WO2023008310A1 - ハイブリッドロケット燃料の燃焼方法および燃焼装置 - Google Patents
ハイブリッドロケット燃料の燃焼方法および燃焼装置 Download PDFInfo
- Publication number
- WO2023008310A1 WO2023008310A1 PCT/JP2022/028368 JP2022028368W WO2023008310A1 WO 2023008310 A1 WO2023008310 A1 WO 2023008310A1 JP 2022028368 W JP2022028368 W JP 2022028368W WO 2023008310 A1 WO2023008310 A1 WO 2023008310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen peroxide
- combustion
- oxygen
- peroxide solution
- combustion chamber
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 386
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 239000002760 rocket fuel Substances 0.000 title claims abstract description 63
- 238000009841 combustion method Methods 0.000 title claims abstract description 49
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 372
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 253
- 239000001301 oxygen Substances 0.000 claims abstract description 253
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 253
- 239000004449 solid propellant Substances 0.000 claims abstract description 79
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 claims description 64
- 230000006641 stabilisation Effects 0.000 claims description 20
- 238000011105 stabilization Methods 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 239000000446 fuel Substances 0.000 description 31
- 238000002474 experimental method Methods 0.000 description 22
- 239000003380 propellant Substances 0.000 description 22
- 239000003054 catalyst Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000007800 oxidant agent Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 14
- 239000004926 polymethyl methacrylate Substances 0.000 description 14
- 238000010926 purge Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 11
- 238000003860 storage Methods 0.000 description 11
- 238000005086 pumping Methods 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 230000008016 vaporization Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910001120 nichrome Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 235000015842 Hesperis Nutrition 0.000 description 5
- 235000012633 Iberis amara Nutrition 0.000 description 5
- 108091092878 Microsatellite Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- XYODKMYYACGWBN-UHFFFAOYSA-N aminoazanium;nitroformate Chemical compound [NH3+]N.[O-]C(=O)[N+]([O-])=O XYODKMYYACGWBN-UHFFFAOYSA-N 0.000 description 4
- BRUFJXUJQKYQHA-UHFFFAOYSA-O ammonium dinitramide Chemical compound [NH4+].[O-][N+](=O)[N-][N+]([O-])=O BRUFJXUJQKYQHA-UHFFFAOYSA-O 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- WFPZPJSADLPSON-UHFFFAOYSA-N dinitrogen tetraoxide Chemical compound [O-][N+](=O)[N+]([O-])=O WFPZPJSADLPSON-UHFFFAOYSA-N 0.000 description 4
- CRJZNQFRBUFHTE-UHFFFAOYSA-N hydroxylammonium nitrate Chemical compound O[NH3+].[O-][N+]([O-])=O CRJZNQFRBUFHTE-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241000545067 Venus Species 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/72—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid and solid propellants, i.e. hybrid rocket-engine plants
Definitions
- the present invention relates to a method and apparatus for burning hybrid rocket fuel. More specifically, the present invention relates to a method and apparatus for burning hybrid rocket fuel using hydrogen peroxide water and oxygen together with solid fuel.
- microsatellites weighing 100 kg or less has increased. Such microsatellites can be launched in a piggyback fashion.
- LEO low Earth orbit
- GSO geostationary orbit
- SSO sun-synchronous orbit
- a spacecraft such as a microsatellite can be carried together with the main satellite to a geostationary transfer orbit (GTO).
- GTO geostationary transfer orbit
- the geostationary transfer orbit is the closest orbit to deep space, a mere 700 m/s acceleration is enough to break free from the earth's gravity and leave for deep space. For example, if the timing is selected, it is possible to reach Venus with an acceleration of 1.06 km/s, and it is possible to reach Mars with an acceleration of 1.15 km/s. Also, if it is from the orbit of the manned lunar base "Gateway" under consideration in the international space exploration program, it will be possible to transition to the Mars flyby orbit at an acceleration of 0.7 km / s. With such an acceleration capability of 0.7 to 1.2 km/s, it is possible to easily transfer from a geostationary transfer orbit (GTO) to a flyby orbit to the Moon, Mars, or Venus.
- GTO geostationary transfer orbit
- Hybrid rockets can use a low-toxic propellant called “green propellant” along with solid fuel such as plastic.
- green propellant for example, HAN (HydroxylAmmonium Nitrate)-based, ADN (Ammonium DiNitramide)-based, HNF (Hydrazinium Nitro Formate)-based propellants and the like can be used.
- Green propellants are being developed in various countries, but because they can be used for military purposes, they are subject to export and import restrictions, and availability is a problem.
- Nitric acid, fuming nitric acid, and dinitrogen tetroxide can also be used as propellants, but they require special safety control, making it difficult to manufacture a small spacecraft at low cost using these.
- Nitrous oxide can also be used as a propellant, but above the critical temperature of 36.7° C., the density drops rapidly and the container may burst.
- the hydrogen peroxide solution has a concentration of 65 wt % or more, it can evaporate all the water (both the water contained in the hydrogen peroxide solution and the water generated by the decomposition of the hydrogen peroxide solution) due to the heat generated by its own decomposition. can. Oxygen generated by the decomposition of hydrogen peroxide promotes combustion of the solid fuel to propel the spacecraft. However, if the hydrogen peroxide solution is used at a concentration of 65 wt% or higher, the hydrogen peroxide will decompose in a chain reaction and accelerate, causing self-decomposition in the tank, increasing the internal pressure of the tank and possibly leading to an accident. There is
- the concentration of the hydrogen peroxide solution is less than 65 wt%, the latent heat of vaporization is greater than the heat of decomposition. Decomposition can be suppressed.
- Non-Patent Document 1 hydrogen peroxide water is sprayed with an injector or atomizer (for example, Non-Patent Document 1), and further decomposed using a platinum (Pt) catalyst or the like. It is necessary to burn the solid fuel after increasing the efficiency (for example, Non-Patent Document 2).
- an injector or atomizer for example, Non-Patent Document 1
- Pt platinum
- the combustion of solid fuel is divided into ⁇ main combustion accompanied by flames and flames that generate thrust, especially flame stabilization'' and ⁇ ignition to create the spark that leads to main combustion''.
- ⁇ main combustion accompanied by flames and flames that generate thrust
- flame stabilization'' and ⁇ ignition to create the spark that leads to main combustion''.
- hydrogen peroxide water is used at a low concentration of less than 65 wt%, it is difficult to obtain a large flow rate, for example, by decomposing it using a catalyst and then supplying it, because the catalyst has a small processing capacity (for example, Non-Patent Document 2 ).
- the main object of the present invention is to provide a more improved hybrid rocket fuel combustion method and combustion apparatus, in particular, to use a propellant excellent in safety, transportability, storability, availability, etc. It is an object of the present invention to provide a combustion method and a combustion apparatus for hybrid rocket fuel, which are improved so as to achieve "main combustion” accompanied by flame release, especially flame stabilization.
- the inventors of the present application have tried to solve the above problems by dealing with them in a new direction, rather than dealing with them on the extension of the conventional technology.
- the present inventors have invented a hybrid rocket fuel combustion method and combustion apparatus that achieve the above-mentioned main objectives.
- the hydrogen peroxide solution has a concentration of 65% by weight or more, it easily self-decomposes, and the decomposition progresses in a chain reaction and at an accelerated rate. Therefore, when self-decomposition starts inside the tank, the internal pressure of the tank rises and there is a risk of explosion, which poses problems in terms of safety, transportability, and storability, making it difficult to use in hybrid rockets. rice field.
- the concentration of the hydrogen peroxide solution is less than 65% by weight, the proportion of water is high, so the latent heat of vaporization is greater than the heat of decomposition, and the above-mentioned peroxide It can suppress the accelerated decomposition of hydrogen, and is excellent in safety, transportability, storability, etc. It is also fairly easy to obtain.
- low-concentration (specifically less than 65% by weight) hydrogen peroxide solution when used as a propellant (specifically, an oxidizer) for a polyethylene-fueled hybrid rocket, the flame temperature exceeds 2200 K, and the combustion gas Since the main component of is water (H 2 O, molecular weight 18), the specific impulse is theoretically high, exceeding 290 seconds in vacuum (see FIG. 16). It is also less likely to erode the nozzle. Therefore, low-concentration (specifically, less than 65% by weight) hydrogen peroxide solution has excellent theoretical performance along with safety, transportability, storability, and availability.
- the inventors of the present application basically did not use a catalyst, and without directly increasing the concentration of hydrogen peroxide in the system or in the combustion chamber, low concentration (specifically, less than 65% by weight) ), and a small amount of oxygen is supplied into the combustion chamber together with the hydrogen peroxide solution to assist the combustion of the hybrid rocket fuel to maintain flame stabilization.
- the inventors of the present application have found that the flame stabilization of the hybrid rocket fuel is significantly improved by preferably simultaneously supplying both oxygen and hydrogen peroxide solution to the combustion chamber containing the solid fuel of the hybrid rocket. The inventors have found that it can be maintained, and have completed the present invention.
- the inventors of the present application have found that the flame stabilization of the hybrid rocket fuel can be maintained by heating the hydrogen peroxide solution before supplying it to the combustion chamber.
- the present invention provides a method of burning a hybrid rocket fuel comprising supplying a hydrogen peroxide solution to a combustion chamber comprising a solid fuel, wherein the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight. and at least one of (i) supplying oxygen and the hydrogen peroxide solution to the combustion chamber, and (ii) heating the hydrogen peroxide solution before supplying the hydrogen peroxide solution to the combustion chamber.
- a method of burning a hybrid rocket fuel is provided.
- a combustion chamber for containing solid fuel, a line for supplying oxygen, and a line for supplying hydrogen peroxide water are provided, and the line for supplying oxygen and the line for supplying hydrogen peroxide are provided.
- a hybrid rocket fuel combustion apparatus is provided, wherein a line for supplying hydrogen peroxide water is connected to the combustion chamber, and the concentration of hydrogen peroxide in the hydrogen peroxide water is less than 65% by weight. be.
- the present invention provides an improved hybrid rocket fuel combustion method and combustion apparatus. It should be noted that the effects described in this specification are only examples and are not limited, and additional effects may be provided.
- FIG. 1 is a schematic diagram that schematically shows a combustion device according to a first embodiment of the present disclosure.
- FIG. 2 is a schematic diagram that schematically shows a combustion device according to a second embodiment of the present disclosure.
- FIG. 3 is a schematic diagram schematically showing a combustion device according to a third embodiment of the present disclosure;
- FIG. 4 is a schematic diagram schematically showing a combustion device according to a fourth embodiment of the present disclosure;
- FIG. 5 is a schematic diagram schematically showing a combustion device according to a fifth embodiment of the present disclosure
- 6 is a photograph showing the combustion experiment in Example 1 ((A) before ignition, (B) ignition, (C) combustion (flame holding), (D) supply stop, and (E) ignition (left) and main combustion (flame holding) (right)).
- 7 is a graph showing the history of flow rate and pressure in the combustion experiment in Example 1.
- FIG. 8 is a graph showing the history of flow rate and pressure in the combustion experiment in Example 2.
- FIG. 9 is a graph showing the history of flow rate and pressure in the combustion experiment in Example 3.
- FIG. 10 is a graph showing the history of flow rate and pressure in the combustion experiment in Example 4.
- FIG. 11 is a graph showing the history of flow rate and pressure in the combustion experiment in Example 7.
- FIG. FIG. 12 is a graph showing the history of the temperature of the hydrogen peroxide solution in the vicinity of the supply port in the combustion experiment in Example 7.
- FIG. 13 is a graph showing the history of flow rate and pressure in the combustion experiment in Comparative Example 1.
- FIG. 14 is a graph showing the history of flow rate and pressure in the combustion experiment in Comparative Example 2.
- FIG. 15 is a graph showing the history of flow rate and pressure in the combustion experiment in Comparative Example 3.
- FIG. FIG. 16 is a graph showing the specific impulse (s) and flame temperature (K) for low-concentration (60% by weight) hydrogen peroxide solution (combustion chamber pressure 2 MPa, nozzle opening ratio 100).
- FIG. 17 schematically shows a tandem multi-stage impinging-jet type (CAMUI (CAscaded MUltistage Impinging-jet) type) solid fuel.
- CAMUI CAscaded MUltistage Impinging-jet
- the present invention relates to a "hybrid rocket fuel combustion method" and a “hybrid rocket fuel combustion apparatus”.
- the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight, and such hydrogen peroxide solution is combined with oxygen, preferably a small amount of oxygen (hereinafter referred to as "assist oxygen ) is supplied to the combustion chamber of the hybrid rocket fuel.
- FIG. 1 schematically shows the basic concept of the present invention, and each element shown in the figure is only shown schematically and exemplarily for understanding the present invention, and if necessary Other configurations may be added.
- the hybrid rocket fuel combustion apparatus (10) of the present disclosure includes a combustion chamber (2) for containing a solid fuel (1) and a line (3) for supplying oxygen ( hereinafter sometimes referred to as “oxygen supply line”), and a line (5) for supplying hydrogen peroxide solution (hereinafter sometimes referred to as "hydrogen peroxide solution supply line").
- An oxygen supply line (3) and a hydrogen peroxide solution supply line (5) may be connected to the combustion chamber (2).
- the oxygen supply line (3) may be connected to an oxygen supply source (4) (eg an oxygen tank, a storage tank of liquid oxygen, etc.).
- the hydrogen peroxide solution supply line (5) may be connected to a hydrogen peroxide solution supply source (6) (eg, a hydrogen peroxide solution storage tank, etc.).
- a hydrogen peroxide solution supply source (6) eg, a hydrogen peroxide solution storage tank, etc.
- the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65%, preferably 60% or less on a weight basis.
- the concentration of hydrogen peroxide water is low (specifically, less than 65%), together with such low concentration hydrogen peroxide water Combustion of the solid fuel (1) can be promoted by supplying oxygen, preferably at least 10%, preferably at least 25% by weight of assist oxygen to the hydrogen peroxide solution. By maintaining flame holding, the combustibility of the hybrid rocket fuel can be further improved.
- a combustion apparatus as shown in FIG. 1 may be used, wherein oxygen and hydrogen peroxide water are supplied to a combustion chamber (2) provided with a solid fuel (1)
- a combustion chamber (2) provided with a solid fuel (1)
- it comprises parallel feeding, particularly preferably simultaneous feeding, characterized in that the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight.
- the present invention is a hydrogen peroxide solution in which the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight, and such hydrogen peroxide solution is heated, preferably to 100° C. or higher. It is characterized in that it is supplied to the combustion chamber of the hybrid rocket fuel in the state.
- FIG. 5 schematically shows the basic concept of the present invention, and each element shown in the figure is only shown schematically and exemplarily for understanding the present invention, and if necessary Other configurations may be added.
- the hybrid rocket fuel combustion device (50) of the present disclosure includes a combustion chamber (52) for containing a solid fuel (51) and a line ( 55) (hereinafter sometimes referred to as a "hydrogen peroxide solution supply line") and heating means (58) for heating the hydrogen peroxide solution.
- the hydrogen peroxide solution supply line (55) may be connected to a hydrogen peroxide solution supply source (56) (for example, a hydrogen peroxide solution storage tank, etc.).
- the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65%, preferably less than 60% by weight.
- the concentration of the hydrogen peroxide solution is low (specifically, less than 65%), such a low concentration of hydrogen peroxide solution is
- the combustion of the solid fuel (51) can be promoted, and by maintaining the flame holding, the combustibility of the hybrid rocket fuel can be further improved.
- the hybrid rocket fuel combustion method of the present disclosure for example, a combustion apparatus as shown in FIG. and wherein the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight.
- rocket broadly means a jet propulsion engine that propels itself forward by injecting substances such as combustion product gases backward without the aid of atmospheric oxygen. In a narrow sense, it means a chemical rocket that uses combustion as the energy source to generate thrust.
- a “hybrid rocket” means a rocket that uses a combination of at least two different phases of propellant. It is preferred to use a combination of a “solid fuel” and a liquid or gaseous “oxidant” as propellant.
- the term “hybrid rocket” more specifically refers to a combustion chamber containing a solid fuel that is supplied with a liquid or gaseous oxidant to cause combustion, inject the resulting gas, and propel itself in reaction. means rocket.
- hybrid rocket fuel means a fuel comprising a combination of at least two different phases of propellants.
- Hybrid rocket fuels preferably comprise a solid fuel in combination with a liquid or gaseous oxidant.
- two or more propellants may be collectively referred to as a hybrid rocket fuel, and any one of the propellants may be referred to as a hybrid rocket fuel.
- solid fuels and oxidizers can be collectively referred to as hybrid rocket fuels.
- the solid fuel alone may be referred to as hybrid rocket fuel or simply fuel
- the oxidizer alone may be referred to as hybrid rocket fuel or simply fuel.
- combustion means a chemical reaction, especially an oxidation reaction, of the fuel contained in the hybrid rocket. Specifically, it means a chemical reaction between a solid fuel and an oxidant, and more specifically, an oxidation reaction of a solid fuel by an oxidant.
- solid fuel means a fuel that is solid at least at room temperature (25°C), and means a solid fuel that can be produced from plastic (for example, polymeric plastic material). More specifically, it means a solid fuel made from at least one selected from the group consisting of polyethylene-based, polyester-based, polyurethane-based, polyacrylonitrile-based and acrylic-based plastics or resins. Above all, it is preferable to use solid fuels that can be produced from polyethylene-based and acrylic-based plastics or resins. Above all, it is particularly preferred to use solid fuels that can be made from ethylene-based plastics (high-density polyethylene (HDPE)) or acrylic polymethyl methacrylate (PMMA).
- HDPE high-density polyethylene
- PMMA acrylic polymethyl methacrylate
- the solid fuel shown in FIG. 17 may have a combustion block 61 , spacers 62 and ports 63 .
- the solid fuel of the CAMUI method consists of multiple cylindrical fuel blocks with short axial lengths.
- Each fuel block may be provided with two combustion ports at axially symmetrical positions.
- a plurality of such fuel blocks can be arranged in tandem to form a fuel grain used for one combustion.
- Cylindrical spacers, also made of fuel, may be provided between the fuel blocks in each stage to form air gaps between the fuel blocks.
- Combustion gases may flow downstream sequentially through the ports and fuel blocks of each stage. Adjacent fuel block ports may be 90° out of alignment with each other, and jets of combustion gases exiting the ports impinge on downstream fuel and combustion occurs in the stagnation region.
- the main combustion surfaces are the fuel block's front end surface (collision surface), rear end surface (surface facing the collision surface), and the inner wall of the port.
- the inner wall of the spacer can also be burned.
- oxidizing agent means a liquid or gaseous substance or composition capable of causing an oxidation reaction through a chemical reaction with a solid fuel and capable of burning the solid fuel. It is preferred to use a liquid oxidant as the oxidant in the present invention. For example, hydrogen peroxide solution can be used.
- hydrogen peroxide solution means an aqueous solution of hydrogen peroxide (H 2 O 2 ).
- the "concentration" of "hydrogen peroxide solution” means the percentage (%) of the weight of hydrogen peroxide to the total weight of hydrogen peroxide solution (unit: weight %). Alternatively, it means the percentage (%) of the mass of hydrogen peroxide to the total mass of the hydrogen peroxide solution (unit: % by mass). Weight % and mass % refer basically to the same value, and these terms can be used interchangeably in this disclosure.
- the concentration of the hydrogen peroxide solution is, for example, less than 65% by weight or mass, preferably 60% or less.
- concentration of hydrogen peroxide water since exothermic decomposition of hydrogen peroxide is bounded by a concentration of 65% by weight, for convenience of explanation, a concentration of less than 65% by weight is referred to as a “low concentration”, and 65% by weight. % or higher is referred to as "high concentration”.
- the lower limit of the concentration of the hydrogen peroxide solution is not particularly limited, and is greater than 0% by weight, for example 20% by weight or more, preferably 50% by weight or more.
- Propellants that may be included in hybrid rocket fuels include, for example, nitric acid, fuming nitric acid, dinitrogen tetroxide, nitrous oxide, ammonium perchlorate, ammonium nitrate, nitroglycerin, nitrocellulose and green propellants such as HAN (HydroxylAmmonium Nitrate )-based, ADN (Ammonium DiNitramide)-based, and HNF (Hydrazinium Nitro Formate)-based propellants) may be used.
- HAN HydroxylAmmonium Nitrate
- ADN Ammonium DiNitramide
- HNF Hydrofluor Nitro Formate
- combustion device means a device or system capable of burning the above fuel.
- the combustion device includes at least a "combustion chamber for containing solid fuel", a “line for supplying oxygen”, and a “line for supplying hydrogen peroxide water”.
- combustion chamber means a housing that can contain fuel such as the solid fuel described above and that can burn the fuel inside.
- the combustion chamber is also referred to as the "motor case” in this disclosure, and the “motor case” with fuel may be referred to as the “rocket motor” or “motor assembly” or simply the “motor.”
- the combustion chamber preferably has a cylindrical shape. There are no particular restrictions on the shape and dimensions of the combustion chamber, and there are no particular restrictions on the material forming the combustion chamber.
- the combustion chamber may optionally be provided with, for example, valves, filters, nozzles (melting nozzles, graphite nozzles, etc.), injectors and/or atomizers.
- a line for supplying oxygen means that oxygen (even if " means a line for supplying a liquid (which may be "liquid”).
- a line for supplying hydrogen peroxide water refers to a line for supplying excess hydrogen peroxide water from a hydrogen peroxide water supply source (for example, a hydrogen peroxide water storage tank, etc.) into the combustion chamber. It means a line for supplying hydrogen oxide water.
- the oxygen supply line and the hydrogen peroxide solution supply line may be directly or indirectly connected to the combustion chamber.
- the oxygen supply line and the hydrogen peroxide solution supply line may be connected to the combustion chamber independently (see FIG. 2), or may be connected so as to mix in the middle (see FIG. 3).
- Oxygen supply lines and hydrogen peroxide supply lines include, for example, filters, orifices, valves (needle valves, ball valves, check valves, etc.), nozzles, meters (flow meters, etc.), sensors (temperature sensors, pressure sensors, etc.). , regulators, injectors and/or atomizers may optionally be provided.
- heating means means a device or the like capable of heating hydrogen peroxide solution.
- the heating means is not particularly limited as long as it can heat the hydrogen peroxide solution, and examples thereof include heat exchangers and heaters.
- the hybrid rocket fuel combustion method of the present disclosure supplies oxygen and hydrogen peroxide water to a combustion chamber containing a solid fuel.
- a first combustion method of the present disclosure is characterized in that the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight or mass. In other words, it is characterized by using a low-concentration hydrogen peroxide solution. It has been known from past studies that low-concentration hydrogen peroxide solution can be used as an oxidant for solid fuel in hybrid rockets.
- the first combustion method of the present disclosure is characterized by supplying "oxygen" to a combustion chamber containing a solid fuel together with low-concentration hydrogen peroxide solution.
- flame means light and/or heat emitted during combustion (hereinafter also referred to as “combustion flame”).
- flame means that the combustion flame blows out of the combustion chamber.
- “Flame holding” in the present disclosure means that a combustion flame is maintained for at least 5 seconds, preferably 10 seconds or more. In other words, it means that the main combustion continues for at least 5 seconds, preferably 10 seconds or more.
- oxygen and hydrogen peroxide solution may be supplied in parallel to the combustion chamber.
- parallel supply means supplying oxygen and hydrogen peroxide from separate sources. It is preferred to supply oxygen and hydrogen peroxide simultaneously.
- the main combustion can be performed. Sustainability, especially flame stabilization, becomes possible. In addition, the amount of oxygen supplied can be further reduced.
- the hydrogen peroxide solution may be supplied while oxygen is present in the combustion chamber.
- the hydrogen peroxide solution may be supplied to the combustion chamber charged with oxygen, preferably while continuing to supply oxygen.
- the hydrogen peroxide solution may be supplied, preferably while continuing to supply oxygen.
- oxygen and hydrogen peroxide can be supplied to the combustion chamber from independent lines.
- oxygen can be supplied to the combustion chamber (2) from an oxygen source (4) via line (3), as schematically shown in FIG.
- a hydrogen peroxide solution can be supplied to the combustion chamber (2) from a hydrogen peroxide solution supply source (6) via a line (5).
- the flow rate of oxygen that can be supplied from the oxygen supply source (4) to the combustion chamber (2) via the line (3) is not particularly limited, and if the oxygen purity is 99.9% or more, oxygen and hydrogen peroxide Based on the total flow rate of water, preferably 5% or more and 90% or less, such as 10% or more and 80% or less, 10% or more and 50% or less, 20% or more and 40% or less, 20% or more and 35% or less is the flow rate of
- the concentration of the hydrogen peroxide solution is less than 65% by weight. , preferably 10% or more and 95% or less, for example, 20% or more and 90% or less, 50% or more and 90% or less, 60% or more and 80%, based on the total flow rate of oxygen and hydrogen peroxide water Below, the flow rate is 65% or more and 80% or less.
- Oxygen may be supplied as gas or as liquid, but from the viewpoint of handling, storage and cost, it is preferable to supply oxygen as gas to the combustion chamber.
- the concentration of hydrogen peroxide in the hydrogen peroxide solution is low, that is, less than 65% by weight, preferably 60% or less. Even with such a low-concentration hydrogen peroxide solution, by supplying oxygen to the combustion chamber, combustion of the hybrid rocket fuel, especially flame stabilization, becomes possible without using a catalyst.
- oxygen is supplied to the combustion chamber charged with oxygen by supplying a low-concentration hydrogen peroxide solution, preferably while oxygen is present, more preferably while continuing to supply oxygen.
- oxygen and hydrogen peroxide are preferably supplied simultaneously. By simultaneously supplying oxygen and hydrogen peroxide solution, the flame holding of the hybrid rocket fuel can be maintained.
- oxygen can assist combustion of hybrid rocket fuels, and more specifically combustion of solid fuels.
- assisting combustion means assisting in the combustion of a hybrid rocket fuel (e.g., a fuel that uses a combination of a solid fuel and a liquid or gaseous oxidizer) during the combustion of the hybrid rocket fuel.
- a hybrid rocket fuel e.g., a fuel that uses a combination of a solid fuel and a liquid or gaseous oxidizer
- hydrogen peroxide water is used as the oxidizing agent, it means promoting vaporization of hydrogen peroxide contained in hydrogen peroxide and decomposition into oxygen.
- By supplying oxygen more hydrogen peroxide can be vaporized from the hydrogen peroxide solution, and the solid fuel can be burned more efficiently to maintain flame stabilization.
- the ratio of oxygen to the hydrogen peroxide solution is not particularly limited and is equal or less (100% or less) on a weight basis, for example, 10% or more and 90% or less, preferably 10% or more and 70% or less, more preferably 10% or more and 50%. Below, more preferably 20% or more and 50% or less, still more preferably 25% or more and 50% or less. Flame holding can be maintained with a smaller amount of oxygen than the hydrogen peroxide solution. The amount of oxygen supplied may be excessive (may exceed 100%) with respect to the hydrogen peroxide solution.
- oxygen can be supplied to assist combustion without using a catalyst, so the supplied hydrogen peroxide solution does not have to be attached to a catalyst.
- a catalyst specifically, a platinum (Pt) catalyst
- the main combustion no change was observed.
- the method of the present disclosure it is possible to transition from ignition to main combustion without using a catalyst. It should be noted that the method of the present disclosure does not exclude the use of atomizers and catalysts.
- the supply of oxygen to the combustion chamber is started, and after ignition, while continuing to supply oxygen to the combustion chamber, the hydrogen peroxide solution is supplied to the combustion chamber, and the solid It is particularly preferred to maintain fuel combustion and flame holding.
- Oxygen is supplied to the combustion chamber in advance and ignited to increase the temperature of the combustion chamber, and then more oxygen is supplied to the combustion chamber while hydrogen peroxide solution is supplied to vaporize more hydrogen peroxide. It is possible to burn the solid fuel more efficiently and maintain flame stabilization. In other words, flame holding can be maintained with less oxygen.
- the hybrid rocket fuel combustion method of the present disclosure includes heating a hydrogen peroxide solution in a combustion chamber equipped with a solid fuel. supplying in a state.
- the second combustion method of the present disclosure includes supplying hot hydrogen peroxide solution to a combustion chamber with solid fuel.
- the second combustion method of the present disclosure is characterized in that the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight or mass. In other words, it is characterized by using a low-concentration hydrogen peroxide solution.
- the inventors of the present application believe that it is difficult to vaporize hydrogen peroxide in the combustion chamber with a low-concentration hydrogen peroxide solution, and have proposed to supply the low-concentration hydrogen peroxide solution to the combustion chamber in a heated state. investigated. By supplying the high-temperature hydrogen peroxide solution to the combustion chamber, the energy required for vaporizing the hydrogen peroxide solution in the combustion chamber is reduced, and it is expected that the combustion will be promoted.
- the second combustion method of the present disclosure is characterized by supplying a heated hydrogen peroxide solution to a combustion chamber containing a solid fuel.
- supplying the hydrogen peroxide solution in a heated state to the combustion chamber it is possible to achieve main combustion accompanied by flame or flame release, especially flame holding, and to sustain main combustion.
- main combustion accompanied by flame or flame release, especially flame holding, and to sustain main combustion.
- the temperature of the hydrogen peroxide solution supplied to the combustion chamber is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 130°C or higher.
- the place where the hydrogen peroxide solution is heated is not particularly limited.
- it may be heated in a hydrogen peroxide supply source (56) or in a hydrogen peroxide solution supply line (55).
- the heating may be performed at any point in the hydrogen peroxide solution supply line (55), for example, the hydrogen peroxide supply source of the hydrogen peroxide solution supply line (55).
- (56) side may be heated, and combustion chamber (52) side may be heated.
- a heating means for heating the hydrogen peroxide solution is not particularly limited, and a heat exchanger, a heater, or the like can be used.
- the first combustion method and the second combustion method of the present disclosure may be combined.
- the hydrogen peroxide solution may be heated and supplied to the combustion chamber. That is, high-temperature hydrogen peroxide solution and oxygen may be supplied to the combustion chamber.
- Combining the first combustion method and the second combustion method of the present disclosure makes it easier to sustain the main combustion, especially flame holding.
- the hybrid rocket fuel combustion apparatus of the present disclosure (hereinafter sometimes referred to as the "first combustion apparatus of the present disclosure”) includes a combustion chamber for containing a solid fuel and a and a line for supplying hydrogen peroxide solution.
- a line for supplying oxygen and a line for supplying hydrogen peroxide may be connected to the combustion chamber.
- the hydrogen peroxide concentration in the hydrogen peroxide solution is less than 65% by weight. In other words, a low-concentration hydrogen peroxide solution can be used.
- the combustion device (10) of the present disclosure includes a combustion chamber (2) for containing a solid fuel (1) and a line (or oxygen supply line) (3) for supplying oxygen. and a line for supplying hydrogen peroxide water (or hydrogen peroxide water supply line) (5).
- An oxygen supply line (3) and a hydrogen peroxide solution supply line (5) may be connected to the combustion chamber (2).
- the oxygen supply line (3) and the hydrogen peroxide solution supply line (5) may be directly connected to the combustion chamber (2) as shown in FIGS. 1 and 2, for example.
- FIG. 3 after the oxygen supply line (3) and the hydrogen peroxide solution supply line (5) are connected, they may be indirectly connected to the combustion chamber (2) via a mixed flow line.
- the oxygen supply line (3) may be connected to an oxygen supply source (4), such as an oxygen tank or a storage tank of liquid oxygen.
- the hydrogen peroxide solution supply line (5) may be connected to a hydrogen peroxide solution supply source (6) (eg, a hydrogen peroxide solution storage tank, etc.).
- the first combustion device of the present disclosure may further comprise ignition means (7) as detailed below.
- the first combustion device of the present disclosure is characterized in that the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65% by weight or mass. In other words, a low-concentration hydrogen peroxide solution can be used.
- low-concentration hydrogen peroxide solution and oxygen can be supplied to the combustion chamber (2) through the hydrogen peroxide solution supply line (5) and the oxygen supply line (3), respectively.
- a small amount of oxygen may be supplied to the combustion chamber (2) via the oxygen supply line (3).
- the oxygen can contribute to the combustion of the solid fuel (1) in the combustion chamber (2) as "assist oxygen", and in particular can achieve flame stabilization during the combustion of the solid fuel (1). .
- the oxygen supply line and the hydrogen peroxide solution supply line may be "directly” connected to the combustion chamber.
- the oxygen supply line and the hydrogen peroxide solution supply line may be combined with each other and connected "indirectly” to the combustion chamber.
- directly connecting the oxygen supply line and the hydrogen peroxide solution supply line to the combustion chamber means that the oxygen supply line (3) and the hydrogen peroxide solution supply line (5) as shown in FIG. ) can be independently connected to the combustion chamber (2) without being connected to each other.
- the oxygen supply line (23) and the hydrogen peroxide solution supply line (25) may be separately connected to the combustion chamber (22).
- the flow rates of oxygen and hydrogen peroxide can be adjusted more appropriately.
- the oxygen flow rate relative to the hydrogen peroxide solution can be adjusted more appropriately.
- the fact that the oxygen supply line and the hydrogen peroxide solution supply line are combined with each other and “indirectly” connected to the combustion chamber means that the oxygen supply line (33) and the hydrogen peroxide solution as shown in FIG. It means that the supply lines (35) can be connected to each other and connected to the combustion chamber (32) via the mixing line (L1) via the mixing point (P1).
- a purge line (102) may be connected as shown in FIG.
- the first combustion device of the present disclosure includes the oxygen supply line and the hydrogen peroxide solution supply line, the amounts of oxygen and hydrogen peroxide solution can be controlled more appropriately.
- the first combustion device of the present disclosure can supply a smaller amount of oxygen (assist oxygen) to the hydrogen peroxide solution. More specifically, oxygen can be supplied to the hydrogen peroxide solution at a weight ratio of, for example, 10% or more and 50% or less, preferably 25% or more and 50% or less. By supplying oxygen to the combustion chamber at such a rate, combustion of the solid fuel and flame stabilization can be more appropriately maintained.
- the amount of supplied oxygen may be increased as the concentration of the hydrogen peroxide solution is reduced. By doing so, combustion and flame holding of the solid fuel can be maintained more appropriately.
- the hybrid rocket fuel combustion device of the present disclosure (hereinafter sometimes referred to as the “second combustion device of the present disclosure”) includes a combustion chamber for containing a solid fuel and a hydrogen peroxide solution. A supply line and a heating means for heating the hydrogen peroxide solution are provided.
- the location of the heating means is not particularly limited. For example, it may be placed inside or outside the hydrogen peroxide supply source (56), or it may be placed in the middle of the hydrogen peroxide solution supply line (55). When placed in the middle of the hydrogen peroxide solution supply line (55), it may be placed anywhere in the hydrogen peroxide solution supply line (55). It may be located closer to the supply source (56) or closer to the combustion chamber (52).
- heating means examples include heat exchangers and heaters.
- FIG. 1 shows a hybrid rocket fuel combustion apparatus 10 according to a first embodiment of the present disclosure.
- Combustion device 10 corresponds to the first combustion device of the present disclosure.
- Combustion device 10 includes combustion chamber 2 for containing solid fuel 1, line 3 for supplying oxygen (oxygen supply line or simply line), and line 5 for supplying hydrogen peroxide water (peroxide hydrogen water supply line or simply line). Lines 3 and 5 can each be independently connected to combustion chamber 2 .
- Lines 3 and 5 may optionally be coupled together and connected to combustion chamber 2 as a mixed flow line (see FIGS. 3 and 4).
- Lines 3 and 5 are independently equipped with filters, orifices, valves (needle valves, ball valves, check valves, etc.), nozzles, meters (flow meters, etc.), sensors (temperature sensors, pressure sensors, etc.), regulators, injectors and/or atomizers, etc. may be coupled.
- An oxygen supply source 4 may be connected to the line 3 .
- the oxygen supply source 4 is not particularly limited as long as it can supply gaseous or liquid oxygen.
- the oxygen supply source 4 may be provided with a regulator (not shown) for adjusting the flow rate.
- a hydrogen peroxide water supply source 6 may be connected to the line 5 .
- the hydrogen peroxide solution supply source 6 is not particularly limited as long as it can supply liquid hydrogen peroxide solution.
- a hydrogen peroxide solution storage tank or the like can be used as the hydrogen peroxide solution supply source 6, for example, a hydrogen peroxide solution storage tank or the like can be used.
- Combustion chamber 2 (“rocket motor”, “motor assembly” or “motor”) with solid fuel 1 includes injectors, atomizers, catalysts, nozzles, jackets (e.g. water-cooled jackets) to further improve combustion efficiency. ) and the like may be provided as necessary.
- the solid fuel 1 may be arranged inside the combustion chamber 2, for example, wrapped in a heat insulating material.
- a heat insulating material for example, glass fiber reinforced plastic (GFRP) or the like can be used as the heat insulating material.
- tandem multistage impingement jet (CAMUI) type fuel grains shown in FIG. 17 may be used.
- An ignition means 7 may be connected to the motor (hereinafter also referred to as “igniter” or “ignition device”).
- the ignition means 7 is not particularly limited as long as it can burn at least oxygen by ignition. Ignition by the ignition means 7 includes, for example, arc ignition, laser ignition, solid explosive ignition, electric plasma ignition, gas torch ignition and/or heat ignition. There are no particular restrictions on the timing of ignition.
- oxygen and hydrogen peroxide water can be supplied to the combustion chamber 2 independently from the oxygen supply source 4 and the hydrogen peroxide water supply source 6, respectively. Therefore, the flow rates of oxygen and hydrogen peroxide can be adjusted appropriately. In particular small amounts of oxygen (or assist oxygen) can be supplied to the combustion chamber 2 . In the combustion device 10 , both oxygen and hydrogen peroxide can be supplied to the combustion chamber 2 . More preferably, oxygen and hydrogen peroxide solution can be supplied to the combustion chamber 2 at the same time.
- oxygen and hydrogen peroxide water can be supplied to the combustion chamber 2 in parallel from the oxygen supply source 4 and the hydrogen peroxide water supply source 6 .
- the hydrogen peroxide solution may be supplied to the combustion chamber 2 charged with oxygen, preferably while supplying oxygen, or after supplying oxygen from the oxygen supply source 4 to the combustion chamber 2, preferably may supply hydrogen peroxide water from the hydrogen peroxide water supply source 6 to the combustion chamber 2 while supplying oxygen. More specifically, the supply of oxygen from the oxygen supply source 4 to the combustion chamber 2 is started, and after ignition by the ignition means 7, oxygen is continuously supplied from the oxygen supply source 4 to the combustion chamber 2, and the combustion chamber 2 is started.
- the hydrogen peroxide solution can be supplied from the hydrogen peroxide solution supply source 6 to the .
- the concentration of hydrogen peroxide in the hydrogen peroxide solution is less than 65%, preferably 60% or less on a weight basis or mass basis.
- FIG. 2 shows a hybrid rocket fuel combustion apparatus 20 according to a second embodiment of the present disclosure.
- the combustion device 20 is, for example, a more specific representation of the combustion device 10 shown in FIG.
- Combustion device 20 corresponds to the first combustion device of the present disclosure.
- the combustion device 20 can be configured in the same manner as the combustion device 10 shown in FIG . .
- an oxygen tank capable of supplying gaseous oxygen, for example, can be used as the oxygen supply source 24 .
- a regulator R 1 may be connected to the oxygen supply 24 to regulate the flow rate of oxygen flowing out of the oxygen supply 24 .
- An oxygen supply line 23, which may be connected to an oxygen supply 24 and regulator R1 may be connected to combustion chamber 22 via valve V1.
- Valve V 1 may optionally be connected to a controller (not shown) to better regulate the flow of oxygen through oxygen supply line 23 .
- the valve V 2 may be arranged in the hydrogen peroxide solution supply line 25 that may be provided between the hydrogen peroxide solution supply source 26 and the combustion chamber 22 .
- the valve V2 may be connected to a controller (not shown) as necessary, so that the flow rate of the hydrogen peroxide solution passing through the hydrogen peroxide solution supply line 25 can be adjusted more appropriately.
- a pumping tank 28 capable of supplying a pumping gas such as nitrogen may be connected to the hydrogen peroxide solution supply source 26 via a pumping line 29 .
- a nitrogen tank capable of supplying gaseous nitrogen can be used. Nitrogen gas is preferred because it is inexpensive. Other inert gases such as helium, argon, etc. may also be used.
- a regulator R2 may be connected to the pressure feeding tank 28, and the flow rate of the gas flowing out of the pressure feeding tank 28 and the hydrogen peroxide water flowing out from the hydrogen peroxide water supply source 26 via the line 25 can be controlled more appropriately. can be adjusted.
- valves V1 and V2 are provided to adjust the ratio of oxygen to the hydrogen peroxide solution, for example, from 10% to 50%, preferably from 25% to 50% on a weight basis.
- the assist amount of oxygen can be more appropriately supplied to the combustion chamber.
- FIG. 3 shows a hybrid rocket fuel combustion apparatus 30 according to a third embodiment of the present disclosure.
- Combustion device 30 is, for example, a modification of combustion device 20 shown in FIG.
- Combustion device 30 corresponds to the first combustion device of the present disclosure.
- the combustion device 30 is the same as the combustion device 20 shown in FIG. Can be configured.
- the mixed flow line L1 may be part of the oxygen supply line 33 or part of the hydrogen peroxide solution supply line 35 . By providing the mixed flow point P1 and the mixed flow line L1, the hydrogen peroxide solution can be sprayed more efficiently.
- combustion chamber 32, oxygen supply line 33, oxygen supply source 34, hydrogen peroxide solution supply line 35, hydrogen peroxide solution supply source 36, ignition means 37, pumping tank 38, pumping line 39, Valves (V 3 , V 4 ) and regulators (R 3 , R 4 ) are connected to solid fuel 21, combustion chamber 22, oxygen supply line 23, oxygen supply source 24, hydrogen peroxide water supply line 25, It corresponds to the hydrogen peroxide water supply source 26, the ignition means 27, the pumping tank 28, the pumping line 29, the valves (V1, V2 ), and the regulators ( R1 , R2 ).
- Combustion chamber 32 can be co-fed appropriately.
- an injector, an atomizer and/or a catalyst can be connected to the mixed flow line L1 as required.
- another member such as an adapter or a manifold may be separately provided at the mixed flow point P1 between the oxygen supply line 33 and the hydrogen peroxide solution supply line 35 .
- FIG. 4 shows a hybrid rocket fuel combustion apparatus 40 according to a fourth embodiment of the present disclosure.
- Combustion device 40 is, for example, a modification of combustion device 30 shown in FIG.
- Combustion device 40 corresponds to the first combustion device of the present disclosure.
- the combustion device 40 is the same as the combustion device 30 shown in FIG. It can be configured similarly.
- the mixed flow line L3 may be part of the oxygen supply line 43 or part of the hydrogen peroxide solution supply line 45 .
- combustion chamber 42, oxygen supply line 43, oxygen supply source 44, hydrogen peroxide solution supply line 45, hydrogen peroxide solution supply source 46, ignition means 47, pump tank 48, pump line 49, Valves (V 5 , V 6 ), regulators (R 5 , R 6 ), mixed flow point P 2 , and mixed flow line L 2 are solid fuel 31, combustion chamber 32, oxygen supply line 33, and oxygen supply source shown in FIG. 34, hydrogen peroxide water supply line 35, hydrogen peroxide water supply source 36, ignition means 37, pressure feed tank 38, pressure feed line 39, valves ( V3 , V4), regulators (R3 , R4 ), mixed flow point P 1 , corresponds to mixed flow line L 1 .
- the combustion device 40 By providing the combustion device 40 with the purge tank 101, the purge line 102, the mixing point P3 , the mixing line L3 , the valve V7 and the regulator R7 , for example, it is possible to purge the combustion chamber 42 after the end of combustion. Purging of the combustion chamber 42 is preferably performed before and/or after the start of the combustion cycle.
- the purge tank 101 for example, a nitrogen tank capable of supplying gaseous nitrogen can be used. Nitrogen gas is preferred because it is inexpensive. Other inert gases such as helium, argon, etc. may also be used.
- a regulator R7 may be connected to the purge tank 101 so that the flow rate of the purge gas flowing out of the purge tank 101 can be more appropriately adjusted. Valve V 7 may optionally be connected to a controller (not shown) to better regulate the flow of purge gas through purge line 102 .
- a mixed flow point P3 may be provided in the mixed flow line L2.
- each feature may be used in combination as appropriate, and other features (such as valves, filters, orifices, nozzles, meters, sensors, actuators, regulators, injectors and/or atomizers). can be added as needed.
- other features such as valves, filters, orifices, nozzles, meters, sensors, actuators, regulators, injectors and/or atomizers.
- FIG. 5 shows a hybrid rocket fuel combustion apparatus 50 according to a fifth embodiment of the present disclosure.
- Combustion device 50 corresponds to the second combustion device of the present disclosure.
- the combustion device 50 includes a combustion chamber 52 for containing a solid fuel 51, a line 55 for supplying hydrogen peroxide water (a hydrogen peroxide water supply line or simply a line), and a hydrogen peroxide water supply line for heating the hydrogen peroxide water. of heating means 58 are provided.
- a line 55 is connected to the combustion chamber 52 .
- Line 55 may be the same as line 5 of combustion device 10 shown in FIG.
- the heating means 58 may be installed at any position on the line 55. Preferably, the heating means 58 are provided near the inlet to the combustion chamber 52 .
- Example 1 Preparation of Combustion Apparatus A combustion apparatus was assembled as shown in FIG.
- Solid fuel CAMUI (CAscaded MUltistage Impinging-jet) solid fuel made of polymethyl methacrylate (PMMA) (see Fig. 17), spacer made of polymethyl methacrylate (PMMA) (8 mm) was used (Fig. 6(A)).
- Combustion chamber A motor case made of polymethylmethacrylate (PMMA) was used for visualization of the interior (with a graphite nozzle at the bottom (nozzle diameter: 4 mm)).
- Ignition means Nichrome wire (heating element) connected to DC power supply (24V)
- Oxygen source Oxygen tank Oxygen supply line: Stainless steel tubing (1/4 inch Swagelok® tubing)
- Aqueous hydrogen peroxide source storage tank of 60 wt% aqueous hydrogen peroxide (pumped with nitrogen)
- Hydrogen peroxide water supply line stainless steel tube (1/4 inch Swagelok (registered trademark) tube)
- Injector Top of motor case
- FIG. 6(A) shows the state of "before ignition
- FIG. 6(B) shows the state of "ignition”
- FIG. 6(C) shows the state of "flame holding”
- FIG. Indicates the "supply stop” status.
- FIG. 6(E) compares the state of the flame at the time of ignition (left) and the state of the flame at the time of holding the flame (right).
- FIG. 7 shows the history of combustion experiments conducted in Example 1.
- FIG. 7 After starting the supply of gaseous oxygen to the combustion chamber (flow rate: 1.5 g / s) and igniting (heating) for 2 seconds, hydrogen peroxide is supplied to the combustion chamber while supplying gaseous oxygen to the combustion chamber.
- molar ratio of oxygen: hydrogen peroxide 30:70
- gaseous oxygen and hydrogen peroxide Simultaneous supply with water shifted to main combustion, and flame stabilization could be maintained for at least 5 seconds (see FIG. 6(C)).
- the combustion chamber pressure rose to just before 0.6 MPa at maximum.
- Example 2 Start supplying gaseous oxygen to the combustion chamber (flow rate: 1.5 g/s), and after ignition for 2 seconds, supply hydrogen peroxide water at a flow rate of 3 g/s while supplying gaseous oxygen to the combustion chamber.
- the combustion chamber pressure rose to just before 0.5 MPa at maximum.
- FIG. 8 shows the history of the combustion experiment.
- the simultaneous supply of gaseous oxygen and hydrogen peroxide water allowed the transition to main combustion, and the flame holding could be maintained for at least 5 seconds.
- Example 3 After starting the supply of gaseous oxygen to the combustion chamber (flow rate: 1.5 g / s) and igniting for 2 seconds, while supplying gaseous oxygen to the combustion chamber, hydrogen peroxide solution is supplied for 2 seconds, and then A combustion experiment was conducted in the same manner as in Example 1, except that the supply of gaseous oxygen was stopped and then only the hydrogen peroxide solution was supplied at a flow rate of 2.5 g/s for 4 seconds.
- FIG. 9 shows the history of combustion experiments. Also in Example 3, the simultaneous supply of gaseous oxygen and hydrogen peroxide water allowed the transition to main combustion, and the flame holding could be maintained for at least 2 seconds. However, the flame extinguished immediately after the supply of gaseous oxygen was stopped.
- Example 7 A combustion device was assembled as shown in FIG.
- Solid fuel CAMUI (CAscaded MUltistage Impinging-jet) solid fuel made of polymethyl methacrylate (PMMA) (see Fig. 17), spacer made of polymethyl methacrylate (PMMA) (8 mm) was used.
- Combustion chamber A motor case made of polymethylmethacrylate (PMMA) was used for visualization of the interior (with a graphite nozzle at the bottom (nozzle diameter: 4 mm)).
- Ignition means Nichrome wire (heating element) connected to DC power supply (24V)
- Aqueous hydrogen peroxide source storage tank of 60 wt% aqueous hydrogen peroxide (pumped with nitrogen)
- Hydrogen peroxide water supply line stainless steel tube (1/4 inch Swagelok (registered trademark) tube)
- Heating means heat exchanger (150°C) Injector: Top of motor case
- FIGS. The combustion cycle and combustion results are shown in the combustion histories of FIGS.
- a voltage of 24 V was applied to the nichrome wire and the nichrome wire was heated for 8 seconds.
- B A hydrogen peroxide solution was supplied at a flow rate of 1.2 to 2.3 g/s.
- C Ignited for 2 seconds.
- D Supplying hydrogen peroxide solution for 50 seconds
- E Stopping supply of hydrogen peroxide solution
- FIG. 11 and 12 show the history of combustion experiments conducted in Example 7.
- FIG. Start supplying heated hydrogen peroxide water to the combustion chamber (flow rate: 1.2 to 2.3 g/s), ignite (heat) for 2 seconds, and then heat hydrogen peroxide to the combustion chamber When water was continued to be supplied, main combustion was initiated, and flame stabilization could be maintained for at least 50 seconds.
- the temperature of the hydrogen peroxide solution near the supply port to the combustion chamber was 120° C. or higher.
- the combustion chamber pressure rose to just before 0.2 MPa at maximum.
- Comparative example 1 After starting the supply of gaseous oxygen to the combustion chamber (flow rate: 2 g/s) and igniting for 2 seconds, the supply of gaseous oxygen to the combustion chamber is stopped and only hydrogen peroxide solution is supplied to the combustion chamber. The flame extinguished immediately (flow rate: 8 g/s).
- FIG. 13 shows the history of the combustion experiment.
- Comparative example 2 The supply of gaseous oxygen to the combustion chamber was started (flow rate: 2.8 g/s), and after ignition for 2 seconds, only gaseous oxygen was continuously supplied to the combustion chamber for 3 seconds (flow rate: 2.8 g /s), ignition was confirmed. Combustion chamber pressure generally increased only to 0.4 MPa.
- FIG. 14 shows the history of combustion experiments.
- Comparative example 3 After starting the supply of gaseous oxygen to the combustion chamber (flow rate: 2 g/s) and igniting for 2 seconds, the supply of gaseous oxygen to the combustion chamber is stopped and only hydrogen peroxide solution is supplied to the combustion chamber. Then (flow rate: 3 g/s), the flame extinguished immediately.
- FIG. 15 shows the history of combustion experiments.
- Comparative example 4 Start supplying gaseous oxygen to the combustion chamber (flow rate: 2 g/s), and after ignition for 3 seconds, stop supplying gaseous oxygen to the combustion chamber and supply only hydrogen peroxide solution to the combustion chamber. The flame extinguished immediately (flow rate: 5.1 g/s). Combustion chamber pressure generally increased only to 0.2 MPa.
- Comparative example 5 Start supplying gaseous oxygen to the combustion chamber (flow rate: 2 g/s), and after ignition for 3 seconds, stop supplying gaseous oxygen to the combustion chamber and supply only hydrogen peroxide solution to the combustion chamber. The flame extinguished immediately (flow rate: 3.1 g/s). Combustion chamber pressure generally increased only to 0.2 MPa.
- Comparative example 6 Start supplying gaseous oxygen to the combustion chamber (flow rate: 2 g/s), and after ignition for 3 seconds, stop supplying gaseous oxygen to the combustion chamber and supply only hydrogen peroxide solution to the combustion chamber. The flame extinguished immediately (flow rate: 10.5 g/s).
- the combustion chamber pressure was raised to 0.6 MPa using a melting nozzle, but the flame could not be stabilized.
- Comparative Examples 1 and 3 to 6 in which only aqueous hydrogen peroxide was supplied, the flame extinguished as soon as hydrogen peroxide was supplied, and the flame could not be stabilized.
- Comparative Example 2 in which only gas oxygen was supplied, ignition was confirmed, and the combustion chamber pressure in the combustion experiment conducted only with gas oxygen was obtained.
- the combustion method and combustion apparatus of the present disclosure use low-concentration (less than 65% by weight) hydrogen peroxide water as a propellant, so they are excellent in safety, transportability, storability, availability, etc., and oxygen. Since it has improved combustibility by supplying it, it can be used for kick motors of hybrid rockets.
- Innovative orbital change capabilities can be obtained with the combustion method and apparatus of the present disclosure.
- the combustion methods and devices of the present disclosure can provide acceleration capabilities of 0.7-1.2 km/s, such as from a geostationary transfer orbit (GTO) to, for example, the Moon, Mars, and Venus. You can transfer to a flyby orbit.
- GTO geostationary transfer orbit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
また、国際宇宙探査計画で検討されている月周回有人拠点「ゲートウェイ(Gateway)」の軌道からであれば、0.7km/sの増速で火星フライバイ軌道への遷移が可能となる。
このように0.7~1.2km/sの加速能力があれば、静止遷移軌道(GTO)などから、月や火星、金星へのフライバイ軌道などに簡単に乗り換えることができる。
また、亜酸化窒素も推進剤として使用することができるが、臨界温度である36.7℃を超えると、急激に密度が低下して、容器が破裂する虞がある。
例えば、低濃度(具体的には65重量%未満)の過酸化水素水をポリエチレン燃料のハイブリッドロケットの推進剤(具体的には酸化剤)として使用した場合、火炎温度が2200Kを超え、燃焼ガスの主成分が水(H2O、分子量18)であることから、理論的には比推力が高く、真空中での比推力が290秒を超えることになる(図16参照)。また、ノズルを侵食する可能性も低い。
従って、低濃度(具体的には65重量%未満)の過酸化水素水は、安全性、輸送性、貯蔵性、入手性ととともに、優れた理論性能を備える。
さらに、本発明では、固体燃料を収容するための燃焼室と、酸素を供給するためのラインと、過酸化水素水を供給するためのラインとを備え、前記酸素を供給するためのラインおよび前記過酸化水素水を供給するためのラインが前記燃焼室に接続されており、前記過酸化水素水における過酸化水素の濃度が重量基準で65%未満である、ハイブリッドロケット燃料の燃焼装置が提供される。
一の態様において、本発明は、過酸化水素水における過酸化水素の濃度が重量基準で65%未満であり、このような過酸化水素水とともに酸素、好ましくは少量の酸素(以下、「アシスト酸素」と呼ぶ場合もある)をハイブリッドロケット燃料の燃焼室に供給することを特徴とする。
酸素供給ライン(3)および過酸化水素水供給ライン(5)は、燃焼室(2)に接続されてよい。
ここで、酸素供給ライン(3)は、酸素供給源(4)(例えば酸素タンク、液体酸素の貯蔵タンクなど)に接続されていてよい。過酸化水素水供給ライン(5)は、過酸化水素水供給源(6)(例えば過酸化水素水の貯蔵タンクなど)に接続されていてよい。
本開示のハイブリッドロケット燃料の燃焼装置(10)において、過酸化水素水における過酸化水素の濃度は重量基準で65%未満、好ましくは60%以下であることを特徴とする。
別の態様において、本発明は、過酸化水素水における過酸化水素の濃度が重量基準で65%未満であり、このような過酸化水素水を加熱した状態で、好ましくは100℃以上に加熱した状態で、ハイブリッドロケット燃料の燃焼室に供給することを特徴とする。
ここで、過酸化水素水供給ライン(55)は、過酸化水素水供給源(56)(例えば過酸化水素水の貯蔵タンクなど)に接続されていてよい。
本開示のハイブリッドロケット燃料の燃焼装置(50)において、過酸化水素水における過酸化水素の濃度は重量基準で65%未満、好ましくは60%以下であることを特徴とする。
本開示において「ロケット」とは、広義には、大気中の酸素の助けを借りることなく、燃焼生成ガスなどの物質を後方に噴射することにより、その反動で前進する噴流推進機関を意味する。狭義には、推力を発生するエネルギー源として燃焼を用いる化学ロケットを意味する。
本開示において「ハイブリッドロケット」とは、より具体的には、固体燃料を備えた燃焼室に液体または気体の酸化剤を供給することによって燃焼を起こし、生成したガスを噴射してその反動で進むロケットを意味する。
(態様1)
一の態様における本開示のハイブリッドロケット燃料の燃焼方法(以下、「本開示の第一の燃焼方法」と呼ぶ場合もある)は、固体燃料を備えた燃焼室に酸素および過酸化水素水を供給することを含んで成る。
本開示の第一の燃焼方法は、過酸化水素水における過酸化水素の濃度が重量基準または質量基準で65%未満であることを特徴とする。換言すると、低濃度の過酸化水素水を使用することを特徴とする。
低濃度の過酸化水素水は、これまでの研究によって、ハイブリッドロケットにおける固体燃料の酸化剤として一応に使用できることは知られていた。
しかし、固体燃料の燃焼を「推力を発生させるような火炎や放炎、特に保炎を伴う本燃焼」と「本燃焼に至る火種をつくるための点火」とにわけた場合、低濃度の過酸化水素水については触媒で分解してから供給すれば燃焼はするが、そのまま触媒を通さずに噴霧した場合、保炎を伴うような「本燃焼」にまでは至らないことが問題であった。
本願発明者らは、低濃度の過酸化水素水では燃焼室内での過酸化水素の気化が困難であると考え、低濃度の過酸化水素水とともに酸素(気体であっても液体であってよい)を燃焼室内に補助的に供給することを検討した。換言すると過酸化水素水による固体燃料の燃焼の「アシスト」として酸素を提供することを検討した。
燃焼室内に酸素を供給することで点火の際に燃焼室内の温度が上昇し、その熱によって過酸化水素(沸点:62.8℃(21mmHg)、80℃(46mmHg)、151.4℃(760mmHg))をさらに気化させることで過酸化水素水中に含まれ得る過酸化水素の分解、ひいては燃焼室内での酸素分圧の上昇が期待できる。
そこで本開示の第一の燃焼方法では、固体燃料を備えた燃焼室に低濃度の過酸化水素水とともに“酸素”を燃焼室内に供給することを特徴とする。
低濃度の過酸化水素水とともに“酸素”を燃焼室内に供給することで「点火」だけでなく、火炎や放炎、特に保炎を伴う「本燃焼」ならびに「本燃焼」の“持続”を達成することができる。特に従前のように触媒を使用することなく、低濃度の過酸化水素水を用いて固体燃料を燃焼させることができる。
本開示において「並行供給」とは、酸素および過酸化水素水をそれぞれ別々の供給源から供給することを意味する。酸素と過酸化水素とを同時に供給することが好ましい。
過酸化水素水供給源(6)からライン(5)を経由して燃焼室(2)に過酸化水素水を供給することができる。
本開示において「燃焼をアシストする」とは、ハイブリッドロケット燃料の燃焼の際にハイブリッドロケット燃料(例えば、固体燃料と液体または気体の酸化剤とを組み合わせて使用する燃料)の燃焼に補助的に関与することを意味する。より具体的には、酸化剤として過酸化水素水を使用する場合、過酸化水素中に含まれる過酸化水素の気化や酸素への分解を促進することなどを意味する。
酸素の供給によって過酸化水素水から過酸化水素をより多く気化させることができ、より効率よく固体燃料を燃焼させて保炎を維持することができる。
予め酸素を燃焼室に供給して点火することで燃焼室の温度を上昇させた状態でさらに酸素を燃焼室に供給しつつ過酸化水素水を供給することによって過酸化水素がより多く気化することができ、より効率よく固体燃料を燃焼させて保炎を維持することができる。換言すると、より少ない量の酸素で保炎を維持することができる。
別の態様における本開示のハイブリッドロケット燃料の燃焼方法(以下、「本開示の第二の燃焼方法」と呼ぶ場合もある)は、固体燃料を備えた燃焼室に、過酸化水素水を加熱した状態で供給することを含んで成る。換言すれば、本開示の第二の燃焼方法は、固体燃料を備えた燃焼室に、高温の過酸化水素水を供給することを含む。
本開示の第二の燃焼方法は、過酸化水素水における過酸化水素の濃度が重量基準または質量基準で65%未満であることを特徴とする。換言すると、低濃度の過酸化水素水を使用することを特徴とする。
燃焼室に高温の過酸化水素水を供給することで、燃焼室内において過酸化水素水が気化するのに要するエネルギーが小さくなり、燃焼が促進されることが期待される。
(態様1)
一の態様における本開示のハイブリッドロケット燃料の燃焼装置(以下、「本開示の第一の燃焼装置」と呼ぶ場合もある)は、固体燃料を収容するための燃焼室と、酸素を供給するためのラインと、過酸化水素水を供給するためのラインとを備える。酸素を供給するためのラインおよび過酸化水素水を供給するためのラインは燃焼室に接続されてよい。過酸化水素水における過酸化水素の濃度は重量基準で65%未満である。換言すると、低濃度の過酸化水素水を使用することができる。
酸素供給ライン(3)および過酸化水素水供給ライン(5)は燃焼室(2)に接続されてよい。酸素供給ライン(3)および過酸化水素水供給ライン(5)は、例えば図1および図2に示すように直接的に燃焼室(2)に接続されてよい。あるいは、図3に示すように酸素供給ライン(3)と過酸化水素水供給ライン(5)とが結合された後に混流ラインを介して間接的に燃焼室(2)に接続されてよい。
酸素供給ライン(3)は、酸素供給源(4)(例えば、酸素タンクまたは液体酸素の貯蔵タンクなど)に接続されてよい。
過酸化水素水供給ライン(5)は、過酸化水素水供給源(6)(例えば、過酸化水素水の貯蔵タンクなど)に接続されてよい。
本開示の第一の燃焼装置は、以下にて詳説する点火手段(7)をさらに備えてよい。
別の態様における本開示のハイブリッドロケット燃料の燃焼装置(以下、「本開示の第二の燃焼装置」と呼ぶ場合もある)は、固体燃料を収容するための燃焼室と、過酸化水素水を供給するためのラインと、過酸化水素水を加熱するための加熱手段とを備える。
図1に本開示の第1実施形態に係るハイブリッドロケット燃料の燃焼装置10を示す。燃焼装置10は、本開示の第一の燃焼装置に相当する。
燃焼装置10は、固体燃料1を収容するための燃焼室2と、酸素を供給するためのライン3(酸素供給ラインまたは単にライン)と、過酸化水素水を供給するためのライン5(過酸化水素水供給ラインまたは単にライン)とを備える。ライン3およびライン5は、それぞれ独立して燃焼室2に接続することができる。
図2に本開示の第2実施形態に係るハイブリッドロケット燃料の燃焼装置20を示す。燃焼装置20は、例えば図1に示す燃焼装置10をより具体的に示したものである。燃焼装置20は、本開示の第一の燃焼装置に相当する。
例えば、燃焼装置20は、バルブV1,V2、レギュレータR1,R2、圧送タンク28および圧送ライン29を設けたこと以外は、図1に示す燃焼装置10と同様に構成することができる。
図2に示す固体燃料21、燃焼室22、酸素供給ライン23、酸素供給源24、過酸化水素水供給ライン25、過酸化水素水供給源26および点火手段27は、それぞれ図1に示す固体燃料1、燃焼室2、酸素供給ライン3、酸素供給源4、過酸化水素水供給ライン5、過酸化水素水供給源6および点火手段7に対応する。
酸素供給源24およびレギュレータR1に接続され得る酸素供給ライン23は、バルブV1を介して、燃焼室22に接続されてよい。
バルブV1は、必要に応じてコントローラ(図示せず)に接続されていてよく、酸素供給ライン23を通過する酸素の流量をより適切に調節することができる。
バルブV2は、必要に応じてコントローラ(図示せず)に接続されていてよく、過酸化水素水供給ライン25を通過する過酸化水素水の流量をより適切に調節することができる。
圧送タンク28にはレギュレータR2が接続されていてよく、圧送タンク28から流出するガス、ひいては過酸化水素水供給源26からライン25を経由して流出する過酸化水素水の流量をより適切に調節することができる。
図3に本開示の第3実施形態に係るハイブリッドロケット燃料の燃焼装置30を示す。燃焼装置30は、例えば図2に示す燃焼装置20を改変したものである。燃焼装置30は、本開示の第一の燃焼装置に相当する。
具体的には、燃焼装置30は、酸素供給ライン33と過酸化水素水供給ライン35との混流ポイントP1および混流ラインL1を設けたこと以外は、図2に示す燃焼装置20と同様に構成することができる。なお、混流ラインL1は、酸素供給ライン33の一部であっても、過酸化水素水供給ライン35の一部であってもよい。
混流ポイントP1および混流ラインL1を設けることによって、過酸化水素水をより効率よく噴霧することができる。
図3に示す固体燃料31、燃焼室32、酸素供給ライン33、酸素供給源34、過酸化水素水供給ライン35、過酸化水素水供給源36、点火手段37、圧送タンク38、圧送ライン39、バルブ(V3,V4)、レギュレータ(R3,R4)は、それぞれ図2に示す固体燃料21、燃焼室22、酸素供給ライン23、酸素供給源24、過酸化水素水供給ライン25、過酸化水素水供給源26、点火手段27、圧送タンク28、圧送ライン29、バルブ(V1,V2)、レギュレータ(R1,R2)に対応する。
図4に本開示の第4実施形態に係るハイブリッドロケット燃料の燃焼装置40を示す。燃焼装置40は、例えば図3に示す燃焼装置30を改変したものである。燃焼装置40は、本開示の第一の燃焼装置に相当する。
具体的には、燃焼装置40は、パージタンク101、パージライン102、混流ポイントP3、混流ラインL3、バルブV7およびレギュレータR7を設けたこと以外は、図3に示す燃焼装置30と同様に構成することができる。なお、混流ラインL3は、酸素供給ライン43の一部であっても、過酸化水素水供給ライン45の一部であってもよい。
図4に示す固体燃料41、燃焼室42、酸素供給ライン43、酸素供給源44、過酸化水素水供給ライン45、過酸化水素水供給源46、点火手段47、圧送タンク48、圧送ライン49、バルブ(V5,V6)、レギュレータ(R5,R6)、混流ポイントP2、混流ラインL2は、それぞれ図3に示す固体燃料31、燃焼室32、酸素供給ライン33、酸素供給源34、過酸化水素水供給ライン35、過酸化水素水供給源36、点火手段37、圧送タンク38、圧送ライン39、バルブ(V3,V4)、レギュレータ(R3,R4)、混流ポイントP1、混流ラインL1に対応する。
パージタンク101にはレギュレータR7が接続されてよく、パージタンク101から流出するパージガスの流量をより適切に調節することができる。
バルブV7は、必要に応じてコントローラ(図示せず)に接続されていてよく、パージライン102を通過するパージガスの流量をより適切に調節することができる。
図5に本開示の第5実施形態に係るハイブリッドロケット燃料の燃焼装置50を示す。燃焼装置50は、本開示の第二の燃焼装置に相当する。
燃焼装置50は、固体燃料51を収容するための燃焼室52と、過酸化水素水を供給するためのライン55(過酸化水素水供給ラインまたは単にライン)と、過酸化水素水を加熱するための加熱手段58を備える。ライン55は、燃焼室52に接続される。
燃焼装置の準備
図3に示すように燃焼装置を組み立てた。
固体燃料:ポリメチルメタクリレート(PMMA)から作製された縦列多段衝突噴流方式(CAMUI(CAscaded MUltistage Impinging-jet) type)の固体燃料(図17参照)、同じくポリメチルメタクリレート(PMMA)から作製されたスペーサー(8mm)を使用した(図6(A))。
燃焼室:内部を可視化するためにポリメチルメタクリレート(PMMA)から作製されたモーター・ケースを使用した(下端にグラファイトノズルを設けた(ノズル径:4mm))。
点火手段:DC電源(24V)に接続されたニクロム線(発熱体)
酸素供給源:酸素タンク
酸素供給ライン:ステンレス製の管(1/4インチ Swagelok(登録商標)社製のチューブ)
過酸化水素水供給源:60重量%過酸化水素水の貯蔵タンク(窒素で圧送)
過酸化水素水供給ライン:ステンレス製の管(1/4インチ Swagelok(登録商標)社製のチューブ)
インジェクタ:モーター・ケース上部
燃焼サイクルおよび燃焼結果を図7の写真および図7の燃焼履歴に示す。
(A-1)ニクロム線に24Vの電圧を印加し、ニクロム線を8秒間加熱した
(A-2)ガス酸素を1.5g/sの流量で供給した
(B)2秒間にわたって点火した
(C)ガス酸素を供給し続けたまま過酸化水素水を4.5g/sの流量で5秒間にわたって供給した(酸素:過酸化水素水の重量比=20:80)
(D)酸素および過酸化水素水の供給を停止した
燃焼室へのガス酸素の供給を開始し(流量:1.5g/s)、2秒間にわたって点火(加熱)した後、燃焼室にガス酸素を供給しつつ、この燃焼室に対して過酸化水素水を供給したところ(流量:4.5g/s)(酸素:過酸化水素水の重量比=20:80)(酸素:過酸化水素のモル比=30:70)、ガス酸素と過酸化水素水との同時供給によって本燃焼に推移し、少なくとも5秒間にわたって保炎を維持することができた(図6(C)参照)。
燃焼室圧力は最大で0.6MPa直前まで上昇した。
燃焼室へのガス酸素の供給を開始し(流量:1.5g/s)、2秒間にわたって点火した後、燃焼室にガス酸素を供給しつつ、過酸化水素水を3g/sの流量で供給したことを除いて(酸素:過酸化水素水の重量比=33:66)(酸素:過酸化水素のモル比=50:50)、実施例1と同様に燃焼実験を行った。燃焼室圧力は最大で0.5MPa直前まで上昇した。
燃焼実験の履歴を図8に示す。実施例2においてもガス酸素と過酸化水素水との同時供給によって本燃焼に推移し、少なくとも5秒間にわたって保炎を維持することができた。
燃焼室へのガス酸素の供給を開始し(流量:1.5g/s)、2秒間にわたって点火した後、燃焼室にガス酸素を供給しつつ、過酸化水素水を2秒間にわたって供給し、その後、ガス酸素の供給を停止し、その後、4秒間にわたって過酸化水素水のみを2.5g/sの流量で供給したことを除いて、実施例1と同様に燃焼実験を行った。
燃焼実験の履歴を図9に示す。実施例3においてもガス酸素と過酸化水素水との同時供給によって本燃焼に推移し、少なくとも2秒間にわたって保炎を維持することができた。ただし、ガス酸素の供給を停止した直後、火炎は消失した。
燃焼室へのガス酸素の供給を開始し(流量:2.0g/s)、3秒間にわたって点火した後、燃焼室にガス酸素を供給しつつ、過酸化水素水を2.5~3.5g/sの流量で供給したことを除いて(酸素:過酸化水素水の重量比=40:60)(酸素:過酸化水素のモル比=60:40)、実施例1と同様に燃焼実験を行った。燃焼室圧力は最大で0.68MPaまで上昇した。
燃焼実験の履歴を図10に示す。実施例4においてもガス酸素と過酸化水素水との同時供給によって本燃焼に推移し、少なくとも15秒間にわたって保炎を維持することができた。
燃焼室へのガス酸素の供給を開始し(流量:2.0g/s)、3秒間にわたって点火した後、燃焼室にガス酸素を供給しつつ、過酸化水素水を0.5g/sの流量で供給したことを除いて(酸素:過酸化水素水の重量比=80:20)(酸素:過酸化水素のモル比=90:10)、実施例1と同様に燃焼実験を行った。燃焼室圧力は最大で0.51MPaまで上昇した。
実施例5においてもガス酸素と過酸化水素水との同時供給によって本燃焼に推移し、少なくとも15秒間にわたって保炎を維持することができた。
燃焼室へのガス酸素の供給を開始し(流量:2.0g/s)、3秒間にわたって点火した後、燃焼室にガス酸素を供給しつつ、過酸化水素水を0.3g/sの流量で供給したことを除いて(酸素:過酸化水素水の重量比=87:13)(酸素:過酸化水素のモル比=95:5)、実施例1と同様に燃焼実験を行った。燃焼室圧力は最大で0.54MPaまで上昇した。
実施例6においてもガス酸素と過酸化水素水との同時供給によって本燃焼に推移し、少なくとも15秒間にわたって保炎を維持することができた。
図5に示すように燃焼装置を組み立てた。
固体燃料:ポリメチルメタクリレート(PMMA)から作製された縦列多段衝突噴流方式(CAMUI(CAscaded MUltistage Impinging-jet) type)の固体燃料(図17参照)、同じくポリメチルメタクリレート(PMMA)から作製されたスペーサー(8mm)を使用した。
燃焼室:内部を可視化するためにポリメチルメタクリレート(PMMA)から作製されたモーター・ケースを使用した(下端にグラファイトノズルを設けた(ノズル径:4mm))。
点火手段:DC電源(24V)に接続されたニクロム線(発熱体)
過酸化水素水供給源:60重量%過酸化水素水の貯蔵タンク(窒素で圧送)
過酸化水素水供給ライン:ステンレス製の管(1/4インチ Swagelok(登録商標)社製のチューブ)
加熱手段:熱交換器(150℃)
インジェクタ:モーター・ケース上部
燃焼サイクルおよび燃焼結果を図11および12の燃焼履歴に示す。
(A)ニクロム線に24Vの電圧を印加し、ニクロム線を8秒間加熱した
(B)過酸化水素水を1.2~2.3g/sの流量で供給した
(C)2秒間にわたって点火した
(D)過酸化水素水を50秒間にわたって供給した
(E)過酸化水素水の供給を停止した
燃焼室への加熱された過酸化水素水の供給を開始し(流量:1.2~2.3g/s)、2秒間にわたって点火(加熱)した後、燃焼室に対して加熱した過酸化水素水を供給し続けたところ、本燃焼に推移し、少なくとも50秒間にわたって保炎を維持することができた。燃焼室への供給口近傍における過酸化水素水の温度は、120℃以上であった。
燃焼室圧力は最大で0.2MPa直前まで上昇した。
燃焼室へのガス酸素の供給を開始し(流量:2g/s)、2秒間にわたって点火した後、燃焼室へのガス酸素の供給を停止し、燃焼室に対して過酸化水素水のみを供給したところ(流量:8g/s)、即座に火炎が消失した。燃焼実験の履歴を図13に示す。
燃焼室へのガス酸素の供給を開始し(流量:2.8g/s)、2秒間にわたって点火した後、続けて燃焼室に対してガス酸素のみを3秒間供給したところ(流量:2.8g/s)、点火が確認された。燃焼室圧力は概して0.4MPaまでしか上昇しなかった。燃焼実験の履歴を図14に示す。
燃焼室へのガス酸素の供給を開始し(流量:2g/s)、2秒間にわたって点火した後、燃焼室へのガス酸素の供給を停止し、燃焼室に対して過酸化水素水のみを供給したところ(流量:3g/s)、即座に火炎が消失した。燃焼実験の履歴を図15に示す。
燃焼室へのガス酸素の供給を開始し(流量:2g/s)、3秒間にわたって点火した後、燃焼室へのガス酸素の供給を停止し、燃焼室に対して過酸化水素水のみを供給したところ(流量:5.1g/s)、即座に火炎が消失した。燃焼室圧力は概して0.2MPaまでしか上昇しなかった。
燃焼室へのガス酸素の供給を開始し(流量:2g/s)、3秒間にわたって点火した後、燃焼室へのガス酸素の供給を停止し、燃焼室に対して過酸化水素水のみを供給したところ(流量:3.1g/s)、即座に火炎が消失した。燃焼室圧力は概して0.2MPaまでしか上昇しなかった。
燃焼室へのガス酸素の供給を開始し(流量:2g/s)、3秒間にわたって点火した後、燃焼室へのガス酸素の供給を停止し、燃焼室に対して過酸化水素水のみを供給したところ(流量:10.5g/s)、即座に火炎が消失した。尚、比較例6ではメルティングノズルを用いて燃焼室圧力を0.6MPaまで上昇させたが、保炎することはできなかった。
燃焼室に酸素を供給し続けることによって、酸素の燃焼(点火)による火炎からの熱を過酸化水素水が貰い、その中の過酸化水素がその沸点(例えば122℃)まで加熱されて気化していると考えられる。それに伴って体積および燃焼室圧力が増加し、加えて過酸化水素が酸素へ分解されることにより燃焼がよりアシストされて燃焼がさらに促進されたと考えられる。
尚、過酸化水素水のみを供給した比較例1および比較例3~6では、ガス酸素による熱の供給が停止されることから、この分の熱量を酸素点火の熱から得ることは難しく、保炎が維持できなかったと考えられる。
本開示の燃焼方法および燃焼装置によって革新的な軌道変換能力を得ることができる。
例えば、本開示の燃焼方法および燃焼装置によって、0.7~1.2km/sの加速能力を提供することができ、例えば、静止遷移軌道(GTO)などから、例えば月や火星、金星へのフライバイ軌道に乗り換えることができる。
2,22,32,42,52 燃焼室
3,23,33,43 ライン/酸素供給ライン
4,24,34,44 酸素供給源
5,25,35,45,55 ライン/過酸化水素水供給ライン
6,26,36,46,56 過酸化水素水供給源
7,27,37,47,57 点火手段
10,20,30,40,50 燃焼装置
28,38,48 圧送タンク
29,39,49 圧送ライン
101 パージタンク
102 パージライン
R1,R2,R3,R4,R5,R6,R7 レギュレータ
V1,V2,V3,V4,V5,V6,V7 バルブ
P1,P2,P3 混流ポイント
L1.L2.L3 混流ライン
Claims (19)
- 固体燃料を備えた燃焼室に過酸化水素水を供給することを含むハイブリッドロケット燃料の燃焼方法であって、
前記過酸化水素水における過酸化水素の濃度が重量基準で65%未満であり、
(i)前記燃焼室に酸素および前記過酸化水素水を供給すること、および(ii)前記過酸化水素水を、前記燃焼室に供給する前に加熱すること、の少なくとも一方を含む、
ハイブリッドロケット燃料の燃焼方法。 - (i)前記燃焼室に酸素および前記過酸化水素水を供給することを含む、請求項1に記載のハイブリッドロケット燃料の燃焼方法。
- 前記酸素と前記過酸化水素水とを前記燃焼室に並行供給する、請求項2に記載の燃焼方法。
- 前記酸素が仕込まれた前記燃焼室に対して前記過酸化水素水を供給する、請求項2または3に記載の燃焼方法。
- 前記燃焼室に前記酸素を供給した後に前記過酸化水素水を供給する、請求項2~4のいずれかに記載の燃焼方法。
- 前記酸素および前記過酸化水素水をそれぞれ独立したラインから前記燃焼室に供給する、請求項2~5のいずれかに記載の燃焼方法。
- 前記酸素を気体として前記燃焼室に供給する、請求項2~6のいずれかに記載の燃焼方法。
- 前記酸素が前記ハイブリッドロケット燃料の燃焼をアシストする、請求項2~7のいずれかに記載の燃焼方法。
- 前記過酸化水素水に対する前記酸素の割合が重量基準で10%以上50%以下である、請求項2~8のいずれかに記載の燃焼方法。
- 前記燃焼室への前記酸素の供給を開始し、点火後、前記燃焼室に酸素を供給しつつ、前記燃焼室に対して前記過酸化水素水を供給し、前記固体燃料の燃焼および保炎を維持する、請求項2~9のいずれかに記載の燃焼方法。
- (ii)前記過酸化水素水を、前記燃焼室に供給する前に加熱することを含む、請求項1に記載のハイブリッドロケット燃料の燃焼方法。
- 前記過酸化水素水を、100℃以上に加熱した状態で、前記燃焼室に供給する、請求項11に記載のハイブリッドロケット燃料の燃焼方法。
- 前記過酸化水素水における前記過酸化水素の濃度が重量基準で60%以下である、請求項1~12のいずれかに記載の燃焼方法。
- 前記供給される前記過酸化水素水が触媒に付されない、請求項1~13のいずれかに記載の燃焼方法。
- 固体燃料を収容するための燃焼室と、酸素を供給するためのラインと、過酸化水素水を供給するためのラインとを備え、前記酸素を供給するためのラインおよび前記過酸化水素水を供給するためのラインが前記燃焼室に接続されている、ハイブリッドロケット燃料の燃焼装置。
- 前記酸素を供給するためのラインと前記過酸化水素水を供給するためのラインとが互いに組み合わされて前記燃焼室に接続されている、請求項15に記載の燃焼装置。
- 前記酸素を供給するためのラインおよび前記過酸化水素水を供給するためのラインがそれぞれ別個に前記燃焼室に接続されている、請求項15に記載の燃焼装置。
- 前記過酸化水素水における過酸化水素の濃度が重量基準で65%未満である、請求項15~17のいずれかに記載の燃焼装置。
- 前記過酸化水素水に対して前記酸素が重量基準で10%以上50%以下の割合で供給されることによって前記固体燃料の燃焼および保炎を維持する、請求項15~18のいずれかに記載の燃焼装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023538481A JPWO2023008310A1 (ja) | 2021-07-26 | 2022-07-21 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-121835 | 2021-07-26 | ||
JP2021121835 | 2021-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008310A1 true WO2023008310A1 (ja) | 2023-02-02 |
Family
ID=85086800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028368 WO2023008310A1 (ja) | 2021-07-26 | 2022-07-21 | ハイブリッドロケット燃料の燃焼方法および燃焼装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023008310A1 (ja) |
WO (1) | WO2023008310A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4639648B1 (ja) * | 1968-11-02 | 1971-11-22 | ||
JPH07145742A (ja) * | 1993-11-20 | 1995-06-06 | Kawasaki Heavy Ind Ltd | タービン駆動用の高温高圧ガス発生装置 |
US20020121081A1 (en) * | 2001-01-10 | 2002-09-05 | Cesaroni Technology Incorporated | Liquid/solid fuel hybrid propellant system for a rocket |
JP2003089590A (ja) * | 2001-09-11 | 2003-03-28 | Hosoya Fireworks Co Ltd | 固体燃料及びハイブリッド推進薬 |
US20130205750A1 (en) * | 2010-02-23 | 2013-08-15 | Aerospace Propulsion Products B. V. | Igniter for a rocket engine, method for ignition of a rocket engine |
US20160229694A1 (en) * | 2013-09-09 | 2016-08-11 | Airbus Defence And Space Limited | Hydrogen peroxide catalyst |
-
2022
- 2022-07-21 JP JP2023538481A patent/JPWO2023008310A1/ja active Pending
- 2022-07-21 WO PCT/JP2022/028368 patent/WO2023008310A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4639648B1 (ja) * | 1968-11-02 | 1971-11-22 | ||
JPH07145742A (ja) * | 1993-11-20 | 1995-06-06 | Kawasaki Heavy Ind Ltd | タービン駆動用の高温高圧ガス発生装置 |
US20020121081A1 (en) * | 2001-01-10 | 2002-09-05 | Cesaroni Technology Incorporated | Liquid/solid fuel hybrid propellant system for a rocket |
JP2003089590A (ja) * | 2001-09-11 | 2003-03-28 | Hosoya Fireworks Co Ltd | 固体燃料及びハイブリッド推進薬 |
US20130205750A1 (en) * | 2010-02-23 | 2013-08-15 | Aerospace Propulsion Products B. V. | Igniter for a rocket engine, method for ignition of a rocket engine |
US20160229694A1 (en) * | 2013-09-09 | 2016-08-11 | Airbus Defence And Space Limited | Hydrogen peroxide catalyst |
Non-Patent Citations (1)
Title |
---|
YUSUKE TAKADA, TOMOHIRO TAKANASHI, TOSHI WAKITA, HARUKI NAGATA: "J19103 Ignition characteristics of 60wt% hydrogen peroxide in a CAMUI-type fuel", 2020 ANNUAL MEETING OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS (JSME); SEPTEMBER 13-16, 2020, 13 September 2020 (2020-09-13), JP, pages 1 - 5, XP009542897, DOI: 10.1299/jsmemecj.2020.J19103 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023008310A1 (ja) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4113333B2 (ja) | ロケットモータ組立体 | |
US6679049B2 (en) | Hybrid rocket motor having a precombustion chamber | |
US9505503B2 (en) | Reactants sprayed into plasma flow for rocket propulsion | |
US20040226280A1 (en) | Monopropellant combustion system | |
US9388090B2 (en) | Fast ignition and sustained combustion of ionic liquids | |
US20090007541A1 (en) | Thruster using nitrous oxide | |
JP6567507B2 (ja) | デュアルモード化学ロケットエンジン、およびデュアルモード化学ロケットエンジンを備えるデュアルモード推進システム | |
JP6484224B2 (ja) | デュアルモード化学ロケットエンジンおよびデュアルモード化学ロケットエンジンを備えるデュアルモード推進システム | |
WO2017160375A2 (en) | Electrical/chemical thruster using the same monopropellant and method | |
JP5642538B2 (ja) | ハイブリッドロケットモータ | |
US7921638B2 (en) | Bi-propellant rocket motor having controlled thermal management | |
US8337765B2 (en) | Electrocatalytically induced propellant decomposition | |
US5648052A (en) | Liquid monopropellant gas generator | |
CN111173647A (zh) | 双组元氧化亚氮发动机 | |
US20130199155A1 (en) | Rocket Propulsion Systems, and Related Methods | |
US11480136B1 (en) | Monopropellant continuous detonation engines | |
WO2023008310A1 (ja) | ハイブリッドロケット燃料の燃焼方法および燃焼装置 | |
US6739121B2 (en) | Flame holder for a hybrid rocket motor | |
JP2009085155A (ja) | 2液スラスタ | |
US20140182265A1 (en) | Rocket Propulsion Systems, and Related Methods | |
Whitmore | Direct Ignition of a High Performance Hydrogen Peroxide Hybrid Rocket with 3-D Printed Fuel | |
US20090297999A1 (en) | Igniter/thruster with catalytic decomposition chamber | |
Fukuda et al. | Strand test characteristics of non-self-combustible solid propellants in burning control with N2O supply | |
KR101167558B1 (ko) | 친환경 추력기 시스템 | |
US20240125287A1 (en) | Monopropellant continuous detonation engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849372 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2023538481 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18291718 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22849372 Country of ref document: EP Kind code of ref document: A1 |