WO2023008424A1 - Resin composition, method for producing resin composition, and molded body - Google Patents

Resin composition, method for producing resin composition, and molded body Download PDF

Info

Publication number
WO2023008424A1
WO2023008424A1 PCT/JP2022/028771 JP2022028771W WO2023008424A1 WO 2023008424 A1 WO2023008424 A1 WO 2023008424A1 JP 2022028771 W JP2022028771 W JP 2022028771W WO 2023008424 A1 WO2023008424 A1 WO 2023008424A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
conjugated diene
polymer
resin composition
Prior art date
Application number
PCT/JP2022/028771
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 松岡
敬 助川
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202280044175.5A priority Critical patent/CN117545808A/en
Priority to JP2023538549A priority patent/JPWO2023008424A1/ja
Publication of WO2023008424A1 publication Critical patent/WO2023008424A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides

Definitions

  • the present invention relates to a resin composition, a method for producing a resin composition, and a molded product.
  • Conjugated diene-based polymers are known to exhibit various properties by adjusting the ratio of 1,2-bonds, the ratio of blocks constituting the conjugated diene-based polymer, the arrangement of blocks, the degree of hydrogenation, and the like. It is in addition, for the purpose of imparting further properties, a conjugated diene polymer (hereinafter referred to as modified described as a conjugated diene-based polymer) has been proposed.
  • a conjugated diene polymer hereinafter referred to as modified described as a conjugated diene-based polymer
  • Patent Document 1 proposes an amino group-modified conjugated diene polymer obtained by reacting an amino group-containing compound with the terminal of a conjugated diene polymer.
  • polar resins resins having polar groups
  • polar resins generally have excellent rigidity, chemical resistance, heat resistance, etc., but are hard and brittle. Modifiers are being considered. Modified conjugated diene-based polymers are widely used as modifiers for polar resins because they have excellent compatibility with polar resins due to intermolecular forces such as reactions with modified groups and hydrogen bonding.
  • Patent Document 1 proposes a resin composition containing a modified conjugated diene-based polymer having toughness superior to that of PPS in order to improve the toughness of polyphenylene sulfide resin (hereinafter sometimes referred to as "PPS"). It is however, according to the study of the present inventors, the resin composition disclosed in Patent Document 1 still has a problem that the toughness is not sufficient and there is room for improvement.
  • an object of the present invention is to provide a resin composition excellent in impact resistance and toughness.
  • the inventors of the present invention have made intensive studies to solve the above-mentioned problems of the prior art, and found that a resin having a polar group (component (I)) and a modified conjugated diene-based polymer having a predetermined polar group (component (II)), wherein the dispersed phase (B) containing the modified conjugated diene polymer has a predetermined number average dispersed particle diameter, and the resin having the polar group ( Component (I)) and the modified conjugated diene-based polymer (component (II)) are specified to have a predetermined mass ratio, thereby finding that the above-described problems of the prior art can be solved. was completed. That is, the present invention is as follows.
  • Component (I) a resin having a polar group (excluding component (II) below);
  • a resin composition containing The resin composition has a continuous phase (A) of the component (I) and a dispersed phase (B) containing the component (II) dispersed in the continuous phase (A), and the dispersed phase (B) has a number average dispersed
  • the component (I) is At least one resin selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, and epoxy resins, The resin composition according to [1] above.
  • the component (I) is At least one resin selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, and epoxy resins, The resin composition according to [2] above.
  • the component (II) contains a hydrogenated modified conjugated diene-based polymer in which an aliphatic double bond derived from a conjugated diene compound is hydrogenated, The resin composition according to any one of [1] to [4].
  • the component (I) is a polyphenylene sulfide resin, The resin composition according to any one of [1] to [5].
  • the component (II) contains a modified conjugated diene-based polymer to which at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups is bonded, The resin composition according to any one of [1] to [6].
  • the component (III) is a polymer having at least one polar group selected from the group consisting of an epoxy group, an oxazoline group, and an oxetanyl group. The resin composition according to any one of [2] to [7]. [9] wherein the component (III) is an olefin elastomer having an epoxy group; The resin composition according to any one of [2] to [8].
  • the hydrogenation rate of the hydrogenated modified conjugated diene polymer is 90% or less, The resin composition according to any one of [5] to [9].
  • the content of vinyl aromatic monomer units in the component (II) is 40% by mass or less.
  • the component (III) is an epoxy group-containing elastomer comprising a copolymer of an epoxy group-containing polymerizable monomer and an unsaturated hydrocarbon compound.
  • the component (III) is a copolymer of a polymerizable monomer having an epoxy group, an unsaturated hydrocarbon compound, and a (meth)acrylic acid ester and/or vinyl acetate.
  • the resin composition according to any one of [2] to [12].
  • the resin composition comprises a continuous phase (A) of the resin having a polar group (component (I)) and the modified conjugated diene polymer (component (II)) dispersed in the continuous phase (A).
  • At least one resin having a polar group selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
  • the modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups, A molded body, wherein the molded body satisfies the following conditions (I-1) to (
  • ⁇ Condition (I-1)> A strip-shaped test piece having a width of 10 mm, a length of 170 mm, and a thickness of 2 mm obtained from the compact has a tensile elongation at break of 25% or more at room temperature and a tensile speed of 5 mm/min.
  • a strip-shaped test piece having a length of about 80 mm, a width of about 10 mm, and a thickness of about 4 mm obtained from the compact has a Charpy impact value of 15 kJ/m 2 in a Charpy impact test at -30°C.
  • the resin composition of this embodiment is Component (I): a resin having a polar group (excluding component (II) below); Component (II): polymer block (A) mainly composed of vinyl aromatic monomer units, At least two polymer blocks selected from polymer blocks (B) mainly composed of conjugated diene monomer units and random polymer blocks (C) composed of vinyl aromatic monomer units and conjugated diene monomer units A modified conjugated diene-based polymer in which at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group and an amino group is bonded to a block polymer having with at least one is a resin composition containing
  • the resin composition has a continuous phase (A) of the component (I) and a dispersed phase (B) containing the component (II) dispersed in the continuous phase (A), and the dispersed phase
  • Component (I) Resin having a polar group (excluding component (II) below)
  • the resin composition of the present embodiment contains a resin having a polar group (hereinafter sometimes referred to as polar resin (I) or component (I)).
  • Resins with excellent rigidity generally have a polar group in the main chain from the viewpoint of entropy and enthalpy.
  • the polar resin (I) used in the resin composition of the present embodiment is not limited to the following, but includes, for example, acrylonitrile-butadiene-styrene copolymer resin (ABS); methacrylate-butadiene-styrene copolymer resin (MBS).
  • Polyvinyl chloride resins Polyvinyl acetate resins and hydrolysates thereof; Polymers of acrylic acid and its esters and amides; Polyacrylate resins; Acrylonitrile and/or methacrylonitrile polymers; Nitrile resin that is a copolymer with another copolymerizable monomer containing 50% by mass or more; polyamide resin; polyester resin, thermoplastic polyurethane resin, poly-4,4'-dioxydiphenyl-2 , 2′-propane carbonate and other polycarbonate polymers; thermoplastic polysulfones such as polyethersulfone and polyallylsulfone; polyoxymethylene resins; polyphenylenes such as poly(2,6-dimethyl-1,4-phenylene) ether Ether-based resin; Polyphenylene sulfide-based resin; Polyarylate-based resin; Polyetherketone polymer or copolymer; Polyketone-based resin; fluorine-based resin; polyethylene terephthalate
  • the preferred polar resin (I) varies depending on the properties required for the resin composition of the present embodiment. Epoxy resins and polyphenylene sulfide resins are preferable from the viewpoint of chemical properties, and polyphenylene sulfide resins are preferable from the viewpoint of heat resistance.
  • the polyethylene terephthalate-based resin may belong to the category called polyethylene terephthalate resin, and includes a diol component in which at least 90 mol% or more is ethylene glycol and a dicarboxylic acid component in which at least 90 mol% or more is terephthalic acid.
  • a thermoplastic resin obtained by the polymerization reaction of is more preferable.
  • the polybutylene terephthalate-based resin may belong to the category called polybutylene terephthalate resin, and includes a dicarboxylic acid containing terephthalic acid or a derivative thereof as a main component and 1,4-butanediol or a derivative thereof as a main component. It is a polymer that can be obtained by a general polymerization method such as polycondensation reaction with a diol, and the repeating unit of butylene terephthalate is preferably 90 mol% or more, and is preferably 95 mol% or more. more preferred.
  • Epoxy resins may be used singly or in combination of two or more.
  • Examples of epoxy resins include, but are not limited to, bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, Trisphenol type epoxy resin, naphthol novolak type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin,
  • the polyphenylene sulfide resin may belong to the category called polyphenylene sulfide resin, and from the viewpoint of heat resistance, it preferably contains 70 mol % or more of p-phenylene sulfide units as its constituent units. , more preferably 90 mol % or more.
  • Other structural units include, for example, o-phenylene sulfide units, m-phenylene sulfide units, phenylene sulfide ether units, phenylene sulfide sulfone units, phenylene sulfide ketone units, diphenylene sulfide units, substituent-containing phenylene sulfide units, It may contain branched structure-containing phenylene sulfide units and the like.
  • the molecular weight of the polyphenylene sulfide-based resin is preferably 5,000 or more, more preferably 10,000 or more, from the viewpoint of the rigidity of the resin composition of the present embodiment.
  • the polyphenylene sulfide-based resin may be linear, crosslinked or branched. Moreover, the polyphenylene sulfide-based resin may have a polar group such as a thiol group or a carboxyl group at the terminal or in the main chain in the polymer structure.
  • the method for producing the polyphenylene sulfide-based resin is not particularly limited, and includes, for example, a production method in which an alkali metal sulfide and a dihaloaromatic compound are reacted in a polymerization solvent.
  • the resin composition of the present embodiment comprises a polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block (B) mainly composed of conjugated diene monomer units, and a vinyl aromatic monomer
  • a block polymer having at least two types of polymer blocks selected from random polymer blocks (C) composed of polymer units and conjugated diene monomer units is added with an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, and an epoxy group.
  • modified conjugated diene-based polymer (II) has the polar group, it has affinity and/or reactivity with respect to the polar resin (I). It can improve toughness and impact resistance.
  • the affinity means that at least one intermolecular force selected from the group consisting of ionic interaction, hydrogen bond, dipole interaction and van der Waals force can be generated between each component.
  • the reactivity means that the polar groups of each component have covalent bonding. When polar groups react with each other, for example, when the OH of the carboxyl group is eliminated, the original polar group changes or disappears, but when this forms a covalent bond, the polar groups are "reactive" included in the definition of indicating
  • the modified conjugated diene polymer (II) has at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an oxazoline group, an epoxy group, an oxetanyl group, and an amino group.
  • polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an oxazoline group, an epoxy group, an oxetanyl group, and an amino group.
  • the preferred polar group of the modified conjugated diene polymer (II) varies depending on the type of polar resin (I) and the properties required for the resin composition of the present embodiment.
  • the polar resin (I) is a polyphenylene sulfide resin
  • the epoxy group, oxazoline group, and amino group have excellent affinity and/or reactivity with the thiol group and carboxyl group present at the end of the polyphenylene sulfide resin. Therefore, it is preferable as the polar group of the modified conjugated diene polymer (II).
  • Carboxyl groups, acid anhydride groups, hydroxyl groups, and dicarboxyl groups have excellent affinity and/or reactivity with epoxy groups of component (I) when component (I) is an epoxy resin.
  • each component (I) and (II) has an affinity group and/or a reactive group that expresses affinity and/or reactivity between the components, thereby strengthening the interface between each component. becomes possible, contributing to the improvement of the toughness and impact resistance of the resin composition of the present embodiment.
  • effects such as improvement in tracking resistance and prevention of deterioration in physical properties (heat cycle characteristics) when exposed alternately between high and low temperatures can be expected. These characteristics can be improved by controlling the compatibility state by adjusting the affinity and reactivity between each component.
  • the polar resin of component (I) is a polyethylene terephthalate-based resin or polybutylene terephthalate-based resin
  • the epoxy group and amino group of component (II) are present at the terminals of the polyethylene terephthalate-based resin or polybutylene terephthalate-based resin. Since the affinity and / or reactivity with the carboxyl group is excellent, each component has an affinity group and / or a reactive group that expresses affinity and / or reactivity between the components, so that the interface between each component can be strengthened, which contributes to improving the toughness and impact resistance of the resin composition.
  • two types of modified conjugated diene-based polymers each having a different polar group from the above-described polar group species bonded thereto may be used.
  • two types of modified conjugated diene-based polymers (II) having different polar groups bonded thereto are used from the viewpoint of compatibility as described above, one type of modified conjugated diene-based polymer has the other modified conjugated diene-based It is preferable that a polar group reactive with the polymer and the polar resin (I) is bonded.
  • the polar resin of component (I) is a polyphenylene sulfide-based resin, a polyethylene terephthalate-based resin, or a polybutylene terephthalate-based resin
  • a modified conjugated diene-based polymer having hydroxyl groups bonded thereto can be preferably used.
  • the polar resin of component (I) is an epoxy resin
  • the carboxyl group, hydroxyl group, and amino group have excellent affinity and/or reactivity with the epoxy group of the epoxy resin.
  • a modified conjugated diene polymer can be preferably used as component (II).
  • each component has an affinity group and/or a reactive group that expresses affinity and/or reactivity between the components, so that the interface between the components can be strengthened. contributes to improving the toughness and impact resistance of the resin composition.
  • the same components tend to aggregate and form a phase, but in the resin composition of the present embodiment, the component (II) has a polar group, so that the component The affinity and/or reactivity with (I) is enhanced, the compatibility of these components is improved, and the number average dispersed particle diameter of the dispersed phase (B) described later is 1.5 ⁇ m or less, and the resin of the present embodiment It contributes to the impact resistance and toughness of the composition.
  • the amount of polar groups possessed by the modified conjugated diene-based polymer (II) is preferably 0.3 mol/chain or more, more preferably 0.5 mol/chain, from the viewpoint of compatibility with the polar resin (I).
  • the polymer chains having the affinity group or the reactive group are compatible with the component (I) and have an affinity for each other.
  • the polymer chains having no functional group or reactive group and the polymer chains compatible with the component (I) aggregate as described above, so that the number average dispersed particle size of the dispersed phase (B) is reduced to 1. 0.5 ⁇ m or less, preferably 1.3 ⁇ m or less.
  • Such easiness of compatibility and easiness of agglomeration is determined by the structure of the resin as long as the polar groups contained in component (I) and component (II) have the necessary affinity and/or reactivity.
  • the frequency (amount) of the polar groups in the polymer chain has a greater effect than the type of polar groups, the combination of polar groups between components. Therefore, the number average dispersed particle size of the dispersed phase (B) can be controlled to a desired value by appropriately setting the amount of the polar groups in the component (II).
  • the affinity group or reactive group of component (II) is preferably 30 mol/chain or less, since an excessive amount may cause gelation or the like in the resin composition of the present embodiment.
  • the term "chain” refers to one polymer molecule, and a branched polymer structure due to chemical bonds is also counted as one molecule chain.
  • the amount of polar groups in the modified conjugated diene-based polymer (II) depends on the reaction conditions with the compound for forming these during the production process of the modified conjugated diene-based polymer, such as the amount of the compound added, the reaction temperature, and the reaction time. By adjusting the above, it is possible to control within the above numerical range.
  • the modified conjugated diene polymer has two or more polymer blocks selected from the group consisting of polymer blocks (A) to (C) below.
  • the (A) polymer block mainly composed of vinyl aromatic monomer units has a vinyl aromatic monomer unit content of 80% by mass or more.
  • vinyl aromatic compounds used to form vinyl aromatic monomer units include, but are not limited to, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene and the like.
  • the (A) polymer block mainly composed of vinyl aromatic monomer units may be composed of one vinyl aromatic monomer unit, or may be composed of two or more vinyl aromatic monomer units. It may be configured by From the viewpoint of the strength of the molded article of the resin composition of the present embodiment, the content of the vinyl aromatic monomer units contained in the polymer block (A) mainly composed of vinyl aromatic monomer units is 80 mass. % or more, preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass (other compounds are not intentionally added).
  • the content of the conjugated diene monomer units in the (B) polymer block mainly composed of conjugated diene monomer units is 80% by mass or more.
  • a diolefin having a pair of conjugated double bonds can be used as the conjugated diene compound used to form the conjugated diene monomer unit.
  • the diolefin include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene , 2-methyl-1,3-pentadiene, 1,3-hexadiene, and farnesene.
  • the polymer block mainly composed of conjugated diene monomer units may be composed of one type of conjugated diene monomer unit, or may be composed of two or more types of conjugated diene monomer units.
  • the content of the conjugated diene monomer unit contained in the polymer block (B) mainly composed of the conjugated diene monomer unit is 80% by mass or more. It is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass (other compounds are not intentionally added).
  • the vinyl aromatic monomer unit contained in the random polymer block of the conjugated diene monomer unit and the vinyl aromatic monomer unit and the vinyl aromatic compound used to form the conjugated diene monomer unit , and the conjugated diene compound may be compounds that can be used for the polymer block (A) and the polymer block (B).
  • the distribution state of the vinyl aromatic monomer units in the random polymer block (C) is not particularly limited, and even if the vinyl aromatic monomer units in the random polymer block (C) are uniformly distributed, Or it may be distributed in a tapered shape. Further, there may be a plurality of portions in which the vinyl aromatic monomer units are uniformly distributed and/or portions in which the vinyl aromatic monomer units are distributed in a tapered manner.
  • the modified conjugated diene-based polymer (II) used in the resin composition of the present embodiment may be polymerized with other compounds copolymerizable with the conjugated diene compound and the vinyl aromatic compound.
  • the structure of the modified conjugated diene polymer (component (II)) is not particularly limited, but examples thereof include those having a structure represented by the following formula. Note that the description of the polar group is omitted in the following formula. (b-c) n , c-(b-c) n , b-(c-b) n , (b-c) m -X, (c-b) m -X, [(b-c) n ] m ⁇ X, [(c ⁇ b) n ] m ⁇ X, [c ⁇ (b ⁇ c) n ] m ⁇ X, [b ⁇ (c ⁇ b) n ] m ⁇ X, [(b ⁇ c ) n -b] m -X, [(cb) n -c] m -X, (ab) n , b-(ab) n , a-(ba) n , (ab) m
  • n is an integer of 1 or more, preferably an integer of 1-5.
  • m is an integer of 2 or more, preferably an integer of 2-11.
  • X represents a residue of a coupling agent or a residue of a multifunctional initiator.
  • the modified conjugated diene-based polymer (component (II)) is a polymer whose basic block structure is particularly represented by the structural formulas ab, aba, and abab. Preferably.
  • the weight average molecular weight (Mw) (hereinafter also referred to as “Mw”) of the modified conjugated diene polymer (component (II)) determines the mechanical strength, impact resistance, and abrasion resistance of the resin composition of the present embodiment. From the viewpoint of compatibility and moldability, it is preferably from 50,000 to 600,000, more preferably from 30,000 to 400,000, even more preferably from 50,000 to 300,000.
  • the weight average molecular weight (Mw) of the modified conjugated diene-based polymer (component (II)) is obtained by measuring the peak molecular weight of the chromatogram obtained by gel permeation chromatography (GPC) and measuring a commercially available standard polystyrene.
  • weight average molecular weight (Mw) determined based on a calibration curve (prepared using the peak molecular weight of standard polystyrene).
  • the molecular weight distribution of the conjugated diene-based polymer before modification can be obtained from measurement by GPC.
  • Molecular weight distribution is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn).
  • the molecular weight distribution of a single peak of the modified conjugated diene polymer (component (II)) measured by GPC is preferably 5.0 or less, more preferably 4.0 or less, and still more preferably 3.0. or less, and more preferably 2.5 or less.
  • the modified conjugated diene polymer (component (II)) contains vinyl aromatic monomer units.
  • imparting impact resistance and toughness by dispersing a predetermined polymer in a highly rigid polar resin will cause the interface between the polar resin and the dispersed polymer particle component or the polymer This is because voids are formed in the particles themselves, and stress relaxation is caused by shear yielding of the matrix resin starting from the polymer particles.
  • the polymer block (A) mainly composed of vinyl aromatic monomer units is amorphous, it tends to accelerate the aforementioned shear yielding.
  • the lower limit of the content of the vinyl aromatic monomer unit in the modified conjugated diene polymer (component (II)) is 1 mass from the viewpoint of promoting the above-mentioned shear yield and developing impact resistance and toughness. % or more, more preferably 3 mass % or more, still more preferably 5 mass % or more, and even more preferably 8 mass % or more. Since the content of the vinyl aromatic monomer unit in the modified conjugated diene polymer (component (II)) is 1% by mass or more, the vinyl aromatic monomer of the modified conjugated diene polymer (II) The amorphous part of the units tends to aggregate and promote the aforementioned shear yielding.
  • the upper limit of the vinyl aromatic monomer unit of the modified conjugated diene polymer (component (II)) is the ratio of the polar resin (component (I)) and the dispersed polymer particle component (component (II)).
  • the content is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less.
  • the vinyl aromatic monomer unit amount of component (II) By setting the vinyl aromatic monomer unit amount of component (II) to 90% by mass or less, the difference in rigidity between the dispersed phase and the matrix becomes large, and voids occur more at the interface or at the polymer particles themselves, and the resin of the present embodiment
  • the composition tends to have improved impact resistance and toughness.
  • a polyphenylene sulfide-based resin is used as the polar resin of component (I)
  • the vinyl aromatic monomer unit of the modified conjugated diene-based polymer (component (II)) is included from the viewpoint of developing impact resistance at low temperatures.
  • the amount is preferably 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and even more preferably 27% by mass or less.
  • the content of the vinyl aromatic monomer units in the modified conjugated diene polymer (component (II)) can be measured by the method described in Examples below.
  • the content of vinyl aromatic monomer units in the modified conjugated diene polymer (component (II)) can be controlled within the above numerical range by adjusting the amount of monomer added during polymer production. .
  • the lower limit of the content of the polymer block (A) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 3% by mass or more, from the viewpoint of productivity. It is 5% by mass or more.
  • the upper limit of the content of the polymer block (A) is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less from the viewpoint of impact resistance and toughness development.
  • the content of the polymer block (A) in the modified conjugated diene-based polymer (II) is 40% by mass from the viewpoint of developing impact resistance at low temperatures. or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and even more preferably 27% by mass or less.
  • the content of the polymer block (B) in the modified conjugated diene polymer (II) is preferably 0% by mass or more, and more preferably 10% by mass or more and 90% by mass from the viewpoint of impact resistance and toughness. It is below.
  • the content of the polymer block (B) in the modified conjugated diene-based polymer (II) is 60% by mass from the viewpoint of developing impact resistance at low temperatures.
  • the above is preferable, more preferably 65% by mass or more, still more preferably 70% by mass or more, and even more preferably 73% by mass or more.
  • the content of the polymer block (C) in the modified conjugated diene-based polymer (II) is preferably 0% by mass or more, and more preferably 10% by mass from the viewpoint of compatibility with the polyphenylene sulfide-based resin. It is more than 90 mass % or less.
  • the vinyl bond content is preferably 0 mol % or more, more preferably 5 mol % or more, relative to a total of 100 mol % of the conjugated diene monomer units.
  • the "vinyl bond amount” refers to 1,4-bonds (cis and trans) and 1,2-bonds (however, 3,4-bonds) resulting from conjugated diene compounds incorporated in the polymer before hydrogenation. refers to the total amount of 1,2-bonds and 3,4-bonds when incorporated in a polymer), the amount of 1,2-bonds (mol%).
  • the vinyl bond content of the modified conjugated diene-based polymer (II) can be measured using a nuclear magnetic resonance spectrometer (NMR) or the like, and specifically, it can be measured by the method described in Examples below. can.
  • the vinyl bond content can be controlled within the above numerical range by using a compound such as a Lewis base, such as an ether or an amine, as a vinyl bond content adjusting agent (hereinafter referred to as a vinylating agent).
  • the modified conjugated diene polymer (II) may contain a hydrogenated modified conjugated diene polymer in which the aliphatic double bonds derived from the conjugated diene compound are hydrogenated.
  • the hydrogenation rate of the aliphatic double bond derived from the conjugated diene compound is the thermally unstable 1,2-bond (however, when it is incorporated into the polymer with a 3,4-bond, the Hydrogenation of the 2-bond and 3,4-bond) improves the heat resistance, so it is preferably 10% or more, more preferably 20% or more, and still more preferably 30% or more.
  • the dispersed phase (B) in the resin composition of the present embodiment has a number average dispersed particle size of 1 0.5 ⁇ m or less, and from the viewpoint of further improving toughness and impact resistance, the hydrogenation rate is preferably 90% or less, more preferably 83% or less, and still more preferably 80% or less.
  • the hydrogenation rate of the modified conjugated diene-based polymer (II) can be measured using a nuclear magnetic resonance spectrometer (NMR) or the like, and specifically can be measured by the method described in Examples. Also, the hydrogenation rate can be controlled within the above numerical range by adjusting the amount of hydrogen reacted during the hydrogenation reaction, for example.
  • the modified conjugated diene polymer (II) used in the resin composition of the present embodiment is not limited to the following, for example, in an organic solvent, using an organic alkali metal compound as a polymerization initiator, a conjugated diene compound and a vinyl aromatic It can be produced by carrying out polymerization using a compound to obtain a block polymer, and then carrying out a modification reaction.
  • the modified conjugated diene-based polymer (II) may be hydrogenated, and the order of hydrogenation and modification may be reversed.
  • the mode of polymerization may be batch polymerization, continuous polymerization, or a combination thereof. From the viewpoint of making the size of the dispersed phase in the resin composition constant, which affects impact resistance and toughness, a batch polymerization method that narrows the molecular weight distribution is preferable.
  • the polymerization temperature is generally 0 to 180°C, preferably 20 to 160°C, more preferably 30 to 150°C.
  • the polymerization time varies depending on the desired polymer, it is usually within 48 hours, preferably 0.1 to 10 hours. From the viewpoint of obtaining a conjugated diene-based polymer having a narrow molecular weight distribution and high strength, 0.5 to 5 hours is more preferable.
  • the atmosphere of the polymerization system is not particularly limited as long as the pressure is in a range sufficient to maintain the nitrogen and solvent in the liquid phase. It is preferable that impurities such as water, oxygen, carbon dioxide gas, etc. that deactivate the polymerization initiator and the living polymer do not exist in the polymerization system.
  • organic solvents include, but are not limited to, aliphatic hydrocarbons such as n-butane, isobutane, n-pentane, n-hexane, n-heptane and n-octane; cyclohexane, cycloheptane, methylcyclo alicyclic hydrocarbons such as pentane; and aromatic hydrocarbons such as benzene, xylene, toluene and ethylbenzene.
  • aliphatic hydrocarbons such as n-butane, isobutane, n-pentane, n-hexane, n-heptane and n-octane
  • cyclohexane, cycloheptane methylcyclo alicyclic hydrocarbons such as pentane
  • aromatic hydrocarbons such as benzene, xylene, toluene and ethylbenzene
  • Organic lithium compound is preferable as the organic alkali metal compound that is the polymerization initiator.
  • Organic lithium compounds include organic monolithium compounds, organic dilithium compounds, and organic polylithium compounds. Examples of organic lithium compounds include, but are not limited to, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, n-pentyllithium, n-hexyllithium, benzyllithium, phenyllithium, hexamethylenedilithium, butadienyllithium, isopropenyldilithium, lithium piperidide and the like.
  • an organic lithium compound containing N such as lithium piperidide
  • These polymerization initiators may be used alone or in combination of two or more.
  • n-butyllithium, sec-butyllithium, and lithium piperidide are preferred from the viewpoint of polymerization activity.
  • the amount of the organic alkali metal compound used as the polymerization initiator depends on the molecular weight of the desired modified conjugated diene polymer, but is generally 0.01 to 1.5 phm (parts by weight per 100 parts by weight of the monomer). ), more preferably 0.02 to 0.3 phm, even more preferably 0.05 to 0.2 phm.
  • the vinyl bond content of the modified conjugated diene-based polymer (component (II)) is controlled by using a compound such as a Lewis base, such as an ether or an amine, as a vinyl bond content adjusting agent (hereinafter referred to as a vinylating agent). can do. Moreover, the amount of vinyl bonds can be controlled by adjusting the amount of the vinylizing agent used.
  • vinylizing agents include, but are not limited to, ether compounds, tertiary amine compounds, and the like.
  • Ether compounds include linear ether compounds and cyclic ether compounds.
  • linear ether compounds include, but are not limited to, ethylene glycol dialkyl ether compounds such as dimethyl ether, diethyl ether, diphenyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether; diethylene glycol dimethyl ether, diethylene glycol Examples include dialkyl ether compounds of diethylene glycol such as diethyl ether and diethylene glycol dibutyl ether.
  • the cyclic ether compound is not limited to the following, but for example, tetrahydrofuran, dioxane, 2,5-dimethyloxolane, 2,2,5,5-tetramethyloxolane, 2,2-bis(2-oxolanyl ) propane, alkyl ether of furfuryl alcohol, and the like.
  • tertiary amine compounds include, but are not limited to, trimethylamine, triethylamine, tributylamine, N,N-dimethylaniline, N-ethylpiperidine, N-methylpyrrolidine, N,N,N',N' -tetramethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,2-dipiperidinoethane, trimethylaminoethylpiperazine, N,N,N',N'',N''-pentamethylethylenetriamine , N,N′-dioctyl-p-phenylenediamine, pyridine, tetramethylpropanediamine, bis[2-(N,N-dimethylamino)ethyl]ether and the like.
  • a compound having two amines is preferable as the tertiary amine compound. Furthermore, among them, those having a structure exhibiting symmetry in the molecule are more preferable, such as N,N,N',N'-tetramethylethylenediamine and bis[2-(N,N-dimethylamino)ethyl] Ether and 1,2-dipiperidinoethane are more preferred.
  • the modified conjugated diene-based polymer (II) used in the resin composition of the present embodiment is polymerized using a conjugated diene compound and a vinyl aromatic compound in the presence of the above-described vinylizing agent, organolithium compound, and alkali metal alkoxide.
  • the alkali metal alkoxide is a compound represented by the general formula MOR (wherein M is an alkali metal and R is an alkyl group). Coexistence of an alkali metal alkoxide in the polymerization step provides the effect of controlling the amount of vinyl bonds, molecular weight distribution, polymerization rate, block ratio, and the like.
  • alkali metal of the alkali metal alkoxide sodium or potassium is preferable from the viewpoints of high vinyl bond content, narrow molecular weight distribution, high polymerization rate, and high block ratio.
  • alkali metal alkoxide include, but are not limited to, sodium alkoxide, lithium alkoxide, and potassium alkoxide having an alkyl group having 2 to 12 carbon atoms, preferably sodium having an alkyl group having 3 to 6 carbon atoms.
  • Alkoxide and potassium alkoxide more preferably sodium-t-butoxide, sodium-t-pentoxide, potassium-t-butoxide and potassium-t-pentoxide. Among these, sodium-t-butoxide and sodium-t-pentoxide, which are sodium alkoxides, are more preferable.
  • the modified conjugated diene-based polymer (II) may be hydrogenated, and the polymer block containing conjugated diene monomer units may be a hydrogenated product.
  • the hydrogenation method is not particularly limited, but for example, the conjugated diene-based polymer obtained in the polymerization step is supplied with hydrogen in the presence of a hydrogenation catalyst and hydrogenated to obtain a conjugated diene monomer.
  • a hydrogenated conjugated diene-based polymer can be obtained in which the double bond residues of the monomer units are hydrogenated.
  • the hydrogenation rate (hydrogenation rate) can be controlled by, for example, the amount of catalyst during hydrogenation.
  • the hydrogenation rate can be controlled, for example, by adjusting the catalyst amount, hydrogen feed amount, pressure and temperature during hydrogenation.
  • the hydrogenation reaction step is preferably carried out at a timing after termination of the production reaction of the conjugated diene-based polymer before hydrogenation.
  • the modified conjugated diene polymer (II) has at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group, and an amino group.
  • a hydroxyl group and a carboxyl group are more preferable from the viewpoint of affinity and/or reactivity with the polar resin (I) and a polymer having a predetermined polar group (component (III)) described later.
  • the polar group bonded to the modified conjugated diene polymer (II) is at least one selected from the group consisting of hydroxyl groups and carboxyl groups
  • a thermoplastic resin is used as the component (I), and injection molding is performed.
  • a resin composition in a molten state is injected into a mold and cooled to obtain an arbitrary molded body, the fluidity of the resin composition tends to be improved and the processability tends to be improved.
  • the method of introducing the polar group into the conjugated diene-based polymer is not particularly limited.
  • the position at which each polar group is introduced is not particularly limited. and may be arranged in a tapered shape.
  • modifying agent examples include, but are not limited to, maleic acid, oxalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, carbarylic acid, cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, and the like. and aromatic carboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, trimesic acid, trimellitic acid and pyromellitic acid.
  • maleic anhydride In addition, maleic anhydride, itaconic anhydride, pyromellitic anhydride, cis-4-cyclohexane-1,2-dicarboxylic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, 5-(2 ,5-dioxytetrahydroxyfuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, ⁇ -caprolactam and the like.
  • a conjugated diene polymer is reacted (metalation reaction) with an organic alkali metal compound such as an organic lithium compound to add an organic alkali metal.
  • metal compound such as an organic lithium compound
  • a method of subjecting a polymer to an addition reaction with a modifier having a polar group can be used.
  • another method for introducing a polar group includes, for example, a method of directly grafting an atomic group having a polar group to an unmodified conjugated diene polymer.
  • the graft addition method include a method of reacting them in a solution containing a radical initiator, a conjugated diene polymer, and the modifier; or a radical initiator, a conjugated diene polymer, and the modifier. or a method of reacting a conjugated diene polymer without a radical initiator and a compound containing the modifier under heating and melting.
  • Methods for reacting each component when introducing a polar group into a polymer include, for example, Banbury mixers, single screw extruders, twin screw extruders, co-kneaders, multi-screw extruders, and the like.
  • a method of melt-kneading each component using a kneader can be used. From the viewpoint of cost and production stability, a method using a single-screw, twin-screw or multi-screw extruder is preferred, and a method using a twin-screw extruder is preferred.
  • each component may be dry-blended and added all at once, each component may be separately fed, or the same component may be added stepwise.
  • the rotation speed of the screw is preferably 50 to 400 rpm, more preferably 100 to 350 rpm, from the viewpoint of uniformly adding the modifier to the polymer, and from the viewpoint of suppressing deterioration of the polymer due to shear and performing uniform addition. , preferably 150-300 rpm.
  • the kneading temperature is a temperature at which the conjugated diene polymer melts and a temperature at which radicals are generated from the radical initiator, and is preferably 100°C to 350°C. From the viewpoint of controlling the introduction amount of the polar group and suppressing deterioration of the polymer due to heat, the temperature is preferably 120°C to 300°C, more preferably 150°C to 250°C.
  • the mixture may be melt-kneaded under an inert gas such as nitrogen.
  • radical initiator examples include, but are not limited to, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates.
  • the radical initiator preferably has a 1-minute half-life temperature within the kneading temperature range. More preferably, the one-minute half-life temperature is 150° C. to 250° C.
  • Examples include 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5, 5-trimethylhexanoate, t-butyl peroxylaurate, t-butyl peroxy isopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, 2,5-dimethyl-2 ,5-di(benzoylperoxy)hexane, t-butylperoxyacetate, 2,2-di-(t-butylperoxy)butane, t-butylperoxybenz
  • di(2-t-butylperoxyisopropyl)benzene dicumyl peroxide, di-t-hexyl peroxide, 2,5- Dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne -3 is preferred.
  • 2,5-dimethyl-2,5-di(t-butylperoxy)hexane and 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 are more preferred.
  • a combination of polar groups includes an amino group, a dicarboxyl group, an acid anhydride group, an isocyanate group, a hydroxyl group, an oxazoline group, an oxetanyl group, and a carboxyl group; an acid anhydride group, a hydroxyl group, an oxazoline group, and an oxetanyl group; silanol groups, hydroxyl groups, and carboxyl groups; epoxy groups and carboxyl groups; From the viewpoint of reactivity, an amino group, a dicarboxyl group, an acid anhydride group, an oxazoline group, and an oxetanyl group; a silanol group, a hydroxyl group, and a dicarboxyl group; an epoxy group, and a dicarboxyl group are preferred, and more preferred. an amino group, a dicarboxyl group, and an acid anhydride group.
  • the method of bonding an epoxy group, an acid anhydride group, and a hydroxyl group to a conjugated diene polymer includes the above-described methods. is mentioned.
  • the method of bonding a silanol group to a conjugated diene polymer includes the above-described methods.
  • examples thereof include (3-triethoxysilylpropyl)-disulfane, ethoxysiloxane oligomers, epoxy group-containing polymerizable compounds, and hydrolysates of compounds having an alkoxysilane group listed above as epoxy group-containing polymerizable compounds.
  • the method of binding an amino group to a conjugated diene polymer includes the above-described methods.
  • 1-methyl-2-pyrrolidone 1-cyclohexyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1-propyl-2-pyrrolidone, 1-butyl-2-pyrrolidone, 1-isopropyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone, 1-methoxymethyl-2-pyrrolidone, 1-methyl-2-piperidone, 1,4-dimethyl-2-piperidone, 1-ethyl-2-piperidone, 1-isopropyl-2 -piperidone, 1-isopropyl-5,5-dimethyl-2-piperidone and the like.
  • Examples of the method for binding the primary modified conjugated diene-based polymer to which an amino group is bound and the secondary modifier include the methods described above.
  • Examples of modifiers include maleic acid, oxalic acid, succinic acid, and adipine. acids, aliphatic carboxylic acids such as azelaic acid, sebacic acid, dodecanedicarboxylic acid, carbarylic acid, cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid; terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, trimesic acid, aromatic carboxylic acids such as trimellitic acid and pyromellitic acid;
  • the shape of the modified conjugated diene-based polymer (II) obtained by the production method described above is not particularly limited, and examples thereof include pellets, sheets, strands, chips, and the like. Moreover, after melt-kneading, it can be directly molded. By pelletizing the modified conjugated diene polymer (II), pellets of the modified conjugated diene polymer can be produced.
  • Pelletization methods include, for example, a method of extruding a modified conjugated diene-based polymer from a single-screw or twin-screw extruder in the form of strands and cutting in water with a rotary blade installed in front of the die; single-screw or twin-screw A method of extruding a modified conjugated diene-based polymer from an extruder into a strand, cooling it with water or air, and then cutting it with a strand cutter; For example, the sheet is cut into strips, and then cut into cubic pellets by a pelletizer.
  • the size and shape of the pellet are not particularly limited.
  • the modified conjugated diene-based polymer (II) may optionally be blended with a pellet antiblocking agent for the purpose of preventing pellet blocking.
  • pellet antiblocking agents include, but are not limited to, calcium stearate, magnesium stearate, zinc stearate, polyethylene, polypropylene, ethylenebisstearylamide, talc, amorphous silica, and the like.
  • a tubular molded article containing the same, or a sheet-shaped molded article from the viewpoint of their transparency, calcium stearate, polyethylene, and polypropylene are used. preferable.
  • a preferred amount of the pellet antiblocking agent is 500 to 6000 ppm relative to the modified conjugated diene polymer (II). A more preferable amount is 1000 to 5000 ppm with respect to the modified conjugated diene polymer (II).
  • the pellet anti-blocking agent is preferably blended in a state attached to the pellet surface, but can also be contained to some extent inside the pellet.
  • Component (III) A polymer having a polar group reactive with component (I) and/or component (II) (excluding component (I) and component (II)))
  • the resin composition of the present embodiment is a polymer having a polar group reactive with component (I) and/or component (II) (excluding component (I) and component (II)) (hereinafter referred to as polymer ( III), sometimes referred to as component (III)). Even if the polar group bonded to the modified conjugated diene polymer (II) has low affinity and/or reactivity with the component (I), it exhibits reactivity with the component (I) and/or the component (II).
  • the number average dispersed particle size of the dispersed phase (B) tends to be 1.5 ⁇ m or less by containing the polymer (III) having a functional group having a polar group.
  • component (III) preferably has reactivity with component (I) and component (II).
  • Component (III) does not contain a polymer block mainly composed of vinyl aromatic monomer units, and does not contain a polymer having the same structure as the modified conjugated diene polymer (II). It is a modified polymer.
  • component (III) contains a vinyl aromatic monomer unit, the reactivity with components (I) and (II) tends to decrease due to steric hindrance of the aromatic ring.
  • Component (III) is a polymer having a polar group reactive with component (I) and/or component (II). including oligomers with a low degree of polymerization of about 2 to 10).
  • the lower limit of the molecular weight of component (III) is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of maintaining practically sufficient rigidity of the resin composition of the present embodiment.
  • the upper limit of the molecular weight of component (III) is preferably 5 million or less, more preferably 3 million or less, and even more preferably 1 million or less.
  • the molecular weight of the component (III) can be appropriately set in consideration of the compatibility with the component (I) and the component (II), the fluidity of the resin composition of the present embodiment, and the like. When it is 5,000,000 or less, good fluidity of the resin composition tends to be obtained, and practically good moldability tends to be obtained.
  • Reactivity between component (III) and component (I) and/or component (II) means that the polar groups of each component have covalent bonding.
  • polar groups react with each other for example, when the OH of the carboxyl group is eliminated, the original polar group changes or disappears. included in the definition of indicating As for the polar groups contained in component (III), one type of polar group may exhibit reactivity with both component (I) and component (II), or multiple types of polar groups may contain component (I) and component (II). It may be reactive with each of (II).
  • a polar group reactive with only one of component (I) and component (II) may be contained in component (III), but the affinity with both components is increased, and the dispersion phase (B) described later From the viewpoint of making the number average dispersed particle size 1.5 ⁇ m or less, preferably 1.3 ⁇ m or less, it is preferable to have a polar group that exhibits reactivity with both component (I) and component (II).
  • component (III) has an epoxy group
  • component (I) is a polyphenylene sulfide resin
  • component (II) is a polymer having a carboxyl group and/or a hydroxyl group
  • the epoxy group of component (III) shows reactivity with the carboxyl groups of both the component (I) polyphenylene sulfide resin and the component (II) polymer.
  • the polar group contained in component (III) has reactivity with the polar resin (component (I)) and the modified conjugated diene-based polymer (component (II)), so that the resin composition of the present embodiment has toughness and impact resistance can be improved.
  • Component (I), Component (II), and Component (III) Combinations of the polar groups of component (II) and component (III) include the following combinations.
  • component (II) contains an amino group
  • preferable polar groups contained in component (III) include a carboxyl group, a carbonyl group, an epoxy group, a hydroxy group, an acid anhydride group, a sulfonic acid group, an aldehyde group, and the like. be done.
  • preferred polar groups contained in component (III) include an amino group and a hydroxy group.
  • preferable polar groups contained in component (III) include an amino group and an isocyanate group.
  • preferable polar groups contained in component (III) include amino group, carboxyl group, dicarboxyl group, thiol group, oxazoline group, oxetanyl group and the like.
  • preferred polar groups contained in component (III) include a thiol group, hydroxyl group, amino group, carboxyl group, dicarboxyl group, and the like.
  • component (II) contains an oxazoline group
  • preferred polar groups contained in component (III) include a thiol group, hydroxyl group, amino group, carboxyl group, dicarboxyl group and the like.
  • amino groups, carboxyl groups, carbonyl groups, epoxy groups, hydroxy groups, acid anhydride groups, sulfonic acid groups, and aldehyde groups respectively, amino groups, carboxyl groups, carbonyl groups, epoxy groups, hydroxy groups, acid anhydride groups, sulfonic acid groups, and aldehyde groups; an isocyanate group, a hydroxyl group, a carboxyl group, and a dicarboxyl group; a hydroxy group and an anhydride group; a silanol group, a hydroxy group, a carboxyl group, and a dicarboxyl group; an epoxy group, a carboxyl group, a dicarboxyl group, a thiol group, an oxazoline group,
  • the resin composition of the present embodiment it can be arbitrarily selected which of the polar groups of component (I) and component (III) is used to bond with the polar group of component (II).
  • component (I) a polyphenylene sulfide-based resin, which is a polar resin having excellent rigidity, chemical resistance, and heat resistance, is used as component (I)
  • the polar group contained in component (II) may be a carboxyl group from the viewpoint of reactivity. , hydroxyl group, epoxy group, oxazoline group and oxetanyl group are preferred, and carboxyl group and hydroxyl group are more preferred.
  • the polar group of component (III) is preferably an epoxy group, an oxazoline group, or an oxetanyl group because it is reactive with component (I) and component (II), and more preferably an epoxy group from the viewpoint of reactivity.
  • the polymer having an epoxy group includes a polymer of an epoxy group-containing polymerizable compound such as an epoxy group-containing unsaturated compound, and an epoxy group-containing polymerizable compound. and copolymers of the compound with at least one other polymerizable compound.
  • Epoxy group-containing polymerizable compounds include, but are not limited to, epoxy group-containing unsaturated compounds such as glycidyl methacrylate, glycidyl acrylate, vinyl glycidyl ethers, glycidyl ethers of hydroxyalkyl (meth)acrylates, polyalkylene Glycidyl ether of glycol (meth)acrylate, glycidyl itaconate, tetraglycidyl metaxylenediamine, tetraglycidyl-1,3-bisaminomethylcyclohexane, tetraglycidyl-p-phenylenediamine, tetraglycidyldiaminodiphenylmethane, diglycidylaniline, diglycidyl Examples include polyepoxy compounds such as orthotoluidine, 4,4'-diglycidyl-diphenylmethylamine, 4,4'-diglycidyl-dibenzylmethyl
  • bis( ⁇ -glycidoxypropyl)dipropoxysilane bis( ⁇ -glycidoxypropyl)dibutoxysilane, bis( ⁇ -glycidoxypropyl)diphenoxysilane, bis( ⁇ -glycidoxypropyl) methylmethoxysilane, bis( ⁇ -glycidoxypropyl)methylethoxysilane, bis( ⁇ -glycidoxypropyl)methylpropoxysilane, bis( ⁇ -glycidoxypropyl)methylbutoxysilane, bis( ⁇ -glycidoxy propyl), tris( ⁇ -glycidoxypropyl)methoxysilane.
  • ⁇ -(3,4-epoxycyclohexyl)ethyl-trimethoxysilane ⁇ -(3,4-epoxycyclohexyl)ethyl-triethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyl-tripropoxysilane , ⁇ -(3,4-epoxycyclohexyl)ethyl-tributoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyl-triphenoxysilane.
  • Examples of the compound copolymerizable with the epoxy group-containing polymerizable compound include, but are not limited to, conjugated diene compounds such as butadiene and isoprene; unsaturated hydrocarbon compounds such as ethylene and propylene; cyanide compounds such as acrylonitrile; Vinyl monomer; vinyl acetate, (meth)acrylic acid ester, vinyl alcohol, vinyl acetate, vinyl acetate and the like.
  • epoxy group-containing polymer examples include, but are not limited to, bondfast (ethylene-glycidyl methacrylate copolymer, ethylene-vinyl acetate-glycidyl methacrylate copolymer, ethylene-acrylic acid Methyl-glycidyl methacrylate copolymer, manufactured by Sumitomo Chemical Co., Ltd.), ELVALOY TM PTW (ethylene-glycidyl methacrylate-butyl acrylate copolymer, manufactured by Dow Chemical Co., Ltd.), Vylon RF (glycidyl group-containing polyester resin, Toyobo Co., Ltd.) ), and ARUFONUG-4000 (epoxy group-containing acrylic resin, manufactured by Toagosei Co., Ltd.).
  • bondfast ethylene-glycidyl methacrylate copolymer, ethylene-vinyl acetate-glycidyl methacrylate copolymer, ethylene-acrylic acid Meth
  • a polymer having an epoxy group may be obtained as the component (III) by a method of subjecting an arbitrary polymer to an addition reaction with the epoxy group-containing unsaturated compound or the like by a radical reaction or the like.
  • the optional polymer include polymers of unsaturated hydrocarbon compounds such as ethylene and propylene, copolymers of the unsaturated hydrocarbon compounds and polymerizable compounds having double bonds, conjugated diene compounds and vinyl aromatic compounds. Copolymers of compounds and the like can be mentioned.
  • Examples of the method of the addition reaction include conventionally known techniques, a production method in which these are reacted in a solution containing a radical initiator, a polymer, and an epoxy group-containing compound; a radical initiator, a polymer, and an epoxy group; A production method in which the containing compound is reacted under heating and melting; A production method in which a polymer without a radical initiator and an epoxy group-containing compound are reacted under heating and melting; Examples include a manufacturing method in which a compound and a polymer that react to form a bond, and a compound containing an epoxy group are reacted in a solution containing them or under heating and melting. Further, a method of forming an epoxy group by oxidizing the diene portion of a polymer having a carbon bond and/or a copolymer of a polymer having a carbon bond and another polymerizable compound can also be used.
  • the epoxy group-containing polymerizable compound is preferably an epoxy group-containing unsaturated compound, more preferably glycidyl methacrylate, glycidyl acrylate, vinyl glycidyl ether, glycidyl ether of hydroxyalkyl (meth)acrylate, polyalkylene It is a glycidyl ether of glycol (meth)acrylate.
  • the epoxy group-containing polymer (component (III)) is the above-mentioned epoxy group-containing polymerizable compound (epoxy group-containing polymerizable monomer ) and an unsaturated hydrocarbon-based compound, the elastomer having an epoxy group is more preferable, and the olefin-based elastomer having an epoxy group is even more preferable.
  • the polymer (component (III)) is an olefin elastomer having an epoxy group
  • the effect of improving toughness and/or impact resistance due to shear yield caused by stress concentration at the resin interface with component (I) is improved.
  • the effect of inhibiting elongation of microcracks and / or crazes generated under stress is obtained, and component (II) and component (III) bridge between microcracks and / or crazes
  • This effect tends to further improve toughness and/or impact resistance.
  • the component (III) is an epoxy group-containing olefin-based elastomer
  • toughness and/or impact resistance at low temperatures can be improved, particularly in applications where the temperature is -30°C or lower.
  • the polymer having an epoxy group as the component (III) contains, in addition to the unsaturated hydrocarbon and the epoxy group-containing polymerizable compound, vinyl cyanide monomers such as the aforementioned styrene and acrylonitrile, vinyl acetate, (meth)
  • a polymerizable compound such as an acrylic acid ester, vinyl alcohol, or vinyl acetate may be copolymerized, and when the component (I) is a polyphenylene sulfide resin, from the viewpoint of affinity with the polyphenylene sulfide resin.
  • (meth)acrylic acid ester, vinyl acetate and vinyl acetate are more preferably copolymerized, and it is further preferred that (meth)acrylic acid ester and/or vinyl acetate are copolymerized.
  • Examples of the unsaturated hydrocarbon compounds include ethylene, propylene, and ⁇ -olefins having 3 to 8 carbon atoms.
  • the resin composition of the present embodiment exhibits the heat resistance, impact resistance and toughness of the resin composition of the present embodiment, and the number average dispersed particle size of the dispersed phase (B) described later is 1.5 ⁇ m or less.
  • the resin composition of the present embodiment comprises a continuous phase (A) of a polar resin (component (I)) and a modified conjugated diene polymer (component (II)) dispersed in the continuous phase (A). and a dispersed phase (B) comprising.
  • a polar resin component (I)
  • component (II) modified conjugated diene polymer
  • dispersed phase B
  • the polar resin component (I)
  • excellent heat resistance and rigidity can be obtained in the resin composition of the present embodiment.
  • the dispersed phase (B) due to the presence of the dispersed phase (B), when stress is applied to the molded body made of the resin composition, the stress concentrates on the dispersed phase (B), and microcrazes are generated. Contributes to the improvement of toughness.
  • Dispersed phase (B) may be a phase containing component (II), and when containing component (III), which is a polymer having a polar group reactive with component (II), component (II)
  • component (III) which is a polymer having a polar group reactive with component (II), component (II)
  • the modified conjugated diene-based polymer and component (III) may be in a compatible phase, component (III) may be unevenly distributed around component (II), or The component (II) may be unevenly distributed.
  • the component (III) may be in a compatible state with the component (I).
  • the dispersed phase (B) either contains both the component (II) and the component (III), or the component (II) is dispersed alone, whereby the dispersed phase (B ) is a phenomenon corresponding to the number average dispersed grain size and the improvement of impact resistance and/or toughness. Therefore, the resin composition of the present embodiment has a continuous phase (A) of a polar resin (component (I)) and a dispersed phase (B) containing a modified conjugated diene polymer (component (II)). do.
  • component (I) when a polyphenylene sulfide resin is used as component (I), there is no solvent that dissolves the polyphenylene sulfide resin at 200° C. or lower. , undissolved component (I), unreacted component (II), and unreacted component (III) can be extracted.
  • solvents capable of dissolving component (III) include toluene, cyclohexane, xylene, tetrahydrofuran, chloroform, nitroethane, nitropropane, ethylbenzene, etc. Chloroform, nitroethane, nitropropane, ethylbenzene, and toluene are preferred from the viewpoint of solubility.
  • component (II) and component (III) when the solubility of component (II) and component (III) is different, the above-mentioned filtrate is dried in a solvent such as vacuum drying using a solvent in which component (II) dissolves and component (III) cannot be dissolved.
  • a method of separating component (II) and component (III) by mixing the mixture of component (II) and component (III) obtained by removing again in an appropriate solvent can also be employed.
  • toluene, cyclohexane, and tetrahydrofuran are examples of solvents in which component (II) is highly soluble.
  • component (III) which are insoluble in the aforementioned solvent are polymer units of unsaturated hydrocarbon compounds, particularly ethylene, propylene, and ⁇ -olefins having 3 to 8 carbon atoms.
  • Identification of component (II), component (III) is performed by nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), gas chromatography (GS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). ), etc. Also, the types and structures of the polar groups bonded to component (II) and component (III) can be identified.
  • the resin composition of the present embodiment contains components such as additives described later that can be eluted in the solvent in the extraction step
  • the difference in molecular weight and polarity is used by liquid phase chromatography or the like to determine each component. and can be identified by the aforementioned NMR, IR, GS, TOF-SIMS, and the like. If the amount of component (II) and component (III) unreacted with component (I) is very small and it is difficult to separate component (II) and component (III), an atomic force microscope (AFM ) From the infrared absorption spectrum obtained by observation, the structural units of component (II) and component (III), and the polar group species bonded to component (II) and component (III) can also be specified.
  • a test piece to be subjected to AFM measurement includes a precise cross section of a resin composition prepared with an ultramicrotome or the like.
  • component (I) has higher rigidity than component (II) and component (III). It is possible to clarify.
  • the mass ratio of the polar resin (component (I)) in the resin composition of the present embodiment is 50% by mass or more, the component (I) forms "sea" in the morphology of the resin composition.
  • stiffness there is a difference in stiffness between component (I), component (II), and component (III). If it is softer than that, it can be identified that the portion corresponding to the "island” is component (II) and/or component (III).
  • the number-average dispersed particle size of the dispersed phase (B) can be calculated by obtaining the average value of the particle sizes of the soft portions in the elastic modulus mapping by the method described in the examples below.
  • elastic modulus measurement by AFM observation is calculated from the relationship between the load and the amount of deformation of the sample by setting the upper limit of the force acting on the tip of the AFM cantilever and the sample, and pressing the sample in the vertical direction. Therefore, the distribution of components with different elastic moduli can be observed as an image to represent the degree of deformation of each dispersed phase with respect to load.
  • the melting temperature for mixing component (I), component (II), and optionally component (III) in a molten state is extremely high.
  • the low-molecular-weight compounds generated during kneading or the like may bleed, and a clear elastic modulus mapping may not be obtained.
  • ultrasonic cleaning is performed in a solvent such as ethanol to remove the low-molecular-weight compounds, etc., as a pre-step for preparing a precise cross-section for AFM observation. After that, it is preferable to prepare a precise section with an ultramicrotome or the like.
  • a test piece subjected to electron microscopic observation is an ultra-thin section of the resin composition prepared by a cryomicrotome or the like, and may be prepared after the staining, or may be stained after the preparation.
  • component (I) has a smaller amount of aromatic skeleton than component (II) and component (III) does not have an aromatic ring skeleton
  • component (II) is used as a heavy metal in the staining agent to form tetraoxidation.
  • Ruthenium available.
  • Dyeing agents tend to oxidize the vinyl aromatic monomeric units of component (II) the most, followed by the aromatic ring backbone of component (I) polar resins, and not oxidize component (III).
  • the value obtained by doubling the particle size of the particles is defined as the fillet diameter described in the examples.
  • the number average dispersed particle size of the dispersed phase (B) is 1.5 ⁇ m. or less, preferably 1.3 ⁇ m or less, more preferably 1.1 ⁇ m or less, even more preferably 1.0 ⁇ m or less, and even more preferably 0.9 ⁇ m or less.
  • the lower limit of the number average dispersed particle size of the dispersed phase (B) is not particularly limited, but the number average dispersed particle size of 0.01 ⁇ m or more tends to facilitate maintaining the rigidity of the resin composition of the present embodiment. be.
  • the resin composition of the present embodiment as a method of maintaining sufficient rigidity for practical use, there is a method of adding a filler or the like, which will be described later.
  • a filler or the like which will be described later.
  • the dispersed phase (B) preferably has a number-average dispersed particle size of 0.01 ⁇ m or more because it tends to lower the impact resistance and toughness.
  • the modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of acid anhydride groups, hydroxyl groups, carboxyl groups, dicarboxyl groups, epoxy groups, oxetanyl groups, and amino groups. As a result, it exhibits high affinity and/or reactivity with the polar group of the polar resin (component (I)) and the epoxy group of the polymer having the epoxy group (component (III)).
  • the polar groups of component (II) and component (III) have affinity and/or reactivity with the polar resin (component (I)).
  • the amount of component (II) and the amount of polar groups bound to component (III) determine the affinity and/or reactivity with component (I).
  • modified conjugated diene polymer The amount of polar groups bonded to coalescence (II) is preferably 0.3 mol/chain or more, more preferably 0.5 mol/chain or more, and still more preferably 0.6 mol/chain or more.
  • component (II) When the amount of polar groups in component (II) is less than 0.3 mol/chain, the amount of component (II) not reactive with component (I) and component (III) is less than the component ( II) It becomes 70 mol % or more of the total amount, and the dispersibility tends to be greatly reduced.
  • component (I) when using a polyphenylene sulfide resin as component (I), from the viewpoint of reactivity with polyphenylene sulfide resin, which is a polar resin excellent in terms of rigidity, chemical resistance, and heat resistance, it is bound to component (II). At least one polar group selected from the group consisting of a hydroxyl group and a carboxyl group is preferable.
  • the polar groups bonded to component (III) are preferably reactive with the polar groups of component (I) and the polar groups of component (II), and are therefore epoxy groups, oxazoline groups, and oxetanyl groups. At least one selected from the group consisting of is preferable, and an epoxy group is more preferable.
  • component (III) is a polymer having an epoxy group
  • the epoxy group has a high affinity with the polar groups of component (I) and component (II) when component (I) is a polyphenylene sulfide resin. and/or reactivity, particularly high reactivity and/or affinity with the polyphenylene sulfide resin (component (I)).
  • the content of epoxy groups in component (III) is preferably 1.0 mol/chain or more, more preferably 2.0 mol/chain or more, and still more preferably 3.0 mol/chain or more.
  • the resin composition of the present embodiment preferably further contains various additives such as fillers.
  • a fibrous filler is preferable as the filler.
  • fibrous fillers include, but are not limited to, glass fibers, carbon fibers, cellulose nanofibers, wollastonite, potassium titanate whiskers, calcium carbonate whiskers, aluminum borate whiskers, magnesium sulfate whiskers, sepiolite, and xonotlite. and fibrous inorganic fillers such as zinc oxide whiskers.
  • glass fiber, carbon fiber, cellulose nanofiber and wollastonite are preferable because they tend to increase the strength (rigidity) and heat resistance of the molded article.
  • the fibrous filler may be surface-treated with a compound having an affinity group or reactive group for the polar resin (component (I)). 1 type of fibrous fillers may be contained, and 2 or more types may be contained.
  • additives include, but are not limited to, oils, fillers, heat stabilizers, ultraviolet absorbers, nucleating agents, antioxidants, weathering agents, light stabilizers, plasticizers, and antistatic agents. , flame retardants, slip agents, anti-blocking agents, anti-fog agents, lubricants, pigments, dyes, dispersants, copper damage inhibitors, neutralizers, anti-foaming agents, weld strength improvers, natural oils, synthetic oils, waxes, etc. of additives.
  • Other elastomers and thermoplastics may also be used as additives in any proportion. These may use only 1 type and may use 2 or more types together.
  • an auxiliary agent that improves the affinity or reactivity between the polar resin (component (I)) and the modified conjugated diene polymer (component (II)) may be added to the resin composition of the present embodiment.
  • an alkoxysilane compound having at least one polar group selected from the group consisting of an epoxy group, an amino group and an isocyanate group is preferred.
  • the method for producing the resin composition of the present embodiment is not particularly limited, and known methods can be used.
  • the method of melt-kneading is preferable.
  • a melt-kneading method using an extruder is preferable from the viewpoint of productivity and good kneadability.
  • the interface between the polar resin and the modified conjugated diene polymer is increased, and the dispersed phase (B) is formed. .
  • the resin temperature during kneading may be any temperature at which the polar resin (I), modified conjugated diene polymer (II), and polymer (III) melt, and is preferably 270°C to 450°C. From the viewpoint of suppressing thermal deterioration of the polar resin (I), the modified conjugated diene polymer (II), and the polymer (III), the temperature is more preferably 400° C. or less.
  • melt-kneading may be performed under an inert gas such as nitrogen.
  • an inert gas such as nitrogen.
  • thermosetting resin when a thermosetting resin is used as component (I), component (II) obtained by dissolving a thermosetting resin in a solution form and/or a thermosetting resin in a solid form in an appropriate solvent,
  • the resin composition of the present embodiment can be obtained by adding component (III) and, if necessary, the above-described additives, and after mixing, further adding an appropriate curing agent and mixing again.
  • the solvent in which the component (II) and the component (III) are dissolved may be removed by a method such as vacuum drying.
  • solvents examples include toluene, methyl ethyl ketone, cyclohexane, cyclohexanone, chloroform, tetrahydrofuran and the like.
  • the curing agent is not particularly limited as long as it has a function of curing the polar resin (I). Examples include phenol-based curing agents, naphthol-based curing agents, active ester-based curing agents, benzoxazine-based curing agents, cyanate ester-based curing agents, and carbodiimide-based curing agents.
  • a single curing agent may be used alone, or two or more curing agents may be used in combination. Moreover, you may add a hardening accelerator as needed.
  • curing accelerators include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like.
  • a method of molding the resin composition of the present embodiment includes a method of injecting the resin composition into an arbitrary mold, heating the mold to an arbitrary time and temperature, and obtaining a cured product.
  • the mold temperature is preferably 30 to 300° C., more preferably 50 to 250° C., from the viewpoint of productivity. From the viewpoint of productivity, the heating time is preferably 1 minute to 5 hours, preferably 10 minutes to 3 hours.
  • the polyphenylene sulfide-based resin when a polyphenylene sulfide-based resin is used as the component (I), from the viewpoint of intermolecular force or chemical bond formation between the polyphenylene sulfide-based resin and the modified conjugated diene-based polymer (component (II)), the polyphenylene sulfide-based It is preferable to use a resin containing a thiol group or a carboxyl group.
  • the shape is not particularly limited, and may be pellet-like, sheet-like, strand-like, chip-like, or the like.
  • a preferred embodiment of the method for producing the resin composition of the present embodiment includes the following method.
  • the molded article of this embodiment is a molded article of the resin composition of this embodiment described above.
  • the molded article of the present embodiment is produced by using the resin composition of the present embodiment by conventionally known methods such as extrusion molding, injection molding, two-color injection molding, sandwich molding, blow molding, compression molding, vacuum molding, and rotational molding. , powder slush molding, foam molding, laminate molding, calendar molding, blow molding, and the like.
  • processing such as foaming, powdering, stretching, adhesion, printing, painting, and plating may be performed as necessary.
  • molded products such as sheets, films, injection molded products of various shapes, hollow molded products, pressure molded products, vacuum molded products, extrusion molded products, foam molded products, nonwoven fabrics and fibrous molded products, synthetic leather, etc. It can be used as a molded product.
  • These molded products are automotive interior and exterior materials, building materials, toys, home appliance parts, medical equipment, industrial parts, various hoses, various housings, various module cases, various power control unit parts, miscellaneous goods, substrates for electronic equipment, etc. , casings, sheets, packages, etc.
  • the molded article of the present embodiment is preferably used as a non-porous member.
  • the term “porous” as used herein refers to pores penetrating through a material, and cells, which are non-penetrating pores generated by foaming, are not porous.
  • the molded body of the present embodiment is at least one resin having a polar group (component (I)) selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
  • Polymer block (A) mainly composed of vinyl aromatic monomer units
  • polymer block (B) mainly composed of conjugated diene monomer units, vinyl aromatic monomer units and conjugated diene monomer units a modified hydrogenated conjugated diene polymer (component (II)) having at least two polymer blocks selected from random polymer blocks (C); an elastomer having an epoxy group (component (III));
  • a molded body of a resin composition containing The modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups, It is preferable that the molded body satisfies
  • ducts for vehicles such as automobiles, industrial piping, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, optical pickups, and oscillation.
  • Components related to electronic equipment such as terminals, various terminal boards, transformers, plugs, and printed circuit boards. These are molded articles that are used under wide temperature conditions from low to high temperatures.
  • ⁇ Condition (I-1)> A strip-shaped test piece having a width of 10 mm, a length of 170 mm, and a thickness of 2 mm obtained from the compact has a tensile elongation at break of 25% or more at room temperature and a tensile speed of 5 mm/min.
  • a strip-shaped test piece having a length of about 80 mm, a width of about 10 mm, and a thickness of 4 mm obtained from the compact has a Charpy impact value of 15 kJ/m 2 in a Charpy impact test at -30°C.
  • the molded body of this embodiment can be processed into a desired shape.
  • a dumbbell-shaped test piece or a strip-shaped test piece can be produced by cutting out a test piece from a nearly flat portion of the compact. It is not essential that the test piece is perfectly flat, and it is sufficient if it is flat enough to allow tensile elongation at break and viscoelasticity measurement.
  • a measurable test piece can be obtained by cutting the test piece in the longitudinal direction.
  • the thickness of the molded body may be thicker than 2 mm. can be measured.
  • the molded article of the present embodiment has excellent resistance when the modified conjugated diene polymer (component (II)) is dispersed in a resin (component (I)) having a polar group such as a polyphenylene sulfide resin. It is preferable from the viewpoint of obtaining impact resistance and toughness.
  • the average dispersed particle diameter of (II)) is 1.5 ⁇ m or less, preferably 1.3 ⁇ m or less, more preferably 1.2 ⁇ m or less, and still more preferably 1.1 ⁇ m or less.
  • the average particle size of the dispersed modified conjugated diene-based polymer (component (II)) in the molded article of the present embodiment can be measured by the method described in Examples below.
  • the resin composition constituting the molded article of the present embodiment may contain additives such as fillers in an amount of 1 to 50 parts by mass and 5 to 30 parts by mass with respect to 100 parts by mass of the resin composition. Parts by weight are preferred.
  • additives such as fillers in an amount of 1 to 50 parts by mass and 5 to 30 parts by mass with respect to 100 parts by mass of the resin composition. Parts by weight are preferred.
  • 1 to 70 parts by mass of other additives such as flame retardants are included with respect to 100 parts by mass of the resin composition.
  • the tensile elongation at break measured under the above conditions is 10% or more and the impact resistance is 10 kJ/m 2 or more.
  • the polar group of the modified conjugated diene-based polymer (component (II)) used in the resin composition of the present embodiment is a resin (component (I) )), etc., by reacting with the polar group of the component (I) when kneaded, and is thought to contribute to reducing the particle size of the dispersed phase (B). It is assumed that the polar groups of the polymer (component (II)) often remain.
  • the polar groups of a given polymer (component (III)) also have reactivity with component (I) and/or component (II), it is believed that unreacted polar groups remain in the resin composition. be done.
  • the modified conjugated diene polymer (component (II)) having at least one selected from the group consisting of hydroxyl groups and carboxyl groups and the elastomer having epoxy groups (component (III)) in the molded article of the present embodiment are qualitatively determined.
  • the above-mentioned modified conjugated diene polymer (component (II)) and epoxy group-containing elastomer (component (III)) are dissolved, and polyphenylene sulfide-based resin and polyethylene terephthalate-based resin, which are matrix resins, are dissolved. , and a polybutylene terephthalate-based resin (each component (I)) is mixed with a solvent that cannot dissolve the resin composition, and an unreacted modified conjugated diene-based polymer (component (II)) and an epoxy group are The elastomer (component (III)) is extracted.
  • the matrix resin is a polyphenylene sulfide-based resin
  • the matrix resin is a polyphenylene sulfide-based resin
  • polyphenylene sulfide resin component (I)
  • unreacted modified conjugated diene polymer component (II)
  • unreacted epoxy group-containing elastomer component (III)
  • Solvents include, for example, toluene, cyclohexane, xylene, tetrahydrofuran, chloroform, nitroethane, nitropropane, ethylbenzene and the like, but chloroform, nitroethane, nitropropane, ethylbenzene, and toluene are preferred from the viewpoint of solubility.
  • undissolved matrix resin is removed by filtration or the like, and the filtrate is subjected to liquid phase chromatography to remove unreacted modified conjugated diene polymer (component (II)), unreacted epoxy group can be separated off (component (III)).
  • the modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) have different solubilities
  • the modified conjugated diene polymer (component (II)) dissolves
  • the solvent is removed from the filtrate by vacuum drying or the like, and the modified conjugated diene polymer obtained thereby (component (II) ), and a mixture of elastomers having epoxy groups (component (III)) are mixed again in an appropriate solvent to convert unreacted modified conjugated diene-based polymer (component (II)) and unreacted epoxy groups to
  • a method of separating the elastomer (component (III)) can also be employed.
  • Solvents in which the modified conjugated diene polymer (component (II)) is generally highly soluble include toluene, cyclohexane, and
  • the modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) can be identified by nuclear magnetic resonance spectroscopy (NMR), infrared absorption spectroscopy (IR), and gas chromatography. It is possible by lithography (GS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • NMR nuclear magnetic resonance spectroscopy
  • IR infrared absorption spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the resin composition contains components such as additives described later that can be eluted into the solvent in the extraction step described above, liquid phase chromatography or the like can be used to separate the components by utilizing differences in molecular weight and polarity. It can be identified by the aforementioned NMR, IR, GS, TOF-SIMS, and the like.
  • AFM atomic force microscope
  • image stack data is obtained using a scanning transmission X-ray microscope, spectra are extracted from characteristic regions of the image stack data, and component-specific mapping is created by singular value decomposition using these as reference spectra.
  • reacted modified conjugated diene-based polymer, (component (II)), structural units of an elastomer having unreacted epoxy groups (component (III)), polar group species bonded to the unreacted modified conjugated diene-based polymer, Polar group species attached to elastomers with unreacted epoxy groups can also be identified.
  • Content ratio of the resin having a polar group (component (I)), the modified conjugated diene-based polymer (component (II)), and the elastomer having an epoxy group (component (III)) in the resin composition of the present embodiment uses electron microscopes such as the aforementioned AFM, TEM, and SEM to determine the modified conjugated diene-based polymer (component (II)) in the resin (component (I)) having a polar group, and the epoxy group
  • the content ratio of the modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) was determined from the infrared absorption spectrum obtained by the AFM observation described above.
  • the peak intensity of the skeleton (specifically, the vinyl aromatic monomer unit skeleton) possessed only by the polymer (component (II)), and the modified conjugated diene-based polymer described above are isolated and analyzed by NMR, IR, GS, and It can be calculated from the quantitative ratio of vinyl aromatic monomer units and conjugated diene monomer units in the modified conjugated diene polymer calculated by TOF-SIMS or the like.
  • the molded article of the present embodiment can have any shape depending on the application. Examples include various containers, cylindrical containers, and housings. Specifically, protection and support members for box-shaped electrical and electronic component integrated modules, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, and variable capacitor cases. , optical pickups, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, Electrical and electronic parts such as motor brush holders, parabolic antennas, and computer-related parts.
  • VTR parts TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio parts, audio equipment parts such as audio equipment, laser discs (registered trademark) and compact discs, lighting parts, refrigerator parts, air conditioner parts, Typewriter parts, word processor parts, and home and office electric product parts such as hot water heaters, bath water volume, temperature sensors, and other plumbing equipment parts.
  • machine-related parts such as office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts, cleaning jigs, motor parts, writers, typewriters, etc. can be mentioned.
  • optical instruments such as microscopes, binoculars, cameras, watches, etc., and parts related to precision machinery are also included.
  • alternator terminal alternator connector
  • IC regulator potentiometer base for light gear, relay block, inhibitor switch
  • various valves such as exhaust gas valves, fuel related / exhaust system / intake system various pipes, air intake nozzle snorkel, Intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pads
  • thermostat bases for air conditioners, heating hot air flow control valves, brush holders for radiator motors, water pump impellers, turbine vanes, wiper motor related parts, dust tributors, starter switches, ignition coils and their bobbins, motor insulators, motors Rotors, motor cores, starter relays, transmission wire harnesses, window washer nozzles, air conditioner panel switch boards, fuel-related electromagnetic valve coils, fuse connectors, horn terminals, electrical component insulation plates, step motor rotors, lamp sockets, lamp reflectors
  • various valves
  • ECS400 manufactured by JEOL
  • deuterated chloroform is used as the solvent
  • the sample concentration is 50 mg/mL
  • the observation frequency is 400 MHz
  • tetramethylsilane is used as the chemical shift standard
  • the pulse delay is 2.904 seconds
  • the scan is performed. Measurements were performed at a frequency of 64, a pulse width of 45°, and a measurement temperature of 26°C.
  • the amount of vinyl bonds, after calculating the integral value per 1H of each bonding mode from the integral value of the signal attributed to 1,4-bond and 1,2-bond, 1,4-bond, 1,2-bond was obtained and calculated by the following formula.
  • Vinyl bond amount (1,2-bond/(1,4-bond + 1,2-bond))
  • a signal derived from the total amount of conjugated diene monomer units and an integrated value derived from the amount of butylene in the modified conjugated diene-based polymer after hydrogenation were calculated, and the ratio thereof was calculated.
  • the calculation of the ratio used the integrated value of the signal attributed to butylene (hydrogenated 1,2-bond) at 0-2.0 ppm of the spectrum.
  • the amount of butylene with respect to the total 100 mol % of 1,2-bonds and 1,4-bonds based on this conjugated diene monomer unit is the vinyl hydrogenation rate.
  • styrene content ((4) Content of vinyl aromatic monomer unit in modified conjugated diene polymer (hereinafter also referred to as “styrene content”))
  • the content of vinyl aromatic monomer units was measured by proton nuclear magnetic resonance ( 1 H-NMR) method using a modified conjugated diene polymer.
  • ECS400 manufactured by JEOL
  • deuterated chloroform is used as the solvent
  • the sample concentration is 50 mg/mL
  • the observation frequency is 400 MHz
  • tetramethylsilane is used as the chemical shift standard
  • the pulse delay is 2.904 seconds
  • the number of scans is 64. times, a pulse width of 45°, and a measurement temperature of 26°C.
  • Styrene content was calculated using the integral of the total styrene aromatics signal at 6.2-7.5 ppm of the spectrum. The styrene content was also confirmed by calculating the content of vinyl aromatic monomer units for each polymer sampled at each step of the polymerization process of the modified conjugated diene polymer before hydrogenation.
  • the weight average molecular weight was obtained from the molecular weight of each peak and the composition ratio of each peak (determined from the area ratio of each peak in the chromatogram).
  • the molecular weight distribution was calculated from the ratio of the obtained weight average molecular weight (Mw) and number average molecular weight (Mn).
  • Ratio of modified conjugated diene polymer to standard polystyrene and modified conjugate to standard polystyrene in the chromatogram measured by silica column GPC [device: LC-10 (manufactured by Shimadzu Corporation), column: Zorbax (manufactured by DuPont)]
  • the proportions of the diene polymer were compared, the amount of adsorption to the silica column was measured from the difference between them, and this proportion was defined as the modification rate.
  • the modification rate was calculated by the following formula as the ratio (%) of amino groups having a specific structure at the terminal.
  • a Area (%) of total polymer measured with polystyrene gel (PLgel)
  • b Area (%) of low molecular weight internal standard polystyrene (PS) measured with polystyrene gel (PLgel)
  • c Area (%) of total polymer measured with a silica-based column (Zorbax)
  • d Area (%) of low-molecular-weight internal standard polystyrene (PS) measured with a silica-based column (Zorbax)
  • the unreacted hydrochloric acid is quantified by titrating the toluene solution after this reaction with potassium hydroxide having a factor of 1 ⁇ 0.05, and the amount of glycidyl methacrylate bound to the modified conjugated diene polymer is calculated from the amount of reacted hydrochloric acid. bottom.
  • maleic anhydride binding amount The modified conjugated diene polymer was dissolved in toluene and titrated with a methanol solution of sodium methoxide with a factor of 1 ⁇ 0.05 to calculate the amount of maleic anhydride binding.
  • thermoplastic resin polyethylene terephthalate or polyphenylene sulfide resin used as the component (I)
  • the test piece is an ISO-527-2-1A dumbbell molded by an injection molding machine, and the tensile test speed is 50 mm / min. It was measured. Three or more test pieces were tested for each composition, and the average value was taken as the physical property value.
  • an epoxy resin which is a thermosetting resin
  • a test piece specified in JIS K6911 5.18.1(2) was prepared and measured at a tensile test speed of 5 mm/min.
  • the resin composition was put into an injection molding machine (mold clamping pressure 18tf, screw system ⁇ 16, SL screw) with the cylinder temperature set to 300 to 320 ° C (hopper side to nozzle side), screw rotation speed 150 rpm, back pressure 2 Mpa, Injection molding was performed into a mold for spiral flow measurement with a spiral width of 5 mm, a spiral thickness of 3 mm, a maximum spiral length of 850 mm, and a stamping width of 10 mm at a weighing completion position of 55 mm at a filling speed of 50 mm/s and an injection pressure of 100 MPa.
  • the cooling time was 20 s, and the spiral flow length (cm) was measured.
  • phase structure in the resin composition is obtained by ultrasonically cleaning a test molded body (ISO-527-2-1A) of the resin composition described later in ethanol for about 1 hour, cutting it with an ultramicrotome, and exposing the cross section. and observed. The cutting was performed at ⁇ 150° C. using a glass knife and a diamond knife to prepare a precise cross section for AFM observation.
  • the AFM used was made by Bruker, and the probe used was SCANASYST-AIR.
  • the precision section sample was fixed to a dedicated sample fixing table, the measurement mode was QMN Mode in Air, the resolution was 512 ⁇ 256 pixels, the measurement range was 10 ⁇ 10 ⁇ m, the maximum indentation load was 500 pN, and the scan speed was 1.0 Hz.
  • a modulus mapping was created from the modulus force curve.
  • the elastic modulus mapping was a grayscale image in which high elastic moduli are bright and low elastic moduli are dark, and was output with 512 ⁇ 512 pixels.
  • 2-point moving average filter processing was performed to remove noise, and a binarized image was created. The Otsu method was used for binarization.
  • Component (I) Resin having a polar group
  • component (I) As a resin having a polar group, the following polar resin was used.
  • Polyphenylene sulfide resin A900 (manufactured by Toray Industries, Inc.)
  • Polyethylene terephthalate resin TRF-8550FF (manufactured by Teijin Limited)
  • Epoxy resin bisphenol A type EXA-850CRP (manufactured by DIC)
  • Component (II) Component (II) was produced by a method for producing a modified conjugated diene-based polymer, which will be described later. Modifiers, other components, and hydrogenation catalysts used in the production are shown below. [denaturant] The following compounds were used as modifiers for producing the modified conjugated diene polymer. Maleic anhydride (manufactured by Fuso Chemical Industry Co., Ltd.) 1,3-dimethyl-2-imidazolidinone (manufactured by Tokyo Chemical Industry Co., Ltd.) Glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) Peroxide 25B (manufactured by NOF Corporation)
  • Epoxy resin curing agent cresol novolac resin LF-6161 (manufactured by DIC)
  • a hydrogenation catalyst used for the hydrogenation reaction of a modified conjugated diene polymer was prepared by the following method. 1 L of dried and purified cyclohexane was placed in a reaction vessel purged with nitrogen, 100 mmol of bis( ⁇ 5-cyclopentadienyl)titanium dichloride was added, and an n-hexane solution containing 200 mmol of trimethylaluminum was added with sufficient stirring. and reacted at room temperature for about 3 days to obtain a hydrogenation catalyst.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration: 20% by mass) containing 80 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
  • 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as “DMI”) was added in an equimolar amount to 1 mol of n-butyllithium, and reacted at 70° C. for 10 minutes. Methanol was added after completion of the reaction.
  • the terminal amine-modified conjugated diene polymer (1-A) obtained as described above has a styrene content of 20% by mass, a weight average molecular weight of 12.2 ⁇ 10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 44%, and the modification rate was 70% (the number of modifying groups per polymer chain was 0.70). Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (1-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (1-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (1-A) to 0. 0.25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (1-B).
  • the obtained terminal amine-modified hydrogenated conjugated diene polymer (1-B) had a hydrogenation rate of 73% and a vinyl hydrogenation rate of 96%.
  • the temperature is set to 150 to 200° C.
  • a terminal carboxyl group-modified conjugated diene-based polymer (1-C) was obtained by supplying to a machine and compounding.
  • the terminal carboxyl group-modified conjugated diene polymer (1-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column. This means that all the amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.70.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration: 20% by mass) containing 80 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. .
  • Methanol was added after completion of the reaction.
  • the terminal amine-modified conjugated diene polymer (2-A) obtained as described above has a styrene content of 20% by mass, a weight average molecular weight of 12.1 ⁇ 10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 45%, and the modification rate was 80% (the number of modifying groups per polymer chain was 0.80). Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (2-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (2-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (2-A) to 0. 25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (2-B).
  • the obtained terminal amine-modified hydrogenated conjugated diene polymer (2-B) had a hydrogenation rate of 74% and a vinyl hydrogenation rate of 96%.
  • the temperature is set to 150 to 200 ° C.
  • a terminal carboxyl group-modified conjugated diene polymer (2-C) was obtained by supplying to a machine and compounding.
  • the terminal carboxyl group-modified conjugated diene polymer (2-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column. This means that all the amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.80.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration: 20% by mass) containing 70 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • a cyclohexane solution (concentration: 20% by mass) containing 15 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. .
  • Methanol was added after completion of the reaction.
  • the terminal amine-modified conjugated diene polymer (3-A) obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 12.0 ⁇ 10 4 , a molecular weight distribution of 1.09, and a vinyl bond content of 43%, and the modification rate was 79% (the number of modifying groups per polymer chain was 0.79). Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (3-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (3-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (3-A) to 0. 0.25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (3-B).
  • the resulting hydrogenated amine-modified hydrogenated conjugated diene polymer (3-B) had a hydrogenation rate of 75% and a vinyl hydrogenation rate of 96%.
  • a terminal carboxyl group-modified conjugated diene polymer (3-C) was obtained by supplying to a machine and compounding.
  • the terminal carboxyl group-modified conjugated diene polymer (3-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column. That is, it means that all amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.79.
  • ⁇ Modified conjugated diene polymer (4)> Except for adding 0.2 mol of tetramethylethylenediamine (TMEDA) to 1 mol of n-butyllithium, the same operation as in ⁇ Modified conjugated diene-based polymer (2)> was performed to obtain a terminal carboxyl group-modified conjugated diene.
  • a system polymer (4-C) was obtained.
  • the obtained terminal carboxyl group-modified conjugated diene copolymer (4-C) had a styrene content of 20% by mass, a weight average molecular weight of 12.2 ⁇ 10 4 , a molecular weight distribution of 1.09, and a vinyl bond content of 24%.
  • the hydrogenation rate was 78%, the vinyl hydrogenation rate was 96%, and the modification rate was 80% (the number of modifying groups per polymer chain was 0.79).
  • ⁇ Modified conjugated diene polymer (5)> Except for adding 0.09 parts by mass of n-butyl lithium to 100 parts by mass of all the monomers, the same operation as in ⁇ Modified conjugated diene-based polymer (2)> was performed to obtain a terminal carboxyl group-modified conjugated diene-based A polymer (5-C) was obtained.
  • the resulting terminal carboxyl group-modified conjugated diene copolymer (5-C) had a styrene content of 20% by mass, a weight average molecular weight of 10.1 ⁇ 10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 43%.
  • the hydrogenation rate was 78%
  • the vinyl hydrogenation rate was 96%
  • the modification rate was 80% (the number of modifying groups per polymer chain was 0.80).
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration: 20% by mass) containing 87 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • a cyclohexane solution (concentration: 20% by mass) containing 6.5 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. .
  • Methanol was added after completion of the reaction.
  • the terminal amine-modified conjugated diene polymer (6-A) obtained as described above has a styrene content of 13% by mass, a weight average molecular weight of 12.2 ⁇ 10 4 , a molecular weight distribution of 1.09, and a vinyl bond content of 35%, and the modification rate was 81% (the number of modifying groups per polymer chain was 0.81). Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (6-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (6-A). The hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (6-A) to 0. 0.25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (6-B).
  • the obtained terminal amine-modified hydrogenated conjugated diene polymer (6-B) had a hydrogenation rate of 80% and a vinyl hydrogenation rate of 98%.
  • the temperature is set to 150 to 200 ° C.
  • a terminal carboxyl group-modified conjugated diene polymer (6-C) was obtained by supplying to a machine and compounding.
  • the terminal carboxyl group-modified conjugated diene polymer (6-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column. This means that all the amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.81.
  • TMEDA tetramethylethylenediamine
  • a cyclohexane solution (concentration of 20% by mass) containing 50 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
  • a cyclohexane solution (concentration: 20% by mass) containing 25 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
  • 1.1 mol of 1,3-dimethyl-2-imidazolidinone hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. .
  • Methanol was added after completion of the reaction.
  • the terminal amine-modified conjugated diene polymer (7-A) obtained as described above has a styrene content of 50% by mass, a weight average molecular weight of 11.9 ⁇ 10 4 , a molecular weight distribution of 1.11, and a vinyl bond content of 43%, and the modification rate was 79% (the number of modifying groups per polymer chain was 0.79). Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (7-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (7-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (7-A) to 0. 25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (7-B).
  • the resulting hydrogenated amine-modified hydrogenated conjugated diene polymer (7-B) had a hydrogenation rate of 77% and a vinyl hydrogenation rate of 97%.
  • the temperature is set to 150 to 200° C.
  • a terminal carboxyl group-modified conjugated diene polymer (7-C) was obtained by supplying to a machine and compounding.
  • the terminal carboxyl group-modified conjugated diene polymer (7-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that no adsorption of amino groups to the column occurred. That is, it means that all amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.79.
  • TMEDA tetramethylethylenediamine
  • the conjugated diene polymer (8-A) obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 12.1 ⁇ 10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 36%. there were.
  • the hydrogenation catalyst prepared as described above is added at 70 ppm based on Ti based on 100 parts by mass of the conjugated diene polymer (8-A), A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 3.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate is added in an amount of 0.25 parts by mass with respect to 100 parts by mass of the conjugated diene polymer (8-A). to obtain a hydrogenated conjugated diene polymer (8-B).
  • the obtained hydrogenated conjugated diene polymer (8-B) had a hydrogenation rate of 97% and a vinyl hydrogenation rate of 99%.
  • the mixture was supplied to a twin-screw extruder at a temperature setting of 150 to 220° C. over the entire length of the extruder.
  • Peroxide 25B were added from the middle stage of the extruder and compounded to obtain a main chain epoxy-modified conjugated diene polymer (8-C).
  • the resulting main chain epoxy group-modified conjugated diene polymer (8-C) was titrated by the method described above to find that the amount of glycidyl methacrylate bond was 1.2% by mass.
  • TMEDA tetramethylethylenediamine
  • the conjugated diene polymer (9-A) obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 12.2 ⁇ 10 4 , a molecular weight distribution of 1.08, and a vinyl bond content of 37%. there were.
  • the hydrogenation catalyst prepared as described above is added at 50 ppm on a Ti basis per 100 parts by mass of the conjugated diene polymer (9-A), A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
  • octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added in an amount of 0.25 parts by mass with respect to 100 parts by mass of the conjugated diene polymer (9-A). to obtain a hydrogenated conjugated diene polymer (9-B).
  • the obtained hydrogenated conjugated diene polymer (9-B) had a hydrogenation rate of 76% and a vinyl hydrogenation rate of 96%.
  • the length of the extruder After mixing the hydrogenated conjugated diene polymer (9-B) obtained as described above, maleic anhydride, and organic peroxide (Perhexa 25B (manufactured by NOF Corporation)), the length of the extruder The mixture was supplied to a twin-screw extruder with the temperature set to 150 to 220° C. over the entire temperature range and compounded to obtain a main chain acid anhydride group-modified conjugated diene polymer (9-C). The obtained main chain acid anhydride group-modified conjugated diene polymer (9-C) was titrated by the method shown in (9) Maleic anhydride bond amount), and the maleic anhydride bond amount was 1. 0.5 mass %.
  • Component (III) a polymer having a polar group reactive with components (I) and (II)
  • component (III) the following polymers having epoxy groups were used.
  • Bondfast BF-7M glycidyl methacrylate-ethylene-methyl acrylate copolymer, manufactured by Sumitomo Chemical Co., Ltd.
  • Epofriend AT501 epoxidized styrene-butadiene block copolymer, manufactured by Daicel Corporation
  • ELVAOY TM PTW ethylene-glycidyl methacrylate-butyl acrylate copolymer, manufactured by Dow
  • Examples 1 to 15 Using the above components, the composition ratios shown in Tables 1 and 2 were melted using a twin-screw extruder ZSK28 (manufactured by Werner and Pfleiderer) at a cylinder setting temperature of 300 ° C., a screw rotation speed of 200 rpm, and a discharge rate of 9 kg / hour. The mixture was kneaded to produce a resin composition. Thereafter, using an injection molding machine, injection molding was performed with a cylinder temperature setting of 300° C. and a mold temperature setting of 140° C. to prepare a test piece (ISO-527-2-1A).
  • ZSK28 manufactured by Werner and Pfleiderer
  • Tables 1 to 3 show the number average dispersed particle size, toughness and impact resistance of the dispersed phase (B) of each resin composition.
  • "(1)" indicates that the test piece for the Charpy impact test was unbroken.
  • Example 16 to 22 Using the above components (I) to (III), using a twin-screw extruder ZSK28 (manufactured by Werner and Pfleiderer) at the composition ratio shown in Table 4, the cylinder setting temperature was 290 ° C., the screw rotation speed was 200 rpm, and the discharge amount was 9 kg. / hour to produce a resin composition. Thereafter, using an injection molding machine, injection molding was performed with a cylinder temperature setting of 290° C. and a mold temperature setting of 120° C. to prepare a test piece (ISO-527-2-1A).
  • Tables 4 and 5 show the number average dispersed particle size, toughness and impact resistance of the dispersed phase (B) of each resin composition.
  • Example 23 to 27 Using the components described above, a resin composition was produced in the composition ratio shown in Table 6.
  • component (II) and component (III) component (III) is dissolved in toluene at a concentration of about 20% by mass, added to the epoxy resin solution, and stirred. It was then vacuum dried at room temperature to remove most of the toluene. Next, a curing agent was added and stirred to obtain a solution-like resin composition. Next, after heating the solution-like resin composition to 80 ° C., the solution-like resin composition was injected into a mold having a shape specified in the toughness test and the Charpy impact test described above, and heated at 140 ° C. for 2 hours. A cured product of the resin composition was obtained by time compression molding. Table 6 shows the number average dispersed particle diameter, toughness and impact resistance of the dispersed phase (B) of each resin composition.
  • Tables 6 and 7 show the number average dispersed particle size, toughness and impact resistance of the dispersed phase (B) of each resin composition.
  • the resin composition of the present invention can be used in sheets, films, injection-molded articles of various shapes, blow-molded articles, pressure-molded articles, vacuum-molded articles, extrusion-molded articles, foam-molded articles, non-woven fabrics, fibrous molded articles, synthetic leather, and the like. It can be used as a wide variety of molded products, and these molded products are automotive interior and exterior materials, building materials, toys, home appliance parts, medical equipment, industrial parts, various hoses, various housings, various module cases, and various power control unit parts. , and other miscellaneous goods, and have industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This resin composition contains: a component (I), a polar group-containing resin (excluding component (II)); and a component (II), at least one type of modified conjugated diene-based polymer in which at least one type of polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group and an amino group is bonded to a block polymer having at least two types of polymer block selected from among a polymer block (A) comprising mainly a vinyl aromatic monomer unit, a polymer block (B) comprising mainly a conjugated diene monomer unit and a random polymer block (C) of vinyl aromatic monomer units and conjugated diene units. The resin composition has a continuous phase (A) of the component (I) and dispersed phases (B) containing component (II) that are dispersed in the continuous phase (A). The number average dispersed particle diameter of the dispersed phases (B) is 1.5 μm or less. The component (I) : component (II) mass ratio is 50/50-99/1.

Description

樹脂組成物、樹脂組成物の製造方法、及び成形体RESIN COMPOSITION, RESIN COMPOSITION MANUFACTURING METHOD, AND MOLDED PRODUCT
 本発明は、樹脂組成物、樹脂組成物の製造方法、及び成形体に関する。 The present invention relates to a resin composition, a method for producing a resin composition, and a molded product.
 共役ジエン系重合体は、1,2-結合の割合、共役ジエン系重合体を構成するブロックの割合、ブロックの配置、水素化の程度等を調整することによって、種々の特性を示すことが知られている。また、さらなる特性を付与することを目的として、他素材との間に分子間力を生じ得る親和性基、又は化学結合を形成し得る反応性基を形成した共役ジエン系重合体(以下、変性共役ジエン系重合体と記載する)が提案されている。
 例えば、特許文献1には、共役ジエン系重合体の末端にアミノ基含有化合物を反応させた、アミノ基変性共役ジエン系重合体が提案されている。
Conjugated diene-based polymers are known to exhibit various properties by adjusting the ratio of 1,2-bonds, the ratio of blocks constituting the conjugated diene-based polymer, the arrangement of blocks, the degree of hydrogenation, and the like. It is In addition, for the purpose of imparting further properties, a conjugated diene polymer (hereinafter referred to as modified described as a conjugated diene-based polymer) has been proposed.
For example, Patent Document 1 proposes an amino group-modified conjugated diene polymer obtained by reacting an amino group-containing compound with the terminal of a conjugated diene polymer.
 一方において、極性基を有する樹脂(以下、極性樹脂と記載する場合がある。)は、一般的に剛性、耐薬品性、耐熱性等に優れているが、硬くて脆いため、従来から種々の改質剤が検討されている。変性共役ジエン系重合体は、変性基による反応や水素結合等の分子間力により、極性樹脂との相容性に優れているため、極性樹脂の改質剤として広く使用されている。 On the other hand, resins having polar groups (hereinafter sometimes referred to as polar resins) generally have excellent rigidity, chemical resistance, heat resistance, etc., but are hard and brittle. Modifiers are being considered. Modified conjugated diene-based polymers are widely used as modifiers for polar resins because they have excellent compatibility with polar resins due to intermolecular forces such as reactions with modified groups and hydrogen bonding.
特開2014-210848号公報JP 2014-210848 A
 近年、自動車、家電、通信機器等の高性能化及びIoT化の普及に伴い、各部材の軽量化や電装化が進む中で、耐熱性、耐薬品性、難燃性、機械強度、寸法安定性、電気絶縁性、及び誘電特性に優れている極性樹脂の需要が高まっている。
 一方で、電子材料においては製造時及び使用時の衝撃に耐えられる材料が要求されており、また、自動車部品においては安全性志向が高まってきているため、硬くて脆い極性樹脂の耐衝撃性や靭性を向上させる必要があることが課題となっている。
 例えば、特許文献1には、ポリフェニレンスルフィド樹脂(以下、「PPS」と記載する場合がある)の靭性改良に関して、PPSよりも靭性に優れた変性共役ジエン系重合体を配合した樹脂組成物が提案されている。
 しかしながら、本発明者の検討によると、特許文献1に開示されている樹脂組成物は、未だ靭性が十分ではなく、改良の余地がある、という問題点を有している。
In recent years, as automobiles, home appliances, communication equipment, etc. have become more sophisticated and the use of IoT has spread, the weight of each component has been reduced and the use of electrical equipment has progressed. There is an increasing demand for polar resins that have excellent properties, electrical insulation, and dielectric properties.
On the other hand, there is a demand for materials that can withstand impacts during manufacturing and use in electronic materials. The challenge is the need to improve toughness.
For example, Patent Document 1 proposes a resin composition containing a modified conjugated diene-based polymer having toughness superior to that of PPS in order to improve the toughness of polyphenylene sulfide resin (hereinafter sometimes referred to as "PPS"). It is
However, according to the study of the present inventors, the resin composition disclosed in Patent Document 1 still has a problem that the toughness is not sufficient and there is room for improvement.
 そこで、本発明においては、上記従来技術の問題点に鑑みて、耐衝撃性、靭性に優れた樹脂組成物を提供することを目的とする。 Therefore, in view of the above problems of the prior art, an object of the present invention is to provide a resin composition excellent in impact resistance and toughness.
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を行った結果、極性基を有する樹脂(成分(I))と、所定の極性基を有する変性共役ジエン系重合体(成分(II))と、を含有する樹脂組成物であって、前記変性共役ジエン系重合体を含む分散相(B)が、所定の数平均分散粒径を有し、前記極性基を有する樹脂(成分(I))と、前記変性共役ジエン系重合体(成分(II))とが、所定の質量比を有するものに特定することにより、上述した従来技術の課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems of the prior art, and found that a resin having a polar group (component (I)) and a modified conjugated diene-based polymer having a predetermined polar group (component (II)), wherein the dispersed phase (B) containing the modified conjugated diene polymer has a predetermined number average dispersed particle diameter, and the resin having the polar group ( Component (I)) and the modified conjugated diene-based polymer (component (II)) are specified to have a predetermined mass ratio, thereby finding that the above-described problems of the prior art can be solved. was completed.
That is, the present invention is as follows.
〔1〕
 成分(I):極性基を有する樹脂(下記成分(II)を除く)と、
 成分(II):
ビニル芳香族単量体単位を主体とする重合体ブロック(A)、
共役ジエン単量体単位を主体とする重合体ブロック(B)、及び
ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有するブロック重合体に、
酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、エポキシ基、オキセタニル基及びアミノ基からなる群より選ばれる少なくとも1種の極性基が結合した変性共役ジエン系重合体を少なくとも1種と、
を、含む樹脂組成物であって、
 前記樹脂組成物が、前記成分(I)の連続相(A)と、前記連続相(A)中に分散された前記成分(II)を含む分散相(B)とを有し、前記分散相(B)の数平均分散粒径が1.5μm以下であり、
 前記成分(I)と、前記成分(II)との質量比が、成分(I):成分(II)=50/50~99/1である、樹脂組成物。
〔2〕
 成分(III):前記成分(I)及び/又は成分(II)と反応性を有する極性基を有する重合体(前記成分(I)、(II)を除く)を、さらに含み、
 前記成分(II)と前記成分(III)の質量比が、成分(II):成分(III)=1/99~99/1である、
 前記〔1〕に記載の樹脂組成物。
〔3〕
 前記成分(I)が、
 ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、
 前記〔1〕に記載の樹脂組成物。
〔4〕
 前記成分(I)が、
 ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、
 前記〔2〕に記載の樹脂組成物。
〔5〕
 前記成分(II)が、共役ジエン化合物に由来する脂肪族二重結合が水素添加されている水添変性共役ジエン系重合体を含む、
 前記〔1〕乃至〔4〕のいずれか一に記載の樹脂組成物。
〔6〕
 前記成分(I)が、ポリフェニレンスルフィド系樹脂である、
 前記〔1〕乃至〔5〕のいずれか一に記載の樹脂組成物。
〔7〕
 前記成分(II)が、水酸基及びカルボキシル基からなる群より選ばれる少なくとも1種の極性基が結合した変性共役ジエン系重合体を含む、
 前記〔1〕乃至〔6〕のいずれか一に記載の樹脂組成物。
〔8〕
 前記成分(III)が、エポキシ基、オキサゾリン基、及びオキセタニル基からなる群より選ばれる少なくとも1種の極性基を有する重合体である、
 前記〔2〕乃至〔7〕のいずれか一に記載の樹脂組成物。
〔9〕
 前記成分(III)が、エポキシ基を有するオレフィン系エラストマーである、
 前記〔2〕乃至〔8〕のいずれか一に記載の樹脂組成物。
〔10〕
 前記水添変性共役ジエン系重合体の水素添加率が90%以下である、
 前記〔5〕乃至〔9〕のいずれか一に記載の樹脂組成物。
〔11〕
 前記成分(II)中のビニル芳香族単量体単位の含有量が、40質量%以下である、
 前記〔1〕乃至〔10〕のいずれか一に記載の樹脂組成物。
〔12〕
 前記成分(III)が、エポキシ基を有する重合性モノマーと不飽和炭化水素系化合物との共重合体から成る、エポキシ基を有するエラストマーである、
 前記〔2〕乃至〔11〕のいずれか一に記載の樹脂組成物。
〔13〕
 前記成分(III)が、エポキシ基を有する重合性モノマーと、不飽和炭化水素系化合物と、(メタ)アクリル酸エステル及び/又はビニルアセテートとの共重合体である、
 前記〔2〕乃至〔12〕のいずれか一に記載の樹脂組成物。
〔14〕
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、
 共役ジエン単量体単位を主体とする重合体ブロック(B)、及び
 ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有し、
 水酸基、及びカルボキシル基からなる群より選ばれる少なくとも1種の極性基を有する変性共役ジエン系重合体(成分(II))と、
 ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂からなる群より選ばれる少なくとも1種の極性基を有する樹脂(成分(I))と、
 エポキシ基、オキサゾリン基、及びオキセタニル基からなる群より選ばれる少なくとも1種の極性基を有するオレフィン系エラストマー(成分(III))と、
を、
 前記極性基を有する樹脂(成分(I))と、前記変性共役ジエン系重合体(成分(II))との質量比を、極性基を有する樹脂:変性共役ジエン系重合体=50/50~99/1とし、
 前記変性共役ジエン系重合体と、前記極性基を有するオレフィン系エラストマーの質量比を、変性共役ジエン系重合体:極性基を有するオレフィン系エラストマー=1/99~99/1として混錬して樹脂組成物を得る工程を有し、
 前記樹脂組成物が、前記極性基を有する樹脂(成分(I))の連続相(A)と、前記連続相(A)中に分散された前記変性共役ジエン系重合体(成分(II))
を含む分散相(B)を有するものとし、前記分散相(B)の数平均分散粒径を1.5μm以下とする工程を有する、
 樹脂組成物の製造方法。
〔15〕
 ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂から成る群より選ばれる少なくとも1種の、極性基を有する樹脂(成分(I))と、
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、ビニル芳香族単量体単位及び共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有する変性共役ジエン系重合体(成分(II))と、
 エポキシ基を有するオレフィン系エラストマー(成分(III))と、
を、含む、
樹脂組成物の成形体であって、
 前記変性共役ジエン系重合体(成分(II))は、水酸基、カルボキシル基からなる群より選ばれる少なくとも一種の極性基を有し、
 前記成形体が、下記条件(I-1)~(II-1)を満たす、成形体。
<条件(I-1)>
 成形体から得られた幅10mm、長さ170mm、厚さ2mmの短冊状試験片は、常温下、引張速度5mm/minでの引張り破断伸びが25%以上である。
<条件(II―1)
 成形体から得られた長さ約80mm、幅約10mm、厚さ約4mmの短冊状試験片は、-30℃下シャルピー衝撃試験でのシャルピー衝撃値が15kJ/mである。
[1]
Component (I): a resin having a polar group (excluding component (II) below);
Component (II):
a polymer block (A) mainly composed of vinyl aromatic monomer units,
At least two polymer blocks selected from polymer blocks (B) mainly composed of conjugated diene monomer units and random polymer blocks (C) composed of vinyl aromatic monomer units and conjugated diene monomer units to a block polymer having
at least one modified conjugated diene-based polymer to which at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group and an amino group is bonded;
A resin composition containing
The resin composition has a continuous phase (A) of the component (I) and a dispersed phase (B) containing the component (II) dispersed in the continuous phase (A), and the dispersed phase (B) has a number average dispersed particle size of 1.5 μm or less,
A resin composition wherein the mass ratio of component (I) to component (II) is component (I):component (II)=50/50 to 99/1.
[2]
Component (III): further comprising a polymer having a polar group reactive with component (I) and/or component (II) (excluding components (I) and (II)),
The mass ratio of the component (II) and the component (III) is component (II):component (III) = 1/99 to 99/1,
The resin composition according to [1] above.
[3]
The component (I) is
At least one resin selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, and epoxy resins,
The resin composition according to [1] above.
[4]
The component (I) is
At least one resin selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, and epoxy resins,
The resin composition according to [2] above.
[5]
The component (II) contains a hydrogenated modified conjugated diene-based polymer in which an aliphatic double bond derived from a conjugated diene compound is hydrogenated,
The resin composition according to any one of [1] to [4].
[6]
The component (I) is a polyphenylene sulfide resin,
The resin composition according to any one of [1] to [5].
[7]
The component (II) contains a modified conjugated diene-based polymer to which at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups is bonded,
The resin composition according to any one of [1] to [6].
[8]
The component (III) is a polymer having at least one polar group selected from the group consisting of an epoxy group, an oxazoline group, and an oxetanyl group.
The resin composition according to any one of [2] to [7].
[9]
wherein the component (III) is an olefin elastomer having an epoxy group;
The resin composition according to any one of [2] to [8].
[10]
The hydrogenation rate of the hydrogenated modified conjugated diene polymer is 90% or less,
The resin composition according to any one of [5] to [9].
[11]
The content of vinyl aromatic monomer units in the component (II) is 40% by mass or less.
The resin composition according to any one of [1] to [10].
[12]
The component (III) is an epoxy group-containing elastomer comprising a copolymer of an epoxy group-containing polymerizable monomer and an unsaturated hydrocarbon compound.
The resin composition according to any one of [2] to [11].
[13]
The component (III) is a copolymer of a polymerizable monomer having an epoxy group, an unsaturated hydrocarbon compound, and a (meth)acrylic acid ester and/or vinyl acetate.
The resin composition according to any one of [2] to [12].
[14]
a polymer block (A) mainly composed of vinyl aromatic monomer units,
At least two polymer blocks selected from polymer blocks (B) mainly composed of conjugated diene monomer units and random polymer blocks (C) composed of vinyl aromatic monomer units and conjugated diene monomer units has
a modified conjugated diene-based polymer (component (II)) having at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups;
a resin (component (I)) having at least one polar group selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
an olefinic elastomer (component (III)) having at least one polar group selected from the group consisting of epoxy groups, oxazoline groups, and oxetanyl groups;
of,
The mass ratio of the resin having a polar group (component (I)) and the modified conjugated diene-based polymer (component (II)) is adjusted to the resin having a polar group: modified conjugated diene-based polymer = 50/50 ~ 99/1,
The mass ratio of the modified conjugated diene-based polymer and the olefin-based elastomer having a polar group is kneaded so that the modified conjugated diene-based polymer: olefin-based elastomer having a polar group = 1/99 to 99/1. obtaining a composition;
The resin composition comprises a continuous phase (A) of the resin having a polar group (component (I)) and the modified conjugated diene polymer (component (II)) dispersed in the continuous phase (A).
A dispersed phase (B) containing
A method for producing a resin composition.
[15]
at least one resin having a polar group (component (I)) selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
Polymer block (A) mainly composed of vinyl aromatic monomer units, polymer block (B) mainly composed of conjugated diene monomer units, vinyl aromatic monomer units and conjugated diene monomer units a modified conjugated diene-based polymer (component (II)) having at least two polymer blocks selected from random polymer blocks (C);
an olefin-based elastomer having an epoxy group (component (III));
including,
A molded body of a resin composition,
The modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups,
A molded body, wherein the molded body satisfies the following conditions (I-1) to (II-1).
<Condition (I-1)>
A strip-shaped test piece having a width of 10 mm, a length of 170 mm, and a thickness of 2 mm obtained from the compact has a tensile elongation at break of 25% or more at room temperature and a tensile speed of 5 mm/min.
<Condition (II-1)
A strip-shaped test piece having a length of about 80 mm, a width of about 10 mm, and a thickness of about 4 mm obtained from the compact has a Charpy impact value of 15 kJ/m 2 in a Charpy impact test at -30°C.
 本発明によれば、耐衝撃性、靭性に優れた樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a resin composition with excellent impact resistance and toughness.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。
 以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "this embodiment") for implementing this invention is demonstrated in detail.
The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be modified and implemented as appropriate within the scope of its gist.
〔樹脂組成物〕
 本実施形態の樹脂組成物は、
 成分(I):極性基を有する樹脂(下記成分(II)を除く)と、
 成分(II):ビニル芳香族単量体単位を主体とする重合体ブロック(A)、
 共役ジエン単量体単位を主体とする重合体ブロック(B)、及び
 ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有するブロック重合体に、酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、エポキシ基、オキセタニル基及びアミノ基からなる群より選ばれる少なくとも1種の極性基が結合した変性共役ジエン系重合体を少なくとも1種と、
を、含む樹脂組成物である。
 前記樹脂組成物は、前記成分(I)の連続相(A)と、前記連続相(A)中に分散された前記成分(II)を含む分散相(B)とを有し、前記分散相(B)の数平均分散粒径が1.5μm以下である。
 前記成分(I)と、前記成分(II)との質量比が、成分(I):成分(II)=50/50~99/1である。
 上記構成を有することにより、耐衝撃性、靭性に優れた樹脂組成物が得られる。
[Resin composition]
The resin composition of this embodiment is
Component (I): a resin having a polar group (excluding component (II) below);
Component (II): polymer block (A) mainly composed of vinyl aromatic monomer units,
At least two polymer blocks selected from polymer blocks (B) mainly composed of conjugated diene monomer units and random polymer blocks (C) composed of vinyl aromatic monomer units and conjugated diene monomer units A modified conjugated diene-based polymer in which at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group and an amino group is bonded to a block polymer having with at least one
is a resin composition containing
The resin composition has a continuous phase (A) of the component (I) and a dispersed phase (B) containing the component (II) dispersed in the continuous phase (A), and the dispersed phase The number average dispersed particle size of (B) is 1.5 μm or less.
The mass ratio of component (I) to component (II) is component (I):component (II)=50/50 to 99/1.
By having the above structure, a resin composition having excellent impact resistance and toughness can be obtained.
(成分(I):極性基を有する樹脂(下記成分(II)を除く))
 本実施形態の樹脂組成物は極性基を有する樹脂(以下、極性樹脂(I)、成分(I)と記載する場合がある)を含有する。
(Component (I): Resin having a polar group (excluding component (II) below))
The resin composition of the present embodiment contains a resin having a polar group (hereinafter sometimes referred to as polar resin (I) or component (I)).
 一般的に剛性に優れる樹脂は、エントロピー及びエンタルピーの観点から主鎖に極性基を有する。
 本実施形態の樹脂組成物に用いる極性樹脂(I)としては、以下に限定されないが、例えば、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS);メタクリル酸エステル-ブタジエン-スチレン共重合樹脂(MBS);ポリ塩化ビニル系樹脂;ポリ酢酸ビニル系樹脂及びその加水分解物;アクリル酸及びそのエステルやアミドの重合体;ポリアクリレート系樹脂;アクリロニトリル及び/又はメタクリロニトリルの重合体、これらのアクリロニトリル系モノマーを50質量%以上含有する他の共重合可能なモノマーとの共重合体であるニトリル樹脂;ポリアミド系樹脂;ポリエステル系樹脂、熱可塑性ポリウレタン系樹脂、ポリ-4,4’-ジオキシジフェニル-2,2’-プロパンカーボネート等のポリカーボネート系重合体;ポリエーテルスルホンやポリアリルスルホン等の熱可塑性ポリスルホン;ポリオキシメチレン系樹脂;ポリ(2,6-ジメチル-1,4-フェニレン)エーテル等のポリフェニレンエーテル系樹脂;ポリフェニレンスルフィド系樹脂;ポリアリレート系樹脂;ポリエーテルケトン重合体又は共重合体;ポリケトン系樹脂;
フッ素系樹脂;ポリエチレンテレフタレート系樹脂;ポリオキシベンゾイル系重合体、ポリイミド系樹脂;ポリエチレンテレフタレート樹脂;ポリブチレンテレフタレート系樹脂;エポキシ樹脂;等が挙げられる。
Resins with excellent rigidity generally have a polar group in the main chain from the viewpoint of entropy and enthalpy.
The polar resin (I) used in the resin composition of the present embodiment is not limited to the following, but includes, for example, acrylonitrile-butadiene-styrene copolymer resin (ABS); methacrylate-butadiene-styrene copolymer resin (MBS). Polyvinyl chloride resins; Polyvinyl acetate resins and hydrolysates thereof; Polymers of acrylic acid and its esters and amides; Polyacrylate resins; Acrylonitrile and/or methacrylonitrile polymers; Nitrile resin that is a copolymer with another copolymerizable monomer containing 50% by mass or more; polyamide resin; polyester resin, thermoplastic polyurethane resin, poly-4,4'-dioxydiphenyl-2 , 2′-propane carbonate and other polycarbonate polymers; thermoplastic polysulfones such as polyethersulfone and polyallylsulfone; polyoxymethylene resins; polyphenylenes such as poly(2,6-dimethyl-1,4-phenylene) ether Ether-based resin; Polyphenylene sulfide-based resin; Polyarylate-based resin; Polyetherketone polymer or copolymer; Polyketone-based resin;
fluorine-based resin; polyethylene terephthalate-based resin; polyoxybenzoyl-based polymer, polyimide-based resin; polyethylene terephthalate-based resin; polybutylene terephthalate-based resin;
 好ましい極性樹脂(I)は、本実施形態の樹脂組成物に求められる特性によって異なり、剛性の観点からはポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、エポキシ樹脂、及びポリフェニレンスルフィド系樹脂が好ましく、耐薬品性の観点からは、エポキシ樹脂及びポリフェニレンスルフィド系樹脂が好ましく、耐熱性の観点からはポリフェニレンスルフィド系樹脂が好ましい。 The preferred polar resin (I) varies depending on the properties required for the resin composition of the present embodiment. Epoxy resins and polyphenylene sulfide resins are preferable from the viewpoint of chemical properties, and polyphenylene sulfide resins are preferable from the viewpoint of heat resistance.
 ポリエチレンテレフタレート系樹脂は、ポリエチレンテレフタレート樹脂と称される範疇に属するものであればよく、少なくとも90モル%以上がエチレングリコールであるジオール成分と、少なくとも90モル%以上がテレフタル酸であるジカルボン酸成分との重合反応によって得られる熱可塑性樹脂がより好ましい。 The polyethylene terephthalate-based resin may belong to the category called polyethylene terephthalate resin, and includes a diol component in which at least 90 mol% or more is ethylene glycol and a dicarboxylic acid component in which at least 90 mol% or more is terephthalic acid. A thermoplastic resin obtained by the polymerization reaction of is more preferable.
 ポリブチレンテレフタレート系樹脂は、ポリブチレンテレフタレート樹脂と称される範疇に属するものであればよく、テレフタル酸又はその誘導体を主たる成分とするジカルボン酸と、1,4-ブタンジオール又はその誘導体を主たる成分とするジオールとを重縮合反応させる等の一般的な重合方法によって得ることができる重合体であり、ブチレンテレフタレートの繰返し単位が90モル%以上であることが好ましく、95モル%以上であることがより好ましい。 The polybutylene terephthalate-based resin may belong to the category called polybutylene terephthalate resin, and includes a dicarboxylic acid containing terephthalic acid or a derivative thereof as a main component and 1,4-butanediol or a derivative thereof as a main component. It is a polymer that can be obtained by a general polymerization method such as polycondensation reaction with a diol, and the repeating unit of butylene terephthalate is preferably 90 mol% or more, and is preferably 95 mol% or more. more preferred.
 エポキシ樹脂は、エポキシ樹脂と称される範疇に属するものであればよく、剛性の観点から1分子中に2個以上のエポキシ基を有することが好ましい。エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 エポキシ樹脂としては、以下に限定されないが、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、及びテトラフェニルエタン型エポキシ樹脂等が挙げられる。
Any epoxy resin may be used as long as it belongs to the category called epoxy resin, and from the viewpoint of rigidity, it is preferable to have two or more epoxy groups in one molecule. Epoxy resins may be used singly or in combination of two or more.
Examples of epoxy resins include, but are not limited to, bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, Trisphenol type epoxy resin, naphthol novolak type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexane type epoxy resin, cyclohexanedimethanol type epoxy resin, naphthylene ether type epoxy resins, trimethylol-type epoxy resins, tetraphenylethane-type epoxy resins, and the like.
 ポリフェニレンスルフィド系樹脂は、ポリフェニレンスルフィド樹脂と称される範疇に属するものであればよく、耐熱性の観点から、その構成単位として、p-フェニレンスルフィド単位を70モル%以上含有しているものが好ましく、90モル%以上含有しているものがより好ましい。
 また、他の構成単位としては、例えば、o-フェニレンスルフィド単位、m-フェニレンスルフィド単位、フェニレンスルフィドエーテル単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等を含有していてもよい。
 ポリフェニレンスルフィド系樹脂の分子量は、本実施形態の樹脂組成物の剛性の観点から5000以上が好ましく、より好ましくは10000以上である。
 ポリフェニレンスルフィド系樹脂は直鎖状であってもよく、架橋又は分岐構造であってもよい。
 また、ポリフェニレンスルフィド系樹脂は、ポリマー構造中にチオール基やカルボキシル基等の極性基を末端や主鎖に有していてもよい。
 ポリフェニレンスルフィド系樹脂の製造方法としては、特に限定されるものではなく、例えば、重合溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを反応させる製造方法が挙げられる。
The polyphenylene sulfide resin may belong to the category called polyphenylene sulfide resin, and from the viewpoint of heat resistance, it preferably contains 70 mol % or more of p-phenylene sulfide units as its constituent units. , more preferably 90 mol % or more.
Other structural units include, for example, o-phenylene sulfide units, m-phenylene sulfide units, phenylene sulfide ether units, phenylene sulfide sulfone units, phenylene sulfide ketone units, diphenylene sulfide units, substituent-containing phenylene sulfide units, It may contain branched structure-containing phenylene sulfide units and the like.
The molecular weight of the polyphenylene sulfide-based resin is preferably 5,000 or more, more preferably 10,000 or more, from the viewpoint of the rigidity of the resin composition of the present embodiment.
The polyphenylene sulfide-based resin may be linear, crosslinked or branched.
Moreover, the polyphenylene sulfide-based resin may have a polar group such as a thiol group or a carboxyl group at the terminal or in the main chain in the polymer structure.
The method for producing the polyphenylene sulfide-based resin is not particularly limited, and includes, for example, a production method in which an alkali metal sulfide and a dihaloaromatic compound are reacted in a polymerization solvent.
(成分(II):変性共役ジエン系重合体)
 本実施形態の樹脂組成物は、ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及びビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有するブロック重合体に、酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、エポキシ基、オキセタニル基、及びアミノ基からなる群より選ばれる少なくとも1種の極性基が結合した変性共役ジエン系重合体(以下、変性共役ジエン系重合体(II)、成分(II)と記載する場合がある。)を、少なくとも1種含む。
 変性共役ジエン系重合体(II)が前記極性基を有することにより、前記極性樹脂(I)に対して、親和性及び/又は反応性を有し、これにより、本実施形態の樹脂組成物の靭性や耐衝撃性を向上させることができる。
(Component (II): modified conjugated diene-based polymer)
The resin composition of the present embodiment comprises a polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block (B) mainly composed of conjugated diene monomer units, and a vinyl aromatic monomer A block polymer having at least two types of polymer blocks selected from random polymer blocks (C) composed of polymer units and conjugated diene monomer units is added with an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, and an epoxy group. , an oxetanyl group, and a modified conjugated diene-based polymer to which at least one polar group selected from the group consisting of amino groups is bonded (hereinafter referred to as modified conjugated diene-based polymer (II), component (II). There is at least one of
Since the modified conjugated diene-based polymer (II) has the polar group, it has affinity and/or reactivity with respect to the polar resin (I). It can improve toughness and impact resistance.
 前記親和性とは、各成分間でイオン間相互作用、水素結合、双極子相互作用、ファンデルワールス力からなる群より選ばれる少なくとも一つの分子間力を生じ得ることを意味する。
 前記反応性とは、各成分の極性基同士が共有結合性を持つことを意味する。極性基同士が反応するとき、例えばカルボキシル基のOHが脱離すると、元の極性基が変化したり無くなったりするが、これによって共有結合が形成する場合には、極性基同士が「反応性」を示すという定義に含まれる。
The affinity means that at least one intermolecular force selected from the group consisting of ionic interaction, hydrogen bond, dipole interaction and van der Waals force can be generated between each component.
The reactivity means that the polar groups of each component have covalent bonding. When polar groups react with each other, for example, when the OH of the carboxyl group is eliminated, the original polar group changes or disappears, but when this forms a covalent bond, the polar groups are "reactive" included in the definition of indicating
 変性共役ジエン系重合体(II)が、酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、オキサゾリン基、エポキシ基、オキセタニル基、及びアミノ基からなる群より選ばれる少なくとも1種の極性基を有することにより、前記極性樹脂(I)との親和性及び/又は反応性に優れるため、前記極性樹脂(成分(I))と変性共役ジエン系重合体(成分(II))の相容性が高められ、成分(I)からなる連続層(A)中の、成分(II)からなる分散相(B)の数平均分散粒径が1.5μm以下となり、かつ成分間の界面を強化することができ、これにより耐衝撃性、靭性の向上に寄与する。 The modified conjugated diene polymer (II) has at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an oxazoline group, an epoxy group, an oxetanyl group, and an amino group. By having the the number average dispersed particle size of the dispersed phase (B) comprising component (II) in the continuous layer (A) comprising component (I) is 1.5 μm or less, and the interface between the components is strengthened. This contributes to the improvement of impact resistance and toughness.
 変性共役ジエン系重合体(II)の好ましい極性基は、極性樹脂(I)の種類や、本実施形態の樹脂組成物に求められる特性によっても異なる。例えば、極性樹脂(I)がポリフェニレンスルフィド系樹脂の場合、エポキシ基、オキサゾリン基、アミノ基は、ポリフェニレンスルフィド系樹脂の末端に存在するチオール基、カルボキシル基との親和性及び/又は反応性に優れるため、前記変性共役ジエン系重合体(II)の極性基として好ましい。また、カルボキシル基、酸無水物基、水酸基、ジカルボキシル基は、成分(I)がエポキシ樹脂である場合、成分(I)のエポキシ基との親和性及び/又は反応性に優れる。このように、各成分(I)、(II)が成分間で親和性及び/又は反応性を発現する親和性基及び/又は反応性基を有することにより、各成分間の界面を強化することが可能となり、本実施形態の樹脂組成物の靭性、耐衝撃性の向上に寄与する。さらに、耐トラッキング性及び高温下~低温下に交互に曝露された際の物性低下抑制(ヒートサイクル特性)の向上等の効果も期待できる。これらの特性は、各成分間の親和性や反応性を調整することにより、相容状態を制御し、向上させることができる。 The preferred polar group of the modified conjugated diene polymer (II) varies depending on the type of polar resin (I) and the properties required for the resin composition of the present embodiment. For example, when the polar resin (I) is a polyphenylene sulfide resin, the epoxy group, oxazoline group, and amino group have excellent affinity and/or reactivity with the thiol group and carboxyl group present at the end of the polyphenylene sulfide resin. Therefore, it is preferable as the polar group of the modified conjugated diene polymer (II). Carboxyl groups, acid anhydride groups, hydroxyl groups, and dicarboxyl groups have excellent affinity and/or reactivity with epoxy groups of component (I) when component (I) is an epoxy resin. In this way, each component (I) and (II) has an affinity group and/or a reactive group that expresses affinity and/or reactivity between the components, thereby strengthening the interface between each component. becomes possible, contributing to the improvement of the toughness and impact resistance of the resin composition of the present embodiment. Furthermore, effects such as improvement in tracking resistance and prevention of deterioration in physical properties (heat cycle characteristics) when exposed alternately between high and low temperatures can be expected. These characteristics can be improved by controlling the compatibility state by adjusting the affinity and reactivity between each component.
 例えば、成分(I)の極性樹脂が、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂の場合、成分(II)のエポキシ基、アミノ基はポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂の末端に存在するカルボキシル基との親和性及び/又は反応性に優れるため、各成分が成分間で親和性及び/又は反応性を発現する親和性基及び/又は反応性基を有することにより、各成分間の界面を強化することが可能となり、樹脂組成物の靭性、耐衝撃性の向上に寄与する。
 また、成分(II)としては、前述の極性基種から異なる極性基が各々結合した変性共役ジエン系重合体を2種用いることもできる。前述の相容性の観点から各々異なる極性基が結合した2種の変性共役ジエン系重合体(II)を用いる場合、1種の変性共役ジエン系重合体には、もう一方の変性共役ジエン系重合体及び前記極性樹脂(I)と反応性を有する極性基が結合していることが好ましい。
 例えば、成分(I)の極性樹脂がポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂及びポリブチレンテレフタレート系樹脂の場合、成分(II)として、エポキシ基が結合した変性共役ジエン系重合体とカルボキシル基及び/又は水酸基が結合した変性共役ジエン系重合体を、好ましく用いることができる。
 また、例えば、成分(I)の極性樹脂がエポキシ樹脂の場合、カルボキシル基、水酸基、アミノ基は、エポキシ樹脂のエポキシ基と親和性及び/又は反応性に優れているため、かかる極性基を有する変性共役ジエン系重合体を成分(II)として好ましく用いることができる。このように、各成分が成分間で親和性及び/又は反応性を発現する親和性基及び/又は反応性基を有することにより、各成分間の界面を強化することが可能となり、本実施形態の樹脂組成物の靭性、耐衝撃性の向上に寄与する。
For example, when the polar resin of component (I) is a polyethylene terephthalate-based resin or polybutylene terephthalate-based resin, the epoxy group and amino group of component (II) are present at the terminals of the polyethylene terephthalate-based resin or polybutylene terephthalate-based resin. Since the affinity and / or reactivity with the carboxyl group is excellent, each component has an affinity group and / or a reactive group that expresses affinity and / or reactivity between the components, so that the interface between each component can be strengthened, which contributes to improving the toughness and impact resistance of the resin composition.
Further, as the component (II), two types of modified conjugated diene-based polymers each having a different polar group from the above-described polar group species bonded thereto may be used. When two types of modified conjugated diene-based polymers (II) having different polar groups bonded thereto are used from the viewpoint of compatibility as described above, one type of modified conjugated diene-based polymer has the other modified conjugated diene-based It is preferable that a polar group reactive with the polymer and the polar resin (I) is bonded.
For example, when the polar resin of component (I) is a polyphenylene sulfide-based resin, a polyethylene terephthalate-based resin, or a polybutylene terephthalate-based resin, a modified conjugated diene-based polymer to which an epoxy group is bonded and a carboxyl group and/or Alternatively, a modified conjugated diene-based polymer having hydroxyl groups bonded thereto can be preferably used.
Further, for example, when the polar resin of component (I) is an epoxy resin, the carboxyl group, hydroxyl group, and amino group have excellent affinity and/or reactivity with the epoxy group of the epoxy resin. A modified conjugated diene polymer can be preferably used as component (II). In this way, each component has an affinity group and/or a reactive group that expresses affinity and/or reactivity between the components, so that the interface between the components can be strengthened. contributes to improving the toughness and impact resistance of the resin composition.
 一般的に、樹脂組成物においては、同成分同士は凝集し、相を形成する傾向にあるが、本実施形態の樹脂組成物においては、前記成分(II)が極性基を有することにより前記成分(I)と親和性及び/又は反応性が高められこれらの成分の相容性が向上し、後述する分散相(B)の数平均分散粒径を1.5μm以下となり、本実施形態の樹脂組成物の耐衝撃性及び靭性の発現に寄与する。
 変性共役ジエン系重合体(II)が有する極性基の量は、極性樹脂(I)との相容性の観点から、好ましくは0.3mоl/鎖以上であり、より好ましくは0.5mоl/鎖以上であり、さらに好ましくは0.6mоl/鎖以上である。
 変性共役ジエン系重合体(II)の極性基の量が0.3mоl/鎖以上であれば、前記親和性基又は反応性基を有する重合体鎖が前記成分(I)と相容し、親和性基又は反応性基を有さない重合体鎖と前記成分(I)と相容した重合体鎖が、それぞれ前述の通り凝集することで、分散相(B)の数平均分散粒径を1.5μm以下とすることができ、好ましくは、1.3μm以下とすることができる。
 このような相容のし易さや、凝集のし易さは、成分(I)と成分(II)とにそれぞれ含まれる極性基が必要な親和性及び/又は反応性を有する限り、樹脂の構造や極性基の種類、成分間の極性基の組み合わせよりも、重合体鎖中の極性基の頻度(量)の影響が大きい。そのため、分散相(B)の数平均分散粒径は、成分(II)の極性基の量を適切に設定することにより所望の値に制御できる。
 また、成分(II)の親和性基又は反応性基は、過剰であると本実施形態の樹脂組成物においてゲル化等を引き起こすおそれがあるため、30mоl/鎖以下が好ましい。
 なお、ここでいう「鎖」とはポリマー一分子のことを指し、ポリマー構造が化学結合により分岐しているものも一分子鎖として数える。
 変性共役ジエン系重合体(II)の極性基の量は、変性共役ジエン系重合体の製造工程中、これらを形成するための化合物との反応条件、例えば化合物の添加量、反応温度、反応時間等を調整することにより、上記数値範囲に制御できる。
Generally, in a resin composition, the same components tend to aggregate and form a phase, but in the resin composition of the present embodiment, the component (II) has a polar group, so that the component The affinity and/or reactivity with (I) is enhanced, the compatibility of these components is improved, and the number average dispersed particle diameter of the dispersed phase (B) described later is 1.5 μm or less, and the resin of the present embodiment It contributes to the impact resistance and toughness of the composition.
The amount of polar groups possessed by the modified conjugated diene-based polymer (II) is preferably 0.3 mol/chain or more, more preferably 0.5 mol/chain, from the viewpoint of compatibility with the polar resin (I). or more, more preferably 0.6 mol/chain or more.
When the amount of polar groups in the modified conjugated diene-based polymer (II) is 0.3 mol/chain or more, the polymer chains having the affinity group or the reactive group are compatible with the component (I) and have an affinity for each other. The polymer chains having no functional group or reactive group and the polymer chains compatible with the component (I) aggregate as described above, so that the number average dispersed particle size of the dispersed phase (B) is reduced to 1. 0.5 μm or less, preferably 1.3 μm or less.
Such easiness of compatibility and easiness of agglomeration is determined by the structure of the resin as long as the polar groups contained in component (I) and component (II) have the necessary affinity and/or reactivity. The frequency (amount) of the polar groups in the polymer chain has a greater effect than the type of polar groups, the combination of polar groups between components. Therefore, the number average dispersed particle size of the dispersed phase (B) can be controlled to a desired value by appropriately setting the amount of the polar groups in the component (II).
In addition, the affinity group or reactive group of component (II) is preferably 30 mol/chain or less, since an excessive amount may cause gelation or the like in the resin composition of the present embodiment.
As used herein, the term "chain" refers to one polymer molecule, and a branched polymer structure due to chemical bonds is also counted as one molecule chain.
The amount of polar groups in the modified conjugated diene-based polymer (II) depends on the reaction conditions with the compound for forming these during the production process of the modified conjugated diene-based polymer, such as the amount of the compound added, the reaction temperature, and the reaction time. By adjusting the above, it is possible to control within the above numerical range.
 変性共役ジエン系重合体(成分(II))は、下記(A)~(C)の重合体ブロックからなる群より選ばれる2種以上の重合体ブロックを有する。
(A)ビニル芳香族単量体単位を主体とする重合体ブロック(以下重合体ブロック(A)と記載する場合がある。)
(B)共役ジエン単量体単位を主体とする重合体ブロック(以下、重合体ブロック(B)と記載する場合がある。)
(C)ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(以下、ランダム重合体ブロック(C)、重合体ブロック(C)と記載する場合がある。)
The modified conjugated diene polymer (component (II)) has two or more polymer blocks selected from the group consisting of polymer blocks (A) to (C) below.
(A) Polymer block mainly composed of vinyl aromatic monomer units (hereinafter sometimes referred to as polymer block (A))
(B) a polymer block mainly composed of conjugated diene monomer units (hereinafter sometimes referred to as polymer block (B));
(C) a random polymer block of vinyl aromatic monomer units and conjugated diene monomer units (hereinafter sometimes referred to as random polymer block (C) or polymer block (C));
 前記(A)ビニル芳香族単量体単位を主体とする重合体ブロックは、ビニル芳香族単量体単位の含有量が80質量%以上であるものとする。
 ビニル芳香族単量体単位を形成するために用いるビニル芳香族化合物としては、以下に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等が挙げられる。
 これらの中でも、入手性及び生産性の観点から、好ましくはスチレン、α-メチルスチレン、4-メチルスチレンであり、より好ましくはスチレンである。
 前記(A)ビニル芳香族単量体単位を主体とする重合体ブロックは、1種のビニル芳香族単量体単位により構成されていてもよいし、2種以上のビニル芳香族単量体単位により構成されていてもよい。
 本実施形態の樹脂組成物の成形体の強度の観点から、(A)ビニル芳香族単量体単位を主体とする重合体ブロックに含まれるビニル芳香族単量体単位の含有量は、80質量%以上であるものとし、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは100質量%(他の化合物は意図的に添加されていない)である。
The (A) polymer block mainly composed of vinyl aromatic monomer units has a vinyl aromatic monomer unit content of 80% by mass or more.
Examples of vinyl aromatic compounds used to form vinyl aromatic monomer units include, but are not limited to, styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N,N-dimethyl-p-aminoethylstyrene, N,N-diethyl-p-aminoethylstyrene and the like.
Among these, styrene, α-methylstyrene and 4-methylstyrene are preferred, and styrene is more preferred, from the viewpoint of availability and productivity.
The (A) polymer block mainly composed of vinyl aromatic monomer units may be composed of one vinyl aromatic monomer unit, or may be composed of two or more vinyl aromatic monomer units. It may be configured by
From the viewpoint of the strength of the molded article of the resin composition of the present embodiment, the content of the vinyl aromatic monomer units contained in the polymer block (A) mainly composed of vinyl aromatic monomer units is 80 mass. % or more, preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass (other compounds are not intentionally added).
 前記(B)共役ジエン単量体単位を主体とする重合体ブロックは、共役ジエン単量体単位の含有量が80質量%以上であるものとする。
 共役ジエン単量体単位を形成するために用いる共役ジエン化合物としては、1対の共役二重結合を有するジオレフィンを用いることができる。前記ジオレフィンとしては、以下に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及びファルネセンが挙げられる。
 これらの中でも、入手性及び生産性の観点から、好ましくは、1,3-ブタジエン及びイソプレンが挙げられる。
 (B)共役ジエン単量体単位を主体とする重合体ブロックは、1種の共役ジエン単量体単位で構成されていてもよいし、2種以上の共役ジエン単量体単位から構成されていてもよい。
 本実施形態の樹脂組成物の耐衝撃性の観点から、(B)共役ジエン単量体単位を主体とする重合体ブロックに含まれる共役ジエン単量体単位の含有量は、80質量%以上であるものとし、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは100質量%(他の化合物は意図的に添加されていない)である。
The content of the conjugated diene monomer units in the (B) polymer block mainly composed of conjugated diene monomer units is 80% by mass or more.
A diolefin having a pair of conjugated double bonds can be used as the conjugated diene compound used to form the conjugated diene monomer unit. Examples of the diolefin include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene , 2-methyl-1,3-pentadiene, 1,3-hexadiene, and farnesene.
Among these, 1,3-butadiene and isoprene are preferred from the viewpoint of availability and productivity.
(B) The polymer block mainly composed of conjugated diene monomer units may be composed of one type of conjugated diene monomer unit, or may be composed of two or more types of conjugated diene monomer units. may
From the viewpoint of impact resistance of the resin composition of the present embodiment, the content of the conjugated diene monomer unit contained in the polymer block (B) mainly composed of the conjugated diene monomer unit is 80% by mass or more. It is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 100% by mass (other compounds are not intentionally added).
 前記(C)共役ジエン単量体単位とビニル芳香族単量体単位のランダム重合体ブロックに含まれるビニル芳香族単量体単位及び共役ジエン単量体単位を形成するために用いるビニル芳香族化合物、及び共役ジエン化合物は、前記重合体ブロック(A)、及び重合体ブロック(B)に用いることができる化合物であればよい。
 ランダム重合体ブロック(C)におけるビニル芳香族単量体単位の分布状態に関しては特に限定は無く、ランダム重合体ブロック(C)中のビニル芳香族単量体単位が均一に分布していても、又はテーパー状に分布していてもよい。また、ビニル芳香族単量体単位が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個存在していてもよく、ビニル芳香族単量体単位の含有量が異なるセグメントが複数個存在していてもよい。
 ランダム共重合体ブロック(C)中のビニル芳香族単量体単位と共役ジエン単量体単位の質量比は、ビニル芳香族単量体単位/共役ジエン単量体単位=75/25~25/75が好ましく、より好ましくは70/30~30/70、さらに好ましくは65/35~35/65である。
 本実施形態の樹脂組成物に用いる変性共役ジエン系重合体(II)は、共役ジエン化合物及びビニル芳香族化合物と共重合可能な他の化合物が重合していてもよい。
(C) the vinyl aromatic monomer unit contained in the random polymer block of the conjugated diene monomer unit and the vinyl aromatic monomer unit and the vinyl aromatic compound used to form the conjugated diene monomer unit , and the conjugated diene compound may be compounds that can be used for the polymer block (A) and the polymer block (B).
The distribution state of the vinyl aromatic monomer units in the random polymer block (C) is not particularly limited, and even if the vinyl aromatic monomer units in the random polymer block (C) are uniformly distributed, Or it may be distributed in a tapered shape. Further, there may be a plurality of portions in which the vinyl aromatic monomer units are uniformly distributed and/or portions in which the vinyl aromatic monomer units are distributed in a tapered manner. A plurality of different segments may exist.
The mass ratio of the vinyl aromatic monomer unit to the conjugated diene monomer unit in the random copolymer block (C) is: vinyl aromatic monomer unit/conjugated diene monomer unit=75/25 to 25/ 75 is preferred, more preferably 70/30 to 30/70, still more preferably 65/35 to 35/65.
The modified conjugated diene-based polymer (II) used in the resin composition of the present embodiment may be polymerized with other compounds copolymerizable with the conjugated diene compound and the vinyl aromatic compound.
 変性共役ジエン系重合体(成分(II))の構造は特に限定されるものではないが、例えば、下記式で表されるような構造を有するものが挙げられる。
 なお、下記式において、極性基の記載は省略した。
 (b-c)、c-(b-c)、b-(c-b)、(b-c)-X、(c-b)-X、[(b-c)nm-X、[(c-b)nm-X、[c-(b-c)nm-X、[b-(c-b)nm-X、[(b-c)n-b]m-X、[(c-b)n-c]m-X、
 (a-b)、b-(a-b)、a-(b-a)、(a-b)m-X、(b-a)m-X、[(a-b)m-X、[(b-a)m-X、[b-(a-b)m-X、[a-(b-a)m-X、[(a-b)-a]m-X、[(b-a)-b]m-X、
 (a-c)、c-(a-c)、a-(c-a)、(a-c)m-X、(c-a)m-X、[(a-c)m-X、[(c-a)m-X、[c-(a-c)m-X、[a-(c-a)m-X、[(a-c)-a]m-X、[(c-a)-c]m-X、
 c-(b-a)、c-(a-b)
 c-(a-b-a)、c-(b-a-b)
 a-c-(b-a)、a-c-(a-b)
 a-c-(b-a)-b、[(a-b-c)m-X、
 [a-(b-c)m-X、[(a-b)-c]m-X、
 [(a-b-a)-c]m-X、
 [(b-a-b)-c]m-X、[(c-b-a)m-X、
 [c-(b-a)n]m-X、[c-(a-b-a)m-X、[c-(b-a-b)m-X
 a-(b-c)、a-(c-b)
 a-(c-b-c)、a-(b-c-b)
 c-a-(b-c)、c-a-(c-b)
 c-a-(b-c)-b、[(c-b-a)m-X、
 [c-(b-a)m-X、[(c-b)-a]m-X、
 [(c-b-c)-a]m-X、
 [(b-c-b)-a]m-X、[(a-b-c)m-X、
 [a-(b-c)m-X、[a-(c-b-c)m-X、[a-(b-c-b)m-X
 b-(a-c)、b-(c-a)
 b-(c-a-c)、b-(a-c-a)
 c-b-(a-c)、c-b-(c-a)
 c-b-(a-c)-a、[(c-a-b)m-X、
 [c-(a-b)m-X、[(c-a)-b]m-X、
 [(c-a-c)-b]m-X、
 [(b-c-b)-b]m-X、[(b-a-c)m-X、
 [b-(a-c)m-X、[b-(c-a-c)m-X、[b-(a-c-a)m-X
 なお、上記各一般式において、aは、前記重合体ブロック(A)、bは、前記重合体ブロック(B)、cは、前記重合体ブロック(C)を示す。
 nは1以上の整数であり、好ましくは1~5の整数である。
 mは2以上の整数であり、好ましくは2~11の整数である。
 Xはカップリング剤の残基又は多官能開始剤の残基を示す。
 変性共役ジエン系重合体(成分(II))は、基本的なブロック構造が、特に、a-b、a-b-a、a-b-a-bの構造式で表される重合体であることが好ましい。
The structure of the modified conjugated diene polymer (component (II)) is not particularly limited, but examples thereof include those having a structure represented by the following formula.
Note that the description of the polar group is omitted in the following formula.
(b-c) n , c-(b-c) n , b-(c-b) n , (b-c) m -X, (c-b) m -X, [(b-c) n ] m −X, [(c−b) n ] m −X, [c−(b−c) n ] m −X, [b−(c−b) n ] m −X, [(b−c ) n -b] m -X, [(cb) n -c] m -X,
(ab) n , b-(ab) n , a-(ba) n , (ab) m -X, (ba) m -X, [(ab) n ] m −X, [(b−a) n ] m −X, [b−(a−b) n ] m −X, [a−(b−a) n ] m −X, [(a−b ) n -a] m -X, [(ba) n -b] m -X,
(ac) n , c-(ac) n , a-(c-a) n , (ac) m -X, (c-a) m -X, [(ac) n ] m -X, [(c-a) n ] m -X, [c-(a-c) n ] m -X, [a-(c-a) n ] m -X, [(a-c ) n -a] m -X, [(ca) n -c] m -X,
c-(b-a) n , c-(a-b) n ,
c-(ab-a) n , c-(b-a-b) n ,
ac-(b-a) n , ac-(a-b) n ,
ac-(b-a) n -b, [(a-b-c) n ] m -X,
[a-(b-c) n ] m -X, [(a-b) n -c] m -X,
[(ab-a) n -c] m -X,
[(b-a-b) n -c] m -X, [(c-b-a) n ] m -X,
[c-(b-a)n] m -X, [c-(a-b-a) n ] m -X, [c-(b-a-b) n ] m -X
a-(bc) n , a-(c-b) n ,
a-(c-b-c) n , a-(b-c-b) n ,
ca-(bc) n , ca-(cb) n ,
c-a-(b-c) n -b, [(c-b-a) n ] m -X,
[c−(b−a) n ] m −X, [(c−b) n −a] m −X,
[(c-b-c) n -a] m -X,
[(b-c-b) n -a] m -X, [(a-b-c) n ] m -X,
[a-(b-c) n ] m -X, [a-(c-b-c) n ] m -X, [a-(b-c-b) n ] m -X
b-(ac) n , b-(c-a) n ,
b-(c-a-c) n , b-(a-c-a) n ,
cb-(ac) n , cb-(c-a) n ,
cb-(ac) n -a, [(c-a-b) n ] m -X,
[c−(a−b) n ] m −X, [(c−a) n −b] m −X,
[(c-a-c) n -b] m -X,
[(b-c-b) n -b] m -X, [(b-a-c) n ] m -X,
[b-(a-c) n ] m -X, [b-(c-a-c) n ] m -X, [b-(a-c-a) n ] m -X
In the above general formulas, a represents the polymer block (A), b represents the polymer block (B), and c represents the polymer block (C).
n is an integer of 1 or more, preferably an integer of 1-5.
m is an integer of 2 or more, preferably an integer of 2-11.
X represents a residue of a coupling agent or a residue of a multifunctional initiator.
The modified conjugated diene-based polymer (component (II)) is a polymer whose basic block structure is particularly represented by the structural formulas ab, aba, and abab. Preferably.
 変性共役ジエン系重合体(成分(II))の重量平均分子量(Mw)(以下、「Mw」ともいう。)は、本実施形態の樹脂組成物の、機械強度、耐衝撃性、耐摩耗性、相容性、成形性の観点から、0.5万~60万であることが好ましく、3万~40万であることがより好ましく、5万~30万であることがさらに好ましい。
 変性共役ジエン系重合体(成分(II))の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)による測定で得られるクロマトグラムのピークの分子量を、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)に基づいて求めた重量平均分子量(Mw)である。
 変性前の共役ジエン系重合体の分子量分布も、同様にGPCによる測定から求めることができる。分子量分布は重量平均分子量(Mw)と数平均分子量(Mn)の比率である。
 変性共役ジエン系重合体(成分(II))のGPCで測定される単一ピークの分子量分布は、5.0以下であることが好ましく、より好ましくは4.0以下、さらに好ましくは3.0以下であり、さらにより好ましくは2.5以下である。
The weight average molecular weight (Mw) (hereinafter also referred to as “Mw”) of the modified conjugated diene polymer (component (II)) determines the mechanical strength, impact resistance, and abrasion resistance of the resin composition of the present embodiment. From the viewpoint of compatibility and moldability, it is preferably from 50,000 to 600,000, more preferably from 30,000 to 400,000, even more preferably from 50,000 to 300,000.
The weight average molecular weight (Mw) of the modified conjugated diene-based polymer (component (II)) is obtained by measuring the peak molecular weight of the chromatogram obtained by gel permeation chromatography (GPC) and measuring a commercially available standard polystyrene. weight average molecular weight (Mw) determined based on a calibration curve (prepared using the peak molecular weight of standard polystyrene).
Similarly, the molecular weight distribution of the conjugated diene-based polymer before modification can be obtained from measurement by GPC. Molecular weight distribution is the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn).
The molecular weight distribution of a single peak of the modified conjugated diene polymer (component (II)) measured by GPC is preferably 5.0 or less, more preferably 4.0 or less, and still more preferably 3.0. or less, and more preferably 2.5 or less.
 変性共役ジエン系重合体(成分(II))は、ビニル芳香族単量体単位を含む。
 一般的に、剛性の高い極性樹脂に対し、所定の重合体を分散させることによる耐衝撃性及び靭性の付与は、衝撃や延伸を加えると極性樹脂と分散した重合体粒子成分の界面あるいは重合体粒子自体にボイドが生じ、重合体粒子を起点としてマトリックス樹脂がせん断降伏することによる応力緩和が生じることに起因する。
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)は非晶性であるため、前述のせん断降伏を促進する傾向にある。
 よって、変性共役ジエン系重合体(成分(II))中のビニル芳香族単量体単位の含有量の下限は、前述のせん断降伏を促進し、耐衝撃性及び靭性を発現する観点から1質量%以上が好ましく、より好ましくは3質量%以上、さらに好ましくは5質量%以上、さらにより好ましくは8質量%以上である。
 変性共役ジエン系重合体(成分(II))中のビニル芳香族単量体単位の含有量が1質量%以上であることにより、変性共役ジエン系重合体(II)のビニル芳香族単量体単位の非晶部が凝集し、前述のせん断降伏を促進する傾向にある。しかし、前述の剛性の高い極性樹脂と分散した重合体粒子成分の界面あるいは重合体粒子自体にボイドが生じる際、マトリックスである極性樹脂と分散相の剛性差が大きいことが重要である。かかる観点から、変性共役ジエン系重合体(成分(II))のビニル芳香族単量体単位の上限は、極性樹脂(成分(I))と分散した重合体粒子成分(成分(II))の界面あるいは重合体粒子自体にボイドを生じさせ、耐衝撃性及び靭性を発現させる観点から、90質量%以下が好ましく、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。成分(II)のビニル芳香族単量単位量を90質量%以下とすることで分散相とマトリックスの剛性差が大きくなり、より界面あるいは重合体粒子自体にボイドが発生し、本実施形態の樹脂組成物において、耐衝撃性及び靭性が向上する傾向にある。
 成分(I)の極性樹脂としてポリフェニレンスルフィド系樹脂を用いる場合は、低温での耐衝撃性発現の観点から、変性共役ジエン系重合体(成分(II))のビニル芳香族単量体単位の含有量は40質量%以下であることが好ましく、より好ましくは35質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは27質量%以下である。
 変性共役ジエン系重合体(成分(II))のビニル芳香族単量体単位の含有量は、後述する実施例に記載する方法により測定できる。
 変性共役ジエン系重合体(成分(II))のビニル芳香族単量体単位の含有量は、重合体製造時の単量体添加量を調整することにより、上記数値範囲に制御することができる。
The modified conjugated diene polymer (component (II)) contains vinyl aromatic monomer units.
In general, imparting impact resistance and toughness by dispersing a predetermined polymer in a highly rigid polar resin will cause the interface between the polar resin and the dispersed polymer particle component or the polymer This is because voids are formed in the particles themselves, and stress relaxation is caused by shear yielding of the matrix resin starting from the polymer particles.
Since the polymer block (A) mainly composed of vinyl aromatic monomer units is amorphous, it tends to accelerate the aforementioned shear yielding.
Therefore, the lower limit of the content of the vinyl aromatic monomer unit in the modified conjugated diene polymer (component (II)) is 1 mass from the viewpoint of promoting the above-mentioned shear yield and developing impact resistance and toughness. % or more, more preferably 3 mass % or more, still more preferably 5 mass % or more, and even more preferably 8 mass % or more.
Since the content of the vinyl aromatic monomer unit in the modified conjugated diene polymer (component (II)) is 1% by mass or more, the vinyl aromatic monomer of the modified conjugated diene polymer (II) The amorphous part of the units tends to aggregate and promote the aforementioned shear yielding. However, when voids occur at the interface between the highly rigid polar resin and dispersed polymer particle components or at the polymer particles themselves, it is important that the difference in rigidity between the matrix polar resin and the dispersed phase is large. From this point of view, the upper limit of the vinyl aromatic monomer unit of the modified conjugated diene polymer (component (II)) is the ratio of the polar resin (component (I)) and the dispersed polymer particle component (component (II)). From the viewpoint of generating voids in the interfaces or the polymer particles themselves and developing impact resistance and toughness, the content is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less. By setting the vinyl aromatic monomer unit amount of component (II) to 90% by mass or less, the difference in rigidity between the dispersed phase and the matrix becomes large, and voids occur more at the interface or at the polymer particles themselves, and the resin of the present embodiment The composition tends to have improved impact resistance and toughness.
When a polyphenylene sulfide-based resin is used as the polar resin of component (I), the vinyl aromatic monomer unit of the modified conjugated diene-based polymer (component (II)) is included from the viewpoint of developing impact resistance at low temperatures. The amount is preferably 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and even more preferably 27% by mass or less.
The content of the vinyl aromatic monomer units in the modified conjugated diene polymer (component (II)) can be measured by the method described in Examples below.
The content of vinyl aromatic monomer units in the modified conjugated diene polymer (component (II)) can be controlled within the above numerical range by adjusting the amount of monomer added during polymer production. .
 変性共役ジエン系重合体(II)においては、前記重合体ブロック(A)の含有量の下限値は、生産性の観点から1質量%以上が好ましく、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。重合体ブロック(A)の含有量の上限値は、耐衝撃性及び靭性発現の観点から95質量%以下が好ましく、より好ましくは90質量%以下、さらに好ましくは80質量%以下である。極性樹脂(I)としてポリフェニレンスルフィド系樹脂を用いる場合は、低温での耐衝撃性発現の観点から、変性共役ジエン系重合体(II)における重合体ブロック(A)の含有量は、40質量%以下であることが好ましく、より好ましくは35質量%以下、さらに好ましくは30質量%以下、さらにより好ましくは27質量%以下である。
 また、変性共役ジエン系重合体(II)における前記重合体ブロック(B)の含有量は、0質量%以上が好ましく、耐衝撃性及び靭性の観点から、より好ましくは10質量%以上90質量%以下である。
 極性樹脂(I)としてポリフェニレンスルフィド系樹脂を用いる場合は、低温での耐衝撃性発現の観点から、変性共役ジエン系重合体(II)における重合体ブロック(B)の含有量は、60質量%以上が好ましく、より好ましくは65質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは73質量%以上である。
 また、変性共役ジエン系重合体(II)における前記重合体ブロック(C)の含有量は、0質量%以上が好ましく、ポリフェニレンスルフィド系樹脂との相容性の観点から、より好ましくは10質量%以上90質量%以下である。
In the modified conjugated diene-based polymer (II), the lower limit of the content of the polymer block (A) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 3% by mass or more, from the viewpoint of productivity. It is 5% by mass or more. The upper limit of the content of the polymer block (A) is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 80% by mass or less from the viewpoint of impact resistance and toughness development. When a polyphenylene sulfide-based resin is used as the polar resin (I), the content of the polymer block (A) in the modified conjugated diene-based polymer (II) is 40% by mass from the viewpoint of developing impact resistance at low temperatures. or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and even more preferably 27% by mass or less.
The content of the polymer block (B) in the modified conjugated diene polymer (II) is preferably 0% by mass or more, and more preferably 10% by mass or more and 90% by mass from the viewpoint of impact resistance and toughness. It is below.
When a polyphenylene sulfide-based resin is used as the polar resin (I), the content of the polymer block (B) in the modified conjugated diene-based polymer (II) is 60% by mass from the viewpoint of developing impact resistance at low temperatures. The above is preferable, more preferably 65% by mass or more, still more preferably 70% by mass or more, and even more preferably 73% by mass or more.
Further, the content of the polymer block (C) in the modified conjugated diene-based polymer (II) is preferably 0% by mass or more, and more preferably 10% by mass from the viewpoint of compatibility with the polyphenylene sulfide-based resin. It is more than 90 mass % or less.
 変性共役ジエン系重合体(II)においては、共役ジエン単量体単位の合計100mol%に対して、ビニル結合量は、好ましくは0mol%以上、より好ましくは5mol%以上である。
 「ビニル結合量」とは、水素化前の重合体に組み込まれている、共役ジエン化合物に起因する1,4-結合(シス及びトランス)と1,2-結合(但し、3,4-結合で重合体に組み込まれている場合には1,2-結合と3,4-結合の合計量をいう)の合計量に対する、1,2-結合量(mol%)をいう。
 変性共役ジエン系重合体(II)のビニル結合量は、核磁気共鳴装置(NMR)等を用いて測定することができ、具体的には、後述する実施例に記載の方法で測定することができる。
 前記ビニル結合量は、ルイス塩基、例えばエーテル、アミン等の化合物をビニル結合量調整剤(以下、ビニル化剤と表記)として使用することにより、上記数値範囲に制御することができる。
In the modified conjugated diene-based polymer (II), the vinyl bond content is preferably 0 mol % or more, more preferably 5 mol % or more, relative to a total of 100 mol % of the conjugated diene monomer units.
The "vinyl bond amount" refers to 1,4-bonds (cis and trans) and 1,2-bonds (however, 3,4-bonds) resulting from conjugated diene compounds incorporated in the polymer before hydrogenation. refers to the total amount of 1,2-bonds and 3,4-bonds when incorporated in a polymer), the amount of 1,2-bonds (mol%).
The vinyl bond content of the modified conjugated diene-based polymer (II) can be measured using a nuclear magnetic resonance spectrometer (NMR) or the like, and specifically, it can be measured by the method described in Examples below. can.
The vinyl bond content can be controlled within the above numerical range by using a compound such as a Lewis base, such as an ether or an amine, as a vinyl bond content adjusting agent (hereinafter referred to as a vinylating agent).
 変性共役ジエン系重合体(II)は、共役ジエン化合物に由来する脂肪族二重結合が水素添加されている水添変性共役ジエン系重合体を含んでいてもよい。これにより、本実施形態の樹脂組成物の耐熱性の向上を図ることができる。
 共役ジエン化合物に由来する脂肪族二重結合の水素添加率は、熱的に不安定な1,2-結合部(但し、3,4-結合で重合体に組み込まれている場合には1,2-結合部と3,4-結合部を含む)を水素化することで耐熱性が向上することから、10%以上が好ましく、より好ましくは20%以上、さらに好ましくは30%以上である。
 また、剛性、耐薬品性、耐熱性に特に優れた極性樹脂(I)としてポリフェニレンスルフィド系樹脂を用いた場合、本実施形態の樹脂組成物における分散相(B)の数平均分散粒径を1.5μm以下とし、靭性、耐衝撃性をより向上させる観点から、前記水素添加率は90%以下が好ましく、より好ましくは83%以下であり、さらに好ましくは80%以下である。
 変性共役ジエン系重合体(II)の水素添加率は、核磁気共鳴装置(NMR)等を用いて測定することができ、具体的には実施例に記載の方法で測定することができる。
 また、水素添加率は、例えば、水素添加反応時に反応させる水素量を調整することによって上記数値範囲に制御することができる。
The modified conjugated diene polymer (II) may contain a hydrogenated modified conjugated diene polymer in which the aliphatic double bonds derived from the conjugated diene compound are hydrogenated. Thereby, the heat resistance of the resin composition of this embodiment can be improved.
The hydrogenation rate of the aliphatic double bond derived from the conjugated diene compound is the thermally unstable 1,2-bond (however, when it is incorporated into the polymer with a 3,4-bond, the Hydrogenation of the 2-bond and 3,4-bond) improves the heat resistance, so it is preferably 10% or more, more preferably 20% or more, and still more preferably 30% or more.
Further, when a polyphenylene sulfide-based resin is used as the polar resin (I) that is particularly excellent in rigidity, chemical resistance, and heat resistance, the dispersed phase (B) in the resin composition of the present embodiment has a number average dispersed particle size of 1 0.5 μm or less, and from the viewpoint of further improving toughness and impact resistance, the hydrogenation rate is preferably 90% or less, more preferably 83% or less, and still more preferably 80% or less.
The hydrogenation rate of the modified conjugated diene-based polymer (II) can be measured using a nuclear magnetic resonance spectrometer (NMR) or the like, and specifically can be measured by the method described in Examples.
Also, the hydrogenation rate can be controlled within the above numerical range by adjusting the amount of hydrogen reacted during the hydrogenation reaction, for example.
<変性共役ジエン系重合体(成分(II)の製造方法>
 本実施形態の樹脂組成物に用いる変性共役ジエン系重合体(II)は、以下に限定されないが、例えば、有機溶媒中で、有機アルカリ金属化合物を重合開始剤として、共役ジエン化合物及びビニル芳香族化合物を用いて重合を行い、ブロック重合体を得た後、変性反応を行うことにより製造することができる。
 変性共役ジエン系重合体(II)は、水素化したものであってもよく、水素化反応及び変性反応は、この順序に限らず逆であってもよい。
 重合の態様としては、バッチ重合であっても連続重合であってもよく、これらの組み合わせであってもよい。
 耐衝撃性や靭性に影響を及ぼす樹脂組成物中の分散相のサイズを一定にするという観点からは、分子量分布が狭くなるバッチ重合方法が好ましい。
<Modified conjugated diene-based polymer (method for producing component (II)>
The modified conjugated diene polymer (II) used in the resin composition of the present embodiment is not limited to the following, for example, in an organic solvent, using an organic alkali metal compound as a polymerization initiator, a conjugated diene compound and a vinyl aromatic It can be produced by carrying out polymerization using a compound to obtain a block polymer, and then carrying out a modification reaction.
The modified conjugated diene-based polymer (II) may be hydrogenated, and the order of hydrogenation and modification may be reversed.
The mode of polymerization may be batch polymerization, continuous polymerization, or a combination thereof.
From the viewpoint of making the size of the dispersed phase in the resin composition constant, which affects impact resistance and toughness, a batch polymerization method that narrows the molecular weight distribution is preferable.
 重合温度は、一般に0~180℃であり、20~160℃が好ましく、30~150℃がより好ましい。
 重合時間は目的とする重合体によって異なるが、通常は48時間以内であり、0.1~10時間が好ましい。分子量分布が狭く、高い強度を有する共役ジエン系重合体を得る観点からは、0.5~5時間がより好ましい。
 重合系の雰囲気は、窒素及び溶媒を液相に維持するために十分な圧力の範囲であればよく、特に限定されるものではない。
 重合系内に、重合開始剤及びリビングポリマーを不活性化させるような不純物、例えば水、酸素、炭酸ガス等が存在しないことが好ましい。
The polymerization temperature is generally 0 to 180°C, preferably 20 to 160°C, more preferably 30 to 150°C.
Although the polymerization time varies depending on the desired polymer, it is usually within 48 hours, preferably 0.1 to 10 hours. From the viewpoint of obtaining a conjugated diene-based polymer having a narrow molecular weight distribution and high strength, 0.5 to 5 hours is more preferable.
The atmosphere of the polymerization system is not particularly limited as long as the pressure is in a range sufficient to maintain the nitrogen and solvent in the liquid phase.
It is preferable that impurities such as water, oxygen, carbon dioxide gas, etc. that deactivate the polymerization initiator and the living polymer do not exist in the polymerization system.
 有機溶媒としては、以下に限定されないが、例えば、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類;シクロヘキサン、シクロへプタン、メチルシクロペンタン等の脂環式炭化水素類;ベンゼン、キシレン、トルエン、エチルベンゼン等の芳香族炭化水素が挙げられる。 Examples of organic solvents include, but are not limited to, aliphatic hydrocarbons such as n-butane, isobutane, n-pentane, n-hexane, n-heptane and n-octane; cyclohexane, cycloheptane, methylcyclo alicyclic hydrocarbons such as pentane; and aromatic hydrocarbons such as benzene, xylene, toluene and ethylbenzene.
 重合開始剤である有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。
 有機リチウム化合物としては、有機モノリチウム化合物、有機ジリチウム化合物、有機ポリリチウム化合物が挙げられる。
 有機リチウム化合物としては、以下に限定されないが、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、ヘキサメチレンジリチウム、ブタジエニルリチウム、イソプロペニルジリチウム、及びリチウムピペリジド等が挙げられる。
 リチウムピペリジドのように、Nを含む有機リチウム化合物を重合開始剤とする場合、NHxにおいて、X=0である原子団を有するアミノ基変性共役ジエン系重合体が得られる。
 これらの重合開始剤は1種のみを単独で使用してもよく、2種以上を併用してもよい。これらの中でも、重合活性の観点からn-ブチルリチウム、sec-ブチルリチウム、リチウムピペリジドが好ましい。
An organic lithium compound is preferable as the organic alkali metal compound that is the polymerization initiator.
Organic lithium compounds include organic monolithium compounds, organic dilithium compounds, and organic polylithium compounds.
Examples of organic lithium compounds include, but are not limited to, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, n-pentyllithium, n-hexyllithium, benzyllithium, phenyllithium, hexamethylenedilithium, butadienyllithium, isopropenyldilithium, lithium piperidide and the like.
When an organic lithium compound containing N such as lithium piperidide is used as a polymerization initiator, an amino group-modified conjugated diene polymer having an atomic group in which X=0 in NHx is obtained.
These polymerization initiators may be used alone or in combination of two or more. Among these, n-butyllithium, sec-butyllithium, and lithium piperidide are preferred from the viewpoint of polymerization activity.
 重合開始剤である有機アルカリ金属化合物の使用量は、目的とする変性共役ジエン系重合体の分子量によるが、一般的には0.01~1.5phm(単量体100質量部当たりに対する質量部)の範囲であることが好ましく、0.02~0.3phmの範囲であることがより好ましく、0.05~0.2phmの範囲であることがさらに好ましい。 The amount of the organic alkali metal compound used as the polymerization initiator depends on the molecular weight of the desired modified conjugated diene polymer, but is generally 0.01 to 1.5 phm (parts by weight per 100 parts by weight of the monomer). ), more preferably 0.02 to 0.3 phm, even more preferably 0.05 to 0.2 phm.
 変性共役ジエン系重合体(成分(II))のビニル結合量は、ルイス塩基、例えばエーテル、アミン等の化合物を、ビニル結合量調整剤(以下、ビニル化剤と表記)として使用することにより制御することができる。
 また、ビニル化剤の使用量を調整することにより、ビニル結合量を制御することができる。
The vinyl bond content of the modified conjugated diene-based polymer (component (II)) is controlled by using a compound such as a Lewis base, such as an ether or an amine, as a vinyl bond content adjusting agent (hereinafter referred to as a vinylating agent). can do.
Moreover, the amount of vinyl bonds can be controlled by adjusting the amount of the vinylizing agent used.
 ビニル化剤としては、以下に限定されないが、例えば、エーテル化合物、第3級アミン系化合物等が挙げられる。 Examples of vinylizing agents include, but are not limited to, ether compounds, tertiary amine compounds, and the like.
 エーテル化合物としては、直鎖状エーテル化合物及び環状エーテル化合物等が挙げられる。
 直鎖状エーテル化合物としては、以下に限定されないが、例えば、ジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールのジアルキルエーテル化合物類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコールのジアルキルエーテル化合物類が挙げられる。
 また、環状エーテル化合物としては、以下に限定されないが、例えば、テトラヒドロフラン、ジオキサン、2,5-ジメチルオキソラン、2,2,5,5-テトラメチルオキソラン、2,2-ビス(2-オキソラニル)プロパン、フルフリルアルコールのアルキルエーテル等が挙げられる。
Ether compounds include linear ether compounds and cyclic ether compounds.
Examples of linear ether compounds include, but are not limited to, ethylene glycol dialkyl ether compounds such as dimethyl ether, diethyl ether, diphenyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether; diethylene glycol dimethyl ether, diethylene glycol Examples include dialkyl ether compounds of diethylene glycol such as diethyl ether and diethylene glycol dibutyl ether.
Moreover, the cyclic ether compound is not limited to the following, but for example, tetrahydrofuran, dioxane, 2,5-dimethyloxolane, 2,2,5,5-tetramethyloxolane, 2,2-bis(2-oxolanyl ) propane, alkyl ether of furfuryl alcohol, and the like.
 第3級アミン系化合物としては、以下に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、N-エチルピペリジン、N-メチルピロリジン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,2-ジピペリジノエタン、トリメチルアミノエチルピペラジン、N,N,N’,N”,N”-ペンタメチルエチレントリアミン、N,N’-ジオクチル-p-フェニレンジアミン、ピリジン、テトラメチルプロパンジアミン、ビス[2-(N,N-ジメチルアミノ)エチル]エーテル等が挙げられる。
 これらは、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 第3級アミン系化合物としては、アミンを2個有する化合物が好ましい。さらに、それらの中でも、分子内で対称性を示す構造を有するものがより好ましく、N,N,N’,N’-テトラメチルエチレンジアミンや、ビス[2-(N,N-ジメチルアミノ)エチル]エーテルや、1,2-ジピペリジノエタンがさらに好ましい。
Examples of tertiary amine compounds include, but are not limited to, trimethylamine, triethylamine, tributylamine, N,N-dimethylaniline, N-ethylpiperidine, N-methylpyrrolidine, N,N,N',N' -tetramethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,2-dipiperidinoethane, trimethylaminoethylpiperazine, N,N,N',N'',N''-pentamethylethylenetriamine , N,N′-dioctyl-p-phenylenediamine, pyridine, tetramethylpropanediamine, bis[2-(N,N-dimethylamino)ethyl]ether and the like.
These may be used individually by 1 type, and may use 2 or more types together.
A compound having two amines is preferable as the tertiary amine compound. Furthermore, among them, those having a structure exhibiting symmetry in the molecule are more preferable, such as N,N,N',N'-tetramethylethylenediamine and bis[2-(N,N-dimethylamino)ethyl] Ether and 1,2-dipiperidinoethane are more preferred.
 本実施形態の樹脂組成物に用いる変性共役ジエン系重合体(II)は、上述したビニル化剤、有機リチウム化合物、及びアルカリ金属アルコキシドの共存下、共役ジエン化合物及びビニル芳香族化合物を用いて重合することにより製造できる。
 ここで、アルカリ金属アルコキシドとは、一般式MOR(式中、Mはアルカリ金属、Rはアルキル基である)で表される化合物である。
 アルカリ金属アルコキシドを重合工程で併存させることにより、ビニル結合量、分子量分布、重合速度、ブロック率等を制御する効果が得られる。
The modified conjugated diene-based polymer (II) used in the resin composition of the present embodiment is polymerized using a conjugated diene compound and a vinyl aromatic compound in the presence of the above-described vinylizing agent, organolithium compound, and alkali metal alkoxide. It can be manufactured by
Here, the alkali metal alkoxide is a compound represented by the general formula MOR (wherein M is an alkali metal and R is an alkyl group).
Coexistence of an alkali metal alkoxide in the polymerization step provides the effect of controlling the amount of vinyl bonds, molecular weight distribution, polymerization rate, block ratio, and the like.
 アルカリ金属アルコキシドのアルカリ金属としては、高いビニル結合量、狭い分子量分布、高い重合速度、及び高いブロック率の観点から、ナトリウム又はカリウムが好ましい。
 アルカリ金属アルコキシドとしては、以下に限定されないが、例えば、炭素数2~12のアルキル基を有するナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシドが挙げられ、好ましくは、炭素数3~6のアルキル基を有するナトリウムアルコキシドや、カリウムアルコキシドであり、より好ましくは、ナトリウム-t-ブトキシド、ナトリウム-t-ペントキシド、カリウム-t-ブトキシド、カリウム-t-ペントキシドが挙げられる。
 これらの中でも、ナトリウムアルコキシドであるナトリウム-t-ブトキシド、ナトリウム-t-ペントキシドがさらに好ましい。
As the alkali metal of the alkali metal alkoxide, sodium or potassium is preferable from the viewpoints of high vinyl bond content, narrow molecular weight distribution, high polymerization rate, and high block ratio.
Examples of the alkali metal alkoxide include, but are not limited to, sodium alkoxide, lithium alkoxide, and potassium alkoxide having an alkyl group having 2 to 12 carbon atoms, preferably sodium having an alkyl group having 3 to 6 carbon atoms. Alkoxide and potassium alkoxide, more preferably sodium-t-butoxide, sodium-t-pentoxide, potassium-t-butoxide and potassium-t-pentoxide.
Among these, sodium-t-butoxide and sodium-t-pentoxide, which are sodium alkoxides, are more preferable.
 変性共役ジエン系重合体(II)は、水素化されてもよく、共役ジエン単量体単位を含む重合体ブロックは水添物であってもよい。
 当該水素化の方法は特に限定されないが、例えば、上記重合工程で得られた共役ジエン系重合体に対し、水素化触媒の存在下に、水素を供給し、水素添加することにより、共役ジエン単量体単位の二重結合残基が水素添加された、水素化共役ジエン系重合体を得ることができる。
 水素添加率(水添率)は、例えば、水素添加時の触媒量によって制御することができる。水素添加速度は、例えば、水素添加時の触媒量、水素フィード量、圧力及び温度等を調整することによって制御することができる。水添反応工程は、水添前の共役ジエン系重合体の生成反応停止後のタイミングで実施することが好ましい。
The modified conjugated diene-based polymer (II) may be hydrogenated, and the polymer block containing conjugated diene monomer units may be a hydrogenated product.
The hydrogenation method is not particularly limited, but for example, the conjugated diene-based polymer obtained in the polymerization step is supplied with hydrogen in the presence of a hydrogenation catalyst and hydrogenated to obtain a conjugated diene monomer. A hydrogenated conjugated diene-based polymer can be obtained in which the double bond residues of the monomer units are hydrogenated.
The hydrogenation rate (hydrogenation rate) can be controlled by, for example, the amount of catalyst during hydrogenation. The hydrogenation rate can be controlled, for example, by adjusting the catalyst amount, hydrogen feed amount, pressure and temperature during hydrogenation. The hydrogenation reaction step is preferably carried out at a timing after termination of the production reaction of the conjugated diene-based polymer before hydrogenation.
 変性共役ジエン系重合体(II)は、酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、エポキシ基、オキセタニル基、及びアミノ基からなる群より選ばれる少なくとも1種の極性基が結合している。
 極性樹脂(I)、及び後述する所定の極性基を有する重合体(成分(III))との親和性及び/又は反応性の観点から、水酸基、カルボキシル基がより好ましい。
 また、変性共役ジエン系重合体(II)に結合した極性基が、水酸基、カルボキシル基からなる群より選ばれる少なくとも1種であることにより、成分(I)として熱可塑性樹脂を用い、射出成形により溶融状態の樹脂組成物を金型に注入し、冷却し、任意の成形体を得る場合に、樹脂組成物の流動性が向上し、加工性が良化する傾向にある。
 当該極性基の共役ジエン系重合体への導入方法は、特に限定されるものでなく、例えば、所定の各極性基を有する重合開始剤によって導入する方法;各極性基を有する不飽和単量体を重合させることにより、変性共役ジエン系重合体を得る方法;重合体のリビング末端に極性基を有する変性剤を付加反応する方法;等が挙げられる。
 変性共役ジエン系重合体(II)において、各極性基が導入される位置についても特に限定されず、例えば、共役ジエン系重合体の末端であってもよく、主鎖の一部にブロック又はランダム及びテーパー状に配置してもよい。極性樹脂(成分(I))、及び後述する所定の極性基を有する重合体(成分(III))との親和性及び/又は反応性、さらには、上述した樹脂組成物の加工性の観点から、共役ジエン系重合体の末端であることがより好ましい。
The modified conjugated diene polymer (II) has at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group, and an amino group. there is
A hydroxyl group and a carboxyl group are more preferable from the viewpoint of affinity and/or reactivity with the polar resin (I) and a polymer having a predetermined polar group (component (III)) described later.
Further, since the polar group bonded to the modified conjugated diene polymer (II) is at least one selected from the group consisting of hydroxyl groups and carboxyl groups, a thermoplastic resin is used as the component (I), and injection molding is performed. When a resin composition in a molten state is injected into a mold and cooled to obtain an arbitrary molded body, the fluidity of the resin composition tends to be improved and the processability tends to be improved.
The method of introducing the polar group into the conjugated diene-based polymer is not particularly limited. For example, a method of introducing with a polymerization initiator having each predetermined polar group; a method of obtaining a modified conjugated diene-based polymer by polymerizing a; a method of adding a modifying agent having a polar group to the living end of the polymer;
In the modified conjugated diene-based polymer (II), the position at which each polar group is introduced is not particularly limited. and may be arranged in a tapered shape. Affinity and/or reactivity with a polar resin (component (I)) and a polymer having a predetermined polar group (component (III)) described later, and from the viewpoint of workability of the resin composition described above , is more preferably the end of the conjugated diene-based polymer.
 前記「変性剤」としては、以下に限定されないが、例えば、マレイン酸、シュウ酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、カルバリル酸、シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸等の脂肪族カルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、トリメシン酸、トリメリット酸、ピロメリット酸等の芳香族カルボン酸等が挙げられる。
 また、無水マレイン酸、無水イタコン酸、無水ピロメリット酸、シス-4-シクロヘキサン-1,2-ジカルボン酸無水物、1,2,4,5-ベンゼンテトラカルボン酸二無水物、5-(2,5-ジオキシテトラヒドロキシフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、ε―カプロラクタム等が挙げられる。
Examples of the "modifying agent" include, but are not limited to, maleic acid, oxalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, carbarylic acid, cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, and the like. and aromatic carboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, trimesic acid, trimellitic acid and pyromellitic acid.
In addition, maleic anhydride, itaconic anhydride, pyromellitic anhydride, cis-4-cyclohexane-1,2-dicarboxylic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, 5-(2 ,5-dioxytetrahydroxyfuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, ε-caprolactam and the like.
 共役ジエン系重合体へ極性基を導入する他の方法としては、例えば、共役ジエン系重合体に、有機リチウム化合物等の有機アルカリ金属化合物を反応(メタレーション反応)させ、有機アルカリ金属が付加した重合体に極性基を有する変性剤を付加反応させる方法等が挙げられる。 As another method for introducing a polar group into a conjugated diene polymer, for example, a conjugated diene polymer is reacted (metalation reaction) with an organic alkali metal compound such as an organic lithium compound to add an organic alkali metal. A method of subjecting a polymer to an addition reaction with a modifier having a polar group can be used.
 さらに、極性基の他の導入方法としては、例えば、未変性の共役ジエン系重合体に、極性基を有する原子団を直接グラフト付加する方法が挙げられる。
 グラフト付加する方法としては、例えば、ラジカル開始剤と共役ジエン系重合体、及び前記変性剤を含んだ溶液中でこれらを反応させる方法;あるいはラジカル開始剤と共役ジエン系重合体、及び前記変性剤を加熱溶融下で反応させる方法;あるいはラジカル開始剤を含まずに共役ジエン系重合体、及び前記変性剤を含有する化合物を加熱溶融下で反応させる方法等が挙げられる。
Furthermore, another method for introducing a polar group includes, for example, a method of directly grafting an atomic group having a polar group to an unmodified conjugated diene polymer.
Examples of the graft addition method include a method of reacting them in a solution containing a radical initiator, a conjugated diene polymer, and the modifier; or a radical initiator, a conjugated diene polymer, and the modifier. or a method of reacting a conjugated diene polymer without a radical initiator and a compound containing the modifier under heating and melting.
 重合体に対して極性基を導入する際に各成分を反応させる方法としては、例えば、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用いて、各成分を溶融混練する方法が挙げられる。好ましくは、コストと生産安定性の観点から、単軸、二軸又は多軸スクリュー押出機を用いる方法が挙げられ、好ましくは二軸スクリュー押出機を用いる方法が挙げられる。
 反応工程の際には、各成分をドライブレンドして一括投入してもよく、各成分ごとに別フィードしてもよく、また、同一成分を段階的に添加していってもよい。
 スクリューの回転数は、変性剤を重合体に均一に付加させる観点から、50~400rpmが好ましく、より好ましくは100~350rpmであり、せん断による重合体の劣化を抑制し、均一付加を行う観点から、好ましくは150~300rpmである。
 混練温度は、共役ジエン系重合体が溶融する温度、かつラジカル開始剤からラジカルが発生する温度であるものとし、好ましくは100℃~350℃である。極性基の導入量の制御や熱による重合体の劣化を抑制するという観点からは、好ましくは120℃~300℃であり、より好ましくは、150℃~250℃である。
 ラジカル活性種の酸素による失活を抑制するため、窒素などの不活性ガス下で溶融混練してもよい。
Methods for reacting each component when introducing a polar group into a polymer include, for example, Banbury mixers, single screw extruders, twin screw extruders, co-kneaders, multi-screw extruders, and the like. A method of melt-kneading each component using a kneader can be used. From the viewpoint of cost and production stability, a method using a single-screw, twin-screw or multi-screw extruder is preferred, and a method using a twin-screw extruder is preferred.
In the reaction process, each component may be dry-blended and added all at once, each component may be separately fed, or the same component may be added stepwise.
The rotation speed of the screw is preferably 50 to 400 rpm, more preferably 100 to 350 rpm, from the viewpoint of uniformly adding the modifier to the polymer, and from the viewpoint of suppressing deterioration of the polymer due to shear and performing uniform addition. , preferably 150-300 rpm.
The kneading temperature is a temperature at which the conjugated diene polymer melts and a temperature at which radicals are generated from the radical initiator, and is preferably 100°C to 350°C. From the viewpoint of controlling the introduction amount of the polar group and suppressing deterioration of the polymer due to heat, the temperature is preferably 120°C to 300°C, more preferably 150°C to 250°C.
In order to suppress deactivation of the radical active species by oxygen, the mixture may be melt-kneaded under an inert gas such as nitrogen.
 前記ラジカル開始剤としては、以下に限定されないが、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート類が挙げられる。ラジカル開始剤は、混練温度域に1分半減期温度を持つものが好ましい。より好ましくは1分半減期温度が150℃~250℃にあるものであり、例えば、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリン酸、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル―2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ―(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾネート、n-ブチル-4,4-ジ-(t-ブチルパーオキシ)バレレート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキシド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド、p-メタンハイドロパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキシド、1,1,3,3-テトラメチルブチルハイドロパーオキシドが挙げられる。
 特に、変性工程で用いる共役ジエン系重合体との相容性の観点から、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキシド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3が好ましい。
 さらには、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3がより好ましい。
Examples of the radical initiator include, but are not limited to, ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. The radical initiator preferably has a 1-minute half-life temperature within the kneading temperature range. More preferably, the one-minute half-life temperature is 150° C. to 250° C. Examples include 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5, 5-trimethylhexanoate, t-butyl peroxylaurate, t-butyl peroxy isopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, 2,5-dimethyl-2 ,5-di(benzoylperoxy)hexane, t-butylperoxyacetate, 2,2-di-(t-butylperoxy)butane, t-butylperoxybenzonate, n-butyl-4,4-di -(t-butylperoxy)valerate, di(2-t-butylperoxyisopropyl)benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t- butylperoxy)hexane, t-butylcumyl peroxide, di-t-butylperoxide, p-methane hydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, diisopropylbenzene hydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide.
In particular, from the viewpoint of compatibility with the conjugated diene polymer used in the modification step, di(2-t-butylperoxyisopropyl)benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5- Dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne -3 is preferred.
Furthermore, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane and 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 are more preferred.
 また、共役ジエン系重合体に対する極性基の他の導入方法としては、前述の方法で得られた一次変性共役ジエン系重合体と、所定の極性基を有する原子団とを反応させて導入する二次変性が挙げられる。
 極性基の組み合わせとしては、アミノ基と、ジカルボキシル基、酸無水物基、イソシアネート基、水酸基、オキサゾリン基、オキセタニル基、及びカルボキシル基;酸無水物基と、水酸基、オキサゾリン基、及びオキセタニル基;シラノール基と、水酸基、及びカルボキシル基;エポキシ基と、カルボキシル基が挙げられる。反応性の観点から、アミノ基と、ジカルボキシル基、酸無水物基、オキサゾリン基、及びオキセタニル基;シラノール基と、水酸基、及びジカルボキシル基;エポキシ基と、ジカルボキシル基が好ましく、より好ましくはアミノ基とジカルボキシル基、及び酸無水物基である。
As another method for introducing a polar group into a conjugated diene polymer, there is a second method in which the primary modified conjugated diene polymer obtained by the above method is reacted with an atomic group having a predetermined polar group. The following modifications are mentioned.
A combination of polar groups includes an amino group, a dicarboxyl group, an acid anhydride group, an isocyanate group, a hydroxyl group, an oxazoline group, an oxetanyl group, and a carboxyl group; an acid anhydride group, a hydroxyl group, an oxazoline group, and an oxetanyl group; silanol groups, hydroxyl groups, and carboxyl groups; epoxy groups and carboxyl groups; From the viewpoint of reactivity, an amino group, a dicarboxyl group, an acid anhydride group, an oxazoline group, and an oxetanyl group; a silanol group, a hydroxyl group, and a dicarboxyl group; an epoxy group, and a dicarboxyl group are preferred, and more preferred. an amino group, a dicarboxyl group, and an acid anhydride group.
 一次変性として、共役ジエン系重合体に、エポキシ基、酸無水物基、水酸基を結合させる方法としては、前述の方法が挙げられ、変性剤としては前述の変性剤、エポキシ基含有重合性化合物等が挙げられる。 As a primary modification, the method of bonding an epoxy group, an acid anhydride group, and a hydroxyl group to a conjugated diene polymer includes the above-described methods. is mentioned.
 一次変性として、共役ジエン系重合体にシラノール基を結合させる方法としては、前述の方法が挙げられ、変性剤としては、例えば、ビス-(3-トリエトキシシリルプロピル)-テトラスルファン、ビス-(3-トリエトキシシリルプロピル)-ジスルファン、エトキシシロキサンオリゴマー、エポキシ基含有重合性化合物、前述のエポキシ基含有重合性化合物で挙げたアルコキシシラン基を持つ化合物の加水分解物等が挙げられる。 As a primary modification, the method of bonding a silanol group to a conjugated diene polymer includes the above-described methods. Examples thereof include (3-triethoxysilylpropyl)-disulfane, ethoxysiloxane oligomers, epoxy group-containing polymerizable compounds, and hydrolysates of compounds having an alkoxysilane group listed above as epoxy group-containing polymerizable compounds.
 一次変性として、共役ジエン系重合体にアミノ基を結合させる方法は、前述の方法が挙げられ、変性剤としては、例えば、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、N,N’-ジメチルプロピレンウレア、1,3-ジエチル-2-イミダゾリジノン、1,3-ジプロピル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1-メチル-3-プロピル-2-イミダゾリジノン、1-メチル-3-ブチル-2-イミダゾリジノン、1-メチル-3-(2-メトキシエチル)-2-イミダゾリジノン、1-メチル-3-(2-エトキシエチル)-2-イミダゾリジノン、1,3-ジ-(2-エトキシエチル)-2-イミダゾリジノン、1,3-ジメチルエチレンチオウレア、N,N’-ジエチルプロピレンウレア、N-メチル-N’-エチルプロピレンウレア等が挙げられる。また、1-メチル-2-ピロリドン、1-シクロヘキシル-2-ピロリドン、1-エチル-2-ピロリドン、1-プロピル-2-ピロリドン、1-ブチル-2-ピロリドン、1-イソプロピル-2-ピロリドン、1,5-ジメチル-2-ピロリドン、1-メトキシメチル-2-ピロリドン、1-メチル-2-ピペリドン、1,4-ジメチル-2-ピペリドン、1-エチル-2-ピペリドン、1-イソプロピル-2-ピペリドン、1-イソプロピル-5,5-ジメチル-2-ピペリドン等が挙げられる。 As the primary modification, the method of binding an amino group to a conjugated diene polymer includes the above-described methods. 2-imidazolidinone, N,N'-dimethylpropylene urea, 1,3-diethyl-2-imidazolidinone, 1,3-dipropyl-2-imidazolidinone, 1-methyl-3-ethyl-2-imidazo Lizinone, 1-methyl-3-propyl-2-imidazolidinone, 1-methyl-3-butyl-2-imidazolidinone, 1-methyl-3-(2-methoxyethyl)-2-imidazolidinone, 1-methyl-3-(2-ethoxyethyl)-2-imidazolidinone, 1,3-di-(2-ethoxyethyl)-2-imidazolidinone, 1,3-dimethylethylenethiourea, N,N' -diethylpropylene urea, N-methyl-N'-ethylpropylene urea and the like. 1-methyl-2-pyrrolidone, 1-cyclohexyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1-propyl-2-pyrrolidone, 1-butyl-2-pyrrolidone, 1-isopropyl-2-pyrrolidone, 1,5-dimethyl-2-pyrrolidone, 1-methoxymethyl-2-pyrrolidone, 1-methyl-2-piperidone, 1,4-dimethyl-2-piperidone, 1-ethyl-2-piperidone, 1-isopropyl-2 -piperidone, 1-isopropyl-5,5-dimethyl-2-piperidone and the like.
 アミノ基を結合させた一次変性共役ジエン系重合体と、二次変性剤を結合させる方法としては、前述の方法が挙げられ、変性剤としては、例えば、マレイン酸、シュウ酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、カルバリル酸、シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸等の脂肪族カルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、トリメシン酸、トリメリット酸、ピロメリット酸等の芳香族カルボン酸等が挙げられる。また、無水マレイン酸、無水イタコン酸、無水ピロメリット酸、シス-4-シクロヘキサン-1,2-ジカルボン酸無水物、1,2,4,5-ベンゼンテトラカルボン酸二無水物、5-(2,5-ジオキシテトラヒドロキシフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等が挙げられる。 Examples of the method for binding the primary modified conjugated diene-based polymer to which an amino group is bound and the secondary modifier include the methods described above. Examples of modifiers include maleic acid, oxalic acid, succinic acid, and adipine. acids, aliphatic carboxylic acids such as azelaic acid, sebacic acid, dodecanedicarboxylic acid, carbarylic acid, cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid; terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, trimesic acid, aromatic carboxylic acids such as trimellitic acid and pyromellitic acid; In addition, maleic anhydride, itaconic anhydride, pyromellitic anhydride, cis-4-cyclohexane-1,2-dicarboxylic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, 5-(2 ,5-dioxytetrahydroxyfuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride and the like.
 上述した製造方法により得られる変性共役ジエン系重合体(II)の形状に特に制限はないが、例えば、ペレット状、シート状、ストランド状、チップ状等が挙げられる。また、溶融混練後、直接成形品とすることもできる。
 変性共役ジエン系重合体(II)をペレット化することにより、変性共役ジエン系重合体のペレットを製造することができる。
 ペレット化の方法としては、例えば、一軸又は二軸押出機から変性共役ジエン系重合体をストランド状に押出して、ダイ部前面に設置された回転刃により、水中で切断する方法;一軸又は二軸押出機から変性共役ジエン系重合体をストランド状に押出して、水冷又は空冷した後、ストランドカッターにより切断する方法;オープンロール、バンバリーミキサーにより溶融混合した後、ロールによりシート状に成形し、さらに前記シートを短冊状にカットし、その後、ペレタイザーにより立方状ペレットに切断する方法等が挙げられる。
 なお、ペレットの大きさ、形状は特に限定されない。
The shape of the modified conjugated diene-based polymer (II) obtained by the production method described above is not particularly limited, and examples thereof include pellets, sheets, strands, chips, and the like. Moreover, after melt-kneading, it can be directly molded.
By pelletizing the modified conjugated diene polymer (II), pellets of the modified conjugated diene polymer can be produced.
Pelletization methods include, for example, a method of extruding a modified conjugated diene-based polymer from a single-screw or twin-screw extruder in the form of strands and cutting in water with a rotary blade installed in front of the die; single-screw or twin-screw A method of extruding a modified conjugated diene-based polymer from an extruder into a strand, cooling it with water or air, and then cutting it with a strand cutter; For example, the sheet is cut into strips, and then cut into cubic pellets by a pelletizer.
The size and shape of the pellet are not particularly limited.
 変性共役ジエン系重合体(II)は、必要に応じてそのペレットに、ペレットブロッキングの防止を目的としてペレットブロッキング防止剤を配合することができる。
 ペレットブロッキング防止剤としては、以下に限定されないが、例えば、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ポリエチレン、ポリプロピレン、エチレンビスステアリルアミド、タルク、アモルファスシリカ等が挙げられる。
 本実施形態の樹脂組成物を用いて、ランダムポリプロピレン組成物や、それを含むチューブ状成形体、シート状成形体を作製する場合、それらの透明性の観点から、ステアリン酸カルシウム、ポリエチレン、及びポリプロピレンが好ましい。
 ペレットブロッキング防止剤の好ましい量としては、変性共役ジエン系重合体(II)に対して500~6000ppmである。より好ましい量としては、変性共役ジエン系重合体(II)に対して1000~5000ppmである。ペレットブロッキング防止剤は、ペレット表面に付着した状態で配合されていることが好ましいが、ペレット内部にある程度含むこともできる。
The modified conjugated diene-based polymer (II) may optionally be blended with a pellet antiblocking agent for the purpose of preventing pellet blocking.
Examples of pellet antiblocking agents include, but are not limited to, calcium stearate, magnesium stearate, zinc stearate, polyethylene, polypropylene, ethylenebisstearylamide, talc, amorphous silica, and the like.
When the resin composition of the present embodiment is used to produce a random polypropylene composition, a tubular molded article containing the same, or a sheet-shaped molded article, from the viewpoint of their transparency, calcium stearate, polyethylene, and polypropylene are used. preferable.
A preferred amount of the pellet antiblocking agent is 500 to 6000 ppm relative to the modified conjugated diene polymer (II). A more preferable amount is 1000 to 5000 ppm with respect to the modified conjugated diene polymer (II). The pellet anti-blocking agent is preferably blended in a state attached to the pellet surface, but can also be contained to some extent inside the pellet.
(成分(III) 成分(I)及び/又は成分(II)と反応性を有する極性基を有する重合体(成分(I)及び成分(II)を除く))
 本実施形態の樹脂組成物は、成分(I)及び/又は成分(II)と反応性を有する極性基を有する重合体(成分(I)及び成分(II)を除く)(以下、重合体(III)、成分(III)と記載する場合がある。)を含有してもよい。
 前記変性共役ジエン系重合体(II)に結合した極性基が、前記成分(I)と親和性及び/又は反応性が低い場合でも、成分(I)及び/又は成分(II)と反応性を有する官極性基を有する重合体(III)を含むことにより、本実施形態の樹脂組成物において、分散相(B)の数平均分散粒径を1.5μm以下とすることができる傾向にある。
 また、マトリックスである極性樹脂(成分(I))と分散相(成分(II)、成分(III))の剛性差を大きくし、せん断降伏を促進することで耐衝撃性及び靭性を発現する観点から、成分(III)は、成分(I)及び成分(II)と反応性を有することが好ましい。
 成分(III)は、ビニル芳香族単量体単位を主体とする重合体ブロックを含まず、変性共役ジエン系重合体(II)と同じ構造の重合体を含まない、非ビニル芳香族化合物系の変性重合体である。
 成分(III)がビニル芳香族単量体単位を含む場合、芳香環の立体障害により成分(I)及び成分(II)との反応性が低下する傾向にある。
(Component (III) A polymer having a polar group reactive with component (I) and/or component (II) (excluding component (I) and component (II)))
The resin composition of the present embodiment is a polymer having a polar group reactive with component (I) and/or component (II) (excluding component (I) and component (II)) (hereinafter referred to as polymer ( III), sometimes referred to as component (III)).
Even if the polar group bonded to the modified conjugated diene polymer (II) has low affinity and/or reactivity with the component (I), it exhibits reactivity with the component (I) and/or the component (II). In the resin composition of the present embodiment, the number average dispersed particle size of the dispersed phase (B) tends to be 1.5 μm or less by containing the polymer (III) having a functional group having a polar group.
In addition, from the viewpoint of expressing impact resistance and toughness by increasing the difference in rigidity between the matrix polar resin (component (I)) and the dispersed phase (component (II) and component (III)) and promoting shear yield. Therefore, component (III) preferably has reactivity with component (I) and component (II).
Component (III) does not contain a polymer block mainly composed of vinyl aromatic monomer units, and does not contain a polymer having the same structure as the modified conjugated diene polymer (II). It is a modified polymer.
When component (III) contains a vinyl aromatic monomer unit, the reactivity with components (I) and (II) tends to decrease due to steric hindrance of the aromatic ring.
 成分(III)は、前記成分(I)及び/又は成分(II)と反応性を有する極性基を有する重合体であり、「重合体」とは、繰り返し単位を有する高分子化合物(繰り返し単位が2~10程度の重合度の低いオリゴマーも含む)を指す。
 本実施形態の樹脂組成物の実用上十分な剛性を維持する観点から、成分(III)の分子量の下限値としては、1000以上が好ましく、より好ましくは2000以上である。本実施形態の樹脂組成物の流動性の観点から、成分(III)の分子量の上限値としては、500万以下が好ましく、より好ましくは300万以下であり、さらに好ましくは100万以下である。
 また、前記成分(III)の分子量は、成分(I)及び成分(II)との相容性や、本実施形態の樹脂組成物の流動性等に鑑みて適宜設定することができる。500万以下であることにより、良好な樹脂組成物の流動性が得られ、実用上良好な成形性が得られる傾向にある。
Component (III) is a polymer having a polar group reactive with component (I) and/or component (II). including oligomers with a low degree of polymerization of about 2 to 10).
The lower limit of the molecular weight of component (III) is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of maintaining practically sufficient rigidity of the resin composition of the present embodiment. From the viewpoint of fluidity of the resin composition of the present embodiment, the upper limit of the molecular weight of component (III) is preferably 5 million or less, more preferably 3 million or less, and even more preferably 1 million or less.
Further, the molecular weight of the component (III) can be appropriately set in consideration of the compatibility with the component (I) and the component (II), the fluidity of the resin composition of the present embodiment, and the like. When it is 5,000,000 or less, good fluidity of the resin composition tends to be obtained, and practically good moldability tends to be obtained.
 成分(III)と、成分(I)及び/又は成分(II)との「反応性」とは、各成分の極性基同士が共有結合性を持つことを意味する。
 極性基同士が反応するとき、例えば、カルボキシル基のOHが脱離すると、元の極性基が変化したり無くなったりするが、これによって共有結合が形成する場合には、極性基同士が「反応性」を示すという定義に含まれる。
 成分(III)に含まれる極性基は、1種の極性基が成分(I)及び成分(II)の両方と反応性を示してもよいし、複数種の極性基が成分(I)及び成分(II)のそれぞれと反応性を示してもよい。
 成分(I)及び成分(II)の一方のみと反応性を有する極性基が成分(III)に含まれていてもよいが、両成分との親和性を上げ、後述する分散相(B)の数平均分散粒径を1.5μm以下、好ましくは1.3μm以下とする観点では、成分(I)及び成分(II)の両方と反応性を示す極性基を有することが好ましい。例えば、成分(III)がエポキシ基を有し、成分(I)がポリフェニレンスルフィド系樹脂で、成分(II)がカルボキシル基及び/又は水酸基を有する重合体である場合、成分(III)のエポキシ基が成分(I)のポリフェニレンスルフィド樹脂及び成分(II)の重合体の双方のカルボキシル基と反応性を示す。
 成分(III)に含まれる極性基により極性樹脂(成分(I))及び変性共役ジエン系重合体(成分(II))との反応性を有することにより、本実施形態の樹脂組成物において、靭性や耐衝撃性を向上させることができる。
"Reactivity" between component (III) and component (I) and/or component (II) means that the polar groups of each component have covalent bonding.
When polar groups react with each other, for example, when the OH of the carboxyl group is eliminated, the original polar group changes or disappears. included in the definition of indicating
As for the polar groups contained in component (III), one type of polar group may exhibit reactivity with both component (I) and component (II), or multiple types of polar groups may contain component (I) and component (II). It may be reactive with each of (II).
A polar group reactive with only one of component (I) and component (II) may be contained in component (III), but the affinity with both components is increased, and the dispersion phase (B) described later From the viewpoint of making the number average dispersed particle size 1.5 μm or less, preferably 1.3 μm or less, it is preferable to have a polar group that exhibits reactivity with both component (I) and component (II). For example, when component (III) has an epoxy group, component (I) is a polyphenylene sulfide resin, and component (II) is a polymer having a carboxyl group and/or a hydroxyl group, the epoxy group of component (III) shows reactivity with the carboxyl groups of both the component (I) polyphenylene sulfide resin and the component (II) polymer.
The polar group contained in component (III) has reactivity with the polar resin (component (I)) and the modified conjugated diene-based polymer (component (II)), so that the resin composition of the present embodiment has toughness and impact resistance can be improved.
(成分(I)、成分(II)、及び成分(III)の組み合わせ)
 成分(II)、及び成分(III)の極性基の組み合わせとしては、以下の組み合わせが挙げられる。
 成分(II)がアミノ基を含む場合、成分(III)に含まれる好ましい極性基としては、カルボキシル基、カルボニル基、エポキシ基、ヒドロキシ基、酸無水物基、スルホン酸、及びアルデヒド基等が挙げられる。
 成分(II)が酸無水物基を含む場合、成分(III)に含まれる好ましい極性基としては、アミノ基、ヒドロキシ基等が挙げられる。
 成分(II)がカルボキシル基、ジカルボキシル基を含む場合、成分(III)に含まれる好ましい極性基としては、アミノ基、イソシアネート基等が挙げられる。
 成分(II)がエポキシ基を有する場合、成分(III)に含まれる好ましい極性基としては、アミノ基、カルボキシル基、ジカルボキシル基、チオール基、オキサゾリン基、オキセタニル基等が挙げられる。
 成分(II)がオキセタニル基を含む場合、成分(III)に含まれる好ましい極性基としては、チオール基、水酸基、アミノ基、カルボキシル基、ジカルボキシル基等が挙げられる。
 成分(II)がオキサゾリン基を含む場合、成分(III)に含まれる好ましい極性基としては、チオール基、水酸基、アミノ基、カルボキシル基、ジカルボキシル基等が挙げられる。
 また、成分(I)と成分(III)にそれぞれ含まれる極性基の組み合わせとしては、
アミノ基と、カルボキシル基、カルボニル基、エポキシ基、ヒドロキシ基、酸無水物基、スルホン酸、及びアルデヒド基;
イソシアネート基と、水酸基、カルボキシル基、及びジカルボキシル基;
ヒドロキシ基と、酸無水物基;
シラノール基と、ヒドロキシ基、カルボキシル基、及びジカルボキシル基;
エポキシ基と、カルボキシル基、ジカルボキシル基、チオール基、オキサゾリン基、及びオキセタニル基;
ハロゲン基と、カルボン酸基、カルボン酸エステル基、アミノ基、フェノール基、及びチオール基;
アルコキシ基と、ヒドロキシ基、アルコキシド基、及びアミノ基;
チオール基と、エポキシ基、オキサゾリン基、及びオキセタニル基;
等が挙げられる。
(Combination of Component (I), Component (II), and Component (III))
Combinations of the polar groups of component (II) and component (III) include the following combinations.
When component (II) contains an amino group, preferable polar groups contained in component (III) include a carboxyl group, a carbonyl group, an epoxy group, a hydroxy group, an acid anhydride group, a sulfonic acid group, an aldehyde group, and the like. be done.
When component (II) contains an acid anhydride group, preferred polar groups contained in component (III) include an amino group and a hydroxy group.
When component (II) contains a carboxyl group or a dicarboxyl group, preferable polar groups contained in component (III) include an amino group and an isocyanate group.
When component (II) has an epoxy group, preferable polar groups contained in component (III) include amino group, carboxyl group, dicarboxyl group, thiol group, oxazoline group, oxetanyl group and the like.
When component (II) contains an oxetanyl group, preferred polar groups contained in component (III) include a thiol group, hydroxyl group, amino group, carboxyl group, dicarboxyl group, and the like.
When component (II) contains an oxazoline group, preferred polar groups contained in component (III) include a thiol group, hydroxyl group, amino group, carboxyl group, dicarboxyl group and the like.
Further, as a combination of polar groups contained in component (I) and component (III), respectively,
amino groups, carboxyl groups, carbonyl groups, epoxy groups, hydroxy groups, acid anhydride groups, sulfonic acid groups, and aldehyde groups;
an isocyanate group, a hydroxyl group, a carboxyl group, and a dicarboxyl group;
a hydroxy group and an anhydride group;
a silanol group, a hydroxy group, a carboxyl group, and a dicarboxyl group;
an epoxy group, a carboxyl group, a dicarboxyl group, a thiol group, an oxazoline group, and an oxetanyl group;
a halogen group, a carboxylic acid group, a carboxylic acid ester group, an amino group, a phenol group, and a thiol group;
an alkoxy group, a hydroxy group, an alkoxide group, and an amino group;
a thiol group, an epoxy group, an oxazoline group, and an oxetanyl group;
etc.
 本実施形態の樹脂組成物において、成分(II)の極性基との結合が、成分(I)、成分(III)のいずれの極性基によってなされるかは、任意に選択できる。
 成分(I)として、剛性、耐薬品性、耐熱性に優れた極性樹脂であるポリフェニレンスルフィド系樹脂を用いた場合、反応性の観点から、成分(II)に含まれる極性基としては、カルボキシル基、水酸基、エポキシ基、オキサゾリン基、及びオキセタニル基が好ましく、カルボキシル基、水酸基がより好ましい。
 成分(I)及び成分(II)と反応性を有するため、成分(III)が有する極性基としては、エポキシ基、オキサゾリン基、及びオキセタニル基が好ましく、反応性の観点からエポキシ基がより好ましい。
In the resin composition of the present embodiment, it can be arbitrarily selected which of the polar groups of component (I) and component (III) is used to bond with the polar group of component (II).
When a polyphenylene sulfide-based resin, which is a polar resin having excellent rigidity, chemical resistance, and heat resistance, is used as component (I), the polar group contained in component (II) may be a carboxyl group from the viewpoint of reactivity. , hydroxyl group, epoxy group, oxazoline group and oxetanyl group are preferred, and carboxyl group and hydroxyl group are more preferred.
The polar group of component (III) is preferably an epoxy group, an oxazoline group, or an oxetanyl group because it is reactive with component (I) and component (II), and more preferably an epoxy group from the viewpoint of reactivity.
 成分(III)が、エポキシ基を有する重合体である場合、当該エポキシ基を有する重合体としては、エポキシ基含有不飽和化合物等のエポキシ基含重合性化合物の重合体、及びエポキシ基含有重合性化合物と少なくとも1種の他の重合性化合物との共重合体が挙げられる。
 エポキシ基含有重合性化合物としては、以下に限定されないが、エポキシ基含有不飽和化合物が挙げられ、例えば、グリシジルメタアクリレート、グリシジルアクリレート、ビニルグリシジルエーテル、ヒドロキシアルキル(メタ)クリレートのグリシジルエーテル、ポリアルキレングリコール(メタ)アクリレートのグリシジルエーテル、グリシジルイタコネート、テトラグリシジルメタキシレンジアミン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、テトラグリシジル-p-フェニレンジアミン、テトラグリシジルジアミノジフェニルメタン、ジグリシジルアニリン、ジグリシジルオルソトルイジン、4,4’-ジグリシジルージフェニルメチルアミン、4,4’-ジグリシジルージベンジルメチルアミン、ジグリシジルアミノメチルシクロヘキサン等のポリエポキシ化合物が挙げられる。
When the component (III) is a polymer having an epoxy group, the polymer having an epoxy group includes a polymer of an epoxy group-containing polymerizable compound such as an epoxy group-containing unsaturated compound, and an epoxy group-containing polymerizable compound. and copolymers of the compound with at least one other polymerizable compound.
Epoxy group-containing polymerizable compounds include, but are not limited to, epoxy group-containing unsaturated compounds such as glycidyl methacrylate, glycidyl acrylate, vinyl glycidyl ethers, glycidyl ethers of hydroxyalkyl (meth)acrylates, polyalkylene Glycidyl ether of glycol (meth)acrylate, glycidyl itaconate, tetraglycidyl metaxylenediamine, tetraglycidyl-1,3-bisaminomethylcyclohexane, tetraglycidyl-p-phenylenediamine, tetraglycidyldiaminodiphenylmethane, diglycidylaniline, diglycidyl Examples include polyepoxy compounds such as orthotoluidine, 4,4'-diglycidyl-diphenylmethylamine, 4,4'-diglycidyl-dibenzylmethylamine, and diglycidylaminomethylcyclohexane.
 また、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルジメチルメトキシシラン、γ-グリシドキシプロピルジエチルエトキシシラン、γ-グリシドキシプロピルジメチルエトキシシラン、γ-グリシドキシプロピルジメチルフェノキシシラン、γ-グリシドキシプロピルジエチルメトキシシラン、γ-グリシドキシプロピルメチルジイソプロペンオキシシラン、ビス(γ-グリシドキシプロピル)ジメトキシシラン、ビス(γ-グリシドキシプロピル)ジエトキシシランが挙げられる。 In addition, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxy silane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltriphenoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldimethoxysilane ethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylmethyldiphenoxysilane sidoxypropyldimethylmethoxysilane, γ-glycidoxypropyldiethylethoxysilane, γ-glycidoxypropyldimethylethoxysilane, γ-glycidoxypropyldimethylphenoxysilane, γ-glycidoxypropyldiethylmethoxysilane, γ-glycidoxypropyldimethylethoxysilane sidoxypropylmethyldiisopropeneoxysilane, bis(γ-glycidoxypropyl)dimethoxysilane, and bis(γ-glycidoxypropyl)diethoxysilane.
 さらに、ビス(γ-グリシドキシプロピル)ジプロポキシシラン、ビス(γ-グリシドキシプロピル)ジブトキシシラン、ビス(γ-グリシドキシプロピル)ジフェノキシシラン、ビス(γ-グリシドキシプロピル)メチルメトキシシラン、ビス(γ-グリシドキシプロピル)メチルエトキシシラン、ビス(γ-グリシドキシプロピル)メチルプロポキシシラン、ビス(γ-グリシドキシプロピル)メチルブトキシシラン、ビス(γ-グリシドキシプロピル)、トリス(γ-グリシドキシプロピル)メトキシシランが挙げられる。 Furthermore, bis(γ-glycidoxypropyl)dipropoxysilane, bis(γ-glycidoxypropyl)dibutoxysilane, bis(γ-glycidoxypropyl)diphenoxysilane, bis(γ-glycidoxypropyl) methylmethoxysilane, bis(γ-glycidoxypropyl)methylethoxysilane, bis(γ-glycidoxypropyl)methylpropoxysilane, bis(γ-glycidoxypropyl)methylbutoxysilane, bis(γ-glycidoxy propyl), tris(γ-glycidoxypropyl)methoxysilane.
 さらにまた、β-(3,4-エポキシシクロヘキシル)エチル-トリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリフェノキシシランが挙げられる。 Furthermore, β-(3,4-epoxycyclohexyl)ethyl-trimethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-triethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-tripropoxysilane , β-(3,4-epoxycyclohexyl)ethyl-tributoxysilane, β-(3,4-epoxycyclohexyl)ethyl-triphenoxysilane.
 またさらに、β-(3,4-エポキシシクロヘキシル)プロピル-トリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-エチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-エチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジフェノキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルメトキシシラン、β-(3,4-エポキシシクロヘキシル)、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルフェノキシシランが挙げられる。 Still further, β-(3,4-epoxycyclohexyl)propyl-trimethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-methyldimethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-ethyldimethoxysilane , β-(3,4-epoxycyclohexyl)ethyl-ethyldiethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-methyldiethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-methyldipropoxy Silane, β-(3,4-epoxycyclohexyl)ethyl-methyldibutoxysilane, β-(3,4-epoxycyclohexyl)ethyl-methyldiphenoxysilane, β-(3,4-epoxycyclohexyl)ethyl-dimethylmethoxysilane Silane, β-(3,4-epoxycyclohexyl), β-(3,4-epoxycyclohexyl)ethyl-dimethylethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-dimethylpropoxysilane, β-(3, 4-epoxycyclohexyl)ethyl-dimethylbutoxysilane, β-(3,4-epoxycyclohexyl)ethyl-dimethylphenoxysilane.
 さらに、β-(3,4-エポキシシクロヘキシル)エチル-ジエチルメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジイソプロペンオキシシラン、N-(1、3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等が挙げられる。 Furthermore, β-(3,4-epoxycyclohexyl)ethyl-diethylmethoxysilane, β-(3,4-epoxycyclohexyl)ethyl-methyldiisopropeneoxysilane, N-(1,3-dimethylbutylidene)-3 -(triethoxysilyl)-1-propanamine and the like.
 前記エポキシ基含有重合性化合物と共重合可能な化合物としては、以下に限定されないが、例えば、ブタジエン、イソプレン等の共役ジエン系化合物;エチレン、プロピレン等の不飽和炭化水素化合物;アクリロニトリル等のシアン化ビニルモノマー;酢酸ビニル、(メタ)アクリル酸エステル、ビニルアルコール、酢酸ビニル、ビニルアセテート等が挙げられる。 Examples of the compound copolymerizable with the epoxy group-containing polymerizable compound include, but are not limited to, conjugated diene compounds such as butadiene and isoprene; unsaturated hydrocarbon compounds such as ethylene and propylene; cyanide compounds such as acrylonitrile; Vinyl monomer; vinyl acetate, (meth)acrylic acid ester, vinyl alcohol, vinyl acetate, vinyl acetate and the like.
 エポキシ基を有する重合体(成分(III))としては、以下に限定されないが、例えば、ボンドファースト(エチレン-グリシジルメタクリレートの共重合体、エチレン-酢酸ビニル-グリシジルメタクリレート共重合体、エチレン-アクリル酸メチル-グリシジルメタクリレート共重合体、住友化学株式会社製)、ELVALOYTMPTW(エチレン-グリシジルメタクリレート-ブチルアクリレート共重合体、ダウ・ケミカル株式会社製)、バイロンRF(グリシジル基含有ポリエステル樹脂、東洋紡株式会社製)、ARUFONUG-4000(エポキシ基含有アクリル系樹脂、東亜合成株式会社製)が挙げられる。 Examples of the epoxy group-containing polymer (component (III)) include, but are not limited to, bondfast (ethylene-glycidyl methacrylate copolymer, ethylene-vinyl acetate-glycidyl methacrylate copolymer, ethylene-acrylic acid Methyl-glycidyl methacrylate copolymer, manufactured by Sumitomo Chemical Co., Ltd.), ELVALOY TM PTW (ethylene-glycidyl methacrylate-butyl acrylate copolymer, manufactured by Dow Chemical Co., Ltd.), Vylon RF (glycidyl group-containing polyester resin, Toyobo Co., Ltd.) ), and ARUFONUG-4000 (epoxy group-containing acrylic resin, manufactured by Toagosei Co., Ltd.).
 また、任意の重合体をラジカル反応等で前記エポキシ基含有不飽和化合物等と付加反応させる方法により、成分(III)として、エポキシ基を有する重合体を得てもよい。
 任意の重合体としては、例えば、エチレン、プロピレン等の不飽和炭化水素化合物の重合体、前記不飽和炭化水素化合物と二重結合を有する重合性化合物の共重合体、共役ジエン化合物とビニル芳香族化合物の共重合体等が挙げられる。
 付加反応の方法としては、従来公知の技術が挙げられ、ラジカル開始剤と重合体、及びエポキシ基含有化合物を含んだ溶液中でこれらを反応させる製造方法;ラジカル開始剤と重合体、及びエポキシ基含有化合物を加熱溶融下で反応させる製造方法;ラジカル開始剤を含まずに重合体、及びエポキシ基含有化合物を加熱溶融下で反応させる製造方法;重合体とエポキシ基を含有する化合物のどちらにも反応し結合形成する化合物と重合体、及びエポキシ基を含有する化合物を、これらを含んだ溶液あるいは加熱溶融下で反応させる製造方法等が挙げられる。
 また、炭素結合を有する重合体及び/又は炭素結合を有する重合体とその他の重合性化合物との共重合体のジエン部分を酸化することでエポキシ基化する方法も挙げられる。
Further, a polymer having an epoxy group may be obtained as the component (III) by a method of subjecting an arbitrary polymer to an addition reaction with the epoxy group-containing unsaturated compound or the like by a radical reaction or the like.
Examples of the optional polymer include polymers of unsaturated hydrocarbon compounds such as ethylene and propylene, copolymers of the unsaturated hydrocarbon compounds and polymerizable compounds having double bonds, conjugated diene compounds and vinyl aromatic compounds. Copolymers of compounds and the like can be mentioned.
Examples of the method of the addition reaction include conventionally known techniques, a production method in which these are reacted in a solution containing a radical initiator, a polymer, and an epoxy group-containing compound; a radical initiator, a polymer, and an epoxy group; A production method in which the containing compound is reacted under heating and melting; A production method in which a polymer without a radical initiator and an epoxy group-containing compound are reacted under heating and melting; Examples include a manufacturing method in which a compound and a polymer that react to form a bond, and a compound containing an epoxy group are reacted in a solution containing them or under heating and melting.
Further, a method of forming an epoxy group by oxidizing the diene portion of a polymer having a carbon bond and/or a copolymer of a polymer having a carbon bond and another polymerizable compound can also be used.
 重合性の観点から、エポキシ基含有重合性化合物としては、エポキシ基含有不飽和化合物が好ましく、より好ましくはグリシジルメタアクリレート、グリシジルアクリレート、ビニルグリシジルエーテル、ヒドロキシアルキル(メタ)クリレートのグリシジルエーテル、ポリアルキレングリコール(メタ)アクリレートのグリシジルエーテルである。 From the viewpoint of polymerizability, the epoxy group-containing polymerizable compound is preferably an epoxy group-containing unsaturated compound, more preferably glycidyl methacrylate, glycidyl acrylate, vinyl glycidyl ether, glycidyl ether of hydroxyalkyl (meth)acrylate, polyalkylene It is a glycidyl ether of glycol (meth)acrylate.
 エポキシ基を有する重合体(成分(III))と変性共役ジエン系重合体(成分(II))との親和性が向上することで、本実施形態の樹脂組成物の分散相(B)に応力を集中させやすくなる。変性共役ジエン系重合体(成分(II))との親和性の観点から、エポキシ基を有する重合体(成分(III))は、前述のエポキシ基含有重合性化合物(エポキシ基を有する重合性モノマー)と不飽和炭化水素系化合物との共重合体である、エポキシ基を有するエラストマーであることがより好ましく、エポキシ基を有するオレフィン系エラストマーであることがさらに好ましい。
 重合体(成分(III))がエポキシ基を有するオレフィン系エラストマーであることにより、成分(I)との樹脂界面への応力集中により生じる、せん断降伏による靭性及び/又は耐衝撃性の向上効果が得られ、さらには、応力下で生じた微小クラック及び/又はクレーズの伸長を阻害する効果が得られ、さらにまた、微小クラック及び/又はクレーズ間を成分(II)及び成分(III)が橋掛けする効果により、より靭性及び/又は耐衝撃性が向上する傾向にある。特に、低温下、具体的には-30℃以下で使用される用途においては、成分(III)がエポキシ基を有するオレフィン系エラストマーであることにより、低温下での靭性及び/又は耐衝撃性をより向上できる傾向にある。さらに、耐トラッキング性及び高温下~低温下に交互に曝露された場合にも、物性低下抑制(ヒートサイクル特性)の効果の向上等も期待できる。
 これらの効果は、各成分間の親和性や反応性を調整することにより、相容状態を制御し、向上させることができる。
By improving the affinity between the polymer having an epoxy group (component (III)) and the modified conjugated diene polymer (component (II)), stress is applied to the dispersed phase (B) of the resin composition of the present embodiment. makes it easier to concentrate on From the viewpoint of affinity with the modified conjugated diene-based polymer (component (II)), the epoxy group-containing polymer (component (III)) is the above-mentioned epoxy group-containing polymerizable compound (epoxy group-containing polymerizable monomer ) and an unsaturated hydrocarbon-based compound, the elastomer having an epoxy group is more preferable, and the olefin-based elastomer having an epoxy group is even more preferable.
When the polymer (component (III)) is an olefin elastomer having an epoxy group, the effect of improving toughness and/or impact resistance due to shear yield caused by stress concentration at the resin interface with component (I) is improved. Furthermore, the effect of inhibiting elongation of microcracks and / or crazes generated under stress is obtained, and component (II) and component (III) bridge between microcracks and / or crazes This effect tends to further improve toughness and/or impact resistance. In particular, in applications where the component (III) is an epoxy group-containing olefin-based elastomer, toughness and/or impact resistance at low temperatures can be improved, particularly in applications where the temperature is -30°C or lower. It tends to improve. Furthermore, it can be expected to improve the tracking resistance and the effect of suppressing deterioration of physical properties (heat cycle characteristics) even when exposed alternately from high temperature to low temperature.
These effects can be improved by controlling the compatibility state by adjusting the affinity and reactivity between each component.
 また、成分(III)としてのエポキシ基を有する重合体は、前記不飽和炭化水素化物と前記エポキシ基含有重合性化合物に、前述のスチレン、アクリロニトリル等のシアン化ビニルモノマー、酢酸ビニル、(メタ)アクリル酸エステル、ビニルアルコール、酢酸ビニル等の重合性化合物が共重合されていてもよく、前記成分(I)がポリフェニレンスルフィド系樹脂である場合、当該ポリフェニレンスルフィド系樹脂との親和性との観点から、(メタ)アクリル酸エステル、酢酸ビニル、ビニルアセテートが、共重合されていることがより好ましく、(メタ)アクリル酸エステル及び/又はビニルアセテートが共重合されていることがさらに好ましい。 In addition, the polymer having an epoxy group as the component (III) contains, in addition to the unsaturated hydrocarbon and the epoxy group-containing polymerizable compound, vinyl cyanide monomers such as the aforementioned styrene and acrylonitrile, vinyl acetate, (meth) A polymerizable compound such as an acrylic acid ester, vinyl alcohol, or vinyl acetate may be copolymerized, and when the component (I) is a polyphenylene sulfide resin, from the viewpoint of affinity with the polyphenylene sulfide resin. , (meth)acrylic acid ester, vinyl acetate and vinyl acetate are more preferably copolymerized, and it is further preferred that (meth)acrylic acid ester and/or vinyl acetate are copolymerized.
 前記不飽和炭化水素化合物としては、エチレン、プロピレン、炭素数3~8のα-オレフィンが挙げられる。 Examples of the unsaturated hydrocarbon compounds include ethylene, propylene, and α-olefins having 3 to 8 carbon atoms.
(極性樹脂(I)と、変性共役ジエン系重合体(II)と、重合体(III)との比率)
 本実施形態の樹脂組成物は、極性樹脂(成分(I))と、変性共役ジエン系重合体(成分(II))とは、本実施形態の樹脂組成物の耐熱性、耐衝撃性及び靭性の発現、及び、後述する分散相(B)の数平均分散粒径を1.5μm以下とする観点から、成分(I)と成分(II)との質量比が、成分(I):成分(II)=50/50~99/1であるものとし、55/45~98/2であることが好ましく、60/40~95/5であることがより好ましい。
(Ratio of polar resin (I), modified conjugated diene-based polymer (II), and polymer (III))
In the resin composition of the present embodiment, the polar resin (component (I)) and the modified conjugated diene-based polymer (component (II)) are the heat resistance, impact resistance and toughness of the resin composition of the present embodiment. and the number average dispersed particle size of the dispersed phase (B) described later is 1.5 μm or less, the mass ratio of the component (I) and the component (II) is the component (I):component ( II) = 50/50 to 99/1, preferably 55/45 to 98/2, more preferably 60/40 to 95/5.
 また、本実施形態の樹脂組成物が、前記極性樹脂(成分(I))と、変性共役ジエン系重合体(成分(II))と、前記重合体(成分(III))を含有する場合、分散相(B)の数平均分散粒径を1.5μm以下にする観点から、前記成分(II)と成分(III)の質量比は、成分(II):成分(III)=1/99~99/1であることが好ましく、より好ましくは、5/95~95/5であり、さらに好ましくは10/90~90/10であり、さらにより好ましくは15/85~85/15である。 Further, when the resin composition of the present embodiment contains the polar resin (component (I)), the modified conjugated diene-based polymer (component (II)), and the polymer (component (III)), From the viewpoint of making the number average dispersed particle size of the dispersed phase (B) 1.5 μm or less, the mass ratio of the component (II) to the component (III) is: component (II): component (III) = 1/99 to It is preferably 99/1, more preferably 5/95 to 95/5, even more preferably 10/90 to 90/10, still more preferably 15/85 to 85/15.
 また、本実施形態の樹脂組成物は、本実施形態の樹脂組成物の耐熱性、耐衝撃性及び靭性の発現、及び、後述する分散相(B)の数平均分散粒径を1.5μm以下とする観点から、成分(I)と、成分(II)及び成分(III)の合計量との質量比が、成分(I):(成分(II)+成分(III))=50/50~99/1であることが好ましく、より好ましくは60/40~97/3であり、さらに好ましくは、65/35~95/5である。 In addition, the resin composition of the present embodiment exhibits the heat resistance, impact resistance and toughness of the resin composition of the present embodiment, and the number average dispersed particle size of the dispersed phase (B) described later is 1.5 μm or less. From the viewpoint of, the mass ratio of the component (I) and the total amount of the component (II) and the component (III) is the component (I): (component (II) + component (III)) = 50/50 ~ It is preferably 99/1, more preferably 60/40 to 97/3, still more preferably 65/35 to 95/5.
(分散状態)
 本実施形態の樹脂組成物は、極性樹脂(成分(I))の連続相(A)と、前記連続相(A)中に分散された、変性共役ジエン系重合体(成分(II))を含む分散相(B)と、を有する。
 極性樹脂(成分(I))が連続相(A)となることで、本実施形態の樹脂組成物において、優れた耐熱性や剛性が得られる。
 また、分散相(B)が存在することで、樹脂組成物よりなる成形体に応力がかかったときに、分散相(B)に応力が集中し、微小クレーズが発生することで耐衝撃性や靭性の向上に寄与する。
(dispersion state)
The resin composition of the present embodiment comprises a continuous phase (A) of a polar resin (component (I)) and a modified conjugated diene polymer (component (II)) dispersed in the continuous phase (A). and a dispersed phase (B) comprising.
By using the polar resin (component (I)) as the continuous phase (A), excellent heat resistance and rigidity can be obtained in the resin composition of the present embodiment.
In addition, due to the presence of the dispersed phase (B), when stress is applied to the molded body made of the resin composition, the stress concentrates on the dispersed phase (B), and microcrazes are generated. Contributes to the improvement of toughness.
 分散相(B)は、成分(II)を含む相であればよく、前記成分(II)と反応性を有する極性基を有する重合体である成分(III)を含む場合は、成分(II)変性共役ジエン系重合体と成分(III)とが相容した相であってもよいし、成分(II)の周囲に成分(III)が偏在した状態でもよいし、成分(III)の周囲に成分(II)が偏在した状態でもよい。また、成分(III)が成分(I)に相容した状態であってもよい。極性樹脂(成分(I))からなる海に、成分(III)のみを分散させた場合には、樹脂組成物の耐衝撃性及び/又は靭性の向上効果は確認できない。よって、前述のとおり分散相(B)は、成分(II)及び成分(III)の両者を含むか、成分(II)単独で分散しているか、のいずれかであり、これにより分散相(B)の数平均分散粒径と耐衝撃性及び/又は靭性向上とが対応する現象となる。そのため、本実施形態の樹脂組成物は、極性樹脂(成分(I))の連続相(A)と、変性共役ジエン系重合体(成分(II))を含む分散相(B)を有することとする。 Dispersed phase (B) may be a phase containing component (II), and when containing component (III), which is a polymer having a polar group reactive with component (II), component (II) The modified conjugated diene-based polymer and component (III) may be in a compatible phase, component (III) may be unevenly distributed around component (II), or The component (II) may be unevenly distributed. Also, the component (III) may be in a compatible state with the component (I). When only the component (III) is dispersed in the sea composed of the polar resin (component (I)), the effect of improving the impact resistance and/or toughness of the resin composition cannot be confirmed. Therefore, as described above, the dispersed phase (B) either contains both the component (II) and the component (III), or the component (II) is dispersed alone, whereby the dispersed phase (B ) is a phenomenon corresponding to the number average dispersed grain size and the improvement of impact resistance and/or toughness. Therefore, the resin composition of the present embodiment has a continuous phase (A) of a polar resin (component (I)) and a dispersed phase (B) containing a modified conjugated diene polymer (component (II)). do.
 前記連続相(A)と分散相(B)の分散状態の確認方法について説明する。
<(1)樹脂組成物に含まれる成分の特定>
 まず、本実施形態の樹脂組成物に含まれる成分を特定することが、分散相(B)の数平均分散粒径の測定に有用である。
 一般的に、成分(I)極性樹脂は、耐薬品性に優れることが知られている。前述の成分(II)変性共役ジエン系重合体、成分(III)重合体を含む場合は、成分(III)をも溶解し得る溶媒下で樹脂組成物を混合したとき、耐薬品に優れているために未溶解である成分(I)と、未反応の成分(II)、成分(III)を抽出することができる。特に、ポリフェニレンスルフィド系樹脂を成分(I)として用いた場合は、ポリフェニレンスルフィド系樹脂が200℃以下で溶解させる溶媒が無いため、50~200℃下で溶媒と該樹脂組成物を混合することで、未溶解の成分(I)、未反応の成分(II)、未反応の成分(III)を抽出することができる。
A method for confirming the state of dispersion of the continuous phase (A) and dispersed phase (B) will be described.
<(1) Identification of components contained in the resin composition>
First, specifying the components contained in the resin composition of the present embodiment is useful for measuring the number average dispersed particle size of the dispersed phase (B).
Component (I) polar resins are generally known to have excellent chemical resistance. When the above-mentioned component (II) modified conjugated diene polymer and component (III) polymer are included, when the resin composition is mixed in a solvent capable of dissolving component (III) as well, the resin composition exhibits excellent chemical resistance. Therefore, undissolved component (I), unreacted component (II) and component (III) can be extracted. In particular, when a polyphenylene sulfide resin is used as component (I), there is no solvent that dissolves the polyphenylene sulfide resin at 200° C. or lower. , undissolved component (I), unreacted component (II), and unreacted component (III) can be extracted.
 成分(II)、成分(III)を含む場合は、成分(III)を溶解し得る溶媒としては、例えば、トルエン、シクロヘキサン、キシレン、テトラヒドロフラン、クロロホルム、ニトロエタン、ニトロプロパン、エチルベンゼン等が挙げられるが、溶解性の観点からクロロホルム、ニトロエタン、ニトロプロパン、エチルベンゼン、トルエンが好ましい。
 抽出後、未溶解の成分(I)をろ過等で除去し、ろ液を用いて液相クロマトグラフィーを行うことにより成分(II)、成分(III)を離別することができる。
 また、成分(II)と成分(III)の溶解性が異なる場合は、成分(II)が溶解し、成分(III)が溶解し得ない溶媒を用いて前述のろ液を真空乾燥等で溶媒を除去することで得られた成分(II)、成分(III)の混合物を、再度適切な溶媒下で混合することで、成分(II)、成分(III)を離別する方法も採用できる。
 一般的に、成分(II)の溶解性が高い溶媒としては、トルエン、シクロヘキサン、テトラヒドロフランが挙げられる。
 また、前述の溶媒に溶解し得ない成分(III)の構成単位としては、不飽和炭化水素化合物の重合体単位であり、特にエチレン、プロピレン、炭素数3~8のα-オレフィンが挙げられる。
 成分(II)、成分(III)の同定は、核磁気共鳴装置(NMR)、赤外吸収分光法(IR)、ガスクロマトグラフィー(GS)、及び飛行時間型二次イオン質量分析(TOF-SIMS)等により可能である。また、成分(II)、成分(III)に結合した極性基の種類及び構造を同定することもできる。
 また、本実施形態の樹脂組成物が上記抽出工程において前記溶媒に溶出し得る後述する添加剤等の成分を含有する場合は、液相クロマトグラフィー等により分子量、極性の差異を利用し、各成分に離別することができ、前述のNMR、IR、GS、及びTOF-SIMS等により同定することができる。
 成分(II)、成分(III)の、前記成分(I)との未反応量が非常に少量で、成分(II)、成分(III)の離別が困難である場合、原子間力顕微鏡(AFM)観察で得られた赤外吸収スペクトルから成分(II)、成分(III)の構成単位、成分(II)、成分(III)に結合した極性基種を特定することもできる。AFM測定に供する試験片は、ウルトラミクロトーム等で作製した樹脂組成物の精密断面が挙げられる。
When component (II) and component (III) are included, examples of solvents capable of dissolving component (III) include toluene, cyclohexane, xylene, tetrahydrofuran, chloroform, nitroethane, nitropropane, ethylbenzene, etc. Chloroform, nitroethane, nitropropane, ethylbenzene, and toluene are preferred from the viewpoint of solubility.
After the extraction, undissolved component (I) is removed by filtration or the like, and the filtrate is subjected to liquid phase chromatography to separate component (II) and component (III).
In addition, when the solubility of component (II) and component (III) is different, the above-mentioned filtrate is dried in a solvent such as vacuum drying using a solvent in which component (II) dissolves and component (III) cannot be dissolved. A method of separating component (II) and component (III) by mixing the mixture of component (II) and component (III) obtained by removing again in an appropriate solvent can also be employed.
Generally, toluene, cyclohexane, and tetrahydrofuran are examples of solvents in which component (II) is highly soluble.
The structural units of component (III) which are insoluble in the aforementioned solvent are polymer units of unsaturated hydrocarbon compounds, particularly ethylene, propylene, and α-olefins having 3 to 8 carbon atoms.
Identification of component (II), component (III) is performed by nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), gas chromatography (GS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). ), etc. Also, the types and structures of the polar groups bonded to component (II) and component (III) can be identified.
In addition, when the resin composition of the present embodiment contains components such as additives described later that can be eluted in the solvent in the extraction step, the difference in molecular weight and polarity is used by liquid phase chromatography or the like to determine each component. and can be identified by the aforementioned NMR, IR, GS, TOF-SIMS, and the like.
If the amount of component (II) and component (III) unreacted with component (I) is very small and it is difficult to separate component (II) and component (III), an atomic force microscope (AFM ) From the infrared absorption spectrum obtained by observation, the structural units of component (II) and component (III), and the polar group species bonded to component (II) and component (III) can also be specified. A test piece to be subjected to AFM measurement includes a precise cross section of a resin composition prepared with an ultramicrotome or the like.
<(2)分散粒径の測定>
[(1)AFM(弾性率マッピングにおける軟らかい相の粒径測定)]
 一般的に、成分(I)極性樹脂の融点は高温であり、常温特に低温では、成分(II)よりも高剛性であり、成分(III)を含む場合は成分(III)より高剛性である。
 また、成分(II)、成分(III)を単離した後に、成分(II)、成分(III)の構成単位を同定したり、単離成分(成分(II)、成分(III)の混合物を含む)の剛性を測定したりすることで、成分(II)、成分(III)が成分(I)より相対的に剛性が低いことを確認できる。
 また、前述のAMF観察で得られた赤外吸収スペクトル及び/又は粘弾性及び弾性率のフォースカーブより、成分(I)が成分(II)、成分(III)に対して高剛性であることを明らかにすることが可能である。
 本実施形態の樹脂組成物における極性樹脂(成分(I))の質量比率が50質量%以上である場合、樹脂組成物のモルフォロジーにおいて成分(I)が「海」を形成する。前述のとおり、成分(I)と、成分(II)、成分(III)とは、剛性に差があることから、AFM観察により、観察される「島」部分が、弾性率マッピングで「海」よりも軟らかければ、「島」に当たる部分が成分(II)及び/又は成分(III)であると特定できる。従って、後述する実施例に記載する方法で弾性率マッピングにおいて軟らかい部分の粒径の平均値を求めることで、分散相(B)の数平均分散粒径を算出することができる。
 一般的にAFM観察による弾性率測定は、AFMのカンチレバー先端の探針とサンプルに働く力の上限を設定し、垂直方向に押し込むことで、荷重とサンプル変形量の関係から算出される。従って、荷重に対する各分散相の変形度合いを表すため弾性率の異なる成分の分布を画像として観察することができる。
<(2) Measurement of dispersed particle size>
[(1) AFM (soft phase particle size measurement in elastic modulus mapping)]
In general, the melting point of the component (I) polar resin is high, and at room temperature, especially at low temperatures, it has higher rigidity than component (II), and when component (III) is included, it has higher rigidity than component (III). .
In addition, after isolating the component (II) and the component (III), the constituent units of the component (II) and the component (III) are identified, and the isolated component (the mixture of the component (II) and the component (III) is It can be confirmed that component (II) and component (III) have relatively lower stiffness than component (I) by measuring the stiffness of component (II) and component (III).
In addition, from the infrared absorption spectrum and/or the force curves of viscoelasticity and elastic modulus obtained by the aforementioned AMF observation, it was confirmed that component (I) has higher rigidity than component (II) and component (III). It is possible to clarify.
When the mass ratio of the polar resin (component (I)) in the resin composition of the present embodiment is 50% by mass or more, the component (I) forms "sea" in the morphology of the resin composition. As described above, there is a difference in stiffness between component (I), component (II), and component (III). If it is softer than that, it can be identified that the portion corresponding to the "island" is component (II) and/or component (III). Therefore, the number-average dispersed particle size of the dispersed phase (B) can be calculated by obtaining the average value of the particle sizes of the soft portions in the elastic modulus mapping by the method described in the examples below.
In general, elastic modulus measurement by AFM observation is calculated from the relationship between the load and the amount of deformation of the sample by setting the upper limit of the force acting on the tip of the AFM cantilever and the sample, and pressing the sample in the vertical direction. Therefore, the distribution of components with different elastic moduli can be observed as an image to represent the degree of deformation of each dispersed phase with respect to load.
 また、一般的に、成分(I)と成分(II)、必要に応じて成分(III)を溶融状態で混合する際の溶融温度は非常に高温である。このため、混錬時等に生じた低分子化合物がブリードし、鮮明な弾性率マッピングが得られない場合がある。かかる場合には、後述する実施例に記載するように、前記AFM観察に供する精密断面を作製する前段階として、エタノール等の溶媒下で超音波洗浄を行い、前記低分子化合物等を除去し、その後、ウルトラミクロトーム等で精密断面を作製することが好ましい。 In general, the melting temperature for mixing component (I), component (II), and optionally component (III) in a molten state is extremely high. For this reason, the low-molecular-weight compounds generated during kneading or the like may bleed, and a clear elastic modulus mapping may not be obtained. In such a case, as described in the examples below, ultrasonic cleaning is performed in a solvent such as ethanol to remove the low-molecular-weight compounds, etc., as a pre-step for preparing a precise cross-section for AFM observation. After that, it is preferable to prepare a precise section with an ultramicrotome or the like.
[(2)染色による分散相の特定]
 前述の成分(II)、成分(III)の単離後に、成分(II)及び成分(III)の構成単位を同定した場合、成分(I)、成分(II)及び成分(III)の構造の組み合わせによっては、各成分を適切な重金属で酸化することで染色固定し、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)等の電子顕微鏡を使用して分散相(B)の数平均分散粒径を算出する方法も採用できる。
 電子顕微鏡観察に供する試験片は、クライオミクロトーム等で作製した樹脂組成物の超薄切片であり、前記染色後に作製してもよいし、作製後に染色を行ってもよい。
 例えば、成分(I)が、成分(II)より芳香族骨格量が少ない場合であり、成分(III)が芳香環骨格を有さない場合は、成分(II)を染色剤の重金属として四酸化ルテニウムを利用できる。染色剤は、成分(II)のビニル芳香族単量体単位を最も酸化し、次に成分(I)極性樹脂の芳香環骨格を酸化し、成分(III)は酸化されない傾向にある。酸化剤で染色された樹脂組成物の電子顕微鏡観察より、成分(I)が薄く染色され、成分(II)が最も染色され、成分(III)が染色されていない画像が得られるため、この画像を、後述する実施例に記載する画像解析ソフト等を使用し、二値化することで、樹脂組成物中の分散相(B)の数平均分散粒径を算出することができる。
 前記二値化画像において、分散相(B)が楕円等の円形以外の相が多く含まれる場合、二値化に用いる前記AFM観察における測定範囲を10μm×10μm程度まで大きくすることが好ましい。また、前記視野においても分散相(B)の粒子が前記視野範囲において得られた画像のエッジにかかる場合は、該粒子の粒径を2倍とした値を実施例記載のフィレ径と定義し、分散相(B)の数平均分散粒径を算出することが好ましい。
[(2) Identification of dispersed phase by staining]
After the isolation of component (II) and component (III) described above, when the structural units of component (II) and component (III) are identified, the structures of component (I), component (II) and component (III) Depending on the combination, each component is dyed and fixed by oxidizing it with an appropriate heavy metal, and the dispersed phase (B) is number-averaged using an electron microscope such as a transmission electron microscope (TEM) or a scanning electron microscope (SEM). A method of calculating dispersed particle diameters can also be employed.
A test piece subjected to electron microscopic observation is an ultra-thin section of the resin composition prepared by a cryomicrotome or the like, and may be prepared after the staining, or may be stained after the preparation.
For example, when component (I) has a smaller amount of aromatic skeleton than component (II) and component (III) does not have an aromatic ring skeleton, component (II) is used as a heavy metal in the staining agent to form tetraoxidation. Ruthenium available. Dyeing agents tend to oxidize the vinyl aromatic monomeric units of component (II) the most, followed by the aromatic ring backbone of component (I) polar resins, and not oxidize component (III). From the electron microscope observation of the resin composition dyed with an oxidizing agent, an image is obtained in which the component (I) is lightly dyed, the component (II) is most dyed, and the component (III) is not dyed. can be binarized using image analysis software or the like described in Examples described later to calculate the number average dispersed particle size of the dispersed phase (B) in the resin composition.
In the binarized image, when the dispersed phase (B) contains many phases other than circular phases such as ellipses, it is preferable to increase the measurement range in the AFM observation used for binarization to about 10 μm×10 μm. In addition, when the particles of the dispersed phase (B) overlap the edge of the image obtained in the field of view even in the field of view, the value obtained by doubling the particle size of the particles is defined as the fillet diameter described in the examples. , it is preferable to calculate the number average dispersed particle size of the dispersed phase (B).
 分散相(B)に、より応力を集中させ、本実施形態の樹脂組成物において、十分な耐衝撃及び靭性を発現する観点から、分散相(B)の数平均分散粒径は、1.5μm以下であるものとし、好ましくは1.3μm以下、さらに好ましくは1.1μm以下、さらにより好ましくは1.0μm以下、よりさらに好ましくは0.9μm以下である。
 分散相(B)の数平均分散粒径の下限値は、特に限定されないが、数平均分散粒径が0.01μm以上の方が、本実施形態の樹脂組成物の剛性を維持し易い傾向にある。
 本実施形態の樹脂組成物において、実用上十分な剛性を維持する方法としては、後述するフィラー等を添加する方法も挙げられるが、一般的に、成分(II)及び成分(III)に結合した極性基量を増加させることにより分散相(B)の数平均分散粒径が0.01μm未満とした場合には、極性基を付加させる工程での副反応量が増大し、樹脂組成物の耐衝撃性、靭性を低下させる傾向にあるため、分散相(B)の数平均分散粒径は、0.01μm以上であることが好ましい。
From the viewpoint of concentrating more stress on the dispersed phase (B) and exhibiting sufficient impact resistance and toughness in the resin composition of the present embodiment, the number average dispersed particle size of the dispersed phase (B) is 1.5 μm. or less, preferably 1.3 μm or less, more preferably 1.1 μm or less, even more preferably 1.0 μm or less, and even more preferably 0.9 μm or less.
The lower limit of the number average dispersed particle size of the dispersed phase (B) is not particularly limited, but the number average dispersed particle size of 0.01 μm or more tends to facilitate maintaining the rigidity of the resin composition of the present embodiment. be.
In the resin composition of the present embodiment, as a method of maintaining sufficient rigidity for practical use, there is a method of adding a filler or the like, which will be described later. When the number average dispersed particle diameter of the dispersed phase (B) is less than 0.01 μm by increasing the amount of polar groups, the amount of side reactions in the step of adding polar groups increases, and the resistance of the resin composition increases. The dispersed phase (B) preferably has a number-average dispersed particle size of 0.01 μm or more because it tends to lower the impact resistance and toughness.
 変性共役ジエン系重合体(成分(II))は、酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、エポキシ基、オキセタニル基、及びアミノ基からなる群より選ばれる少なくとも一つの極性基を有することにより、極性樹脂(成分(I))の極性基、及びエポキシ基を有する重合体(成分(III))のエポキシ基と高い親和性及び/又は反応性を示す。
 成分(II)と、成分(III)の極性基は、極性樹脂(成分(I))との親和性及び/又は反応性を有する。よって、成分(II)と、成分(III)に結合した極性基の量により、成分(I)との親和性及び/又は反応性は定まる。
 前述の通り成分(I)と、成分(II)と成分(III)の反応性を高め、分散相(B)の数平均分散粒径を1.5μm以下とする観点から、変性共役ジエン系重合体(II)に結合している極性基の量は、0.3mоl/鎖以上が好ましく、より好ましくは0.5mоl/鎖以上であり、さらに好ましくは、0.6mоl/鎖以上である。成分(II)の極性基の量が0.3mol/鎖未満となると、成分(I)及び成分(III)と反応性を有さない成分(II)の量が、樹脂組成物中の成分(II)全体量に対して70mol%以上となり、分散性が大きく低下する傾向にある。
 成分(II)と、成分(III)の質量比は、上記のように、分散相(B)の数平均分散粒径を1.5μm以下にする観点から、成分(II):成分(III)=1/99~99/1であることが好ましく、より好ましくは5/95~95/5であり、さらに好ましくは10/90~90/10、さらにより好ましくは15/85~85/15である。
 また、成分(I)としてポリフェニレンスルフィド系樹脂を用いる場合、剛性、耐薬品性、耐熱性の観点で優れた極性樹脂であるポリフェニレンスルフィド系樹脂との反応性の観点から、成分(II)に結合している極性基としては、水酸基、カルボキシル基からなる群より選ばれる少なくとも1種が好ましい。
 成分(III)に結合している極性基は、好ましくは、成分(I)の極性基及び成分(II)の極性基と反応性を有するものとするため、エポキシ基、オキサゾリン基、及びオキセタニル基からなる群より選ばれる少なくとも1種が好ましく、より好ましくはエポキシ基である。
The modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of acid anhydride groups, hydroxyl groups, carboxyl groups, dicarboxyl groups, epoxy groups, oxetanyl groups, and amino groups. As a result, it exhibits high affinity and/or reactivity with the polar group of the polar resin (component (I)) and the epoxy group of the polymer having the epoxy group (component (III)).
The polar groups of component (II) and component (III) have affinity and/or reactivity with the polar resin (component (I)). Therefore, the amount of component (II) and the amount of polar groups bound to component (III) determine the affinity and/or reactivity with component (I).
As described above, from the viewpoint of increasing the reactivity of component (I), component (II) and component (III) and making the number average dispersed particle diameter of dispersed phase (B) 1.5 μm or less, modified conjugated diene polymer The amount of polar groups bonded to coalescence (II) is preferably 0.3 mol/chain or more, more preferably 0.5 mol/chain or more, and still more preferably 0.6 mol/chain or more. When the amount of polar groups in component (II) is less than 0.3 mol/chain, the amount of component (II) not reactive with component (I) and component (III) is less than the component ( II) It becomes 70 mol % or more of the total amount, and the dispersibility tends to be greatly reduced.
The mass ratio of component (II) and component (III) is, as described above, from the viewpoint of making the number average dispersed particle size of the dispersed phase (B) 1.5 μm or less, component (II):component (III) = preferably 1/99 to 99/1, more preferably 5/95 to 95/5, still more preferably 10/90 to 90/10, still more preferably 15/85 to 85/15 be.
Also, when using a polyphenylene sulfide resin as component (I), from the viewpoint of reactivity with polyphenylene sulfide resin, which is a polar resin excellent in terms of rigidity, chemical resistance, and heat resistance, it is bound to component (II). At least one polar group selected from the group consisting of a hydroxyl group and a carboxyl group is preferable.
The polar groups bonded to component (III) are preferably reactive with the polar groups of component (I) and the polar groups of component (II), and are therefore epoxy groups, oxazoline groups, and oxetanyl groups. At least one selected from the group consisting of is preferable, and an epoxy group is more preferable.
 成分(III)がエポキシ基を有する重合体である場合、当該エポキシ基は、成分(I)がポリフェニレンスルフィド系樹脂である場合、当該成分(I)及び成分(II)の極性基と高い親和性及び/又は反応性を有し、特にポリフェニレンスルフィド系樹脂(成分(I))と高い反応性及び/又は親和性を有する。成分(III)とポリフェニレンスルフィド系樹脂(成分(I))及び成分(II)の親和性及び/又は反応性を高め、分散相(B)の数平均分散粒径を1.5μm以下とする観点から、成分(III)のエポキシ基の含有量は、1.0mol/鎖以上が好ましく、より好ましくは2.0mol/鎖以上、さらに好ましくは3.0mol/鎖以上である。 When component (III) is a polymer having an epoxy group, the epoxy group has a high affinity with the polar groups of component (I) and component (II) when component (I) is a polyphenylene sulfide resin. and/or reactivity, particularly high reactivity and/or affinity with the polyphenylene sulfide resin (component (I)). From the viewpoint of increasing the affinity and/or reactivity between the component (III) and the polyphenylene sulfide resin (component (I)) and the component (II), and making the number average dispersed particle size of the dispersed phase (B) 1.5 μm or less Therefore, the content of epoxy groups in component (III) is preferably 1.0 mol/chain or more, more preferably 2.0 mol/chain or more, and still more preferably 3.0 mol/chain or more.
(添加剤)
 本実施形態の樹脂組成物は、成形品の強度(剛性)を高める観点から、各種の添加剤、例えば、充填剤をさらに含むことが好ましい。
(Additive)
From the viewpoint of increasing the strength (rigidity) of the molded article, the resin composition of the present embodiment preferably further contains various additives such as fillers.
 本実施形態の樹脂組成物において、充填剤としては、繊維状充填剤が好ましい。
 繊維状充填剤としては、以下に限定されないが、例えば、ガラス繊維、炭素繊維、セルロースナノファイバー、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、硫酸マグネシウムウィスカー、セピオライト、ゾノトライト、酸化亜鉛ウィスカー等の繊維状の無機充填剤が挙げられる。
 これらの中でも、成形品の強度(剛性)や耐熱性を高めやすいことから、ガラス繊維、炭素繊維、セルロースナノファイバー及びワラストナイトが好ましい。
 繊維状充填剤は、極性樹脂(成分(I))に対する親和性基又は反応性基を有する化合物により表面処理されていてもよい。
 繊維状充填剤は、1種のみ含まれてもよいし、2種以上が含まれてもよい。
In the resin composition of the present embodiment, a fibrous filler is preferable as the filler.
Examples of fibrous fillers include, but are not limited to, glass fibers, carbon fibers, cellulose nanofibers, wollastonite, potassium titanate whiskers, calcium carbonate whiskers, aluminum borate whiskers, magnesium sulfate whiskers, sepiolite, and xonotlite. and fibrous inorganic fillers such as zinc oxide whiskers.
Among these, glass fiber, carbon fiber, cellulose nanofiber and wollastonite are preferable because they tend to increase the strength (rigidity) and heat resistance of the molded article.
The fibrous filler may be surface-treated with a compound having an affinity group or reactive group for the polar resin (component (I)).
1 type of fibrous fillers may be contained, and 2 or more types may be contained.
 また、その他の添加剤としては、以下に限定されないが、例えば、オイル、フィラー、熱安定剤、紫外線吸収剤、造核剤、酸化防止剤、耐候剤、光安定剤、可塑剤、帯電防止剤、難燃剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、分散剤、銅害防止剤、中和剤、気泡防止剤、ウェルド強度改良剤、天然油、合成油、ワックス等の添加剤が挙げられる。また、他のエラストマーや熱可塑性樹脂も任意の割合で添加剤として使用してもよい。
 これらは1種のみを用いてもよく2種以上を併用してもよい。
Other additives include, but are not limited to, oils, fillers, heat stabilizers, ultraviolet absorbers, nucleating agents, antioxidants, weathering agents, light stabilizers, plasticizers, and antistatic agents. , flame retardants, slip agents, anti-blocking agents, anti-fog agents, lubricants, pigments, dyes, dispersants, copper damage inhibitors, neutralizers, anti-foaming agents, weld strength improvers, natural oils, synthetic oils, waxes, etc. of additives. Other elastomers and thermoplastics may also be used as additives in any proportion.
These may use only 1 type and may use 2 or more types together.
 また、極性樹脂(成分(I))と変性共役ジエン系重合体(成分(II))の親和性又は反応性を向上させる助剤を、本実施形態の樹脂組成物に添加してもよい。
 前記助剤としては、エポキシ基、アミノ基、及びイソシアネート基からなる群より選ばれる少なくとも1種の極性基を有するアルコキシシラン化合物が好ましい。
In addition, an auxiliary agent that improves the affinity or reactivity between the polar resin (component (I)) and the modified conjugated diene polymer (component (II)) may be added to the resin composition of the present embodiment.
As the auxiliary agent, an alkoxysilane compound having at least one polar group selected from the group consisting of an epoxy group, an amino group and an isocyanate group is preferred.
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物の製造方法は、特に制限されるものではなく、公知の方法が利用できる。
 例えば、極性樹脂(成分(I))と、変性共役ジエン系重合体(成分(II))と、成分(I)及び成分(II)と反応性を有する極性基を有する重合体(成分(III))とを、バンバリーミキサー、単軸スクリュー押出機、2軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用いて溶融混練する方法、各成分を溶解又は分散混合後、溶剤を加熱除去する方法等が用いられる。
 前述の分散相(B)の数平均分散粒径を1.5μm以下に制御する観点から溶融混錬する方法が好ましい。
 本実施形態の樹脂組成物の製造方法としては、押出機を用いて各成分を溶融混練法が、生産性及び良混練性の観点から好ましい。特に、2軸以上の多軸スクリューで各成分を混錬して十分にせん断エネルギーを与えることにより、極性樹脂と変性共役ジエン系重合体は、界面を増やし、分散相(B)が形成される。
[Method for producing resin composition]
The method for producing the resin composition of the present embodiment is not particularly limited, and known methods can be used.
For example, a polar resin (component (I)), a modified conjugated diene polymer (component (II)), and a polymer having a polar group reactive with component (I) and component (II) (component (III )) and a Banbury mixer, a single screw extruder, a twin screw extruder, a co-kneader, a method of melt-kneading using a general kneader such as a multi-screw extruder, after dissolving or dispersing and mixing each component , a method of removing the solvent by heating, and the like are used.
From the viewpoint of controlling the number average dispersed particle size of the dispersed phase (B) to 1.5 μm or less, the method of melt-kneading is preferable.
As the method for producing the resin composition of the present embodiment, a melt-kneading method using an extruder is preferable from the viewpoint of productivity and good kneadability. In particular, by kneading each component with a multiaxial screw having two or more shafts and applying sufficient shearing energy, the interface between the polar resin and the modified conjugated diene polymer is increased, and the dispersed phase (B) is formed. .
 混練時の樹脂温度は、極性樹脂(I)、変性共役ジエン系重合体(II)、及び重合体(III)が溶融する温度であればよく、270℃~450℃が好ましい。
 極性樹脂(I)、変性共役ジエン系重合体(II)、及び重合体(III)の熱による劣化を抑制する観点から、より好ましくは、400℃以下である。
The resin temperature during kneading may be any temperature at which the polar resin (I), modified conjugated diene polymer (II), and polymer (III) melt, and is preferably 270°C to 450°C.
From the viewpoint of suppressing thermal deterioration of the polar resin (I), the modified conjugated diene polymer (II), and the polymer (III), the temperature is more preferably 400° C. or less.
 変性共役ジエン系重合体(II)の酸化を抑制するため、窒素などの不活性ガス下で溶融混練を行ってもよい。
 押出機を用いて本実施形態の樹脂組成物を製造する場合、極性樹脂(I)と変性共役ジエン系重合体(II)、及びその他の成分をフィードする位置や順序は特に限定されない。
 また、成分(I)として熱硬化性樹脂を用いる場合は、溶液状の熱硬化性樹脂及び/又は固体状の熱硬化性樹脂を、適当な溶媒に溶解させた成分(II)、必要に応じて成分(III)、及び必要に応じて前述の添加剤を添加し、混合後、適当な硬化剤をさらに添加し、再度混合することで本実施形態の樹脂組成物を得ることができる。
 また、硬化剤を添加する前に、成分(II)、成分(III)を溶解させた溶媒を真空乾燥等の方法で除去してもよい。
 溶媒としては、例えば、トルエン、メチルエチルケトン、シクロヘキサン、シクロヘキサノン、クロロホルム、テトラヒドロフラン等が挙げられる。
 耐熱性に観点で優れた極性樹脂であるエポキシ樹脂を成分(I)として用いる場合、硬化剤としては、極性樹脂(I)を硬化する機能を有するものであればよく特に限定されないが、例えば、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、及びカルボジイミド系硬化剤等が挙げられる。硬化剤は1種単独で用いてもよく、又は2種以上を併用してもよい。
 また、必要に応じて硬化促進剤を添加してもよい。硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。
 本実施形態の樹脂組成物を成形する方法としては、任意の金型に樹脂組成物を注入し、任意の時間及び温度に金型を加温し、硬化物を得る方法が挙げられる。
 金型の温度としては、生産性の観点から30~300℃が好ましく、50~250℃がより好ましい。また、加温時間としては生産性の観点から1分~5時間が好ましく10分~3時間が好ましい。
In order to suppress oxidation of the modified conjugated diene-based polymer (II), melt-kneading may be performed under an inert gas such as nitrogen.
When the resin composition of the present embodiment is produced using an extruder, the positions and order of feeding the polar resin (I), the modified conjugated diene-based polymer (II), and other components are not particularly limited.
Further, when a thermosetting resin is used as component (I), component (II) obtained by dissolving a thermosetting resin in a solution form and/or a thermosetting resin in a solid form in an appropriate solvent, The resin composition of the present embodiment can be obtained by adding component (III) and, if necessary, the above-described additives, and after mixing, further adding an appropriate curing agent and mixing again.
Moreover, before adding the curing agent, the solvent in which the component (II) and the component (III) are dissolved may be removed by a method such as vacuum drying.
Examples of solvents include toluene, methyl ethyl ketone, cyclohexane, cyclohexanone, chloroform, tetrahydrofuran and the like.
When an epoxy resin, which is a polar resin excellent in terms of heat resistance, is used as the component (I), the curing agent is not particularly limited as long as it has a function of curing the polar resin (I). Examples include phenol-based curing agents, naphthol-based curing agents, active ester-based curing agents, benzoxazine-based curing agents, cyanate ester-based curing agents, and carbodiimide-based curing agents. A single curing agent may be used alone, or two or more curing agents may be used in combination.
Moreover, you may add a hardening accelerator as needed. Examples of curing accelerators include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, metal-based curing accelerators, and the like.
A method of molding the resin composition of the present embodiment includes a method of injecting the resin composition into an arbitrary mold, heating the mold to an arbitrary time and temperature, and obtaining a cured product.
The mold temperature is preferably 30 to 300° C., more preferably 50 to 250° C., from the viewpoint of productivity. From the viewpoint of productivity, the heating time is preferably 1 minute to 5 hours, preferably 10 minutes to 3 hours.
 また、成分(I)としてポリフェニレンスルフィド系樹脂を用いる場合、ポリフェニレンスルフィド系樹脂と変性共役ジエン系重合体(成分(II))との間の分子間力又は化学結合形成の観点から、ポリフェニレンスルフィド系樹脂は、チオール基やカルボキシル基を含むものを用いることが好ましい。 Further, when a polyphenylene sulfide-based resin is used as the component (I), from the viewpoint of intermolecular force or chemical bond formation between the polyphenylene sulfide-based resin and the modified conjugated diene-based polymer (component (II)), the polyphenylene sulfide-based It is preferable to use a resin containing a thiol group or a carboxyl group.
 本実施形態の樹脂組成物の製造工程において、その形状に特に制限はないが、ペレット状、シート状、ストランド状、チップ状等のいずれでもよい。 In the manufacturing process of the resin composition of the present embodiment, the shape is not particularly limited, and may be pellet-like, sheet-like, strand-like, chip-like, or the like.
(樹脂組成物の製造方法の好ましい形態)
 本実施形態の樹脂組成物の製造方法の好ましい形態としては、以下の方法が挙げられる。
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、及び、ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有し、
水酸基、及びカルボキシル基からなる群より選ばれる少なくとも1種の極性基を有する変性共役ジエン系重合体(成分(II))と、ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂からなる群より選ばれる少なくとも1種の極性基を有する樹脂(成分(I))と、エポキシ基、オキサゾリン基、及びオキセタニル基からなる群より選ばれる少なくとも1種の極性基を有するオレフィン系エラストマー(成分(III))と、を、前記極性基を有する樹脂(成分(I))と、前記変性共役ジエン系重合体(成分(II))との質量比を、極性基を有する樹脂:変性共役ジエン系重合体=50/50~99/1とし、前記変性共役ジエン系重合体と、前記極性基を有するオレフィン系エラストマーの質量比を、変性共役ジエン系重合体:極性基を有するオレフィン系エラストマー=1/99~99/1として混錬して樹脂組成物を得る工程を有し、前記樹脂組成物が、前記極性基を有する樹脂(成分(I))の連続相(A)と、前記連続相(A)中に分散された前記変性共役ジエン系重合体(成分(II))を含む分散相(B)を有するものとし、前記分散相(B)の数平均分散粒径を1.5μm以下とする工程を有する。
 上述した製造方法によれば、耐衝撃性、靭性に優れた樹脂組成物が得られる。
(Preferred form of method for producing resin composition)
A preferred embodiment of the method for producing the resin composition of the present embodiment includes the following method.
A polymer block (A) mainly composed of vinyl aromatic monomer units, a polymer block (B) mainly composed of conjugated diene monomer units, and a vinyl aromatic monomer unit and a conjugated diene monomer having at least two polymer blocks selected from random polymer blocks (C) of units,
Modified conjugated diene-based polymer (component (II)) having at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups, polyphenylene sulfide-based resin, polyethylene terephthalate-based resin, and polybutylene terephthalate-based resin A resin (component (I)) having at least one polar group selected from the group consisting of an olefin elastomer having at least one polar group selected from the group consisting of epoxy groups, oxazoline groups, and oxetanyl groups (component (III)), the mass ratio of the resin having a polar group (component (I)) and the modified conjugated diene-based polymer (component (II)) to the resin having a polar group: modified conjugated diene The mass ratio of the modified conjugated diene-based polymer to the olefin-based elastomer having a polar group was adjusted to: modified conjugated diene-based polymer: olefin-based elastomer having a polar group = a step of kneading at 1/99 to 99/1 to obtain a resin composition, wherein the resin composition comprises a continuous phase (A) of the resin having a polar group (component (I)) and the continuous It has a dispersed phase (B) containing the modified conjugated diene polymer (component (II)) dispersed in the phase (A), and the dispersed phase (B) has a number average dispersed particle diameter of 1.5 μm It has the following steps.
According to the production method described above, a resin composition having excellent impact resistance and toughness can be obtained.
〔成形体〕
 本実施形態の成形体は、上述した本実施形態の樹脂組成物の成形体である。
 
 本実施形態の成形体は、本実施形態の樹脂組成物を用い、従来公知の方法、例えば、押出成形、射出成形、二色射出成形、サンドイッチ成形、中空成形、圧縮成形、真空成形、回転成形、パウダースラッシュ成形、発泡成形、積層成形、カレンダー成形、ブロー成形等によって、作製できる。
 また、必要に応じて、発泡、粉末、延伸、接着、印刷、塗装、メッキ等の加工をしてもよい。
 かかる成形方法により、シート、フィルム、各種形状の射出成形品、中空成形品、圧空成形品、真空成形品、押出成形品、発泡成形品、不織布や繊維状の成形品、合成皮革等多種多様の成形品として活用できる。これらの成形品は、自動車内外装材、建築材料、玩具、家電部品、医療器具、工業部品、各種ホース、各種筐体、各種モジュールケース、各種パワーコントロールユニット部品、その他雑貨、電子機器等の基板、筐体、シート、パッケージ等に利用できる。
 本実施形態の成形体の用途は、耐衝撃性と靭性を安定して発現する観点から、非多孔質部材に用いることが好ましい。ここでいう多孔質とは材料を貫通した孔のことを指し、発泡により生じる非貫通の孔である気泡は多孔質ではないものとする。
[Molded body]
The molded article of this embodiment is a molded article of the resin composition of this embodiment described above.

The molded article of the present embodiment is produced by using the resin composition of the present embodiment by conventionally known methods such as extrusion molding, injection molding, two-color injection molding, sandwich molding, blow molding, compression molding, vacuum molding, and rotational molding. , powder slush molding, foam molding, laminate molding, calendar molding, blow molding, and the like.
In addition, processing such as foaming, powdering, stretching, adhesion, printing, painting, and plating may be performed as necessary.
By such molding methods, a wide variety of products such as sheets, films, injection molded products of various shapes, hollow molded products, pressure molded products, vacuum molded products, extrusion molded products, foam molded products, nonwoven fabrics and fibrous molded products, synthetic leather, etc. It can be used as a molded product. These molded products are automotive interior and exterior materials, building materials, toys, home appliance parts, medical equipment, industrial parts, various hoses, various housings, various module cases, various power control unit parts, miscellaneous goods, substrates for electronic equipment, etc. , casings, sheets, packages, etc.
From the viewpoint of stably exhibiting impact resistance and toughness, the molded article of the present embodiment is preferably used as a non-porous member. The term “porous” as used herein refers to pores penetrating through a material, and cells, which are non-penetrating pores generated by foaming, are not porous.
(成形体の好ましい形態)
 本実施形態の成形体は、特に、
 ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂から成る群より選ばれる少なくとも1種の、極性基を有する樹脂(成分(I))と、
 ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、ビニル芳香族単量体単位及び共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有する変性水添共役ジエン系重合体(成分(II))と、
 エポキシ基を有するエラストマー(成分(III))と、
を、含む樹脂組成物の成形体であって、
 前記変性共役ジエン系重合体(成分(II))は、水酸基、カルボキシル基からなる群より選ばれる少なくとも一種の極性基を有し、
 前記成形体が、下記条件(I-1)~(II-1)を満たすことが、高い耐衝撃性と靭性が求められる用途において好ましい。
 高い耐衝撃性と靭性が求められる用途としては、例えば、自動車等の車両用ダクト、工業用配管類、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板等の電子機器関係の部品等が挙げられる。これらは、低温下から高温下の広い温度条件で使用される成形体である。
<条件(I-1)>
 成形体から得られた幅10mm、長さ170mm、厚さ2mmの短冊状試験片において、常温下、引張速度5mm/minでの引張り破断伸びが25%以上である。
<条件(II―1)
 成形体から得られた長さ約80mm、幅約10mm、厚さ4mmの短冊状試験片において、-30℃下シャルピー衝撃試験でのシャルピー衝撃値が15kJ/mである。
(Preferred Form of Molded Body)
In particular, the molded body of the present embodiment is
at least one resin having a polar group (component (I)) selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
Polymer block (A) mainly composed of vinyl aromatic monomer units, polymer block (B) mainly composed of conjugated diene monomer units, vinyl aromatic monomer units and conjugated diene monomer units a modified hydrogenated conjugated diene polymer (component (II)) having at least two polymer blocks selected from random polymer blocks (C);
an elastomer having an epoxy group (component (III));
A molded body of a resin composition containing
The modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups,
It is preferable that the molded body satisfies the following conditions (I-1) to (II-1) in applications where high impact resistance and toughness are required.
Applications that require high impact resistance and toughness include ducts for vehicles such as automobiles, industrial piping, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, optical pickups, and oscillation. Components related to electronic equipment such as terminals, various terminal boards, transformers, plugs, and printed circuit boards. These are molded articles that are used under wide temperature conditions from low to high temperatures.
<Condition (I-1)>
A strip-shaped test piece having a width of 10 mm, a length of 170 mm, and a thickness of 2 mm obtained from the compact has a tensile elongation at break of 25% or more at room temperature and a tensile speed of 5 mm/min.
<Condition (II-1)
A strip-shaped test piece having a length of about 80 mm, a width of about 10 mm, and a thickness of 4 mm obtained from the compact has a Charpy impact value of 15 kJ/m 2 in a Charpy impact test at -30°C.
 本実施形態の成形体は、所望の形状に加工することができる。例えば、ダンベル状試験片や短冊状試験片は、成形体の中で平面に近い部分から試験片を切り出して作製できる。前記試験片が完全な平面であることは必須ではなく、引っ張り破断伸びや、粘弾性測定が可能な程度に平らであればよい。例えば、筒状の成形体であれば、筒の径にもよるが、長手方向に試験片を切り出すことで測定可能な試験片をすることができる。また、成形体の厚さが2mmより厚くてもよく、この場合、やすり等で厚さ2mm以上の部分を削り、可能な限り平らかつ厚さ2mmに設定した試験片で、破断伸び及び粘弾性を測定することができる。 The molded body of this embodiment can be processed into a desired shape. For example, a dumbbell-shaped test piece or a strip-shaped test piece can be produced by cutting out a test piece from a nearly flat portion of the compact. It is not essential that the test piece is perfectly flat, and it is sufficient if it is flat enough to allow tensile elongation at break and viscoelasticity measurement. For example, in the case of a cylindrical molded body, depending on the diameter of the cylinder, a measurable test piece can be obtained by cutting the test piece in the longitudinal direction. In addition, the thickness of the molded body may be thicker than 2 mm. can be measured.
 本実施形態の成形体は、変性共役ジエン系重合体(成分(II))が、ポリフェニレンスルフィド系樹脂等の極性基を有する樹脂(成分(I))に分散している状態が、優れた耐衝撃性及び靭性を得る観点から好ましく、前記変性共役ジエン系重合体(成分(II))の前記極性基を有する樹脂(成分(I))への分散状態は、変性共役ジエン系重合体(成分(II))の平均分散粒径が1.5μm以下であるものとし、好ましくは1.3μm以下、より好ましくは1.2μm以下、さらに好ましくは1.1μm以下である。
 本実施形態に成形体において、分散した変性共役ジエン系重合体(成分(II))の平均粒子径は、後述する実施例に記載する方法で測定できる。
The molded article of the present embodiment has excellent resistance when the modified conjugated diene polymer (component (II)) is dispersed in a resin (component (I)) having a polar group such as a polyphenylene sulfide resin. It is preferable from the viewpoint of obtaining impact resistance and toughness. The average dispersed particle diameter of (II)) is 1.5 μm or less, preferably 1.3 μm or less, more preferably 1.2 μm or less, and still more preferably 1.1 μm or less.
The average particle size of the dispersed modified conjugated diene-based polymer (component (II)) in the molded article of the present embodiment can be measured by the method described in Examples below.
 本実施形態の成形体を構成する樹脂組成物は、強度の向上を目的として、フィラー等の添加剤を樹脂組成物100質量部に対し、1~50質量部含んでいてもよく、5~30質量部が好ましい。また、靭性及び耐衝撃性に加えて、難燃性、耐トラッキング性等の機能を付加させるため、難燃剤等のその他添加剤を樹脂組成物100質量部に対し、1~70質量部含んでいてもよいが、これら添加剤を含む場合、前記条件で測定される引張破断伸びは10%以上、耐衝撃性は10kJ/m以上であることが好ましい。 For the purpose of improving the strength, the resin composition constituting the molded article of the present embodiment may contain additives such as fillers in an amount of 1 to 50 parts by mass and 5 to 30 parts by mass with respect to 100 parts by mass of the resin composition. Parts by weight are preferred. In addition to toughness and impact resistance, in order to add functions such as flame retardancy and tracking resistance, 1 to 70 parts by mass of other additives such as flame retardants are included with respect to 100 parts by mass of the resin composition. However, when these additives are contained, it is preferable that the tensile elongation at break measured under the above conditions is 10% or more and the impact resistance is 10 kJ/m 2 or more.
〔樹脂組成物の分析方法〕
 本実施形態の樹脂組成物の成分の分析方法について、以下に示す。
 本実施形態の樹脂組成物に用いる変性共役ジエン系重合体(成分(II))の極性基は、前記変性共役ジエン系重合体(成分(II))が、極性基を有する樹脂(成分(I))等と混練される際成分(I)の極性基と反応することで、分散相(B)の粒径を小さくことに寄与すると考えられるが、樹脂組成物中においても、変性共役ジエン系重合体(成分(II))の極性基は残存する場合が多いと想定される。また、所定の重合体(成分(III))の極性基も成分(I)及び/又は成分(II)と反応性を有するが、樹脂組成物中において未反応の極性基が残っていると考えられる。
 本実施形態の成形体中の水酸基、カルボキシル基から成る群より選ばれる少なとも1種を有する変性共役ジエン系重合体(成分(II))及びエポキシ基を有するエラストマー(成分(III))を定性するためには、まず、前述の変性共役ジエン系重合体(成分(II))、エポキシ基を有するエラストマー(成分(III))を溶解し、マトリックス樹脂であるポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂(それぞれ成分(I))を溶解し得ない溶媒を用いて樹脂組成物を混合し、未反応の変性共役ジエン系重合体(成分(II))及びエポキシ基を有するエラストマー(成分(III))を抽出する。マトリックス樹脂がポリフェニレンスルフィド系樹脂である場合は、ポリフェニレンスルフィド系樹脂が200℃以下で溶解する溶媒が無いため、50~200℃の温度条件下で溶媒と樹脂組成物を混合することで、未溶解のポリフェニレンスルフィド系樹脂(成分(I))、未反応の変性共役ジエン系重合体(成分(II))、未反応のエポキシ基を有するエラストマー(成分(III))を抽出することができる。
 溶媒としては、例えば、トルエン、シクロヘキサン、キシレン、テトラヒドロフラン、クロロホルム、ニトロエタン、ニトロプロパン、エチルベンゼン等が挙げられるが、溶解性の観点からクロロホルム、ニトロエタン、ニトロプロパン、エチルベンゼン、トルエンが好ましい。
 抽出後、未溶解のマトリックス樹脂をろ過等で除去し、ろ液を用いて液相クロマトグラフィーを行うことにより、未反応の変性共役ジエン系重合体(成分(II))、未反応のエポキシ基を有するエラストマー(成分(III))を離別することができる。
[Method for analyzing resin composition]
A method for analyzing the components of the resin composition of the present embodiment is shown below.
The polar group of the modified conjugated diene-based polymer (component (II)) used in the resin composition of the present embodiment is a resin (component (I) )), etc., by reacting with the polar group of the component (I) when kneaded, and is thought to contribute to reducing the particle size of the dispersed phase (B). It is assumed that the polar groups of the polymer (component (II)) often remain. In addition, although the polar groups of a given polymer (component (III)) also have reactivity with component (I) and/or component (II), it is believed that unreacted polar groups remain in the resin composition. be done.
The modified conjugated diene polymer (component (II)) having at least one selected from the group consisting of hydroxyl groups and carboxyl groups and the elastomer having epoxy groups (component (III)) in the molded article of the present embodiment are qualitatively determined. In order to do so, first, the above-mentioned modified conjugated diene polymer (component (II)) and epoxy group-containing elastomer (component (III)) are dissolved, and polyphenylene sulfide-based resin and polyethylene terephthalate-based resin, which are matrix resins, are dissolved. , and a polybutylene terephthalate-based resin (each component (I)) is mixed with a solvent that cannot dissolve the resin composition, and an unreacted modified conjugated diene-based polymer (component (II)) and an epoxy group are The elastomer (component (III)) is extracted. When the matrix resin is a polyphenylene sulfide-based resin, there is no solvent that dissolves the polyphenylene sulfide-based resin at 200°C or lower. polyphenylene sulfide resin (component (I)), unreacted modified conjugated diene polymer (component (II)), and unreacted epoxy group-containing elastomer (component (III)).
Solvents include, for example, toluene, cyclohexane, xylene, tetrahydrofuran, chloroform, nitroethane, nitropropane, ethylbenzene and the like, but chloroform, nitroethane, nitropropane, ethylbenzene, and toluene are preferred from the viewpoint of solubility.
After extraction, undissolved matrix resin is removed by filtration or the like, and the filtrate is subjected to liquid phase chromatography to remove unreacted modified conjugated diene polymer (component (II)), unreacted epoxy group can be separated off (component (III)).
 また、変性共役ジエン系重合体(成分(II))、エポキシ基を有するエラストマー(成分(III))の溶解性が異なる場合は、変性共役ジエン系重合体(成分(II))が溶解し、エポキシ基を有するエラストマー(成分(III))が溶解し得ない溶媒を用いて前述のろ液を真空乾燥等で溶媒を除去し、これにより得られた変性共役ジエン系重合体(成分(II))、エポキシ基を有するエラストマー(成分(III))の混合物を、再度適切な溶媒下で混合することで、未反応の変性共役ジエン系重合体(成分(II))、未反応のエポキシ基を有するエラストマー(成分(III))を離別する方法も採用できる。
 一般的に、変性共役ジエン系重合体(成分(II))の溶解性が高い溶媒としては、トルエン、シクロヘキサン、テトラヒドロフランが挙げられる。
Further, when the modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) have different solubilities, the modified conjugated diene polymer (component (II)) dissolves, Using a solvent in which the epoxy group-containing elastomer (component (III)) cannot be dissolved, the solvent is removed from the filtrate by vacuum drying or the like, and the modified conjugated diene polymer obtained thereby (component (II) ), and a mixture of elastomers having epoxy groups (component (III)) are mixed again in an appropriate solvent to convert unreacted modified conjugated diene-based polymer (component (II)) and unreacted epoxy groups to A method of separating the elastomer (component (III)) can also be employed.
Solvents in which the modified conjugated diene polymer (component (II)) is generally highly soluble include toluene, cyclohexane, and tetrahydrofuran.
 変性共役ジエン系重合体(成分(II))、エポキシ基を有するエラストマー(成分(III))のエポキシ基の同定は、核磁気共鳴装置(NMR)、赤外吸収分光法(IR)、ガスクロマトグラフィー(GS)、及び飛行時間型二次イオン質量分析(TOF-SIMS)等により可能である。
 樹脂組成物が上述した抽出工程において溶媒に溶出し得る後述する添加剤等の成分を含有する場合は、液相クロマトグラフィー等により、分子量、極性の差異を利用し、各成分に離別することができ、前述のNMR、IR、GS、及びTOF-SIMS等により同定することができる。
The modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) can be identified by nuclear magnetic resonance spectroscopy (NMR), infrared absorption spectroscopy (IR), and gas chromatography. It is possible by lithography (GS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
When the resin composition contains components such as additives described later that can be eluted into the solvent in the extraction step described above, liquid phase chromatography or the like can be used to separate the components by utilizing differences in molecular weight and polarity. It can be identified by the aforementioned NMR, IR, GS, TOF-SIMS, and the like.
 溶媒を使用しない分析方法としては、原子間力顕微鏡(AFM)観察で得られた赤外吸収スペクトルから、未反応の変性共役ジエン系重合体(成分(II))、未反応のエポキシ基を有するエラストマー(成分(III))の構成単位、未反応の変性共役ジエン系重合体に結合した極性基種、未反応のエポキシ基を有するエラストマーに結合した極性基種を特定することもできる。
 AFM測定に供する試験片は、ウルトラミクロトーム等で作製した樹脂組成物の精密断面が挙げられる。
As an analysis method that does not use a solvent, from the infrared absorption spectrum obtained by atomic force microscope (AFM) observation, unreacted modified conjugated diene polymer (component (II)), unreacted epoxy group It is also possible to specify the constituent units of the elastomer (component (III)), the polar group species bonded to the unreacted modified conjugated diene polymer, and the polar group species bonded to the elastomer having unreacted epoxy groups.
A test piece to be subjected to AFM measurement includes a precise cross section of a resin composition prepared with an ultramicrotome or the like.
 また、走査型透過X線顕微鏡を用いてイメージスタックデータを得、当該イメージスタックデータの特徴的な領域からスペクトルを抽出し、それらを基準スペクトルとした特異値分解により成分別マッピングを作成し、未反応の変性共役ジエン系重合体、(成分(II))、未反応のエポキシ基を有するエラストマー(成分(III))の構造単位、未反応の変性共役ジエン系重合体に結合した極性基種、未反応のエポキシ基を有するエラストマーに結合した極性基種を特定することもできる。 In addition, image stack data is obtained using a scanning transmission X-ray microscope, spectra are extracted from characteristic regions of the image stack data, and component-specific mapping is created by singular value decomposition using these as reference spectra. reacted modified conjugated diene-based polymer, (component (II)), structural units of an elastomer having unreacted epoxy groups (component (III)), polar group species bonded to the unreacted modified conjugated diene-based polymer, Polar group species attached to elastomers with unreacted epoxy groups can also be identified.
 本実施形態における樹脂組成物中の極性基を有する樹脂(成分(I))、変性共役ジエン系重合体(成分(II))、及びエポキシ基を有するエラストマー(成分(III))の含有量比は、前述のAFM、TEM、及びSEM等の電子顕微鏡を使用して、極性基を有する樹脂(成分(I))中の変性共役ジエン系重合体(成分(II))、及びエポキシ基を有するエラストマー(成分(III))の分散状態を観察し、得られた画像を、画像解析ソフト等を使用し、各層を二値化又は三値化することで、極性基を有する樹脂(成分(I))と、変性共役ジエン系重合体(成分(II))及びエポキシ基を有するエラストマー(成分(III))の含有量比を算出することができる。
 また、変性共役ジエン系重合体(成分(II))及びエポキシ基を有するエラストマー(成分(III))の含有量比は、前述のAFM観察で得られた赤外吸収スペクトルから、変性共役ジエン系重合体(成分(II))のみが有する骨格(具体的にはビニル芳香族単量体単位骨格)のピーク強度と、前述の変性共役ジエン系重合体を単離してNMR、IR、GS、及びTOF-SIMS等により算出された変性共役ジエン系重合体中のビニル芳香族単量体単位と共役ジエン単量体単位の量比より算出することができる。
Content ratio of the resin having a polar group (component (I)), the modified conjugated diene-based polymer (component (II)), and the elastomer having an epoxy group (component (III)) in the resin composition of the present embodiment uses electron microscopes such as the aforementioned AFM, TEM, and SEM to determine the modified conjugated diene-based polymer (component (II)) in the resin (component (I)) having a polar group, and the epoxy group The dispersed state of the elastomer (component (III)) is observed, and the obtained image is binarized or ternarized for each layer using image analysis software or the like to obtain a resin having a polar group (component (I )), the content ratio of the modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) can be calculated.
Further, the content ratio of the modified conjugated diene polymer (component (II)) and the epoxy group-containing elastomer (component (III)) was determined from the infrared absorption spectrum obtained by the AFM observation described above. The peak intensity of the skeleton (specifically, the vinyl aromatic monomer unit skeleton) possessed only by the polymer (component (II)), and the modified conjugated diene-based polymer described above are isolated and analyzed by NMR, IR, GS, and It can be calculated from the quantitative ratio of vinyl aromatic monomer units and conjugated diene monomer units in the modified conjugated diene polymer calculated by TOF-SIMS or the like.
 本実施形態の成形体は、用途に応じて、任意の形状にすることができる。例えば、各種容器、筒状容器、筐体が挙げられる。
 具体的には、箱型の電気・電子部品集積モジュール用保護・支持部材、複数の個別半導体又はモジュール、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品等の電気・電子部品が挙げられる。
 また、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスク等の音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品、あるいは給湯機や風呂の湯量、温度センサーなどの水回り機器部品等の家庭、事務電気製品部品が挙げられる。
 さらに、オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライター等の機械関連部品が挙げられる。
 さらにまた、顕微鏡、双眼鏡、カメラ、時計等の光学機器、精密機械関連部品が挙げられる。
 またさらに、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、イグニッションコイル及びそのボビン、モーターインシュレータ、モーターローター、モーターコア、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース等の自動車・車両関連部品が挙げられる。
 本実施形態の成形体の用途は、上述した用途に限定されるものではない。
The molded article of the present embodiment can have any shape depending on the application. Examples include various containers, cylindrical containers, and housings.
Specifically, protection and support members for box-shaped electrical and electronic component integrated modules, multiple individual semiconductors or modules, sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, and variable capacitor cases. , optical pickups, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, Electrical and electronic parts such as motor brush holders, parabolic antennas, and computer-related parts.
In addition, VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, audio parts, audio equipment parts such as audio equipment, laser discs (registered trademark) and compact discs, lighting parts, refrigerator parts, air conditioner parts, Typewriter parts, word processor parts, and home and office electric product parts such as hot water heaters, bath water volume, temperature sensors, and other plumbing equipment parts.
Furthermore, machine-related parts such as office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts, cleaning jigs, motor parts, writers, typewriters, etc. can be mentioned.
Furthermore, optical instruments such as microscopes, binoculars, cameras, watches, etc., and parts related to precision machinery are also included.
In addition, alternator terminal, alternator connector, IC regulator, potentiometer base for light gear, relay block, inhibitor switch, various valves such as exhaust gas valves, fuel related / exhaust system / intake system various pipes, air intake nozzle snorkel, Intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pads Abrasion sensors, thermostat bases for air conditioners, heating hot air flow control valves, brush holders for radiator motors, water pump impellers, turbine vanes, wiper motor related parts, dust tributors, starter switches, ignition coils and their bobbins, motor insulators, motors Rotors, motor cores, starter relays, transmission wire harnesses, window washer nozzles, air conditioner panel switch boards, fuel-related electromagnetic valve coils, fuse connectors, horn terminals, electrical component insulation plates, step motor rotors, lamp sockets, lamp reflectors , lamp housings, brake pistons, solenoid bobbins, engine oil filters, and ignition device cases.
Applications of the molded article of the present embodiment are not limited to the applications described above.
 以下、具体的な実施例及び比較例を挙げて、本実施形態を詳細に説明するが、本発明は、以下の実施例及び比較例により何ら限定されるものではない。
 実施例及び比較例における、変性共役ジエン系重合体の構造、及び樹脂組成物の物性の測定、評価方法を以下に示す。
Hereinafter, the present embodiment will be described in detail with reference to specific examples and comparative examples, but the present invention is in no way limited by the following examples and comparative examples.
The structure of the modified conjugated diene polymer and the measurement and evaluation methods of the physical properties of the resin composition in Examples and Comparative Examples are shown below.
〔変性共役ジエン系重合体の構造、及び樹脂組成物の物性の測定及び評価〕
((1)変性共役ジエン系重合体の水素化前のビニル結合量)
 変性共役ジエン系重合体のビニル結合量は、水添前の変性共役ジエン重合体の重合過程のステップ毎、共役ジエン単量体を含む重合体ブロックの重合途中にサンプリングしたポリマーを用いて、プロトン核磁気共鳴(H-NMR)法により測定した。
 測定機器はECS400(JEOL製)、溶媒は重水素化クロロホルムを用い、サンプル濃度は50mg/mLとし、観測周波数は400MHzとし、化学シフト基準にテトラメチルシランを用い、パルスディレイ2.904秒、スキャン回数64回、パルス幅45°、及び測定温度26℃で測定を行った。
 ビニル結合量は、1,4-結合及び1,2-結合に帰属されるシグナルの積分値から各結合様式の1Hあたりの積分値を算出した後、1,4-結合、1,2-結合の比率を求め、下記式により算出した。
 ビニル結合量=(1,2-結合/(1,4-結合+1,2-結合))
[Structure of modified conjugated diene polymer and measurement and evaluation of physical properties of resin composition]
((1) Amount of vinyl bond before hydrogenation of modified conjugated diene polymer)
The amount of vinyl bonds in the modified conjugated diene-based polymer was measured using a polymer sampled during the polymerization of the polymer block containing the conjugated diene monomer at each step of the polymerization process of the modified conjugated diene polymer before hydrogenation. It was measured by a nuclear magnetic resonance ( 1 H-NMR) method.
ECS400 (manufactured by JEOL) is used as the measuring instrument, deuterated chloroform is used as the solvent, the sample concentration is 50 mg/mL, the observation frequency is 400 MHz, tetramethylsilane is used as the chemical shift standard, the pulse delay is 2.904 seconds, and the scan is performed. Measurements were performed at a frequency of 64, a pulse width of 45°, and a measurement temperature of 26°C.
The amount of vinyl bonds, after calculating the integral value per 1H of each bonding mode from the integral value of the signal attributed to 1,4-bond and 1,2-bond, 1,4-bond, 1,2-bond was obtained and calculated by the following formula.
Vinyl bond amount = (1,2-bond/(1,4-bond + 1,2-bond))
((2)変性共役ジエン系重合体の共役ジエン単量体単位に基づく不飽和結合の水素添加率)
 変性共役ジエン系重合体の水素添加率は、水素化後の変性共役ジエン系重合体を用いて、プロトン核磁気共鳴(H-NMR)により測定した。
 測定条件及び測定データの処理方法は、上記(1)と同様とした。
 水素添加率は、4.5~5.5ppmの残存二重結合に由来するシグナル及び水素化された共役ジエンに由来するシグナルの積分値を算出し、その比率を算出した。
((2) Hydrogenation rate of unsaturated bond based on conjugated diene monomer unit of modified conjugated diene polymer)
The hydrogenation rate of the modified conjugated diene polymer was measured by proton nuclear magnetic resonance ( 1 H-NMR) using the hydrogenated modified conjugated diene polymer.
The measurement conditions and measurement data processing method were the same as in (1) above.
The hydrogenation rate was calculated by calculating the integral value of the signal derived from the remaining double bond at 4.5 to 5.5 ppm and the signal derived from the hydrogenated conjugated diene, and calculating the ratio.
((3)変性共役ジエン系重合体の、共役ジエン単量体単位に基づく1,2-結合及び1,4-結合の合計100mol%に対するブチレン量(ビニル水素添加率))
 変性共役ジエン系重合体の、共役ジエン化合物単位に基づく1,2-結合及び1,4-結合の合計100mоl%に対するブチレン量は、水添後の変性共役ジエン系重合体を用いて、プロトン核磁気共鳴(H-NMR)により測定した。
 測定条件及び測定データの処理方法は上記(1)及び(2)と同様とした。
 水添後の変性共役ジエン系重合体中の、共役ジエン単量体単位の合計量に由来するシグナル、及び、ブチレン量に由来する積分値を算出し、その比率を算出した。
 前記比率の算出には、スペクトルの0~2.0ppmにおけるブチレン(水素化された1,2-結合)に帰属されるシグナルの積分値を使用した。この共役ジエン単量体単位に基づく1,2-結合及び1,4-結合の合計100mol%に対するブチレン量は、ビニル水素添加率である。
((3) Amount of butylene (vinyl hydrogenation rate) relative to a total of 100 mol% of 1,2-bonds and 1,4-bonds based on conjugated diene monomer units in the modified conjugated diene-based polymer)
The amount of butylene relative to a total of 100 mol% of the 1,2-bonds and 1,4-bonds based on the conjugated diene compound units of the modified conjugated diene polymer is obtained by using the modified conjugated diene polymer after hydrogenation, and the proton nucleus Measured by magnetic resonance ( 1 H-NMR).
The measurement conditions and measurement data processing method were the same as in (1) and (2) above.
A signal derived from the total amount of conjugated diene monomer units and an integrated value derived from the amount of butylene in the modified conjugated diene-based polymer after hydrogenation were calculated, and the ratio thereof was calculated.
The calculation of the ratio used the integrated value of the signal attributed to butylene (hydrogenated 1,2-bond) at 0-2.0 ppm of the spectrum. The amount of butylene with respect to the total 100 mol % of 1,2-bonds and 1,4-bonds based on this conjugated diene monomer unit is the vinyl hydrogenation rate.
((4)変性共役ジエン系重合体の、ビニル芳香族単量体単位の含有量(以下、「スチレン含有量」とも表記する。))
 ビニル芳香族単量体単位の含有量は、変性共役ジエン系重合体を用いて、プロトン核磁気共鳴(H-NMR)法により測定した。
 測定機器はECS400(JEOL製)、溶媒に重水素化クロロホルムを用い、サンプル濃度は50mg/mL、観測周波数は400MHz、化学シフト基準にテトラメチルシランを用い、パルスディレイ2.904秒、スキャン回数64回、パルス幅45°、及び測定温度26℃で行った。
 スチレン含有量は、スペクトルの6.2~7.5ppmにおける総スチレン芳香族シグナルの積算値を用いて算出した。
 また、水素化前の変性共役ジエン系重合体の重合過程のステップ毎にサンプリングしたポリマー毎にビニル芳香族単量体単位の含有量を算出することでもスチレン含有量を確認した。
((4) Content of vinyl aromatic monomer unit in modified conjugated diene polymer (hereinafter also referred to as “styrene content”))
The content of vinyl aromatic monomer units was measured by proton nuclear magnetic resonance ( 1 H-NMR) method using a modified conjugated diene polymer.
ECS400 (manufactured by JEOL) is used as the measuring instrument, deuterated chloroform is used as the solvent, the sample concentration is 50 mg/mL, the observation frequency is 400 MHz, tetramethylsilane is used as the chemical shift standard, the pulse delay is 2.904 seconds, and the number of scans is 64. times, a pulse width of 45°, and a measurement temperature of 26°C.
Styrene content was calculated using the integral of the total styrene aromatics signal at 6.2-7.5 ppm of the spectrum.
The styrene content was also confirmed by calculating the content of vinyl aromatic monomer units for each polymer sampled at each step of the polymerization process of the modified conjugated diene polymer before hydrogenation.
((5)変性共役ジエン系重合体の、重量平均分子量及び分子量分布)
 変性共役ジエン系重合体の重量平均分子量及び分子量分布を、GPC〔装置:HLC8220(東ソー製)、カラム:TSKgelSUPER-HZM-N(4.6mm×30cm)〕で測定した。
 溶媒にはテトラヒドロフランを用いて行った。
 重量平均分子量は、クロマトグラムのピークの分子量から、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた。
 なお、クロマトグラム中にピークが複数有る場合の分子量は、各ピークの分子量と各ピークの組成比(クロマトグラムのそれぞれのピークの面積比より求める)から重量平均分子量を求めた。
 分子量分布は、得られた重量平均分子量(Mw)と数平均分子量(Mn)の比から算出した。
((5) Weight average molecular weight and molecular weight distribution of modified conjugated diene polymer)
The weight average molecular weight and molecular weight distribution of the modified conjugated diene polymer were measured by GPC [device: HLC8220 (manufactured by Tosoh), column: TSKgelSUPER-HZM-N (4.6 mm×30 cm)].
Tetrahydrofuran was used as a solvent.
The weight-average molecular weight was obtained from the peak molecular weight of the chromatogram using a calibration curve (prepared using the peak molecular weight of standard polystyrene) obtained from the measurement of commercially available standard polystyrene.
When the chromatogram has a plurality of peaks, the weight average molecular weight was obtained from the molecular weight of each peak and the composition ratio of each peak (determined from the area ratio of each peak in the chromatogram).
The molecular weight distribution was calculated from the ratio of the obtained weight average molecular weight (Mw) and number average molecular weight (Mn).
((6)変性共役ジエン系重合体の変性率)
 シリカゲルを充填材としたGPCカラムに、変性した成分が吸着する特性を応用し、変性共役ジエン系重合体と低分子量内部標準ポリスチレンを含む試料溶液について、上記(5)で測定したクロマトグラム中の標準ポリスチレンに対する変性共役ジエン系重合体の割合と、シリカ系カラムGPC〔装置:LC-10(島津製作所製)、カラム:Zorbax(デュポン社製)〕で測定したクロマトグラム中の標準ポリスチレンに対する変性共役ジエン系重合体の割合を比較し、それらの差分よりシリカカラムへの吸着量を測定し、この割合を変性率とした。変性率は、末端が特定構造のアミノ基である比率(%)として、下記式により算出した。
((6) Modification rate of modified conjugated diene polymer)
Applying the characteristic of adsorbing modified components to a GPC column with silica gel as a packing material, the sample solution containing a modified conjugated diene polymer and a low molecular weight internal standard polystyrene was measured in (5) above. Ratio of modified conjugated diene polymer to standard polystyrene and modified conjugate to standard polystyrene in the chromatogram measured by silica column GPC [device: LC-10 (manufactured by Shimadzu Corporation), column: Zorbax (manufactured by DuPont)] The proportions of the diene polymer were compared, the amount of adsorption to the silica column was measured from the difference between them, and this proportion was defined as the modification rate. The modification rate was calculated by the following formula as the ratio (%) of amino groups having a specific structure at the terminal.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
  a:ポリスチレン系ゲル(PLgel)で測定した全重合体の面積(%)
  b:ポリスチレン系ゲル(PLgel)で測定した低分子量内部標準ポリスチレン(PS)の面積(%)
  c:シリカ系カラム(Zorbax)で測定した全重合体の面積(%)
  d:シリカ系カラム(Zorbax)で測定した低分子量内部標準ポリスチレン(PS)の面積(%)
a: Area (%) of total polymer measured with polystyrene gel (PLgel)
b: Area (%) of low molecular weight internal standard polystyrene (PS) measured with polystyrene gel (PLgel)
c: Area (%) of total polymer measured with a silica-based column (Zorbax)
d: Area (%) of low-molecular-weight internal standard polystyrene (PS) measured with a silica-based column (Zorbax)
((7)グリシジルメタクリレート結合量)
 変性共役ジエン系重合体をアセトン中、60℃下、1時間以上還流し、未反応のグリシジルメタクリレートを除去した。前記還流後の変性共役ジエン系重合体をトルエンに溶解し、塩酸を押出反応時に添加したグリシジルメタクリレート量よりも2mol倍添加し、60℃下で30分間以上還流することでグリシジルメタクリレートのエポキシ基と塩酸を反応させた。この反応後のトルエン溶液をファクターが1±0.05の水酸化カリウムで滴定することで未反応の塩酸を定量し、反応した塩酸量から変性共役ジエン系重合体に結合したグリシジルメタクリレート量を算出した。
((7) Glycidyl methacrylate binding amount)
The modified conjugated diene polymer was refluxed in acetone at 60° C. for 1 hour or longer to remove unreacted glycidyl methacrylate. The modified conjugated diene-based polymer after refluxing is dissolved in toluene, hydrochloric acid is added 2 mol times the amount of glycidyl methacrylate added at the time of extrusion reaction, and refluxed at 60 ° C. for 30 minutes or more to convert the epoxy groups of glycidyl methacrylate. Hydrochloric acid was reacted. The unreacted hydrochloric acid is quantified by titrating the toluene solution after this reaction with potassium hydroxide having a factor of 1 ± 0.05, and the amount of glycidyl methacrylate bound to the modified conjugated diene polymer is calculated from the amount of reacted hydrochloric acid. bottom.
((8)無水マレイン酸結合量)
 変性共役ジエン系重合体をトルエンに溶解し、ファクターが1±0.05であるナトリウムメトキシドのメタノール溶液で滴定し、無水マレイン酸結合量を算出した。
((8) Maleic anhydride binding amount)
The modified conjugated diene polymer was dissolved in toluene and titrated with a methanol solution of sodium methoxide with a factor of 1±0.05 to calculate the amount of maleic anhydride binding.
((9)樹脂組成物の靭性)
 樹脂組成物の引張破断伸びを、ISO527に従い、引張試験機〔装置:TG-5kN(ミネベアミツミ製)〕で測定した。
 試験片は、成分(I)として熱可塑性樹脂であるポリエチレンテレフタレート、ポリフェニレンスルフィド樹脂を用いた場合は射出成形機で成形したISO-527-2-1Aダンベルを用い、引張試験速度を50mm/分で測定した。
 各組成につき3個以上の試験片について試験を行い、その平均値を物性値とした。
 成分(I)として熱硬化性樹脂であるエポキシ樹脂を用いた場合は、JIS K6911 5.18.1(2)に規定される試験片を作製し、引張試験速度5mm/分で測定した。
((9) Toughness of resin composition)
The tensile elongation at break of the resin composition was measured according to ISO527 with a tensile tester [device: TG-5kN (manufactured by MinebeaMitsumi)].
When the thermoplastic resin polyethylene terephthalate or polyphenylene sulfide resin is used as the component (I), the test piece is an ISO-527-2-1A dumbbell molded by an injection molding machine, and the tensile test speed is 50 mm / min. It was measured.
Three or more test pieces were tested for each composition, and the average value was taken as the physical property value.
When an epoxy resin, which is a thermosetting resin, was used as component (I), a test piece specified in JIS K6911 5.18.1(2) was prepared and measured at a tensile test speed of 5 mm/min.
((10)シャルピー衝撃値)
 成分(I)として熱可塑性樹脂であるポリエチレンテレフタレート、ポリフェニレンスルフィド樹脂を用いた場合は、JIS K 7111-1に準じてノッチ付きシャルピー衝撃強さを測定し、評価した。試験片は前述のISOダンベルの両端を切削して、平行部分を長さ約80mm、幅約10mm、厚さ約4mmの短冊状試験片を作製し、ノッチ形状をA、打撃方向をエッジワイズとした。
 成分(I)として熱硬化性樹脂であるエポキシ樹脂を用いた場合は、JIS K6911 5.20.2に規定される試験片を作製し、ノッチ形状をA、打撃方向をエッジワイズとした。
 測定温度は常温(23℃)及び-30℃とした。単位はkJ/m2である。
((10) Charpy impact value)
When polyethylene terephthalate or polyphenylene sulfide resin, which is a thermoplastic resin, was used as component (I), the notched Charpy impact strength was measured and evaluated according to JIS K 7111-1. For the test piece, cut both ends of the above-mentioned ISO dumbbell to prepare a strip-shaped test piece with a parallel portion of about 80 mm in length, about 10 mm in width, and about 4 mm in thickness. bottom.
When an epoxy resin, which is a thermosetting resin, was used as the component (I), a test piece specified in JIS K6911 5.20.2 was prepared, the notch shape was A, and the hitting direction was edgewise.
The measurement temperature was normal temperature (23°C) and -30°C. The unit is kJ/m 2 .
((11)加工性(樹脂組成物の流動性))
 成分(I)として熱可塑性樹脂であるポリエチレンテレフタレート、ポリフェニレンスルフィド樹脂を用いた場合に以下の方法で樹脂組成物のスパイラルフロー長を測定し、加工性を評価した。
 スパイラルフロー長が長い程流動性が高く、加工性に優れることを示す。
 シリンダー温度を300~320℃に設定(ホッパー側~ノズル側)した射出成形機(型締圧18tf、スクリュー系Φ16、SLスクリュー)に樹脂組成物を投入し、スクリュー回転数150rpm、背圧2Mpa、計量完了位置55mmでスパイラル幅5mm、スパイラル厚み3mm、スパイラル最長長さ850mm、刻印幅10mmのスパイラルフロー測定用金型に、充填速度50mm/s、射出圧力100MPaで射出成形を行った。冷却時間は20sとし、スパイラルフロー長さ(cm)を測定した。
((11) Workability (fluidity of resin composition))
When polyethylene terephthalate and polyphenylene sulfide resins, which are thermoplastic resins, were used as component (I), the spiral flow length of the resin composition was measured by the following method to evaluate workability.
The longer the spiral flow length, the higher the fluidity and the better the workability.
The resin composition was put into an injection molding machine (mold clamping pressure 18tf, screw system Φ16, SL screw) with the cylinder temperature set to 300 to 320 ° C (hopper side to nozzle side), screw rotation speed 150 rpm, back pressure 2 Mpa, Injection molding was performed into a mold for spiral flow measurement with a spiral width of 5 mm, a spiral thickness of 3 mm, a maximum spiral length of 850 mm, and a stamping width of 10 mm at a weighing completion position of 55 mm at a filling speed of 50 mm/s and an injection pressure of 100 MPa. The cooling time was 20 s, and the spiral flow length (cm) was measured.
((12)樹脂組成物の相構造の観察、分散相の数平均分散粒径の測定)
 樹脂組成物における相構造は、後述する樹脂組成物の試験用成形体(ISO-527-2-1A)をエタノール中で約1時間超音波洗浄を行い、ウルトラミクロトームを用いて切削し、断面出しを行って観察した。なお、切削は-150℃下で、ガラスナイフ及びダイアモンドナイフを使用することで行い、これによりAFM観察に供する精密断面を作製した。
 AFMは、Bruker社製を使用し、プローブにはSCANASYST-AIRを使用した。
 前記精密断面サンプルを専用のサンプル固定台に固定し、測定モードをQMN Mode in Air、解像度を512×256ピクセル、測定範囲10×10μm、最大押し込み荷重500pN、Scan速度1.0Hzとして得られた弾性率フォースカーブより弾性率マッピングを作成した。弾性率マッピングは、高弾性率を明るく、低弾性率を暗く表示するグレースケールの画像とし、512×512画素で出力した。また、ノイズ除去のため2ポイントの移動平均フィルタ処理を行い、二値化像を作成した。二値化処理には大津法を用いた。
 前記二値化像の粒子解析をImageJのAnalyze Particklesを用いて、分散相(B)の各粒子についてフィレ径を算出した。
 各樹脂組成物につき3つの成形体で観察及びフィレ径の算出を行い、前記フィレ径の平均値を分散相(B)の数平均分散径とした。
((12) Observation of phase structure of resin composition, measurement of number average dispersed particle size of dispersed phase)
The phase structure in the resin composition is obtained by ultrasonically cleaning a test molded body (ISO-527-2-1A) of the resin composition described later in ethanol for about 1 hour, cutting it with an ultramicrotome, and exposing the cross section. and observed. The cutting was performed at −150° C. using a glass knife and a diamond knife to prepare a precise cross section for AFM observation.
The AFM used was made by Bruker, and the probe used was SCANASYST-AIR.
The precision section sample was fixed to a dedicated sample fixing table, the measurement mode was QMN Mode in Air, the resolution was 512 × 256 pixels, the measurement range was 10 × 10 μm, the maximum indentation load was 500 pN, and the scan speed was 1.0 Hz. A modulus mapping was created from the modulus force curve. The elastic modulus mapping was a grayscale image in which high elastic moduli are bright and low elastic moduli are dark, and was output with 512×512 pixels. In addition, 2-point moving average filter processing was performed to remove noise, and a binarized image was created. The Otsu method was used for binarization.
Particle analysis of the binarized image was performed using ImageJ's Analyze Particles, and the fillet diameter was calculated for each particle of the dispersed phase (B).
Three molded bodies of each resin composition were observed and the fillet diameters were calculated, and the average value of the fillet diameters was taken as the number average dispersed diameter of the dispersed phase (B).
〔樹脂組成物の製造〕
(成分(I):極性基を有する樹脂)
 成分(I):極性基を有する樹脂として、以下の極性樹脂を使用した。
 ポリフェニレンスルフィド樹脂:A900(東レ株式会社製)
 ポリエチレンテレフタレート樹脂:TRF-8550FF(帝人株式会社製)
 エポキシ樹脂:ビスフェノールA型 EXA-850CRP(DIC社製)
[Production of resin composition]
(Component (I): Resin having a polar group)
Component (I): As a resin having a polar group, the following polar resin was used.
Polyphenylene sulfide resin: A900 (manufactured by Toray Industries, Inc.)
Polyethylene terephthalate resin: TRF-8550FF (manufactured by Teijin Limited)
Epoxy resin: bisphenol A type EXA-850CRP (manufactured by DIC)
(成分(II))
 成分(II)は、後述する変性共役ジエン系重合体の作製方法により製造した。
 製造に用いる変性剤、その他の成分、水添触媒を下記に示す。
 [変性剤]
 変性共役ジエン系重合体の製造用の変性剤としては、下記の化合物を用いた。
 無水マレイン酸(扶桑化学工業(株)製)
 1,3-ジメチル-2-イミダゾリジノン(東京化成工業(株)製)
 グリシジルメタクリレート(東京化成工業(株)製)
 パーオキサイド25B(日油株式会社製)
(Component (II))
Component (II) was produced by a method for producing a modified conjugated diene-based polymer, which will be described later.
Modifiers, other components, and hydrogenation catalysts used in the production are shown below.
[denaturant]
The following compounds were used as modifiers for producing the modified conjugated diene polymer.
Maleic anhydride (manufactured by Fuso Chemical Industry Co., Ltd.)
1,3-dimethyl-2-imidazolidinone (manufactured by Tokyo Chemical Industry Co., Ltd.)
Glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
Peroxide 25B (manufactured by NOF Corporation)
 [その他の成分]
 エポキシ樹脂の硬化剤:クレゾールノボラック樹脂 LF―6161(DIC社製)
[Other ingredients]
Epoxy resin curing agent: cresol novolac resin LF-6161 (manufactured by DIC)
 [水添触媒]
 変性共役ジエン系重合体の水添反応に用いる水添触媒を、下記の方法で調製した。
 窒素置換した反応容器に、乾燥及び精製したシクロヘキサン1Lを入れ、ビス(η5-シクロペンタジエニル)チタニウムジクロリド100ミリモルを添加し、十分に攪拌しながらトリメチルアルミニウム200ミリモルを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させ、水添触媒を得た。
[Hydrogenation catalyst]
A hydrogenation catalyst used for the hydrogenation reaction of a modified conjugated diene polymer was prepared by the following method.
1 L of dried and purified cyclohexane was placed in a reaction vessel purged with nitrogen, 100 mmol of bis(η5-cyclopentadienyl)titanium dichloride was added, and an n-hexane solution containing 200 mmol of trimethylaluminum was added with sufficient stirring. and reacted at room temperature for about 3 days to obtain a hydrogenation catalyst.
 <変性共役ジエン系重合体(1)の作製>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.4mоl添加し、70℃で20分間重合した。
 次に、ブタジエン80質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して等モル添加し、70℃で10分反応させた。反応終了後にメタノールを添加した。
 上記のようにして得られた末端アミン変性共役ジエン系重合体(1-A)は、スチレン含有量20質量%、重量平均分子量12.2×10、分子量分布1.10、ビニル結合量は44%、変性率は70%(1重合鎖あたりの変性基の数は0.70個)であった。
 さらに得られた末端アミン変性共役ジエン系重合体(1-A)に、上記のようにして調製した水添触媒を、末端アミン変性共役ジエン系重合体(1-A)100質量部当たり、Ti基準で50ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約2.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、末端アミン変性共役ジエン系重合体(1-A)100質量部に対して0.25質量部添加し、末端アミン変性水添共役ジエン系重合体(1-B)を得た。得られた末端アミン変性水添共役ジエン系重合体(1-B)の水素添加率は73%、ビニル水素添加率は96%であった。
 上記のようにして得られた末端アミン変性水添共役ジエン系重合体(1-B)と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~200℃として二軸押出機に供給し、コンパウンドすることで、末端カルボキシル基変性共役ジエン系重合体(1-C)を得た。
 得られた末端カルボキシル基変性共役ジエン系重合体(1-C)を、前述の条件でGPC測定を行い、アミノ基のカラムへの吸着が生じないことを確認した。
 すなわち、アミノ基が全量無水マレイン酸と反応したことを意味し、カルボキシル基量はアミノ基と同様で1重合鎖あたりの変性基の数は0.70個であった。
<Preparation of modified conjugated diene polymer (1)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium per 100 parts by mass of all monomers and 0.4 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70°C for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration: 20% by mass) containing 80 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Next, 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as “DMI”) was added in an equimolar amount to 1 mol of n-butyllithium, and reacted at 70° C. for 10 minutes. Methanol was added after completion of the reaction.
The terminal amine-modified conjugated diene polymer (1-A) obtained as described above has a styrene content of 20% by mass, a weight average molecular weight of 12.2×10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 44%, and the modification rate was 70% (the number of modifying groups per polymer chain was 0.70).
Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (1-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (1-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (1-A) to 0. 0.25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (1-B). The obtained terminal amine-modified hydrogenated conjugated diene polymer (1-B) had a hydrogenation rate of 73% and a vinyl hydrogenation rate of 96%.
After mixing the terminal amine-modified hydrogenated conjugated diene polymer (1-B) obtained as described above and maleic anhydride, the temperature is set to 150 to 200° C. over the entire length of the extruder and twin-screw extrusion is performed. A terminal carboxyl group-modified conjugated diene-based polymer (1-C) was obtained by supplying to a machine and compounding.
The terminal carboxyl group-modified conjugated diene polymer (1-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column.
This means that all the amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.70.
 <変性共役ジエン系重合体(2)>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.4mоl添加し、70℃で20分間重合した。
 次に、ブタジエン80質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。反応終了後にメタノールを添加した。
 上記のようにして得られた末端アミン変性共役ジエン系重合体(2-A)は、スチレン含有量20質量%、重量平均分子量12.1×10、分子量分布1.10、ビニル結合量は45%、変性率は80%(1重合鎖あたりの変性基の数は0.80個)であった。
 さらに得られた末端アミン変性共役ジエン系重合体(2-A)に、上記のようにして調製した水添触媒を、末端アミン変性共役ジエン系重合体(2-A)100質量部当たり、Ti基準で50ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約2.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、末端アミン変性共役ジエン系重合体(2-A)100質量部に対して0.25質量部添加し、末端アミン変性水添共役ジエン系重合体(2-B)を得た。
 得られた末端アミン変性水添共役ジエン系重合体(2-B)の水素添加率は74%、ビニル水素添加率は96%であった。
 上記のようにして得られた末端アミン変性水添共役ジエン系重合体(2-B)と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~200℃として二軸押出機に供給し、コンパウンドすることで末端カルボキシル基変性共役ジエン系重合体(2-C)を得た。
 得られた末端カルボキシル基変性共役ジエン系重合体(2-C)を、前述の条件でGPC測定を行い、アミノ基のカラムへの吸着が生じないことを確認した。
 すなわち、アミノ基が全量無水マレイン酸と反応したことを意味し、カルボキシル基量はアミノ基と同様で1重合鎖あたりの変性基の数は0.80個であった。
<Modified conjugated diene polymer (2)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium per 100 parts by mass of all monomers and 0.4 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70°C for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration: 20% by mass) containing 80 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Next, 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. . Methanol was added after completion of the reaction.
The terminal amine-modified conjugated diene polymer (2-A) obtained as described above has a styrene content of 20% by mass, a weight average molecular weight of 12.1×10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 45%, and the modification rate was 80% (the number of modifying groups per polymer chain was 0.80).
Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (2-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (2-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (2-A) to 0. 25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (2-B).
The obtained terminal amine-modified hydrogenated conjugated diene polymer (2-B) had a hydrogenation rate of 74% and a vinyl hydrogenation rate of 96%.
After mixing the terminal amine-modified hydrogenated conjugated diene polymer (2-B) obtained as described above and maleic anhydride, the temperature is set to 150 to 200 ° C. over the entire length of the extruder and twin-screw extrusion is performed. A terminal carboxyl group-modified conjugated diene polymer (2-C) was obtained by supplying to a machine and compounding.
The terminal carboxyl group-modified conjugated diene polymer (2-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column.
This means that all the amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.80.
 <変性共役ジエン系重合体(3)>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.4mоl添加し、70℃で20分間重合した。
 次に、ブタジエン70質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。反応終了後にメタノールを添加した。
 上記のようにして得られた末端アミン変性共役ジエン系重合体(3-A)は、スチレン含有量30質量%、重量平均分子量12.0×10、分子量分布1.09、ビニル結合量は43%、変性率は79%(1重合鎖あたりの変性基の数は0.79個)であった。
 さらに得られた末端アミン変性共役ジエン系重合体(3-A)に、上記のようにして調製した水添触媒を、末端アミン変性共役ジエン系重合体(3-A)100質量部当たり、Ti基準で50ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約2.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、末端アミン変性共役ジエン系重合体(3-A)100質量部に対して0.25質量部添加し、末端アミン変性水添共役ジエン系重合体(3-B)を得た。
 得られた末端アミン変性水添共役ジエン系重合体(3-B)の水素添加率は75%、ビニル水素添加率は96%であった。
 上記のようにして得られた末端アミン変性水添共役ジエン系重合体(3-B)と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~200℃として二軸押出機に供給し、コンパウンドすることで末端カルボキシル基変性共役ジエン系重合体(3-C)を得た。
 得られた末端カルボキシル基変性共役ジエン系重合体(3-C)を、前述の条件でGPC測定を行い、アミノ基のカラムへの吸着が生じないことを確認した。
 すなわち、アミノ基が全量無水マレイン酸と反応したことを意味し、カルボキシル基量はアミノ基と同様で1重合鎖あたりの変性基の数は0.79個であった。
<Modified conjugated diene polymer (3)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 15 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium per 100 parts by mass of all monomers and 0.4 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70°C for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration: 20% by mass) containing 70 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 15 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Next, 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. . Methanol was added after completion of the reaction.
The terminal amine-modified conjugated diene polymer (3-A) obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 12.0×10 4 , a molecular weight distribution of 1.09, and a vinyl bond content of 43%, and the modification rate was 79% (the number of modifying groups per polymer chain was 0.79).
Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (3-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (3-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (3-A) to 0. 0.25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (3-B).
The resulting hydrogenated amine-modified hydrogenated conjugated diene polymer (3-B) had a hydrogenation rate of 75% and a vinyl hydrogenation rate of 96%.
After mixing the terminal amine-modified hydrogenated conjugated diene polymer (3-B) obtained as described above and maleic anhydride, the temperature setting over the entire length of the extruder is set to 150 to 200 ° C. and twin-screw extrusion is performed. A terminal carboxyl group-modified conjugated diene polymer (3-C) was obtained by supplying to a machine and compounding.
The terminal carboxyl group-modified conjugated diene polymer (3-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column.
That is, it means that all amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.79.
 <変性共役ジエン系重合体(4)>
 テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.2mоl添加すること以外は、前記<変性共役ジエン系重合体(2)>と同様の操作を行い、末端カルボキシル基変性共役ジエン系重合体(4-C)を得た。得られた末端カルボキシル基変性共役ジエン系共重合体(4-C)は、スチレン含有量20質量%、重量平均分子量12.2×10、分子量分布1.09、ビニル結合量は24%、水素添加率は78%、ビニル水素添加率は96%、変性率は80%(1重合鎖あたりの変性基の数は0.79個)であった。
<Modified conjugated diene polymer (4)>
Except for adding 0.2 mol of tetramethylethylenediamine (TMEDA) to 1 mol of n-butyllithium, the same operation as in <Modified conjugated diene-based polymer (2)> was performed to obtain a terminal carboxyl group-modified conjugated diene. A system polymer (4-C) was obtained. The obtained terminal carboxyl group-modified conjugated diene copolymer (4-C) had a styrene content of 20% by mass, a weight average molecular weight of 12.2×10 4 , a molecular weight distribution of 1.09, and a vinyl bond content of 24%. The hydrogenation rate was 78%, the vinyl hydrogenation rate was 96%, and the modification rate was 80% (the number of modifying groups per polymer chain was 0.79).
 <変性共役ジエン系重合体(5)>
 n-ブチルリチウムを全モノマー100質量部に対して0.09質量部添加すること以外は、前記<変性共役ジエン系重合体(2)>と同様の操作を行い、末端カルボキシル基変性共役ジエン系重合体(5-C)を得た。得られた末端カルボキシル基変性共役ジエン系共重合体(5-C)は、スチレン含有量20質量%、重量平均分子量10.1×10、分子量分布1.10、ビニル結合量は43%、水素添加率は78%、ビニル水素添加率は96%、変性率は80%(1重合鎖あたりの変性基の数は0.80個)であった。
<Modified conjugated diene polymer (5)>
Except for adding 0.09 parts by mass of n-butyl lithium to 100 parts by mass of all the monomers, the same operation as in <Modified conjugated diene-based polymer (2)> was performed to obtain a terminal carboxyl group-modified conjugated diene-based A polymer (5-C) was obtained. The resulting terminal carboxyl group-modified conjugated diene copolymer (5-C) had a styrene content of 20% by mass, a weight average molecular weight of 10.1×10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 43%. The hydrogenation rate was 78%, the vinyl hydrogenation rate was 96%, and the modification rate was 80% (the number of modifying groups per polymer chain was 0.80).
 <変性共役ジエン系重合体(6)>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン6.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.35mоl添加し、70℃で20分間重合した。
 次に、ブタジエン87質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン6.5質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。反応終了後にメタノールを添加した。
 上記のようにして得られた末端アミン変性共役ジエン系重合体(6-A)は、スチレン含有量13質量%、重量平均分子量12.2×10、分子量分布1.09、ビニル結合量は35%、変性率は81%(1重合鎖あたりの変性基の数は0.81個)であった。
 さらに得られた末端アミン変性共役ジエン系重合体(6-A)に、上記のようにして調製した水添触媒を、末端アミン変性共役ジエン系重合体(6-A)100質量部当たり、Ti基準で90ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約2.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、末端アミン変性共役ジエン系重合体(6-A)100質量部に対して0.25質量部添加し、末端アミン変性水添共役ジエン系重合体(6-B)を得た。
 得られた末端アミン変性水添共役ジエン系重合体(6-B)の水素添加率は80%、ビニル水素添加率は98%であった。
 上記のようにして得られた末端アミン変性水添共役ジエン系重合体(6-B)と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~200℃として二軸押出機に供給し、コンパウンドすることで末端カルボキシル基変性共役ジエン系重合体(6-C)を得た。
 得られた末端カルボキシル基変性共役ジエン系重合体(6-C)を、前述の条件でGPC測定を行い、アミノ基のカラムへの吸着が生じないことを確認した。
 すなわち、アミノ基が全量無水マレイン酸と反応したことを意味し、カルボキシル基量はアミノ基と同様で1重合鎖あたりの変性基の数は0.81個であった。
<Modified conjugated diene polymer (6)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 6.5 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium with respect to 100 parts by mass of all monomers and 0.35 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70° C. for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration: 20% by mass) containing 87 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 6.5 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Next, 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. . Methanol was added after completion of the reaction.
The terminal amine-modified conjugated diene polymer (6-A) obtained as described above has a styrene content of 13% by mass, a weight average molecular weight of 12.2×10 4 , a molecular weight distribution of 1.09, and a vinyl bond content of 35%, and the modification rate was 81% (the number of modifying groups per polymer chain was 0.81).
Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (6-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (6-A). The hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (6-A) to 0. 0.25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (6-B).
The obtained terminal amine-modified hydrogenated conjugated diene polymer (6-B) had a hydrogenation rate of 80% and a vinyl hydrogenation rate of 98%.
After mixing the terminal amine-modified hydrogenated conjugated diene polymer (6-B) obtained as described above and maleic anhydride, the temperature is set to 150 to 200 ° C. over the entire length of the extruder and twin-screw extrusion is performed. A terminal carboxyl group-modified conjugated diene polymer (6-C) was obtained by supplying to a machine and compounding.
The terminal carboxyl group-modified conjugated diene polymer (6-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that the amino groups did not adsorb to the column.
This means that all the amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.81.
 <変性共役ジエン系重合体(7)>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン25質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.4mоl添加し、70℃で20分間重合した。
 次に、ブタジエン50質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン25質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、1,3-ジメチル-2-イミダゾリジノン(以下「DMI」とも略記される。)をn-ブチルリチウム1モルに対して1.1モル添加し、70℃で15分反応させた。反応終了後にメタノールを添加した。
 上記のようにして得られた末端アミン変性共役ジエン系重合体(7-A)は、スチレン含有量50質量%、重量平均分子量11.9×10、分子量分布1.11、ビニル結合量は43%、変性率は79%(1重合鎖あたりの変性基の数は0.79個)であった。
 さらに得られた末端アミン変性共役ジエン系重合体(7-A)に、上記のようにして調製した水添触媒を、末端アミン変性共役ジエン系重合体(7-A)100質量部当たり、Ti基準で50ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約2.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、末端アミン変性共役ジエン系重合体(7-A)100質量部に対して0.25質量部添加し、末端アミン変性水添共役ジエン系重合体(7-B)を得た。
 得られた末端アミン変性水添共役ジエン系重合体(7-B)の水素添加率は77%、ビニル水素添加率は97%であった。
 上記のようにして得られた末端アミン変性水添共役ジエン系重合体(7-B)と無水マレイン酸を混合した後、押出機の長さ全域の温度設定を150~200℃として二軸押出機に供給し、コンパウンドすることで末端カルボキシル基変性共役ジエン系重合体(7-C)を得た。
 得られた末端カルボキシル基変性共役ジエン系重合体(7-C)を、前述の条件でGPC測定を行い、アミノ基のカラムへの吸着が生じないことを確認した。
 すなわち、アミノ基が全量無水マレイン酸と反応したことを意味し、カルボキシル基量はアミノ基と同様で1重合鎖あたりの変性基の数は0.79個であった。
<Modified conjugated diene polymer (7)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 25 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium per 100 parts by mass of all monomers and 0.4 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70°C for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration of 20% by mass) containing 50 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 25 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Next, 1.1 mol of 1,3-dimethyl-2-imidazolidinone (hereinafter also abbreviated as “DMI”) was added to 1 mol of n-butyllithium, and reacted at 70° C. for 15 minutes. . Methanol was added after completion of the reaction.
The terminal amine-modified conjugated diene polymer (7-A) obtained as described above has a styrene content of 50% by mass, a weight average molecular weight of 11.9×10 4 , a molecular weight distribution of 1.11, and a vinyl bond content of 43%, and the modification rate was 79% (the number of modifying groups per polymer chain was 0.79).
Furthermore, the hydrogenation catalyst prepared as described above was added to the obtained amine-terminated conjugated diene polymer (7-A) per 100 parts by mass of the terminal amine-modified conjugated diene polymer (7-A). A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added to 100 parts by mass of the terminal amine-modified conjugated diene polymer (7-A) to 0. 25 parts by mass was added to obtain a terminal amine-modified hydrogenated conjugated diene polymer (7-B).
The resulting hydrogenated amine-modified hydrogenated conjugated diene polymer (7-B) had a hydrogenation rate of 77% and a vinyl hydrogenation rate of 97%.
After mixing the terminal amine-modified hydrogenated conjugated diene polymer (7-B) obtained as described above and maleic anhydride, the temperature is set to 150 to 200° C. over the entire length of the extruder and twin-screw extrusion is performed. A terminal carboxyl group-modified conjugated diene polymer (7-C) was obtained by supplying to a machine and compounding.
The terminal carboxyl group-modified conjugated diene polymer (7-C) thus obtained was subjected to GPC measurement under the conditions described above, and it was confirmed that no adsorption of amino groups to the column occurred.
That is, it means that all amino groups reacted with maleic anhydride, the amount of carboxyl groups was the same as that of amino groups, and the number of modifying groups per polymer chain was 0.79.
 <変性共役ジエン系重合体(8)>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.35mоl添加し、70℃で20分間重合した。
 次に、ブタジエン80質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン10質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、メタノールを添加した。
 上記のようにして得られた共役ジエン系重合体(8-A)は、スチレン含有量30質量%、重量平均分子量12.1×10、分子量分布1.10、ビニル結合量は36%であった。
 さらに得られた共役ジエン系重合体(8-A)に、上記のようにして調製した水添触媒を、共役ジエン系重合体(8-A)100質量部当たり、Ti基準で70ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約3.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、共役ジエン系重合体(8-A)100質量部に対して0.25質量部添加し、水添共役ジエン系重合体(8-B)を得た。
 得られた水添共役ジエン系重合体(8-B)の水素添加率は97%、ビニル水素添加率は99%であった。
 上記のようにして得られた水添共役ジエン系重合体(8-B)とグリシジルメタクリレートを混合した後、押出機の長さ全域の温度設定を150~220℃として二軸押出機に供給し、パーオキサイド25Bを押出機中盤より添加し、コンパウンドすることで主鎖エポキシ変性共役ジエン系重合体(8-C)を得た。
 得られた主鎖エポキシ基変性共役ジエン系重合体(8-C)を、前述の方法で滴定したところ、グリシジルメタクリレート結合量は1.2質量%であった。
<Modified conjugated diene polymer (8)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium with respect to 100 parts by mass of all monomers and 0.35 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70° C. for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration: 20% by mass) containing 80 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 10 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Methanol was then added.
The conjugated diene polymer (8-A) obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 12.1×10 4 , a molecular weight distribution of 1.10, and a vinyl bond content of 36%. there were.
Furthermore, to the obtained conjugated diene polymer (8-A), the hydrogenation catalyst prepared as described above is added at 70 ppm based on Ti based on 100 parts by mass of the conjugated diene polymer (8-A), A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 3.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate is added in an amount of 0.25 parts by mass with respect to 100 parts by mass of the conjugated diene polymer (8-A). to obtain a hydrogenated conjugated diene polymer (8-B).
The obtained hydrogenated conjugated diene polymer (8-B) had a hydrogenation rate of 97% and a vinyl hydrogenation rate of 99%.
After mixing the hydrogenated conjugated diene polymer (8-B) obtained as described above and glycidyl methacrylate, the mixture was supplied to a twin-screw extruder at a temperature setting of 150 to 220° C. over the entire length of the extruder. , and Peroxide 25B were added from the middle stage of the extruder and compounded to obtain a main chain epoxy-modified conjugated diene polymer (8-C).
The resulting main chain epoxy group-modified conjugated diene polymer (8-C) was titrated by the method described above to find that the amount of glycidyl methacrylate bond was 1.2% by mass.
 <変性共役ジエン系重合体(9)>
 攪拌装置とジャケットとを具備する槽型反応器(内容積10L)を使用してバッチ重合を行った。
 まず、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入した。
 次に、n-ブチルリチウムを全モノマー100質量部に対して0.11質量部と、テトラメチルエチレンジアミン(TMEDA)をn-ブチルリチウム1モルに対して0.35mоl添加し、70℃で20分間重合した。
 次に、ブタジエン70質量部を含むシクロヘキサン溶液(濃度20質量%)を加えて70℃で45分間重合した。
 次に、スチレン15質量部を含むシクロヘキサン溶液(濃度20質量%)を投入し、70℃で20分間重合した。
 次に、メタノールを添加した。
 上記のようにして得られた共役ジエン系重合体(9-A)は、スチレン含有量30質量%、重量平均分子量12.2×10、分子量分布1.08、ビニル結合量は37%であった。
 さらに得られた共役ジエン系重合体(9-A)に、上記のようにして調製した水添触媒を、共役ジエン系重合体(9-A)100質量部当たり、Ti基準で50ppm添加し、水素圧0.7MPa、温度80℃で水素添加反応を約2.0時間行った。
 次に、安定剤として、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、共役ジエン系重合体(9-A)100質量部に対して0.25質量部添加し、水添共役ジエン系重合体(9-B)を得た。
 得られた水添共役ジエン系重合体(9-B)の水素添加率は76%、ビニル水素添加率は96%であった。
 上記のようにして得られた水添共役ジエン系重合体(9-B)、無水マレイン酸、及び有機過酸化物(パーヘキサ25B(日油株式会社製))を混合した後、押出機の長さ全域の温度設定を150~220℃として二軸押出機に供給し、コンパウンドすることで主鎖酸無水物基変性共役ジエン系重合体(9-C)を得た。
 得られた主鎖酸無水物基変性共役ジエン系重合体(9-C)を、前述の((9)無水マレイン酸結合量)に示した方法で滴定したところ、無水マレイン酸結合量は1.5質量%であった。
<Modified conjugated diene polymer (9)>
Batch polymerization was carried out using a tank reactor (inner volume 10 L) equipped with a stirrer and jacket.
First, a cyclohexane solution (concentration: 20% by mass) containing 15 parts by mass of styrene was added.
Next, 0.11 parts by mass of n-butyllithium with respect to 100 parts by mass of all monomers and 0.35 mol of tetramethylethylenediamine (TMEDA) per 1 mol of n-butyllithium were added, and the mixture was heated at 70° C. for 20 minutes. polymerized.
Next, a cyclohexane solution (concentration: 20% by mass) containing 70 parts by mass of butadiene was added and polymerized at 70° C. for 45 minutes.
Next, a cyclohexane solution (concentration: 20% by mass) containing 15 parts by mass of styrene was added and polymerized at 70° C. for 20 minutes.
Methanol was then added.
The conjugated diene polymer (9-A) obtained as described above has a styrene content of 30% by mass, a weight average molecular weight of 12.2×10 4 , a molecular weight distribution of 1.08, and a vinyl bond content of 37%. there were.
Furthermore, to the obtained conjugated diene polymer (9-A), the hydrogenation catalyst prepared as described above is added at 50 ppm on a Ti basis per 100 parts by mass of the conjugated diene polymer (9-A), A hydrogenation reaction was carried out at a hydrogen pressure of 0.7 MPa and a temperature of 80° C. for about 2.0 hours.
Next, as a stabilizer, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added in an amount of 0.25 parts by mass with respect to 100 parts by mass of the conjugated diene polymer (9-A). to obtain a hydrogenated conjugated diene polymer (9-B).
The obtained hydrogenated conjugated diene polymer (9-B) had a hydrogenation rate of 76% and a vinyl hydrogenation rate of 96%.
After mixing the hydrogenated conjugated diene polymer (9-B) obtained as described above, maleic anhydride, and organic peroxide (Perhexa 25B (manufactured by NOF Corporation)), the length of the extruder The mixture was supplied to a twin-screw extruder with the temperature set to 150 to 220° C. over the entire temperature range and compounded to obtain a main chain acid anhydride group-modified conjugated diene polymer (9-C).
The obtained main chain acid anhydride group-modified conjugated diene polymer (9-C) was titrated by the method shown in (9) Maleic anhydride bond amount), and the maleic anhydride bond amount was 1. 0.5 mass %.
 <変性共役ジエン系重合体(10)>
 主鎖酸無水物基変性共役ジエン系重合体 M1943(旭化成社製タフテック)を使用した。
<Modified conjugated diene polymer (10)>
Main chain acid anhydride group-modified conjugated diene polymer M1943 (manufactured by Asahi Kasei Co., Ltd., Tuftec) was used.
(成分(III):成分(I)、(II)と反応性を有する極性基を有する重合体)
 成分(III)として、以下のエポキシ基を有する重合体を使用した。
 ボンドファーストBF-7M(グリシジルメタクリレート-エチレン-アクリル酸メチル共重合体、住友化学社製)
 エポフレンドAT501(スチレン-ブタジエンブロック共重合体のエポキシ化物、株式会社ダイセル製)
 ELVAOYTM PTW(エチレン-グリシジルメタクリレート-ブチルアクリレート共重合体、ダウ社製)
(Component (III): a polymer having a polar group reactive with components (I) and (II))
As component (III), the following polymers having epoxy groups were used.
Bondfast BF-7M (glycidyl methacrylate-ethylene-methyl acrylate copolymer, manufactured by Sumitomo Chemical Co., Ltd.)
Epofriend AT501 (epoxidized styrene-butadiene block copolymer, manufactured by Daicel Corporation)
ELVAOY TM PTW (ethylene-glycidyl methacrylate-butyl acrylate copolymer, manufactured by Dow)
〔実施例1~15〕
 前記の成分を用いて、表1及び表2に示す組成比で二軸押出機ZSK28(Werner and Pfleiderer製)を用いて、シリンダー設定温度300℃、スクリュー回転数200rpm、吐出量9kg/時間で溶融混練し、樹脂組成物を製造した。
 その後、射出成形機を用いて、シリンダー設定温度300℃、金型温度設定140℃で射出成形を行い、試験片(ISO-527-2-1A)を作製した。
[Examples 1 to 15]
Using the above components, the composition ratios shown in Tables 1 and 2 were melted using a twin-screw extruder ZSK28 (manufactured by Werner and Pfleiderer) at a cylinder setting temperature of 300 ° C., a screw rotation speed of 200 rpm, and a discharge rate of 9 kg / hour. The mixture was kneaded to produce a resin composition.
Thereafter, using an injection molding machine, injection molding was performed with a cylinder temperature setting of 300° C. and a mold temperature setting of 140° C. to prepare a test piece (ISO-527-2-1A).
〔比較例1~11〕
 成分(II)として変性共役ジエン系重合体(1-B)、(1-C)を用いた。
 その他の材料、条件は実施例1~15と同様として、表3に示す組成比で樹脂組成物を製造し、試験片を作製した。
[Comparative Examples 1 to 11]
Modified conjugated diene polymers (1-B) and (1-C) were used as component (II).
Other materials and conditions were the same as in Examples 1 to 15, resin compositions were produced at the composition ratios shown in Table 3, and test pieces were produced.
 各樹脂組成物の分散相(B)の数平均分散粒径、靭性及び耐衝撃性を、表1~表3に示した。
 なお、表中、「(1)」とは、シャルピー衝撃試験の試験片が未破断であることを示す。
Tables 1 to 3 show the number average dispersed particle size, toughness and impact resistance of the dispersed phase (B) of each resin composition.
In the table, "(1)" indicates that the test piece for the Charpy impact test was unbroken.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
〔実施例16~22〕
 前記の成分(I)~(III)を用いて、表4に示す組成比で二軸押出機ZSK28(Werner and Pfleiderer製)を用いて、シリンダー設定温度290℃、スクリュー回転数200rpm、吐出量9kg/時間で溶融混練し、樹脂組成物を製造した。
 その後、射出成形機を用いて、シリンダー設定温度290℃、金型温度設定120℃で射出成形を行い、試験片(ISO-527-2-1A)を作製した。
[Examples 16 to 22]
Using the above components (I) to (III), using a twin-screw extruder ZSK28 (manufactured by Werner and Pfleiderer) at the composition ratio shown in Table 4, the cylinder setting temperature was 290 ° C., the screw rotation speed was 200 rpm, and the discharge amount was 9 kg. / hour to produce a resin composition.
Thereafter, using an injection molding machine, injection molding was performed with a cylinder temperature setting of 290° C. and a mold temperature setting of 120° C. to prepare a test piece (ISO-527-2-1A).
〔比較例12~15〕
 成分(II)として変性共役ジエン系重合体(9-B)を用いた。
 その他の材料、条件は実施例16~22と同様として、表5に示す組成比で樹脂組成物を製造し、試験片を作製した。
[Comparative Examples 12 to 15]
A modified conjugated diene polymer (9-B) was used as component (II).
Other materials and conditions were the same as in Examples 16 to 22, resin compositions were produced according to the composition ratios shown in Table 5, and test pieces were produced.
 各樹脂組成物の分散相(B)の数平均分散粒径、靭性及び耐衝撃性を、表4、表5に示した。 Tables 4 and 5 show the number average dispersed particle size, toughness and impact resistance of the dispersed phase (B) of each resin composition.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
〔実施例23~27〕
 前記の成分を用いて、表6に示す組成比で樹脂組成物を製造した。
 混錬は、成分(II)及び成分(III)を含む場合は、成分(III)をトルエンに約20質量%の濃度で溶解させエポキシ樹脂溶液に添加し、撹拌した。
 次に、常温で真空乾燥し、トルエンの大部分を除去した。次に、硬化剤を添加し、撹拌することで溶液状の樹脂組成物を得た。
 次に、前記溶液状の樹脂組成物を80℃に加温後、前述の靭性試験及びシャルピー衝撃試験に規定された形の金型に前記溶液状の樹脂組成物を注入し、140℃で2時間圧縮成形により樹脂組成物の硬化物を得た。
 各樹脂組成物の分散相(B)の数平均分散粒径、靭性及び耐衝撃性を、表6に示した。
[Examples 23 to 27]
Using the components described above, a resin composition was produced in the composition ratio shown in Table 6.
When component (II) and component (III) are included, component (III) is dissolved in toluene at a concentration of about 20% by mass, added to the epoxy resin solution, and stirred.
It was then vacuum dried at room temperature to remove most of the toluene. Next, a curing agent was added and stirred to obtain a solution-like resin composition.
Next, after heating the solution-like resin composition to 80 ° C., the solution-like resin composition was injected into a mold having a shape specified in the toughness test and the Charpy impact test described above, and heated at 140 ° C. for 2 hours. A cured product of the resin composition was obtained by time compression molding.
Table 6 shows the number average dispersed particle diameter, toughness and impact resistance of the dispersed phase (B) of each resin composition.
〔比較例16~21〕
 成分(II)として変性共役ジエン系重合体(9-B)を用いた。
その他の材料、条件は実施例23~27と同様として、表7に示す組成比で樹脂組成物を製造し、試験片を作製した。
[Comparative Examples 16 to 21]
A modified conjugated diene polymer (9-B) was used as component (II).
Other materials and conditions were the same as in Examples 23 to 27, resin compositions were produced according to the composition ratios shown in Table 7, and test pieces were produced.
 各樹脂組成物の分散相(B)の数平均分散粒径、靭性及び耐衝撃性を、表6、7に示した。 Tables 6 and 7 show the number average dispersed particle size, toughness and impact resistance of the dispersed phase (B) of each resin composition.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 表1~7の結果より、実施例1~27は、耐衝撃性、靭性に優れていることが明らかとなった。 From the results in Tables 1-7, it is clear that Examples 1-27 are excellent in impact resistance and toughness.
 本出願は、2021年7月27日に日本国特許庁に出願された日本特許出願(特願2021-122776))、及び2021年9月21日に日本国特許庁に出願された日本特許出願(特願2021-153417)に基づくものであり、その内容はここに参照として取り込まれる。 This application is a Japanese patent application filed with the Japan Patent Office on July 27, 2021 (Japanese patent application 2021-122776)), and a Japanese patent application filed with the Japan Patent Office on September 21, 2021 (Japanese Patent Application No. 2021-153417), the contents of which are incorporated herein by reference.
 本発明の樹脂組成物は、シート、フィルム、各種形状の射出成形品、中空成形品、圧空成型品、真空成形品、押出成形品、発泡成形品、不織布や繊維状の成形品、合成皮革等多種多様の成形品として活用でき、これらの成形品は、自動車内外装材、建築材料、玩具、家電部品、医療器具、工業部品、各種ホース、各種筐体、各種モジュールケース、各種パワーコントロールユニット部品、その他雑貨等の用途としての産業上の利用可能性を有する。 The resin composition of the present invention can be used in sheets, films, injection-molded articles of various shapes, blow-molded articles, pressure-molded articles, vacuum-molded articles, extrusion-molded articles, foam-molded articles, non-woven fabrics, fibrous molded articles, synthetic leather, and the like. It can be used as a wide variety of molded products, and these molded products are automotive interior and exterior materials, building materials, toys, home appliance parts, medical equipment, industrial parts, various hoses, various housings, various module cases, and various power control unit parts. , and other miscellaneous goods, and have industrial applicability.

Claims (15)

  1.  成分(I):極性基を有する樹脂(下記成分(II)を除く)と、
     成分(II):
    ビニル芳香族単量体単位を主体とする重合体ブロック(A)、
    共役ジエン単量体単位を主体とする重合体ブロック(B)、及び
    ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有するブロック重合体に、
    酸無水物基、水酸基、カルボキシル基、ジカルボキシル基、エポキシ基、オキセタニル基及びアミノ基からなる群より選ばれる少なくとも1種の極性基が結合した変性共役ジエン系重合体を少なくとも1種と、
    を、含む樹脂組成物であって、
     前記樹脂組成物が、前記成分(I)の連続相(A)と、前記連続相(A)中に分散された前記成分(II)を含む分散相(B)とを有し、前記分散相(B)の数平均分散粒径が1.5μm以下であり、
     前記成分(I)と、前記成分(II)との質量比が、成分(I):成分(II)=50/50~99/1である、樹脂組成物。
    Component (I): a resin having a polar group (excluding component (II) below);
    Component (II):
    a polymer block (A) mainly composed of vinyl aromatic monomer units,
    At least two polymer blocks selected from polymer blocks (B) mainly composed of conjugated diene monomer units and random polymer blocks (C) composed of vinyl aromatic monomer units and conjugated diene monomer units to a block polymer having
    at least one modified conjugated diene-based polymer to which at least one polar group selected from the group consisting of an acid anhydride group, a hydroxyl group, a carboxyl group, a dicarboxyl group, an epoxy group, an oxetanyl group and an amino group is bonded;
    A resin composition containing
    The resin composition has a continuous phase (A) of the component (I) and a dispersed phase (B) containing the component (II) dispersed in the continuous phase (A), and the dispersed phase (B) has a number average dispersed particle size of 1.5 μm or less,
    A resin composition wherein the mass ratio of component (I) to component (II) is component (I):component (II)=50/50 to 99/1.
  2.  成分(III):前記成分(I)及び/又は成分(II)と反応性を有する極性基を有する重合体(前記成分(I)、(II)を除く)を、さらに含み、
     前記成分(II)と前記成分(III)の質量比が、成分(II):成分(III)=1/99~99/1である、
     請求項1に記載の樹脂組成物。
    Component (III): further comprising a polymer having a polar group reactive with component (I) and/or component (II) (excluding components (I) and (II)),
    The mass ratio of the component (II) and the component (III) is component (II):component (III) = 1/99 to 99/1,
    The resin composition according to claim 1.
  3.  前記成分(I)が、
     ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、
     請求項1に記載の樹脂組成物。
    The component (I) is
    At least one resin selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, and epoxy resins,
    The resin composition according to claim 1.
  4.  前記成分(I)が、
     ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、
     請求項2に記載の樹脂組成物。
    The component (I) is
    At least one resin selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, polybutylene terephthalate-based resins, and epoxy resins,
    The resin composition according to claim 2.
  5.  前記成分(II)が、共役ジエン化合物に由来する脂肪族二重結合が水素添加されている水添変性共役ジエン系重合体を含む、
     請求項3又は4に記載の樹脂組成物。
    The component (II) contains a hydrogenated modified conjugated diene-based polymer in which an aliphatic double bond derived from a conjugated diene compound is hydrogenated,
    The resin composition according to claim 3 or 4.
  6.  前記成分(I)が、ポリフェニレンスルフィド系樹脂である、
     請求項3又は4に記載の樹脂組成物。
    The component (I) is a polyphenylene sulfide resin,
    The resin composition according to claim 3 or 4.
  7.  前記成分(II)が、水酸基及びカルボキシル基からなる群より選ばれる少なくとも1種の極性基が結合した変性共役ジエン系重合体を含む、
     請求項3又は4に記載の樹脂組成物。
    The component (II) contains a modified conjugated diene-based polymer to which at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups is bonded,
    The resin composition according to claim 3 or 4.
  8.  前記成分(III)が、エポキシ基、オキサゾリン基、及びオキセタニル基からなる群より選ばれる少なくとも1種の極性基を有する重合体である、
     請求項2又は3に記載の樹脂組成物。
    The component (III) is a polymer having at least one polar group selected from the group consisting of an epoxy group, an oxazoline group, and an oxetanyl group.
    The resin composition according to claim 2 or 3.
  9.  前記成分(III)が、エポキシ基を有するオレフィン系エラストマーである、
     請求項2又は3に記載の樹脂組成物。
    wherein the component (III) is an olefin elastomer having an epoxy group;
    The resin composition according to claim 2 or 3.
  10.  前記水添変性共役ジエン系重合体の水素添加率が90%以下である、
     請求項5に記載の樹脂組成物。
    The hydrogenation rate of the hydrogenated modified conjugated diene polymer is 90% or less,
    The resin composition according to claim 5.
  11.  前記成分(II)中のビニル芳香族単量体単位の含有量が、40質量%以下である、
     請求項3又は4に記載の樹脂組成物。
    The content of vinyl aromatic monomer units in the component (II) is 40% by mass or less.
    The resin composition according to claim 3 or 4.
  12.  前記成分(III)が、エポキシ基を有する重合性モノマーと不飽和炭化水素系化合物との共重合体から成る、エポキシ基を有するエラストマーである、
     請求項2又は3に記載の樹脂組成物。
    The component (III) is an epoxy group-containing elastomer comprising a copolymer of an epoxy group-containing polymerizable monomer and an unsaturated hydrocarbon compound.
    The resin composition according to claim 2 or 3.
  13.  前記成分(III)が、エポキシ基を有する重合性モノマーと、不飽和炭化水素系化合物と、(メタ)アクリル酸エステル及び/又はビニルアセテートとの共重合体である、
     請求項2又は3に記載の樹脂組成物。
    The component (III) is a copolymer of a polymerizable monomer having an epoxy group, an unsaturated hydrocarbon compound, and a (meth)acrylic acid ester and/or vinyl acetate.
    The resin composition according to claim 2 or 3.
  14.  ビニル芳香族単量体単位を主体とする重合体ブロック(A)、
     共役ジエン単量体単位を主体とする重合体ブロック(B)、及び
     ビニル芳香族単量体単位と共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有し、
     水酸基、及びカルボキシル基からなる群より選ばれる少なくとも1種の極性基を有する変性共役ジエン系重合体(成分(II))と、
     ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂からなる群より選ばれる少なくとも1種の極性基を有する樹脂(成分(I))と、
     エポキシ基、オキサゾリン基、及びオキセタニル基からなる群より選ばれる少なくとも1種の極性基を有するオレフィン系エラストマー(成分(III))と、
    を、
     前記極性基を有する樹脂(成分(I))と、前記変性共役ジエン系重合体(成分(II))との質量比を、極性基を有する樹脂:変性共役ジエン系重合体=50/50~99/1とし、
     前記変性共役ジエン系重合体と、前記極性基を有するオレフィン系エラストマーの質量比を、変性共役ジエン系重合体:極性基を有するオレフィン系エラストマー=1/99~99/1として混錬して樹脂組成物を得る工程を有し、
     前記樹脂組成物が、前記極性基を有する樹脂(成分(I))の連続相(A)と、前記連続相(A)中に分散された前記変性共役ジエン系重合体(成分(II))
    を含む分散相(B)を有するものとし、前記分散相(B)の数平均分散粒径を1.5μm以下とする工程を有する、
     樹脂組成物の製造方法。
    a polymer block (A) mainly composed of vinyl aromatic monomer units,
    At least two polymer blocks selected from polymer blocks (B) mainly composed of conjugated diene monomer units and random polymer blocks (C) composed of vinyl aromatic monomer units and conjugated diene monomer units has
    a modified conjugated diene-based polymer (component (II)) having at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups;
    a resin (component (I)) having at least one polar group selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
    an olefinic elastomer (component (III)) having at least one polar group selected from the group consisting of epoxy groups, oxazoline groups, and oxetanyl groups;
    of,
    The mass ratio of the resin having a polar group (component (I)) and the modified conjugated diene-based polymer (component (II)) is adjusted to the resin having a polar group: modified conjugated diene-based polymer = 50/50 ~ 99/1,
    The mass ratio of the modified conjugated diene-based polymer and the olefin-based elastomer having a polar group is kneaded so that the modified conjugated diene-based polymer: olefin-based elastomer having a polar group = 1/99 to 99/1. obtaining a composition;
    The resin composition comprises a continuous phase (A) of the resin having a polar group (component (I)) and the modified conjugated diene polymer (component (II)) dispersed in the continuous phase (A).
    A dispersed phase (B) containing
    A method for producing a resin composition.
  15.  ポリフェニレンスルフィド系樹脂、ポリエチレンテレフタレート系樹脂、及びポリブチレンテレフタレート系樹脂から成る群より選ばれる少なくとも1種の、極性基を有する樹脂(成分(I))と、
     ビニル芳香族単量体単位を主体とする重合体ブロック(A)、共役ジエン単量体単位を主体とする重合体ブロック(B)、ビニル芳香族単量体単位及び共役ジエン単量体単位のランダム重合体ブロック(C)から選ばれる少なくとも2種の重合体ブロックを有する変性共役ジエン系重合体(成分(II))と、
     エポキシ基を有するオレフィン系エラストマー(成分(III))と、
    を、含む、
    樹脂組成物の成形体であって、
     前記変性共役ジエン系重合体(成分(II))は、水酸基、カルボキシル基からなる群より選ばれる少なくとも一種の極性基を有し、
     前記成形体が、下記条件(I-1)~(II-1)を満たす、成形体。
    <条件(I-1)>
     成形体から得られた幅10mm、長さ170mm、厚さ2mmの短冊状試験片は、常温下、引張速度5mm/minでの引張り破断伸びが25%以上である。
    <条件(II―1)
     成形体から得られた長さ約80mm、幅約10mm、厚さ約4mmの短冊状試験片は、-30℃下シャルピー衝撃試験でのシャルピー衝撃値が15kJ/mである。
    at least one resin having a polar group (component (I)) selected from the group consisting of polyphenylene sulfide-based resins, polyethylene terephthalate-based resins, and polybutylene terephthalate-based resins;
    Polymer block (A) mainly composed of vinyl aromatic monomer units, polymer block (B) mainly composed of conjugated diene monomer units, vinyl aromatic monomer units and conjugated diene monomer units a modified conjugated diene-based polymer (component (II)) having at least two polymer blocks selected from random polymer blocks (C);
    an olefin-based elastomer having an epoxy group (component (III));
    including,
    A molded body of a resin composition,
    The modified conjugated diene polymer (component (II)) has at least one polar group selected from the group consisting of hydroxyl groups and carboxyl groups,
    A molded body, wherein the molded body satisfies the following conditions (I-1) to (II-1).
    <Condition (I-1)>
    A strip-shaped test piece having a width of 10 mm, a length of 170 mm, and a thickness of 2 mm obtained from the compact has a tensile elongation at break of 25% or more at room temperature and a tensile speed of 5 mm/min.
    <Condition (II-1)
    A strip-shaped test piece having a length of about 80 mm, a width of about 10 mm, and a thickness of about 4 mm obtained from the compact has a Charpy impact value of 15 kJ/m 2 in a Charpy impact test at -30°C.
PCT/JP2022/028771 2021-07-27 2022-07-26 Resin composition, method for producing resin composition, and molded body WO2023008424A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280044175.5A CN117545808A (en) 2021-07-27 2022-07-26 A resin composition method for producing resin composition and molded article
JP2023538549A JPWO2023008424A1 (en) 2021-07-27 2022-07-26

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-122776 2021-07-27
JP2021122776 2021-07-27
JP2021-153417 2021-09-21
JP2021153417 2021-09-21

Publications (1)

Publication Number Publication Date
WO2023008424A1 true WO2023008424A1 (en) 2023-02-02

Family

ID=85087697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028771 WO2023008424A1 (en) 2021-07-27 2022-07-26 Resin composition, method for producing resin composition, and molded body

Country Status (3)

Country Link
JP (1) JPWO2023008424A1 (en)
TW (1) TWI818643B (en)
WO (1) WO2023008424A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203454A (en) * 1988-02-09 1989-08-16 Asahi Chem Ind Co Ltd Polymer blend composition
US4863996A (en) * 1987-03-18 1989-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Novel impact-resistant polyamide resin composition and process for producing the same
JPH04285658A (en) * 1991-03-13 1992-10-09 Asahi Chem Ind Co Ltd Multi-phase resin composition
JPH08217972A (en) * 1995-02-10 1996-08-27 Asahi Chem Ind Co Ltd Resin composition
JP2000086836A (en) * 1998-09-14 2000-03-28 Asahi Chem Ind Co Ltd Polypropylene-based resin composition
JP2006291117A (en) * 2005-04-14 2006-10-26 Kraton Jsr Elastomers Kk Thermoplastic resin composition
JP2014019745A (en) * 2012-07-13 2014-02-03 Jsr Corp Resin composition and applications for the same
JP2021042357A (en) * 2019-09-05 2021-03-18 旭化成株式会社 Resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863996A (en) * 1987-03-18 1989-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Novel impact-resistant polyamide resin composition and process for producing the same
JPH01203454A (en) * 1988-02-09 1989-08-16 Asahi Chem Ind Co Ltd Polymer blend composition
JPH04285658A (en) * 1991-03-13 1992-10-09 Asahi Chem Ind Co Ltd Multi-phase resin composition
JPH08217972A (en) * 1995-02-10 1996-08-27 Asahi Chem Ind Co Ltd Resin composition
JP2000086836A (en) * 1998-09-14 2000-03-28 Asahi Chem Ind Co Ltd Polypropylene-based resin composition
JP2006291117A (en) * 2005-04-14 2006-10-26 Kraton Jsr Elastomers Kk Thermoplastic resin composition
JP2014019745A (en) * 2012-07-13 2014-02-03 Jsr Corp Resin composition and applications for the same
JP2021042357A (en) * 2019-09-05 2021-03-18 旭化成株式会社 Resin composition

Also Published As

Publication number Publication date
TWI818643B (en) 2023-10-11
JPWO2023008424A1 (en) 2023-02-02
TW202309192A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP3756133B2 (en) Graft copolymer and resin composition thereof
JP7064909B2 (en) Thermoplastic resin compositions and molded products
WO2003091334A1 (en) Modified block copolymer composition
JP2754723B2 (en) Hydrogenated diene copolymer and composition thereof
JP4208176B2 (en) Functional group-containing block copolymer and composition thereof
JP2002201333A (en) Block copolymer composition
JPH06220124A (en) Epoxy-modified block polymer and composition thereof
JP4674060B2 (en) Thermoplastic resin composition and molded article
WO2023008424A1 (en) Resin composition, method for producing resin composition, and molded body
JP2021042357A (en) Resin composition
JP2005187533A (en) Molded item of polylactic acid-based resin composition excellent in impact resistance and heat resistance
JP5562004B2 (en) Modified block copolymer and composition thereof
JP2005272696A (en) Aliphatic polyester molding
JPWO2008123240A1 (en) Thermoplastic composition and molded article thereof
CN117545808A (en) A resin composition method for producing resin composition and molded article
JP2011094074A (en) Modified block copolymer for foamed article and composition of the same
JP3792189B2 (en) Graft copolymer and resin composition containing the same
JP2006008815A (en) Thermoplastic resin composition and molded article
JP2005154753A (en) Hydrogenated block copolymer and composition of the same
JP4937505B2 (en) Thermoplastic resin composition and molded article
JPS6268850A (en) Polyamide-containing resin composition having excellent impact resistance
JP4698135B2 (en) Olefin resin composition
JP4947652B2 (en) Functional group-containing block copolymer and composition thereof
JP2010138296A (en) Polyphenylene ether-based cross-linked composition
JP2006104348A (en) Olefinic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538549

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280044175.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE