSフローをデータ無線ベアラ(Data Radio Bearer:DRB)にマッピングするとともに、QoSプロファイルにより指定されるQoS特性に基づいて、データ無線ベアラのスケジューリングを行う。QoSプロファイルには、5G QoS Identifier(5QI)、Allocation and Retention Priority(ARP)、Reflective QoS Attribute(ROA)及び通知コントロール(Notification control)といったQoSパラメータが含まれる。5QIは、3GPP仕様によって予め定められたQoS特性を識別する指示子である。5GにおけるQoS特性には、例えば、リソースタイプ(ビットレート保障(GBR)、ビットレート非保障(Non-GBR)、遅延クリティカルGBR)、保証フロービットレート(Guaranteed Flow Bit Rate:GFBR)、最大フロービットレート(Maximum Flow Bit Rate:MFBR)、優先レベル、パケット遅延バジェット、パケットエラー率等が含まれる。通知コントロールは、QoSフローにおけるGFBRが保証できなくなった場合又は再び保証できる状態になった場合に、基地局20に対し、コアネットワーク30への通知を要求するか否かを示す情報である。 A QoS profile is information notified to the base station 20 from the SMF 32 via the AMF 31 . The base station 20 maps QoS flows to data radio bearers (DRBs) and schedules the data radio bearers based on the QoS characteristics specified by the QoS profile. The QoS profile includes QoS parameters such as 5G QoS Identifier (5QI), Allocation and Retention Priority (ARP), Reflective QoS Attribute (ROA) and Notification control. 5QI is an indicator that identifies the QoS characteristics predefined by the 3GPP specifications. QoS characteristics in 5G include, for example, resource type (guaranteed bit rate (GBR), non-guaranteed bit rate (Non-GBR), delay critical GBR), guaranteed flow bit rate (GFBR), maximum flow bit rate Rate (Maximum Flow Bit Rate: MFBR), priority level, packet delay budget, packet error rate, etc. are included. The notification control is information indicating whether or not to request the base station 20 to notify the core network 30 when GFBR in the QoS flow cannot be guaranteed or can be guaranteed again.
 QoSルールは、SMF32からAMF31を介して端末10に通知される情報である。端末10は、QoSルールに基づいて、ULデータをQoSフローにマッピングする。QoSルールには、QFI及びパケットフィルタセット等が含まれる。 A QoS rule is information notified to the terminal 10 from the SMF 32 via the AMF 31 . The terminal 10 maps UL data to QoS flows based on QoS rules. QoS rules include QFI, packet filter sets, and the like.
 PDRは、SMF32からUPF33に通知される情報である。UPF33は、PDRに基づいて、DN40から受信したDLデータを分類してQoSフローへのマーキングを行う(カプセル化ヘッダにQFIを付与する)。 The PDR is information notified from the SMF 32 to the UPF 33. Based on the PDR, the UPF 33 classifies the DL data received from the DN 40 and marks the QoS flow (appends QFI to the encapsulation header).
 QoSフロー(QoS Flow)は、SMF32により管理される。QoSフローの設定/変更は、PDUセッション確立手順(PDU Session Establishment procedure)又はPDUセッション変更手順(PDU Session Modification procedure)により行われる。つまり、QoSルール、QoSプロファイル及びPDRは、PDUセッション確立手順又はPDUセッション変更手順により、それぞれ、端末10、基地局20及びUPF33に通知される。また、1つのPDUセッションには、1又は複数のQoSフローを関連づけることができる。 The QoS flow (QoS Flow) is managed by the SMF32. QoS flow setting/modification is performed by a PDU Session Establishment procedure or a PDU Session Modification procedure. That is, the QoS rule, QoS profile and PDR are notified to the terminal 10, base station 20 and UPF 33 by the PDU session establishment procedure or PDU session change procedure, respectively. Also, one PDU session can be associated with one or more QoS flows.
 (端末及びネットワーク間リレー)
 現在3GPPでは、端末間通信を用いる近接サービス(ProSe)の仕様として、リモート端末10Bが、リレー端末10Aを経由してネットワーク(基地局20及びコアネットワーク30)と通信を行う、端末及びネットワーク間リレー(UE-to-Network Relay)の検討が進められている。リモート端末10Bは、Remote UEと呼ばれてもよいし、ProSe UE-to-Network Relayと呼ばれてもよい。また、リレー端末10A及びリモート端末10Bは、端末間通信(D2D通信、Sidelink通信)をサポートする。
(relay between terminals and networks)
Currently, in 3GPP, as a specification of proximity service (ProSe) using terminal-to-terminal communication, a remote terminal 10B communicates with a network (base station 20 and core network 30) via a relay terminal 10A. (UE-to-Network Relay) is being studied. The remote terminal 10B may be called a Remote UE or a ProSe UE-to-Network Relay. Also, the relay terminal 10A and the remote terminal 10B support terminal-to-terminal communication (D2D communication, Sidelink communication).
 リモート端末10B及びリレー端末10A間のインタフェースは、PC5と呼ばれる。 The interface between the remote terminal 10B and the relay terminal 10A is called PC5.
 リレー端末10Aとリモート端末10Bは、同一の機能を備えており、リレー端末10Aとして動作するのか、又は、リモート端末10Bとして動作するのかを任意に切替可能であってもよい。若しくは、リレー端末10Aとリモート端末10Bは、それぞれ異なる機能を有する端末10であってもよい。また、リレー端末10A及びリモート端末10Bは、通常の端末10として動作する機能を備えていてもよい。 The relay terminal 10A and the remote terminal 10B have the same functions, and it may be possible to arbitrarily switch between operating as the relay terminal 10A and operating as the remote terminal 10B. Alternatively, the relay terminal 10A and the remote terminal 10B may be terminals 10 having different functions. Also, the relay terminal 10A and the remote terminal 10B may have a function of operating as a normal terminal 10. FIG.
 また、3GPPでは、端末及びネットワーク間リレーとして、レイヤ3リレー(Layer 3 UE-to-Network Relay)と、リモート端末10BがNASレイヤを終端する形態であるレイヤ2リレー(Layer 2 UE-to-Network Relay)とが検討されている。 In addition, in 3GPP, as relays between terminals and networks, Layer 3 UE-to-Network Relay and Layer 2 UE-to-Network Relay in which the remote terminal 10B terminates the NAS layer. Relay) is being considered.
 レイヤ3リレーは、リレー端末10AがNAS(Non Access Stratum)レイヤを終端し、リモート端末10Bの通信に用いられるPDUセッションの確立をリレー端末10Aが行う形態である。 In layer 3 relay, the relay terminal 10A terminates the NAS (Non Access Stratum) layer, and the relay terminal 10A establishes a PDU session used for communication with the remote terminal 10B.
 レイヤ3リレーにおいてエンドツーエンド(End to End)のQoSを実現する場合、リレー端末10A及びリモート端末10B間におけるQoS制御は、端末間通信用のQoSフローである「PC5 QoSフロー」が適用されることとしてもよい。PC5 QoSフローでは、QoS特性を示す識別子として、PQI(PC5 5QIs)が用いられてもよい。また、PC5 QoSフローを一意に識別する識別子として、PFI(PC5 QoS Flow Identifier)が用いられてもよい。なお、リモート端末10B及びDN40間におけるQoS制御には、上述の「QoS制御」で説明したQoSフローが適用されることとしてもよい。以下の説明では、上述の「QoS制御」で説明したQoSフローを、PC5 QoSフローと区別するため、便宜上、「Uu QoSフロー」と言う。 When end-to-end QoS is implemented in Layer 3 relay, the QoS flow for inter-terminal communication, ``PC5 QoS flow'', is applied to QoS control between relay terminal 10A and remote terminal 10B. You can do it. In the PC5 QoS flow, PQIs (PC5 5QIs) may be used as identifiers indicating QoS characteristics. Also, a PFI (PC5 QoS Flow Identifier) may be used as an identifier that uniquely identifies a PC5 QoS flow. For the QoS control between the remote terminal 10B and the DN 40, the QoS flow described in the above "QoS control" may be applied. In the following description, the QoS flow described in the above "QoS control" is referred to as "Uu QoS flow" for convenience in order to distinguish it from the PC5 QoS flow.
 レイヤ3リレーでは、エンドツーエンド(End to End)のQoSを実現するため、リレー端末10Aは、「PC5 QoSフロー」のPQIと「Uu QoSフロー」の5QIとを、PQIと5QIとをマッピングする情報(以下、「マッピングテーブル」と言う。)に基づいて相互に変換する。これにより、リモート端末10B及びDN40の間におけるエンドツーエンドのQoS制御を実現することができる。 In layer 3 relay, in order to realize end-to-end QoS, the relay terminal 10A maps the PQI of the "PC5 QoS flow" and the 5QI of the "Uu QoS flow" between the PQI and the 5QI. Mutual conversion is performed based on the information (hereinafter referred to as "mapping table"). Thereby, end-to-end QoS control between the remote terminal 10B and the DN 40 can be realized.
 レイヤ2リレーは、リモート端末10BがNASレイヤを終端し、リモート端末10Bの通信に適用されるPDUセッションの確立を、リモート端末10B自身が行う形態である。 Layer 2 relay is a form in which the remote terminal 10B terminates the NAS layer and the remote terminal 10B itself establishes a PDU session applied to the communication of the remote terminal 10B.
 レイヤ2リレーの場合、PC5 QoSフローは存在せず、Uu QoSフローが、リモート端末10B及びDN40の間に適用される。従って、リレー端末10Aは、Uuリンクにおける無線ベアラのQoS制御に用いられるQoSプロファイルに従って、PC5リンクにおける無線ベアラのQoS制御を行うこととしてもよい。 In the case of layer 2 relay, there is no PC5 QoS flow and the Uu QoS flow is applied between remote terminal 10B and DN40. Therefore, the relay terminal 10A may perform QoS control of the radio bearer on the PC5 link according to the QoS profile used for QoS control of the radio bearer on the Uu link.
 (端末及びネットワーク間リレーの課題)
 図2は、端末及びネットワーク間リレーにおける課題を説明するための図である。
(Issues of terminals and inter-network relays)
FIG. 2 is a diagram for explaining problems in terminals and inter-network relays.
 ステップS11で、例えば、多くのリモート端末10B-1~n(nは任意の正の整数)が、リレー端末10Aを介してネットワークに接続し、通信を行っているものとする。 At step S11, for example, many remote terminals 10B-1 to 10B-n (n is an arbitrary positive integer) are connected to the network via the relay terminal 10A and are communicating.
 ステップS12で、新たなリモート端末10B-Xが通信を開始するため、リレー端末10Aを介してネットワークとの間でコネクションを確立する。このとき、QoSとして、デフォルトのQoS(ビットレート非保障のQoS)が割り当てられる。 In step S12, a connection is established with the network via the relay terminal 10A in order for the new remote terminal 10B-X to start communication. At this time, a default QoS (QoS with non-guaranteed bit rate) is assigned as the QoS.
 ステップS13で、リモート端末10B-Xは、所望のQoSをリレー端末10Aに通知する。ここで、リモート端末10B-Xが所望するQoS(所望するQoS条件)は、ビットレート保障型など、デフォルトQoSよりも厳しい条件のQoSであるものとする。 At step S13, the remote terminal 10B-X notifies the relay terminal 10A of the desired QoS. Here, it is assumed that the QoS desired by the remote terminal 10B-X (desired QoS condition) is a QoS with stricter conditions than the default QoS, such as a guaranteed bit rate.
 ステップS14で、リレー端末10Aは、リモート端末10B-Xが所望するQoSをネットワークに通知する。リレー端末10A及びネットワークは、既にリレー端末10Aを介して多くのリモート端末10B-1~nが通信を行っている状態であることから、リモート端末10B-Xが所望するQoSの要求を受け入れることはできないと認識する。 ステップS15で、リレー端末10Aは、リモート端末10B-Xに対し、リモート端末10B-Xが所望するQoS要求の受け入れを拒否することを通知する。 In step S14, the relay terminal 10A notifies the network of the QoS desired by the remote terminal 10B-X. Since the relay terminal 10A and the network are already in a state where many remote terminals 10B-1 to 10B-n are communicating via the relay terminal 10A, it is impossible to accept the QoS request desired by the remote terminal 10B-X. recognize that you cannot. In step S15, the relay terminal 10A notifies the remote terminal 10B-X that it refuses to accept the QoS request desired by the remote terminal 10B-X.
 ステップS16で、リモート端末10B-Xは、所望するQoSの要求が拒否された場合、リレー端末10Aを介した通信を諦めて、他のリレー端末10Aを介した通信を試みる。 In step S16, when the request for the desired QoS is rejected, the remote terminal 10B-X gives up communication via the relay terminal 10A and attempts communication via another relay terminal 10A.
 このように、QoS要求が拒否されると、リモート端末10B-Xが行ったステップS12~ステップS15の処理手順は、無駄になってしまうという課題がある(第1の課題)。 Thus, if the QoS request is rejected, there is a problem that the processing procedure of steps S12 to S15 performed by the remote terminal 10B-X is wasted (first problem).
 また、仮に、リモート端末10B-Xが、ミッションクリティカル通信など優先度の高い重要な通信を行う端末10である場合、リモート端末10B-Xが所望するQoSの受け入れを拒否することは好ましくないと考えられる(第2の課題)。 Further, if the remote terminal 10B-X is a terminal 10 that performs important communication with high priority such as mission-critical communication, it is considered undesirable to refuse to accept the QoS desired by the remote terminal 10B-X. (Second problem).
 なお、図2において、多くのリモート端末10B-1~nが、リレー端末10Aを介してネットワークに接続し、通信を行っていることとしたが、これに限定されない。例えばリレー端末10A及び基地局20間の無線品質が悪い場合や、コアネットワーク30のトラフィックが逼迫している場合であっても、同様の問題が生じ得る。 In FIG. 2, many remote terminals 10B-1 to 10B-n are connected to the network via the relay terminal 10A and are communicating, but the present invention is not limited to this. For example, even when the radio quality between the relay terminal 10A and the base station 20 is poor, or when the traffic of the core network 30 is tight, similar problems may occur.
 本実施形態では、第1の課題を解決するため、リレー端末10Aは、ネットワークがより要件(Requirement)の厳しいQoSの要求を受け入れることが可能な状態であるのか又は受け入れることができない状態であるのかを示す情報(以下、「QoS状態情報」と言う。)を、周囲に存在する端末10に通知する。 In this embodiment, in order to solve the first problem, the relay terminal 10A determines whether or not the network can accept a QoS request with stricter requirements. (hereinafter referred to as "QoS state information") is notified to terminals 10 existing in the vicinity.
 また、本実施形態では、第2の課題を解決するため、既に接続しているリモート端末10B-1~nのうち、リモート端末10B-Xよりも優先度の低いリモート端末10BのQoSを、より要件の緩いQoSに変更する(以下、「優先度に基づくQoS制御」と言う。)。これにより、ネットワークのリソースが十分ではない場合であっても、リモート端末10B-Xが所望するQoSを満たすために必要なネットワークリソースを確保できるように制御する。 In addition, in order to solve the second problem, in the present embodiment, among the remote terminals 10B-1 to 10B-n already connected, the QoS of the remote terminal 10B, which has a lower priority than the remote terminal 10B-X, is increased. Change to QoS with looser requirements (hereinafter referred to as “priority-based QoS control”). As a result, even if network resources are insufficient, control is performed so that the network resources required to satisfy the QoS desired by the remote terminal 10B-X can be secured.
 <処理手順>
 (1)QoS要求の受け入れ可否の通知
 (1.1)
 図3は、QoS状態を通知する際の処理手順の一例(パターン1)を示すシーケンス図である。図3の例では、SMF32によりQoS要求(PDUセッション変更)が拒否された場合、リレー端末10Aは、ネットワークのリソースが逼迫していると判断し、QoS要求を受け入れることができない状態であることを示すQoS状態情報を送信する。
<Processing procedure>
(1) Notification of acceptability of QoS request (1.1)
FIG. 3 is a sequence diagram showing an example of the processing procedure (pattern 1) when notifying the QoS status. In the example of FIG. 3, when the SMF 32 rejects the QoS request (the PDU session change), the relay terminal 10A determines that network resources are tight, and indicates that the QoS request cannot be accepted. Send the QoS state information indicated.
 ステップS101で、リモート端末10Bは、レイヤ3リレーとして動作するリレー端末10Aとの間で直接通信をするためのコネクションを確立する。当該コネクションは、L2リンク、PC5リンク、ユニキャストリンクなどと呼ばれてもよい。また、リモート端末10Bは、リレー端末10Aとの間で「PC5 QoSフロー」を確立する。ここでは、PC5 QoSフローには、デフォルトのQoSが適用されるものとする。 At step S101, the remote terminal 10B establishes a connection for direct communication with the relay terminal 10A operating as a layer 3 relay. Such connections may be called L2 links, PC5 links, unicast links, and so on. Also, the remote terminal 10B establishes a "PC5 QoS flow" with the relay terminal 10A. Here, it is assumed that the default QoS is applied to the PC5 QoS flow.
 続いて、リレー端末10Aは、PDUセッション確立手順を実行し、リモート端末10Bに対応するUu QoSフロー(より詳細には、リモート端末10Bのトラフィックを流すために用いられるUu QoSフロー)を作成する。ここでは、作成されるUu QoSフローにはデフォルトのQoSが適用されるものとする。なお、既に、リレー端末10AがPDUセッションを確立済みである場合、PDUセッション確立手順に代えてPDUセッション更新手順を実行することで、リモート端末10Bに対応するUu QoSフローを作成することとしてもよい。 Subsequently, the relay terminal 10A executes the PDU session establishment procedure and creates a Uu QoS flow corresponding to the remote terminal 10B (more specifically, a Uu QoS flow used to flow the traffic of the remote terminal 10B). Here, it is assumed that the default QoS is applied to the Uu QoS flow that is created. If the relay terminal 10A has already established a PDU session, the Uu QoS flow corresponding to the remote terminal 10B may be created by executing the PDU session update procedure instead of the PDU session establishment procedure. .
 リモート端末10Bに対応するUu QoSフローが作成されると、リモート端末10Bからの上りデータは、PC5 QoSフロー及びUu QoSフローに従い、リレー端末10Aを経由してDN40に運ばれる。同様に、DN40からの下りデータは、Uu QoSフロー及びPC5 QoSフローに従い、リレー端末10Aを経由してリモート端末10Bに運ばれる。 When the Uu QoS flow corresponding to the remote terminal 10B is created, the upstream data from the remote terminal 10B is carried to the DN 40 via the relay terminal 10A according to the PC5 QoS flow and the Uu QoS flow. Similarly, downlink data from DN 40 is carried to remote terminal 10B via relay terminal 10A according to the Uu QoS flow and PC5 QoS flow.
 リレー端末10Aは、作成したUu QoSフローのQFIと、PC5 QoSフローのPFIとを対応づけて管理することで、リモート端末10BにおけるエンドツーエンドのQoSフローを管理することとしてもよい。 The relay terminal 10A may manage the end-to-end QoS flow in the remote terminal 10B by associating and managing the created QFI of the Uu QoS flow and the PFI of the PC5 QoS flow.
 ステップS102で、リモート端末10Bは、PC5 QoSフローに適用されるQoSを、所望のQoS(ここでは、デフォルトQoSよりも要件が厳しいQoSであるものとする)に変更するため、リレー端末10Aに対し、所望のQoSを示す情報(以下、「QoS指示子」と言う。)を含むL2リンク変更要求(L2 link Modification Request)をリレー端末10Aに送信する。QoS指示子は、Requested QoSと呼ばれてもよい。QoS指示子は、例えば、所望のQoS要件に対応するPQIであってもよいし、エンドツーエンドのQoS要件に対応する識別子であってもよい。また、QoS指示子には、通信品質を指定する他のパラメータが含まれていてもよい。 In step S102, the remote terminal 10B changes the QoS applied to the PC5 QoS flow to the desired QoS (here, it is assumed to be a QoS with stricter requirements than the default QoS), so that the relay terminal 10A , an L2 link modification request including information indicating the desired QoS (hereinafter referred to as "QoS indicator") to the relay terminal 10A. The QoS indicator may be called Requested QoS. A QoS indicator may be, for example, a PQI corresponding to a desired QoS requirement or an identifier corresponding to an end-to-end QoS requirement. The QoS indicator may also include other parameters specifying communication quality.
 ステップS103で、リレー端末10Aは、マッピングテーブルに基づき、QoS指示子に含まれるPQI若しくはエンドツーエンドのQoS要件に対応する識別子を、5QIに変換する。マッピングテーブルは、NASメッセージ又はRRC(Radio Resource Control)メッセージを介して、コアネットワーク30からリレー端末10Aに設定されることとしてもよいし、リレー端末10Aに予め事前設定(Preconfigured)されていてもよい。 At step S103, the relay terminal 10A converts the PQI included in the QoS indicator or the identifier corresponding to the end-to-end QoS requirement into 5QI based on the mapping table. The mapping table may be set in the relay terminal 10A from the core network 30 via NAS messages or RRC (Radio Resource Control) messages, or may be preconfigured in the relay terminal 10A. .
 続いて、リレー端末10Aは、リモート端末10Bに対応するUu QoSフローのQoSを変更するため、基地局20を介して、NASメッセージ(PDUセッション変更要求(PDU session modification request))をAMF31に送信する。PDUセッション変更要求には、例えば、PDUセッションID、リモート端末10Bに対応するUu QoSフローの識別子、及び、QoS指示子が含まれる。なお、「リモート端末10Bに対応するUu QoSフローの識別子」は、例えば、QFIやパケットフィルタなどであってもよい(以降の説明でも同様)。 Subsequently, the relay terminal 10A transmits a NAS message (PDU session modification request) to the AMF 31 via the base station 20 in order to change the QoS of the Uu QoS flow corresponding to the remote terminal 10B. . The PDU session change request includes, for example, the PDU session ID, the identifier of the Uu QoS flow corresponding to the remote terminal 10B, and the QoS indicator. It should be noted that the "identifier of the Uu QoS flow corresponding to the remote terminal 10B" may be, for example, QFI or a packet filter (the same applies to the following description).
 ステップS104で、基地局20、AMF31、SMF32及びUPF33の間でPDUセッション変更処理(PDU Session Modification Procedure)が行われる。 In step S104, PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33.
 ここで、PDUセッション変更処理の概要について説明する。まず、AMF31は、PDUセッション変更要求に含まれる各種情報を、PDUセッション更新要求メッセージ(Nsmf_PDUSession_UpdateSMContext)に含めてSMF32に送信する。SMF32は、ネットワークのトラフィック状況等に基づき、QoS要求を受け入れ可能か否かを判定する。SMF32はどのような方法で判定してもよいが、例えば、既に各端末10との間で確立済みのPDUセッション数や、ビットレート保障型のQoSフローの数などに応じて、QoS要求を受け入れ可能か否かを判定するようにしてもよい。 Here, an overview of the PDU session change processing will be described. First, the AMF 31 transmits various information included in the PDU session change request to the SMF 32 in a PDU session update request message (Nsmf_PDUSession_UpdateSMContext). The SMF 32 determines whether or not the QoS request can be accepted based on network traffic conditions and the like. The SMF 32 may determine by any method, but for example, accepts the QoS request according to the number of PDU sessions already established with each terminal 10 or the number of bit rate guaranteed QoS flows. You may make it determine whether it is possible.
 SMF32は、QoS要求を受け入れる場合、QoS要求に対応するQoSプロファイル及びQoSルールを、AMF31に送信する。AMF31は、QoSプロファイルをN2メッセージに含めて基地局20に送信し、QoSルールを、NASメッセージに含めてリレー端末10Aに送信する。また、SMF32は、QoS要求に対応するUL/DL PDRをUPF33に送信する。 When the SMF 32 accepts the QoS request, it sends the QoS profile and QoS rules corresponding to the QoS request to the AMF 31 . The AMF 31 includes the QoS profile in the N2 message and transmits it to the base station 20, and includes the QoS rule in the NAS message and transmits it to the relay terminal 10A. Also, SMF 32 transmits UL/DL PDR corresponding to the QoS request to UPF 33 .
 一方、SMF32は、QoS要求を受け入れることができないと判定した場合、SMF32は、QoS要求を通知したノード(AMF31又はPCF34等)に対し、QoS要求を拒否することを示す情報(以下、「QoS拒否情報」と言う。)を送信する。QoS拒否情報は、QoS変更不可情報と呼ばれてもよい。また、QoS拒否情報は、PDUセッション変更拒否メッセージであってもよい。また、QoS拒否情報には、QoS要求を拒否した理由を示す情報(例えばCause値など)が含まれていてもよい。 On the other hand, when the SMF 32 determines that the QoS request cannot be accepted, the SMF 32 provides the node (such as the AMF 31 or the PCF 34) that notified the QoS request with information indicating that the QoS request is to be rejected (hereinafter referred to as "QoS rejection information”). QoS denial information may be referred to as QoS unchangeable information. Also, the QoS rejection information may be a PDU session change rejection message. The QoS rejection information may also include information indicating the reason for rejecting the QoS request (for example, cause value).
 図3の例では、SMF32は、AMF31から受信したQoS要求を受け入れることができないと判定したものとする。また、SMF32は、AMF31に対し、PDUセッション変更拒否メッセージを送信したものとする。 In the example of FIG. 3, it is assumed that the SMF 32 has determined that the QoS request received from the AMF 31 cannot be accepted. It is also assumed that the SMF 32 has transmitted a PDU session change rejection message to the AMF 31 .
 ステップS110で、AMF31は、NASメッセージ(PDUセッション変更コマンド(PDU Session Modification Command))をリレー端末10Aに送信する。PDUセッション変更コマンドには、QoS拒否情報が含まれる。 In step S110, the AMF 31 transmits a NAS message (PDU Session Modification Command) to the relay terminal 10A. The PDU session modification command contains QoS denial information.
 ステップS111で、リレー端末10Aは、QoS拒否情報を含むPDUセッション変更コマンドを受信した場合、ネットワークリソースが逼迫しており、QoS要求を受け入れることができない状態であると認識する。続いて、リレー端末10Aは、ネットワークが、より要件の厳しいQoS要求を受け入れることができない状態であることを示すQoS状態情報(QoS=Full)を送信する。 In step S111, when the relay terminal 10A receives the PDU session change command including the QoS rejection information, it recognizes that the network resources are tight and the QoS request cannot be accepted. Subsequently, the relay terminal 10A transmits QoS status information (QoS=Full) indicating that the network cannot accept a QoS request with stricter requirements.
 本実施形態では、リレー端末10Aは、QoS状態情報を、所定の周期でブロードキャストするようにしてもよい。例えば、リレー端末10Aは、QoS状態情報を、ブロードキャスト用のチャネルで送信してもよい。また、リレー端末10Aは、QoS状態情報を、物理サイドリンクディスカバリーチャネル(Physical Sidelink Discovery Channel:PSDCH)で送信してもよいし、物理サイドリンク共通チャネル(Physical Sidelink Shared Channel:PSSCH)で送信してもよい。また、リレー端末10Aは、QoS状態情報を、ディスカバリーメッセージ(Discovery message:発見信号)内の所定の領域(フィールド)に含めて送信してもよい。 In this embodiment, the relay terminal 10A may broadcast the QoS state information at a predetermined cycle. For example, the relay terminal 10A may transmit the QoS status information through a broadcast channel. In addition, the relay terminal 10A, the QoS state information, physical sidelink discovery channel (Physical Sidelink Discovery Channel: PSDCH) may be transmitted in the physical sidelink common channel (Physical Sidelink Shared Channel: PSSCH) to transmit good too. Also, the relay terminal 10A may include the QoS state information in a predetermined area (field) within a discovery message (discovery message) and transmit it.
 ステップS112で、リレー端末10Aは、リモート端末10Bに、L2リンク変更応答(L2 link Modification Accept)を送信する。L2リンク変更応答には、QoS拒否情報が含まれる。L2リンク変更応答はQoS状態による接続拒否を伝達するためのL2 Link Modification Accept以外のメッセージでもよい。 In step S112, the relay terminal 10A transmits an L2 link modification response (L2 link Modification Accept) to the remote terminal 10B. The L2 link change response contains QoS denial information. The L2 Link Modification Response may be any message other than the L2 Link Modification Accept to convey connection rejection due to QoS conditions.
 次に、基地局20は、リレー端末10Aに接続している他のリモート端末10Bが、リレー端末10Aとの接続を終了したり、リレー端末10Aがより帯域幅の広いバンドにハンドオーバーしたりといった理由により、ネットワークリソースに空きが生じたことを検出したとする。この場合、ステップS150で、基地局20は、リレー端末10Aに対し、より要件の厳しいQoS要求を受け入れることが可能な状態であることを示す情報(以下、「QoS許可情報」と言う。)を含むAN固有リソース変更メッセージ(AN(Access Network) specific resource modification)を送信するようにしてもよい。AN固有リソース変更メッセージは、RRCメッセージであってもよい。 Next, the base station 20 causes another remote terminal 10B connected to the relay terminal 10A to terminate the connection with the relay terminal 10A, or the relay terminal 10A to hand over to a band with a wider bandwidth. Suppose that for some reason, it is detected that a network resource becomes available. In this case, in step S150, the base station 20 sends information (hereinafter referred to as "QoS permission information") to the relay terminal 10A indicating that it is ready to accept a QoS request with stricter requirements. An AN (Access Network) specific resource modification message (AN (Access Network) specific resource modification) may be sent. The AN specific resource change message may be an RRC message.
 また、SMF32は、ネットワークリソースに空きが生じた結果、QoS要求を受け入れることが可能になったことを検出した場合、リレー端末10Aに対し、AMF31を介して、QoS許可情報を含むNASメッセージを送信するようにしてもよい。SMF32は、SMF32がPDUセッションを管理している全てのリレー端末10Aに対して、QoS許可情報を含むNASメッセージを送信するようにしてもよい。 In addition, when SMF 32 detects that it has become possible to accept QoS requests as a result of the availability of network resources, SMF 32 transmits a NAS message including QoS permission information to relay terminal 10A via AMF 31. You may make it The SMF 32 may transmit NAS messages including QoS grant information to all relay terminals 10A for which the SMF 32 manages PDU sessions.
 ステップS151で、リレー端末10Aは、基地局20又はAMF31から、QoS要求を受け入れることが可能な状態であることを示すAN固有リソース変更メッセージ又はNASメッセージを受信した場合、QoS要求を受け入れることが可能な状態であることを示すQoS状態情報(QoS=Normal)を送信する。 In step S151, when the relay terminal 10A receives an AN-specific resource change message or a NAS message from the base station 20 or the AMF 31 indicating that the QoS request can be accepted, the relay terminal 10A can accept the QoS request. QoS status information (QoS=Normal) indicating normal status is transmitted.
 以上説明した処理手順において、リモート端末10Bがレイヤ2リレーの場合、ステップS102及びステップS112の処理手順は省略される。また、ステップS103の処理手順では、リレー端末10Aではなくリモート端末10Bが直接、所望するQoSに対応するQoS指示子(例えば5QI等)を含むPDUセッション変更要求をAMF31に送信する。またステップS110の処理手順において、AMF31は、QoS拒否情報が含まれるPDUセッション変更コマンドを、リモート端末10Bに送信する。 In the processing procedure described above, when the remote terminal 10B is a layer 2 relay, the processing procedures of steps S102 and S112 are omitted. Further, in the processing procedure of step S103, the remote terminal 10B, not the relay terminal 10A, directly transmits to the AMF 31 a PDU session change request including a QoS indicator (for example, 5QI) corresponding to the desired QoS. Also, in the processing procedure of step S110, the AMF 31 transmits a PDU session change command including QoS rejection information to the remote terminal 10B.
 また、リモート端末10Bがレイヤ2リレーの場合、リモート端末10Bは、NASメッセージ及びRRCメッセージを受信することができないことが考えられる。そこで、AMF31は、ステップS110の処理手順において、基地局20に対し、QoS拒否情報を含むN2メッセージ(N2インタフェース上のメッセージ)を送信し、基地局20は、QoS拒否情報を含むMAC(Medium Access Control)メッセージ(MACレイヤのメッセージ、例えばMAC PDU(Protocol Data Unit)又はMAC CE(Control Element))を、リレー端末10Aに通知するようにしてもよい。レイヤ2リレーのリレー端末10Aは、MACメッセージでQoS拒否情報を基地局20から受信した場合、これ以上QoS要求を受け入れることができない状態であることを示すQoS状態情報(QoS=Full)を送信するようにしてもよい。ステップS150の処理手順についても、基地局20は、MACメッセージに、QoS許可情報を含めてリレー端末10Aに送信するようにしてもよい。レイヤ2リレーのリレー端末10Aは、MACメッセージでQoS許可情報を基地局20から受信した場合、QoS要求を受け入れることが可能な状態であることを示すQoS状態情報(QoS=Normal)を送信するようにしてもよい。 Also, if the remote terminal 10B is a layer 2 relay, it is conceivable that the remote terminal 10B cannot receive NAS messages and RRC messages. Therefore, in the processing procedure of step S110, the AMF 31 transmits an N2 message (message on the N2 interface) containing the QoS rejection information to the base station 20, and the base station 20 transmits the MAC (Medium Access Message) containing the QoS rejection information. Control) message (MAC layer message, for example, MAC PDU (Protocol Data Unit) or MAC CE (Control Element)) may be notified to the relay terminal 10A. When the relay terminal 10A of the layer 2 relay receives the QoS rejection information in the MAC message from the base station 20, it transmits the QoS state information (QoS=Full) indicating that the QoS request cannot be accepted any more. You may do so. As for the processing procedure of step S150, the base station 20 may include the QoS permission information in the MAC message and transmit it to the relay terminal 10A. When the relay terminal 10A of the layer 2 relay receives the QoS permission information in the MAC message from the base station 20, the relay terminal 10A transmits QoS state information (QoS=Normal) indicating that the QoS request can be accepted. can be
 (1.2)
 図4は、QoS状態を通知する際の処理手順の一例(パターン2)を示すシーケンス図である。図4の例は、基地局20によりQoS要求が拒否された場合、リレー端末10Aは、ネットワークのリソースが逼迫していると判断し、QoS要求を受け入れることができない状態であることを示すQoS状態情報を送信する。
(1.2)
FIG. 4 is a sequence diagram showing an example of the processing procedure (pattern 2) when notifying the QoS status. In the example of FIG. 4, when the QoS request is rejected by the base station 20, the relay terminal 10A determines that network resources are tight, and the QoS state indicating that the QoS request cannot be accepted. Send information.
 ステップS101~ステップS103の処理手順は、それぞれ、図3のステップS101~ステップS103の処理手順と同一であるため、説明を省略する。 The processing procedures of steps S101 to S103 are the same as the processing procedures of steps S101 to S103 in FIG. 3, respectively, so description thereof will be omitted.
 ステップS104で、基地局20、AMF31、SMF32及びUPF33の間でPDUセッション変更処理(PDU Session Modification Procedure)が行われる。図4の例では、SMF32は、QoS要求を受け入れると判定し、QoS要求に対応するQoSプロファイル及びQoSルールを、AMF31に送信する。AMF31は、QoSプロファイルをN2メッセージに含めて基地局20に送信し、QoSルールを、NASメッセージに含めてリレー端末10Aに送信する。また、SMF32は、QoS要求に対応するPDRをUPF33に送信する。 In step S104, PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33. In the example of FIG. 4, the SMF 32 determines to accept the QoS request and sends the QoS profile and QoS rules corresponding to the QoS request to the AMF 31 . The AMF 31 includes the QoS profile in the N2 message and transmits it to the base station 20, and includes the QoS rule in the NAS message and transmits it to the relay terminal 10A. Also, the SMF 32 transmits a PDR corresponding to the QoS request to the UPF 33 .
 ここで、基地局20は、例えば、リレー端末10Aから受信する無線信号の品質が劣化している等の理由で、これ以上のQoS要求を受け入れることができないと判定したとする。この場合、ステップS120で、基地局20は、リレー端末10Aに対し、QoS拒否情報を含むAN固有リソース変更メッセージ(AN specific resource modification)を送信する。AN固有リソース変更メッセージは、RRCメッセージであってもよい。 Assume here that the base station 20 determines that it cannot accept any more QoS requests, for example, because the quality of the radio signal received from the relay terminal 10A is degraded. In this case, in step S120, the base station 20 transmits an AN specific resource modification message including QoS rejection information to the relay terminal 10A. The AN specific resource change message may be an RRC message.
 ステップS121で、リレー端末10Aは、QoS拒否情報を含むAN固有リソース変更メッセージを受信した場合、ネットワークのリソースが逼迫しており、QoS要求を受け入れることができない状態であると認識する。続いて、リレー端末10Aは、ネットワークが、より要件の厳しいQoS要求を受け入れることができない状態であることを示すQoS状態情報(QoS=Full)を送信する。 In step S121, when the relay terminal 10A receives the AN-specific resource change message containing the QoS rejection information, it recognizes that the network resources are tight and the QoS request cannot be accepted. Subsequently, the relay terminal 10A transmits QoS status information (QoS=Full) indicating that the network cannot accept a QoS request with stricter requirements.
 ステップS122、ステップS150及びステップS151の処理手順は、図3のステップS112、ステップS150及びステップS151の処理手順と同一であるため、説明を省略する。 The processing procedures of steps S122, S150, and S151 are the same as the processing procedures of steps S112, S150, and S151 in FIG. 3, so description thereof will be omitted.
 リモート端末10Bがレイヤ2リレーの場合、基地局20は、ステップS120の処理手順において、MACメッセージに、QoS拒否情報を含めてリレー端末10Aに送信するようにしてもよい。 If the remote terminal 10B is a layer 2 relay, the base station 20 may include QoS denial information in the MAC message and transmit it to the relay terminal 10A in the processing procedure of step S120.
 (1.3)
 図5は、QoS状態を通知する際の処理手順の一例(パターン3)を示すシーケンス図である。図5の例は、基地局20がQoS要求を拒否する場合、基地局20はAMF31にQoS要求を拒否することを通知し、AMF31が、QoS要求を拒否することをリレー端末10Aに通知する。リレー端末10Aは、ネットワークのリソースが逼迫していると判断し、QoS要求を受け入れることができない状態であることを示すQoS状態情報を送信する。
(1.3)
FIG. 5 is a sequence diagram showing an example of the processing procedure (pattern 3) when notifying the QoS status. In the example of FIG. 5, when the base station 20 rejects the QoS request, the base station 20 notifies the AMF 31 of the rejection of the QoS request, and the AMF 31 notifies the relay terminal 10A of the rejection of the QoS request. The relay terminal 10A determines that network resources are tight, and transmits QoS status information indicating that the QoS request cannot be accepted.
 ステップS101~ステップS104の処理手順は、それぞれ、図4のステップS101~ステップS104の処理手順と同一であるため、説明を省略する。 The processing procedures of steps S101 to S104 are the same as the processing procedures of steps S101 to S104 in FIG. 4, respectively, so description thereof will be omitted.
 AMF31から、QoS要求に対応するQoSプロファイルを含むN2メッセージを受信した基地局20は、例えば、リレー端末10Aから受信する無線信号の品質が劣化している等の理由で、QoS要求を受け入れることができないと判定したとする。この場合、ステップS130で、基地局20は、AMF31に対し、QoS拒否情報を含むN2メッセージ(RANリソース通知)を送信する。 The base station 20 that has received the N2 message including the QoS profile corresponding to the QoS request from the AMF 31 cannot accept the QoS request because, for example, the quality of the radio signal received from the relay terminal 10A is degraded. Suppose you decide that you can't. In this case, the base station 20 transmits an N2 message (RAN resource notification) including QoS rejection information to the AMF 31 in step S130.
 なお、基地局20は、無線品質が事後的に劣化した場合など、QoS要求を満たすことが出来なくなったことを、PDUセッション変更完了後に検出した場合、QoS要求を満たすことができなくなったUu QoSフローのQFI及びQoS拒否情報を含むN2メッセージをAMF31に送信するようにしてもよい。 In addition, when the base station 20 detects that the QoS request cannot be satisfied after the PDU session change is completed, such as when the radio quality deteriorates after the fact, the Uu QoS An N2 message containing the flow's QFI and QoS rejection information may be sent to the AMF 31 .
 ステップS131で、QoS拒否情報を含むN2メッセージを受信したAMF31は、NASメッセージ(PDUセッション変更コマンド(PDU Session Modification Command))をリレー端末10Aに送信する。PDUセッション変更コマンドには、QoS拒否情報が含まれる。 At step S131, the AMF 31 that has received the N2 message containing the QoS rejection information transmits a NAS message (PDU Session Modification Command) to the relay terminal 10A. The PDU session modification command contains QoS denial information.
 ステップS132、ステップS133、ステップS150及びステップS151の処理手順は、それぞれ、図3のステップS111、ステップS112、ステップS150及びステップS151の処理手順と同一であるため、説明を省略する。 The processing procedures of steps S132, S133, steps S150, and S151 are the same as the processing procedures of steps S111, S112, steps S150, and S151 in FIG. 3, respectively, so description thereof is omitted.
 リモート端末10Bがレイヤ2リレーの場合、AMF31は、ステップ131の処理手順において、基地局20に対し、QoS拒否情報を含むN2メッセージ(N2インタフェース上のメッセージ)を送信し、基地局20は、QoS拒否情報を含むMACメッセージを、リレー端末10Aに通知するようにしてもよい。レイヤ2リレーのリレー端末10Aは、MACメッセージでQoS拒否情報を基地局20から受信した場合、これ以上QoS要求を受け入れることができない状態であることを示すQoS状態情報(QoS=Full)を送信するようにしてもよい。 When the remote terminal 10B is a layer 2 relay, the AMF 31 transmits an N2 message (message on the N2 interface) including QoS rejection information to the base station 20 in the processing procedure of step 131, and the base station 20 receives the QoS A MAC message including the refusal information may be notified to the relay terminal 10A. When the relay terminal 10A of the layer 2 relay receives the QoS rejection information in the MAC message from the base station 20, it transmits the QoS state information (QoS=Full) indicating that the QoS request cannot be accepted any more. You may do so.
 以上説明したように、QoS要求が拒否された場合、リレー端末10Aは、ネットワークのリソースが逼迫していると判断し、ネットワークが、QoS要求を受け入れることができない状態であることを示すQoS状態情報を送信する。これにより、リモート端末10Bは、リレー端末10Aを探して通信を開始する際、QoSの要求を受け入れることが可能なリレー端末10Aを選択して通信を試みることが可能になり、QoSの要求を受け入れることができないリレー端末10Aとの間で無駄に通信を行うことなく、通信を開始することが可能になる。 As described above, when the QoS request is rejected, the relay terminal 10A determines that the resources of the network are tight, and the QoS state information indicating that the network cannot accept the QoS request. to send. As a result, when the remote terminal 10B searches for the relay terminal 10A and starts communication, the remote terminal 10B can select the relay terminal 10A that can accept the QoS request and attempt communication, and accepts the QoS request. It is possible to start communication without wastefully communicating with the relay terminal 10A that cannot communicate with the relay terminal 10A.
 以上説明した(1.1)~(1.3)において、QoS拒否情報には、受入可能なQoS又は受入不可能なQoSを示す情報が含まれるようにしてもよい。例えば、受入可能なQoSを示す情報として、受入可能なQoS特性を示す識別子(5QI等)が含まれていてもよい。同様に、受入不可能なQoSを示す情報として、受入不可能なQoS特性を示す識別子(5QIの値等)が含まれていてもよい。また、リレー端末10Aは、QoS状態情報に、受入可能なQoS又は受入不可能なQoSを示す情報を含めて送信するようにしてもよい。このとき、リレー端末10Aは、レイヤ3リレーとして動作する場合、基地局20から通知された、受入可能なQoS特性又は受入不可能なQoS特性を示す識別子を、マッピングテーブルに基づき、PC5インタフェースで用いられるQoS特性を示す識別子(PQI等)に変換し、変換後のQoS特性を示す識別子を、QoS状態情報に含めて送信するようにしてもよい。これにより、リレー端末10Aに接続しているリモート端末10Bが多い環境であっても、リモート端末10Bは、QoS要求を受け入れ可能なリレー端末10Aを発見できる可能性を高めることが可能になる。 In (1.1) to (1.3) described above, the QoS denial information may include information indicating acceptable QoS or unacceptable QoS. For example, information indicating acceptable QoS may include an identifier (such as 5QI) indicating acceptable QoS characteristics. Similarly, the information indicating unacceptable QoS may include an identifier indicating unacceptable QoS characteristics (such as the value of 5QI). Also, the relay terminal 10A may transmit the QoS status information including information indicating acceptable QoS or unacceptable QoS. At this time, when operating as a layer 3 relay, the relay terminal 10A uses the identifier indicating acceptable QoS characteristics or unacceptable QoS characteristics notified from the base station 20 in the PC5 interface based on the mapping table. The QoS status information may be converted into an identifier (PQI or the like) indicating the QoS characteristics to be used, and the identifier indicating the QoS characteristics after conversion may be included in the QoS state information and transmitted. As a result, even in an environment in which many remote terminals 10B are connected to the relay terminal 10A, it is possible for the remote terminal 10B to increase the possibility of discovering the relay terminal 10A that can accept the QoS request.
 (2)優先度に基づくQoS制御
 (2.1)
 図6は、優先度に基づくQoS制御における処理手順の一例(パターン1)を示すシーケンス図である。図6の例では、リモート端末10B-YのQoS要求がSMF32により拒否された場合、リレー端末10Aは、リレー端末10Aと通信をしている複数のリモート端末10B-Xのうち、優先度が低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除する。
(2) QoS control based on priority (2.1)
FIG. 6 is a sequence diagram showing an example of a processing procedure (pattern 1) in QoS control based on priority. In the example of FIG. 6, when the QoS request of the remote terminal 10B-Y is rejected by the SMF 32, the relay terminal 10A has the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. Change or cancel the QoS of the remote terminal 10B-X to a QoS with looser requirements.
 ステップS201、ステップS202及びステップS220の処理手順は、図3のステップS101、ステップS102及びステップS103における説明において、リモート端末10Bを、リモート端末10B-Yに置き換えたものと同一であるため、説明は省略する。 The processing procedures of steps S201, S202, and S220 are the same as those in steps S101, S102, and S103 of FIG. 3, except that the remote terminal 10B is replaced with the remote terminal 10B-Y. omitted.
 ステップS221で、AMF31は、PDUセッション変更要求に含まれる、リモート端末10B-Yに関するQoS指示子等を、PDUセッション更新要求メッセージ(Nsmf_PDUSession_UpdateSMContext)に含めてSMF32に送信する。 In step S221, the AMF 31 transmits the QoS indicators and the like regarding the remote terminal 10B-Y included in the PDU session change request to the SMF 32 in a PDU session update request message (Nsmf_PDUSession_UpdateSMContext).
 ステップS222で、SMF32は、例えば、ネットワークのトラフィック状況等に基づき、当該メッセージに含まれるQoS指示子で示されるQoS要求を受け入れ可能か否かを判定する。SMF32はどのような方法で判定してもよいが、例えば、既に各端末10との間で確立済みのPDUセッション数や、ビットレート保障型のQoSフローの数などに応じて、QoS要求を受け入れ可能か否かを判定するようにしてもよい。ここでは、SMF32は、QoS要求を受け入れることはできないと判定したとする。 At step S222, the SMF 32 determines whether or not the QoS request indicated by the QoS indicator included in the message can be accepted based on, for example, network traffic conditions. The SMF 32 may determine by any method, but for example, accepts the QoS request according to the number of PDU sessions already established with each terminal 10 or the number of bit rate guaranteed QoS flows. You may make it determine whether it is possible. Assume here that the SMF 32 determines that the QoS request cannot be accepted.
 ステップS223で、SMF32は、リモート端末10B-YのQoS要求を拒否するQoS拒否情報を含むPDUセッション変更応答(Response of Nsmf_PDUSession_UpdateSMContext)を、AMF31に送信する。なお、「リモート端末10B-YのQoS要求」とは、リモート端末10B-Yに対応するUu QoSフローについてのQoS要求を意味する。 In step S223, the SMF 32 transmits to the AMF 31 a PDU session change response (Response of Nsmf_PDUSession_UpdateSMContext) containing QoS rejection information rejecting the QoS request of the remote terminal 10B-Y. Note that the "QoS request of the remote terminal 10B-Y" means the QoS request for the Uu QoS flow corresponding to the remote terminal 10B-Y.
 ステップS224で、AMF31は、リモート端末10B-YのQoS要求を拒否するQoS拒否情報を含むPDUセッション変更コマンド(PDU Session Modification Command)を、リレー端末10Aに送信する。 In step S224, the AMF 31 transmits to the relay terminal 10A a PDU Session Modification Command including QoS rejection information rejecting the QoS request of the remote terminal 10B-Y.
 ステップS225で、AMF31から、QoS拒否情報を含むPDUセッション変更コマンドを受信したリレー端末10Aは、当該リレー端末10Aと通信をしている複数のリモート端末10B-Xのうち、優先度が低いリモート端末10B-Xを選択する。複数のリモート端末10B-Xの優先度はどのように定められていてもよいが、例えば、各リモート端末10B-XのPQI(又は変換後の5QI)により示される優先レベルが、各リモート端末10B-Xの優先度に対応することとしてもよい。 In step S225, the relay terminal 10A, which has received the PDU session change command including the QoS refusal information from the AMF 31, selects a remote terminal with a lower priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. Select 10B-X. The priority of the plurality of remote terminals 10B-X may be determined in any way. For example, the priority level indicated by the PQI (or 5QI after conversion) of each remote terminal 10B-X is -X priority may be supported.
 ステップS226で、リレー端末10Aは、ステップS225の処理手順で選択した、優先度が低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除するために、当該リモート端末10B-Xに対応するUu QoSフローのQoS指示子を含むPDUセッション変更要求をAMF31に送信する。 In step S226, the relay terminal 10A changes or cancels the QoS of the remote terminal 10B-X with a lower priority selected in the procedure of step S225 to a QoS with looser requirements. Sends to AMF 31 a PDU session change request containing the QoS indicator of the Uu QoS flow corresponding to .
 ステップS227で、基地局20、AMF31、SMF32及びUPF33の間でPDUセッション変更処理(PDU Session Modification Procedure)が行われ、リモート端末10B-Xに対応するUu QoSフローが、より要件の緩いQoSに変更又は解除される。 In step S227, PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-X is changed to QoS with looser requirements. or be released.
 ステップS228で、AMF31は、ステップS227の処理手順で変更されたQoSの値(5QI)、又はUu QoSフローの解除を指示する情報を、PDUセッション変更コマンドに含めてリレー端末10Aに通知する。 In step S228, the AMF 31 notifies the relay terminal 10A of the QoS value (5QI) changed in the procedure of step S227 or the information instructing release of the Uu QoS flow by including it in the PDU session change command.
 ステップS229で、リレー端末10Aは、ステップS228の処理手順で通知されたQoS値(5QI)を、マッピングテーブルに基づいてPQIに変換する。続いて、リレー端末10Aは、変換後のPQIを含むL2リンク変更信号又はPC5 QoSフローの解除を指示する情報を、リモート端末10B-Xに送信する。これにより、リモート端末10B-XのPC5 QoSフロー及びUu QoSフローが、より要件の緩いQoSに変更又は解除される。なお、リモート端末10B-XのPC5 QoSフロー及び/又はUu QoSフローが解除されることは、リモート端末10B-Xの通信が切断されることと同義であってもよい。 In step S229, the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S228 into PQI based on the mapping table. Subsequently, the relay terminal 10A transmits to the remote terminal 10B-X an L2 link change signal including the converted PQI or information instructing release of the PC5 QoS flow. As a result, the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-X are changed to QoS with looser requirements or canceled. Note that releasing the PC5 QoS flow and/or the Uu QoS flow of the remote terminal 10B-X may be synonymous with disconnecting the communication of the remote terminal 10B-X.
 リレー端末10Aは、リモート端末10B-YにおけるQoS要求が許可されるまで、ステップS220~ステップS229の処理手順を繰り返すことで、優先度の低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除していく。 The relay terminal 10A repeats the processing procedure of steps S220 to S229 until the QoS request of the remote terminal 10B-Y is permitted, thereby replacing the QoS of the remote terminal 10B-X with lower priority with the QoS with looser requirements. change to or cancel.
 ここで、優先度の低いリモート端末10B-XのQoSが、より要件の緩いQoSに変更又は解除されることで、ネットワークリソースに空きが生じたことを検出したとする。この場合、ステップS222の処理手順で、SMF32は、QoS要求を許可する。この場合、ステップS240の処理手順に進む。 Here, suppose that it is detected that the QoS of the remote terminal 10B-X, which has a low priority, is changed or canceled to a QoS with looser requirements, resulting in an empty network resource. In this case, the SMF 32 permits the QoS request in the procedure of step S222. In this case, the process proceeds to step S240.
 ステップS240で、基地局20、AMF31、SMF32及びUPF33の間でPDUセッション変更処理(PDU Session Modification Procedure)が行われ、リモート端末10B-Yに対応するUu QoSフローが、要求されたQoSに変更される。 In step S240, PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-Y is changed to the requested QoS. be.
 ステップS241で、AMF31は、ステップS240の処理手順で変更された、リモート端末10B-YのQoS値(5QI)を、PDUセッション変更コマンドに含めてリレー端末10Aに通知する。 In step S241, the AMF 31 notifies the relay terminal 10A of the QoS value (5QI) of the remote terminal 10B-Y changed in the procedure of step S240 by including it in the PDU session change command.
 ステップS242で、リレー端末10Aは、ステップS241の処理手順で通知されたQoS値(5QI)を、マッピングテーブルに基づいてPQIに変換し、リモート端末10B-Yとの間におけるPC5 QoSフローのQoSを、変換後のPQIに変更する。続いて、リレー端末10Aは、変換後のPQIを含むL2リンク変更応答を、リモート端末10B-Yに送信する。これにより、リモート端末10B-YのPC5 QoSフロー及びUu QoSフローが、より条件の厳しいQoS要求を反映したフローに変更される。 In step S242, the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S241 into PQI based on the mapping table, and converts the QoS of the PC5 QoS flow with the remote terminal 10B-Y to , to the converted PQI. Relay terminal 10A then transmits an L2 link change response including the converted PQI to remote terminal 10B-Y. As a result, the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-Y are changed to flows that reflect the stricter QoS requirements.
 次に、リレー端末10Aは、ステップS220~ステップS229の処理手順を繰り返すことで、優先度の低い全てのリモート端末10B-XのQoSを、より要件の緩いQoSに変更、あるいは優先度の低いリモート端末10B-Xの切断処理によってもネットワークリソースに空きが生じなかった(つまり、ステップS241の処理手順で示すメッセージを受信できなかった)と仮定する。この場合、ステップS260の処理手順に進む。 Next, the relay terminal 10A repeats the processing procedure of steps S220 to S229 to change the QoS of all the remote terminals 10B-X with lower priority to QoS with looser requirements, or It is assumed that the disconnection processing of the terminals 10B-X did not result in free network resources (that is, the message shown in the processing procedure of step S241 could not be received). In this case, the process proceeds to step S260.
 ステップS260で、リレー端末10Aは、QoS拒否情報を含むL2リンク変更応答を、リモート端末10B-Yに送信する。 In step S260, the relay terminal 10A transmits an L2 link change response including QoS rejection information to the remote terminal 10B-Y.
 (2.2)
 図7は、優先度に基づくQoS制御における処理手順の一例(パターン2)を示すシーケンス図である。図7の例では、リモート端末10B-YのQoS要求がSMF32により拒否された場合、優先度が高いリモート端末10B-YのQoSを変更するために、優先度が低いリモート端末10B-XのQoSを変更又は解除することをSMF32に通知する。SMF32は、優先度が低いリモート端末10B-XのQoSを変更又は解除することで、ネットワークリソースの消費量が削減され、優先度が高いリモート端末10B-YのQoS要求を許可することが可能であるか否かを判断する。リモート端末10B-YのQoS要求を許可する場合、SMF32は、リモート端末10B-X及びリモート端末10B-YのQoSを変更又はリモート端末10B-XのQoSを解除する。
(2.2)
FIG. 7 is a sequence diagram showing an example of a processing procedure (pattern 2) in QoS control based on priority. In the example of FIG. 7, when the QoS request of the remote terminal 10B-Y is rejected by the SMF 32, the QoS of the remote terminal 10B-X with lower priority is changed to change the QoS of the remote terminal 10B-Y with higher priority. is changed or canceled to the SMF 32. By changing or canceling the QoS of the remote terminal 10B-X with low priority, the SMF 32 can reduce the consumption of network resources and permit the QoS request of the remote terminal 10B-Y with high priority. determine whether there is When granting the QoS request of the remote terminal 10B-Y, the SMF 32 changes the QoS of the remote terminal 10B-X and the remote terminal 10B-Y or cancels the QoS of the remote terminal 10B-X.
 ステップS301、ステップS302、ステップS303、ステップS304、ステップS305、ステップS306、ステップS307及びステップS320の処理手順は、それぞれ、図6のステップS201、ステップS202、ステップS220、ステップS221、ステップS222、ステップS223、ステップS224及びステップS225の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S301, S302, S303, S304, S305, S306, S307 and S320 of FIG. , steps S224 and S225, the description thereof will be omitted.
 ステップS321で、リレー端末10Aは、リモート端末10B-YのQoS指示子と、ステップS320の処理手順で選択された、優先度が低いリモート端末10B-XのQoSがQoS変更の対象であることを示す情報を含む、PDUセッション変更要求をAMF31に送信する。なお、「QoS変更」とは、QoSをより要件の緩いQoS(デフォルトQoSであってもよい)に変更すること、あるいは優先度の低い端末の切断(当該QoSフローの解除)を意味している。 In step S321, the relay terminal 10A confirms that the QoS indicator of the remote terminal 10B-Y and the QoS of the remote terminal 10B-X with low priority selected in the procedure of step S320 are subject to QoS change. Send a PDU session change request to the AMF 31, including the information shown. Note that "QoS change" means changing the QoS to a QoS with looser requirements (default QoS may be used), or disconnecting a terminal with a low priority (releasing the QoS flow). .
 ステップS322で、AMF31は、リモート端末10B-YのQoS指示子と、優先度が低いリモート端末10B-XのQoSがQoS変更対象であることを示す情報を含む、PDUセッション更新要求をSMF32に送信する。 In step S322, the AMF 31 transmits to the SMF 32 a PDU session update request including the QoS indicator of the remote terminal 10B-Y and information indicating that the QoS of the remote terminal 10B-X with low priority is subject to QoS change. do.
 ステップS323で、SMF32は、優先度が低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又はQoSフローを解除することで、優先度が高いリモート端末10B-YのQoS要求を許可することが可能であるか否かを判断する。許可することができないと判断された場合はステップS324の処理手順に進み、許可可能と判断された場合はステップS340の処理手順に進む。 In step S323, the SMF 32 permits the QoS request of the remote terminal 10B-Y with a high priority by changing the QoS of the remote terminal 10B-X with a low priority to a QoS with looser requirements or canceling the QoS flow. determine whether it is possible to If it is determined that permission is not possible, the process proceeds to step S324, and if it is determined that permission is possible, the process proceeds to step S340.
 ステップS324及びステップS325の処理手順は、それぞれ、ステップS306及びステップS307の処理手順と同一であるため説明は省略する。 The processing procedures of steps S324 and S325 are the same as the processing procedures of steps S306 and S307, respectively, so description thereof will be omitted.
 ステップS340で、基地局20、AMF31、SMF32及びUPF33の間でPDUセッション変更処理(PDU Session Modification Procedure)が行われ、リモート端末10B-Xに対応するUu QoSフローが、より要件の緩いQoSに変更又は解除される。 In step S340, PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-X is changed to QoS with looser requirements. or be released.
 ステップS341で、AMF31は、ステップS340の処理手順で変更された、リモート端末10B-XのQoS値(5QI)又はUu QoSフローの解除を指示する情報を、PDUセッション変更コマンドに含めてリレー端末10Aに通知する。 In step S341, the AMF 31 includes the QoS value (5QI) of the remote terminal 10B-X or information instructing release of the Uu QoS flow, which has been changed in the processing procedure of step S340, in the PDU session change command and includes it in the relay terminal 10A. to notify.
 ステップS342で、リレー端末10Aは、ステップS341の処理手順で通知されたQoS値(5QI)を、マッピングテーブルに基づいてPQIに変換し、リモート端末10B-Xとの間におけるPC5 QoSフローのQoSを、変換後のPQIに変更する。続いて、リレー端末10Aは、変換後のPQI又はPC5 QoSフローの解除を指示する情報を含むL2リンク変更メッセージを、リモート端末10B-Xに送信する。これにより、リモート端末10B-XのPC5 QoSフロー及びUu QoSフローが、より要件の緩いQoSに変更又は解除される。 In step S342, the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S341 into PQI based on the mapping table, and converts the QoS of the PC5 QoS flow with the remote terminal 10B-X to , to the converted PQI. Subsequently, the relay terminal 10A transmits to the remote terminal 10B-X an L2 link change message including information instructing release of the converted PQI or PC5 QoS flow. As a result, the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-X are changed to QoS with looser requirements or canceled.
 ステップS343で、基地局20、AMF31、SMF32及びUPF33の間でPDUセッション変更処理(PDU Session Modification Procedure)が行われ、リモート端末10B-Yに対応するUu QoSフローが、要求されたQoSに変更される。 In step S343, PDU Session Modification Procedure is performed among the base station 20, AMF 31, SMF 32 and UPF 33, and the Uu QoS flow corresponding to the remote terminal 10B-Y is changed to the requested QoS. be.
 ステップS344で、AMF31は、ステップS343の処理手順で変更された、リモート端末10B-YのQoS値(5QI)を、PDUセッション変更コマンドに含めてリレー端末10Aに通知する。 In step S344, the AMF 31 notifies the relay terminal 10A of the QoS value (5QI) of the remote terminal 10B-Y changed in the procedure of step S343 by including it in the PDU session change command.
 ステップS345で、リレー端末10Aは、ステップS344の処理手順で通知されたQoS値(5QI)を、マッピングテーブルに基づいてPQIに変換し、リモート端末10B-Yとの間におけるPC5 QoSフローのQoSを、変換後のPQIに変更する。続いて、リレー端末10Aは、変換後のPQIを含むL2リンク変更応答を、リモート端末10B-Yに送信する。これにより、リモート端末10B-YのPC5 QoSフロー及びUu QoSフローが、要求されたQoSを反映したフローに変更される。 In step S345, the relay terminal 10A converts the QoS value (5QI) notified in the procedure of step S344 into PQI based on the mapping table, and converts the QoS of the PC5 QoS flow with the remote terminal 10B-Y to , to the converted PQI. Relay terminal 10A then transmits an L2 link change response including the converted PQI to remote terminal 10B-Y. As a result, the PC5 QoS flow and the Uu QoS flow of the remote terminal 10B-Y are changed to flows reflecting the requested QoS.
 次に、リレー端末10Aは、ステップS320~ステップS325の処理手順を繰り返すことで、優先度の低い全てのリモート端末10BのQoSを、より要件の緩いQoSに変更あるいは解除しても、ネットワークリソースに空きが生じなかった(つまり、ステップS341又はステップS344の処理手順で示すメッセージを受信できなかった)と仮定する。この場合、ステップS360の処理手順に進む。 Next, the relay terminal 10A repeats the processing procedure of steps S320 to S325 to change or cancel the QoS of all the remote terminals 10B with lower priority to QoS with looser requirements. It is assumed that there was no free space (that is, the message shown in the procedure of step S341 or step S344 could not be received). In this case, the process proceeds to step S360.
 ステップS360の処理手順は、図6のステップS260と同一であるため、説明は省略する。 The processing procedure of step S360 is the same as that of step S260 in FIG. 6, so the description is omitted.
 (2.3)
 図8は、優先度に基づくQoS制御における処理手順の一例(パターン3)を示すシーケンス図である。SMF32は、リモート端末10B-YのQoS要求を許可できない場合、SMF32は、リレー端末10Aと通信をしている複数のリモート端末10B-Xのうち、優先度が低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除する。
(2.3)
FIG. 8 is a sequence diagram showing an example of a processing procedure (pattern 3) in QoS control based on priority. If the SMF 32 cannot grant the QoS request of the remote terminal 10B-Y, the SMF 32 grants the QoS of the remote terminal 10B-X with the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. , change or cancel to a less stringent QoS.
 ステップS401、ステップS402、ステップS403及びステップS404の処理手順は、それぞれ、図6のステップS201、ステップS202、ステップS220及びステップS221の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S401, S402, S403 and S404 are the same as the processing procedures of steps S201, S202, S220 and S221 of FIG.
 ステップS420で、SMF32は、例えば、ネットワークのトラフィック状況等に基づき、PDUセッション変更要求メッセージに含まれるQoS指示子で示されるQoS要求を受け入れ可能か否かを判定する。受入不可能と判断した場合はステップS421の処理手順に進み、受入可能と判断した場合はステップS440の処理手順に進む。 At step S420, the SMF 32 determines whether or not the QoS request indicated by the QoS indicator included in the PDU session change request message can be accepted based on, for example, network traffic conditions. If it is determined that it is not acceptable, the process proceeds to step S421, and if it is determined that it is acceptable, the process proceeds to step S440.
 ステップS421で、SMF32は、リレー端末10Aと通信をしている複数のリモート端末10B-Xのうち、優先度が低いリモート端末10B-Xを選択する。例えば、SMF32は、ステップS401の処理手順でPDUセッションを確立(又は変更)する際、リレー端末10Aから、リレー端末10Aと通信をしている複数のリモート端末10B-Xの優先順位リストを取得することとしてもよい。当該優先順位リストには、例えば、PDUセッションID及びQFIにより特定されるQoSフローと端末優先順位とが対応づけられていてもよい。SMF32は、当該優先順位リストに基づいて、優先度が低いリモート端末10B-X(若しくは、優先度が低いリモート端末10B-Xに対応するUu QoSフロー)を選択するようにしてもよい。 In step S421, the SMF 32 selects the remote terminal 10B-X with the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. For example, when the SMF 32 establishes (or changes) a PDU session in the procedure of step S401, it acquires from the relay terminal 10A a priority list of the plurality of remote terminals 10B-X communicating with the relay terminal 10A. You can do it. In the priority list, for example, QoS flows identified by PDU session IDs and QFIs may be associated with terminal priorities. The SMF 32 may select the remote terminal 10B-X with low priority (or the Uu QoS flow corresponding to the remote terminal 10B-X with low priority) based on the priority list.
 また、SMF32は、リレー端末10Aとの間で確立されている1又は複数のPDUセッションに対応づけられる全てのQoSフロー(Uu QoSフロー)のうち、各QoSフローにおける5QIの値により示される優先レベルが、各リモート端末10B-Xの優先度に対応するとみなすようにしてもよい。また、最も優先レベルの低いQoSフローが複数存在する場合、SMF32は、これらの複数のQoSフローの中からいずれか1つのQoSフローを選択することとしてもよい。 Also, the SMF 32 determines the priority level indicated by the value of 5QI in each QoS flow among all QoS flows (Uu QoS flows) associated with one or more PDU sessions established with the relay terminal 10A. may be considered to correspond to the priority of each remote terminal 10B-X. Also, if there are multiple QoS flows with the lowest priority level, the SMF 32 may select any one QoS flow from among these multiple QoS flows.
 ステップS422、ステップS423及びステップS424の処理手順は、それぞれ、図7のステップS340、ステップS341及びステップS342の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S422, S423, and S424 are the same as the processing procedures of steps S340, S341, and S342 in FIG. 7, respectively, so description thereof will be omitted.
 なお、SMF32は、ステップS420の処理手順において、リモート端末10B-YのQoS要求を受け入れ可能と判断できるまで、ステップS420~ステップS422の処理手順を繰り返し実行することとしてもよい。これにより、優先度が低いリモート端末10B-Xに対して、ステップS423及びステップS424の処理手順が実行され、より要件の緩いQoSに変更若しくはQoSフローが解除さることになる。また、SMF32は、ステップS420及びステップS421の処理手順において、リモート端末10B-YのQoS要求を受け入れるために、より要件の緩いQoSに変更又は解除が必要な1以上のリモート端末10B-Xを予め決定し、決定した1以上のリモート端末10B-Xの各々について、ステップS422の処理手順を実行することとしてもよい。これにより、優先度が低いリモート端末10B-Xに対して、ステップS423及びステップS424の処理手順が実行され、より要件の緩いQoSに変更若しくはQoSフローが解除さることになる。 It should be noted that the SMF 32 may repeatedly execute the processing procedures of steps S420 to S422 until it can determine that the QoS request of the remote terminal 10B-Y can be accepted in the processing procedure of step S420. As a result, the processing procedure of steps S423 and S424 is executed for the remote terminal 10B-X with a low priority, and the QoS is changed to a less demanding QoS or the QoS flow is canceled. In addition, in the processing procedure of steps S420 and S421, the SMF 32 preliminarily selects one or more remote terminals 10B-X that need to be changed or canceled to QoS with looser requirements in order to accept the QoS request of the remote terminal 10B-Y. It is also possible to determine and perform the procedure of step S422 for each of the determined one or more remote terminals 10B-X. As a result, the processing procedure of steps S423 and S424 is executed for the remote terminal 10B-X with a low priority, and the QoS is changed to a less demanding QoS or the QoS flow is canceled.
 ステップS440、ステップS441及びステップS442の処理手順は、それぞれ、図7のステップS343、ステップS344及びステップS345の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S440, S441, and S442 are the same as the processing procedures of steps S343, S344, and S345 in FIG. 7, respectively, so description thereof will be omitted.
 次に、SMF32は、優先度の低い全てのリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除しても、リモート端末10B-YのQoS要求を受け入れることができないと判断した場合、ステップS460の処理手順に進む。 Next, the SMF 32 determined that the QoS request of the remote terminal 10B-Y could not be accepted even if the QoS of all the remote terminals 10B-X with lower priority were changed or canceled to the QoS with looser requirements. If so, the process proceeds to step S460.
 ステップS460、ステップS461及びステップS462の処理手順は、それぞれ、図7のステップS306、ステップS307及びステップS360の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S460, S461, and S462 are the same as the processing procedures of steps S306, S307, and S360 in FIG. 7, respectively, so description thereof will be omitted.
 (2.4)
 図9は、優先度に基づくQoS制御における処理手順の一例(パターン4)を示すシーケンス図である。図9の例では、リモート端末10B-YのQoS要求を、AF35から送信する。また、SMF32は、AF35から要求されたQoSを許可できない場合、SMF32は、リレー端末10Aと通信をしている複数のリモート端末10B-Xのうち、優先度が低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除する。
(2.4)
FIG. 9 is a sequence diagram showing an example of a processing procedure (pattern 4) in QoS control based on priority. In the example of FIG. 9, the AF 35 transmits the QoS request of the remote terminal 10B-Y. Further, when the SMF 32 cannot permit the QoS requested by the AF 35, the SMF 32 allows the QoS of the remote terminal 10B-X with the lowest priority among the plurality of remote terminals 10B-X communicating with the relay terminal 10A. , change or cancel to a less stringent QoS.
 ステップS501の処理手順は、図6のステップS201の処理手順と同一であるため、説明を省略する。 The processing procedure of step S501 is the same as the processing procedure of step S201 in FIG. 6, so the description is omitted.
 ステップS502で、リモート端末10B-Yは、AF35との間で、アプリケーションレイヤのインタフェースを用いてサービスセットアップ手順を行う。 In step S502, the remote terminal 10B-Y performs a service setup procedure with the AF 35 using the application layer interface.
 ステップS503で、AF35は、PCF34に、リモート端末10B-YのUu QoSフローを特定する情報(例えばPDUセッションID及びQFI等)と、当該Uu QoSフローについてのQoS指示子を含むサービス要件(Service Requirement)を、N5インタフェースのメッセージを用いて送信する。 In step S503, the AF 35 sends to the PCF 34 information specifying the Uu QoS flow of the remote terminal 10B-Y (for example, PDU session ID and QFI) and a service requirement including a QoS indicator for the Uu QoS flow. ) using messages on the N5 interface.
 ステップS504で、PCF34は、リモート端末10B-YのUu QoSフローを特定する情報と、当該Uu QoSフローについてのQoS指示子とを含むQoS変更要求メッセージ(QoS Modification)をSMF32に送信する。 At step S504, the PCF 34 transmits to the SMF 32 a QoS modification request message (QoS Modification) including information specifying the Uu QoS flow of the remote terminal 10B-Y and the QoS indicator for the Uu QoS flow.
 ステップS520で、SMF32は、ネットワークのトラフィック状況等に基づき、QoS変更要求メッセージに含まれるQoS指示子で示されるQoS要求を受け入れ可能か否かを判定する。受入不可能と判断した場合はステップS521の処理手順に進み、受入可能と判断した場合はステップS540の処理手順に進む。 At step S520, the SMF 32 determines whether or not the QoS request indicated by the QoS indicator included in the QoS change request message can be accepted, based on network traffic conditions and the like. If it is determined that it cannot be accepted, the process proceeds to step S521, and if it is determined that it is acceptable, the process proceeds to step S540.
 ステップS521の処理手順は、図8のステップS422の処理手順と同一であるため説明を省略する。 The processing procedure of step S521 is the same as the processing procedure of step S422 in FIG. 8, so the description is omitted.
 ステップS522で、SMF32は、優先度の低いリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除することを示すPDUセッション変更通知メッセージ(Nsmf_PDUSession_SMContextStatusNotify)をAMF31に送信する。 In step S522, the SMF 32 transmits to the AMF 31 a PDU session change notification message (Nsmf_PDUSession_SMContextStatusNotify) indicating that the QoS of the remote terminal 10B-X with lower priority is changed or canceled to a QoS with looser requirements.
 ステップS523で、AMF31は、リモート端末10B-Xに対応するUu QoSフローのQoSを変更又はUu QoSフローを解除することを示す、NASメッセージ(PDUセッション変更コマンド(PDU Session Modification Command))をリレー端末10Aに送信する。 In step S523, the AMF 31 transmits a NAS message (PDU Session Modification Command) indicating that the QoS of the Uu QoS flow corresponding to the remote terminal 10B-X is changed or released. 10A.
 ステップS524で、リレー端末10Aは、リモート端末10B-XのQoSを変更又は解除することを示す、NASメッセージ(PDUセッション変更要求(PDU Session Modification Request))を、AMF31に送信する。 At step S524, the relay terminal 10A transmits to the AMF 31 a NAS message (PDU Session Modification Request) indicating that the QoS of the remote terminal 10B-X is to be changed or canceled.
 ステップS525、ステップS526及びステップS527の処理手順は、それぞれ、図7のステップS340、ステップS341及びステップS342の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S525, S526, and S527 are the same as the processing procedures of steps S340, S341, and S342 in FIG. 7, respectively, so description thereof will be omitted.
 ステップS540、ステップS541及びステップS542の処理手順は、それぞれ、図7のステップS343、ステップS344及びステップS345の処理手順と同一であるため、説明は省略する。 The processing procedures of steps S540, S541, and S542 are the same as the processing procedures of steps S343, S344, and S345 in FIG. 7, respectively, so description thereof will be omitted.
 次に、SMF32は、優先度の低い全てのリモート端末10B-XのQoSを、より要件の緩いQoSに変更又は解除しても、リモート端末10B-YのQoS要求を受け入れることができないと判断した場合、ステップS560の処理手順に進む。 Next, the SMF 32 determined that the QoS request of the remote terminal 10B-Y could not be accepted even if the QoS of all the remote terminals 10B-X with lower priority were changed or canceled to the QoS with looser requirements. If so, the process proceeds to step S560.
 ステップS560で、SMF32は、QoS拒否情報を含む、QoS変更応答メッセージをPCF34に送信する。 At step S560, the SMF 32 transmits to the PCF 34 a QoS change response message containing QoS denial information.
 ステップS561で、PCF34は、QoS拒否情報を含むサービス要件応答を、N5インタフェースのメッセージを用いて送信する。 At step S561, the PCF 34 sends a service requirement response containing QoS denial information using a message on the N5 interface.
 以上説明したように、QoS要求が拒否された場合、より優先度の低いリモート端末10BのQoSを変更又は解除することで、ネットワークリソースの消費量を削減し、QoS要件が厳しいリモート端末10Bが通信を行うことができるようにした。これにより、ミッションクリティカル通信など優先度の高い通信を行うリモート端末10Bは、ネットワークのリソースが逼迫している状況であっても、ネットワークの所望するQoS要件に従って通信を開始することが可能になる。 As described above, when the QoS request is rejected, by changing or canceling the QoS of the remote terminal 10B with lower priority, the consumption of network resources is reduced, and the remote terminal 10B with strict QoS requirements can communicate. made it possible to do As a result, the remote terminal 10B, which performs high-priority communication such as mission-critical communication, can start communication according to the QoS requirements desired by the network even when network resources are tight.
 <ハードウェア構成>
 図10は、本実施形態に係る通信システム内の各装置のハードウェア構成の一例を示す図である。通信システム1内の各装置は、図1に示されるどの装置であってもよく、例えば、端末10、基地局20、コアネットワーク30内のコアネットワーク装置である。図10における符号「30」は、コアネットワーク30内のコアネットワーク装置を意味し、AMF31、SMF32、UPF33、PCF34及びAF35を総称するものとする。
<Hardware configuration>
FIG. 10 is a diagram showing an example of the hardware configuration of each device in the communication system according to this embodiment. Each device within the communication system 1 can be any device shown in FIG. Reference numeral "30" in FIG. 10 denotes a core network device in the core network 30, and collectively refers to AMF 31, SMF 32, UPF 33, PCF 34 and AF 35. FIG.
 通信システム1内の各装置は、プロセッサ11、記憶装置12、有線又は無線通信を行う通信装置13、各種の入力操作を受け付ける入力装置や各種情報の出力を行う入出力装置14を含む。 Each device in the communication system 1 includes a processor 11, a storage device 12, a communication device 13 for wired or wireless communication, an input device for receiving various input operations, and an input/output device 14 for outputting various information.
 プロセッサ11は、例えば、CPU(Central Processing Unit)であり、通信システム1内の各装置を制御する。プロセッサ11は、プログラムを記憶装置12から読み出して実行することで、本実施形態で説明する各種の処理を実行してもよい。通信システム1内の各装置は、1又は複数のプロセッサ11により構成されていてもよい。また、当該各装置は、コンピュータと呼ばれてもよい。 The processor 11 is, for example, a CPU (Central Processing Unit) and controls each device within the communication system 1 . The processor 11 may read and execute the program from the storage device 12 to execute various processes described in this embodiment. Each device within the communication system 1 may be configured with one or more processors 11 . Each device may also be called a computer.
 記憶装置12は、例えば、メモリ、HDD(Hard Disk Drive)及び/又はSSD(Solid State Drive)等のストレージから構成される。記憶装置12は、プロセッサ11による処理の実行に必要な各種情報(例えば、プロセッサ11によって実行されるプログラム等)を記憶してもよい。 The storage device 12 is composed of storage such as memory, HDD (Hard Disk Drive) and/or SSD (Solid State Drive). The storage device 12 may store various types of information necessary for execution of processing by the processor 11 (for example, programs executed by the processor 11, etc.).
 通信装置13は、有線及び/又は無線ネットワークを介して通信を行う装置であり、例えば、ネットワークカード、通信モジュール、チップ、アンテナ等を含んでもよい。また、端末10及び基地局20の場合、通信装置13には、アンプ、無線信号に関する処理を行うRF(Radio Frequency)装置と、ベースバンド信号処理を行うBB(BaseBand)装置とを含んでいてもよい。 The communication device 13 is a device that communicates via a wired and/or wireless network, and may include, for example, network cards, communication modules, chips, antennas, and the like. In the case of the terminal 10 and the base station 20, the communication device 13 may include an amplifier, an RF (Radio Frequency) device that performs processing related to radio signals, and a BB (BaseBand) device that performs baseband signal processing. good.
 入出力装置14は、例えば、キーボード、タッチパネル、マウス及び/又はマイク等の入力装置と、例えば、ディスプレイ及び/又はスピーカ等の出力装置とを含む。 The input/output device 14 includes input devices such as keyboards, touch panels, mice and/or microphones, and output devices such as displays and/or speakers.
 以上説明したハードウェア構成は一例に過ぎない。通信システム1内の各装置は、図10に記載したハードウェアの一部が省略されていてもよいし、図10に記載されていないハードウェアを備えていてもよい。また、図10に示すハードウェアが1又は複数のチップにより構成されていてもよい。 The hardware configuration described above is just an example. Each device in the communication system 1 may omit part of the hardware shown in FIG. 10, or may include hardware not shown in FIG. Also, the hardware shown in FIG. 10 may be configured by one or a plurality of chips.
 <機能ブロック構成>
 (リレー端末)
 図11は、リレー端末10Aの機能ブロック構成例を示す図である。図11に示すように、リレー端末10Aは、受信部101と、送信部102と、制御部103とを、有する。
<Functional block configuration>
(relay terminal)
FIG. 11 is a diagram showing a functional block configuration example of the relay terminal 10A. As shown in FIG. 11 , relay terminal 10A has receiving section 101 , transmitting section 102 and control section 103 .
 なお、受信部101と送信部102とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部101と送信部102とが実現する機能の全部又は一部と、制御部103とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体(Non-transitory computer readable medium)であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 101 and the transmitting unit 102 and the control unit 103 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a non-transitory computer readable medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部101は、下り信号を受信する。また、受信部101は、下り信号を介して伝送された情報及び/又はデータを受信してもよい。ここで、「受信する」とは、例えば、無線信号の受信、デマッピング、復調、復号、モニタリング、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。 The receiving unit 101 receives the downstream signal. Also, the receiving section 101 may receive information and/or data transmitted via a downlink signal. Here, "receiving" may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals.
 送信部102は、上り信号を送信する。また、送信部102は、上り信号を介して伝送される情報及び/又はデータを送信してもよい。ここで、「送信する」とは、例えば、符号化、変調、マッピング、無線信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。以下の説明では、QoSの変更には、QoSの解除(QoSフローの解除)も含まれる。 The transmission unit 102 transmits an upstream signal. Also, the transmitting section 102 may transmit information and/or data transmitted via an uplink signal. Here, "transmitting" may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals. In the following description, QoS change includes QoS release (QoS flow release).
 制御部103は、リレー端末10Aにおける各種制御を行う。例えば、制御部103は、リモート端末10Bと基地局20及びコアネットワーク30(ネットワーク装置)との間における通信を中継する制御を行う。また、制御部103は、リモート端末10B間のQoSフロー(第1QoSフロー、PC5 QoSフロー)のQoS要件を示す値(第1QoS値、PQI)と、基地局20及びコアネットワーク30(ネットワーク装置)との間のQoSフロー(第2QoSフロー、Uu QoSフロー)のQoS要件を示す値(第2QoS値、5QI)とを、マッピングテーブルを用いて、相互に変換する。 The control unit 103 performs various controls in the relay terminal 10A. For example, the control unit 103 performs control to relay communication between the remote terminal 10B, the base station 20, and the core network 30 (network device). In addition, the control unit 103 controls the value (first QoS value, PQI) indicating the QoS requirements of the QoS flow (first QoS flow, PC5 QoS flow) between the remote terminal 10B, the base station 20 and the core network 30 (network device), and A value (second QoS value, 5QI) indicating the QoS requirements of the QoS flow (second QoS flow, Uu QoS flow) between Uu QoS flows is converted to each other using a mapping table.
 また、送信部102(第1送信部)は、受信部101がリモート端末10B(端末10)からQoS要求(QoS指示子)を受信した場合に、QoS要求をAMF31(ネットワーク装置)に送信する(図3、図4、図5)。 Further, when the receiving unit 101 receives a QoS request (QoS indicator) from the remote terminal 10B (terminal 10), the transmitting unit 102 (first transmitting unit) transmits the QoS request to the AMF 31 (network device) ( 3, 4 and 5).
 また、受信部101は、AMF31から、QoS要求を拒否することを示すQoS拒否情報(第1情報)を受信する(図3、図4、図5)。また、受信部101は、QoS拒否情報を含むRRCメッセージを受信するようにしてもよい(図4)。また、受信部101は、QoS拒否情報を含むNASメッセージを受信するようにしてもよい(図3、図5)。また、QoS拒否情報は、QoS要求を拒否することを示す情報であり、QoS要求を拒否した理由を示す情報を含んでいてもよい(図3のS110)。 Also, the receiving unit 101 receives QoS rejection information (first information) indicating rejection of the QoS request from the AMF 31 (FIGS. 3, 4, and 5). Also, the receiving unit 101 may receive an RRC message including QoS rejection information (FIG. 4). Also, the receiving unit 101 may receive a NAS message including QoS rejection information (FIGS. 3 and 5). The QoS rejection information is information indicating rejection of the QoS request, and may include information indicating the reason for rejecting the QoS request (S110 in FIG. 3).
 また、送信部102(第2送信部)は、QoS拒否情報を受信した場合に、QoS要求を受け入れることができない状態であることを示す情報を含むQoS状態情報(メッセージ)を送信する(図3、図4、図5)。なお、送信部102は、QoS状態情報を、周囲の端末10に向けてブロードキャストするようにしてもよい。 Further, when receiving the QoS rejection information, the transmitting unit 102 (second transmitting unit) transmits QoS state information (message) including information indicating that the QoS request cannot be accepted (FIG. 3). , FIGS. 4 and 5). Note that the transmission unit 102 may broadcast the QoS state information to the terminals 10 in the vicinity.
 また、受信部101は、AMF31(ネットワーク装置)又は基地局20から、QoS要求を許可することを示すQoS許可情報(第2情報)を受信するようにしてもよい(図3、図4、図5)。 Further, the receiving unit 101 may receive QoS permission information (second information) indicating permission of the QoS request from the AMF 31 (network device) or the base station 20 (FIGS. 3, 4 and 4). 5).
 また、送信部102(第2送信部)は、受信部101でQoS許可情報を受信した場合に、QoS要求を受け入れることが可能な状態であることを示すQoS状態情報(メッセージ)を送信するようにしてもよい(図3、図4、図5)。 Further, when the receiving unit 101 receives the QoS permission information, the transmitting unit 102 (second transmitting unit) transmits QoS state information (message) indicating that the QoS request can be accepted. (Figs. 3, 4 and 5).
 送信部102は、受信部101がリモート端末10B-Y(第1端末)からQoS要求(QoS指示子)を受信した場合に、QoS要求をAMF31(ネットワーク装置)に送信する(図6のS220)。 When the receiving unit 101 receives a QoS request (QoS indicator) from the remote terminal 10B-Y (first terminal), the transmitting unit 102 transmits the QoS request to the AMF 31 (network device) (S220 in FIG. 6). .
 また、受信部101は、AMF31(ネットワーク装置)から、QoS要求を拒否することを示すQoS拒否情報を受信する(図6のS224)。 Also, the receiving unit 101 receives QoS rejection information indicating rejection of the QoS request from the AMF 31 (network device) (S224 in FIG. 6).
 また、制御部103は、受信部101でQoS拒否情報を受信した場合に、リレー端末10Aと通信する1以上のリモート端末10Bの中からリモート端末10B-X(第2端末)を選択する。制御部103は、1以上のリモート端末10Bの中から、リモート端末10B-Y(第1端末)よりも優先度が低いリモート端末10B-X(第2端末)を選択するようにしてもよい(図6のS225)。 Also, when the receiving unit 101 receives the QoS rejection information, the control unit 103 selects the remote terminal 10B-X (second terminal) from among the one or more remote terminals 10B communicating with the relay terminal 10A. The control unit 103 may select a remote terminal 10B-X (second terminal) having a lower priority than the remote terminal 10B-Y (first terminal) from among one or more remote terminals 10B ( S225 in FIG. 6).
 また、送信部(第2送信部)は、リモート端末10B-X(第2端末)のQoS要求を変更することを要求するメッセージ(PDUセッション変更要求)を、AMF31(ネットワーク装置)に送信する(図6のS226)。 Also, the transmitting unit (second transmitting unit) transmits a message (PDU session change request) requesting to change the QoS request of the remote terminal 10B-X (second terminal) to the AMF 31 (network device) ( S226 in FIG. 6).
 (基地局)
 図12は、基地局20の機能ブロック構成例を示す図である。図12に示すように、基地局20は、受信部201と、送信部202と、制御部203とを、有する。
(base station)
FIG. 12 is a diagram showing a functional block configuration example of the base station 20. As shown in FIG. As shown in FIG. 12 , base station 20 has receiver 201 , transmitter 202 , and controller 203 .
 なお、受信部201と送信部202とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部201と送信部202とが実現する機能の全部又は一部と、制御部203とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 201 and the transmitting unit 202 and the control unit 203 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部201は、上り信号を受信する。また、受信部101は、上り信号を介して伝送された情報及び/又はデータを受信してもよい。ここで、「受信する」とは、例えば、無線信号の受信、デマッピング、復調、復号、モニタリング、測定の少なくとも一つ等の受信に関する処理を行うことを含んでもよい。 The receiving unit 201 receives an upstream signal. Also, the receiving section 101 may receive information and/or data transmitted via an uplink signal. Here, "receiving" may include, for example, performing processing related to reception such as at least one of receiving, demapping, demodulating, decoding, monitoring, and measuring radio signals.
 送信部202は、下り信号を送信する。また、送信部102は、下り信号を介して伝送される情報及び/又はデータを送信してもよい。ここで、「送信する」とは、例えば、符号化、変調、マッピング、無線信号の送信の少なくとも一つ等の送信に関する処理を行うことを含んでもよい。 The transmission unit 202 transmits a downlink signal. Also, the transmitting section 102 may transmit information and/or data transmitted via a downlink signal. Here, "transmitting" may include performing processing related to transmission, such as at least one of encoding, modulation, mapping, and transmission of radio signals.
 制御部203は、無線レイヤにおけるスケジューリング処理を行う。また、制御部203は、リレー端末10Aとの間の無線リソース(ネットワークリソース)に空きが生じたか否かを検出する。より具体的には、無線リソースの使用率が所定の閾値以下になったことを検出した場合であってもよい。制御部203により、無線リソースに空きが生じたことが検出された場合、送信部202は、リレー端末10Aに対し、QoS要求を許可することを示すQoS許可情報(第2情報)を送信するようにしてもよい。また、送信部202は、当該QoS許可情報を、RRCメッセージでリレー端末10Aに送信してもよいし、MACメッセージでリレー端末10Aに送信してもよい。 The control unit 203 performs scheduling processing in the radio layer. Further, control section 203 detects whether or not there is a free wireless resource (network resource) with relay terminal 10A. More specifically, it may be a case where it is detected that the usage rate of radio resources has become equal to or less than a predetermined threshold. When control section 203 detects that a radio resource becomes available, transmitting section 202 transmits QoS permission information (second information) indicating that the QoS request is permitted to relay terminal 10A. can be Further, transmitting section 202 may transmit the QoS grant information to relay terminal 10A in an RRC message or may transmit it to relay terminal 10A in a MAC message.
 (AMF)
 図13は、AMF31の機能ブロック構成例を示す図である。図13に示すように、AMF31は、受信部301と、送信部302と、制御部303とを、有する。
(AMF)
FIG. 13 is a diagram showing a functional block configuration example of the AMF 31. As shown in FIG. As shown in FIG. 13 , AMF 31 has receiver 301 , transmitter 302 , and controller 303 .
 なお、受信部301と送信部302とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部301と送信部302とが実現する機能の全部又は一部と、制御部303とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 301 and the transmitting unit 302 and the control unit 303 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部301は、基地局20又はコアネットワーク30内の他の装置から信号を受信する。また、受信部301(第1受信部)は、リレー端末10Aから、QoS要求を受信する(図5のS103)。 The receiving unit 301 receives signals from the base station 20 or other devices within the core network 30 . Further, receiving section 301 (first receiving section) receives a QoS request from relay terminal 10A (S103 in FIG. 5).
 送信部302は、基地局20又はコアネットワーク30内の他の装置に対して信号を送信する。また、送信部302(第1送信部)は、QoS要求をSMF32(他のコアネットワーク装置)に送信する(図5のS104)。 The transmitting unit 302 transmits signals to the base station 20 or other devices within the core network 30 . Also, the transmitter 302 (first transmitter) transmits the QoS request to the SMF 32 (another core network device) (S104 in FIG. 5).
 制御部303は、AMF31が本実施形態で説明した各種動作を行うために必要な制御を行う。 The control unit 303 performs control necessary for the AMF 31 to perform various operations described in this embodiment.
 また、受信部301(第2受信部)は、SMF32からQoS要求を受信する(図5のS104)。 Also, the receiving unit 301 (second receiving unit) receives a QoS request from the SMF 32 (S104 in FIG. 5).
 また、送信部302(第2送信部)は、QoS要求を基地局20に送信する(図5のS104)。また、受信部301が、基地局20から、QoS要求を拒否することを示す情報を受信した場合(図5のS130)、送信部302(第3送信部)は、リレー端末10Aに対して、QoS要求を拒否することを示すQoS拒否情報(第1情報)をリレー端末10Aに送信する(図5のS131)。 Also, the transmission unit 302 (second transmission unit) transmits a QoS request to the base station 20 (S104 in FIG. 5). Further, when receiving section 301 receives information indicating that the QoS request is rejected from base station 20 (S130 in FIG. 5), transmitting section 302 (third transmitting section) sends relay terminal 10A to: QoS rejection information (first information) indicating rejection of the QoS request is transmitted to the relay terminal 10A (S131 in FIG. 5).
 (SMF)
 図14は、SMF32の機能ブロック構成例を示す図である。図14に示すように、SMF32は、受信部401と、送信部402と、制御部403とを、有する。
(SMF)
FIG. 14 is a diagram showing a functional block configuration example of the SMF 32. As shown in FIG. As shown in FIG. 14, the SMF 32 has a receiver 401, a transmitter 402, and a controller 403. FIG.
 なお、受信部401と送信部402とが実現する機能の全部又は一部は、通信装置13を用いて実現することができる。また、受信部401と送信部402とが実現する機能の全部又は一部と、制御部403とは、プロセッサ11が、記憶装置12に記憶されたプログラムを実行することにより実現することができる。また、当該プログラムは、記憶媒体に格納することができる。当該プログラムを格納した記憶媒体は、コンピュータ読み取り可能な非一時的な記憶媒体であってもよい。非一時的な記憶媒体は特に限定されないが、例えば、USBメモリ又はCD-ROM等の記憶媒体であってもよい。 All or part of the functions realized by the receiving unit 401 and the transmitting unit 402 can be realized using the communication device 13. All or part of the functions realized by the receiving unit 401 and the transmitting unit 402 and the control unit 403 can be realized by the processor 11 executing a program stored in the storage device 12 . Also, the program can be stored in a storage medium. The storage medium storing the program may be a computer-readable non-temporary storage medium. The non-temporary storage medium is not particularly limited, but may be a storage medium such as a USB memory or CD-ROM, for example.
 受信部401は、コアネットワーク30内の他の装置から信号を受信する。 The receiving unit 401 receives signals from other devices within the core network 30 .
 送信部402は、コアネットワーク30内の他の装置に対して信号を送信する。
 制御部403は、SMF32が本実施形態で説明した各種動作を行うために必要な制御を行う。また、制御部403は、ネットワークのトラフィック状態に基づき、QoS要求を受け入れることが可能か否かを判断する(図7のS305)。
The transmitter 402 transmits signals to other devices within the core network 30 .
The control unit 403 performs control necessary for the SMF 32 to perform various operations described in this embodiment. Also, the control unit 403 determines whether or not it is possible to accept the QoS request based on the traffic state of the network (S305 in FIG. 7).
 また、受信部401は、リレー端末10Aから、AMF31を介して、リレー端末10Aと通信するリモート端末10B-Y(第1端末)のQoS要求と、リモート端末10B-X(第2端末)のQoSを変更する要求とを含むメッセージを受信する(図7のS321)。 Further, the receiving unit 401 receives a QoS request from the remote terminal 10B-Y (first terminal) communicating with the relay terminal 10A and a QoS request from the remote terminal 10B-X (second terminal) from the relay terminal 10A via the AMF 31. (S321 in FIG. 7).
 また、制御部403は、リモート端末10B-X(第2端末)のQoS要求を変更することで、リモート端末10B-Y(第1端末)のQoS要求を受け入れ可能になる場合に、リモート端末10B-X(第2端末)のQoSを、所定のQoSに変更する処理を行う(図7のS340)。所定のQoSは、例えばデフォルトQoSであってもよい。 Further, when the QoS request of remote terminal 10B-Y (first terminal) can be accepted by changing the QoS request of remote terminal 10B-X (second terminal), control unit 403 changes the QoS request of remote terminal 10B-X (second terminal). - Perform processing to change the QoS of X (the second terminal) to a predetermined QoS (S340 in FIG. 7). A predetermined QoS may be, for example, a default QoS.
 受信部401は、リレー端末10A又はAF35(他のコアネットワーク装置)から、AMF31又はPCF34を介して、リレー端末10Aと通信するリモート端末10B-Y(第1端末)のQoS要求を受信する(図8のS403、S404、図9のS503、S504)。 The receiving unit 401 receives the QoS request of the remote terminal 10B-Y (first terminal) communicating with the relay terminal 10A from the relay terminal 10A or AF 35 (another core network device) via the AMF 31 or PCF 34 (Fig. 8, S503 and S504 in FIG. 9).
 また、制御部403は、リレー端末10Aと通信する1以上のリモート端末10Bの中から選択した1以上のリモート端末10B-X(第2端末)のQoSを変更することで、リモート端末10B-Y(第1端末)のQoS要求を受け入れ可能になる場合に、前記1以上のリモート端末10B-X(第2端末)のQoSを、所定のQoSに変更する処理を行う(図8のS440、図9のS525)。所定のQoSは、例えばデフォルトQoSであってもよい。 Further, the control unit 403 changes the QoS of one or more remote terminals 10B-X (second terminals) selected from one or more remote terminals 10B communicating with the relay terminal 10A, thereby When the QoS request of (the first terminal) can be accepted, the process of changing the QoS of the one or more remote terminals 10B-X (the second terminal) to a predetermined QoS is performed (S440 in FIG. 8, FIG. 9 S525). A predetermined QoS may be, for example, a default QoS.
 また、制御部403は、1以上のリモート端末10Bの中から、リモート端末10B-Y(第1端末)よりも優先度が低い1以上のリモート端末10B-X(第2端末)を選択するようにしてもよい。制御部403が、各リモート端末10Bに対応するQoSフローごとに指定されている優先レベルに基づいて、リモート端末10B-Y(第1端末)よりも優先度が低い1以上のリモート端末10B-X(第2端末)を選択してもよい。 Further, the control unit 403 selects one or more remote terminals 10B-X (second terminal) having a lower priority than the remote terminal 10B-Y (first terminal) from among the one or more remote terminals 10B. can be Based on the priority level specified for each QoS flow corresponding to each remote terminal 10B, the control unit 403 selects one or more remote terminals 10B-X having a lower priority than the remote terminal 10B-Y (first terminal). (Second terminal) may be selected.
 また、制御部403により、QoS要求を受け入れることが可能になったと判断された場合、送信部402は、AMF31に、QoS要求を許可することを示す情報を送信するようにしてもよい。 Also, when the control unit 403 determines that the QoS request can be accepted, the transmission unit 402 may transmit to the AMF 31 information indicating that the QoS request is permitted.
 <その他の実施形態>
 上記実施形態における各種の信号、情報、パラメータは、どのようなレイヤでシグナリングされてもよい。すなわち、上記各種の信号、情報、パラメータは、上位レイヤ(例えば、Non Access Stratum(NAS)レイヤ、RRCレイヤ、MACレイヤ等)、下位レイヤ(例えば、物理レイヤ)等のどのレイヤの信号、情報、パラメータに置き換えられてもよい。また、所定情報の通知は明示的に行うものに限られず、黙示的に(例えば、情報を通知しないことや他の情報を用いることによって)行われてもよい。
<Other embodiments>
Various signals, information and parameters in the above embodiments may be signaled in any layer. That is, the above-mentioned various signals, information, parameters are higher layers (eg, Non Access Stratum (NAS) layer, RRC layer, MAC layer, etc.), lower layers (eg, physical layer), etc. Signals, information, may be replaced by parameters. Further, the notification of the predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, by not notifying the information or using other information).
 また、上記実施形態における各種のメッセージ、信号、情報、パラメータの名称は、例示にすぎず、他の名称に置き換えられてもよい。例えば、スロットは、所定数のシンボルを有する時間単位であれば、どのような名称であってもよい。また、RBは、所定数のサブキャリアを有する周波数単位であれば、どのような名称であってもよい。 Also, the names of various messages, signals, information, and parameters in the above embodiments are merely examples, and may be replaced with other names. For example, a slot may be named any unit of time having a predetermined number of symbols. Also, RB may be any name as long as it is a frequency unit having a predetermined number of subcarriers.
 また、上記実施形態における端末10の用途は、例示するものに限られず、同様の機能を有する限り、どのような用途(例えば、eMBB、URLLC、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)等)で利用されてもよい。また、各種情報の形式は、上記実施形態に限られず、ビット表現(0又は1)、真偽値(Boolean:true又はfalse)、整数値、文字等適宜変更されてもよい。また、上記実施形態における単数、複数は相互に変更されてもよい。 In addition, the use of the terminal 10 in the above embodiment is not limited to those illustrated, as long as it has similar functions, any use (for example, eMBB, URLLC, Device-to-Device (D2D), Vehicle-to- Everything (V2X), etc.). Also, the format of various information is not limited to the above embodiment, and may be appropriately changed to bit representation (0 or 1), true/false value (Boolean: true or false), integer value, character, or the like. Also, singularity and plurality in the above embodiments may be interchanged.
 以上説明した実施形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。実施形態で説明したフローチャート、シーケンス、実施形態が備える各要素並びにその配置、インデックス、条件等は、例示したものに限定されるわけではなく適宜変更することができる。また、上記実施形態で説明した少なくとも一部の構成を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating understanding of the present disclosure, and are not for limiting interpretation of the present disclosure. Flowcharts, sequences, elements included in the embodiments, their arrangement, indexes, conditions, and the like described in the embodiments are not limited to those illustrated and can be changed as appropriate. Moreover, it is possible to partially replace or combine at least part of the configurations described in the above embodiments.

Claims (8)

  1.  端末からQoS要求を受信した場合に、前記QoS要求をネットワーク装置に送信する第1送信部と、
     前記ネットワーク装置から、前記QoS要求を拒否することを示す第1情報を受信する受信部と、
     前記第1情報を受信した場合に、QoS要求を受け入れることができない状態であることを示す情報を含むメッセージを送信する第2送信部と、
     を有する中継端末。
    a first transmission unit configured to transmit the QoS request to a network device when a QoS request is received from a terminal;
    a receiving unit that receives first information indicating rejection of the QoS request from the network device;
    a second transmission unit that transmits a message including information indicating that the QoS request cannot be accepted when the first information is received;
    relay terminal.
  2.  前記受信部は、前記第1情報を含むRRCメッセージを受信する、
     請求項1に記載の中継端末。
    the receiving unit receives an RRC message including the first information;
    The relay terminal according to claim 1.
  3.  前記受信部は、前記第1情報を含むNASメッセージを受信する、
     請求項1又は2に記載の中継端末。
    the receiving unit receives a NAS message including the first information;
    The relay terminal according to claim 1 or 2.
  4.  前記第1情報は、前記QoS要求を拒否した理由を示す情報を含む、
     請求項3に記載の中継端末。
    The first information includes information indicating a reason for rejecting the QoS request,
    The relay terminal according to claim 3.
  5.  前記受信部は、前記ネットワーク装置から、前記QoS要求を許可することを示す第2情報を受信し、
     前記第2送信部は、前記第2情報を受信した場合に、QoS要求を受け入れることが可能な状態であることを示すメッセージを送信する、
     請求項1~4のいずれか一項に記載の中継端末。
    the receiving unit receives, from the network device, second information indicating that the QoS request is permitted;
    When the second transmission unit receives the second information, the second transmission unit transmits a message indicating that the QoS request can be accepted.
    A relay terminal according to any one of claims 1 to 4.
  6.  中継端末から、QoS要求を受信する第1受信部と、
     前記QoS要求を他のコアネットワーク装置に送信する第1送信部と、
     前記他のコアネットワーク装置から前記QoS要求を受信する第2受信部と、
     前記QoS要求を基地局に送信する第2送信部と、
     前記基地局から、前記QoS要求を拒否することを示す情報を受信した場合に、前記中継端末に対して、前記QoS要求を拒否することを示す第1情報を前記中継端末に送信する第3送信部と、
     を有するコアネットワーク装置。
    A first receiving unit that receives a QoS request from a relay terminal;
    a first transmission unit that transmits the QoS request to another core network device;
    a second receiving unit that receives the QoS request from the other core network device;
    a second transmitter that transmits the QoS request to a base station;
    a third transmission of transmitting first information indicating rejection of the QoS request to the relay terminal when information indicating rejection of the QoS request is received from the base station; Department and
    A core network device having
  7.  端末からQoS要求を受信した場合に、前記QoS要求をネットワーク装置に送信するステップと、
     前記ネットワーク装置から、前記QoS要求を拒否することを示す第1情報を受信するステップと、
     前記第1情報を受信した場合に、QoS要求を受け入れることができない状態であることを示す情報を含むメッセージを送信するステップと、
     を含む中継端末が実行する通信方法。
    upon receiving a QoS request from a terminal, sending said QoS request to a network device;
    receiving first information from the network device indicating a denial of the QoS request;
    sending a message containing information indicating that the QoS request cannot be accepted when the first information is received;
    A communication method performed by a relay terminal including
  8.  中継端末から、QoS要求を受信するステップと、
     前記QoS要求を他のコアネットワーク装置に送信するステップと、
     前記他のコアネットワーク装置から前記QoS要求を受信するステップと、
     前記QoS要求を基地局に送信するステップと、
     前記基地局から、前記QoS要求を拒否することを示す情報を受信した場合に、前記中継端末に対して、前記QoS要求を拒否することを示す第1情報を前記中継端末に送信するステップと、
     を含む、コアネットワーク装置が実行する通信方法。
    receiving a QoS request from a relay terminal;
    sending the QoS request to other core network devices;
    receiving the QoS request from the other core network device;
    sending the QoS request to a base station;
    a step of transmitting first information indicating rejection of the QoS request to the relay terminal when information indicating rejection of the QoS request is received from the base station;
    A communication method performed by a core network device, comprising:
PCT/JP2022/003957 2021-02-12 2022-02-02 Relay terminal, core network device, and communication method WO2022172818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021252 2021-02-12
JP2021021252A JP2022123745A (en) 2021-02-12 2021-02-12 Relay terminal, core network device, and communication method

Publications (1)

Publication Number Publication Date
WO2022172818A1 true WO2022172818A1 (en) 2022-08-18

Family

ID=82838811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003957 WO2022172818A1 (en) 2021-02-12 2022-02-02 Relay terminal, core network device, and communication method

Country Status (2)

Country Link
JP (1) JP2022123745A (en)
WO (1) WO2022172818A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240548A1 (en) * 2018-06-14 2019-12-19 Lg Electronics Inc. Method and apparatus for performing sidelink communication by ue in nr v2x

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240548A1 (en) * 2018-06-14 2019-12-19 Lg Electronics Inc. Method and apparatus for performing sidelink communication by ue in nr v2x

Also Published As

Publication number Publication date
JP2022123745A (en) 2022-08-24

Similar Documents

Publication Publication Date Title
KR102667781B1 (en) Data transmission methods and devices, traffic conversion methods and devices
EP3741146B1 (en) System and method for supporting urllc in advanced v2x communications
US20220256393A1 (en) TSN AND 5GS QoS MAPPING - A USER PLANE BASED METHOD
US10034293B2 (en) D2D discovery and communication method, resource allocation method, and control node
ES2681029T3 (en) Reduction of interference resulting from a device-to-device communication
US20220132375A1 (en) Enforcement of integrity protected data rate for user equipment
JP5449577B2 (en) Method and deployment structure in a cellular communication network
WO2021102782A1 (en) Access control at a relay user equipment
CN112352445A (en) Device for transmitting and/or receiving messages in combined auxiliary and ad-hoc mode
WO2020029825A1 (en) Resource scheduling method, terminal and network device
CN110519809B (en) Method, network element, equipment, device, system and storage medium for managing PDU session
US20230015755A1 (en) System and method for sidelink communications in wireless communication networks
WO2020220885A1 (en) Direct link transmission method and terminal
CN113746585A (en) Time service method and communication device
US11770810B2 (en) Service data transmission method, first communications node, and base station
WO2014013810A1 (en) Base station in mobile communication system, and control method
WO2022206813A1 (en) Methods, ue, relay ue, and network node for communication over sidelink
WO2020224307A1 (en) Communication method and related communication device
CN113133023B (en) Communication method, wireless access point, wireless station and wireless local area network system
WO2022172818A1 (en) Relay terminal, core network device, and communication method
WO2022172819A1 (en) Relay terminal, core network device, and communication method
WO2023008519A1 (en) Relay terminal and communication method
WO2023205951A1 (en) Carrier determination method and apparatus, and device and medium
JP7483876B2 (en) Communication Control Method
US20210352570A1 (en) Method And Apparatus To Control Access Attempts From A Terminal For Wireless Backhaul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752646

Country of ref document: EP

Kind code of ref document: A1