WO2023008213A1 - Lighting device and endoscope device - Google Patents

Lighting device and endoscope device Download PDF

Info

Publication number
WO2023008213A1
WO2023008213A1 PCT/JP2022/027732 JP2022027732W WO2023008213A1 WO 2023008213 A1 WO2023008213 A1 WO 2023008213A1 JP 2022027732 W JP2022027732 W JP 2022027732W WO 2023008213 A1 WO2023008213 A1 WO 2023008213A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
amplified
detection
lighting device
Prior art date
Application number
PCT/JP2022/027732
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 竹中
真太郎 林
史也 八木
省吾 茂手木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023008213A1 publication Critical patent/WO2023008213A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements

Definitions

  • the present disclosure relates to a lighting device using a semiconductor light emitting device and an endoscope device.
  • the lighting device described in Patent Document 1 includes a detection circuit having a photoelectric conversion element that converts light into an electric signal and an amplifier that amplifies and outputs the electric signal, and an amplification factor switching that changes the amplification factor of the amplifier. and an abnormality determination unit that determines whether there is an abnormality based on the amplified electrical signal.
  • amplification factor is changed by the amplification factor switching unit, if the amount of change in the magnitude of the amplified electric signal is smaller than the determination threshold value, it is determined that an abnormality has occurred.
  • the present disclosure provides a lighting device or the like that can timely determine whether there is an abnormality.
  • the lighting device of the present disclosure includes an excitation source that emits excitation light, a phosphor that receives the excitation light and emits fluorescence, and at least one of the excitation light and the fluorescence.
  • a photosensor for outputting a detection signal based on the detection light as detection light; a mirror device for outputting a plurality of output signals based on the detection signal; and amplifying the plurality of output signals with different gains, a plurality of amplifiers for outputting signals; and among the plurality of amplified signals, among the amplified signals, the signal level of the plurality of amplified signals with respect to the light amount of the detected light is equal to or lower than a predetermined threshold, and the signal level is the maximum.
  • an abnormality determination unit that determines the presence or absence of an abnormality based on a certain amplified signal.
  • an endoscope apparatus includes the illumination device described above and an observation device for observing a subject.
  • the lighting device and the like of the present disclosure it is possible to timely determine whether there is an abnormality.
  • FIG. 1 is a schematic diagram showing the configuration of a lighting device of a comparative example.
  • FIG. 2 is a schematic diagram showing the configuration of the lighting device according to the embodiment.
  • FIG. 3 is an external view showing the configuration of the lighting device according to the embodiment.
  • FIG. 4 is a circuit diagram showing the configuration of the excitation source of the lighting device according to the embodiment.
  • FIG. 5 is a block diagram showing the configuration of the optical sensor, mirror device, and amplifier of the lighting device according to the embodiment.
  • FIG. 6 is a diagram showing the relationship between the amount of light detected by the optical sensor and the signal level of the amplified signal.
  • FIG. 7 is a schematic diagram showing the configuration of an endoscope apparatus including the illumination device according to the embodiment.
  • FIG. 1 is a schematic diagram showing a lighting device 101 of a comparative example.
  • the lighting device 101 of the comparative example is a device that converts the wavelength of the excitation light L1 and emits the illumination light L2. As shown in the figure, the illumination device 101 includes a light source device 102 that outputs excitation light L1, a light guide member 103, and phosphors 104a.
  • the light guide member 103 guides the excitation light L1 output from the light source device 102 and emits it to the phosphor 104a.
  • the phosphor 104a converts the excitation light L1 into light of a different wavelength and emits it. Specifically, the phosphor 104a fluoresces when the excitation light L1 is input, and diffuses and radiates, for example, light of a plurality of wavelengths that appears white as a whole. This radiated light is emitted as illumination light L2.
  • the lighting device 101 includes a detection circuit 160 that detects an abnormality in the phosphor 104a, and an abnormality determination unit 156 that determines whether the phosphor 104a is abnormal based on the detection result of the detection circuit 160.
  • the detection circuit 160 includes an optical sensor 161 that receives part of the light emitted from the phosphor 104a as the detection light L3 and outputs a detection signal s0, and amplifies and outputs the detection signal s0 that is output from the optical sensor 161. and an amplifier circuit 163 for
  • the abnormality determination unit 156 reads the signal amplified by switching the gain, and determines whether or not the phosphor 104a is abnormal.
  • the illumination device of the present embodiment has a configuration in which the light amount of the detection light L3 can be read without switching the gain of the amplifier circuit.
  • a plurality of output signals are generated from the detection signal s0 output from the photosensor, and each of the plurality of output signals is amplified with different gains.
  • an amplified signal suitable for determining the presence or absence of an abnormality is used to determine the presence or absence of an abnormality.
  • FIG. 2 and 3 are a block diagram and an external view, respectively, showing the configuration of the lighting device 1 according to the embodiment.
  • FIG. 2 also shows the input power supply P1 together with the illumination device 1.
  • the input power supply P ⁇ b>1 is a system power supply that supplies AC power to the lighting device 1 .
  • the input power supply P1 is, for example, a commercial AC power supply.
  • the illumination device 1 is a device that emits illumination light L2, and as shown in FIGS. 2 and 3, includes a light source device 2, a light guide member 3, and a phosphor 4a.
  • each component of the lighting device 1 may be integrated or may not be integrated.
  • the lighting device 1 may be arranged in one housing, or may be a combination of a plurality of distributed devices.
  • the light source device 2 is a device that emits excitation light L1. As shown in FIG. 2 , the light source device 2 has a lighting device 5 , an excitation source 6 and an optical member 7 . In this embodiment, the light source device 2 emits excitation light L1.
  • the light source device 2 has a housing 2a as shown in FIG. 3, and the lighting device 5, the excitation source 6 and the optical member 7 shown in FIG. 2 are accommodated in the housing 2a.
  • the lighting device 5 is a device that lights by supplying power to the excitation source 6, and includes a driving device 5a, a light source switching section 54, a detection circuit 60, and an abnormality determination section 56.
  • the driving device 5 a is a device for controlling power supplied to the excitation source 6 and has a power supply circuit 51 and an output control circuit 58 .
  • the abnormality determination unit 56 and the output control circuit 58 are configured by the controller 5c.
  • the excitation source 6 includes one or more light emitting elements and emits excitation light L1.
  • the configuration of the excitation source 6 according to this embodiment will be described below with reference to FIG.
  • FIG. 4 is a circuit diagram showing the configuration of the excitation source 6 of the lighting device 1.
  • FIG. 4 also shows a circuit diagram of the light source switching unit 54. As shown in FIG.
  • the excitation source 6 includes four light emitting elements 6a-6d connected in series.
  • Each of the light emitting elements 6a to 6d is not particularly limited as long as it is an element that emits light according to the power supplied.
  • each of light emitting elements 6a to 6d is a semiconductor laser element that emits blue excitation light.
  • the excitation source 6 emits excitation light L1, which is laser light.
  • the electrical connection mode of the plurality of light emitting elements included in the excitation source 6 is not limited to series connection, and may be parallel connection or a combination of series connection and parallel connection. good. Further, the number of light emitting elements included in the excitation source 6 is not limited to four, and may be one or more.
  • each of the light-emitting elements included in the excitation source 6 is not limited to a semiconductor laser element, and may be another solid-state light-emitting element such as an LED (Light Emitting Diode) or an organic EL (Electro Luminescence) element.
  • LED Light Emitting Diode
  • organic EL Electro Luminescence
  • the light source switching unit 54 is a circuit that short-circuits both ends of each light emitting element included in the excitation source 6 .
  • the light source switching section 54 has a plurality of switches 821 to 824 connected in parallel to the plurality of light emitting elements 6a to 6d, respectively.
  • Each of the plurality of switches 821-824 is, for example, a semiconductor relay (in other words, solid state relay), and has a light emitting diode 82a as a light emitting element and a phototransistor 82b as a light receiving element.
  • each switch when the phototransistor 82b is in the off state, the driving current I1 flows through the corresponding light emitting element.
  • the phototransistor 82b when the phototransistor 82b is on, both ends of the corresponding light emitting element are short-circuited, so that the drive current I1 does not flow through the corresponding light emitting element.
  • the power supply circuit 51 is a circuit that supplies power to the excitation source 6 .
  • the power supply circuit 51 converts and outputs the voltage of the power output from the input power supply P1.
  • the switching power supply circuit converts AC power output from the input power supply P1 into DC power.
  • the power supply circuit 51 may be a switching power supply circuit having a power factor correction function.
  • the optical member 7 is a member that guides the excitation light L1 output from the excitation source 6 to the optical system.
  • the optical member 7 may be composed of optical components such as mirrors and lenses.
  • the optical system is the light guide member 3 , and the optical member 7 reflects the excitation light L ⁇ b>1 output from the excitation source 6 toward the first end 3 a of the light guide member 3 .
  • the optical member 7 further converges the excitation light L ⁇ b>1 to enter the first end 3 a of the light guide member 3 .
  • the light guide member 3 is an example of an optical system that receives the excitation light L1 and irradiates the phosphor 4a with the excitation light L1.
  • the light guide member 3 is an optical fiber that guides the excitation light L1, and optically connects the light source device 2 and the phosphor 4a.
  • the core diameter of the light guide member 3 is, for example, 400 ⁇ m. In addition, the core diameter of the light guide member 3 should be 5 mm or less.
  • the excitation light L ⁇ b>1 emitted from the excitation source 6 and condensed by the optical member 7 is incident on the first end 3 a of the light guide member 3 .
  • the excitation light L1 is transmitted through the interior of the light guide member 3 from the first end 3 a of the light guide member 3 and emitted from the second end 3 b of the light guide member 3 .
  • the phosphor 4a is a wavelength conversion member that converts the excitation light L1 into illumination light L2 having a wavelength different from that of the excitation light L1 and emits the illumination light L2.
  • the excitation light L1 emitted from the second end 3b of the light guide member 3 is applied to the phosphor 4a.
  • the phosphor 4a is a member in which a fluorescent material is mixed with a translucent material.
  • the phosphor 4a is, for example, a yellow phosphor.
  • the yellow phosphor is, for example, Y 3 Al 5 O 12 activated with Ce or Ba 2 SiO 4 activated with Eu.
  • the phosphor 4a is excited by part of the blue excitation light L1 and emits yellow light as the illumination light L2.
  • the phosphor 4a generates white light, which is mixed color light of the remaining blue excitation light L1 and yellow light.
  • Most of the white light generated by the phosphor 4a is irradiated to the illumination space as the illumination light L2.
  • the detection circuit 60 is a circuit that detects an abnormality in the lighting device 1 .
  • the detection circuit 60 is arranged on the side of the phosphor 4a.
  • the detection circuit 60 includes a photosensor 61 , a mirror device 62 and a plurality of amplifiers 63 .
  • FIG. 5 is a block diagram showing the configuration of the optical sensor 61, mirror device 62, and amplifier 63 of the illumination device 1.
  • FIG. 5 is a block diagram showing the configuration of the optical sensor 61, mirror device 62, and amplifier 63 of the illumination device 1.
  • the optical sensor 61 detects part of the light emitted from the phosphor 4a as detection light L3, and outputs a detection signal s0.
  • the optical sensor 61 is, for example, a photodetector element such as a photodiode, and outputs a detection signal s0 corresponding to the light amount of the received detection light L3.
  • the optical sensor 61 is arranged on the side of the phosphor 4a and receives light emitted in a direction different from the emission direction of the illumination light L2.
  • the detection light L3 is light leaked in a direction perpendicular to the incident direction when the light is input to the phosphor 4a.
  • An optical filter or the like that attenuates light in a wavelength band other than the wavelength band of the detection light L3 may be arranged on the optical path of the detection light L3 from the phosphor 4a to the optical sensor 61.
  • the optical sensor 61 outputs a detection signal s0 to the mirror device 62 according to the light amount of the detection light L3.
  • the mirror device 62 outputs a plurality of output signals s1, s2 and s3 based on the detection signal s0 output from the optical sensor 61.
  • Mirror device 62 is a current mirror circuit that uses active elements to replicate the current.
  • the mirror device 62 outputs a plurality of output signals s1 to s3 having the same current value as the detection signal s0. In the example shown in FIG. 5, one detection signal s0 is input to the mirror device 62, and the mirror device 62 outputs three output signals s1 to s3.
  • the amplifier 63 is a circuit that amplifies the output signals s1 to s3 output by the mirror device 62.
  • the amplifier 63 has a current amplifier, a resistor, and the like.
  • the amplified signal that is received is a voltage signal, and the larger the light amount of the detection light L3, the larger the value of the photocurrent and the higher the voltage value of the amplified signal.
  • three amplifiers 63a, 63b and 63c are shown as the amplifier 63. In FIG.
  • Each of the plurality of amplifiers 63a-63c has a different gain.
  • a plurality of amplifiers 63a-63c amplify the plurality of output signals s1-s3 with different gains and output a plurality of amplified signals sa, sb and sc.
  • a first amplifier 63a of the plurality of amplifiers 63 has a first gain
  • a second amplifier 63b has a second gain lower than the first gain
  • a third amplifier 63c has a second gain. has a third gain that is lower than the gain of . In other words, the second gain is higher than the third gain and the first gain is higher than the second gain.
  • FIG. 6 is a diagram showing the relationship between the light amount of the detection light L3 detected by the optical sensor 61 and the signal levels of the amplified signals sa to sc.
  • the horizontal axis of FIG. 6 indicates the light amount of the detection light L3, and the vertical axis indicates the signal levels of the amplified signals sa to sc.
  • the unit of signal level is a voltage value.
  • the signal level of the amplified signal sa linearly increases from 0 as the light amount of the detection light L3 increases from 0 (zero). Then, when the light intensity of the detection light L3 exceeds a predetermined light intensity, the signal level becomes constant at the saturation voltage value. The same is true for the amplified signals sb and sc.
  • the first gain of the first amplifier 63a and the second gain of the second amplifier 63b are equal to the gain of the signal sb amplified by the second amplifier 63b when the signal sa amplified by the first amplifier 63a is saturated. is set to vary linearly.
  • the second gain of the second amplifier 63b and the third gain of the third amplifier 63c are equal to the signal sc amplified by the third amplifier 63c when the signal sb amplified by the second amplifier 63b is saturated. is set to vary linearly.
  • each gain of the plurality of amplifiers 63 is set when the signal level of the amplified signals sa to sc is equal to or lower than a first threshold Vth1, which is a predetermined threshold, so that the amplified signals sa to sc are not too far apart from each other in the horizontal axis direction. , it is set so that at least two amplified signals exist with respect to a predetermined light quantity x1 of the detection light L3. For example, in FIG. 6, the first gain and the second gain are set so that the amplified signals sa and sb exist with respect to the light amount x1 of the predetermined detection light L3.
  • the first threshold value Vth1 is a value set from a signal level within a range in which the amplified signals sa to sc linearly change with respect to the light amount of the detection light L3. That is, the first threshold Vth1 is set to a value smaller than the saturation voltage value shown in FIG.
  • the gains of the plurality of amplifiers 63 are set when the signal levels of the amplified signals sa to sc are equal to or lower than the first threshold Vth1 and equal to or higher than the second threshold Vth2, which is smaller than the first threshold Vth1. , that is, when the signal level is within a predetermined range, at least two amplified signals are present for a predetermined light amount of the detection light L3.
  • the detection signal s0 output from the optical sensor 61 in this manner is duplicated by the mirror device 62 into a plurality of output signals s1 to s3, and is converted into a plurality of amplified signals sa to sc with different magnifications by the amplifier 63. output to
  • the abnormality determination unit 56 determines whether or not the lighting device 1 is abnormal.
  • the abnormality determination unit 56 monitors the amplified signals sa to sc output from the detection circuit 60 and determines whether or not at least one of the phosphor 4a and the excitation source 6 is abnormal.
  • a plurality of amplified signals sa to sc generated by a plurality of amplifiers 63a to 63c are constantly output to the abnormality determining section 56. In the example shown in FIG. Therefore, there is no need to switch the gain of the amplifier circuit as in the prior art.
  • the abnormality determining unit 56 of the present embodiment selects the amplified signal having the maximum signal level among the amplified signals sa to sc whose signal level is equal to or lower than the first threshold value Vth1 with respect to the light amount of the detection light L3. The presence or absence of an abnormality is determined based on. In the example shown in FIG. 6, the abnormality determination unit 56 selects the amplified signal sa having the maximum signal level with respect to the light amount x1 of the detected light L3, and determines whether there is an abnormality based on this amplified signal sa.
  • the abnormality determination unit 56 uses the amplified signal when the light in the wavelength band of the excitation light L1 as the detection light L3, and the light in the wavelength band of the fluorescence obtained by wavelength-converting the excitation light L1 with the phosphor 4a as the detection light L3.
  • the presence or absence of an abnormality may be determined based on the signal level ratio of the amplified signal in each case. For example, when the amplified signal when the excitation light L1 is the detection light L3 is the denominator, and the amplified signal when the fluorescence is the detection light L3 is the numerator, the abnormality determination unit 56 determines the signal levels of the two amplified signals.
  • the abnormality determination unit 56 may determine that the excitation source 6 has an abnormality when the ratio of the signal levels of the two amplified signals is greater than a predetermined range.
  • the excitation light L1 as the detection light L3 is realized, for example, by arranging an optical filter that transmits the wavelength of the excitation light L1 on the optical path between the phosphor 4a and the optical sensor 61.
  • FIG. Fluorescence can be used as the detection light L3, for example, by arranging an optical filter that transmits the wavelength of the fluorescence on the optical path between the phosphor 4a and the optical sensor 61.
  • the abnormality determination unit 56 may determine the presence or absence of an abnormality based on whether the rate of decrease in the signal level of the selected amplified signal is greater than a predetermined threshold. For example, the abnormality determination unit 56 compares the signal level calculated based on the current detected light L3 and the signal level acquired immediately before that, and if the rate of decrease in the signal level is equal to or less than a predetermined threshold, , the excitation source 6 or the phosphor 4a may be determined to be abnormal.
  • a predetermined threshold as the rate of decrease in the signal level of the amplified signal may be, for example, about 50%.
  • the output control circuit 58 controls the current supplied to each light emitting element of the excitation source 6 by controlling the power supply circuit 51 and the light source switching section 54 . More specifically, the output control circuit 58 controls the power supply circuit 51 to adjust the driving current I1. That is, the output control circuit 58 has a dimming function that adjusts the light amount of the excitation light L1 by making the drive current I1 variable.
  • the output control circuit 58 when the abnormality determination unit 56 determines that an abnormality has occurred in the lighting device 1, more specifically, detects an abnormality in the phosphor 4a or the excitation source 6. If it is determined that the current is supplied to the excitation source 6, the current supply is stopped.
  • the controller 5c includes, for example, a control IC (Integrated Circuit), a computer system, and the like.
  • a computer system has a processor that operates according to a program as a main hardware configuration.
  • the type of the processor is not limited as long as it can implement each function of the controller 5c by executing a program.
  • the illumination device 1 includes the excitation source 6 that emits the excitation light L1, the phosphor 4a that receives the excitation light L1 and emits fluorescence, and at least one of the excitation light L1 and the fluorescence.
  • an abnormality determination unit 56 that determines the presence or absence of an abnormality based on the amplified signal having the maximum signal level among the amplified signals whose level is equal to or lower than the predetermined threshold value Vth1.
  • the output control circuit 58 controls the power supply circuit 51 to supply the drive current I1 to the excitation source 6.
  • a plurality of light emitting elements 6a to 6d of excitation source 6 emit blue excitation light L1 by drive current I1.
  • the excitation light L1 passes through the optical member 7 and the light guide member 3 and reaches the phosphor 4a.
  • the phosphor 4a generates white light (wavelength-converted light) from the blue excitation light L1.
  • the phosphor 4a irradiates the illumination space with most of the white light as the illumination light L2. Part of the white light reaches the optical sensor 61 of the detection circuit 60 as detection light L3.
  • the detection light L3 is the same white light as the illumination light L2 that is actually applied to the illumination space, and contains information about the light amount of the illumination light L2. That is, the greater the light intensity of the illumination light L2, the greater the light intensity of the detection light L3. Therefore, the larger the light intensity of the illumination light L2, the higher the voltage value of the amplified signal sa, and the smaller the light intensity of the illumination light L2, the lower the voltage value of the amplified signal sa. That is, information on the amount of light of the illumination light L2 is fed back to the lighting device 5 as the detected light L3.
  • the output control circuit 58 monitors the light intensity of the excitation light L1 emitted by the excitation source 6 based on the voltage value of the amplified signal sa.
  • the output control circuit 58 controls the power supply circuit 51 so that the voltage value of the amplified signal sa matches the target voltage value, thereby performing feedback control to match the drive current I1 to the target current.
  • the target voltage value may be a predetermined fixed value or a variable value corresponding to a dimming signal received from the outside.
  • the output control circuit 58 can perform dimming control by making the target voltage value variable.
  • a plurality of output signals s1 to s3 are generated based on the detection signal s0 output from the optical sensor 61 by receiving the detection light L3. Then, the plurality of output signals s1 to s3 are amplified with different gains to generate a plurality of amplified signals sa to sc. Then, the presence or absence of an abnormality is determined based on the amplified signal having the maximum signal level among the amplified signals sa to sc whose signal level is equal to or lower than a predetermined threshold value Vth1 with respect to the light amount of the detection light L3.
  • the presence or absence of an abnormality can be determined by using an amplified signal suitable for determining the presence or absence of an abnormality from among the plurality of amplified signals sa to sc amplified with different gains. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
  • FIG. 7 is a schematic diagram showing the configuration of an endoscope device 90 including the illumination device 1 of the embodiment.
  • the endoscope device 90 includes an illumination device 1 and an observation device 91.
  • the illumination device 1 has a configuration similar to that of the above embodiment.
  • the observation device 91 is a device for observing the subject.
  • the observation device 91 includes an objective optical system 92 that is exposed near the phosphor 4a, a CCD (Charge Coupled Device) 93 that is an imaging element provided at an image forming position of the objective optical system 92, and a light source device. 2 and a signal cable 95 connecting the CCD 93 and the video signal processing circuit 94 .
  • an observation image of the subject formed by the objective optical system 92 is converted into an electric signal by the CCD 93 and transmitted as an image signal by the signal cable 95 .
  • the transmitted image signal is converted into a video signal by the video signal processing circuit 94 and displayed as a video on a monitor (not shown) connected to the observation device 91 .
  • the same effects as those of the illumination device 1 can be obtained.
  • FIG. 7 shows an example in which the excitation light L1 is guided to the vicinity of the tip of the endoscope device 90 by the light guide member 3 and then converted into the illumination light L2, the present invention is not limited to this.
  • the illumination light L2 converted from the excitation light L1 can be guided to the distal end of the endoscope device 90 by the light guide member 3 .
  • the illumination device 1 includes the excitation source 6 that emits the excitation light L1, the phosphor 4a that receives the excitation light L1 and emits fluorescence, and at least one of the excitation light L1 and the fluorescence.
  • a photosensor 61 that outputs a detection signal s0 based on the detection light L3, a mirror device 62 that outputs a plurality of output signals s1 to s3 based on the detection signal s0, and a plurality of output signals.
  • a plurality of amplifiers 63 that amplify s1 to s3 with different gains and output a plurality of amplified signals sa to sc, and among the plurality of amplified signals sa to sc, a plurality of amplified signals sa to sc with respect to the light amount of the detection light L3. and an abnormality determination unit 56 that determines whether there is an abnormality based on the amplified signal having the maximum signal level among the amplified signals having the signal level equal to or lower than the predetermined threshold value Vth1.
  • the presence or absence of an abnormality can be determined by using an amplified signal suitable for determining the presence or absence of an abnormality from among the plurality of amplified signals sa to sc amplified with different gains. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
  • the abnormality determination unit 56 may determine whether or not at least one of the excitation source 6 and the phosphor 4a is abnormal based on the amplified signal with the maximum signal level.
  • the abnormality determination unit 56 may determine the presence or absence of an abnormality based on the signal level ratio of the amplified signal when the excitation light L1 is used as the detection light L3 and the amplified signal when fluorescence is used as the detection light L3. good.
  • the mirror device 62 is a current mirror circuit, and may output a plurality of output signals s1 to s3 having the same current value as the detection signal s0.
  • the presence or absence of an abnormality can be determined using a plurality of output signals s1 to s3. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
  • a first amplifier 63a of the plurality of amplifiers 63 has a first gain
  • a second amplifier 63b has a second gain lower than the first gain
  • the first gain and the second amplifier 63b have a second gain lower than the first gain.
  • a gain of 2 may be set so that when the signal sa amplified by the first amplifier 63a is saturated, the signal sb amplified by the second amplifier 63b changes linearly.
  • the abnormality determination unit 56 can acquire a plurality of amplified signals without interruption, and among the acquired amplified signals, an amplified signal suitable for reading for determining the presence or absence of an abnormality. can be selected to determine whether there is an abnormality. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
  • the predetermined threshold Vth1 may be set from a signal level within a range in which each of the plurality of amplified signals sa to sc linearly changes with respect to the light amount of the detection light L3.
  • the amplified signal can be acquired with high accuracy, and the amplified signal suitable for reading for determining the presence or absence of an abnormality is selected from among the plurality of acquired amplified signals, and the determination of the presence or absence of an abnormality is performed. It can be carried out. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
  • the optical sensor 61 may detect light emitted in a direction different from that of the illumination light L2 emitted from the phosphor 4a as the detection light L3.
  • the detection light L3 can be easily obtained with little attenuation. This makes it possible to easily determine whether or not there is an abnormality in the lighting device 1 .
  • the excitation source 6 may be a laser element.
  • the endoscope apparatus 90 may include the illumination device 1 described above and an observation device 91 for observing the subject.
  • the endoscope device 90 having the illumination device 1 capable of timely determining whether or not there is an abnormality.
  • the light guide member 3 is used as the optical system.
  • optical elements such as mirrors and lenses may be used as the optical system.

Abstract

A lighting device (1) is equipped with: an excitation source (6) which emits excitation light (L1): a fluorescent body (4a) which emits fluorescence upon receiving the excitation light (L1); an optical sensor (61) which uses the excitation light (L1) and/or the fluorescence as detection light (L3), and outputs a detection signal (s0) based on the detection light (L3); a mirror device (62) for outputting a plurality of output signals (s1-s3) on the basis of the detection signal (s0); a plurality of amplifiers (63) for amplifying the plurality of output signals (s1-s3) at different gains and outputting the plurality of amplified signals (sa-sc); and an abnormality determination unit (56) for determining whether an abnormality exists on the basis of the amplified signal among the plurality of amplified signals (sa-sc) which has the largest signal level, from among the amplified signals for which the signal level of the amplified signals (sa-sc) is no more than a prescribed threshold (Vth1) relative to the detection light (L3) amount.

Description

照明装置及び内視鏡装置Lighting device and endoscope device
 本開示は、半導体発光素子を用いた照明装置、及び、内視鏡装置に関する。 The present disclosure relates to a lighting device using a semiconductor light emitting device and an endoscope device.
 従来、半導体発光素子を用いた照明装置が知られている(例えば、特許文献1など参照)。特許文献1に記載された照明装置は、光を電気信号に変換する光電変換素子、及び電気信号を増幅して出力する増幅部を有する検出回路と、増幅部の増幅率を変化させる増幅率切替部と、増幅された電気信号に基づいて異常有無を判定する異常判定部と、を備えている。この照明装置では、増幅率切替部によって増幅率を変化させたときに、増幅された電気信号の大きさの変化量が判定閾値より小さければ、異常が発生していると判定している。 Conventionally, lighting devices using semiconductor light-emitting elements are known (see, for example, Patent Document 1). The lighting device described in Patent Document 1 includes a detection circuit having a photoelectric conversion element that converts light into an electric signal and an amplifier that amplifies and outputs the electric signal, and an amplification factor switching that changes the amplification factor of the amplifier. and an abnormality determination unit that determines whether there is an abnormality based on the amplified electrical signal. In this lighting device, when the amplification factor is changed by the amplification factor switching unit, if the amount of change in the magnitude of the amplified electric signal is smaller than the determination threshold value, it is determined that an abnormality has occurred.
特開2020-194679号公報JP 2020-194679 A
 特許文献1に記載された照明装置では、増幅部の増幅率を切り替えたときに、照明装置の異常を検出できない期間が生じる。そのため、照明装置の異常有無の判定を行うことができないという問題がある。 In the lighting device described in Patent Literature 1, when the amplification factor of the amplifier is switched, there occurs a period during which an abnormality in the lighting device cannot be detected. Therefore, there is a problem that it is impossible to determine whether or not there is an abnormality in the lighting device.
 そこで本開示は、異常有無の判定を適時行うことができる照明装置等を提供する。 Therefore, the present disclosure provides a lighting device or the like that can timely determine whether there is an abnormality.
 上記課題を解決するために本開示の照明装置は、励起光を発する励起源と、前記励起光を受光して蛍光を発する蛍光体と、前記励起光及び前記蛍光のうちの少なくとも一方の光を検出光とし、前記検出光に基づく検出信号を出力する光センサと、前記検出信号に基づいて複数の出力信号を出力するミラー装置と、前記複数の出力信号を異なるゲインで増幅し、複数の増幅信号を出力する複数の増幅器と、前記複数の増幅信号のうち、前記検出光の光量に対する前記複数の増幅信号の信号レベルが所定の閾値以下である増幅信号の中から、前記信号レベルが最大である増幅信号に基づいて異常有無を判定する異常判定部と、を備える。 In order to solve the above problems, the lighting device of the present disclosure includes an excitation source that emits excitation light, a phosphor that receives the excitation light and emits fluorescence, and at least one of the excitation light and the fluorescence. a photosensor for outputting a detection signal based on the detection light as detection light; a mirror device for outputting a plurality of output signals based on the detection signal; and amplifying the plurality of output signals with different gains, a plurality of amplifiers for outputting signals; and among the plurality of amplified signals, among the amplified signals, the signal level of the plurality of amplified signals with respect to the light amount of the detected light is equal to or lower than a predetermined threshold, and the signal level is the maximum. an abnormality determination unit that determines the presence or absence of an abnormality based on a certain amplified signal.
 上記課題を解決するために本開示の内視鏡装置は、上記の照明装置と、被検体を観察するための観察装置と、を備える。 In order to solve the above problems, an endoscope apparatus according to the present disclosure includes the illumination device described above and an observation device for observing a subject.
 本開示の照明装置等によれば、異常有無の判定を適時行うことができる。 According to the lighting device and the like of the present disclosure, it is possible to timely determine whether there is an abnormality.
図1は、比較例の照明装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a lighting device of a comparative example. 図2は、実施の形態に係る照明装置の構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of the lighting device according to the embodiment. 図3は、実施の形態に係る照明装置の構成を示す外観図である。FIG. 3 is an external view showing the configuration of the lighting device according to the embodiment. 図4は、実施の形態に係る照明装置の励起源の構成を示す回路図である。FIG. 4 is a circuit diagram showing the configuration of the excitation source of the lighting device according to the embodiment. 図5は、実施の形態に係る照明装置の光センサ、ミラー装置及び増幅器の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the optical sensor, mirror device, and amplifier of the lighting device according to the embodiment. 図6は、光センサにて検出する検出光の光量と増幅信号の信号レベルとの関係を示す図である。FIG. 6 is a diagram showing the relationship between the amount of light detected by the optical sensor and the signal level of the amplified signal. 図7は、実施の形態の照明装置を備える内視鏡装置の構成を示す概略図である。FIG. 7 is a schematic diagram showing the configuration of an endoscope apparatus including the illumination device according to the embodiment.
 (本開示の概要)
 本開示の概要について、比較例を参照しながら説明する。
(Summary of this disclosure)
An overview of the present disclosure will be described with reference to comparative examples.
 図1は、比較例の照明装置101を示す概略図である。 FIG. 1 is a schematic diagram showing a lighting device 101 of a comparative example.
 比較例の照明装置101は、励起光L1の波長を変換して照明光L2を出射する装置である。同図に示すように、照明装置101は、励起光L1を出力する光源装置102と、導光部材103と、蛍光体104aと、を備える。 The lighting device 101 of the comparative example is a device that converts the wavelength of the excitation light L1 and emits the illumination light L2. As shown in the figure, the illumination device 101 includes a light source device 102 that outputs excitation light L1, a light guide member 103, and phosphors 104a.
 導光部材103は、光源装置102から出力された励起光L1を導光して、蛍光体104aへ出射する。蛍光体104aは、励起光L1を異なる波長の光に変換して放射する。具体的に蛍光体104aは、励起光L1が入力されることで蛍光し、例えば複数の波長からなる光であって全体として白色に看取される光を拡散して放射する。この放射された光が照明光L2となって出射される。 The light guide member 103 guides the excitation light L1 output from the light source device 102 and emits it to the phosphor 104a. The phosphor 104a converts the excitation light L1 into light of a different wavelength and emits it. Specifically, the phosphor 104a fluoresces when the excitation light L1 is input, and diffuses and radiates, for example, light of a plurality of wavelengths that appears white as a whole. This radiated light is emitted as illumination light L2.
 照明装置101は、蛍光体104aの異常を検出する検出回路160と、検出回路160の検出結果に基づいて蛍光体104aの異常有無を判定する異常判定部156と、を備えている。検出回路160は、蛍光体104aから出射された光の一部を検出光L3として受光して検出信号s0を出力する光センサ161と、光センサ161から出力された検出信号s0を増幅して出力する増幅回路163とを有している。 The lighting device 101 includes a detection circuit 160 that detects an abnormality in the phosphor 104a, and an abnormality determination unit 156 that determines whether the phosphor 104a is abnormal based on the detection result of the detection circuit 160. The detection circuit 160 includes an optical sensor 161 that receives part of the light emitted from the phosphor 104a as the detection light L3 and outputs a detection signal s0, and amplifies and outputs the detection signal s0 that is output from the optical sensor 161. and an amplifier circuit 163 for
 蛍光体104aから発せられる光はダイナミックレンジが広いため、検出回路160のスケール(ものさし)が小さすぎたり大きすぎたりすると、検出光L3の光量を正確に検出できないことがある。そこで比較例では、光センサ161から出力した検出信号s0を増幅する際に、増幅回路163のゲイン(増幅率)を切り替えることで、検出光L3の光量を広い範囲で読み取り可能としている。比較例では、異常判定部156がゲインの切り替えにより増幅された信号を読み取り、蛍光体104aの異常有無を判定する。 Since the light emitted from the phosphor 104a has a wide dynamic range, if the scale (measure) of the detection circuit 160 is too small or too large, the amount of the detection light L3 may not be detected accurately. Therefore, in the comparative example, by switching the gain (amplification factor) of the amplifier circuit 163 when amplifying the detection signal s0 output from the optical sensor 161, the light amount of the detection light L3 can be read over a wide range. In the comparative example, the abnormality determination unit 156 reads the signal amplified by switching the gain, and determines whether or not the phosphor 104a is abnormal.
 しかしながら、比較例の照明装置101では、増幅回路163のゲインを切り替えるときに増幅された信号のレベルが大きく変わるため、ゲインを切り替えてから信号のレベルが安定するまでに時間がかかる。そのため比較例では、蛍光体104aの異常を検出できない期間が生じ、異常有無の判定を行うことができないという問題がある。 However, in the lighting device 101 of the comparative example, since the level of the amplified signal changes greatly when switching the gain of the amplifier circuit 163, it takes time for the signal level to stabilize after switching the gain. Therefore, in the comparative example, there is a period during which an abnormality of the phosphor 104a cannot be detected, and there is a problem that the presence or absence of an abnormality cannot be determined.
 それに対し、本実施の形態の照明装置では、増幅回路のゲインを切り替えずに、検出光L3の光量を読み取ることができる構成を有している。例えば、本実施の形態の照明装置では、光センサから出力された検出信号s0から複数の出力信号を生成し、複数の出力信号のそれぞれを異なるゲインで増幅する。そして、異なるゲインで増幅された複数の増幅信号の中から、異常有無の判定をするために適した増幅信号を用いて異常有無の判定を行う。これにより、照明装置の異常を検出できない期間が生じることを抑制でき、異常有無の判定を適時行うことが可能となる。 On the other hand, the illumination device of the present embodiment has a configuration in which the light amount of the detection light L3 can be read without switching the gain of the amplifier circuit. For example, in the lighting device of this embodiment, a plurality of output signals are generated from the detection signal s0 output from the photosensor, and each of the plurality of output signals is amplified with different gains. Then, among a plurality of amplified signals amplified with different gains, an amplified signal suitable for determining the presence or absence of an abnormality is used to determine the presence or absence of an abnormality. As a result, it is possible to suppress the occurrence of a period in which an abnormality of the lighting device cannot be detected, and it is possible to timely determine whether or not there is an abnormality.
 以下、本開示の実施の形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail using the drawings.
 なお、以下で説明する実施の形態は、いずれも本開示の一包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that the embodiments described below all show one comprehensive or specific example of the present disclosure. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept will be described as arbitrary constituent elements.
 (実施の形態)
 実施の形態に係る照明装置について説明する。
(Embodiment)
A lighting device according to an embodiment will be described.
 [1.照明装置の構成]
 本実施の形態に係る照明装置の構成について図2~図6を用いて説明する。
[1. Configuration of lighting device]
The configuration of the illumination device according to this embodiment will be described with reference to FIGS. 2 to 6. FIG.
 図2及び図3は、それぞれ、実施の形態に係る照明装置1の構成を示すブロック図及び外観図である。図2には、照明装置1と併せて入力電源P1も示されている。入力電源P1は、照明装置1に交流電力を供給する系統電源である。入力電源P1は、例えば、商用交流電源である。 2 and 3 are a block diagram and an external view, respectively, showing the configuration of the lighting device 1 according to the embodiment. FIG. 2 also shows the input power supply P1 together with the illumination device 1. The input power supply P<b>1 is a system power supply that supplies AC power to the lighting device 1 . The input power supply P1 is, for example, a commercial AC power supply.
 照明装置1は、照明光L2を出射する装置であり、図2及び図3に示されるように、光源装置2と、導光部材3と、蛍光体4aとを備える。なお、照明装置1の各構成要素は、一体化されていてもよいし、一体化されていなくてもよい。例えば、照明装置1は、一つの筐体内に配置されていてもよいし、複数の分散配置された装置の組み合わせであってもよい。 The illumination device 1 is a device that emits illumination light L2, and as shown in FIGS. 2 and 3, includes a light source device 2, a light guide member 3, and a phosphor 4a. In addition, each component of the lighting device 1 may be integrated or may not be integrated. For example, the lighting device 1 may be arranged in one housing, or may be a combination of a plurality of distributed devices.
 光源装置2は、励起光L1を出射する装置である。図2に示されるように、光源装置2は、点灯装置5と、励起源6と、光学部材7とを有する。本実施の形態では、光源装置2は、励起光L1を出射する。光源装置2は、図3に示されるように筐体2aを有し、筐体2a内に、図2に示される点灯装置5、励起源6及び光学部材7が収容される。 The light source device 2 is a device that emits excitation light L1. As shown in FIG. 2 , the light source device 2 has a lighting device 5 , an excitation source 6 and an optical member 7 . In this embodiment, the light source device 2 emits excitation light L1. The light source device 2 has a housing 2a as shown in FIG. 3, and the lighting device 5, the excitation source 6 and the optical member 7 shown in FIG. 2 are accommodated in the housing 2a.
 点灯装置5は、励起源6に電力を供給することで点灯させる装置であり、駆動装置5aと、光源切替部54と、検出回路60と、異常判定部56とを有する。駆動装置5aは、励起源6に供給する電力を制御する装置であり、電源回路51と、出力制御回路58とを有する。異常判定部56及び出力制御回路58は、コントローラ5cによって構成されている。 The lighting device 5 is a device that lights by supplying power to the excitation source 6, and includes a driving device 5a, a light source switching section 54, a detection circuit 60, and an abnormality determination section 56. The driving device 5 a is a device for controlling power supplied to the excitation source 6 and has a power supply circuit 51 and an output control circuit 58 . The abnormality determination unit 56 and the output control circuit 58 are configured by the controller 5c.
 以下、照明装置1の各構成要素について説明する。 Each component of the lighting device 1 will be described below.
 [励起源]
 励起源6は、1以上の発光素子を含み、励起光L1を出射する。以下、本実施の形態に係る励起源6の構成について、図4を用いて説明する。
[Excitation source]
The excitation source 6 includes one or more light emitting elements and emits excitation light L1. The configuration of the excitation source 6 according to this embodiment will be described below with reference to FIG.
 図4は、照明装置1の励起源6の構成を示す回路図である。なお図4には、光源切替部54の回路図も示されている。 4 is a circuit diagram showing the configuration of the excitation source 6 of the lighting device 1. FIG. 4 also shows a circuit diagram of the light source switching unit 54. As shown in FIG.
 図4に示されるように、励起源6は、直列に接続された4個の発光素子6a~6dを含む。発光素子6a~6dの各々は、供給される電力に応じて発光する素子であれば特に限定されない。本実施の形態では、発光素子6a~6dの各々は、青色の励起光を出射する半導体レーザ素子である。これにより、励起源6は、レーザ光である励起光L1を出射する。なお、励起源6に含まれる複数の発光素子の電気的な接続態様は、直列接続に限定されず、並列接続であってもよいし、直列接続及び並列接続を組み合わせた接続態様であってもよい。また、励起源6に含まれる発光素子の個数は4個に限定されず、1以上であればよい。また、励起源6に含まれる発光素子の各々は、半導体レーザ素子に限定されず、LED(Light Emitting Diode)、有機EL(Electro Luminescence)素子などの他の固体発光素子であってもよい。 As shown in FIG. 4, the excitation source 6 includes four light emitting elements 6a-6d connected in series. Each of the light emitting elements 6a to 6d is not particularly limited as long as it is an element that emits light according to the power supplied. In the present embodiment, each of light emitting elements 6a to 6d is a semiconductor laser element that emits blue excitation light. As a result, the excitation source 6 emits excitation light L1, which is laser light. The electrical connection mode of the plurality of light emitting elements included in the excitation source 6 is not limited to series connection, and may be parallel connection or a combination of series connection and parallel connection. good. Further, the number of light emitting elements included in the excitation source 6 is not limited to four, and may be one or more. Moreover, each of the light-emitting elements included in the excitation source 6 is not limited to a semiconductor laser element, and may be another solid-state light-emitting element such as an LED (Light Emitting Diode) or an organic EL (Electro Luminescence) element.
 [光源切替部]
 光源切替部54は、励起源6に含まれる各発光素子の両端を短絡する回路である。光源切替部54は、複数の発光素子6a~6dにそれぞれ並列に接続された複数のスイッチ821~824を有する。複数のスイッチ821~824の各々は、例えば半導体リレー(言い換えると、ソリッド・ステート・リレー)であり、発光素子としての発光ダイオード82aと、受光素子としてのフォトトランジスタ82bとを有する。
[Light source switching part]
The light source switching unit 54 is a circuit that short-circuits both ends of each light emitting element included in the excitation source 6 . The light source switching section 54 has a plurality of switches 821 to 824 connected in parallel to the plurality of light emitting elements 6a to 6d, respectively. Each of the plurality of switches 821-824 is, for example, a semiconductor relay (in other words, solid state relay), and has a light emitting diode 82a as a light emitting element and a phototransistor 82b as a light receiving element.
 各スイッチにおいて、フォトトランジスタ82bがオフ状態である場合、対応する発光素子に駆動電流I1が流れる。一方、フォトトランジスタ82bがオン状態である場合、対応する発光素子の両端が短絡されるため、対応する発光素子に駆動電流I1は流れない。 In each switch, when the phototransistor 82b is in the off state, the driving current I1 flows through the corresponding light emitting element. On the other hand, when the phototransistor 82b is on, both ends of the corresponding light emitting element are short-circuited, so that the drive current I1 does not flow through the corresponding light emitting element.
 [電源回路]
 電源回路51は、励起源6に電力を供給する回路である。電源回路51は、入力電源P1が出力する電力の電圧を変換して出力する。本実施の形態では、入力電源P1が出力する交流電力を直流電力に変換するスイッチング電源回路である。電源回路51は、力率改善機能を有するスイッチング電源回路であってもよい。
[Power supply circuit]
The power supply circuit 51 is a circuit that supplies power to the excitation source 6 . The power supply circuit 51 converts and outputs the voltage of the power output from the input power supply P1. In this embodiment, the switching power supply circuit converts AC power output from the input power supply P1 into DC power. The power supply circuit 51 may be a switching power supply circuit having a power factor correction function.
 [光学部材]
 図2に示されるように、光学部材7は、励起源6から出力された励起光L1を、光学系に導く部材である。光学部材7は、ミラーやレンズ等の光学部品から構成されていてもよい。本実施の形態では、光学系は導光部材3であり、光学部材7は、励起源6から出力された励起光L1を導光部材3の第1端3aに向けて反射させる。光学部材7は、さらに、励起光L1を集光して、導光部材3の第1端3aに入射させる。
[Optical member]
As shown in FIG. 2, the optical member 7 is a member that guides the excitation light L1 output from the excitation source 6 to the optical system. The optical member 7 may be composed of optical components such as mirrors and lenses. In this embodiment, the optical system is the light guide member 3 , and the optical member 7 reflects the excitation light L<b>1 output from the excitation source 6 toward the first end 3 a of the light guide member 3 . The optical member 7 further converges the excitation light L<b>1 to enter the first end 3 a of the light guide member 3 .
 [導光部材]
 導光部材3は、励起光L1が入射し、励起光L1を蛍光体4aに照射する光学系の一例である。本実施の形態では、導光部材3は、励起光L1を導光する光ファイバであり、光源装置2と蛍光体4aとを光学的に接続する。導光部材3のコア径は、例えば400μmである。なお、導光部材3のコア径は、5mm以下であればよい。導光部材3の第1端3aには、励起源6から放射されて光学部材7によって集光された励起光L1が入射する。励起光L1は、導光部材3の第1端3aから、導光部材3の内部を伝達されて、導光部材3の第2端3bから出射する。
[Light guide member]
The light guide member 3 is an example of an optical system that receives the excitation light L1 and irradiates the phosphor 4a with the excitation light L1. In this embodiment, the light guide member 3 is an optical fiber that guides the excitation light L1, and optically connects the light source device 2 and the phosphor 4a. The core diameter of the light guide member 3 is, for example, 400 μm. In addition, the core diameter of the light guide member 3 should be 5 mm or less. The excitation light L<b>1 emitted from the excitation source 6 and condensed by the optical member 7 is incident on the first end 3 a of the light guide member 3 . The excitation light L1 is transmitted through the interior of the light guide member 3 from the first end 3 a of the light guide member 3 and emitted from the second end 3 b of the light guide member 3 .
 [蛍光体]
 蛍光体4aは、励起光L1を、励起光L1とは波長が異なる照明光L2に変換して出射する波長変換部材である。本実施の形態では、蛍光体4aは、導光部材3の第2端3bから出射された励起光L1が照射される。本実施の形態では、蛍光体4aは、透光性材料に蛍光材料が混合されている部材である。蛍光体4aは、例えば黄色蛍光体である。黄色蛍光体は、例えば、Ceで付活されたYAl12、又はEuで付活されたBaSiOである。蛍光体4aは、青色の励起光L1の一部により励起されて、照明光L2として黄色光を出射する。蛍光体4aは、残りの青色の励起光L1と黄色光との混色光である白色光を生成する。蛍光体4aで生成された白色光の大部分は、照明光L2として照明空間に照射される。なお、白色光の大部分を除く残りの一部は、後述する検出回路60に入射される。
[Phosphor]
The phosphor 4a is a wavelength conversion member that converts the excitation light L1 into illumination light L2 having a wavelength different from that of the excitation light L1 and emits the illumination light L2. In the present embodiment, the excitation light L1 emitted from the second end 3b of the light guide member 3 is applied to the phosphor 4a. In this embodiment, the phosphor 4a is a member in which a fluorescent material is mixed with a translucent material. The phosphor 4a is, for example, a yellow phosphor. The yellow phosphor is, for example, Y 3 Al 5 O 12 activated with Ce or Ba 2 SiO 4 activated with Eu. The phosphor 4a is excited by part of the blue excitation light L1 and emits yellow light as the illumination light L2. The phosphor 4a generates white light, which is mixed color light of the remaining blue excitation light L1 and yellow light. Most of the white light generated by the phosphor 4a is irradiated to the illumination space as the illumination light L2. A portion of the white light, excluding most of the white light, enters a detection circuit 60, which will be described later.
 [検出回路]
 検出回路60は、照明装置1の異常を検出する回路である。検出回路60は、蛍光体4aの側方に配置されている。検出回路60は、光センサ61、ミラー装置62及び複数の増幅器63を有している。
[Detection circuit]
The detection circuit 60 is a circuit that detects an abnormality in the lighting device 1 . The detection circuit 60 is arranged on the side of the phosphor 4a. The detection circuit 60 includes a photosensor 61 , a mirror device 62 and a plurality of amplifiers 63 .
 図5は、照明装置1の光センサ61、ミラー装置62、増幅器63の構成を示すブロック図である。 FIG. 5 is a block diagram showing the configuration of the optical sensor 61, mirror device 62, and amplifier 63 of the illumination device 1. FIG.
 光センサ61は、蛍光体4aから出射された光の一部を検出光L3として検出し、検出信号s0を出力する。光センサ61は、例えばフォトダイオードなどの光検出素子であり、受光した検出光L3の光量に応じた検出信号s0を出力する。 The optical sensor 61 detects part of the light emitted from the phosphor 4a as detection light L3, and outputs a detection signal s0. The optical sensor 61 is, for example, a photodetector element such as a photodiode, and outputs a detection signal s0 corresponding to the light amount of the received detection light L3.
 図5に示されるように、光センサ61は、蛍光体4aの側方に配置されており、照明光L2の出射方向とは異なる方向に出射された光を受光する。例えば検出光L3は、蛍光体4aに光が入力される際の入射方向に対して垂直な方向に漏れ出た光である。なお、蛍光体4aから光センサ61までの検出光L3の光路上には、検出光L3の波長帯域以外の波長帯域の光を減衰させる光フィルタなどが配置されてもよい。光センサ61は、検出光L3の光量に応じた検出信号s0をミラー装置62へ出力する。 As shown in FIG. 5, the optical sensor 61 is arranged on the side of the phosphor 4a and receives light emitted in a direction different from the emission direction of the illumination light L2. For example, the detection light L3 is light leaked in a direction perpendicular to the incident direction when the light is input to the phosphor 4a. An optical filter or the like that attenuates light in a wavelength band other than the wavelength band of the detection light L3 may be arranged on the optical path of the detection light L3 from the phosphor 4a to the optical sensor 61. FIG. The optical sensor 61 outputs a detection signal s0 to the mirror device 62 according to the light amount of the detection light L3.
 ミラー装置62は、光センサ61から出力された検出信号s0に基づいて複数の出力信号s1、s2及びs3を出力する。ミラー装置62は、能動素子を用いて電流を複製するカレントミラー回路である。ミラー装置62は、検出信号s0と同一の電流値である複数の出力信号s1~s3を出力する。図5に示す例では、ミラー装置62に1つの検出信号s0が入力され、ミラー装置62から3つの出力信号s1~s3が出力される。 The mirror device 62 outputs a plurality of output signals s1, s2 and s3 based on the detection signal s0 output from the optical sensor 61. Mirror device 62 is a current mirror circuit that uses active elements to replicate the current. The mirror device 62 outputs a plurality of output signals s1 to s3 having the same current value as the detection signal s0. In the example shown in FIG. 5, one detection signal s0 is input to the mirror device 62, and the mirror device 62 outputs three output signals s1 to s3.
 増幅器63は、ミラー装置62が出力した出力信号s1~s3を増幅する回路である。本実施の形態では、増幅器63は、電流アンプ及び抵抗などを有しており、ミラー装置62が出力した光電流を増幅し、増幅した光電流を電圧に変換して出力する、増幅器63から出力される増幅信号は電圧信号であり、検出光L3の光量が大きいほど、光電流の値は大きくなり、増幅信号の電圧値は高くなる。図5に示す例では、増幅器63として3つの増幅器63a、63b及び63cが示されている。 The amplifier 63 is a circuit that amplifies the output signals s1 to s3 output by the mirror device 62. In this embodiment, the amplifier 63 has a current amplifier, a resistor, and the like. The amplified signal that is received is a voltage signal, and the larger the light amount of the detection light L3, the larger the value of the photocurrent and the higher the voltage value of the amplified signal. In the example shown in FIG. 5, three amplifiers 63a, 63b and 63c are shown as the amplifier 63. In FIG.
 複数の増幅器63a~63cのそれぞれは、異なるゲインを有している。複数の増幅器63a~63cは、複数の出力信号s1~s3を異なるゲインで増幅して、複数の増幅信号sa、sb及びscを出力する。複数の増幅器63のうちの第1の増幅器63aは第1のゲインを有し、第2の増幅器63bは第1のゲインよりも低い第2のゲインを有し、第3の増幅器63cは第2のゲインよりも低い第3のゲインを有している。言い換えると、第2のゲインは第3のゲインよりも高く、第1のゲインは第2のゲインよりも高くなっている。 Each of the plurality of amplifiers 63a-63c has a different gain. A plurality of amplifiers 63a-63c amplify the plurality of output signals s1-s3 with different gains and output a plurality of amplified signals sa, sb and sc. A first amplifier 63a of the plurality of amplifiers 63 has a first gain, a second amplifier 63b has a second gain lower than the first gain, and a third amplifier 63c has a second gain. has a third gain that is lower than the gain of . In other words, the second gain is higher than the third gain and the first gain is higher than the second gain.
 図6は、光センサ61にて検出する検出光L3の光量と増幅信号sa~scの信号レベルとの関係を示す図である。図6の横軸には、検出光L3の光量が示され、縦軸には増幅信号sa~scの信号レベルが示されている。信号レベルの単位は電圧値である。 FIG. 6 is a diagram showing the relationship between the light amount of the detection light L3 detected by the optical sensor 61 and the signal levels of the amplified signals sa to sc. The horizontal axis of FIG. 6 indicates the light amount of the detection light L3, and the vertical axis indicates the signal levels of the amplified signals sa to sc. The unit of signal level is a voltage value.
 図6に示されるように、増幅信号saは、検出光L3の光量が0(ゼロ)から増加するにつれて、信号レベルも0から線形に増加する。そして、検出光L3の光量が所定の光量を上回ると、信号レベルは飽和電圧値で一定になる。増幅信号sb及びscについても同様である。 As shown in FIG. 6, the signal level of the amplified signal sa linearly increases from 0 as the light amount of the detection light L3 increases from 0 (zero). Then, when the light intensity of the detection light L3 exceeds a predetermined light intensity, the signal level becomes constant at the saturation voltage value. The same is true for the amplified signals sb and sc.
 例えば、第1の増幅器63aの第1のゲイン及び第2の増幅器63bの第2のゲインは、第1の増幅器63aによる増幅信号saが飽和しているとき、第2の増幅器63bによる増幅信号sbが線形で変化するように設定される。また、第2の増幅器63bの第2のゲイン及び第3の増幅器63cの第3のゲインは、第2の増幅器63bによる増幅信号sbが飽和しているとき、第3の増幅器63cによる増幅信号scが線形で変化するように設定される。 For example, the first gain of the first amplifier 63a and the second gain of the second amplifier 63b are equal to the gain of the signal sb amplified by the second amplifier 63b when the signal sa amplified by the first amplifier 63a is saturated. is set to vary linearly. Further, the second gain of the second amplifier 63b and the third gain of the third amplifier 63c are equal to the signal sc amplified by the third amplifier 63c when the signal sb amplified by the second amplifier 63b is saturated. is set to vary linearly.
 また、複数の増幅器63の各ゲインは、増幅信号sa~scが互いに横軸方向に離れすぎないよう、増幅信号sa~scの信号レベルが所定の閾値である第1の閾値Vth1以下であるときに、所定の検出光L3の光量x1に対して少なくとも2つの増幅信号が存在するように設定される。例えば、図6では、所定の検出光L3の光量x1に対して増幅信号sa及びsbが存在するように、第1のゲイン及び第2のゲインが設定されている。第1の閾値Vth1は、複数の増幅信号sa~scが検出光L3の光量に対して線形で変化する範囲の信号レベルから設定される値である。すなわち、第1の閾値Vth1は、図6に示す飽和電圧値よりも小さな値に設定される。 Further, each gain of the plurality of amplifiers 63 is set when the signal level of the amplified signals sa to sc is equal to or lower than a first threshold Vth1, which is a predetermined threshold, so that the amplified signals sa to sc are not too far apart from each other in the horizontal axis direction. , it is set so that at least two amplified signals exist with respect to a predetermined light quantity x1 of the detection light L3. For example, in FIG. 6, the first gain and the second gain are set so that the amplified signals sa and sb exist with respect to the light amount x1 of the predetermined detection light L3. The first threshold value Vth1 is a value set from a signal level within a range in which the amplified signals sa to sc linearly change with respect to the light amount of the detection light L3. That is, the first threshold Vth1 is set to a value smaller than the saturation voltage value shown in FIG.
 なお、複数の増幅器63のゲインは、増幅信号sa~scの信号レベルが第1の閾値Vth1以下であり、かつ、第1の閾値Vth1よりも小さな閾値である第2の閾値Vth2以上であるときに、すなわち信号レベルが所定範囲内であるときに、所定の検出光L3の光量に対して少なくとも2つの増幅信号が存在するように設定されてもよい。 The gains of the plurality of amplifiers 63 are set when the signal levels of the amplified signals sa to sc are equal to or lower than the first threshold Vth1 and equal to or higher than the second threshold Vth2, which is smaller than the first threshold Vth1. , that is, when the signal level is within a predetermined range, at least two amplified signals are present for a predetermined light amount of the detection light L3.
 このように光センサ61から出力された検出信号s0は、ミラー装置62で複数の出力信号s1~s3に複製され、増幅器63で倍率の異なる複数の増幅信号sa~scとなって異常判定部56へ出力される。 The detection signal s0 output from the optical sensor 61 in this manner is duplicated by the mirror device 62 into a plurality of output signals s1 to s3, and is converted into a plurality of amplified signals sa to sc with different magnifications by the amplifier 63. output to
 [異常判定部]
 異常判定部56は、照明装置1の異常有無を判定する。異常判定部56は、検出回路60から出力された増幅信号sa~scをモニタリングし、蛍光体4a及び励起源6の少なくとも一方の異常有無を判定する。図5に示す例では、複数の増幅器63a~63cで生成された複数の増幅信号sa~scが、常時、異常判定部56へ出力されている。そのため、従来技術のように増幅回路のゲインを切り替える必要がない。
[Abnormality determination unit]
The abnormality determination unit 56 determines whether or not the lighting device 1 is abnormal. The abnormality determination unit 56 monitors the amplified signals sa to sc output from the detection circuit 60 and determines whether or not at least one of the phosphor 4a and the excitation source 6 is abnormal. In the example shown in FIG. 5, a plurality of amplified signals sa to sc generated by a plurality of amplifiers 63a to 63c are constantly output to the abnormality determining section 56. In the example shown in FIG. Therefore, there is no need to switch the gain of the amplifier circuit as in the prior art.
 本実施の形態の異常判定部56は、検出光L3の光量に対する複数の増幅信号sa~scの信号レベルが第1の閾値Vth1以下である増幅信号の中から、信号レベルが最大である増幅信号に基づいて異常有無を判定する。図6に示す例では、異常判定部56は、検出光L3の光量x1に対して信号レベルが最大である増幅信号saを選択し、この増幅信号saに基づいて異常有無を判定する。 The abnormality determining unit 56 of the present embodiment selects the amplified signal having the maximum signal level among the amplified signals sa to sc whose signal level is equal to or lower than the first threshold value Vth1 with respect to the light amount of the detection light L3. The presence or absence of an abnormality is determined based on. In the example shown in FIG. 6, the abnormality determination unit 56 selects the amplified signal sa having the maximum signal level with respect to the light amount x1 of the detected light L3, and determines whether there is an abnormality based on this amplified signal sa.
 異常判定部56は、励起光L1の波長帯域の光を検出光L3とした場合の増幅信号、及び、励起光L1を蛍光体4aで波長変換した蛍光の波長帯域の光を検出光L3とした場合の増幅信号の信号レベルの比率に基づいて異常有無を判定してもよい。例えば、励起光L1を検出光L3とした場合の増幅信号を分母とし、蛍光を検出光L3とした場合の増幅信号を分子としたとき、異常判定部56は、2つの増幅信号の信号レベルの比率が、予め決められた比率の範囲よりも小さい場合に、蛍光体4aに異常が発生していると判定してもよい。また、異常判定部56は、2つの増幅信号の信号レベルの比率が、予め決められた範囲よりも大きい場合に、励起源6に異常が発生していると判定してもよい。励起光L1を検出光L3とするには、例えば、蛍光体4aと光センサ61との間の光路上に励起光L1の波長を透過する光フィルタを配置することで実現される。蛍光を検出光L3とするには、例えば、蛍光体4aと光センサ61との間の光路上に蛍光の波長を透過する光フィルタを配置することで実現される。 The abnormality determination unit 56 uses the amplified signal when the light in the wavelength band of the excitation light L1 as the detection light L3, and the light in the wavelength band of the fluorescence obtained by wavelength-converting the excitation light L1 with the phosphor 4a as the detection light L3. The presence or absence of an abnormality may be determined based on the signal level ratio of the amplified signal in each case. For example, when the amplified signal when the excitation light L1 is the detection light L3 is the denominator, and the amplified signal when the fluorescence is the detection light L3 is the numerator, the abnormality determination unit 56 determines the signal levels of the two amplified signals. If the ratio is smaller than a predetermined ratio range, it may be determined that the phosphor 4a is abnormal. Further, the abnormality determination unit 56 may determine that the excitation source 6 has an abnormality when the ratio of the signal levels of the two amplified signals is greater than a predetermined range. Using the excitation light L1 as the detection light L3 is realized, for example, by arranging an optical filter that transmits the wavelength of the excitation light L1 on the optical path between the phosphor 4a and the optical sensor 61. FIG. Fluorescence can be used as the detection light L3, for example, by arranging an optical filter that transmits the wavelength of the fluorescence on the optical path between the phosphor 4a and the optical sensor 61. FIG.
 また、異常判定部56は、選択した増幅信号の信号レベルの低下率が予め決めた閾値より大きいか否かで異常有無を判定してもよい。例えば、異常判定部56は、現在の検出光L3に基づいて算出した信号レベルと、その直前に取得した信号レベルとを比較して、信号レベルの低下率が予め決めた閾値以下である場合に、励起源6又は蛍光体4aに異常が発生していると判断してもよい。増幅信号の信号レベルの低下率として予め決めた閾値は、例えば、50%程度であってもよい。 In addition, the abnormality determination unit 56 may determine the presence or absence of an abnormality based on whether the rate of decrease in the signal level of the selected amplified signal is greater than a predetermined threshold. For example, the abnormality determination unit 56 compares the signal level calculated based on the current detected light L3 and the signal level acquired immediately before that, and if the rate of decrease in the signal level is equal to or less than a predetermined threshold, , the excitation source 6 or the phosphor 4a may be determined to be abnormal. A predetermined threshold as the rate of decrease in the signal level of the amplified signal may be, for example, about 50%.
 [出力制御回路]
 出力制御回路58は、電源回路51及び光源切替部54を制御することによって、励起源6の各発光素子に供給される電流を制御する。より具体的には、出力制御回路58は、電源回路51を制御することで、駆動電流I1を調整する。すなわち、出力制御回路58は、駆動電流I1を可変とすることで、励起光L1の光量を調整する調光機能を有する。
[Output control circuit]
The output control circuit 58 controls the current supplied to each light emitting element of the excitation source 6 by controlling the power supply circuit 51 and the light source switching section 54 . More specifically, the output control circuit 58 controls the power supply circuit 51 to adjust the driving current I1. That is, the output control circuit 58 has a dimming function that adjusts the light amount of the excitation light L1 by making the drive current I1 variable.
 また、本実施の形態における出力制御回路58は、異常判定部56によって照明装置1に異常が発生していると判定された場合、より具体的には蛍光体4aまたは励起源6に異常が発生していると判定された場合、励起源6への電流供給を停止する。 Further, the output control circuit 58 according to the present embodiment, when the abnormality determination unit 56 determines that an abnormality has occurred in the lighting device 1, more specifically, detects an abnormality in the phosphor 4a or the excitation source 6. If it is determined that the current is supplied to the excitation source 6, the current supply is stopped.
 なお、前述したように出力制御回路58及び異常判定部56は、コントローラ5cで構成される。コントローラ5cは、例えば、制御用IC(Integrated Circuit)、コンピュータシステムなどを含む。コンピュータシステムは、プログラムに従って動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによってコントローラ5cの各機能を実現することができれば、その種類は限定されない。 As described above, the output control circuit 58 and the abnormality determination section 56 are configured by the controller 5c. The controller 5c includes, for example, a control IC (Integrated Circuit), a computer system, and the like. A computer system has a processor that operates according to a program as a main hardware configuration. The type of the processor is not limited as long as it can implement each function of the controller 5c by executing a program.
 このように、本実施の形態に係る照明装置1は、励起光L1を発する励起源6と、励起光L1を受光して蛍光を発する蛍光体4aと、励起光L1及び蛍光のうちの少なくとも一方の光を検出光L3とし、検出光L3に基づく検出信号s0を出力する光センサ61と、検出信号s0に基づいて複数の出力信号s1~s3を出力するミラー装置62と、複数の出力信号s1~s3を異なるゲインで増幅し、複数の増幅信号sa~scを出力する複数の増幅器63と、複数の増幅信号sa~scのうち、検出光L3の光量に対する複数の増幅信号sa~scの信号レベルが所定の閾値Vth1以下である増幅信号の中から、信号レベルが最大である増幅信号に基づいて異常有無を判定する異常判定部56と、を備える。 Thus, the illumination device 1 according to the present embodiment includes the excitation source 6 that emits the excitation light L1, the phosphor 4a that receives the excitation light L1 and emits fluorescence, and at least one of the excitation light L1 and the fluorescence. light as detection light L3, a photosensor 61 that outputs a detection signal s0 based on the detection light L3, a mirror device 62 that outputs a plurality of output signals s1 to s3 based on the detection signal s0, a plurality of output signals s1 to s3 with different gains and output a plurality of amplified signals sa to sc; and an abnormality determination unit 56 that determines the presence or absence of an abnormality based on the amplified signal having the maximum signal level among the amplified signals whose level is equal to or lower than the predetermined threshold value Vth1.
 この構成によれば、異なるゲインで増幅された複数の増幅信号の中から、異常有無の判定をするために適した増幅信号を用いて異常有無の判定を行うことができる。そのため、増幅器のゲインを切り替える必要がなくなり、ゲインの切り替えを起因として照明装置1の異常を検出できない期間が生じることを抑制できる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, it is possible to determine the presence or absence of an abnormality by using an amplified signal suitable for determining the presence or absence of an abnormality among a plurality of amplified signals amplified with different gains. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 [2.照明装置の動作]
 照明装置1の動作について説明する。
[2. Operation of lighting device]
The operation of the illumination device 1 will be described.
 まず、入力電源P1の交流電力が照明装置1に投入されると、出力制御回路58は、電源回路51を制御して、駆動電流I1を励起源6へ供給する。励起源6の複数の発光素子6a~6dは、駆動電流I1によって青色の励起光L1を放射する。励起光L1は、光学部材7及び導光部材3を通って、蛍光体4aに到達する。蛍光体4aは、青色の励起光L1から白色光(波長変換光)を生成する。蛍光体4aは、白色光の殆どを、照明光L2として照明空間に照射する。白色光の一部は、検出光L3として、検出回路60の光センサ61に到達する。 First, when the AC power of the input power supply P1 is applied to the lighting device 1, the output control circuit 58 controls the power supply circuit 51 to supply the drive current I1 to the excitation source 6. A plurality of light emitting elements 6a to 6d of excitation source 6 emit blue excitation light L1 by drive current I1. The excitation light L1 passes through the optical member 7 and the light guide member 3 and reaches the phosphor 4a. The phosphor 4a generates white light (wavelength-converted light) from the blue excitation light L1. The phosphor 4a irradiates the illumination space with most of the white light as the illumination light L2. Part of the white light reaches the optical sensor 61 of the detection circuit 60 as detection light L3.
 検出光L3は、実際に照明空間に照射される照明光L2と同じ白色光であり、照明光L2の光量に関する情報を含んでいる。すなわち、照明光L2の光量が大きいほど、検出光L3の光量も大きくなる。したがって、照明光L2の光量が大きいほど、増幅信号saの電圧値は高くなり、照明光L2の光量が小さいほど、増幅信号saの電圧値は低くなる。すなわち、照明光L2の光量の情報は、検出光L3として点灯装置5にフィードバックされる。 The detection light L3 is the same white light as the illumination light L2 that is actually applied to the illumination space, and contains information about the light amount of the illumination light L2. That is, the greater the light intensity of the illumination light L2, the greater the light intensity of the detection light L3. Therefore, the larger the light intensity of the illumination light L2, the higher the voltage value of the amplified signal sa, and the smaller the light intensity of the illumination light L2, the lower the voltage value of the amplified signal sa. That is, information on the amount of light of the illumination light L2 is fed back to the lighting device 5 as the detected light L3.
 出力制御回路58は、増幅信号saの電圧値に基づいて、励起源6が発する励起光L1の光量を監視する。そして、出力制御回路58は、増幅信号saの電圧値が目標電圧値に一致するように電源回路51を制御することで、駆動電流I1を目標電流に一致させるフィードバック制御を行う。目標電圧値は、予め決められた固定値、又は外部から受け取った調光信号に対応する可変値であってもよい。出力制御回路58は、目標電圧値を可変とすることで、調光制御を行うことができる。 The output control circuit 58 monitors the light intensity of the excitation light L1 emitted by the excitation source 6 based on the voltage value of the amplified signal sa. The output control circuit 58 controls the power supply circuit 51 so that the voltage value of the amplified signal sa matches the target voltage value, thereby performing feedback control to match the drive current I1 to the target current. The target voltage value may be a predetermined fixed value or a variable value corresponding to a dimming signal received from the outside. The output control circuit 58 can perform dimming control by making the target voltage value variable.
 また、本実施の形態では、検出光L3を受光することで光センサ61から出力された検出信号s0に基づいて複数の出力信号s1~s3を生成する。そして、複数の出力信号s1~s3を異なるゲインで増幅し、複数の増幅信号sa~scを生成する。そして、検出光L3の光量に対する複数の増幅信号sa~scの信号レベルが所定の閾値Vth1以下である増幅信号の中から、信号レベルが最大である増幅信号に基づいて異常有無を判定する。 Further, in the present embodiment, a plurality of output signals s1 to s3 are generated based on the detection signal s0 output from the optical sensor 61 by receiving the detection light L3. Then, the plurality of output signals s1 to s3 are amplified with different gains to generate a plurality of amplified signals sa to sc. Then, the presence or absence of an abnormality is determined based on the amplified signal having the maximum signal level among the amplified signals sa to sc whose signal level is equal to or lower than a predetermined threshold value Vth1 with respect to the light amount of the detection light L3.
 この構成によれば、異なるゲインで増幅された複数の増幅信号sa~scの中から、異常有無の判定をするために適した増幅信号を用いて異常有無の判定を行うことができる。そのため、増幅器のゲインを切り替える必要がなくなり、ゲインの切り替えを起因として照明装置1の異常を検出できない期間が生じることを抑制できる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, the presence or absence of an abnormality can be determined by using an amplified signal suitable for determining the presence or absence of an abnormality from among the plurality of amplified signals sa to sc amplified with different gains. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 [3.照明装置を備える内視鏡装置]
 上記の照明装置1を備える内視鏡装置について説明する。
[3. Endoscope device equipped with illumination device]
An endoscope apparatus including the lighting device 1 described above will be described.
 図7は、実施の形態の照明装置1を備える内視鏡装置90の構成を示す概略図である。 FIG. 7 is a schematic diagram showing the configuration of an endoscope device 90 including the illumination device 1 of the embodiment.
 内視鏡装置90は、照明装置1と、観察装置91とを備えている。照明装置1は、上記の実施の形態と同様の構成を有している。 The endoscope device 90 includes an illumination device 1 and an observation device 91. The illumination device 1 has a configuration similar to that of the above embodiment.
 観察装置91は、被検体を観察するための装置である。観察装置91は、蛍光体4aの近傍に露出して設けられた対物光学系92と、対物光学系92の結像位置に設けられた撮像素子であるCCD(Charge Coupled Device)93と、光源装置2の近傍に設けられた映像信号処理回路94と、CCD93と映像信号処理回路94とを接続する信号ケーブル95とを有する。観察装置91では、対物光学系92によって結像された被検体の観察像が、CCD93によって電気信号に変換され、画像信号として信号ケーブル95によって伝送される。伝送された画像信号は、映像信号処理回路94によって映像信号に変換処理され、観察装置91に接続されたモニタ(図示省略)に映像として映し出される。この内視鏡装置90においても、上記の照明装置1と同様の効果を得ることができる。 The observation device 91 is a device for observing the subject. The observation device 91 includes an objective optical system 92 that is exposed near the phosphor 4a, a CCD (Charge Coupled Device) 93 that is an imaging element provided at an image forming position of the objective optical system 92, and a light source device. 2 and a signal cable 95 connecting the CCD 93 and the video signal processing circuit 94 . In the observation device 91 , an observation image of the subject formed by the objective optical system 92 is converted into an electric signal by the CCD 93 and transmitted as an image signal by the signal cable 95 . The transmitted image signal is converted into a video signal by the video signal processing circuit 94 and displayed as a video on a monitor (not shown) connected to the observation device 91 . Also in this endoscope device 90, the same effects as those of the illumination device 1 can be obtained.
 なお、図7では、励起光L1を導光部材3で内視鏡装置90の先端付近まで導光してから照明光L2に変換する例を示したが、それに限られない。例えば、励起光L1から変換後の照明光L2を導光部材3で内視鏡装置90の先端に導光させることも可能である。照明光L2を導光する構造にすることで、内視鏡装置90の先端付近にセンサ等を設置する必要が無くなり、内視鏡の径を細くすることが可能となる。 Although FIG. 7 shows an example in which the excitation light L1 is guided to the vicinity of the tip of the endoscope device 90 by the light guide member 3 and then converted into the illumination light L2, the present invention is not limited to this. For example, the illumination light L2 converted from the excitation light L1 can be guided to the distal end of the endoscope device 90 by the light guide member 3 . By adopting a structure for guiding the illumination light L2, there is no need to install a sensor or the like near the distal end of the endoscope device 90, and the diameter of the endoscope can be reduced.
 [4.効果など]
 以上のように、本実施の形態に係る照明装置1は、励起光L1を発する励起源6と、励起光L1を受光して蛍光を発する蛍光体4aと、励起光L1及び蛍光のうちの少なくとも一方の光を検出光L3とし、検出光L3に基づく検出信号s0を出力する光センサ61と、検出信号s0に基づいて複数の出力信号s1~s3を出力するミラー装置62と、複数の出力信号s1~s3を異なるゲインで増幅し、複数の増幅信号sa~scを出力する複数の増幅器63と、複数の増幅信号sa~scのうち、検出光L3の光量に対する複数の増幅信号sa~scの信号レベルが所定の閾値Vth1以下である増幅信号の中から、信号レベルが最大である増幅信号に基づいて異常有無を判定する異常判定部56と、を備える。
[4. effects, etc.]
As described above, the illumination device 1 according to the present embodiment includes the excitation source 6 that emits the excitation light L1, the phosphor 4a that receives the excitation light L1 and emits fluorescence, and at least one of the excitation light L1 and the fluorescence. A photosensor 61 that outputs a detection signal s0 based on the detection light L3, a mirror device 62 that outputs a plurality of output signals s1 to s3 based on the detection signal s0, and a plurality of output signals. A plurality of amplifiers 63 that amplify s1 to s3 with different gains and output a plurality of amplified signals sa to sc, and among the plurality of amplified signals sa to sc, a plurality of amplified signals sa to sc with respect to the light amount of the detection light L3. and an abnormality determination unit 56 that determines whether there is an abnormality based on the amplified signal having the maximum signal level among the amplified signals having the signal level equal to or lower than the predetermined threshold value Vth1.
 この構成によれば、異なるゲインで増幅された複数の増幅信号sa~scの中から、異常有無の判定をするために適した増幅信号を用いて異常有無の判定を行うことができる。そのため、増幅器のゲインを切り替える必要がなくなり、ゲインの切り替えを起因として照明装置1の異常を検出できない期間が生じることを抑制できる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, the presence or absence of an abnormality can be determined by using an amplified signal suitable for determining the presence or absence of an abnormality from among the plurality of amplified signals sa to sc amplified with different gains. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 また、異常判定部56は、信号レベルが最大である増幅信号に基づいて、励起源6及び蛍光体4aの少なくとも一方の異常有無を判定してもよい。 Further, the abnormality determination unit 56 may determine whether or not at least one of the excitation source 6 and the phosphor 4a is abnormal based on the amplified signal with the maximum signal level.
 この構成によれば、増幅器のゲインの切り替えを起因として励起源6又は蛍光体4aの異常を検出できない期間が生じることを抑制できる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, it is possible to suppress the occurrence of a period during which an abnormality in the excitation source 6 or the phosphor 4a cannot be detected due to switching of the gain of the amplifier. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 また、異常判定部56は、励起光L1を検出光L3とした場合の増幅信号、及び、蛍光を検出光L3とした場合の増幅信号の信号レベルの比率に基づいて異常有無を判定してもよい。 Further, the abnormality determination unit 56 may determine the presence or absence of an abnormality based on the signal level ratio of the amplified signal when the excitation light L1 is used as the detection light L3 and the amplified signal when fluorescence is used as the detection light L3. good.
 この構成によれば、励起源6及び蛍光体4aの両方の異常有無の判定を適時行うことができる。 According to this configuration, it is possible to timely determine whether or not there is an abnormality in both the excitation source 6 and the phosphor 4a.
 また、ミラー装置62は、カレントミラー回路であり、検出信号s0と同一の電流値である複数の出力信号s1~s3を出力してもよい。 Also, the mirror device 62 is a current mirror circuit, and may output a plurality of output signals s1 to s3 having the same current value as the detection signal s0.
 この構成によれば、複数の出力信号s1~s3を用いて、異常有無の判定を行うことができる。そのため、増幅器のゲインを切り替える必要がなくなり、ゲインの切り替えを起因として照明装置1の異常を検出できない期間が生じることを抑制できる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, the presence or absence of an abnormality can be determined using a plurality of output signals s1 to s3. Therefore, it becomes unnecessary to switch the gain of the amplifier, and it is possible to suppress the occurrence of a period in which an abnormality of the lighting device 1 cannot be detected due to the switching of the gain. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 また、複数の増幅器63のうちの第1の増幅器63aは第1のゲインを有し、第2の増幅器63bは第1のゲインよりも低い第2のゲインを有し、第1のゲイン及び第2のゲインは、第1の増幅器63aによる増幅信号saが飽和しているとき、第2の増幅器63bによる増幅信号sbが線形で変化するように設定されてもよい。 A first amplifier 63a of the plurality of amplifiers 63 has a first gain, a second amplifier 63b has a second gain lower than the first gain, and the first gain and the second amplifier 63b have a second gain lower than the first gain. A gain of 2 may be set so that when the signal sa amplified by the first amplifier 63a is saturated, the signal sb amplified by the second amplifier 63b changes linearly.
 この構成によれば、異常判定部56が、複数の増幅信号を途切れることなく取得することができ、取得した複数の増幅信号の中から、異常有無の判定をするための読み取りに適した増幅信号を選択し、異常有無の判定を行うことができる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, the abnormality determination unit 56 can acquire a plurality of amplified signals without interruption, and among the acquired amplified signals, an amplified signal suitable for reading for determining the presence or absence of an abnormality. can be selected to determine whether there is an abnormality. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 また、所定の閾値Vth1は、複数の増幅信号sa~scのそれぞれが検出光L3の光量に対して線形で変化する範囲の信号レベルから設定されてもよい。 Also, the predetermined threshold Vth1 may be set from a signal level within a range in which each of the plurality of amplified signals sa to sc linearly changes with respect to the light amount of the detection light L3.
 この構成によれば、増幅信号を精度よく取得することができ、取得した複数の増幅信号の中から、異常有無の判定をするための読み取りに適した増幅信号を選択し、異常有無の判定を行うことができる。これにより、照明装置1の異常有無の判定を適時行うことができる。 According to this configuration, the amplified signal can be acquired with high accuracy, and the amplified signal suitable for reading for determining the presence or absence of an abnormality is selected from among the plurality of acquired amplified signals, and the determination of the presence or absence of an abnormality is performed. It can be carried out. As a result, it is possible to timely determine whether or not there is an abnormality in the lighting device 1 .
 また、光センサ61は、蛍光体4aから出射される照明光L2とは異なる方向に出射された光を検出光L3としてもよい。 Also, the optical sensor 61 may detect light emitted in a direction different from that of the illumination light L2 emitted from the phosphor 4a as the detection light L3.
 これによれば、検出光L3を減衰が少ない状態で簡易に取得することができる。これにより、照明装置1の異常有無の判定を簡易に行うことができる。 According to this, the detection light L3 can be easily obtained with little attenuation. This makes it possible to easily determine whether or not there is an abnormality in the lighting device 1 .
 また、励起源6は、レーザ素子であってもよい。 Also, the excitation source 6 may be a laser element.
 これによれば、レーザ素子から発せられた光を励起光L1として、照明装置1の異常有無の判定を行うことができる。 According to this, it is possible to determine whether or not there is an abnormality in the illumination device 1 by using the light emitted from the laser element as the excitation light L1.
 また、本実施の形態に係る内視鏡装置90は、上記の照明装置1と、被検体を観察するための観察装置91と、を備えていてもよい。 Also, the endoscope apparatus 90 according to the present embodiment may include the illumination device 1 described above and an observation device 91 for observing the subject.
 これによれば、異常有無の判定を適時行うことができる照明装置1を備えた内視鏡装置90を提供することができる。 According to this, it is possible to provide the endoscope device 90 having the illumination device 1 capable of timely determining whether or not there is an abnormality.
 (その他の実施の形態)
 以上、本開示の複数の態様に係る照明装置等について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれてもよい。
(Other embodiments)
As described above, the illumination device and the like according to the multiple aspects of the present disclosure have been described based on the embodiments, but the present disclosure is not limited to these embodiments. As long as it does not deviate from the spirit of the present disclosure, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and forms constructed by combining the components of different embodiments are also included within the scope of the present disclosure. may
 例えば、実施の形態では、光学系として導光部材3を用いたが、光学系の構成は、励起光L1が入射し、励起光L1を蛍光体4aに照射することができれば、導光部材3に限定されない。例えば、光学系として、ミラー、レンズなどの光学素子を用いてもよい。 For example, in the embodiment, the light guide member 3 is used as the optical system. is not limited to For example, optical elements such as mirrors and lenses may be used as the optical system.
1  照明装置
4a 蛍光体
6  励起源
56 異常判定部
61 光センサ
62 ミラー装置
63、63a、63b、63c 増幅器
90 内視鏡装置
91 観察装置
L1 励起光
L2 照明光
L3 検出光
s0 検出信号
s1、s2、s3 出力信号
sa、sb、sc 増幅信号
Vth1、Vth2 閾値
1 illumination device 4a phosphor 6 excitation source 56 abnormality determination unit 61 optical sensor 62 mirror devices 63, 63a, 63b, 63c amplifier 90 endoscope device 91 observation device L1 excitation light L2 illumination light L3 detection light s0 detection signals s1 and s2 , s3 output signals sa, sb, sc amplified signals Vth1, Vth2 threshold

Claims (9)

  1.  励起光を発する励起源と、
     前記励起光を受光して蛍光を発する蛍光体と、
     前記励起光及び前記蛍光のうちの少なくとも一方の光を検出光とし、前記検出光に基づく検出信号を出力する光センサと、
     前記検出信号に基づいて複数の出力信号を出力するミラー装置と、
     前記複数の出力信号を異なるゲインで増幅し、複数の増幅信号を出力する複数の増幅器と、
     前記複数の増幅信号のうち、前記検出光の光量に対する前記複数の増幅信号の信号レベルが所定の閾値以下である増幅信号の中から、前記信号レベルが最大である増幅信号に基づいて異常有無を判定する異常判定部と、
     を備える照明装置。
    an excitation source that emits excitation light;
    a phosphor that receives the excitation light and emits fluorescence;
    an optical sensor that uses at least one of the excitation light and the fluorescence as detection light and outputs a detection signal based on the detection light;
    a mirror device that outputs a plurality of output signals based on the detection signal;
    a plurality of amplifiers for amplifying the plurality of output signals with different gains and outputting a plurality of amplified signals;
    Among the plurality of amplified signals, the presence or absence of an abnormality is determined based on the amplified signal having the maximum signal level among the amplified signals having a signal level equal to or lower than a predetermined threshold with respect to the light amount of the detected light. an abnormality determination unit that determines;
    A lighting device.
  2.  前記異常判定部は、前記信号レベルが最大である増幅信号に基づいて、前記励起源及び前記蛍光体の少なくとも一方の異常有無を判定する
     請求項1に記載の照明装置。
    The lighting device according to claim 1, wherein the abnormality determination section determines whether or not at least one of the excitation source and the phosphor is abnormal based on the amplified signal having the maximum signal level.
  3.  前記異常判定部は、前記励起光を検出光とした場合の前記増幅信号、及び、前記蛍光を検出光とした場合の前記増幅信号の信号レベルの比率に基づいて異常有無を判定する
     請求項2に記載の照明装置
    2. The abnormality determination unit determines whether there is an abnormality based on a signal level ratio of the amplified signal when the excitation light is used as the detection light and the amplified signal when the fluorescence is used as the detection light. The lighting device according to
  4.  前記ミラー装置は、カレントミラー回路であり、前記検出信号と同一の電流値である前記複数の出力信号を出力する
     請求項1~3のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 3, wherein the mirror device is a current mirror circuit and outputs the plurality of output signals having the same current value as the detection signal.
  5.  前記複数の増幅器のうちの第1の増幅器は第1のゲインを有し、第2の増幅器は前記第1のゲインよりも低い第2のゲインを有し、
     前記第1のゲイン及び第2のゲインは、前記第1の増幅器による増幅信号が飽和しているとき、前記第2の増幅器による増幅信号が線形で変化するように設定される
     請求項1~4のいずれか1項に記載の照明装置。
    a first amplifier of the plurality of amplifiers having a first gain and a second amplifier having a second gain lower than the first gain;
    The first gain and the second gain are set so that the signal amplified by the second amplifier changes linearly when the signal amplified by the first amplifier is saturated. The lighting device according to any one of .
  6.  前記所定の閾値は、前記複数の増幅信号のそれぞれが前記検出光の光量に対して線形で変化する範囲の前記信号レベルから設定される
     請求項1~5のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 5, wherein the predetermined threshold is set from the signal level in a range in which each of the plurality of amplified signals linearly changes with respect to the light amount of the detected light. .
  7.  前記光センサは、前記蛍光体から出射される照明光とは異なる方向に出射された光を前記検出光とする
     請求項1~6のいずれか1項に記載の照明装置。
    The illumination device according to any one of claims 1 to 6, wherein the optical sensor detects light emitted in a direction different from that of the illumination light emitted from the phosphor as the detection light.
  8.  前記励起源は、レーザ素子である
     請求項1~7のいずれか1項に記載の照明装置。
    The illumination device according to any one of claims 1 to 7, wherein the excitation source is a laser element.
  9.  請求項8に記載の照明装置と、
     被検体を観察するための観察装置と、
     を備える内視鏡装置。
    a lighting device according to claim 8;
    an observation device for observing a subject;
    An endoscope device comprising:
PCT/JP2022/027732 2021-07-29 2022-07-14 Lighting device and endoscope device WO2023008213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124333 2021-07-29
JP2021124333A JP2023019546A (en) 2021-07-29 2021-07-29 Illumination device and endoscope device

Publications (1)

Publication Number Publication Date
WO2023008213A1 true WO2023008213A1 (en) 2023-02-02

Family

ID=85087575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027732 WO2023008213A1 (en) 2021-07-29 2022-07-14 Lighting device and endoscope device

Country Status (2)

Country Link
JP (1) JP2023019546A (en)
WO (1) WO2023008213A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058370A (en) * 2014-09-04 2016-04-21 株式会社小糸製作所 Vehicle lighting fixture and abnormality detector of light source thereof
JP2020077596A (en) * 2018-11-09 2020-05-21 パナソニックIpマネジメント株式会社 Illumination lighting device, luminaire, and illumination apparatus
JP2020194677A (en) * 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Photodetector, illumination lighting device, and illumination system
JP2021034332A (en) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 Illumination system and control method for illumination system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058370A (en) * 2014-09-04 2016-04-21 株式会社小糸製作所 Vehicle lighting fixture and abnormality detector of light source thereof
JP2020077596A (en) * 2018-11-09 2020-05-21 パナソニックIpマネジメント株式会社 Illumination lighting device, luminaire, and illumination apparatus
JP2020194677A (en) * 2019-05-27 2020-12-03 パナソニックIpマネジメント株式会社 Photodetector, illumination lighting device, and illumination system
JP2021034332A (en) * 2019-08-29 2021-03-01 パナソニックIpマネジメント株式会社 Illumination system and control method for illumination system

Also Published As

Publication number Publication date
JP2023019546A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP5677293B2 (en) Eye-safe laser-based illumination
JP6062110B2 (en) Light source device
JP2006318773A (en) Led illumination system and luminaire
JP2009513011A (en) Color lighting device
WO2012118095A1 (en) Light source module and light source system
KR20220141850A (en) Multi-channel programmable detection sensor
CN108523819B (en) Fluorescent navigation endoscope system with photometric feedback and automatic laser power adjustment method
US20190379178A1 (en) Illumination device, control device, and control method
US11278183B2 (en) Light source device and imaging system
JP2018000228A (en) Illumination device, control method of illumination device, and imaging system
WO2023008213A1 (en) Lighting device and endoscope device
JP7266241B2 (en) Light detection device, lighting device, and lighting system
JP5030671B2 (en) Illumination device and endoscope device
US11177629B2 (en) Light source device, light source driver, and lighting system
TW200939628A (en) Photoelectric sensor
US11206725B2 (en) Lighting system and method of controlling lighting system
US11147141B2 (en) Lighting system and method of controlling lighting system
JP7431104B2 (en) Light amount adjustment device, light amount adjustment system, and light amount adjustment method
JP7320778B2 (en) Light detection device, lighting device, and lighting system
JPH1137930A (en) Absorptiometer
JP2020194678A (en) Light source device, illumination lighting device, and illumination system
JP5273949B2 (en) Illumination device and endoscope device
US20190239738A1 (en) Optical scanning endoscope device
WO2011067117A1 (en) Led lighting device with light sensor and control method
JPS636426A (en) Spectrophotometric instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE