WO2023008158A1 - Absorptiometry device and biochemical assay device comprising same - Google Patents

Absorptiometry device and biochemical assay device comprising same Download PDF

Info

Publication number
WO2023008158A1
WO2023008158A1 PCT/JP2022/027238 JP2022027238W WO2023008158A1 WO 2023008158 A1 WO2023008158 A1 WO 2023008158A1 JP 2022027238 W JP2022027238 W JP 2022027238W WO 2023008158 A1 WO2023008158 A1 WO 2023008158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
leds
led
wavelength
lens
Prior art date
Application number
PCT/JP2022/027238
Other languages
French (fr)
Japanese (ja)
Inventor
啓一郎 松木
俊一郎 信木
洋一郎 鈴木
拓也 高橋
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023008158A1 publication Critical patent/WO2023008158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water

Definitions

  • the present disclosure relates to an absorptiometry device and a biochemical analysis device including the same.
  • Absorption photometry is known as an analysis technique for sample identification and concentration.
  • sample measurements are performed using this spectrophotometric technique.
  • concentration distribution may occur in the vertical direction within the container, and if each light beam passes through portions with different densities, the measurement accuracy may be adversely affected.
  • Patent Document 1 two types of semiconductor light sources having different output wavelengths are used, and at least two types of semiconductor light sources are arranged in the same package so that they can be accommodated in a detector after their output optical axes intersect. By doing so, it is disclosed to allow multiple lights to pass through approximately the same concentration, making detection less sensitive to sample concentration in the container. Further, Patent Document 1 describes that "unnecessary stray light other than the light from the light source can be removed, so that inspection accuracy can be improved.”
  • Japanese Patent Application Laid-Open No. 2002-200001 describes a condition regarding the distance between two light sources in order to detect light emission in the detection unit. By arranging the semiconductor light source so that it falls within the range determined by the lens image formation and the relational expression of the magnification, it is possible to detect the amount of light in the light receiving section.
  • the LED output, wavelength full width at half maximum, light emitting area, directivity angle, etc. differ individually. is position dependent. Therefore, with only the conditions related to the distance between the two light sources described in Patent Document 1, it is not possible to detect a sufficient amount of light for sample measurement (acquire a signal sufficient to identify the sample) with some of the arranged LEDs. It can be difficult. In view of such circumstances, the present disclosure proposes a technique that enables detection of a sufficient amount of light for sample identification.
  • the present disclosure includes a plurality of LEDs, a substrate provided with the plurality of LEDs on the same plane, a lens on which the light emitted from the plurality of LEDs is directly incident, and a reaction of the light passing through the lens.
  • a slit through which transmitted light enters the cell and passes through the reaction cell, and a light-receiving section that receives the transmitted light and converts it into a current.
  • the LEDs show the lowest parameter values in ascending order of parameter values calculated based on the LED output, light emitting area, and wavelength full width at half maximum.
  • An absorptiometry device is proposed, which is arranged to include:
  • the amount of light detected by the light-receiving unit can be made sufficient for identifying (measuring) the sample.
  • FIG. 1 is a diagram showing a configuration example of an absorption photometry device 100.
  • FIG. FIG. 3 is a diagram showing an arrangement example of a plurality of LEDs (three LEDs, LED1 to LED3, as an example) in Example 1; 4 is a table showing values of parameters P/(S ⁇ ) of LED1 to LED3; 5 is a diagram showing an example of LED arrangement according to Comparative Example 1;
  • FIG. 4 is a diagram showing emission spectra acquired by a light receiving unit 8 for each of an LED arrangement example according to Example 1 and an LED arrangement example according to Comparative Example 1; It is a table
  • FIG. 10 is a diagram showing an example of LED arrangement according to Comparative Example 2;
  • FIG. 10 is a diagram showing emission spectra acquired by the light receiving unit 8 for each of an LED arrangement example according to Example 2 and an LED arrangement example according to Comparative Example 2;
  • 4 is a table showing characteristic values of LEDs 11 and 12 and correction coefficients in the light receiving section 8 at the center wavelength.
  • FIG. 10 shows an LED arrangement example when LEDs 11 and 12 are arranged according to Condition 1 and/or Condition 2 shown in Example 1, based on the comparison results of corrected parameters P/(S ⁇ ) shown in FIG. is.
  • FIG. 10 is a diagram showing emission spectra of an LED arrangement example according to Example 3 and an LED arrangement example according to Comparative Example 2, with photocurrent values plotted on the vertical axis.
  • 4 is a table showing characteristic values used for calculating parameters (W/(S ⁇ 1/2 )). It is a table
  • a diagram showing the results of arranging the LEDs 13 to 17 according to Condition 1 and/or Condition 2 described in Example 1, based on the comparison of the parameters (W/(S ⁇ 1/2 )) shown in FIG. is.
  • FIG. 11 is a diagram showing an arrangement example in which LEDs 13 to 17 are arranged so as to be close to the optical axis 9 as Comparative Example 3;
  • FIG. 10 is a diagram showing emission spectra of an LED arrangement example according to Example 5 and an LED arrangement example according to Comparative Example 3, with photocurrent values plotted on the vertical axis. It is a figure which shows the structural example of a biochemical analyzer.
  • Example 1 relates to a three-LED absorptiometry device capable of absorptiometry, e.g., using three LEDs with wavelengths corresponding to absorptiometry and biochemical analysis, the effective area and parameter (P /(S ⁇ )) to determine an LED arrangement capable of achieving a target light amount.
  • the parameter (LED arrangement determination parameter) according to Example 1 is a parameter that is approximately proportional to the amount of light per unit area, per unit wavelength, and per unit angle in the direction perpendicular to the light emitting surface of the LED. It provides values to rely on in determining LED placement.
  • FIG. 1 is a diagram showing a configuration example of an absorption photometry device 100.
  • the absorption photometry device 100 includes a plurality of LEDs 1 to 3 (three LEDs in Example 1), a substrate 4, a lens 5, a reaction cell 6 containing a specimen, a slit 7, and a light receiving section 8. Prepare.
  • LED1 to LED3 fixed to the substrate 4 irradiate the lens 5 with light.
  • the center of the lens 5 is separated from the light emitting surfaces of the LEDs 1 to 3 by a distance a.
  • the light that has entered the lens 5 from the LEDs 1 and 3 enters the reaction cell 6 containing the sample while being affected by refraction in the lens 5 .
  • the reaction cell 6 is arranged so that the LED 1 to LED 3 side surfaces are separated from the center of the lens 5 by a distance b.
  • the thickness of the reaction cell 6 in the direction of the optical axis 9 is t.
  • Part of the light condensed by the lens 5 passes through the reaction cell 6 and the sample in the reaction cell 6, and part of the light is absorbed.
  • the transmitted light passes through the slit 7 which is a distance c away from the surface of the reaction cell 6 on the LED 1 to LED 3 side, and reaches the light receiving portion 8 .
  • the hole diameter of the slit 7 is set to e.
  • the light receiving section 8 outputs the received light as a signal such as a current value or a voltage value by a conversion element such as a photodiode.
  • the shape of the slit 7 is circular, but various shapes such as symmetrical and asymmetrical shapes can be assumed as possible shapes.
  • the optical axis 9 can pass through the center of the slit 7 as in this embodiment, so that the effect can be obtained with higher precision. It does not have to pass through, and by devising the arrangement of the LEDs 1 to 3, the same effect as when the optical axis 9 passes through the center of the slit 7 can be obtained.
  • FIG. 2 is a diagram showing an arrangement example of a plurality of LEDs (three LEDs LED1 to LED3 as an example) in the first embodiment.
  • the areas and shapes of the light emitting surfaces of LED1 to LED3 match the areas and shapes of LED1 to LED3.
  • the area and shape of the light emitting surface of the LED may be different from the area and shape of the LED chip.
  • Information on the area of the light-emitting surface and the area of the LED chip can be obtained from luminance distribution measurement with a luminance meter, observation with a microscope, and LED specification tables during LED light emission.
  • LED1 is an ultraviolet LED and has a peak central wavelength of 340 nm.
  • the LED 2 is a white LED and is composed of a peak derived from the excitation light and a peak derived from the phosphor.
  • the center wavelength of the peak derived from the excitation light is 380 nm, and the center wavelength of the peak derived from the phosphor is 600 nm.
  • the LED 3 is an infrared LED and has a peak central wavelength of 800 nm.
  • the wavelength range of the emission spectrum of LED1 is 320 nm to 360 nm
  • the wavelength range of the emission spectrum of LED2 is 360 nm to 820 nm
  • the wavelength range of the emission spectrum of LED3 is 700 nm to 945 nm.
  • This effective area 10 can be calculated from the positions of the light emitting surfaces of the LEDs 1 to 3 and the arrangement of the lens 5 , the reaction cell 6 and the slit 7 .
  • the calculation method is as follows. Since the target light amount is obtained by the light receiving unit 8 , the imaging positions of the light emitting surfaces of the LEDs 1 to 3 can be provided between the reaction cell 6 and the slit 7 . In addition, a sufficient amount of light must be transmitted through the sample in the reaction cell 6 for absorption photometry.
  • the difference in refractive index will change the optical path length and the effective area.
  • the optical path length is increased by the product of the difference in refractive index between the medium and air and the thickness in the direction of the optical axis 9. become longer. Therefore, in this case, it is assumed that b and c in FIG. In this embodiment, the influence of the optical path length due to these medium differences is taken into consideration.
  • the range of the effective region can be assumed based on the refractive index of the material of the reaction cell 6 and the refractive index of the sample having the highest refractive index among the assumed samples, and the arrangement of each LED can be determined. It is possible to calculate the range of the effective area without considering the effect of the optical path length. can be calculated.
  • the emission wavelength was 550 nm. While it is possible to calculate the range of the effective region at any wavelength, the range of the effective region can be calculated more accurately by using wavelengths included in the emission wavelength range of the LED used.
  • the LED1 to LED3 are fixed to the substrate 4, and the light emitting surfaces of the LED1 to LED3 are separated from the substrate 4 by the thickness of each LED1 to LED3.
  • the distance a between the light emitting surface of the LED and the center of the lens 5 is a, and when the thickness of each of the LEDs 1 to 3 is uniform, the distance a can be uniquely obtained.
  • the position separated from the substrate 4 by the average thickness of each of the LEDs 1 to 3 can be set as the position of the LED light emitting surface.
  • FIG. 3 is a table showing values of parameters P/(S ⁇ ) of LED1 to LED3.
  • a parameter P/(S ⁇ ) is calculated based on the area S of the light emitting surface, the output P, and the wavelength full width at half maximum ⁇ .
  • These numerical values are values that can be obtained from measurements of actual machines or from specification tables.
  • the area S of the light emitting surface can be measured using an optical microscope or the like.
  • the output P can be measured by installing a power meter or the like at a position a fixed distance away from the LED during light emission. Then, the center wavelength and full width at half maximum wavelength ⁇ of the major peaks can be measured by a spectroscope or the like.
  • the wavelength full width at half maximum ⁇ it is the width between wavelengths when it is half the value of the maximum value of the peak in the spectrum. Also, when there are a plurality of main peaks, the sum of the full widths at half maximum of each peak is assumed to be the wavelength full width at half maximum ⁇ of the LED.
  • a parameter P/(S ⁇ ) shown in the lower part of FIG. 3 is calculated from the acquired area S of the light emitting surface, the output power P, and the wavelength full width at half maximum ⁇ . This parameter P/(S ⁇ ) is understood as a value that is roughly proportional to the amount of light traveling in the direction of the optical axis 9 per unit solid angle, unit area, and unit wavelength in the LED.
  • the LED with a large parameter P/(S ⁇ ) and the LED with a small parameter are at the same distance from the optical axis 9, the LED with a large parameter P/(S ⁇ ) is in the light receiving section 8. , a larger amount of light is obtained.
  • the parameter P/(S ⁇ ) increases in the order of LED2, LED3, and LED1.
  • the LEDs 1 to 3 are arranged in the effective area 10 so as to satisfy the following condition 1 and/or condition 2 in the order of LED2, LED3, and LED1 having the smallest parameter P/(S ⁇ ).
  • Condition 1 Arrange so that the light emitting surface approaches the optical axis 9 shown in FIG.
  • Condition 2 The effective area 10 and the light emitting surfaces of the plurality of LEDs (LED1 to LED3) are arranged so as to overlap with each other in increasing order of the parameter P/(S ⁇ ).
  • the light emitting surface of the LED having the minimum value of the parameter P/(S ⁇ ) is arranged so as to include the optical axis 9 .
  • the LED whose parameter P/(S ⁇ ) takes the next smallest value is arranged so as to be second closest to the optical axis 9 .
  • the LEDs are arranged close to the optical axis in order of decreasing parameter P/(S ⁇ ).
  • the arrangement policy of each LED is determined based on the calculation result of the parameter P/(S ⁇ ).
  • FIG. 2 shows the LED arrangement result obtained by the above LED arrangement determination method.
  • the parameter P/(S ⁇ ) has a value as shown in FIG. are placed next to each other.
  • the distance between the optical axis 9 and the light emitting surface of the LED 2 can be regarded as zero.
  • the distance between the optical axis 9 and the light emitting surface of the LED 1 is the distance from the optical axis 9 shown in FIG.
  • the distance from the optical axis 9 to the end of the light emitting surface of the LED 3 is the distance from the optical axis 9 to the left side of the LED 3 shown in FIG. 2, and can be set to 0.32 mm.
  • the distance from the optical axis 9 to the edge of the LED light emitting surface is arranged in the order of LED2, LED3, and LED1. Moreover, it can be confirmed from FIG. 2 that the overlap with the effective area 10 is large in the order of LED2, LED3, and LED1.
  • Example 1 the arrangement of LED1 to LED3 in FIG. 2 satisfies Condition 1 and Condition 2.
  • this arrangement is not a regular arrangement such as a grid-like arrangement as in the comparative example shown below, visibility is confirmed by visual observation of the light source section.
  • FIG. 4 is a diagram showing an example of LED arrangement according to Comparative Example 1.
  • Comparative Example 1 shows an example in which the LEDs 1 to 3 are arranged in the vicinity of the optical axis 9 in a grid pattern without considering the parameter P/(S ⁇ ).
  • the LEDs 1 to 3 are arranged in a lattice near the optical axis 9 . Also, the distances from the ends closest to the optical axis 9 on the light emitting surfaces of the LEDs 1 to 3 to the optical axis 9 are equal. On the other hand, as shown in FIG. 2, in Example 1, LED1 to LED3 are arranged at different distances from the optical axis 9 when the parameters are taken into account because the LED1 to LED3 have different characteristic values.
  • FIG. 5 is a diagram showing emission spectra acquired by the light receiving unit 8 for each of the LED arrangement example according to Example 1 and the LED arrangement example according to Comparative Example 1.
  • FIG. 5 The same LEDs are used in the first embodiment and the first comparative example.
  • the horizontal axis indicates wavelength (nm) and the vertical axis indicates power ( ⁇ W: luminous flux).
  • Example 1 solid line
  • Comparative Example 1 dotted line
  • All the peaks of LED1 to LED3 have achieved the target light amount. This can be said to be the effect of arranging the LEDs based on the setting of the effective area 10 and the parameter P/(S ⁇ ).
  • Example 2 uses two LEDs 11 and 1212 with wavelengths corresponding to absorption photometry, and an LED arrangement that can achieve the target light amount based on the calculation of the effective area and parameter (P / (S ⁇ ⁇ )). Regarding deciding.
  • FIG. 6 is a table showing characteristic values of LED11 and LED12.
  • the LED 11 is an ultraviolet LED and has a peak central wavelength of 340 nm.
  • the LED 12 is a white LED and is composed of a peak derived from the excitation light and a peak derived from the phosphor.
  • the center wavelength of the peak derived from the excitation light is 380 nm, and the center wavelength of the peak derived from the phosphor is 600 nm.
  • the parameter (P/(S ⁇ )) is calculated based on the emission area S, the output P, and the wavelength full width at half maximum ⁇ of the LED 11 and the LED 12, the parameter P/(S ⁇ ) increases in the order of the LED 12 and the LED 11. I found out.
  • FIG. 7 shows the arrangement of LED11 and LED12 in the order of LED12 ⁇ LED11 according to the condition 1 and/or condition 2 shown in Example 1 from the results of comparison of parameters P/(S ⁇ ). It is a figure which shows the LED arrangement example when it does.
  • the left side of the light emitting surface of the LED 11 is separated from the optical axis 9 by 0.275 mm.
  • the distance between the optical axis 9 and the light emitting surface of the LED 12 can be regarded as zero. Therefore, it can be seen that the arrangement of the LEDs 11 and 12 satisfies the criteria of conditions 1 and 2 above.
  • FIG. 8 is a diagram showing an example of LED arrangement according to Comparative Example 2.
  • the LED 11 and the LED 12 are arranged so as to be close to the optical axis 9 .
  • the distance from the side of the light emitting surface closest to the optical axis 9 to the optical axis 9 is 0.025 mm.
  • the parameters are not calculated, and the LEDs are not arranged according to the magnitude of the parameters.
  • FIG. 9 is a diagram showing emission spectra obtained by the light receiving unit 8 for each of the LED arrangement example according to Example 2 and the LED arrangement example according to Comparative Example 2.
  • FIG. 9 The same LEDs are used in the second embodiment and the second comparative example.
  • the horizontal axis indicates wavelength (nm) and the vertical axis indicates power ( ⁇ W: luminous flux).
  • the peak with a center wavelength of 340 nm derived from the LED 11 sufficiently exceeds the target light level with respect to the target light level of the peak, but the peak with a center wavelength of 600 nm derived from the LED 12 It can be confirmed that the target light quantity is not reached.
  • both the peak light amounts derived from the LED 11 and the LED 12 exceed the target light amount. This can be said to be the effect of the arrangement of the two LEDs based on the calculation of the effective area similar to that of the first embodiment and the parameter P/(S ⁇ ) calculated from the characteristic values of the LEDs 11 and 12 .
  • the life of an LED is generally understood as the time required for the output to reach 70% from the initial stage of lighting.
  • parameters are calculated based on the output of each LED when the life of each LED is the same, and the LED arrangement is performed. It is possible to obtain the effects of suppressing variations in the life of each LED and extending the life of the LED light source.
  • the target light intensity value is assumed to be a constant value for each wavelength, but the target wavelength range does not always have a constant light intensity value.
  • the target light intensity shown in FIGS. 5 and 9 is energy [W]
  • the light receiving unit 8 used for measurement may output the light intensity as a signal such as current, voltage, or number of photons.
  • the light itself is represented by power (W)
  • the light receiving unit 8 may output the intensity of light as a current value instead of outputting a power value.
  • the power (W) is converted into the current value (A) in the light receiving section 8, a phenomenon may occur in which the conversion efficiency changes depending on the wavelength.
  • the order of power (W) may differ from the order of current value obtained by converting the intensity of light.
  • the magnitude of the target light amount may also have wavelength dependence. be. Therefore, if the target light intensity is different for each wavelength, the LED parameter P / (S ⁇ ⁇ ) corresponding to the target wavelength range is further divided by the target light intensity value or conversion efficiency. can decide.
  • Example 3 uses two LEDs 11 and 12 with wavelengths corresponding to absorption photometry, and based on the calculation of the effective area and parameter P / (S ⁇ ⁇ ), the target light amount can be achieved as the target photocurrent It relates to determining LED placement.
  • Example 3 a case where two LEDs are used corresponding to Example 2 will be described. A similar concept can be applied even in the case of LEDs.
  • the configuration of the absorptiometry apparatus according to Example 3 is the same as that of Example 1 shown in FIG.
  • Example of LED arrangement according to Example 3 Light emitted from the LED 11 and the LED 12 is received by the light receiving section 8 of the absorptiometry device 100 . Light emitted from the LEDs 11 and 12 received by the light receiving elements of the light receiving unit 8 is output as values such as current, voltage, and the number of photons in addition to the amount of light. For example, when the light amount is converted into a photocurrent by the light receiving element of the light receiving unit 8, it is necessary to calculate the corrected parameter based on the influence of the wavelength dependence of the photoelectric conversion ratio in the light receiving element.
  • FIG. 10 is a table showing characteristic values of the LEDs 11 and 12 and correction coefficients in the light receiving section 8 at the center wavelength.
  • P/(S ⁇ ) shown in Example 1 or 3 By multiplying the parameter P/(S ⁇ ) shown in Example 1 or 3 by a correction coefficient, the photocurrent value of light traveling in the direction of the optical axis 9 per unit solid angle, unit area, and unit wavelength is roughly proportional.
  • a corrected parameter can be calculated as a value for Comparing the corrected parameters of LED11 and LED12, it was found that the parameters increased in the order of LED12 and LED11, as in Example 2.
  • FIG. 11 shows, from the comparison results of the corrected parameters P/(S ⁇ ) shown in FIG. FIG. 4 is a diagram showing an example;
  • the left side of the light emitting surface of the LED 11 is separated from the optical axis 9 by 0.175 mm.
  • the distance between the optical axis 9 and the light emitting surface of the LED 12 can be regarded as zero.
  • Comparative Example 2 FIG. 8 for Example 2 can be cited.
  • FIG. 12 is a diagram showing emission spectra with photocurrent values plotted on the vertical axis for each of the LED arrangement example according to Example 3 and the LED arrangement example according to Comparative Example 2.
  • FIG. 12 is a diagram showing emission spectra with photocurrent values plotted on the vertical axis for each of the LED arrangement example according to Example 3 and the LED arrangement example according to Comparative Example 2.
  • the peak light amounts originating from the LEDs 11 and 12 both exceed the target peak photocurrent.
  • the effective area is calculated, the characteristic values of the LEDs 11 and 12 and the photoelectric conversion ratio of the light receiving element of the light receiving unit 8 are calculated, and the LED arrangement is based on the corrected parameter P/(S ⁇ ). It can be said that the effect is due to
  • Example 4 In Example 4, three LEDs with wavelengths corresponding to biochemical analysis determine the LED arrangement that achieves the target light intensity based on the calculation of the effective area and the parameter W / (S ⁇ ⁇ ⁇ ⁇ 1/2 ). about doing
  • the parameters can be calculated and compared by methods other than those shown in the table of FIG. Specifically, the parameter (W/(S ⁇ 1/2 )) can be calculated based on the area S of the light emitting surface, the total output W, the wavelength full width at half maximum ⁇ , and the directivity angle ⁇ 1/2 . Differences from Example 1 include the total output W and the directivity angle ⁇ 1/2 .
  • the value obtained by dividing the total output W by the directivity angle ⁇ 1/2 is a value roughly proportional to the amount of light per unit solid angle traveling in the direction of the optical axis 9, and is also roughly proportional to the output P in Example 1. Become.
  • the total output W is obtained by evaluating the LED using an integrating sphere or the like, unlike the output P shown in the first embodiment. Also, generally, the total output power W can be used as a characteristic value described in the specification table.
  • the directivity angle ⁇ 1/2 is a value that is half the angle at which the maximum intensity is half when the perpendicular direction is 0 degrees, and is a characteristic value that indicates the spread of the angular distribution in the LED. This can be measured by using a goniometer or the like, and can be used as a characteristic value described in the specification table like the total output.
  • FIG. 13 is a table showing characteristic values used to calculate the parameter (W/(S ⁇ 1/2 )).
  • the parameters (W/(S ⁇ 1/2 )) of LED1 to LED3 are calculated from the characteristic values shown in FIG. , LED1. From the above, it becomes possible to calculate the parameters necessary for determining the arrangement policy of each LED with equal or higher accuracy. Moreover, by performing the arrangement based on the parameter (W/(S ⁇ 1/2 )), an effect is obtained in which the peaks of all LEDs 1 to 3 can achieve the target light amount.
  • Example 5 uses five LEDs 13 to 17 with wavelengths corresponding to absorbance measurement, and the target light amount can be achieved based on the calculation of the effective area and parameters (W / (S x ⁇ x ⁇ 1/2 )) It relates to determining an appropriate LED placement.
  • FIG. 14 is a table showing characteristic values of the LEDs 13 to 17.
  • the LED 13 is an ultraviolet LED and has a peak central wavelength of 340 nm.
  • the LED 14 is a blue LED and has a peak central wavelength of 450 nm.
  • the LED 15 is a white LED and is composed of a peak derived from the excitation light and a peak derived from the phosphor.
  • the center wavelength of the peak derived from the excitation light is 380 nm, and the center wavelength of the peak derived from the phosphor is 550 nm.
  • the LED 16 is a red LED and has a peak central wavelength of 710 nm.
  • the LED 17 is an infrared LED and has a peak central wavelength of 800 nm.
  • the parameter (W/(S ⁇ 1/2 )) is calculated based on the emission area S, the output P, and the wavelength full width at half maximum ⁇ of the LEDs 13 to 17 in FIG. 14, the parameter (W/(S ⁇ ⁇ 1/2 )) increases in the order of LED15, LED13, LED16, LED17, and LED14.
  • FIG. 15 shows LEDs 13 to 17 arranged according to Condition 1 or/and Condition 2 described in Example 1, based on a comparison of the parameters (W/(S ⁇ 1/2 )) shown in FIG. It is a figure which shows a result.
  • the distance from the side of the LED 13 to the optical axis 9 is 0.21 mm
  • the distance from the vertex of the LED 14 to the optical axis 9 is 0.26 mm
  • the optical axis 9 exists on the light emitting surface of the LED 15, the light emitting surface and the optical axis 9 can be regarded as zero.
  • the distance from the vertex of the LED 16 to the optical axis 9 is 0.22 mm
  • the distance from the side of the LED 17 to the optical axis 9 is 0.25 mm.
  • FIG. 16 is a diagram showing an arrangement example in which the LEDs 13 to 17 are arranged so as to be close to the optical axis 9 as Comparative Example 3.
  • the distance from each LED to the optical axis 9 is 0.021 mm
  • the distance from the apex of the LEDs 14 and LED 16 to the optical axis 9 is 0.2 mm.
  • the distance from the side of the LED 17 to the optical axis 9 is 0.025 mm.
  • the arrangement example of Comparative Example 3 is an arrangement in which the LEDs are densely arranged around the optical axis 9, but is not arranged in accordance with the magnitude of the parameter (W/(S ⁇ 1/2 )).
  • FIG. 17 is a diagram showing emission spectra with photocurrent values plotted on the vertical axis for each of the LED arrangement example according to Example 5 and the LED arrangement example according to Comparative Example 3.
  • FIG. 17 is a diagram showing emission spectra with photocurrent values plotted on the vertical axis for each of the LED arrangement example according to Example 5 and the LED arrangement example according to Comparative Example 3.
  • the parameter-based LED placement can achieve the target light intensity with higher accuracy.
  • Example 6 relates to application of the absorptiometry device 100 described in Examples 1 to 5 to a biochemical analyzer.
  • FIG. 18 is a diagram showing a configuration example of a biochemical analysis device according to Example 6.
  • the biochemical analyzer 200 includes a control unit 201, a preprocessing unit 202, a dispensing unit 203, and a measurement/detection unit 204 including the absorptiometry device 100 described above.
  • the pretreatment unit 202 mixing, centrifugation, agitation, constant temperature reaction, etc. of the sample and the reagent in the mixing container 205 are appropriately carried out as pretreatment for measurement.
  • the pipetting unit 203 the pretreated sample in the mixing container is pipetted into the reaction cell 207 by the pipetting device 206 .
  • the same pretreatment as in the mixing vessel 205 is performed in the reaction cell 207 and the mixing vessel 205 and the dispensing device 206 are not required.
  • the reaction cell 207 is evaluated using the absorptiometry device 100 .
  • biochemical analysis can be performed continuously and efficiently.
  • a biochemical analysis apparatus can be constructed using the absorptiometry apparatus 100 according to the first to fifth embodiments.
  • the absorptiometry device of the present disclosure on a substrate on which a plurality of LEDs are mounted, there is an effective area where light reaches the light receiving part (or slit) if the LEDs are arranged there. Defined. At this time, in the effective region, the plurality of LEDs have parameters (P/(S ⁇ ) and W/(S ⁇ 1/ 2 )) are arranged in ascending order of value, and such that the LED exhibiting the smallest parameter value includes the optical axis passing through the center of the lens and the center of the slit. In addition, the plurality of LEDs are arranged so that the occupied area in the effective area increases in ascending order of the value of the parameter. By arranging a plurality of LEDs on the substrate in this way, the peak light intensity of each wavelength of light detected by the light receiving unit exceeds the target light intensity, so that the sample to be measured contained in the reaction cell can be accurately identified. It becomes possible.
  • the plurality of LEDs are, for example, at least one type 1 LED having a wavelength in the ultraviolet region (group of type 1 LEDs: wavelength band from 320 nm to 380 nm) and at least one type 2 LED having a wavelength in the visible light region (2nd type LED group: wavelength band from 360 nm to 820 nm) and at least one 3rd type LED having a wavelength in the infrared region (3rd type LED group: wavelength band from 700 nm to 850 nm) Can be configured.
  • group of type 1 LEDs wavelength band from 320 nm to 380 nm
  • 2 LED group wavelength band from 360 nm to 820 nm
  • 3rd type LED having a wavelength in the infrared region 3rd type LED group: wavelength band from 700 nm to 850 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention enables detection of the quantity of light necessary for sample identification in a photoreceiver. For this purpose, the present disclosure proposes an absorptiometry device comprising: a plurality of LEDs; a baseplate provided with the plurality of LEDs in the same plane; a lens into which light emitted from the plurality of LEDs directly enters; a slit through which penetrant light passes, said light having traversed the lens, entered a reaction cell and penetrated through the reaction cell; and a photoreceiver that receives the penetrant light and converts same into an electric current. In an effective area on the baseplate where light can reach the slit, the plurality of LEDs are arranged in order of increasing parameter values computed on the basis of LED output, light-emitting surface area, and wavelength full width at half maximum, and also so that the LED exhibiting the smallest parameter value contains the optical axis that passes through the center of the lens and the center of the slit (see Fig. 2).

Description

吸光光度測定装置およびそれを備えた生化学分析装置Absorptiometry device and biochemical analysis device provided with the same
 本開示は、吸光光度測定装置およびそれを備えた生化学分析装置に関する。 The present disclosure relates to an absorptiometry device and a biochemical analysis device including the same.
 試料の同定や濃度などの分析技術として、吸光光度測定が知られている。生化学分析においては、この吸光光度測定技術を用いて試料測定が行われる。この点、例えば、被測定物が液体の場合、容器内の上下方向で濃度分布が生じることがあり、それぞれの光が濃度の違う部分を透過すると、測定精度に悪影響を及ぼしてしまうことがある。このため、例えば、特許文献1は、出力波長の異なる2種類の半導体光源を用い、少なくとも2種類の半導体光源を同一パッケージ内に、その出力光軸が交差した後に検出器に収まるように、配置することで、複数の光をほぼ同じ濃度のところを通過させ、容器内の試料濃度の影響を受けにくい状態で検出可能にすることを開示する。また、特許文献1には、「光源からの光以外の不必要な迷光を除去できるので、検査制度を向上させることができる」と記載されている。 Absorption photometry is known as an analysis technique for sample identification and concentration. In biochemical analysis, sample measurements are performed using this spectrophotometric technique. In this respect, for example, when the object to be measured is a liquid, concentration distribution may occur in the vertical direction within the container, and if each light beam passes through portions with different densities, the measurement accuracy may be adversely affected. . For this reason, for example, in Patent Document 1, two types of semiconductor light sources having different output wavelengths are used, and at least two types of semiconductor light sources are arranged in the same package so that they can be accommodated in a detector after their output optical axes intersect. By doing so, it is disclosed to allow multiple lights to pass through approximately the same concentration, making detection less sensitive to sample concentration in the container. Further, Patent Document 1 describes that "unnecessary stray light other than the light from the light source can be removed, so that inspection accuracy can be improved."
特開2005-331422号公報JP-A-2005-331422
 吸光光度測定用の光源として、白色LEDや紫外LEDといった複数のLEDを組み合わせた場合、LEDを設置する位置が非常に重要となる。例えば、上記特許文献1では、検出部における発光の検出のため、2つの光源の距離に関する条件が記載されている。レンズの結像や倍率の関係式から定まる範囲に収まるよう半導体光源を配置することで、受光部にて光量の検出が可能となる。 When combining multiple LEDs such as white LEDs and ultraviolet LEDs as a light source for absorption photometry, the position where the LEDs are installed is very important. For example, Japanese Patent Application Laid-Open No. 2002-200001 describes a condition regarding the distance between two light sources in order to detect light emission in the detection unit. By arranging the semiconductor light source so that it falls within the range determined by the lens image formation and the relational expression of the magnification, it is possible to detect the amount of light in the light receiving section.
 一方で、LEDの出力や波長半値全幅、発光面積、指向角などは個別に異なる上、上記のレンズの結像や倍率の関係式から定まる範囲内にLEDを設置しても、検出される光量に位置依存性が生じる。したがって、特許文献1に記載されている2つの光源の距離に関する条件のみでは、配置するLEDの一部で、試料測定に十分な光量の検出(試料同定するのに十分な信号を取得する)が困難となる場合がある。
 本開示は、このような状況に鑑み、試料同定に十分な光量の検出を可能とする技術について提案する。
On the other hand, the LED output, wavelength full width at half maximum, light emitting area, directivity angle, etc. differ individually. is position dependent. Therefore, with only the conditions related to the distance between the two light sources described in Patent Document 1, it is not possible to detect a sufficient amount of light for sample measurement (acquire a signal sufficient to identify the sample) with some of the arranged LEDs. It can be difficult.
In view of such circumstances, the present disclosure proposes a technique that enables detection of a sufficient amount of light for sample identification.
 上記課題を解決するために、本開示は、複数のLEDと、複数のLEDを同一平面上に備える基板と、複数のLEDから出射した光が直接入射するレンズと、レンズを通過した光が反応セルに入射し、当該反応セルから透過した透過光を通すスリットと、透過光を受光して電流に変換する受光部と、を備え、光がスリットまで到達可能な基板上の有効領域に、複数のLEDは、LEDの出力、発光面積、及び波長半値全幅に基づいて算出されるパラメータの値が小さい順に、かつ最小のパラメータの値を示すLEDがレンズの中心およびスリットの中心を通る光軸を含むように、配置されている、吸光光度測定装置を提案する。 In order to solve the above problems, the present disclosure includes a plurality of LEDs, a substrate provided with the plurality of LEDs on the same plane, a lens on which the light emitted from the plurality of LEDs is directly incident, and a reaction of the light passing through the lens. Provided with a slit through which transmitted light enters the cell and passes through the reaction cell, and a light-receiving section that receives the transmitted light and converts it into a current. The LEDs show the lowest parameter values in ascending order of parameter values calculated based on the LED output, light emitting area, and wavelength full width at half maximum. An absorptiometry device is proposed, which is arranged to include:
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。なお、本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例は如何なる意味においても限定されるものではない。 Further features related to the present disclosure will become apparent from the description of the specification and the accompanying drawings. In addition, the aspects of the present disclosure are achieved and attained by means of the elements and combinations of various elements and aspects of the detailed description that follows and the claims that follow. It should be noted that the descriptions in this specification are merely typical examples, and the claims or application examples of the present disclosure are not limited in any way.
 本開示の技術によれば、受光部にて検出される光量を試料同定(測定)に十分な光量とすることができる。 According to the technology of the present disclosure, the amount of light detected by the light-receiving unit can be made sufficient for identifying (measuring) the sample.
吸光光度測定装置100の構成例を示す図である。1 is a diagram showing a configuration example of an absorption photometry device 100. FIG. 実施例1における複数のLED(一例として、LED1からLED3の3つのLED)の配置例を示す図である。FIG. 3 is a diagram showing an arrangement example of a plurality of LEDs (three LEDs, LED1 to LED3, as an example) in Example 1; LED1からLED3のパラメータP/(S×λ)の値を示す表である。4 is a table showing values of parameters P/(S×λ) of LED1 to LED3; 比較例1によるLED配置例を示す図である。5 is a diagram showing an example of LED arrangement according to Comparative Example 1; FIG. 実施例1によるLED配置例と比較例1によるLED配置例のそれぞれについて、受光部8で取得される発光スペクトルを示す図である。FIG. 4 is a diagram showing emission spectra acquired by a light receiving unit 8 for each of an LED arrangement example according to Example 1 and an LED arrangement example according to Comparative Example 1; LED11およびLED12の特性値を示す表である。It is a table|surface which shows the characteristic value of LED11 and LED12. パラメータP/(S×λ)の比較の結果から、実施例1にて示した上記条件1および/または条件2に従って、LED12→LED11の順となるように、LED11およびLED12を配置したときのLED配置例を示す図である。From the results of comparison of parameters P / (S × λ), LED11 and LED12 are arranged in the order of LED12 → LED11 according to the above condition 1 and / or condition 2 shown in Example 1. It is a figure which shows the example of arrangement|positioning. 比較例2によるLED配置例を示す図である。FIG. 10 is a diagram showing an example of LED arrangement according to Comparative Example 2; 実施例2によるLED配置例と比較例2によるLED配置例のそれぞれについて、受光部8で取得される発光スペクトルを示す図である。FIG. 10 is a diagram showing emission spectra acquired by the light receiving unit 8 for each of an LED arrangement example according to Example 2 and an LED arrangement example according to Comparative Example 2; LED11およびLED12の特性値、および中心波長における受光部8での補正係数を示す表である。4 is a table showing characteristic values of LEDs 11 and 12 and correction coefficients in the light receiving section 8 at the center wavelength. 図10に示す補正されたパラメータP/(S×λ)の比較結果から、実施例1において示した上記条件1または/および条件2に従って、LED11およびLED12を配置したときのLED配置例を示す図である。FIG. 10 shows an LED arrangement example when LEDs 11 and 12 are arranged according to Condition 1 and/or Condition 2 shown in Example 1, based on the comparison results of corrected parameters P/(S×λ) shown in FIG. is. 実施例3によるLED配置例と比較例2によるLED配置例のそれぞれについて、縦軸を光電流値とした発光スペクトルを示す図である。FIG. 10 is a diagram showing emission spectra of an LED arrangement example according to Example 3 and an LED arrangement example according to Comparative Example 2, with photocurrent values plotted on the vertical axis. パラメータ(W/(S×λ×θ1/2))の算出に用いる特性値を示す表である。4 is a table showing characteristic values used for calculating parameters (W/(S×λ×θ 1/2 )). LED13からLED17の特性値を示す表である。It is a table|surface which shows the characteristic value of LED13 to LED17. 図14に示すパラメータ(W/(S×λ×θ1/2))の比較に基づいて、実施例1に記載の上記条件1または/および条件2に従ってLED13からLED17を配置した結果を示す図である。A diagram showing the results of arranging the LEDs 13 to 17 according to Condition 1 and/or Condition 2 described in Example 1, based on the comparison of the parameters (W/(S×λ×θ 1/2 )) shown in FIG. is. 比較例3として、LED13からLED17を共に光軸9に近くなるように配置した場合の配置例を示す図である。FIG. 11 is a diagram showing an arrangement example in which LEDs 13 to 17 are arranged so as to be close to the optical axis 9 as Comparative Example 3; 実施例5によるLED配置例と比較例3によるLED配置例のそれぞれについて、縦軸を光電流値とした発光スペクトルを示す図である。FIG. 10 is a diagram showing emission spectra of an LED arrangement example according to Example 5 and an LED arrangement example according to Comparative Example 3, with photocurrent values plotted on the vertical axis. 生化学分析装置の構成例を示す図である。It is a figure which shows the structural example of a biochemical analyzer.
 以下、本開示の技術の実施例について説明する。なお、本開示の技術は、後述する実施例に限定されるものでなく、その技術思想の範囲において、種々の変形が可能である。また、後述する種々の実施例の説明に使用する各図の対応部分には、同一の符号をつけて示し、重複する説明を省略する。 Examples of the technology of the present disclosure will be described below. The technology of the present disclosure is not limited to the embodiments described later, and various modifications are possible within the scope of the technical idea. Further, the same reference numerals are given to the corresponding parts in each figure used for explaining various embodiments to be described later, and overlapping explanations are omitted.
(1)実施例1
 実施例1は、吸光光度測定が可能な3つのLEDによる吸光光度測定装置に関し、例えば、吸光光度測定および生化学分析に対応する波長を備えた3つのLEDを用いて、有効領域とパラメータ(P/(S×λ))の算出に基づいて、目標光量を達成可能なLED配置を決定することに関する。なお、実施例1による当該パラメータ(LED配置決定パラメータ)は、LEDの発光面の面直方向における単位面積当たり、単位波長当たり、かつ、単位角度当たりの光量に概ね比例するパラメータであり、複数のLEDの配置を決定する際に依拠すべき値を提供する。
(1) Example 1
Example 1 relates to a three-LED absorptiometry device capable of absorptiometry, e.g., using three LEDs with wavelengths corresponding to absorptiometry and biochemical analysis, the effective area and parameter (P /(S×λ)) to determine an LED arrangement capable of achieving a target light amount. In addition, the parameter (LED arrangement determination parameter) according to Example 1 is a parameter that is approximately proportional to the amount of light per unit area, per unit wavelength, and per unit angle in the direction perpendicular to the light emitting surface of the LED. It provides values to rely on in determining LED placement.
 <吸光光度測定装置の構成例>
 図1は、吸光光度測定装置100の構成例を示す図である。吸光光度測定装置100は、複数のLED1からLED3(実施例1では3個のLED)と、基板4と、レンズ5と、検体を含む反応セル6と、スリット7と、受光部8と、を備える。
<Configuration example of absorption photometry device>
FIG. 1 is a diagram showing a configuration example of an absorption photometry device 100. As shown in FIG. The absorption photometry device 100 includes a plurality of LEDs 1 to 3 (three LEDs in Example 1), a substrate 4, a lens 5, a reaction cell 6 containing a specimen, a slit 7, and a light receiving section 8. Prepare.
 基板4に固定されたLED1からLED3は光をレンズ5へ照射する。レンズ5の中心は、LED1からLED3の発光面から距離a離れている。LED1からLED3からレンズ5に入射した光は、レンズ5における屈折の影響を受けながら検体を含む反応セル6へ入射する。 LED1 to LED3 fixed to the substrate 4 irradiate the lens 5 with light. The center of the lens 5 is separated from the light emitting surfaces of the LEDs 1 to 3 by a distance a. The light that has entered the lens 5 from the LEDs 1 and 3 enters the reaction cell 6 containing the sample while being affected by refraction in the lens 5 .
 反応セル6は、LED1からLED3側表面がレンズ5の中心から距離b離れるように配置されている。反応セル6の光軸9方向の厚みはtとされる。レンズ5で集光した光の一部は反応セル6および反応セル6中の試料を透過し、一部の光が吸収される。透過後の光は、反応セル6のLED1からLED3側の表面から距離c離れたスリット7を透過し、受光部8へ到達する。この時、スリット7の穴径はeとされる。また、受光部8は、受信した光をフォトダイオードなどの変換素子により電流値や電圧値などの信号として出力する。 The reaction cell 6 is arranged so that the LED 1 to LED 3 side surfaces are separated from the center of the lens 5 by a distance b. The thickness of the reaction cell 6 in the direction of the optical axis 9 is t. Part of the light condensed by the lens 5 passes through the reaction cell 6 and the sample in the reaction cell 6, and part of the light is absorbed. The transmitted light passes through the slit 7 which is a distance c away from the surface of the reaction cell 6 on the LED 1 to LED 3 side, and reaches the light receiving portion 8 . At this time, the hole diameter of the slit 7 is set to e. Further, the light receiving section 8 outputs the received light as a signal such as a current value or a voltage value by a conversion element such as a photodiode.
 本実施例の図1において、スリット7の形状は円形だが、取りうる形状として、対称な形状から、非対称な形状など、様々な形状が想定される。また、光軸9とスリット7との関係についても、例えば、本実施例のように、光軸9がスリット7の中心を通ることで、より高い精度での効果が得られるが、必ずしも中心を通らなくてもよく、LED1からLED3の配置を工夫することにより、光軸9がスリット7の中心を通る場合と同様の効果が得られる。 In FIG. 1 of this embodiment, the shape of the slit 7 is circular, but various shapes such as symmetrical and asymmetrical shapes can be assumed as possible shapes. As for the relationship between the optical axis 9 and the slit 7, for example, the optical axis 9 can pass through the center of the slit 7 as in this embodiment, so that the effect can be obtained with higher precision. It does not have to pass through, and by devising the arrangement of the LEDs 1 to 3, the same effect as when the optical axis 9 passes through the center of the slit 7 can be obtained.
 <実施例1による複数のLEDの配置例>
(i)配置されるLEDの種類について
 図2は、実施例1における複数のLED(一例として、LED1からLED3の3つのLED)の配置例を示す図である。図2において、LED1からLED3の発光面の面積、形状は、各LED1からLED3の面積および形状と一致している。一方、LEDの発光面の面積、形状は、LEDチップの面積および形状と異なる場合も想定される。発光面の面積とLEDチップの面積に関する情報は、LED発光時の、輝度計による輝度分布測定や顕微鏡による観察、LEDの仕様表などによって得られる。
<Arrangement example of a plurality of LEDs according to Example 1>
(i) Types of LEDs to be Arranged FIG. 2 is a diagram showing an arrangement example of a plurality of LEDs (three LEDs LED1 to LED3 as an example) in the first embodiment. In FIG. 2, the areas and shapes of the light emitting surfaces of LED1 to LED3 match the areas and shapes of LED1 to LED3. On the other hand, the area and shape of the light emitting surface of the LED may be different from the area and shape of the LED chip. Information on the area of the light-emitting surface and the area of the LED chip can be obtained from luminance distribution measurement with a luminance meter, observation with a microscope, and LED specification tables during LED light emission.
 例えば、LED1は紫外LEDであり、ピークの中心波長を340nmに持つ。LED2は白色LEDであり、励起光由来のピークと蛍光体由来のピークから構成される。励起光由来のピークの中心波長は380nmであり、蛍光体由来のピークの中心波長は600nmである。LED3は赤外LEDであり、ピークの中心波長は800nmである。以上の紫外LED、白色LED、赤外LEDの構成によって、太陽電池材料など、紫外-可視-赤外の幅広い波長域における試料の吸光光度測定が可能となる効果が得られる。なお、各波長域の光を出射するLEDはそれぞれ1つずつ配置するようにしてもよいし、何れかの波長域のLEDを複数個、あるいは各波長域のLEDそれぞれを複数個配置するようにしてもよい。 For example, LED1 is an ultraviolet LED and has a peak central wavelength of 340 nm. The LED 2 is a white LED and is composed of a peak derived from the excitation light and a peak derived from the phosphor. The center wavelength of the peak derived from the excitation light is 380 nm, and the center wavelength of the peak derived from the phosphor is 600 nm. The LED 3 is an infrared LED and has a peak central wavelength of 800 nm. With the configuration of the ultraviolet LED, the white LED, and the infrared LED described above, it is possible to measure the absorbance of a sample, such as a solar cell material, over a wide wavelength range of ultraviolet, visible, and infrared. It should be noted that one LED for emitting light in each wavelength band may be arranged, or a plurality of LEDs for any wavelength band or a plurality of LEDs for each wavelength band may be arranged. may
 特に、それぞれのLEDの対応波長として、LED1の発光スペクトルの波長域は320nmから360nm、LED2の発光スペクトルの波長域は360nmから820nm、LED3の発光スペクトルの波長域は700nmから945nmである。これらのLED1からLED3を用いることで、生化学分析装置向けの吸光光度測定用光源として利用可能となる効果が得られる。 In particular, as the corresponding wavelengths of the respective LEDs, the wavelength range of the emission spectrum of LED1 is 320 nm to 360 nm, the wavelength range of the emission spectrum of LED2 is 360 nm to 820 nm, and the wavelength range of the emission spectrum of LED3 is 700 nm to 945 nm. By using these LED1 to LED3, it is possible to obtain the effect that it can be used as a light source for absorptiometric measurement for a biochemical analyzer.
(ii)LED配置の決定方法
 ここでは、有効領域10およびパラメータP/(S×λ)を考慮した配置方法およびその結果について説明する。
(ii) Method of Determining LED Arrangement Here, a method of arrangement considering the effective area 10 and the parameter P/(S×λ) and the results thereof will be described.
 複数のLED1からLED3の各発光がスリット7へ到達し、受光部8にて検出されるためには、図2に示す有効領域10内に複数のLED1からLED3を設置する必要がある。この有効領域10は、LED1からLED3の発光面の位置と、レンズ5、反応セル6、およびスリット7の配置から算出することができる。算出方法は、次の通りである。目標光量を受光部8にて取得するため、LED1からLED3の発光面の結像位置は反応セル6とスリット7の間に設けることができる。加えて、吸光光度測定として反応セル6内の試料に十分な光量の光が透過される必要がある。このため、結像位置とレンズ5中心との距離hは、レンズの焦点距離をfとすると、b≦h≦b+cかつ、レンズの公式として、(1/a)+(1/(h-a))=(1/f)を満たす位置にLED発光面を設置することができる(後者の式から、h=a+(a×f)/(a-f)となる)。 In order for the light emitted from the plurality of LEDs 1 to 3 to reach the slit 7 and be detected by the light receiving section 8, it is necessary to install the plurality of LEDs 1 to 3 within the effective area 10 shown in FIG. This effective area 10 can be calculated from the positions of the light emitting surfaces of the LEDs 1 to 3 and the arrangement of the lens 5 , the reaction cell 6 and the slit 7 . The calculation method is as follows. Since the target light amount is obtained by the light receiving unit 8 , the imaging positions of the light emitting surfaces of the LEDs 1 to 3 can be provided between the reaction cell 6 and the slit 7 . In addition, a sufficient amount of light must be transmitted through the sample in the reaction cell 6 for absorption photometry. For this reason, the distance h between the image forming position and the center of the lens 5 is, where f is the focal length of the lens, b≤h≤b+c and the lens formula is (1/a)+(1/(ha ))=(1/f) (from the latter equation, h=a+(a×f)/(a−f)).
 また、基板4上の有効領域10は、光軸9を中心として、直径d=(e×a)/(h-a)の領域と算出される。この有効領域10内にLED1からLED3を設置することで、受光部8にてLED1からLED3の発光を光量として検出可能となる効果がある。 Also, the effective area 10 on the substrate 4 is calculated to be an area with a diameter d=(exa)/(ha) with the optical axis 9 as the center. By arranging the LEDs 1 to 3 within the effective area 10, there is an effect that the light emitted from the LEDs 1 to 3 can be detected by the light receiving section 8 as the amount of light.
 例えば、吸光光度測定系として、図1上の距離a=38.2mm、b=54.4mm、c=17.7mm、t=6.7mm、e=1.8mm、g=9mm、およびレンズ5の焦点距離f=24.8mmである場合、h=108.7mm、有効領域10はd=0.97mmとして算出できる。 For example, as an absorption photometry system, the distances a = 38.2 mm, b = 54.4 mm, c = 17.7 mm, t = 6.7 mm, e = 1.8 mm, g = 9 mm, and the lens 5 , the focal length f=24.8 mm, h=108.7 mm, and the effective area 10 can be calculated as d=0.97 mm.
 このような測定系において、空気とは異なる光学媒質が光路上に含まれる場合や、複数の異なる波長の発光が利用される場合、屈折率の違いによって、光路長が変化し、有効領域が変化する可能性がある。例えば、検体を含む反応セル6や反応セル6を温調するための水が光学系上にあると、媒質と空気の屈折率の差と光軸9方向の厚みの積の分、光路長が長くなる。したがって、この場合、図1のbとcが大きくなると考えられるため、有効領域は狭くなると想定される。本実施例においては、これらの媒質の違いによる光路長の影響は考慮されている。つまり、反応セル6の材質の屈折率と、想定される試料の中で屈折率が一番高い試料の屈折率に基づいて有効領域の範囲を想定し、各LEDの配置を決めることができる。光路長の影響を考慮しなくても、有効領域の範囲の算出は可能であるが、異なる媒質の屈折率を踏まえた上で光路長の変化を計算することで、より正確な有効領域の範囲を算出することができる。 In such a measurement system, if an optical medium other than air is included in the optical path, or if light with multiple different wavelengths is used, the difference in refractive index will change the optical path length and the effective area. there's a possibility that. For example, if the reaction cell 6 containing the specimen and water for temperature control of the reaction cell 6 are present on the optical system, the optical path length is increased by the product of the difference in refractive index between the medium and air and the thickness in the direction of the optical axis 9. become longer. Therefore, in this case, it is assumed that b and c in FIG. In this embodiment, the influence of the optical path length due to these medium differences is taken into consideration. In other words, the range of the effective region can be assumed based on the refractive index of the material of the reaction cell 6 and the refractive index of the sample having the highest refractive index among the assumed samples, and the arrangement of each LED can be determined. It is possible to calculate the range of the effective area without considering the effect of the optical path length. can be calculated.
 本実施例における有効領域の範囲の算出にあたって、発光波長は550nmの時を想定した。いずれの波長においても有効領域の範囲の算出は可能である一方、利用するLEDの発光波長域に含まれる波長を用いることで、より正確な有効領域の範囲が算出される。 In calculating the range of the effective region in this example, it was assumed that the emission wavelength was 550 nm. While it is possible to calculate the range of the effective region at any wavelength, the range of the effective region can be calculated more accurately by using wavelengths included in the emission wavelength range of the LED used.
 LED1からLED3は基板4に固定されており、LED1からLED3の発光面は基板4から各LED1からLED3の厚み分離れている。LED発光面とレンズ5の中心との距離はa離れており、各LED1から3の厚みが均一である場合は、一義的に距離aを求めることができる。一方で、各LED1から3の厚みにバラつきがある場合も、基板4から各LED1から3の厚みの平均値分離れた位置をLED発光面の位置とすることができる。 The LED1 to LED3 are fixed to the substrate 4, and the light emitting surfaces of the LED1 to LED3 are separated from the substrate 4 by the thickness of each LED1 to LED3. The distance a between the light emitting surface of the LED and the center of the lens 5 is a, and when the thickness of each of the LEDs 1 to 3 is uniform, the distance a can be uniquely obtained. On the other hand, even when the thickness of each of the LEDs 1 to 3 varies, the position separated from the substrate 4 by the average thickness of each of the LEDs 1 to 3 can be set as the position of the LED light emitting surface.
 図3は、LED1からLED3のパラメータP/(S×λ)の値を示す表である。LED1からLED3それぞれのLEDの特性値として、発光面の面積S、出力P、波長半値全幅λをもとに、パラメータP/(S×λ)が算出される。これらの数値は実機の測定または仕様表などから取得することができる値である。実機の測定の場合、発光面の面積Sは光学顕微鏡などを用いて測定可能である。また、出力Pは発光時のLEDから一定距離離れた位置にパワーメータなどを設置することで測定可能である。そして、主要なピークの中心波長および波長半値全幅λは、分光器などによって測定可能である。 FIG. 3 is a table showing values of parameters P/(S×λ) of LED1 to LED3. As characteristic values of LED1 to LED3, a parameter P/(S×λ) is calculated based on the area S of the light emitting surface, the output P, and the wavelength full width at half maximum λ. These numerical values are values that can be obtained from measurements of actual machines or from specification tables. In the case of measurement of an actual device, the area S of the light emitting surface can be measured using an optical microscope or the like. Also, the output P can be measured by installing a power meter or the like at a position a fixed distance away from the LED during light emission. Then, the center wavelength and full width at half maximum wavelength λ of the major peaks can be measured by a spectroscope or the like.
 波長半値全幅λについて、スペクトル中のピークの最大値に対し、半分の値となるときの波長間の幅とする。また、主要なピークが複数となる場合は、各ピークの半値全幅の和がLEDの波長半値全幅λであるとする。取得された発光面の面積S、出力P、波長半値全幅λから、図3の下段に示すパラメータP/(S×λ)が算出される。このパラメータP/(S×λ)は、LEDにおける単位立体角、単位面積、単位波長あたりの光軸9方向へ進む光の光量におおむね比例する値として理解される。パラメータP/(S×λ)の大きいLEDと小さいLEDの発光面の端が光軸9に対して同じ距離である場合、パラメータP/(S×λ)の大きいLEDの方が受光部8において、より大きい光量が得られる。 Regarding the wavelength full width at half maximum λ, it is the width between wavelengths when it is half the value of the maximum value of the peak in the spectrum. Also, when there are a plurality of main peaks, the sum of the full widths at half maximum of each peak is assumed to be the wavelength full width at half maximum λ of the LED. A parameter P/(S×λ) shown in the lower part of FIG. 3 is calculated from the acquired area S of the light emitting surface, the output power P, and the wavelength full width at half maximum λ. This parameter P/(S×λ) is understood as a value that is roughly proportional to the amount of light traveling in the direction of the optical axis 9 per unit solid angle, unit area, and unit wavelength in the LED. When the edges of the light emitting surfaces of the LED with a large parameter P/(S×λ) and the LED with a small parameter are at the same distance from the optical axis 9, the LED with a large parameter P/(S×λ) is in the light receiving section 8. , a larger amount of light is obtained.
 得られたパラメータP/(S×λ)をLED1から3で比較すると、パラメータP/(S×λ)はLED2、LED3、LED1の順に大きくなる。これらのLED1からLED3の配置において、吸光光度測定装置および生化学分析装置として測定に必要な目標光量を満たすためには、パラメータP/(S×λ)を基に配置をすることが重要となる。 When the obtained parameter P/(S×λ) is compared for LEDs 1 to 3, the parameter P/(S×λ) increases in the order of LED2, LED3, and LED1. In the arrangement of these LEDs 1 to 3, it is important to arrange them based on the parameter P/(S×λ) in order to satisfy the target amount of light required for measurement as an absorptiometry device and a biochemical analysis device. .
 パラメータP/(S×λ)の小さいLED2、LED3、LED1の順に、次の条件1および/または条件2を満たすよう各LED1から3を有効領域10に配置する。
 条件1:発光面が図2に示す光軸9に近づくように配置する。
 条件2:パラメータP/(S×λ)の小さい順に、有効領域10と複数のLED(LED1からLED3)の発光面の面積の重なりが大きくなるよう配置する。
The LEDs 1 to 3 are arranged in the effective area 10 so as to satisfy the following condition 1 and/or condition 2 in the order of LED2, LED3, and LED1 having the smallest parameter P/(S×λ).
Condition 1: Arrange so that the light emitting surface approaches the optical axis 9 shown in FIG.
Condition 2: The effective area 10 and the light emitting surfaces of the plurality of LEDs (LED1 to LED3) are arranged so as to overlap with each other in increasing order of the parameter P/(S×λ).
 具体的には、パラメータP/(S×λ)が最小値を取るLEDの発光面が光軸9を含むように配置される。そして、パラメータP/(S×λ)が次に小さい値を取るLEDが光軸9に2番目に近くなるように配置される。このように、パラメータP/(S×λ)として小さい値を取る順番に光軸に近接して各LEDを配置する。
 以上のように、各LEDの配置方針決定は、パラメータP/(S×λ)の算出結果に基づいて行われる。
Specifically, the light emitting surface of the LED having the minimum value of the parameter P/(S×λ) is arranged so as to include the optical axis 9 . Then, the LED whose parameter P/(S×λ) takes the next smallest value is arranged so as to be second closest to the optical axis 9 . In this way, the LEDs are arranged close to the optical axis in order of decreasing parameter P/(S×λ).
As described above, the arrangement policy of each LED is determined based on the calculation result of the parameter P/(S×λ).
(iii)LED配置結果
 図2には上記LED配置決定方法によるLED配置結果が示される。LED1からLED3に関し、パラメータP/(S×λ)は図3に示されるような値となるため、光軸9上に(光軸9を含むように)LED2が設置され、LED1とLED3はLED2と隣り合うよう配置される。このとき、光軸9とLED2の発光面との距離は0とみなせる。また、光軸9とLED1の発光面との距離は、図2に示す光軸9からLED1左下の頂点での距離であり、0.37mmとすることができる。さらに、光軸9からLED3の発光面の端までの距離は、図2に示す光軸9からLED3左辺までの距離であり、0.32mmとすることができる。よって、この配置により、光軸9からLED発光面の端までの距離がLED2、LED3、LED1の順となった。また、図2から、LED2、LED3、LED1の順で有効領域10との重なりが大きいことが確認できる。
(iii) LED Arrangement Result FIG. 2 shows the LED arrangement result obtained by the above LED arrangement determination method. Regarding LED1 to LED3, the parameter P/(S×λ) has a value as shown in FIG. are placed next to each other. At this time, the distance between the optical axis 9 and the light emitting surface of the LED 2 can be regarded as zero. The distance between the optical axis 9 and the light emitting surface of the LED 1 is the distance from the optical axis 9 shown in FIG. Furthermore, the distance from the optical axis 9 to the end of the light emitting surface of the LED 3 is the distance from the optical axis 9 to the left side of the LED 3 shown in FIG. 2, and can be set to 0.32 mm. Therefore, according to this arrangement, the distance from the optical axis 9 to the edge of the LED light emitting surface is arranged in the order of LED2, LED3, and LED1. Moreover, it can be confirmed from FIG. 2 that the overlap with the effective area 10 is large in the order of LED2, LED3, and LED1.
 以上から、実施例1において、図2のLED1からLED3の配置は、条件1および条件2を満たしていることが分かる。加えてこの配置は、以下に示す比較例のような格子状の配置など、規則的な配置でないため、光源部の目視によって顕現性が確認される。 From the above, it can be seen that in Example 1, the arrangement of LED1 to LED3 in FIG. 2 satisfies Condition 1 and Condition 2. In addition, since this arrangement is not a regular arrangement such as a grid-like arrangement as in the comparative example shown below, visibility is confirmed by visual observation of the light source section.
 <比較例1による複数のLEDの配置例>
 図4は、比較例1によるLED配置例を示す図である。比較例1は、パラメータP/(S×λ)を考慮せず、LED1からLED3を光軸9近傍かつ格子状に配置した例を示している。
<Arrangement example of a plurality of LEDs according to Comparative example 1>
FIG. 4 is a diagram showing an example of LED arrangement according to Comparative Example 1. As shown in FIG. Comparative Example 1 shows an example in which the LEDs 1 to 3 are arranged in the vicinity of the optical axis 9 in a grid pattern without considering the parameter P/(S×λ).
 LED1からLED3は、光軸9近傍へ格子状に並べられている。また、LED1からLED3の各発光面上の光軸9に最も近い端から光軸9までの距離は等しくなっている。一方、図2に示すように、実施例1においては、LED1からLED3の特性値はそれぞれ異なることから、パラメータを考慮した場合、光軸9から異なる距離にてLED1からLED3が配置される。 The LEDs 1 to 3 are arranged in a lattice near the optical axis 9 . Also, the distances from the ends closest to the optical axis 9 on the light emitting surfaces of the LEDs 1 to 3 to the optical axis 9 are equal. On the other hand, as shown in FIG. 2, in Example 1, LED1 to LED3 are arranged at different distances from the optical axis 9 when the parameters are taken into account because the LED1 to LED3 have different characteristic values.
 <実施例1と比較例1の発光スペクトルの比較>
 上述のように、比較例1ではパラメータの大きさを踏まえた配置がなされていない。そこで、実施例1と比較例1の発光スペクトルを比較する。図5は、実施例1によるLED配置例と比較例1によるLED配置例のそれぞれについて、受光部8で取得される発光スペクトルを示す図である。配置される複数のLEDは実施例1と比較例1とで同一のものが使用される。図5において、横軸は波長(nm)、縦軸はパワー(μW:光束)を示している。
<Comparison of emission spectra of Example 1 and Comparative Example 1>
As described above, in Comparative Example 1, the arrangement is not based on the size of the parameters. Therefore, the emission spectra of Example 1 and Comparative Example 1 are compared. FIG. 5 is a diagram showing emission spectra acquired by the light receiving unit 8 for each of the LED arrangement example according to Example 1 and the LED arrangement example according to Comparative Example 1. FIG. The same LEDs are used in the first embodiment and the first comparative example. In FIG. 5, the horizontal axis indicates wavelength (nm) and the vertical axis indicates power (μW: luminous flux).
 比較例(点線)において、ピークの目標光量が40μWである場合に、LED1とLED3の発光ピークは目標光量より大きいが、LED2の発光ピークは目標光量を下回ってしまっている。 In the comparative example (dotted line), when the peak target light intensity is 40 μW, the light emission peaks of LED1 and LED3 are larger than the target light intensity, but the light emission peak of LED2 is lower than the target light intensity.
 一方、実施例1(実線)では、比較例1(点線)と比較してLED1およびLED3のパワーは小さくなる一方で、LED2のパワーが大きくなっている。そして、LED1からLED3の全てのピークが目標光量を達成している。これは有効領域10の設定およびパラメータP/(S×λ)に基づいてLEDを配置したことによる効果と言える。 On the other hand, in Example 1 (solid line), the power of LED1 and LED3 is smaller than that of Comparative Example 1 (dotted line), while the power of LED2 is larger. All the peaks of LED1 to LED3 have achieved the target light amount. This can be said to be the effect of arranging the LEDs based on the setting of the effective area 10 and the parameter P/(S×λ).
(2)実施例2
 実施例2は、吸光光度測定に対応する波長を備えた2つのLED11およびLED1212を用い、有効領域とパラメータ(P/(S×λ))の算出に基づいて目標光量を達成可能なLED配置を決定することに関する。
(2) Example 2
Example 2 uses two LEDs 11 and 1212 with wavelengths corresponding to absorption photometry, and an LED arrangement that can achieve the target light amount based on the calculation of the effective area and parameter (P / (S × λ)). Regarding deciding.
 図6は、LED11およびLED12の特性値を示す表である。LED11は紫外LEDであり、ピークの中心波長を340nmに持っている。LED12は白色LEDであり、励起光由来のピークと蛍光体由来のピークから構成される。励起光由来のピークの中心波長は380nmであり、蛍光体由来のピークの中心波長は600nmである。LED11およびLED12の発光面積S、出力P、および波長半値全幅λを基に、パラメータ(P/(S×λ))を算出すると、パラメータP/(S×λ)はLED12、LED11の順に大きくなることが分かった。 FIG. 6 is a table showing characteristic values of LED11 and LED12. The LED 11 is an ultraviolet LED and has a peak central wavelength of 340 nm. The LED 12 is a white LED and is composed of a peak derived from the excitation light and a peak derived from the phosphor. The center wavelength of the peak derived from the excitation light is 380 nm, and the center wavelength of the peak derived from the phosphor is 600 nm. When the parameter (P/(S×λ)) is calculated based on the emission area S, the output P, and the wavelength full width at half maximum λ of the LED 11 and the LED 12, the parameter P/(S×λ) increases in the order of the LED 12 and the LED 11. I found out.
 <実施例2によるLED配置例>
 図7は、パラメータP/(S×λ)の比較の結果から、実施例1にて示した上記条件1および/または条件2に従って、LED12→LED11の順となるように、LED11およびLED12を配置したときのLED配置例を示す図である。LED11の発光面の左辺は光軸9から0.275mm離れている。また、LED12は光軸9上に発光面が存在することから、光軸9とLED12の発光面との距離は0とみなせる。
 従って、LED11およびLED12の配置は、上記条件1および条件2の基準を満たした配置となっていることが分かる。
<Example of LED arrangement according to Example 2>
FIG. 7 shows the arrangement of LED11 and LED12 in the order of LED12→LED11 according to the condition 1 and/or condition 2 shown in Example 1 from the results of comparison of parameters P/(S×λ). It is a figure which shows the LED arrangement example when it does. The left side of the light emitting surface of the LED 11 is separated from the optical axis 9 by 0.275 mm. Moreover, since the light emitting surface of the LED 12 exists on the optical axis 9, the distance between the optical axis 9 and the light emitting surface of the LED 12 can be regarded as zero.
Therefore, it can be seen that the arrangement of the LEDs 11 and 12 satisfies the criteria of conditions 1 and 2 above.
 <比較例2によるLED配置例>
 図8は、比較例2によるLED配置例を示す図である。図8に示すように、比較例2では、LED11およびLED12が共に光軸9に近くなるように配置した場合の配置となっている。光軸9に最も近い発光面の辺から、光軸9までの距離は共に0.025mmである。比較例2では、上記パラメータを算出することもないし、当該パラメータの大小に従ってLEDを配置するものでもない。
<Example of LED layout according to Comparative Example 2>
FIG. 8 is a diagram showing an example of LED arrangement according to Comparative Example 2. As shown in FIG. As shown in FIG. 8 , in Comparative Example 2, the LED 11 and the LED 12 are arranged so as to be close to the optical axis 9 . The distance from the side of the light emitting surface closest to the optical axis 9 to the optical axis 9 is 0.025 mm. In Comparative Example 2, the parameters are not calculated, and the LEDs are not arranged according to the magnitude of the parameters.
 <実施例2と比較例2の発光スペクトルの比較>
 上述のように、比較例2ではパラメータの大きさを踏まえた配置がなされていない。そこで、実施例2と比較例2の発光スペクトルを比較する。図9は、実施例2によるLED配置例と比較例2によるLED配置例のそれぞれについて、受光部8で取得される発光スペクトルを示す図である。配置される複数のLEDは実施例2と比較例2とで同一のものが使用される。図9において、横軸は波長(nm)、縦軸はパワー(μW:光束)を示している。
<Comparison of emission spectra of Example 2 and Comparative Example 2>
As described above, in Comparative Example 2, the arrangement is not based on the size of the parameters. Therefore, the emission spectra of Example 2 and Comparative Example 2 are compared. FIG. 9 is a diagram showing emission spectra obtained by the light receiving unit 8 for each of the LED arrangement example according to Example 2 and the LED arrangement example according to Comparative Example 2. FIG. The same LEDs are used in the second embodiment and the second comparative example. In FIG. 9, the horizontal axis indicates wavelength (nm) and the vertical axis indicates power (μW: luminous flux).
 点線で示される比較例2の発光スペクトルを見ると、ピークの目標光量に対し、LED11に由来する中心波長340nmのピークは目標光量を十分に超えているが、LED12に由来する中心波長600nmのピークは目標光量に到達していないことが確認できる。 Looking at the emission spectrum of Comparative Example 2 indicated by the dotted line, the peak with a center wavelength of 340 nm derived from the LED 11 sufficiently exceeds the target light level with respect to the target light level of the peak, but the peak with a center wavelength of 600 nm derived from the LED 12 It can be confirmed that the target light quantity is not reached.
 一方、実線で示される実施例2の発光スペクトルを見ると、ピークの目標光量に対し、LED11およびLED12に由来するピークの光量は共に目標光量を超えている。これは、2つのLEDにおいて、実施例1と同様の有効領域の算出と、LED11およびLED12の特性値より算出したパラメータP/(S×λ)に基づいた配置による効果といえる。 On the other hand, looking at the emission spectrum of Example 2 indicated by the solid line, both the peak light amounts derived from the LED 11 and the LED 12 exceed the target light amount. This can be said to be the effect of the arrangement of the two LEDs based on the calculation of the effective area similar to that of the first embodiment and the parameter P/(S×λ) calculated from the characteristic values of the LEDs 11 and 12 .
 <LED寿命とLED配置の関係>
 一般的にLEDの寿命は、点灯初期から出力70%となるまでに要する時間として理解される。複数のLEDを用いて、目標光量を達成可能な光源を作製する際、各LEDの寿命の長さが同等となるときの各LEDの出力を基にパラメータを算出しLED配置を行うことにより、各LEDの寿命のばらつきの抑制とLED光源の長寿命化という効果が得られる。
<Relationship between LED life and LED arrangement>
The life of an LED is generally understood as the time required for the output to reach 70% from the initial stage of lighting. When using a plurality of LEDs to produce a light source that can achieve the target light intensity, parameters are calculated based on the output of each LED when the life of each LED is the same, and the LED arrangement is performed. It is possible to obtain the effects of suppressing variations in the life of each LED and extending the life of the LED light source.
 また、出力70%未満となった場合の各LEDの出力を想定し、パラメータの算出およびLED配置を行うことによって、各LEDの寿命後も、より長期間にわたって目標光量を達成可能となる効果が得られる。 In addition, by assuming the output of each LED when the output becomes less than 70%, calculating the parameters and arranging the LEDs, it is possible to achieve the target light amount for a longer period of time even after the life of each LED. can get.
(3)実施例3
 実施例1および2において、目標光量の値は各波長で一定の値を取るとしているが、対象の波長域において一定の光量値を持つとは限らない。また、図5や図9に示す目標光量はエネルギー[W]であるものの、測定に用いる受光部8は電流や電圧、光子数などの信号として光量を出力する可能性がある。つまり、光自体はパワー(W)で表されるが、実際に測定を行う場合には、受光部8はパワー値を出力するのではなく、光の強度を電流値などで出力することがある。このとき、受光部8においてパワー(W)を電流値(A)に変換するに当たり、波長によって変換効率が変わってしまうという現象が起こりうる。このため、電流値で光の強度を読み取る場合には、変換効率を考慮した上で複数のLEDの配置を最適化する必要がある。例えば、複数のLEDにおいて、パワー(W)の大きさの順位と光の強度を変換して得られた電流値の大きさの順位が異なる場合がある。
(3) Example 3
In Embodiments 1 and 2, the target light intensity value is assumed to be a constant value for each wavelength, but the target wavelength range does not always have a constant light intensity value. Although the target light intensity shown in FIGS. 5 and 9 is energy [W], the light receiving unit 8 used for measurement may output the light intensity as a signal such as current, voltage, or number of photons. In other words, the light itself is represented by power (W), but when actually measuring, the light receiving unit 8 may output the intensity of light as a current value instead of outputting a power value. . At this time, when the power (W) is converted into the current value (A) in the light receiving section 8, a phenomenon may occur in which the conversion efficiency changes depending on the wavelength. For this reason, when reading the light intensity from the current value, it is necessary to optimize the arrangement of the plurality of LEDs in consideration of the conversion efficiency. For example, in a plurality of LEDs, the order of power (W) may differ from the order of current value obtained by converting the intensity of light.
 受光部8に利用されるフォトダイオードなどの素子の変換効率([W/A]や[W/V]など)は波長依存性を持つため、目標光量の大きさもまた波長依存性を持つ場合がある。よって、各波長で目標光量が異なる場合は、対象の波長域に対応するLEDのパラメータP/(S×λ)を、さらに目標光量値または変換効率で割った値を基に、各LEDの配置を決めることができる。 Since the conversion efficiency ([W/A], [W/V], etc.) of an element such as a photodiode used in the light receiving section 8 has wavelength dependence, the magnitude of the target light amount may also have wavelength dependence. be. Therefore, if the target light intensity is different for each wavelength, the LED parameter P / (S × λ) corresponding to the target wavelength range is further divided by the target light intensity value or conversion efficiency. can decide.
 <吸光光度測定が可能な2LEDの吸光光度測定装置>
 実施例3は、吸光光度測定に対応する波長を備えた2つのLED11およびLED12を用い、有効領域とパラメータP/(S×λ)の算出に基づいて、目標光量を目標光電流として達成可能なLED配置を決定することに関する。なお、実施例3では、実施例2に対応して2つのLEDを用いている場合について説明するが、実施例1のように3つのLEDや、後述の実施例のように、5つ以上のLEDの場合であっても同様の考え方が適用可能である。また、実施例3による吸光光度測定装置の構成は、実施例1で示した図1のそれと同様である。
<Two-LED Absorbance Measurement Device Capable of Absorbance Measurement>
Example 3 uses two LEDs 11 and 12 with wavelengths corresponding to absorption photometry, and based on the calculation of the effective area and parameter P / (S × λ), the target light amount can be achieved as the target photocurrent It relates to determining LED placement. In addition, in Example 3, a case where two LEDs are used corresponding to Example 2 will be described. A similar concept can be applied even in the case of LEDs. Also, the configuration of the absorptiometry apparatus according to Example 3 is the same as that of Example 1 shown in FIG.
 <実施例3によるLED配置例>
 LED11およびLED12から発せられた光は、吸光光度測定装置100の受光部8によって受講される。受光部8の受光素子が受けるLED11およびLED12の発光は、光量の他に電流や電圧、光子数などの値として出力される。例えば、受光部8の受光素子によって光量が光電流へ変換される場合、受光素子における光電変換比の波長依存性による影響を踏まえて、補正されたパラメータを算出する必要がある。
<Example of LED arrangement according to Example 3>
Light emitted from the LED 11 and the LED 12 is received by the light receiving section 8 of the absorptiometry device 100 . Light emitted from the LEDs 11 and 12 received by the light receiving elements of the light receiving unit 8 is output as values such as current, voltage, and the number of photons in addition to the amount of light. For example, when the light amount is converted into a photocurrent by the light receiving element of the light receiving unit 8, it is necessary to calculate the corrected parameter based on the influence of the wavelength dependence of the photoelectric conversion ratio in the light receiving element.
 図10は、LED11およびLED12の特性値、および中心波長における受光部8での補正係数を示す表である。実施例1または3にて示したパラメータP/(S×λ)へ補正係数をかけることによって、単位立体角、単位面積、単位波長あたりの光軸9方向へ進む光の光電流値におおむね比例する値として補正されたパラメータを算出することができる。LED11およびLED12の補正されたパラメータを比較すると、実施例2と同様に、当該パラメータは、LED12、LED11の順に大きくなることが分かった。 FIG. 10 is a table showing characteristic values of the LEDs 11 and 12 and correction coefficients in the light receiving section 8 at the center wavelength. By multiplying the parameter P/(S×λ) shown in Example 1 or 3 by a correction coefficient, the photocurrent value of light traveling in the direction of the optical axis 9 per unit solid angle, unit area, and unit wavelength is roughly proportional. A corrected parameter can be calculated as a value for Comparing the corrected parameters of LED11 and LED12, it was found that the parameters increased in the order of LED12 and LED11, as in Example 2.
 図11は、図10に示す補正されたパラメータP/(S×λ)の比較結果から、実施例1において示した上記条件1または/および条件2に従って、LED11およびLED12を配置したときのLED配置例を示す図である。図11において、LED11発光面の左辺は光軸9から0.175mm離れている。また、LED12は光軸9上に発光面が存在することから、光軸9とLED12の発光面との距離は0と見做すことができる。
 なお、実施例3に対する比較例としては、実施例3と実施例2のLED配置は類似するので、上述の実施例2に対する比較例2(図8)を挙げることができる。
FIG. 11 shows, from the comparison results of the corrected parameters P/(S×λ) shown in FIG. FIG. 4 is a diagram showing an example; In FIG. 11, the left side of the light emitting surface of the LED 11 is separated from the optical axis 9 by 0.175 mm. Moreover, since the light emitting surface of the LED 12 exists on the optical axis 9, the distance between the optical axis 9 and the light emitting surface of the LED 12 can be regarded as zero.
As a comparative example for Example 3, since the LED arrangements of Example 3 and Example 2 are similar, Comparative Example 2 (FIG. 8) for Example 2 can be cited.
 <実施例3と比較例2の発光スペクトルの比較>
 図12は、実施例3によるLED配置例と比較例2によるLED配置例のそれぞれについて、縦軸を光電流値とした発光スペクトルを示す図である。
<Comparison of emission spectra of Example 3 and Comparative Example 2>
FIG. 12 is a diagram showing emission spectra with photocurrent values plotted on the vertical axis for each of the LED arrangement example according to Example 3 and the LED arrangement example according to Comparative Example 2. In FIG.
 図12において、点線で示す比較例2の発光スペクトルは、図10の点線で示す比較例2のスペクトル形状とはスペクトル形状は異なることが確認できる。このスペクトル形状の差異が受光部8の受光素子における光電変換比の波長依存性による影響である。 In FIG. 12, it can be confirmed that the emission spectrum of Comparative Example 2 indicated by the dotted line has a spectral shape different from that of Comparative Example 2 indicated by the dotted line in FIG. This difference in spectral shape is due to the wavelength dependence of the photoelectric conversion ratio in the light receiving element of the light receiving section 8 .
 比較例2において、LED11に由来する中心波長340nmのピークは目標光電流を十分に超えているが、LED12に由来する中心波長600nmのピークは目標光電流に到達していないことが確認できる。 In Comparative Example 2, it can be confirmed that the peak at a center wavelength of 340 nm derived from the LED 11 sufficiently exceeds the target photocurrent, but the peak at a center wavelength of 600 nm derived from the LED 12 does not reach the target photocurrent.
 一方、実線で示される実施例3の発光スペクトルを見ると、ピークの目標光電流に対して、LED11およびLED12に由来するピークの光量は共に目標光電流を超えている。これは、2つのLEDにおいて、有効領域の算出、LED11およびLED12の特性値および受光部8の受光素子の光電変換比より算出、および補正されたパラメータP/(S×λ)に基づいたLED配置による効果と言える。 On the other hand, looking at the emission spectrum of Example 3 indicated by the solid line, the peak light amounts originating from the LEDs 11 and 12 both exceed the target peak photocurrent. In the two LEDs, the effective area is calculated, the characteristic values of the LEDs 11 and 12 and the photoelectric conversion ratio of the light receiving element of the light receiving unit 8 are calculated, and the LED arrangement is based on the corrected parameter P/(S×λ). It can be said that the effect is due to
(4)実施例4
 実施例4は、生化学分析に対応した波長を備える3つのLEDにおいて、有効領域とパラメータW/(S×λ×θ1/2)の算出に基づいて、目標光量を達成するLED配置を決定することに関する。
(4) Example 4
In Example 4, three LEDs with wavelengths corresponding to biochemical analysis determine the LED arrangement that achieves the target light intensity based on the calculation of the effective area and the parameter W / (S × λ × θ 1/2 ). about doing
 既に実施例1にて示したLED1からLED3および光学部材の配置において、図3の表に示した方法以外でもパラメータを算出し、比較することができる。具体的には、発光面の面積S、全出力W、波長半値全幅λ、指向角θ1/2に基づいてパラメータ(W/(S×λ×θ1/2))が算出可能である。実施例1との違いとして、全出力Wと指向角θ1/2がある。全出力Wを指向角θ1/2で割った値は、光軸9方向に進む単位立体角あたりの光量におおむね比例する値であり、また実施例1における出力Pにも概ね比例する値となる。 In the arrangement of the LEDs 1 to 3 and the optical members already shown in Example 1, the parameters can be calculated and compared by methods other than those shown in the table of FIG. Specifically, the parameter (W/(S×λ×θ 1/2 )) can be calculated based on the area S of the light emitting surface, the total output W, the wavelength full width at half maximum λ, and the directivity angle θ 1/2 . Differences from Example 1 include the total output W and the directivity angle θ 1/2 . The value obtained by dividing the total output W by the directivity angle θ 1/2 is a value roughly proportional to the amount of light per unit solid angle traveling in the direction of the optical axis 9, and is also roughly proportional to the output P in Example 1. Become.
 全出力Wは、実施例1に示す出力Pと異なり、積分球などを用いてLEDを評価することで取得される。また、一般的に全出力Wは仕様表に記載された特性値として用いることもできる。指向角θ1/2は、面直方向を0度としたときに、最大強度の半分となる角度の2分の1の値であり、LEDにおける角度分布の広がりを示す特性値である。これはゴニオメータなどを用いることで測定することができ、また全出力と同様に、仕様表に記載された特性値として用いることが可能である。 The total output W is obtained by evaluating the LED using an integrating sphere or the like, unlike the output P shown in the first embodiment. Also, generally, the total output power W can be used as a characteristic value described in the specification table. The directivity angle θ 1/2 is a value that is half the angle at which the maximum intensity is half when the perpendicular direction is 0 degrees, and is a characteristic value that indicates the spread of the angular distribution in the LED. This can be measured by using a goniometer or the like, and can be used as a characteristic value described in the specification table like the total output.
 図13は、パラメータ(W/(S×λ×θ1/2))の算出に用いる特性値を示す表である。図13に示す特性値からLED1からLED3のパラメータ(W/(S×λ×θ1/2))を算出し、比較すると、実施例1と同様に、当該パラメータの大きさは、LED2、LED3、LED1の順に大きくなっている。以上から各LEDの配置方針決定に必要パラメータを、同等またはより高い精度で、算出可能となる。また、当該パラメータ(W/(S×λ×θ1/2))に基づいた配置を行うことにより、LED1からLED3すべてのピークが目標光量を達成可能な効果が得られる。 FIG. 13 is a table showing characteristic values used to calculate the parameter (W/(S×λ×θ 1/2 )). The parameters (W/(S×λ×θ 1/2 )) of LED1 to LED3 are calculated from the characteristic values shown in FIG. , LED1. From the above, it becomes possible to calculate the parameters necessary for determining the arrangement policy of each LED with equal or higher accuracy. Moreover, by performing the arrangement based on the parameter (W/(S×λ×θ 1/2 )), an effect is obtained in which the peaks of all LEDs 1 to 3 can achieve the target light amount.
(5)実施例5
 実施例5は、吸光光度測定に対応する波長を備える5つのLED13からLED17を用い、有効領域とパラメータ(W/(S×λ×θ1/2))の算出に基づいて目標光量を達成可能なLED配置を決定することに関する。
(5) Example 5
Example 5 uses five LEDs 13 to 17 with wavelengths corresponding to absorbance measurement, and the target light amount can be achieved based on the calculation of the effective area and parameters (W / (S x λ x θ 1/2 )) It relates to determining an appropriate LED placement.
 図14は、LED13からLED17の特性値を示す表である。LED13は紫外LEDであり、ピークの中心波長を340nmに持っている。LED14は青色LEDであり、ピークの中心波長を450nmに持っている。LED15は白色LEDであり励起光由来のピークと蛍光体由来のピークから構成される。励起光由来のピークの中心波長は380nmであり、蛍光体由来のピークの中心波長は550nmである。LED16は赤色LEDであり、ピークの中心波長を710nmに持っている。LED17は赤外LEDであり、ピークの中心波長を800nmに持っている。 FIG. 14 is a table showing characteristic values of the LEDs 13 to 17. FIG. The LED 13 is an ultraviolet LED and has a peak central wavelength of 340 nm. The LED 14 is a blue LED and has a peak central wavelength of 450 nm. The LED 15 is a white LED and is composed of a peak derived from the excitation light and a peak derived from the phosphor. The center wavelength of the peak derived from the excitation light is 380 nm, and the center wavelength of the peak derived from the phosphor is 550 nm. The LED 16 is a red LED and has a peak central wavelength of 710 nm. The LED 17 is an infrared LED and has a peak central wavelength of 800 nm.
 図14のLED13からLED17の発光面積S、出力P、および波長半値全幅λを基にパラメータ(W/(S×λ×θ1/2))を算出すると、パラメータ(W/(S×λ×θ1/2))はLED15、LED13、LED16、LED17、LED14の順に大きくなることが分かる。 When the parameter (W/(S×λ×θ 1/2 )) is calculated based on the emission area S, the output P, and the wavelength full width at half maximum λ of the LEDs 13 to 17 in FIG. 14, the parameter (W/(S×λ× θ 1/2 )) increases in the order of LED15, LED13, LED16, LED17, and LED14.
 <実施例5によるLED配置例>
 図15は、図14に示すパラメータ(W/(S×λ×θ1/2))の比較に基づいて、実施例1に記載の上記条件1または/および条件2に従ってLED13からLED17を配置した結果を示す図である。図15において、LED13における辺から光軸9までの距離は0.21mm、LED14における頂点から光軸9までの距離は0.26mm、LED15は発光面上に光軸9が存在するため、発光面と光軸9との距離は0と見做せる。そして、LED16における頂点から光軸9までの距離は0.22mm、LED17における辺から光軸9までの距離は0.25mmである。
<Example of LED arrangement according to Example 5>
FIG. 15 shows LEDs 13 to 17 arranged according to Condition 1 or/and Condition 2 described in Example 1, based on a comparison of the parameters (W/(S×λ×θ 1/2 )) shown in FIG. It is a figure which shows a result. In FIG. 15, the distance from the side of the LED 13 to the optical axis 9 is 0.21 mm, the distance from the vertex of the LED 14 to the optical axis 9 is 0.26 mm, and since the optical axis 9 exists on the light emitting surface of the LED 15, the light emitting surface and the optical axis 9 can be regarded as zero. The distance from the vertex of the LED 16 to the optical axis 9 is 0.22 mm, and the distance from the side of the LED 17 to the optical axis 9 is 0.25 mm.
 <比較例3によるLED配置例>
 図16は、比較例3として、LED13からLED17を共に光軸9に近くなるように配置した場合の配置例を示す図である。各LEDから光軸9までの距離として、LED13とLED15における頂点から光軸9までの距離は0.021mm、LED14およびLED16における頂点から光軸9までの距離は0.2mmである。また、LED17における辺から光軸9までの距離は0.025mmである。比較例3の配置例は、光軸9の周りにLEDが密集した配置であるが、パラメータ(W/(S×λ×θ1/2))の大小に従った配置ではない。
<Example of LED arrangement according to Comparative Example 3>
FIG. 16 is a diagram showing an arrangement example in which the LEDs 13 to 17 are arranged so as to be close to the optical axis 9 as Comparative Example 3. As shown in FIG. As for the distance from each LED to the optical axis 9, the distance from the apex of the LEDs 13 and 15 to the optical axis 9 is 0.021 mm, and the distance from the apex of the LEDs 14 and LED 16 to the optical axis 9 is 0.2 mm. Also, the distance from the side of the LED 17 to the optical axis 9 is 0.025 mm. The arrangement example of Comparative Example 3 is an arrangement in which the LEDs are densely arranged around the optical axis 9, but is not arranged in accordance with the magnitude of the parameter (W/(S×λ×θ 1/2 )).
 <実施例5と比較例3の発光スペクトルの比較>
 図17は、実施例5によるLED配置例と比較例3によるLED配置例のそれぞれについて、縦軸を光電流値とした発光スペクトルを示す図である。
<Comparison of emission spectra of Example 5 and Comparative Example 3>
FIG. 17 is a diagram showing emission spectra with photocurrent values plotted on the vertical axis for each of the LED arrangement example according to Example 5 and the LED arrangement example according to Comparative Example 3. In FIG.
 図17において点線で示す比較例3の発光スペクトルを見ると、ピークの目標光量に対して、LED13、LED14、LED16、およびLED17に由来する中心波長340nm、450nm、710nm、および800nmのピークは目標光量を十分に超えているが、LED15に由来する中心波長550nmのピークは目標光量に到達していないことが確認できる。 Looking at the emission spectrum of Comparative Example 3 indicated by the dotted line in FIG. However, it can be confirmed that the peak at the central wavelength of 550 nm derived from the LED 15 does not reach the target light amount.
 一方、図17において実線で示される実施例5の発光スペクトルを見ると、LED13からLED17に由来する発光の各ピークが目標光量を超えていることが確認される。これは、5つのLEDにおいて、有効領域の算出とLED13からLED17の特性値から算出されたパラメータ(W/(S×λ×θ1/2))に基づいてLED配置を決定したことによる効果と言える。 On the other hand, looking at the emission spectrum of Example 5 indicated by the solid line in FIG. 17, it is confirmed that each peak of the emission originating from the LEDs 13 to 17 exceeds the target light amount. This is the effect of determining the LED arrangement based on the parameters (W/(S×λ×θ 1/2 )) calculated from the calculation of the effective area and the characteristic values of the LEDs 13 to 17 in the five LEDs. I can say
 <5つ以上のLEDを配置する場合の本実施例のメリット>
 目標光量や目標光電流を達成するLEDの配置方法として、LEDの個数が2から4個の場合には、配置するLEDの個数が少なく、想定される並べ方のパターンも少ない。また、全LEDの光軸近傍への配置が容易であることから、上述の比較例1および2のようにパラメータを検討せず、光軸近傍への配置と微調整によって目標光量を達成可能な配置方法を見つけることができる可能性がある。
<Advantages of this embodiment when five or more LEDs are arranged>
When the number of LEDs is 2 to 4 as a method of arranging the LEDs to achieve the target amount of light and the target photocurrent, the number of LEDs to be arranged is small, and the number of possible arranging patterns is also small. In addition, since it is easy to arrange all the LEDs near the optical axis, the target light amount can be achieved by arranging the LEDs near the optical axis and making fine adjustments without considering the parameters as in Comparative Examples 1 and 2 above. You may be able to find a placement method.
 一方、LEDの個数が5個以上である場合には、配置のパターンが複雑化し、全LEDを光軸近傍に近づけることは困難となる。このため、光軸近傍に配置するLEDの優先順位を設ける必要がある。このような場合において、パラメータに基づくLED配置はより高い精度で目標光量を達成することができる。 On the other hand, if the number of LEDs is 5 or more, the arrangement pattern becomes complicated, and it becomes difficult to bring all the LEDs close to the optical axis. For this reason, it is necessary to set the order of priority for the LEDs arranged near the optical axis. In such cases, the parameter-based LED placement can achieve the target light intensity with higher accuracy.
(6)実施例6
 実施例6は、実施例1から実施例5で説明した吸光光度測定装置100の生化学分析装置への適用に関する。
(6) Example 6
Example 6 relates to application of the absorptiometry device 100 described in Examples 1 to 5 to a biochemical analyzer.
 図18は、実施例6による生化学分析装置の構成例を示す図である。生化学分析装置200は、制御部201と、前処理部202と、分注部203と、上述の吸光光度測定装置100を備える測定・検出部204と、を備える。 FIG. 18 is a diagram showing a configuration example of a biochemical analysis device according to Example 6. FIG. The biochemical analyzer 200 includes a control unit 201, a preprocessing unit 202, a dispensing unit 203, and a measurement/detection unit 204 including the absorptiometry device 100 described above.
 前処理部202では、混合容器205内で試料と試薬との混合、遠心、攪拌、恒温反応などが測定の前処理として適宜行われる。分注部203では、前処理後の混合容器内の試料が、分注装置206により反応セル207に分注される。なお、反応セル207中にて混合容器205中での前処理と同様の作業が行われ、混合容器205および分注装置206を必要としない生化学分析装置もある。測定・検出部204では、反応セル207が吸光光度測定装置100を用いて評価される。前処理から測定・検出までの動作を制御部201にて制御および自動化することで、連続的かつ効率的に生化学分析を行うことができる。
 以上のような構成を採ることにより、実施例1から実施例5による吸光光度測定装置100を用いて生化学分析装置を構成することができる。
In the pretreatment unit 202, mixing, centrifugation, agitation, constant temperature reaction, etc. of the sample and the reagent in the mixing container 205 are appropriately carried out as pretreatment for measurement. In the pipetting unit 203 , the pretreated sample in the mixing container is pipetted into the reaction cell 207 by the pipetting device 206 . There is also a biochemical analyzer in which the same pretreatment as in the mixing vessel 205 is performed in the reaction cell 207 and the mixing vessel 205 and the dispensing device 206 are not required. In the measurement/detection unit 204 , the reaction cell 207 is evaluated using the absorptiometry device 100 . By controlling and automating the operations from pretreatment to measurement/detection by the control unit 201, biochemical analysis can be performed continuously and efficiently.
By adopting the configuration as described above, a biochemical analysis apparatus can be constructed using the absorptiometry apparatus 100 according to the first to fifth embodiments.
(7)まとめ
(i)本開示の吸光光度測定装置では、複数のLEDを載置する基板上に、そこにLEDを配置すれば受光部(あるいはスリット)に光が到達するとされる有効領域が規定される。このとき、当該有効領域に、複数のLEDは、LEDの出力、発光面積、及び波長半値全幅に基づいて算出されるパラメータ(P/(S×λ)やW/(S×λ×θ1/2))の値が小さい順に、かつ最小のパラメータの値を示すLEDがレンズの中心およびスリットの中心を通る光軸を含むように、配置される。また、複数のLEDは、当該パラメータの値が小さい順に有効領域における専有面積が大きくなるように配置される。このように複数のLEDを基板上に配置することにより、受光部が検出する、各波長光のピーク光量が目標光量を超えるので、反応セルに収容した測定対象の試料を正確に同定することが可能となる。
(7) Summary (i) In the absorptiometry device of the present disclosure, on a substrate on which a plurality of LEDs are mounted, there is an effective area where light reaches the light receiving part (or slit) if the LEDs are arranged there. Defined. At this time, in the effective region, the plurality of LEDs have parameters (P/(S×λ) and W/(S×λ×θ 1/ 2 )) are arranged in ascending order of value, and such that the LED exhibiting the smallest parameter value includes the optical axis passing through the center of the lens and the center of the slit. In addition, the plurality of LEDs are arranged so that the occupied area in the effective area increases in ascending order of the value of the parameter. By arranging a plurality of LEDs on the substrate in this way, the peak light intensity of each wavelength of light detected by the light receiving unit exceeds the target light intensity, so that the sample to be measured contained in the reaction cell can be accurately identified. It becomes possible.
 複数のLEDは、例えば、紫外領域に波長を有する少なくとも1つの第1種LED(第1種LED群:波長帯は320nmから380nm)と、可視光領域に波長を有する少なくとも1つの第2種LED(第2種LED群:波長帯は360nmから820nm)と、赤外領域に波長を有する少なくとも1つの第3種LED(第3種LED群:波長帯は700nmから850nm)と、を含むように構成することができる。このような波長帯のLEDを用いることにより、様々な種類の試料を同定することができる吸光光度測定装置を提供することができる。 The plurality of LEDs are, for example, at least one type 1 LED having a wavelength in the ultraviolet region (group of type 1 LEDs: wavelength band from 320 nm to 380 nm) and at least one type 2 LED having a wavelength in the visible light region (2nd type LED group: wavelength band from 360 nm to 820 nm) and at least one 3rd type LED having a wavelength in the infrared region (3rd type LED group: wavelength band from 700 nm to 850 nm) Can be configured. By using LEDs in such a wavelength band, it is possible to provide an absorptiometry device capable of identifying various types of samples.
(ii)上記有効領域の幅(径)dは、以下のように求めることができる。吸光光度測定装置の構成要素に関し、複数のLEDの発光面からレンズ中心までの距離をa、レンズの焦点距離をf、レンズの中心から反応セルの表面までの距離をb、反応セルの表面からスリットの距離をc、スリットの幅をeと規定する。このとき、複数のLEDの発光面からレンズによる発光の結像位置までの距離をhとすると、h=a+(a×f)/(a-f)、かつb≦h-a≦cである。そして、有効領域の幅をdは、d=(e×a)/(h-a)によって算出することができる。このように、上記有効領域の幅dは、各光学的条件から一意に求めることができるため、複数のLEDを上述のルール(実施例1で述べた条件1および条件2)に従って配置し、反応セルに収容した測定対象の試料を正確に同定することが可能となる。 (ii) The width (diameter) d of the effective area can be obtained as follows. Regarding the components of the absorbance measurement device, a is the distance from the light emitting surface of the plurality of LEDs to the center of the lens, f is the focal length of the lens, b is the distance from the center of the lens to the surface of the reaction cell, and b is the distance from the surface of the reaction cell. Let c be the distance of the slit and e be the width of the slit. At this time, if h is the distance from the light-emitting surface of the plurality of LEDs to the position where the light is imaged by the lens, then h=a+(a×f)/(a−f) and b≦ha≦c. . The width d of the effective area can be calculated by d=(exa)/(ha). In this way, since the width d of the effective region can be uniquely obtained from each optical condition, a plurality of LEDs are arranged according to the above-described rules ( conditions 1 and 2 described in Example 1), and the reaction It is possible to accurately identify the sample to be measured contained in the cell.
1、2、3、11、12、13、14、15、16、17 LED
4 基板
5 レンズ
6 反応セル
7 スリット
8 受光部
9 光軸
10 有効領域
100 吸光光度測定装置
201 制御部
202 前処理部
203 分注部
204 測定・検出部
205 混合容器
206 分注装置
207 反応セル
1, 2, 3, 11, 12, 13, 14, 15, 16, 17 LEDs
4 substrate 5 lens 6 reaction cell 7 slit 8 light receiving unit 9 optical axis 10 effective area 100 absorption photometry device 201 control unit 202 preprocessing unit 203 dispensing unit 204 measurement/detection unit 205 mixing vessel 206 dispensing device 207 reaction cell

Claims (8)

  1.  複数のLEDと、
     前記複数のLEDを同一平面上に備える基板と、
     前記複数のLEDから出射した光が直接入射するレンズと、
     前記レンズを通過した光が反応セルに入射し、当該反応セルから透過した透過光を通すスリットと、
     前記透過光を受光して電流に変換する受光部と、を備え、
     光が前記スリットまで到達可能な前記基板上の有効領域に、前記複数のLEDは、LEDの出力、発光面積、及び波長半値全幅に基づいて算出されるパラメータの値が小さい順に、かつ最小のパラメータの値を示すLEDが前記レンズの中心および前記スリットの中心を通る光軸を含むように、配置されている、吸光光度測定装置。
    a plurality of LEDs;
    a substrate provided with the plurality of LEDs on the same plane;
    a lens into which light emitted from the plurality of LEDs is directly incident;
    a slit through which the light that has passed through the lens enters the reaction cell and passes through the transmitted light that has passed through the reaction cell;
    A light receiving unit that receives the transmitted light and converts it into a current,
    In the effective area on the substrate where light can reach the slit, the plurality of LEDs are arranged in ascending order of parameter values calculated based on the LED output, light emitting area, and wavelength full width at half maximum, and the smallest parameter an absorptiometry device, wherein an LED indicating the value of is positioned so as to include an optical axis passing through the center of the lens and the center of the slit.
  2.  請求項1において、
     前記複数のLEDは、さらに、前記パラメータの値が小さい順に前記有効領域の専有面積が大きくなるように配置されている、吸光光度測定装置。
    In claim 1,
    The absorptiometry device, wherein the plurality of LEDs are further arranged such that the occupied area of the effective region increases in ascending order of the parameter value.
  3.  請求項1において、
     前記複数のLEDは、紫外領域に波長を有する少なくとも1つの第1種LEDと、可視光領域に波長を有する少なくとも1つの第2種LEDと、赤外領域に波長を有する少なくとも1つの第3種LEDと、を含む、吸光光度測定装置。
    In claim 1,
    The plurality of LEDs include at least one first-type LED having a wavelength in the ultraviolet region, at least one second-type LED having a wavelength in the visible light region, and at least one third-type LED having a wavelength in the infrared region. An absorptiometer, comprising an LED.
  4.  請求項3において、
     前記第1種LEDの波長帯は320nmから380nmであり、
     前記第2種LEDの波長帯は360nmから820nmであり、
     前記第3種LEDの波長帯は700nmから850nmである、吸光光度測定装置。
    In claim 3,
    The wavelength band of the type 1 LED is from 320 nm to 380 nm,
    The wavelength band of the second type LED is from 360 nm to 820 nm,
    The absorptiometry device, wherein the third type LED has a wavelength band of 700 nm to 850 nm.
  5.  請求項1において、
     前記複数のLEDの発光面からレンズ中心までの距離をa、前記レンズの焦点距離をf、前記レンズの中心から前記反応セルの表面までの距離をb、前記反応セルの表面から前記スリットの距離をc、前記スリットの幅をeとしたとき、
     前記複数のLEDの発光面からレンズによる発光の結像位置までの距離をhとすると、h=a+(a×f)/(a-f)、かつb≦h-a≦cであり、
     前記有効領域の幅をdとすると、d=(e×a)/(h-a)である、吸光光度測定装置。
    In claim 1,
    a is the distance from the light emitting surface of the plurality of LEDs to the center of the lens, f is the focal length of the lens, b is the distance from the center of the lens to the surface of the reaction cell, and b is the distance from the surface of the reaction cell to the slit. is c and the width of the slit is e,
    where h is the distance from the light-emitting surface of the plurality of LEDs to the position where the light is imaged by the lens, h=a+(a×f)/(a−f) and b≦ha≦c,
    An absorptiometer, wherein d=(exa)/(ha) where d is the width of the effective region.
  6.  請求項1において、
     前記複数のLEDの1つから一定距離離れた位置から光量測定系により測定した出力をP、発光面積をS、波長半値全幅をλとしたとき、対応するLEDの前記パラメータはP/(S×λ)で表される、吸光光度測定装置。
    In claim 1,
    When P is the output measured by the light quantity measurement system from a position a certain distance away from one of the plurality of LEDs, S is the light emission area, and λ is the full width at half maximum of the wavelength, the parameter of the corresponding LED is P/(S × λ), an absorptiometer.
  7.  請求項5において、
     前記複数のLEDの1つの全出力をW、指向角をθ1/2、発光面積をS、波長半値全幅をλとすると、対応するLEDの前記パラメータはW/(S×λ×θ1/2)で表される、吸光光度測定装置。
    In claim 5,
    Let W be the total output of one of the plurality of LEDs, θ 1/2 the directivity angle, S the emission area, and λ the full width at half maximum of the wavelength, then the parameters of the corresponding LED are W/(S×λ×θ 1/ 2 ), an absorptiometer.
  8.  請求項1から7のいずれか一項に記載の吸光光度測定装置を備える、生化学分析装置。  A biochemical analyzer comprising the absorptiometry device according to any one of claims 1 to 7. 
PCT/JP2022/027238 2021-07-29 2022-07-11 Absorptiometry device and biochemical assay device comprising same WO2023008158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124678A JP2023019730A (en) 2021-07-29 2021-07-29 Absorptiometric measurement device and biochemical analysis device
JP2021-124678 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008158A1 true WO2023008158A1 (en) 2023-02-02

Family

ID=85086734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027238 WO2023008158A1 (en) 2021-07-29 2022-07-11 Absorptiometry device and biochemical assay device comprising same

Country Status (2)

Country Link
JP (1) JP2023019730A (en)
WO (1) WO2023008158A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395261U (en) * 1986-12-11 1988-06-20
JPH0244780A (en) * 1988-08-04 1990-02-14 Sharp Corp Indicator lamp
JPH04102378A (en) * 1990-08-21 1992-04-03 Sanyo Electric Co Ltd Manufacture of light emitting diode device
WO2003016842A1 (en) * 2001-08-13 2003-02-27 Hamamatsu Photonics K.K. Spectrometer and spectrally separating method
JP2020087974A (en) * 2018-11-15 2020-06-04 株式会社日立ハイテク Broadband light source device and biochemical analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395261U (en) * 1986-12-11 1988-06-20
JPH0244780A (en) * 1988-08-04 1990-02-14 Sharp Corp Indicator lamp
JPH04102378A (en) * 1990-08-21 1992-04-03 Sanyo Electric Co Ltd Manufacture of light emitting diode device
WO2003016842A1 (en) * 2001-08-13 2003-02-27 Hamamatsu Photonics K.K. Spectrometer and spectrally separating method
JP2020087974A (en) * 2018-11-15 2020-06-04 株式会社日立ハイテク Broadband light source device and biochemical analyzer

Also Published As

Publication number Publication date
JP2023019730A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
CN108351304B (en) Water quality analyzer
US11112365B2 (en) Increasing the usable dynamic range in photometry
JP3682528B2 (en) Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample
JP2008522160A (en) Reflectometer and associated light source for use in chemical analyzers
US7859668B2 (en) Apparatus and method for illuminator-independent color measurements
JP2006153770A (en) Spectral measurement apparatus
WO2009093453A1 (en) Analysis device and analysis method
JP5990185B2 (en) Equipment for photometric or spectroscopic inspection of liquid samples
EP1992936B1 (en) Analyzing apparatus
US10215684B2 (en) Fine particle detection device
WO2023008158A1 (en) Absorptiometry device and biochemical assay device comprising same
JP2010133833A (en) Photometric device
JP2005062192A (en) Method for obtaining angle spectrum, gonio spectrophotometer and method for inspecting product during machining
US11644680B2 (en) Dichroic mirror array and light detecting device
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
CN109716105B (en) Attenuated total reflection spectrometer
KR101926050B1 (en) Inspection apparatus using ultraviolet ray
JPH0125017B2 (en)
US20070195312A1 (en) Refractometer
WO2017187490A1 (en) Analytical device
CN116698773A (en) Measuring method and device for molecular absorption spectrum
JP2005321347A (en) Photodetector
JP2003149167A (en) Reflectivity measuring device
CN114152583A (en) Multi-optical-fiber two-dimensional spectrum analysis device based on CCD detection
JPS61233328A (en) Colorimetric color difference meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE