WO2023008380A1 - 食品包装用シートおよびインジケータ - Google Patents

食品包装用シートおよびインジケータ Download PDF

Info

Publication number
WO2023008380A1
WO2023008380A1 PCT/JP2022/028647 JP2022028647W WO2023008380A1 WO 2023008380 A1 WO2023008380 A1 WO 2023008380A1 JP 2022028647 W JP2022028647 W JP 2022028647W WO 2023008380 A1 WO2023008380 A1 WO 2023008380A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
sheet
anthocyanin
food packaging
packaging sheet
Prior art date
Application number
PCT/JP2022/028647
Other languages
English (en)
French (fr)
Inventor
和義 槌谷
ガネシュ クマール マニ
春輝 有田
義明 平野
Original Assignee
学校法人東海大学
学校法人関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東海大学, 学校法人関西大学 filed Critical 学校法人東海大学
Priority to JP2023538523A priority Critical patent/JPWO2023008380A1/ja
Publication of WO2023008380A1 publication Critical patent/WO2023008380A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/50Containers, packaging elements or packages, specially adapted for particular articles or materials for living organisms, articles or materials sensitive to changes of environment or atmospheric conditions, e.g. land animals, birds, fish, water plants, non-aquatic plants, flower bulbs, cut flowers or foliage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a food packaging sheet and an indicator that displays the degree of food decomposition.
  • ammonia As a method for evaluating the freshness of meat, a method of measuring the concentration of ammonia (NH 3 ) generated from meat is currently reported.
  • existing ammonia sensors are not preferable because they require electrical wiring and a power supply, and also bring metal into direct contact with food. Moreover, the sensor may be damaged by condensation in the refrigerator.
  • Patent Document 1 discloses, as an indicator for detecting food spoilage, an indicator in which an amine-sensitive compound composed of betalain, flavonoid, etc. is immobilized in a matrix. Anthocyanin etc. are mentioned as a flavonoid.
  • Patent Document 2 a transparent small bag made of a sealed soft film is filled with a pH-changing dye component, a food-derived acid-producing bacterium, a culture solution, etc., and sealed to check the storage state of food and drink. A method of determining is disclosed.
  • Patent Document 3 discloses a food product comprising, in sequence, an impermeable layer having at least one non-impermeable region, a porous substrate layer containing an indicator composition that changes color in response to a degradative compound of the food, and an adhesive layer.
  • a quality indicator is disclosed.
  • the food quality indicator of U.S. Pat. No. 6,200,000 is adhered onto the food package by an adhesive layer. Food degradation compounds produced by food spoilage pass through the food package and through the adhesive layer and the porous substrate layer. At that time, it changes color by reacting with the indicator composition in the porous substrate layer.
  • Patent Documents 1 to 3 are inventions related to food quality indicators, and are not intended to be used as food packaging sheets in direct contact with food.
  • pure water is known to cause a supercooling phenomenon in which it does not solidify (solidify) even if it is cooled to a temperature lower than 0°C if no foreign matter is present.
  • anti-ice nucleation active substances antifreeze active substances
  • water does not freeze even at sub-zero temperatures, so expansion due to freezing does not occur, and food can be preserved without destroying cells. Therefore, it is effective for maintaining the quality of food for a long period of time under cold conditions. Since the decomposition of the food proceeds even when the food is stored under cold temperature, it is preferable to be able to grasp the degree of decomposition of the food even under cold temperature.
  • tyrosine peptides as novel anti-ice nucleation agents (Patent Document 4). Since tyrosine peptides are derived from plants such as soybean, they are harmless to the human body and can be used in a manner in which they come into direct contact with food. After that, an antifreeze active substance GL peptide was newly discovered from an extract of collagen derived from pigskin (Non-Patent Document 1). The GL peptide has been shown to have the amino acid sequence GLLGPLGPRGLL. Here, G means glycine, L means leucine, P means proline, and R means arginine. The GL peptide is derived from pigskin, has no cytotoxicity, and can be used in a mode of direct contact with food.
  • the present inventors came up with the concept of a food packaging sheet that is capable of supercooling the food inside and judging the freshness of the food.
  • an object of the present invention is to provide a food packaging sheet capable of suppressing solidification of packaged food even when cooled to a temperature lower than 0°C, and an indicator for indicating the degree of decomposition of the packaged food.
  • a food packaging sheet that can also function as a
  • the present inventors first confirmed that even if a pH-changing dye such as an anthocyanin-based dye is present in a polymeric material, it can react with a low-molecular-weight substance produced by the decomposition of food and cause a change in color. .
  • the present inventors have succeeded in completely chemically synthesizing the antifreeze active substance GL peptide derived from pigskin.
  • the present inventors have investigated a material that retains peptides exhibiting antifreeze activity and that can be used as a food packaging sheet. As a result, they found that biodegradable resins, animal polymers, plant polymers, synthetic resins, etc. can be used.
  • the present invention has been completed based on such studies.
  • the food packaging sheet of the first embodiment of the present invention has an indicator layer containing a substance that indicates the degree of food decomposition, and an antifreeze active layer containing a peptide exhibiting antifreeze activity.
  • the food packaging sheet of the second embodiment of the present invention has an antifreeze active layer containing a substance indicating the degree of food decomposition and a peptide exhibiting antifreeze activity.
  • the indicator for indicating the degree of decomposition of the food of the present invention is made of the food packaging sheet.
  • the food packaging sheet of the present invention can suppress solidification of the packaged food even when cooled to a temperature lower than 0°C, and also functions as an indicator for indicating the degree of decomposition of the packaged food. be able to.
  • FIG. 1 is a schematic cross-sectional view of an apparatus used in an ammonia detection experiment using an anthocyanin-containing sheet.
  • FIG. 2 is a schematic cross-sectional view of an apparatus used for an ammonia detection experiment using an anthocyanin-containing sheet covered with a PLLA sheet.
  • FIG. 3 is a schematic cross-sectional view of an apparatus used in an ammonia detection experiment using meat.
  • FIG. 4 is a scheme for synthesizing GL peptide by the Fmoc solid-phase synthesis method.
  • FIG. 5 is a schematic cross-sectional view showing the layer structure of sheet A.
  • FIG. 6 is a schematic cross-sectional view showing the layer structure of the sheet B. As shown in FIG. FIG. FIG.
  • FIG. 7 is a schematic cross-sectional view showing the layer structure of the sheet C.
  • FIG. 8 is a schematic cross-sectional view showing the layer structure of the sheet D.
  • FIG. 9 is a diagram showing a procedure for preparing a silver iodide dispersion used for freezeability evaluation.
  • FIG. 10 is a diagram showing a procedure for dropping small droplets of the silver iodide dispersion for evaluation onto a sheet.
  • FIG. 11 shows the anti-ice nucleus activity values of Sheets A to D.
  • FIG. FIG. 12 is a micrograph of ice crystals in the measurement of ice recrystallization inhibitory activity.
  • FIG. 13 is a schematic cross-sectional view of meat wrapped with a food packaging sheet.
  • the food packaging sheet of the present invention has an indicator function to determine the freshness of food and an anti-freezing function to supercool the food inside.
  • a food packaging sheet is a sheet used for packaging various foods.
  • Materials constituting the food packaging sheet are not particularly limited, and can be appropriately selected and used as necessary. Specifically, synthetic resins such as polyolefin, polyvinyl chloride (PVC), polyester, polyamide, and polystyrene; biodegradable resins such as polyamino acids; animal polymers such as collagen, gelatin, and chitosan; Vegetable polymers are mentioned.
  • biodegradable materials such as biodegradable resins, animal polymers, and plant polymers are preferred, and materials derived from natural products and harmless to the human body are more preferred.
  • a known biodegradable resin can be appropriately selected and used.
  • biodegradable resins include polyvinyl alcohol (PVA), polylactic acid (PLLA), polyglycolic acid, polybutylene succinate/adipate, polybutylene succinate/carbonate, polyethylene succinate, and polyhydroxybutyrate/valerate. , polyhydroxybutyrate, cellulose acetate, pullulan, and the like.
  • PVA and PLLA are preferred for packaging films that are used in direct contact with food.
  • Collagen is one of the proteins that mainly constitute the dermis, ligaments, tendons, bones, cartilage, etc. of vertebrates.
  • collagen There are various types of collagen, and constituent amino acids include glycine, proline, hydroxyproline, and alanine.
  • Collagen is edible and includes not only high molecular weight collagen but also low molecular weight peptides. Sheets using collagen have already been industrially produced from livestock proteins to produce sheets of uniform quality, which are used as casings for sausages and the like.
  • the food packaging sheet may be used by mixing a plurality of types of materials, or may be made into a multi-layered sheet by using various types of materials. In addition, as shown in Examples described later, it has been confirmed in experiments using PVC that there is an effect. Since PVC is generally used as a wrapping material, a synthetic resin generally used as a wrapping material may be used for the food packaging sheet.
  • the material used for the food packaging sheet is preferably a material that has high compatibility with the substance indicating the degree of decomposition of the food and that can contain an antifreeze active substance.
  • the material used for the food packaging sheet is edible, it will be possible to eat it together with the food without removing the food packaging sheet. Moreover, if the material used for the food packaging sheet is water-soluble, the food packaging sheet can be washed away with hot water or water to remove the food packaging sheet. When the food wrapping sheet is neither edible nor water soluble, it is necessary to remove the food wrapping sheet before eating the food.
  • the first embodiment has an indicator layer containing a substance that indicates the degree of food decomposition, and an antifreeze active layer containing a peptide exhibiting antifreeze activity.
  • the second embodiment has an antifreeze active layer containing a substance indicating the degree of food decomposition and a peptide exhibiting antifreeze activity.
  • the antifreeze active layer of the food packaging sheet is usually used so that it comes into contact with the food.
  • Food products produce various low molecular weight substances such as carboxylic acids, aldehydes, alcohols, ammonia, amines and sulfur compounds when degraded by microorganisms. Since many of these low-molecular-weight substances are acidic or alkaline substances, their absorption in water causes the pH to become acidic or alkaline.
  • pH-changing dyes examples include anthocyanin dyes, methyl violet, methyl orange, methyl yellow, methyl red, thymol blue, bromophenol blue, bromothymol blue, phenol red, phenolphthalein, thymolphthalein, and alizarin yellow R. etc. are known.
  • anthocyanin pigments are natural pigments derived from plants such as fruits such as perilla and red cabbage, and vegetables, and are harmless to the human body.
  • anthocyanin-based pigments with different chemical structures, which change to various hues such as red, purple, and blue depending on the pH.
  • anthocyanin-based dyes are preferred as pH-color-changing dyes for judging the freshness of foods.
  • Anthocyanin pigments generally exist in plants as glycosides bound to sugars.
  • the portion (aglycone) other than sugar, which is the main body (skeleton) of the pigment, is called anthocyanidin and has a basic skeleton represented by the following formula (1).
  • anthocyanin dyes There are many types of anthocyanin dyes depending on the substituents on the B ring, the type and number of sugars bound, and the presence or absence of acyl groups.
  • Representative anthocyanidins with different substituents on the B ring are shown in formulas (2) to (6).
  • Formula (2) is pelargonidin
  • formula (3) is cyanidin
  • formula (4) is delphinidin
  • formula (5) is peonidin
  • formula (6) is malvidin.
  • the color tone of the anthocyanin dye varies depending on the substituents on the B ring. As the number of hydroxyl groups increases, the color tone becomes more deep-colored.
  • Ammonia detection experiment 1 using an anthocyanin-containing sheet The present inventors first prepared a sheet using an anthocyanin-based dye and conducted an experiment to confirm whether gaseous ammonia can be detected.
  • PVA polyvinyl alcohol 500 manufactured by Kanto Kagaku Co., Ltd.; It is a biodegradable resin and a water-soluble resin.
  • Anthocyanin dye 1-138-0057 MP (anthocyan B) manufactured by Kennis Co., Ltd. It is purple cabbage powder.
  • Poly-L-lactic acid (PLLA) Poly-L-lactic acid, manufactured by Polysciences. IV: 1.8 dl/g, MW: 90,000. It is a biodegradable resin.
  • the PVA sheet containing the anthocyanin pigment is covered with a highly biocompatible and biodegradable PLLA sheet to protect the PVA sheet from moisture and condensation of meat.
  • the resulting anthocyanin/PVA solution was dropped onto a glass substrate using a dropper, left standing in a desiccator for 6 hours to dry, and an anthocyanin-containing sheet made of anthocyanin/PVA was produced.
  • the resulting sheet was reddish purple and transparent. Further, when the obtained sheet was observed with a laser microscope, it was confirmed that the anthocyanin was dissolved in the PVA solution, since no residual anthocyanin powder was found in the sheet.
  • FIG. 1 is a schematic cross-sectional view of an apparatus used in an ammonia detection experiment using an anthocyanin-containing sheet.
  • Aqueous ammonia (25%) 7 was added to the bottom of the main body of a transparent container 1 consisting of a main body and a lid.
  • the detector 10 On the back side of the lid, the detector 10 having the prepared glass substrate 3 and the anthocyanin-containing sheet 4 laminated thereon was placed so that the glass substrate 3 was on the lid side.
  • the volatilized ammonia gas 9 and the detector 10 were brought into contact with each other in the transparent container 1 .
  • the measurement was performed for 15 minutes, and the state of the measurement was photographed with a video camera. After that, the change in color of the sensing element 10 before and after contact with the ammonia gas 9 was observed.
  • the sensing element 10 which was reddish purple before coming into contact with the ammonia gas 9, turned green after coming into contact with the ammonia gas 9. From this result, it was confirmed that the ammonia gas 9 can be detected using the anthocyanin-based dye, and that the anthocyanin-based dye changes color even in the PVA sheet and detects the ammonia gas 9 .
  • the gas tech detector tube was used to measure the ammonia concentration in the transparent container 1. As a result, it was 100 ppm or more, and the pH was considered to be about 12 from the color of the detector 10.
  • Anthocyanin-Containing Sheet Covered with PLLA Sheet A laminate was prepared by forming the anthocyanin-containing sheet 4 on the glass substrate 3 by the method described in (2) above.
  • a PVA layer was formed by depositing a PVA solution on a glass substrate by spin coating.
  • a PLLA layer was formed on the PVA layer by depositing a PLLA solution into a film similarly using the spin coating method.
  • Table 1 shows film forming conditions by the spin coating method.
  • the glass substrate on which the PVA layer and the PLLA layer were laminated was immersed in water to dissolve the PVA layer in water, thereby obtaining a sheet of about 200 nm thickness consisting of only PLLA.
  • the resulting PLLA sheet was dried in a desiccator for 12 hours, and then completely coated on the above-mentioned laminate of glass substrate 3 and anthocyanin-containing sheet 4 formed thereon.
  • a detector 20 was produced by laminating the anthocyanin-containing sheet 4 and the PLLA sheet 5 on the glass substrate 3 .
  • FIG. 2 is a schematic cross-sectional view of an apparatus used for an ammonia detection experiment using an anthocyanin-containing sheet covered with a PLLA sheet.
  • Aqueous ammonia (25%) 7 was added to the bottom of the main body of a transparent container 1 consisting of a main body and a lid.
  • the detector 20 which was prepared by laminating the anthocyanin-containing sheet 4 and the PLLA sheet 5 on the prepared glass substrate 3, was placed so that the glass substrate 3 was on the lid side.
  • the sensing element 20 which was reddish purple before coming into contact with the ammonia gas 9, turned green after coming into contact with the ammonia gas 9. From this result, it was confirmed that the anthocyanin-based dye can detect ammonia gas 9 even when the anthocyanin-containing sheet is covered with the PLLA sheet. Further, as a result of measuring the ammonia concentration, it was found to be 100 ppm or more, and from the color of the detector 20, the pH was considered to be about 12.
  • Ammonia detection experiment 2 using an anthocyanin-containing sheet An experiment was conducted using a silicon substrate in place of the glass substrate used as the substrate in experiment 1 for detecting ammonia using an anthocyanin-containing sheet. Ammonia detection experiment 1 using an anthocyanin-containing sheet was performed in the same manner as described above, except for the conditions specifically described below.
  • a PVA solution was prepared by adding PVA to pure water at a concentration of 50 mg/mL. Further, PVC was added to pure water to a concentration of 20 mg/mL, and an anthocyanin dye was further added to a concentration of 40 mg/ml to prepare an anthocyanin/PVC solution.
  • PVC is a water-insoluble polyvinyl chloride resin, and a low-molecular-weight PVC dispersion was used as the PVC solution (manufactured by Aldrich, product number 81388-250G).
  • the above PVA solution was dropped onto a silicon substrate (2 cm ⁇ 2 cm), and a film was formed by spin coating to form a PVA layer.
  • the spin coating conditions were 3000 rpm and 30 s.
  • the above anthocyanin/PVC solution was dropped onto the formed PVA layer, and a film was formed using a spin coating method to form an anthocyanin/PVC layer.
  • the spin coating conditions were 3000 rpm and 30 s.
  • the surface of the obtained laminated silicon substrate was pink.
  • the laminated silicon substrate was placed in a petri dish, and 500 ⁇ L of ammonia water (25%) was dropped around the laminated silicon substrate in the petri dish, and the lid was closed. Observation after 5 minutes revealed that the surface of the laminated silicon substrate had turned blackish green. As a result, it was confirmed that the laminated silicon substrate, which was pink before coming into contact with the ammonia gas, turned blackish green after coming into contact with the ammonia gas. Further, the ammonia concentration in the petri dish was measured and found to be 5000 ppm.
  • the anthocyanin/PVC thin film was placed in a petri dish, and 500 ⁇ L of ammonia water (25%) was dripped around the anthocyanin/PVC thin film in the petri dish, and the lid was closed. Observed after 5 minutes, the anthocyanin/PVC film turned pale green. As a result, it was confirmed that the anthocyanin/PVC thin film, which was pale pink before contact with ammonia gas, turned pale green after contact with ammonia gas. Further, the ammonia concentration in the petri dish was measured and found to be 5000 ppm.
  • An anthocyanin/PVA solution was prepared by adding PVA to pure water to a concentration of 100 mg/mL and then adding an anthocyanin pigment to a concentration of 40 mg/mL.
  • the above anthocyanin/PVA solution was dropped onto the PVC wrap film at 4 locations with a dropper in the form of circular dots, left standing in a desiccator for 6 hours to dry, and an anthocyanin-containing sheet was produced.
  • Two of the four dot-shaped anthocyanin-containing sheets were further covered with a PLLA sheet in the same manner as above. All four dot-shaped sheets obtained were reddish-purple and transparent.
  • Fig. 3 is a schematic cross-sectional view of the device used in the detection experiment using meat.
  • 100 g of pork belly 8 two days before the expiry date was placed at the bottom of the main body of a transparent container 1 consisting of a main body and a lid.
  • a detection body 30 made of a PVC wrap film having four dot-shaped sheets was placed so that the PVC wrap film 6 was on the lid side.
  • Dot-shaped sheets include those composed of an anthocyanin-containing sheet 4 and those obtained by covering an anthocyanin-containing sheet 4 with a PLLA sheet 5 .
  • the substance indicating the degree of decomposition of the food is contained in the indicator layer, and in the second embodiment, it is contained in the antifreeze active layer together with a peptide exhibiting antifreeze activity.
  • a layer containing a substance that indicates the degree of food decomposition is permeable to ammonia gas even if a gas-permeable biodegradable resin layer such as an antifreeze active layer or a PLLA layer is laminated. can be detected.
  • Tyrosine peptides include dimers, trimers, tetramers and pentamers of tyrosine, all of which exhibit antifreeze activity, but tyrosine trimers have the most excellent antifreeze activity. and most preferred.
  • Non-Patent Document 1 an extract of collagen derived from pigskin.
  • the GL peptide has been found to have the amino acid sequence GLLGPLGPRGLL.
  • pigskin-derived collagen extracts contain various contaminants, which poses a problem in terms of safety when used in food applications. Therefore, the present inventors investigated chemical synthesis of the GL peptide.
  • FIG. 4 shows a scheme for synthesizing GL peptide by the Fmoc solid-phase synthesis method.
  • a peptide exhibiting antifreeze activity is contained in the antifreeze active layer in the first embodiment, and is contained in the antifreeze active layer together with a substance indicating the degree of food decomposition in the second embodiment.
  • the antifreeze active layer is used so that it comes into contact with the food, so the antifreeze active peptide contained in the antifreeze active layer works effectively to prevent freezing near the surface of the food. be able to.
  • the antifreeze active layer contains peptides exhibiting antifreeze activity.
  • the antifreeze active layer may be formed of only peptides exhibiting antifreeze activity, may be formed of a mixture of peptides exhibiting antifreeze activity and other materials, or may be formed of peptides exhibiting antifreeze activity combined with other materials. It may also be made of other materials that have been used.
  • the other material is a material that constitutes the food packaging sheet described above.
  • the first embodiment has an indicator layer containing a substance that indicates the degree of food decomposition, and an antifreeze active layer containing a peptide exhibiting antifreeze activity. Further, the second embodiment has an antifreeze active layer containing a substance indicating the degree of food decomposition and a peptide exhibiting antifreeze activity.
  • an indicator layer having an indicator function for judging the freshness of food and an antifreezing active layer having an antifreezing function are separate layers. It is preferable to use the antifreeze active layer in close contact with the food so that the antifreeze activity of the antifreeze active layer functions effectively. Using the antifreeze active layer in close contact with the food is also preferable in order to prevent air from entering between the food and the food packaging sheet and the propagation of bacteria.
  • both layers are made of a biodegradable material, and the entire food packaging sheet is decomposed in the body. It is edible and safer, which is preferable.
  • the same layer serves both the indicator function for judging the freshness of food and the antifreeze function. Therefore, it is possible to form a single-layer food packaging sheet without front and back. Also, for the same reason as in the first embodiment, it is preferable to use the antifreeze active layer in close contact with the food.
  • the antifreeze active layer preferably further contains a biodegradable resin.
  • the antifreeze active layer contains a biodegradable resin, the food packaging sheet as a whole is decomposed in the body, so that it is edible and safe, which is preferable.
  • both the first embodiment and the second embodiment further have a gas-permeable biodegradable resin layer.
  • gas-permeable biodegradable resin layer When the gas-permeable biodegradable resin layer is present, it is possible to prevent the food packaging sheet from losing its shape due to moisture or dew condensation of the food without impairing the function of the food packaging sheet.
  • gas permeable gas means a low-molecular-weight substance produced by decomposition of food.
  • Collagen Formulated in the lab.
  • PVA polyvinyl alcohol 500, manufactured by Kanto Kagaku Co., Ltd.; It is a biodegradable resin and a water-soluble resin.
  • Anthocyanin dye 1-138-0057 MP (anthocyan B) manufactured by Kennis Co., Ltd. It is purple cabbage powder.
  • Poly-L-lactic acid (PLLA) Poly-L-lactic acid, manufactured by Polysciences. IV: 1.8 dl/g, MW: 90,000. It is a biodegradable resin.
  • PVA-GL Polyvinyl alcohol chemically bound with GL peptide.
  • PVAc-GL Polyvinyl acetate chemically bound with GL peptide.
  • FIG. 5 is a schematic cross-sectional view showing the layer structure of sheet A. As shown in FIG. A PVA/anthocyanin layer 42 and a collagen/PVA-GL layer 41 are formed on the PET film 43 .
  • FIG. 6 is a schematic cross-sectional view showing the layer structure of the sheet B. As shown in FIG. A PVA/anthocyanin layer 42 and a collagen/PVAc-GL layer 44 are formed on the PET film 43 .
  • PVA was added to pure water at a concentration of 50 mg/mL anthocyanin pigment at a concentration of 40 mg/mL, collagen at a concentration of 40 mg/mL, and PVAc-GL at a concentration of 2 mg/mL to obtain a PVA/anthocyanin/PVAc-GL solution. was made.
  • FIG. 7 is a schematic cross-sectional view showing the layer structure of the sheet C. As shown in FIG. A PLLA layer 46 and a PVA/anthocyanin/PVA-GL layer 45 are formed on the PET film 43 .
  • FIG. 8 is a schematic cross-sectional view showing the layer structure of the sheet D. As shown in FIG. A PLLA layer 46 and a PVA/anthocyanin/PVAc-GL layer 47 are formed on the PET film 43 .
  • Fig. 9 shows the procedure for preparing a silver iodide dispersion used for freezeability evaluation.
  • Silver iodide has a lattice constant that substantially matches that of ice crystals, and has the function of promoting freezing as a pseudo-ice nucleus.
  • a predetermined amount of silver iodide 51 was put into a sample container 50, and
  • a phosphate buffer 52 was added so that the silver iodide concentration was 2 mg/ml.
  • Ultrasonic treatment was performed so that the silver iodide 51 was uniformly dispersed in the phosphate buffer 52 .
  • the resulting silver iodide dispersion and ultrapure water were mixed at a volume ratio of 9:1 to prepare a silver iodide dispersion for evaluation.
  • FIG. 10 shows the procedure for dropping small droplets of the silver iodide dispersion for evaluation onto the sheet.
  • a sheet 61 was placed on a horizontal sample table 60 .
  • a silver iodide dispersion for evaluation was placed in a micropipetter 62 and 6 droplets of 10 ⁇ l per droplet 63 were dropped onto one sheet 61 .
  • 6B is a plan view after six droplets 63 of the silver iodide dispersion for evaluation are dropped on the sheet 61.
  • a glass plate was prepared as a control for each of the sheets A to D produced above. After placing 6 drops of the silver iodide dispersion for evaluation on each of the sheets A to D and the control glass plate, each sheet was placed in a freezer bath and cooled from 4°C to -20°C every minute. It was cooled at a cooling rate of 1.0°C. The temperature at which each water droplet on each sheet started to freeze was observed with the naked eye through a camera capable of observing the inside of the refrigerator tank and recorded. The temperature (average freezing temperature) at which half of six or measurable water droplets began to freeze was taken as TH. Antifreeze activity was determined when the TH of Sheets AD was lower than the TH of the control glass plate.
  • FIG. 11 shows the anti-ice nucleus activity values of Sheets A to D.
  • FIG. The four bar graphs on the left side of FIG. 11 show the anti-ice nucleation activity values of Sheets AD. In the range of 0.4 to 0.8°C, it was found that the glass plate was less likely to freeze than the control glass plate.
  • Antifreeze evaluation 2 ice recrystallization inhibitory activity If food is stored frozen for a long period of time and then thawed, the texture may deteriorate. One of the reasons for this is thought to be the ice recrystallization phenomenon, and if the ice recrystallization phenomenon can be suppressed, the quality of food can be maintained for a long period of time. Therefore, as antifreeze evaluation 2, the following ice recrystallization inhibitory activity (RI activity) measurement method was carried out in order to confirm whether or not the GL peptide has the function of inhibiting the growth of ice crystals during supercooling. was evaluated by By using the ice recrystallization inhibitory activity measurement method, the recrystallization phenomenon of ice when frozen can be quantified.
  • RI activity ice recrystallization inhibitory activity
  • RI is calculated by the following formula (7) using the average size of ice crystals immediately after cooling and the difference (change amount) in the average size of ice crystals at two time points 30 minutes after reaching -6 ° C. can.
  • a system containing anti-freeze protein (AFP) is abbreviated as +AFP
  • a system without anti-freeze protein is abbreviated as -AFP.
  • RI (difference in average ice crystal size in system containing antifreeze active substance (+AFP))/(difference in average ice crystal size in system without antifreeze active substance (-AFP)) (7 )
  • the RI When the RI is 1, there is no effect at all, and when the RI is less than 1, the ice recrystallization inhibitory activity is stronger. If the RI is about 0.8, that is, there is about a 20% difference between the average ice crystal size difference in the antifreeze active substance containing system and the ice crystal average size difference in the antifreeze active substance free system. If there is, it can be determined that there is an effect of ice recrystallization inhibitory activity.
  • a glass plate was used as a substrate, and an aqueous GL peptide solution (concentration: 1 mg/mL) was evenly attached to the surface of the substrate to obtain a +AFP glass plate.
  • aqueous GL peptide solution concentration: 1 mg/mL
  • water was evenly applied to the surface of the substrate to form a -AFP glass plate.
  • the +AFP glass plate and the -AFP glass plate were placed in a cryogenic freezer and rapidly frozen from room temperature to -40°C to form fine ice crystals on the surface. Thereafter, the temperature was raised to ⁇ 6° C. and kept at a constant temperature of ⁇ 6° C. for 30 minutes to grow fine ice crystals.
  • FIG. 12 is a micrograph of ice crystals in the measurement of ice recrystallization inhibitory activity.
  • FIG. 12 shows the GL peptide aqueous solution (+AFP0) (a) on the substrate immediately after the cryogenic freezer reaches a constant temperature of ⁇ 6° C., and the GL peptide solution on the substrate after 30 minutes at ⁇ 6° C.
  • a micrograph of ice crystals of the aqueous peptide solution (+AFP30) (b) is shown.
  • the water on the substrate immediately after the cryogenic freezer reached a constant temperature of -6 ° C. (-AFP0) (c) and the water on the substrate after 30 minutes at -6 ° C. (-AFP30)
  • a micrograph of ice crystals of (d) is shown.
  • Aqueous ammonia (25%) was dropped on the end of the petri dish, and the lid was closed to adjust the ammonia concentration in the petri dish to 30 ppm.
  • one of the sheets A to D (1 cm square) was placed in a petri dish in a place separate from the aqueous ammonia, the lid was closed again, and the sheet was taken out after 1 minute.
  • the change in color of the sheet before and after contact with the ammonia gas was measured at 10 locations on each sheet using a digital colorimeter to obtain RGB values. For colorimetry, RGB values were calculated at 11 ⁇ 11 pixels by changing the aperture size.
  • the camera used here was Canon EOS 5D Mark IV Specifications (Total Pixels: 31.7, Pixel Dimensions: 6720 ⁇ 4480, Pixel Size: 5.36 ⁇ m).
  • Sheets A to D tended to change color from pink to green and decrease RGB values upon contact with ammonia gas.
  • a t-test a significant difference test, was performed on the difference between the RGB values of sheets A to D before and after contact with ammonia gas, and p ⁇ 0.01 for each value of RGB values, indicating a significant difference. and was the result.
  • Table 2 shows the results. It was found that each sheet could function as an indicator at an ammonia concentration of 30 ppm.
  • the food packaging sheet of the present invention can be wrapped even if the food is cooled to a temperature lower than 0°C by contacting the food with the antifreeze active layer containing the peptide exhibiting antifreeze activity. It is possible to suppress freezing of the frozen food, and furthermore, it has the effect of suppressing ice recrystallization, so that the quality of the food can be maintained for a long period of time.
  • the food packaging sheet of the present invention contains a substance indicating the degree of food decomposition, it is possible to control the quality of the food while checking the quality of the food stored under cold temperature over time. It is possible.
  • the form of the food packaging sheet of the present invention is not particularly limited as long as it is used for food packaging, and it can be used by appropriately selecting films, sheets, laminates, coatings, containers, etc., as necessary.
  • the thickness of the food packaging sheet is not particularly limited, it is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. It can be appropriately selected depending on the mechanical strength, workability, type of material, layer structure, etc. of the food packaging sheet. Also, a thin film sheet having a nanometer level (50 to 500 nm, etc.) of 1 ⁇ m or less can be made into a flexible sheet that can follow along the uneven surface of food.
  • the manufacturing method of the food packaging sheet is not particularly limited. Depending on the thickness of the food packaging sheet to be produced, the type of material, the layer structure, etc., it can be appropriately selected and used from various known film-forming methods such as an extrusion method and a casting method.
  • Fig. 13 is a schematic cross-sectional view of meat wrapped with the food packaging sheet of the first embodiment.
  • the food packaging sheet consists of an indicator layer 71 and an antifreeze active layer 72 .
  • a food packaging sheet is adhered to the surface of the meat 70 , and the antifreeze layer 72 is in direct contact with the meat 70 .
  • the food packaging sheet of the present invention has an indicator function for determining the freshness of food, it can be used not only for food packaging but also as an indicator for displaying the degree of decomposition of food.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Evolutionary Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Packages (AREA)

Abstract

0℃よりも低い温度まで冷却しても包装された食品が凝固することを抑制できる食品包装用シートであって、包装された食品の分解の程度を表示するインジケータとしても機能し得る食品包装用シートを提供する。 食品の分解の程度を表示する物質を含有するインジケータ層と、不凍活性を示すペプチドを含有する不凍活性層とを有する食品包装用シートである。また、食品の分解の程度を表示する物質と不凍活性を示すペプチドを含有する不凍活性層を有する食品包装用シートである。また、前記食品包装用シートからなる食品の分解の程度を表示するインジケータである。

Description

食品包装用シートおよびインジケータ
 本発明は、食品包装用シートおよび食品の分解の程度を表示するインジケータに関する。
 近年、食の新鮮さに対する関心が高まっている。中でも一般的な食材である食肉は、時間の経過とともに分解されていき、発酵、熟成等が進み、更に食品の分解が進んで腐敗した状態にあると、腸内において有毒物質を発生し、人体に対して有害となる。そのため、包装された食肉には消費期限が表記されている。しかし、包装が開封された場合には、当該消費期限の適用外となる。そこで、一般家庭において、食肉をラップなどで個別に包装して保存する場合を想定して、冷温下で簡便に食肉の新鮮度の測定や確認を可能とするセンサに対するニーズが存在している。
 食肉の新鮮度を評価する方法として、現在、食肉から発生するアンモニア(NH)の濃度を測定する方法が報告されている。しかし、既存のアンモニアセンサは、電気配線や電源が必要となる他、食品に金属を直接接触させることになるため、好ましくない。また、冷蔵庫内では結露によってセンサが破損する恐れがある。
 食品の新鮮度を簡便に評価して表示するシステムについては、既にいくつかの方法が開示されている。特許文献1には、食料品の腐敗を検出するための指示剤として、マトリックス中にベタレイン、フラボノイド等からなるアミン感応性化合物が固定化された指示剤が開示されている。フラボノイドとしてアントシアニン等が挙げられている。また、特許文献2には、密閉された軟質フィルム製の透明な小袋内に、pH変色型色素成分、食品由来の酸産生菌、培養液等を充填して密封し、飲食品の保管状態を判定する方法が開示されている。
 また、特許文献3には、少なくとも1つの不浸透性でない領域を有する不浸透性層、食物の分解化合物に応答して変色するインジケータ組成物を含む多孔性基板層および接着剤層を順に備える食品品質インジケータが開示されている。特許文献3の食品品質インジケータは、接着剤層によって食物パッケージ上に貼られる。食物の腐敗によって生じた食物の分解化合物は、食物パッケージを通過して、接着剤層および多孔性基板層を通過する。その際に、多孔性基板層内の上記インジケータ組成物と反応することによって変色する。
 これらの先行技術文献には、細菌によるたんぱく質等の分解によってアミン等が生成すること、アントシアニン等はアミン等の存在によって変色するため、食品の品質の指示剤として有効であることが示されている。
特表2007-524850号公報 特許第4392722号公報 特表2008-513739号公報 国際公開第2016/178426号
Hui Cao他、「ブタ皮膚からの氷結合コラーゲンペプチドの不凍液と凍結防止活性」、Food Chemistry、2016年3月1日、第194巻、p.1245-1253
 しかし、特許文献1~3に記載された発明は、あくまでも食品品質のインジケータに係る発明であって、食品包装用シートとして食品に直接接する態様で使用することを想定していない。
 ところで、純水は、異物が存在しないと、0℃よりも低い温度まで冷却しても、凝固(固化)しない過冷却現象を引き起こすことが知られている。そして、このような過冷却現象を促進する抗氷核活性剤(不凍活性物質)がいくつか存在することが既に報告されている。このような過冷却現象を利用すると、氷点下であっても水は凍らないため、凍結による膨張が起こらなくなり、細胞を破壊せずに食品類を保存することができる。そのため、冷温下で食品の品質を長期間維持するために有効である。なお、冷温下で食品を保存しておいても、食品の分解は進むため、冷温下であっても食品の分解の程度を把握できることが好ましい。
 本発明者らは、先に、新規な抗氷核活性剤として、チロシンペプチド類を見出している(特許文献4)。チロシンペプチド類は、大豆等の植物由来であるため、人体に無害であり、食品と直接接触する態様で使用することが可能である。また、その後、豚皮由来のコラーゲンの抽出物から不凍活性物質GLペプチドが新たに発見された(非特許文献1)。GLペプチドは、アミノ酸配列がGLLGPLGPRGLLであることが明らかにされている。ここで、Gとはグリシン、Lはロイシン、Pはプロリン、Rはアルギニンを意味している。GLペプチドは、豚皮由来であり、細胞毒性がないものであり、食品と直接接触する態様で使用することが可能である。
 そこで、本発明者らは、内部の食品を過冷却させることが可能であり、かつ、食品の新鮮度を判定することも可能とする食品包装用シートというコンセプトに思い至った。
 すなわち、本発明の課題は、0℃よりも低い温度まで冷却しても包装された食品が凝固することを抑制できる食品包装用シートであって、包装された食品の分解の程度を表示するインジケータとしても機能し得る食品包装用シートを提供することである。
 本発明者らは、まず、アントシアニン系色素等のpH変色型色素が、高分子材料内に存在していても、食品の分解によって生じる低分子量物質と反応して、変色し得ることを確認した。また、本発明者らは、豚皮由来の不凍活性物質GLペプチドを完全化学合成することに成功した。さらに、本発明者らは、不凍活性を示すペプチド類を保持する材料であって、食品包装用シートとして使用し得る材料について検討を加えた。その結果、生分解性樹脂、動物性高分子、植物性高分子、合成樹脂等を用いることができることを見出した。本発明は、このような検討を踏まえて、完成するに至ったものである。
 すなわち、本発明の第1実施形態の食品包装用シートは、食品の分解の程度を表示する物質を含有するインジケータ層と、不凍活性を示すペプチドを含有する不凍活性層とを有している。また、本発明の第2実施形態の食品包装用シートは、食品の分解の程度を表示する物質と不凍活性を示すペプチドを含有する不凍活性層を有している。また、本発明の食品の分解の程度を表示するインジケータは、前記食品包装用シートからなる。
 本発明の食品包装用シートは、0℃よりも低い温度まで冷却しても包装された食品が凝固することを抑制でき、また、包装された食品の分解の程度を表示するインジケータとしても機能することができる。
図1は、アントシアニン含有シートによるアンモニアの検知実験に用いた装置の模式的断面図である。 図2は、PLLAシートで被覆したアントシアニン含有シートによるアンモニアの検知実験に用いた装置の模式的断面図である。 図3は、食肉を用いたアンモニアの検知実験に用いた装置の模式的断面図である。 図4は、Fmoc固相合成法によるGLペプチドの合成スキームである。 図5は、シートAの層構成を示す模式的断面図である。 図6は、シートBの層構成を示す模式的断面図である。 図7は、シートCの層構成を示す模式的断面図である。 図8は、シートDの層構成を示す模式的断面図である。 図9は、凍結性評価に用いるヨウ化銀分散液の作製手順を示す図である。 図10は、シート上に評価用ヨウ化銀分散液の小滴を滴下させる手順を示す図である。 図11は、シートA~Dの抗氷核活性値を示す図である。 図12は、氷再結晶化抑制活性の測定における氷結晶の顕微鏡写真である。 図13は、食肉を食品包装用シートで包装したときの模式的断面図である。
 以下、本発明の実施形態について詳細に説明するが、本発明の実施形態は、以下に記載する具体的な実施形態に限られる訳ではない。
 本発明の食品包装用シートは、食品の新鮮度を判定するインジケータ機能と、内部の食品を過冷却させることを可能とする不凍化機能とを有している。
(食品包装用シート)
 食品包装用シートは、各種食品の包装に用いられるシートである。食品包装用シートを構成する材料は、特に限定されず、必要に応じて適宜選択して使用することができる。具体的には、ポリオレフィン、ポリ塩化ビニル(PVC)、ポリエステル、ポリアミド、ポリスチレン等の合成樹脂、ポリアミノ酸等の生分解性樹脂、コラーゲン、ゼラチン、キトサン等の動物性高分子、セルロース、澱粉等の植物性高分子が挙げられる。
 これらの材料の中では、生分解性樹脂、動物性高分子、植物性高分子等の生分解性の材料が好ましく、天然物由来で、人体に無害である材料がさらに好ましい。
 生分解性樹脂は、公知のものを適宜選択して用いることができる。生分解性樹脂の具体例としては、ポリビニルアルコール(PVA)、ポリ乳酸(PLLA)、ポリグリコール酸、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・カーボネート、ポリエチレンサクシネート、ポリヒドロキシブチレート・バリレート、ポリヒドロキシブチレート、酢酸セルロース、プルラン等が挙げられる。これらの中で、直接、食品に接触して使用する包装用フィルムの場合、PVA、PLLAが好ましい。
 動物性高分子の中では、コラーゲンが好ましい。コラーゲンは、主に脊椎動物の真皮、靱帯、腱、骨、軟骨などを構成するタンパク質のひとつである。コラーゲンには種々の種類が存在し、構成アミノ酸としては、グリシン、プロリン、ヒドロキシプロリン、アラニンなどがある。コラーゲンは、可食性であり、高分子量のコラーゲンだけでなく、低分子量のペプチド類をも包含するものである。コラーゲンを用いたシートについては、既に、家畜のタンパク質を原料として、均一な品質のシートが工業的に製造されており、ソーセージ等のケーシングとして使用されている。
 食品包装用シートは、複数の種類の材料を混合して用いてもよいし、さらに各種の材料を用いて多層構造のシートとしてもよい。
 また、後記する実施例のように、PVCを使った実験で効果があることを確認している。PVCは、一般にラップの材料として使用されていることから、食品包装用シートには、一般にラップ用材料として使用されている合成樹脂を用いてもよい。
 後記するように、食品包装用シートに用いられる材料は、食品の分解の程度を表示する物質に対して相溶性が高く、不凍活性物質を内在できる材料が好ましい。
 食品包装用シートに用いられる材料は、可食性であれば、食品包装用シートを外さずに、食品と一緒に食すことが可能となる。また、食品包装用シートに用いられる材料は、水溶性であれば、食品包装用シートを湯や水で洗い流して、食品包装用シートを外すことができる。食品包装用シートが可食性でもなく、水溶性でもないときは、食品を食す前に食品包装用シートを外すことが必要となる。
 本発明の食品包装用シートの代表的な実施形態として、2つの実施形態がある。第1実施形態は、食品の分解の程度を表示する物質を含有するインジケータ層と、不凍活性を示すペプチドを含有する不凍活性層とを有している。また、第2実施形態は、食品の分解の程度を表示する物質と、不凍活性を示すペプチドと、を含有する不凍活性層を有している。第1実施形態、第2実施形態のいずれの場合も、通常、食品包装用シートの不凍活性層が食品に接する側となるようにして用いられる。
 以下、これらの実施形態に用いられる各成分や構成要素について説明し、本発明の食品包装用シートとしての実施例について説明する。
(食品の分解の程度を表示する物質)
 食品は、微生物によって分解されると、カルボン酸、アルデヒド、アルコール、アンモニア、アミン、硫黄化合物のような種々の低分子量物質を生成する。これらの低分子量物質の多くは、酸性物質またはアルカリ性物質であるため、これらを水に吸収させると、pHが酸性となったり、アルカリ性となったりする。
 特に、食肉は、タンパク質を主成分とするため、微生物によって分解されると、アミノ酸に由来するアンモニア(NH)が発生する。そこで、代表的な分解生成物として、アンモニアの生成量を測定することによって、食肉等の食品の新鮮度を判定することが可能となるインジケータを開発することとした。アンモニアの生成量に応じて、pHの数値が増大するので、食品の分解の程度を表示するインジケータ物質としては、各種のpH変色型色素を利用することができる。
 pH変色型色素としては、例えば、アントシアニン系色素、メチルバイオレット、メチルオレンジ、メチルイエロー、メチルレッド、チモールブルー、ブロモフェノールブルー、ブロモチモールブルー、フェノールレッド、フェノールフタレイン、チモールフタレイン、アリザリンイエローRなどが知られている。
 これらの中でも、アントシアニン系色素は、赤シソや赤キャベツなどの果実や野菜等の植物に由来する天然色素であり、人体に対して無害である。また、アントシアニン系色素には化学構造の異なるいくつかの種類があり、pHに応じて赤~紫~青色等の種々の色相に変化する。このような理由から、アントシアニン系色素は、食品の新鮮度を判定するpH変色型色素として好ましい。
 アントシアニン系色素は、一般には植物中で、糖と結合した配糖体として存在している。色素本体(骨格)である糖以外の部分(アグリコン)は、アントシアニジンと呼ばれ、下記式(1)で表される基本骨格を有している。アントシアニン系色素は、B環の置換基、結合糖の種類と数、アシル基の有無により多くの種類がある。B環の置換基が異なるアントシアニジンの代表的なものを式(2)~式(6)に示した。式(2)はペラルゴニジン、式(3)はシアニジン、式(4)はデルフィニジン、式(5)はペオニジン、式(6)はマルビジンである。アントシアニン系色素の色調は、B環の置換基により異なり、水酸基の数が増加するに従い深色化し、メトキシル基が存在すると浅色化する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[アントシアニン含有シートによるアンモニア検知実験1]
 本発明者らは、まず、アントシアニン系色素を用いてシートを作成し、気体のアンモニアを検知することが可能かどうかの確認実験を行った。
(1)実験に用いた材料
 PVA:関東化学社製、ポリビニルアルコール500。生分解性樹脂であり水溶性樹脂である。
 アントシアニン系色素:(株)ケニス製、1-138-0057 MP(アントシアンB)。紫キャベツパウダーである。
 ポリ-L-乳酸(PLLA):Poly-L-lactic acid、Polysciences社製。IV:1.8 dl/g、MW:90,000。生分解性樹脂である。
 ここで、アントシアニン系色素を含有するPVAシート上に、生体適合性が高く、生分解性であるPLLAシートを被覆することによって、PVAシートを食肉の水分や結露から保護することができる。
(2)アントシアニン含有シートの作製
 純水にPVAを濃度50mg/mLとなるように添加した。純水にPVAを投入後スターラを用いて4hr攪拌を行うことで、PVA溶液を作製した。その後、PVA溶液にアントシアニン系色素を濃度20mg/mlとなるように添加し、同様にスターラを用いて1hr撹拌して、アントシアニン/PVA溶液を作製した。
 得られたアントシアニン/PVA溶液をスポイトによってガラス基板上に滴下し、デシケータ中に6hr静置して乾燥させて、アントシアニン/PVAからなるアントシアニン含有シートを作製した。得られたシートは赤紫色透明であった。また、得られたシートをレーザー顕微鏡で観察したところ、シート内にアントシアニンの粉体残留物が見られないことから、アントシアニンがPVA溶液に溶解したことが確認された。
(3)アンモニアの検知実験1
 図1は、アントシアニン含有シートによるアンモニアの検知実験に用いた装置の模式的断面図である。本体と蓋とからなる透明容器1の本体の底部にアンモニア水(25%)7を添加した。蓋の裏側には、作製したガラス基板3上にアントシアニン含有シート4を積層させた検知体10を、ガラス基板3が蓋側となるように設置した。透明容器1内で揮発したアンモニアガス9と検知体10とを接触させた。測定は15分間行い、測定の様子をビデオカメラによって撮影した。その後、アンモニアガス9と接触前と接触後の検知体10の色彩の変化を観察した。
 その結果、アンモニアガス9と接触する前に赤紫色であった検知体10が、アンモニアガス9と接触した後に緑色に変色することが確認された。この結果から、アントシアニン系色素を用いてアンモニアガス9を検知することが可能であり、またアントシアニン系色素はPVAシート中であっても変色し、アンモニアガス9を検知することが確認された。なお、測定後にガステック検知管を用いて、透明容器1内のアンモニア濃度を測定した結果、100ppm以上であり、検知体10の色彩からpHはおよそ12と考えられた。
(4)PLLAシートで被覆したアントシアニン含有シートの作製
 上記(2)に記載した方法で、ガラス基板3上にアントシアニン含有シート4を形成させた積層体を作製した。一方、ガラス基板上にスピンコート法を用いてPVA溶液を製膜してPVA層を形成した。その後PVA層の上に、同様にスピンコート法を用いてPLLA溶液を製膜してPLLA層を形成した。スピンコート法による製膜条件を表1に示した。
Figure JPOXMLDOC01-appb-T000007
 その後、PVA層とPLLA層が積層されたガラス基板を水中に浸漬させて、PVA層を水に溶解させることによって、PLLAのみからなる約200nm厚のシートを得た。得られたPLLAシートは、デシケータを用いて12時間乾燥させた後、上記のガラス基板3上にアントシアニン含有シート4を形成させた積層体上に完全に被覆させた。こうしてガラス基板3上にアントシアニン含有シート4およびPLLAシート5を積層させた検知体20を作製した。
(5)アンモニアの検知実験2
 図2は、PLLAシートで被覆したアントシアニン含有シートによるアンモニアの検知実験に用いた装置の模式的断面図である。本体と蓋とからなる透明容器1の本体の底部にアンモニア水(25%)7を添加した。蓋の裏側には、作製したガラス基板3上にアントシアニン含有シート4およびPLLAシート5を積層させた検知体20を、ガラス基板3が蓋側となるように設置した。上記の(3)アンモニアの検知実験1と同様にして、透明容器1内で揮発したアンモニアガス9と検知体20とを接触させて、アンモニアガス9と接触前と接触後の検知体20の色彩の変化を観察した。
 その結果、アンモニアガス9と接触する前に赤紫色であった検知体20が、アンモニアガス9と接触した後に緑色に変色することが確認された。この結果から、アントシアニン含有シートの上にPLLAシートが被覆された状態であっても、アントシアニン系色素はアンモニアガス9を検知することが確認された。また、アンモニア濃度を測定した結果、100ppm以上であり、検知体20の色彩からpHはおよそ12と考えられた。
[アントシアニン含有シートによるアンモニア検知実験2]
 アントシアニン含有シートによるアンモニア検知実験1で基板として用いたガラス基板の代わりにシリコン基板を用いて実験を行った。以下に特に記載した条件以外は、アントシアニン含有シートによるアンモニア検知実験1と同様にして行った。
(1)純水にPVAを濃度50mg/mLとなるように添加して、PVA溶液を作製した。また、純水にPVCを濃度20mg/mLとなるように添加し、さらにアントシアニン系色素を濃度40mg/mlとなるように添加して、アントシアニン/PVC溶液を作製した。ここで、PVCとは水不溶性のポリ塩化ビニル樹脂であり、PVC溶液として、低分子量PVCの分散液を用いた(アルドリッチ社製、品番81388-250G)。
(2)まず、シリコン基板(2cm×2cm)上に上記PVA溶液を滴下し、スピンコート法を用いて製膜してPVA層を形成した。スピンコートの条件は、3000rpm、30sであった。次に、形成したPVA層の上に、上記アントシアニン/PVC溶液を滴下し、スピンコート法を用いて製膜してアントシアニン/PVC層を形成した。スピンコートの条件は、3000rpm、30sであった。得られた積層シリコン基板の表面はピンク色であった。
(3)シャーレの中に積層シリコン基板を置き、さらに、シャーレ内の積層シリコン基板の周辺にアンモニア水(25%)を500μL滴下し、蓋を閉めた。5分後に観察すると、積層シリコン基板の表面は黒緑色に変色した。この結果、アンモニアガスと接触する前にピンク色であった積層シリコン基板がアンモニアガスと接触した後に黒緑色に変色することが確認された。また、シャーレ内のアンモニア濃度を測定した結果、5000ppmであった。
(4)上記(2)で得られたPVA層とアントシアニン/PVC層とを形成した積層シリコン基板を水中に浸漬させた。その結果、PVA層が水に溶解するため、アントシアニン/PVC層がシリコン基板から剥離して、アントシアニン/PVCのみからなる薄膜を得ることができた。アントシアニン/PVC薄膜は、乾燥させると、淡ピンク色のフィルムであった。
(5)シャーレの中にアントシアニン/PVC薄膜を置き、さらに、シャーレ内のアントシアニン/PVC薄膜の周辺にアンモニア水(25%)を500μL滴下し、蓋を閉めた。5分後に観察すると、アントシアニン/PVC薄膜は淡緑色に変色した。この結果、アンモニアガスと接触する前に淡ピンク色であったアントシアニン/PVC薄膜が、アンモニアガスと接触した後に淡緑色に変色することが確認された。また、シャーレ内のアンモニア濃度を測定した結果、5000ppmであった。
[食肉を用いたアンモニアの検知実験]
 アントシアニン系色素を用いたシートによって、生の食肉が実際に腐敗によって発生させるアンモニアガスを検知することが可能かどうかの確認実験を行った。
 純水にPVAを濃度100mg/mLとなるように添加し、さらにアントシアニン系色素を濃度40mg/mlとなるように添加して、アントシアニン/PVA溶液を作製した。
 上記アントシアニン/PVA溶液をスポイトによってPVCラップフィルム上に4箇所、円形のドット状に滴下し、デシケータ中に6hr静置して乾燥させて、アントシアニン含有シートを作製した。また、4箇所のうち2箇所のドット状のアントシアニン含有シートは、さらに上記と同様の方法によってPLLAシートで被覆した。得られた4箇所のドット状シートはいずれも赤紫色透明であった。
 図3は、食肉を用いた検知実験に用いた装置の模式的断面図である。本体と蓋とからなる透明容器1の本体の底部には、消費期限2日前の豚バラ肉8を100g静置した。蓋の裏側には、作製した4箇所のドット状シートを有するPVCラップフィルムからなる検知体30を、PVCラップフィルム6が蓋側となるように設置した。ドット状シートには、アントシアニン含有シート4からなるものと、アントシアニン含有シート4をPLLAシート5で被覆したものとがある。
 細菌類の活動が最も活発になるとされる37℃で1時間ごとに、腐敗によって発生するアンモニアガス9と接触前と接触後の検知体30の色彩の変化を観察した。肉の腐敗が始まって24時間後には、アンモニア濃度が5ppmとなっていると推定された。その結果、4箇所のドット状シートの変色が観察され、希薄なアンモニア濃度であっても変色して検知することが可能であることが確認された。また、アントシアニン含有シート4からなるドット状シートの変色がPLLAシート5で被覆したドット状シートの変色よりも大きかった。
 以上の確認実験の結果から、アントシアニン系色素等の食品の分解の程度を表示する物質を含有し、PVAやPVC等をベース樹脂とするシートは、食肉等から発生するアンモニアガスによって変色することが判明し、食肉等の新鮮度を判定するインジケータとして使用し得ることが確認された。
 食品の分解の程度を表示する物質は、第1実施形態では、インジケータ層に含有されており、第2実施形態では、不凍活性を示すペプチドとともに、不凍活性層に含有されている。食品の分解の程度を表示する物質を含有する層は、不凍活性層やPLLA層のようなガス透過性の生分解性樹脂層が積層されていても、アンモニアガスを透過させるため、アンモニアガスを検知することが可能である。
(不凍活性を示すペプチド)
 本発明者らは、既に、不凍活性物質(抗氷核活性剤)として、植物由来で人体に無害のチロシンペプチド類を見出している(特許文献4)。チロシンペプチド類としては、チロシンの2量体、3量体、4量体、5量体があり、いずれも不凍活性を示すが、チロシン3量体が最も優れた不凍活性を有しており、最も好ましい。
 さらに、豚皮由来のコラーゲンの抽出物から不凍活性物質GLペプチドが新たに発見された(非特許文献1)。GLペプチドは、アミノ酸配列がGLLGPLGPRGLLであることが明らかになっている。しかし、豚皮由来のコラーゲンの抽出物は種々の夾雑物を含有しているため、食品用途に用いるには安全性の面で課題を有していた。そこで、本発明者らは、GLペプチドを化学合成することを検討した。
 GLペプチドを化学合成するために、チロシンペプチドの合成においても採用したFmoc固相合成法を用いた。図4に、Fmoc固相合成法によるGLペプチドの合成スキームを示した。当該合成スキームを採用することによって、本発明者らは、高純度のGLペプチドを化学的に合成することに成功した。また、得られた合成GLペプチドが、不凍活性を有していることも確認した。
 不凍活性を示すペプチドが食品の近傍に存在すると、氷点下であっても水分が凍らないため、食品の細胞が破壊されにくくなり、冷温下で食品の品質を維持するために有効である。食品の凍結は通常、表面から内部へと進行していく。そのため、食品の表面付近の凍結を防止することができれば、食品の内部の凍結を防止することが可能となる。
 不凍活性を示すペプチドは、第1実施形態では、不凍活性層に含有されており、第2実施形態では、食品の分解の程度を表示する物質とともに、不凍活性層に含有されている。いずれの実施形態でも、不凍活性層が食品に接する側となるようにして用いられるため、不凍活性層が含有する不凍活性を示すペプチドが、食品の表面付近の凍結防止に有効に働くことができる。
 本発明では、不凍活性層は、不凍活性を示すペプチドを含有している。不凍活性層は、不凍活性を示すペプチドのみで形成してもよいし、不凍活性を示すペプチドと他の材料との混合物で形成してもよいし、不凍活性を示すペプチドを結合させた他の材料で形成してもよい。ここで、他の材料とは、上記した食品包装用シートを構成する材料である。
(食品包装用シート)
 上記したように、本発明の食品包装用シートには主として2つの実施形態がある。第1実施形態は、食品の分解の程度を表示する物質を含有するインジケータ層と、不凍活性を示すペプチドを含有する不凍活性層とを有している。また、第2実施形態は、食品の分解の程度を表示する物質と、不凍活性を示すペプチドと、を含有する不凍活性層を有している。
(食品包装用シートの第1実施形態)
 食品包装用シートの第1実施形態では、食品の新鮮度を判定するインジケータ機能を有したインジケータ層と、不凍化機能を有した不凍活性層とが別の層となっている。不凍活性層の不凍活性が有効に機能するように、不凍活性層を食品に密着させて使用することが好ましい。不凍活性層を食品に密着させて使用することは、食品と食品包装用シートとの間に空気が入って、細菌が繁殖することを防止するためにも好ましい。
 第1実施形態では、不凍活性層とインジケータ層を構成する材料が生分解性樹脂であると、いずれの層も生分解性材料となり、食品包装用シート全体が体内で分解されるため、可食性となり、安全性が高まり、好ましい。
(食品包装用シートの第2実施形態)
 食品包装用シートの第2実施形態では、食品の新鮮度を判定するインジケータ機能と、不凍化機能とを同一の層(不凍活性層)が担っている。そのため、裏表のない単層の食品包装用シートとすることが可能である。また、第1実施形態と同様の理由から、不凍活性層を食品に密着させて使用することが好ましい。
 第2実施形態では、不凍活性層がさらに生分解性樹脂を含有することが好ましい。不凍活性層が生分解性樹脂を含有すると、食品包装用シート全体が体内で分解されるため、可食性となり、安全性が高まり、好ましい。
 第1実施形態も第2実施形態も、さらに、ガス透過性の生分解性樹脂層を有することが好ましい。ガス透過性の生分解性樹脂層が存在すると、食品包装用シートの機能を損なうことなく、食品包装用シートが食品の水分や結露によって形態が崩れることを防止することができる。ここで、ガス透過性のガスとは、食品から分解によって生じる低分子量物質を意味する。
[代表的な4種類の層構成のシートによる評価実験]
 次に、これら2つの実施形態において、それぞれ2種類の層構成について検討を加えた。
 以下では、食品包装用シートの具体的な層構成として、代表的な4種類の層構成のシート(シートA、シートB、シートC、シートD)について説明する。いずれも3層構造である。
 シートAとシートBが、第1実施形態の具体例であり、シートCとシートDが、第2実施形態の具体例である。
 PVA-GLは、ポリビニルアルコールにGLペプチドを化学結合させたものであり、親水性が高い。また、PVAc-GLは、ポリ酢酸ビニルにGLペプチドを化学結合させたものであり、疎水性が高い。
(1)シートAの層構成(図5参照)
 インジケータ層:コラーゲン+PVA-GL
 不凍活性層:PVA+アントシアニン
 ベース層:PET
(2)シートBの層構成(図6参照)
 インジケータ層:コラーゲン+PVAc-GL
 不凍活性層:PVA+アントシアニン
 ベース層:PET
(3)シートCの層構成(図7参照)
 不凍活性層:PVA+コラーゲン+PVA-GL+アントシアニン
 生分解性樹脂層:PLLA(ポリ乳酸)
 ベース層:PET
(4)シートDの層構成(図8参照)
 不凍活性層:PVA+コラーゲン+PVAc-GL+アントシアニン
 生分解性樹脂層:PLLA(ポリ乳酸)
 ベース層:PET
(実験に用いた材料)
 コラーゲン:研究室で配合したもの。
 PVA:関東化学社製、ポリビニルアルコール500。生分解性樹脂であり水溶性樹脂である。
 アントシアニン系色素:(株)ケニス製、1-138-0057 MP(アントシアンB)。紫キャベツパウダーである。
 ポリ-L-乳酸(PLLA):Poly-L-lactic acid、Polysciences社製。IV:1.8 dl/g、MW:90,000。生分解性樹脂である。
 PVA-GL:GLペプチドを化学結合させたポリビニルアルコール。
 PVAc-GL:GLペプチドを化学結合させたポリ酢酸ビニル。酢酸ビニルは富士フイルム和光純薬製、酢酸ビニルを用いて重合後アルカリケン化を行い、PVAc-GLを得た。PVAcの重合度n=50~100。
(シートA~Dの作製)
 シートA~Dの構成の食品包装用シートが、不凍活性を示すこと、およびアンモニアのインジケータとなることを確認するため、以下の実験を行った。
(1)シートAおよびシートBの原料溶液の作製
 純水にPVAを濃度50mg/mLとなるように添加し、さらにアントシアニン系色素を濃度40mg/mlとなるように添加して、PVA/アントシアニン溶液を作製した。また、純水にコラーゲンを40mg/mL、PVA-GLを2mg/mLとなるように添加して、コラーゲン/PVA-GL溶液を作製した。また、純水にコラーゲンを40mg/mL、PVAc-GLを2mg/mLとなるように添加して、コラーゲン/PVAc-GL溶液を作製した。
(2)シートAの作製
 まず、PETフィルム(2cm×2cm)上に上記PVA/アントシアニン溶液を滴下し、スピンコート法を用いて製膜してPVA/アントシアニン層を形成した。スピンコートの条件は、3000rpm、30sであった。次に、形成したPVA/アントシアニン層の上に、上記コラーゲン/PVA-GL溶液を滴下し、スピンコート法を用いて製膜してコラーゲン/PVA-GL層を形成した。スピンコートの条件は、3000rpm、30sであった。得られた積層シートをシートAとする。図5は、シートAの層構成を示す模式的断面図である。PETフィルム43上にPVA/アントシアニン層42およびコラーゲン/PVA-GL層41が形成されている。
(3)シートBの作製
 コラーゲン/PVA-GL溶液の代わりにコラーゲン/PVAc-GL溶液を用いた以外は、シートAと同様にして、シートAと同様の層構成のシートBを得た。図6は、シートBの層構成を示す模式的断面図である。PETフィルム43上にPVA/アントシアニン層42およびコラーゲン/PVAc-GL層44が形成されている。
(1)シートCおよびシートDの原料溶液の作製
 純水にPLLAを濃度40mg/mLとなるように添加して、PLLA溶液を作製した。また、純水にPVAを濃度50mg/mLアントシアニン系色素を濃度40mg/ml、コラーゲンを40mg/mL、PVA-GLを濃度2mg/mLとなるように添加して、PVA/アントシアニン/PVA-GL溶液を作製した。また、純水にPVAを濃度50mg/mLアントシアニン系色素を濃度40mg/ml、コラーゲンを40mg/mL、PVAc-GLを濃度2mg/mLとなるように添加して、PVA/アントシアニン/PVAc-GL溶液を作製した。
(2)シートCの作製
 まず、PETフィルム(2cm×2cm)上に上記PLLA溶液を滴下し、スピンコート法を用いて製膜してPLLA層を形成した。スピンコートの条件は、3000rpm、30sであった。次に、形成したPLLA層の上に、上記PVA/アントシアニン/PVA-GL溶液を滴下し、スピンコート法を用いて製膜してPVA/アントシアニン/PVA-GL層を形成した。スピンコートの条件は、3000rpm、30sであった。得られた積層シートをシートCとする。図7は、シートCの層構成を示す模式的断面図である。PETフィルム43上にPLLA層46およびPVA/アントシアニン/PVA-GL層45が形成されている。
(3)シートDの作製
 PVA/アントシアニン/PVA-GL溶液の代わりにPVA/アントシアニン/PVAc-GL溶液を用いた以外は、シートCと同様にして、シートCと同様の層構成のシートDを得た。図8はシートDの層構成を示す模式的断面図である。PETフィルム43上にPLLA層46およびPVA/アントシアニン/PVAc-GL層47が形成されている。
[不凍性の評価1:抗氷核活性値]
 不凍性の評価1として、上記で作製したシートA~Dが、過冷却時に凍結を防止する効果を有しているかどうかを確認するため、以下の小滴凍結法による実験を行った。
 図9に、凍結性評価に用いるヨウ化銀分散液の作製手順を示した。ヨウ化銀は、格子定数が氷の結晶とほぼ一致し、疑似氷核として凍結を促進させる機能を有している。(a)サンプル容器50中に所定量のヨウ化銀51を投入し、(b)ヨウ化銀濃度が2mg/mlとなるように、リン酸緩衝液52を加えた。(c)リン酸緩衝液52中にヨウ化銀51が均一に分散するように、超音波処理を施した。得られたヨウ化銀分散液と超純水とを体積比で9:1となるように混合して、評価用ヨウ化銀分散液とした。
 図10に、シート上に評価用ヨウ化銀分散液の小滴を滴下させる手順を示した。(a)水平なサンプル台60上にシート61を載せた。評価用ヨウ化銀分散液をマイクロピペッター62に入れて、1滴あたり10μlの小滴63として、1枚のシート61に対して6滴ずつ滴下した。(b)はシート61に対して評価用ヨウ化銀分散液の小滴63を6滴ずつ滴下した後の平面図である。
 上記で作製したシートA~Dに対して、それぞれコントロールとしてガラス板を用意した。シートA~Dとコントロールのガラス板のそれぞれに、評価用ヨウ化銀分散液6滴を載せた後に、各シートを冷凍機の槽内に入れて、4℃から-20℃に至るまで毎分1.0℃の冷却速度で冷却した。各シート上の各水滴が凍結し始めたときの温度を、冷凍機の槽内を観察できるカメラを通じて肉眼で観察して記録した。6個または測定可能だった水滴のうち半分が凍結し始めたときの温度(平均凍結温度)をTHとした。コントロールのガラス板のTHに対してシートA~DのTHがより低温であったとき、不凍活性を示したと判定した。コントロールのガラス板のTHからシートA~DのTHを引いた数値、すなわち、コントロールのガラス板の平均凍結温度よりも低温側となったシートA~Dの平均凍結温度との温度差を抗氷核活性値として求めた。図11は、シートA~Dの抗氷核活性値を示す図である。図11の左側の4つの棒グラフは、シートA~Dの抗氷核活性値を示したものである。0.4~0.8℃の範囲で、コントロールのガラス板に比べて凍結しにくくなっていることが判明した。
 同様に、上記で作製したシートC~Dに対して、それぞれコントロールとしてPETフィルム上にPLLA層のみを形成したシートを用意した。上記と同様に操作して、シートC~Dの抗氷核活性値を求めた。図11の右側の2つの棒グラフは、シートC~Dの抗氷核活性値を示したものである。1.1~1.5℃の範囲で、コントロールのシートに比べて凍結しにくくなっていることが判明した。
[不凍性の評価2:氷再結晶化抑制活性]
 食品を長期間冷凍保存し、その後に食品を解凍すると食感が悪くなっていることがある。これは、氷再結晶化現象が原因のひとつとして考えられており、氷再結晶化現象を抑制できると、食品の品質を長期間維持することができる。
 そこで、不凍性の評価2として、GLペプチドが、過冷却時に氷結晶の成長を抑制する働きを有しているかどうかを確認するため、以下の氷再結晶化抑制活性(RI活性)測定法による評価を行った。氷再結晶化抑制活性測定法を用いると、冷凍したときの氷の再結晶化現象を数値化することができる。この測定法では、不凍活性物質含有の系と不凍活性物質不含有の系の2つの系を常温から-40℃まで急速凍結した後に、-6℃まで昇温し、-6℃に達した直後の氷結晶の平均サイズと-6℃に達してから30分間経過後の2つの時点における氷結晶の平均サイズの差(変化量)を用いて、下記の式(7)でRIを算出できる。
 式(7)では、不凍活性物質(Anti Freeze Protein:AFP)含有の系を+AFP、不凍活性物質不含有の系を-AFPと略記する。
 RI=(不凍活性物質含有の系(+AFP)における氷結晶の平均サイズの差)/(不凍活性物質不含有の系(-AFP)における氷結晶の平均サイズの差) ・・・(7)
 RIが1では全く効果がなく、1より小さいほど、氷再結晶化抑制活性が強いことを示す。RIが0.8程度あれば、すなわち、不凍活性物質含有の系における氷結晶の平均サイズの差と、不凍活性物質不含有の系における氷結晶の平均サイズの差に20%程度の違いがあれば、氷再結晶化抑制活性の効果があると判定することができる。
(評価用サンプルの作製)
 基材としてガラス板を使用し、基材の表面にGLペプチド水溶液(濃度:1mg/mL)を均等に付着させ、+AFPのガラス板とした。コントロールとして、基材の表面に水を均等に付着させ、-AFPのガラス板とした。
(評価条件)
 次に、+AFPのガラス板と-AFPのガラス板を、極低温冷凍庫の中に投入して、常温から-40℃まで急速凍結させて、表面に微細な氷の結晶を生成させた。その後、-6℃まで昇温させて、さらに、-6℃の一定温度に30分間キープして、微細な氷の結晶を成長させた。
 図12は、氷再結晶化抑制活性の測定における氷結晶の顕微鏡写真である。図12には、極低温冷凍庫内が-6℃の一定温度に達した直後の基材上のGLペプチド水溶液(+AFP0)(a)と、-6℃で30分間経過後の基材上のGLペプチド水溶液(+AFP30)(b)の氷結晶の顕微鏡写真を示した。また、極低温冷凍庫内が-6℃の一定温度に達した直後の基材上の水(-AFP0)(c)と、-6℃で30分間経過後の基材上の水(-AFP30)(d)の氷結晶の顕微鏡写真を示した。
 +AFP0(a)と-AFP0(c)の顕微鏡写真を用いて平均氷結晶サイズの微小化活性を調べた。+AFP0(a)の平均氷結晶サイズは105pixelであり、-AFP0(c)の平均氷結晶サイズは146pixelであった。このことから、GLペプチド水溶液は、水と比べて100-(105/146×100)≒28.1%ほど氷結晶が小さく、含有したGLペプチドが不凍活性物質として機能していることを示している。
 さらに、+AFP30(b)と-AFP30(d)の顕微鏡写真を比較すると、目視でも-AFP30(d)の方が氷の再結晶化現象が起こり、氷結晶が成長しているが、+AFP30(b)では、-AFP30(d)ほど氷の再結晶化現象が起こっておらず、氷結晶が比較的小さいことがわかる。
 次に、+AFP0(a)と+AFP30(b)、-AFP0(c)と-AFP30(d)の顕微鏡写真から氷結晶の平均サイズの差を求めて、上記式(7)からRI値を求めた。
 その結果、RI=0.46となり、RI値は小さいものであった。このことから、GLペプチドが存在することによって、氷再結晶が抑制されることが分かった。氷再結晶が抑制されると、細胞内での氷結晶の膨張による細胞の破壊が抑制され、食品類の冷凍保存に有効である。
[アンモニアによる変色の評価]
 上記で作製したシートA~Dが、アンモニアに対して変色してインジケータとしての機能を発揮するかどうかを確認するため、以下の実験を行った。
 シャーレ内の端部にアンモニア水(25%)を滴下して、蓋をして、シャーレ内のアンモニア濃度が30ppmとなるように調整した。その後、シャーレ内のアンモニア水とは離れた場所にシートA~Dのいずれかのシート(1cm角)を置き、再び蓋を閉め、1分後にシートを取り出した。アンモニアガスに接触する前と接触した後のシートの色の変化を、デジタル測色器を用いて、シート毎に10か所で測色し、RGB値を求めた。測色は、Aperture Size変更により11×11ピクセルにてRGB値を算出した。ここで用いたカメラはCanon EOS 5D Mark IV Specifications(Total Pixels:31.7、Pixel Dimensions:6720×4480、Pixel Size:5.36μm)であった。
 シートA~Dはいずれも、アンモニアガスとの接触によって、ピンク色から緑色に変色し、RGB値が減少する傾向であった。
 アンモニアガスに接触する前と接触した後のシートA~DのRGB値の差について、有意差検定のt検定を行ったところ、RGB値のそれぞれの値について、p<0.01となり、有意差があるとの結果となった。結果を表2に示した。各シートは、アンモニア濃度30ppmにおいて、インジケータとして機能し得ることが分かった。
Figure JPOXMLDOC01-appb-T000008
(食品包装用シート)
 以上述べてきたように、本発明の食品包装用シートは、不凍活性を示すペプチドを含有する不凍活性層が食品と接することによって、食品が0℃よりも低い温度まで冷却しても包装された食品が凍結することを抑制することができ、更に、氷再結晶化を抑制する効果も備えており、食品の品質を長期間維持させることができる。また、本発明の食品包装用シートは、食品の分解の程度を表示する物質を含有するため、冷温下で保存される食品の品質を経時的に確認しつつ、食品の品質を管理することが可能である。
 本発明の食品包装用シートは、食品包装用であれば、その形態は特に限定されず、フィルム、シート、ラミネート、コーティング、容器等、必要に応じて適宜選択して利用することができる。
 食品包装用シートの厚さは、特に限定されないが、50μm以下が好ましく、20μm以下がより好ましい。食品包装用シートとしての機械的強度、加工性、材料の種類、層構成等に応じて適宜選択することができる。また、1μm以下のナノメーターレベル(50~500nm等)の薄膜シートであれば、凹凸のある食品の表面に沿って追随し得る柔軟なシートとすることができる。
 食品包装用シートの製造方法は、特に限定されない。製造する食品包装用シートの厚さ、材料の種類、層構成等に応じて、押出法、キャスト法など、公知の各種製膜方法の中から適宜選択して用いることができる。
 図13は、食肉を第1実施形態の食品包装用シートで包装したときの模式的断面図である。食品包装用シートは、インジケータ層71と不凍活性層72とからなる。食肉70の表面に食品包装用シートが密着しており、不凍活性層72が食肉70に直接接する構成となっている。
 本発明の食品包装用シートは、食品の新鮮度を判定するインジケータ機能を有することから、食品包装用途だけでなく、食品の分解の程度を表示するインジケータとして使用することができる。
 1  透明容器
 3  ガラス基板
 4  アントシアニン含有シート
 5  PLLAシート
 6  PVCラップフィルム
 7  アンモニア水
 8  豚バラ肉
 9  アンモニアガス
 10、20、30  検知体

Claims (10)

  1.  食品の分解の程度を表示する物質を含有するインジケータ層と、不凍活性を示すペプチドを含有する不凍活性層とを有する食品包装用シート。
  2.  前記インジケータ層を構成する材料が生分解性樹脂である請求項1に記載の食品包装用シート。
  3.  食品の分解の程度を表示する物質と不凍活性を示すペプチドを含有する不凍活性層を有する食品包装用シート。
  4.  前記不凍活性層が、さらに生分解性樹脂を含有する請求項3に記載の食品包装用シート。
  5.  さらに、生分解性樹脂層を有する請求項3または請求項4に記載の食品包装用シート。
  6.  前記不凍活性を示すペプチドがGLペプチドまたはチロシンペプチドである請求項1~5のいずれか1項に記載の食品包装用シート。
  7.  前記食品の分解の程度を表示する物質がアントシアニン系色素である請求項1~6のいずれか1項に記載の食品包装用シート。
  8.  前記不凍活性層を食品に密着させて使用する請求項1~7のいずれか1項に記載の食品包装用シート。
  9.  可食性である請求項1~8のいずれか1項に記載の食品包装用シート。
  10.  請求項1~9のいずれか1項に記載の食品包装用シートからなる食品の分解の程度を表示するインジケータ。
PCT/JP2022/028647 2021-07-26 2022-07-25 食品包装用シートおよびインジケータ WO2023008380A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538523A JPWO2023008380A1 (ja) 2021-07-26 2022-07-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021121872 2021-07-26
JP2021-121872 2021-07-26

Publications (1)

Publication Number Publication Date
WO2023008380A1 true WO2023008380A1 (ja) 2023-02-02

Family

ID=85086989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028647 WO2023008380A1 (ja) 2021-07-26 2022-07-25 食品包装用シートおよびインジケータ

Country Status (2)

Country Link
JP (1) JPWO2023008380A1 (ja)
WO (1) WO2023008380A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510572A (ja) * 1997-07-16 2001-07-31 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,リプリゼンテッド バイ ザ セクレタリー,デパートメント オブ ヘルス アンド ヒューマン サービス 食品品質指示薬装置
JP2005538740A (ja) * 2002-09-16 2005-12-22 アグサート・インターナショナル・エルエルシー 食品媒介病原体及び腐敗検出装置及び方法
JP3197908U (ja) * 2015-03-27 2015-06-04 積水化成品工業株式会社 ミオグロビン含有食品鮮度劣化抑制材及び食品包装体
JP2016531547A (ja) * 2013-09-16 2016-10-13 ルースロ ビー.ブイ. 食品コーティング
WO2016178426A1 (ja) * 2015-05-07 2016-11-10 学校法人 関西大学 抗氷核活性剤
CN111749044A (zh) * 2020-07-03 2020-10-09 汕头方大印刷包装科技有限公司 一种抗冻处理剂及其应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510572A (ja) * 1997-07-16 2001-07-31 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,リプリゼンテッド バイ ザ セクレタリー,デパートメント オブ ヘルス アンド ヒューマン サービス 食品品質指示薬装置
JP2005538740A (ja) * 2002-09-16 2005-12-22 アグサート・インターナショナル・エルエルシー 食品媒介病原体及び腐敗検出装置及び方法
JP2016531547A (ja) * 2013-09-16 2016-10-13 ルースロ ビー.ブイ. 食品コーティング
JP3197908U (ja) * 2015-03-27 2015-06-04 積水化成品工業株式会社 ミオグロビン含有食品鮮度劣化抑制材及び食品包装体
WO2016178426A1 (ja) * 2015-05-07 2016-11-10 学校法人 関西大学 抗氷核活性剤
CN111749044A (zh) * 2020-07-03 2020-10-09 汕头方大印刷包装科技有限公司 一种抗冻处理剂及其应用方法

Also Published As

Publication number Publication date
JPWO2023008380A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
Huang et al. A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness
Halász et al. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application
Pirsa et al. Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging
Kanatt Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage
Balbinot-Alfaro et al. Intelligent packaging with pH indicator potential
Zeng et al. Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness
Naghdi et al. A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish
Neves et al. Berry anthocyanin-based films in smart food packaging: A mini-review
Majdinasab et al. Development of a novel colorimetric sensor based on alginate beads for monitoring rainbow trout spoilage
CN113968986B (zh) 紫甘蓝花青素-胶原蛋白壳聚糖复合智能膜的制备法
Guo et al. Development of active and intelligent pH food packaging composite films incorporated with litchi shell extract as an indicator
Valencia et al. Smart and active edible coatings based on biopolymers
WO2023008380A1 (ja) 食品包装用シートおよびインジケータ
Khan et al. Plant betalains: Recent applications in food freshness monitoring films
Anugrah et al. Development of alginate-based film incorporated with anthocyanins of red cabbage and zinc oxide nanoparticles as freshness indicator for prawns
Tang et al. Colorimetric hydrogel indicators based on polyvinyl alcohol/sodium alginate for visual food spoilage monitoring
Pirayesh et al. Cellulosic material-based colorimetric films and hydrogels as food freshness indicators
Elhadef et al. pH-sensitive films based on carboxymethyl cellulose/date pits anthocyanins: A convenient colorimetric indicator for beef meat freshness tracking
Ezati et al. Resazurin-impregnated gelatin-based indicator for intelligent packaging applications
Zou et al. Development and application of an intelligent biolayer packaging film as a freshness indicator for salmon.
US9476835B2 (en) Bioluminescent packaging
Solak et al. Edible pH sensitive polysaccharide-anthocyanin complex films for meat freshness monitoring
Phanumong et al. Utilisation of black sticky rice (Oryza sativa L.) extract in chitosan-methylcellulose film
Liu et al. An antibacterial and intelligent cellulose-based label self-assembled via electrovalent bonds for a multi-range sensing of food freshness
US10161921B2 (en) Functional label, having lactobacillus separator membrane and using selective dissolution for detecting external temperature, for checking freshness of storage material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538523

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE