WO2023008134A1 - Coated tool and cutting tool - Google Patents

Coated tool and cutting tool Download PDF

Info

Publication number
WO2023008134A1
WO2023008134A1 PCT/JP2022/027013 JP2022027013W WO2023008134A1 WO 2023008134 A1 WO2023008134 A1 WO 2023008134A1 JP 2022027013 W JP2022027013 W JP 2022027013W WO 2023008134 A1 WO2023008134 A1 WO 2023008134A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
atomic
coating layer
sample
layer
Prior art date
Application number
PCT/JP2022/027013
Other languages
French (fr)
Japanese (ja)
Inventor
啓 吉見
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202280045205.4A priority Critical patent/CN117545575A/en
Priority to JP2023538390A priority patent/JPWO2023008134A1/ja
Publication of WO2023008134A1 publication Critical patent/WO2023008134A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present disclosure relates to coated tools and cutting tools.
  • a coated tool has a substrate and a coating layer located on the substrate.
  • the coating layer has a second coating layer comprising Ti, Si and N.
  • the total amount of Ti and Si in the metal elements contained in the second coating layer is 98 atomic % or more.
  • Ti, Si, and N are repeatedly increased and decreased in the thickness direction.
  • FIG. 1 is a perspective view showing an example of a coated tool according to an embodiment
  • FIG. FIG. 2 is a side cross-sectional view showing an example of the coated tool according to the embodiment.
  • FIG. 5 is a front view showing an example of the cutting tool according to the embodiment;
  • FIG. 6 shows sample no. 1 to No. 13 is a table showing the structure of the coating layer of No. 13.
  • FIG. FIG. 7 shows sample no. 1 to No. 13 is a table summarizing the results of cutting and peeling tests for No. 13;
  • the conventional technology described above has room for further improvement in terms of improving impact resistance.
  • ⁇ Coated tool> 1 is a perspective view showing an example of a coated tool according to an embodiment
  • FIG. 2 is a sectional side view which shows an example of the coated tool 1 which concerns on embodiment.
  • the coated tool 1 according to the embodiment has a tip body 2.
  • FIG. 1 shows a perspective view showing an example of a coated tool according to an embodiment
  • Chip body 2 has, for example, a hexahedral shape in which the upper and lower surfaces (surfaces intersecting the Z-axis shown in FIG. 1) are parallelograms.
  • the cutting edge has a first surface (eg, top surface) and a second surface (eg, side surface) contiguous with the first surface.
  • the first surface functions as a "rake surface” for scooping chips generated by cutting
  • the second surface functions as a "flank surface”.
  • a cutting edge is positioned on at least a part of the ridge line where the first surface and the second surface intersect, and the coated tool 1 cuts the work material by bringing the cutting edge into contact with the work material.
  • a through hole 5 penetrating vertically through the chip body 2 is located in the center of the chip body 2 .
  • a screw 75 for attaching the coated tool 1 to a holder 70, which will be described later, is inserted into the through hole 5 (see FIG. 5).
  • the chip body 2 has a substrate 10 and a coating layer 20. As shown in FIG. 2, the chip body 2 has a substrate 10 and a coating layer 20. As shown in FIG.
  • Substrate 10 is made of cemented carbide, for example.
  • Cemented carbide contains W (tungsten), specifically WC (tungsten carbide).
  • the cemented carbide may contain Ni (nickel) or Co (cobalt).
  • the substrate 10 is made of a WC-based cemented carbide containing WC particles as a hard phase component and Co as a main component of a binder phase.
  • the substrate 10 may be made of cermet.
  • the cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride).
  • the cermet may contain Ni or Co.
  • the base 10 may be formed of a cubic boron nitride sintered body containing cubic boron nitride (cBN) particles.
  • Substrate 10 is not limited to cubic boron nitride (cBN) particles, but may contain particles such as hexagonal boron nitride (hBN), rhombohedral boron nitride (rBN), wurtzite boron nitride (wBN), and the like. .
  • the coating layer 20 is coated on the substrate 10 for the purpose of improving wear resistance, heat resistance, etc. of the substrate 10, for example.
  • the coating layer 20 covers the substrate 10 entirely.
  • the coating layer 20 may be positioned at least on the substrate 10 .
  • the first surface here, the upper surface
  • the first surface has high wear resistance and heat resistance.
  • the second surface here, side surface
  • FIG. 3 is a cross-sectional view showing an example of the coating layer 20 according to the embodiment.
  • FIG. 4 is a model enlarged view of the H section shown in FIG.
  • the covering layer 20 has a first covering layer 23 positioned on the intermediate layer 22 and a second covering layer 24 positioned on the first covering layer 23 .
  • the first coating layer 23 is selected from the group consisting of at least one element selected from the group consisting of Al, Group 5 elements, Group 6 elements and Group 4 elements excluding Ti, and C and N. It has at least one element, Si and Cr.
  • the first coating layer 23 contains Al, Cr, Si, and N. That is, the first coating layer 23 may be an AlCrSiN layer containing AlCrSiN, which is a nitride of Al, Cr and Si.
  • AlCrSiN means that Al, Cr, Si and N are present in an arbitrary ratio, and the ratio of Al, Cr, Si and N is not necessarily 1:1:1:1. It is not meant to exist.
  • the adhesion between the intermediate layer 22 and the covering layer 20 is high. This makes it difficult for the covering layer 20 to separate from the intermediate layer 22, so that the durability of the covering layer 20 is high.
  • the first covering layer 23 has a plurality of first layers 23a and a plurality of second layers 23b.
  • the first covering layer 23 has a striped structure in which first layers 23a and second layers 23b are alternately laminated in the thickness direction.
  • the first layer 23a is a layer in contact with the intermediate layer 22, and the second layer 23b is formed on the first layer 23a.
  • the thicknesses of the first layer 23a and the second layer 23b may each be 50 nm or less. Since the thin first layer 23a and the second layer 23b have a small residual stress and are less likely to be peeled off or cracked, the durability of the coating layer 20 is increased.
  • the second covering layer 24 is in contact with the second layer 23 b of the first covering layer 23 .
  • the second coating layer 24 may contain Ti, Si and N. That is, the second coating layer 24 may be a nitride layer (TiSiN layer) containing Ti and Si. Note that the expression “TiSiN layer” means that Ti, Si, and N are present in an arbitrary ratio, and that Ti, Si, and N are necessarily present in a ratio of 1:1:1. not something to do.
  • the adhesion resistance of the coated tool 1 can be improved.
  • the hardness of the second coating layer 24 is high, the wear resistance of the coated tool 1 can be improved.
  • the oxidation initiation temperature of the second coating layer 24 is high, the oxidation resistance of the coated tool 1 can be improved.
  • the second coating layer 24 may have a striped structure.
  • the second coating layer 24 has a Ti content (hereinafter referred to as “Ti content”), a Si content (hereinafter referred to as “Si content”), and an N content (hereinafter referred to as “Si content”). , “N content”) may repeat increase and decrease along the thickness direction of the second coating layer 24 .
  • Ti content a Ti content
  • Si content a Si content
  • Si content an N content
  • N content may repeat increase and decrease along the thickness direction of the second coating layer 24 .
  • the total of Ti and Si in the metal elements contained in the second coating layer 24 may be 98 atomic % or more.
  • the coated tool 1 having the second coating layer 24 having such a configuration has enhanced toughness of the coating layer and is excellent in impact resistance. Specifically, the coated tool 1 having the second coating layer 24 having such a configuration is excellent in fracture resistance and chipping resistance.
  • the second coating layer 24 may have a portion where the period of increase and decrease of the Ti content differs from the period of increase and decrease of the Si content.
  • the cycle of increase and decrease is, for example, the position where the Ti content (Si content) is maximized (or minimized) along the thickness direction of the second coating layer 24 and then the next maximum (or minimum). It is the distance to
  • the coated tool 1 having the second coating layer 24 having such a configuration maintains high hardness, improves toughness, and has excellent impact resistance.
  • the period of increase/decrease of the Ti content, the period of increase/decrease of the Si content, and the period of increase/decrease of the N content may be 1 nm or more and 15 nm or less.
  • the residual stress inside the coating layer is relaxed, the adhesion of the coating layer is improved, and the impact resistance is improved.
  • the ratio of Ti in the metal elements of the second coating layer 24 is 80 atomic % or more and 95 atomic % or less, and the ratio of Si in the metal elements of the second coating layer 24 is 5 atomic % or more and 20 atomic % or less. There may be.
  • the coated tool 1 having the second coating layer 24 having such a configuration has improved adhesion of the coating layer while maintaining high hardness, and furthermore has excellent toughness of the coating layer and exhibits high impact resistance.
  • the ratio of Ti to the metal elements of the second coating layer 24 may be 82 atomic % or more and 90 atomic % or less.
  • the coated tool 1 having the second coating layer 24 having such a configuration further improves toughness and exhibits high impact resistance.
  • An intermediate layer 22 may be positioned between the substrate 10 and the covering layer 20 . Specifically, the intermediate layer 22 is in contact with the upper surface of the substrate 10 on one surface (here, the lower surface) and on the lower surface of the coating layer 20 (the first coating layer 23) on the other surface (here, the upper surface). touch.
  • the intermediate layer 22 has higher adhesion to the substrate 10 than the coating layer 20 does.
  • metal elements having such properties include Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, Y, and Ti.
  • the intermediate layer 22 contains at least one metal element among the above metal elements.
  • intermediate layer 22 may contain Ti.
  • Si is a metalloid element, metalloid elements are also included in metal elements in this specification.
  • the content of Ti in the intermediate layer 22 may be 1.5 atomic % or more.
  • the content of Ti in intermediate layer 22 may be 2.0 atomic % or more.
  • the intermediate layer 22 may contain components other than the above metal elements (Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, Y, Ti). However, from the viewpoint of adhesion to the substrate 10, the intermediate layer 22 may contain at least 95 atomic percent of the above metal elements in total. More preferably, the intermediate layer 22 may contain the above metal elements in a total amount of 98 atomic % or more.
  • the ratio of metal components in intermediate layer 22 can be identified by analysis using, for example, an EDS (energy dispersive X-ray spectroscope) attached to a STEM (scanning transmission electron microscope).
  • the substrate 10 and the coating layer 20 can be improved.
  • the intermediate layer 22 has high adhesion to the covering layer 20 , the covering layer 20 is less likely to separate from the intermediate layer 22 .
  • the thickness of the intermediate layer 22 may be, for example, 0.1 nm or more and less than 20.0 nm.
  • FIG. 5 is a front view showing an example of the cutting tool according to the embodiment.
  • the cutting tool 100 has a coated tool 1 and a holder 70 for fixing the coated tool 1.
  • the holder 70 is a rod-shaped member extending from a first end (upper end in FIG. 5) toward a second end (lower end in FIG. 5).
  • the holder 70 is made of steel or cast iron, for example. In particular, among these members, it is preferable to use steel with high toughness.
  • the holder 70 has a pocket 73 at the end on the first end side.
  • the pocket 73 is a portion to which the coated tool 1 is attached, and has a seating surface that intersects with the rotational direction of the work material and a restraining side surface that is inclined with respect to the seating surface.
  • the seating surface is provided with screw holes into which screws 75, which will be described later, are screwed.
  • the coated tool 1 is positioned in the pocket 73 of the holder 70 and attached to the holder 70 with screws 75 . That is, the screw 75 is inserted into the through hole 5 of the coated tool 1, and the tip of the screw 75 is inserted into the screw hole formed in the seating surface of the pocket 73 to screw the screw portions together. Thereby, the coated tool 1 is attached to the holder 70 so that the cutting edge portion protrudes outward from the holder 70 .
  • the embodiment exemplifies a cutting tool used for so-called turning.
  • Turning includes, for example, inner diameter machining, outer diameter machining, and grooving.
  • the cutting tools are not limited to those used for turning.
  • the coated tool 1 may be used as a cutting tool used for milling.
  • cutting tools used for milling include flat milling cutters, face milling cutters, side milling cutters, grooving milling cutters, single-blade end mills, multiple-blade end mills, tapered blade end mills, ball end mills, and other end mills. .
  • the coating layer may be formed, for example, by physical vapor deposition.
  • physical vapor deposition include ion plating and sputtering.
  • the coating layer when the coating layer is produced by the ion plating method, the coating layer can be produced by the following method.
  • metal targets of Cr, Si and Al, composite alloy targets, or sintered targets are prepared.
  • the target which is a metal source
  • a metal source is vaporized and ionized by arc discharge, glow discharge, or the like.
  • the ionized metal is reacted with a nitrogen source such as nitrogen (N 2 ) gas, etc., and deposited on the surface of the substrate.
  • a nitrogen source such as nitrogen (N 2 ) gas, etc.
  • An AlCrSiN layer can be formed by the above procedure.
  • the temperature of the substrate is set to 500 to 600° C.
  • the nitrogen gas pressure is set to 1.0 to 6.0 Pa
  • a DC bias voltage of ⁇ 50 to ⁇ 200 V is applied to the substrate
  • the arc discharge current is set to 100 to 100. It may be 200A.
  • the voltage and current values during arc discharge and glow discharge applied to an aluminum metal target, a chromium metal target, an aluminum-silicon composite alloy target, and a chromium-silicon composite alloy target are determined for each target. can be adjusted by controlling each independently.
  • the composition of the coating layer can also be adjusted by controlling the coating time and atmospheric gas pressure.
  • the amount of ionization of the target metal can be changed by changing the voltage/current values during arc discharge/glow discharge.
  • the ionization amount of the target metal can be changed periodically.
  • the ionization amount of the target metal can be changed periodically. Thereby, in the thickness direction of the coating layer, the content ratio of each metal element can be changed at each cycle.
  • the composition of Al, Si, and Cr is changed so that the amounts of Al and Si are reduced and the amounts of Cr are increased, and then the amounts of Al and Si are increased.
  • the composition of Al, Si, and Cr it is possible to produce a first coating layer having a first layer and a second layer, such that the amount of Cr is reduced.
  • the second coating layer which is a TiSiN layer
  • the second coating layer may be formed by physical vapor deposition.
  • a Ti metal target and a Ti—Si composite alloy target are prepared.
  • the second coating layer having a striped structure can be produced by independently controlling the voltage/current values applied to each prepared target during arc discharge/glow discharge for each target.
  • the temperature of the substrate is set to 500 to 600° C.
  • the nitrogen gas pressure is set to 1.0 to 6.0 Pa
  • a DC bias voltage of ⁇ 50 to ⁇ 200 V is applied to the substrate
  • the arc discharge current is set to 100 to 100. 200 A, and the arc current change period may be 0.01 to 0.5 min.
  • a coated tool was prepared by forming a second coating layer, which is a TiSiN layer, on a substrate made of WC. 1 to No. 12. Also, a coated tool was prepared by forming a first coating layer, which is an AlCrSiN layer, on a substrate made of WC, and forming a second coating layer, which is a TiSiN layer, on the first coating layer. 13. Sample no. The composition of the first coating layer 13 has is (Al 50 Cr 39 Si 11 )N. In addition, sample no. 1 to No. Sample No. 13 out of 13 2 to No. 11, No. 13 corresponds to an example of the present disclosure. Moreover, sample no. 1 to No. Sample No. 13 out of 13 1, No. 12 corresponds to a comparative example.
  • Fig. 6 shows sample No. 1 to No. 13 is a table showing the structure of the coating layer of No. 13.
  • FIG. As shown in FIG. In the second coating layer of 1, the Ti content and the Si content do not increase or decrease along the thickness direction.
  • Sample no. 1 has an average Ti content of 86 atomic % and an average Si content of 14 atomic % in the second coating layer. Moreover, sample no. 1 has a total value of Ti content and Si content of 100 atomic %.
  • the Ti content and the Si content increase or decrease along the thickness direction.
  • Sample No. 2 has a Ti content increase/decrease cycle of 5 nm, a Si content increase/decrease cycle of 5 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, and Ti
  • the minimum content is 84 atomic %
  • the minimum Si content is 13 atomic %
  • the average Ti content is 86 atomic %
  • the average Si content is 14 atomic %.
  • sample no. 2 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 3 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, and Ti
  • the minimum content is 84 atomic %
  • the minimum Si content is 13 atomic %
  • the average Ti content is 86 atomic %
  • the average Si content is 14 atomic %.
  • sample no. 3 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 4 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 76 atomic %, a maximum Si content of 27 atomic %, Ti The minimum content is 73 atomic %, the minimum Si content is 24 atomic %, the average Ti content is 75 atomic %, and the average Si content is 25 atomic %. Moreover, sample no. 4 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 5 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 81 atomic%, a maximum Si content of 22 atomic%, and Ti
  • the minimum content is 78 atomic %
  • the minimum Si content is 19 atomic %
  • the average Ti content is 80 atomic %
  • the average Si content is 20 atomic %.
  • sample no. 5 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 6 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 91 atomic percent, a maximum Si content of 12 atomic percent, and Ti The minimum content is 88 atomic %, the minimum Si content is 9 atomic %, the average Ti content is 90 atomic %, and the average Si content is 10 atomic %. Moreover, sample no. 6 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 7 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 96 atomic %, a maximum Si content of 7 atomic %, and Ti
  • the minimum content is 93 atomic %
  • the minimum Si content is 4 atomic %
  • the average Ti content is 95 atomic %
  • the average Si content is 5 atomic %.
  • sample no. 7 has a total Ti content and Si content of 100 atomic %.
  • Sample No. 8 has a Ti content increase/decrease cycle of 15 nm, a Si content increase/decrease cycle of 15 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 8 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 9 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 5 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 9 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 10 has a Ti content increase/decrease cycle of 5 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. The second coating layer 10 has a total value of Ti content and Si content of 100 atomic %.
  • Sample No. 11 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 85 atomic percent, a maximum Si content of 13 atomic percent, and Ti
  • the minimum content is 82 atomic %
  • the minimum Si content is 14 atomic %
  • the average Ti content is 84 atomic %
  • the average Si content is 14 atomic %.
  • sample no. 11 has a total Ti content and Si content of 98 atomic %.
  • Sample no. The balance other than Ti and Si in the second coating layer of 11 is Al.
  • Sample No. 12 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 82 atomic percent, a maximum Si content of 11 atomic percent, and Ti
  • the minimum content is 79 atomic %
  • the minimum Si content is 8 atomic %
  • the average Ti content is 81 atomic %
  • the average Si content is 9 atomic %.
  • sample no. 12 has a total Ti content and Si content of 90 atomic %.
  • Sample no. The balance other than Ti and Si in the second coating layer of 12 is Al.
  • Sample no. 13 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 87 atomic %, and a maximum Si content of 16 atomic %.
  • the minimum Ti content is 84 atomic %
  • the minimum Si content is 13 atomic %
  • the average Ti content is 86 atomic %
  • the average Si content is 14 atomic %.
  • sample no. 13 has an Al 50 Cr 39 Si 11 )N layer as the first covering layer.
  • Fig. 7 shows sample No. 1 to No. 13 is a table summarizing the results of cutting and peeling tests for No. 13;
  • the test conditions for the cutting test and peeling test are as follows.
  • the cutting test was carried out under the following conditions using a two-flute carbide ball end mill (model number: 2KMBL0200-0800-S4).
  • ⁇ Peeling test> A peel test was performed using a scratch tester. The load range was 20 to 150 N, and the load at which peeling occurred was evaluated.
  • the results of the cutting test were as follows. 1 is 59700 times, sample No. 2 for 74700 times, sample No. 3 for 99600 times, sample No. 4 64000 times, sample No. 5 is 69000 times, sample No. 6 for 74700 times, sample no. 7 for 64000 times, sample no. 8 is 81400 times, sample no. 9 89600 times, sample no. 10 is 64000 times, sample no. 11 is 64000 times, sample No. 12 is 59700 times, sample no. 13 was 128,000 times.
  • sample No. corresponding to the comparative example. 1, No. 12 the result of the cutting test was less than 60000 times
  • No. No. 13 has a cutting test result of 6000 times or more, and it can be seen that it has high impact resistance.
  • sample No. 2 is 75N
  • sample No. 3 is 80N
  • sample No. 4 is 70N
  • sample No. 5 is 75N
  • sample No. 6 is 80N
  • sample No. 7 is 90N
  • sample No. 8 is 77N
  • sample No. 9 is 78N
  • sample No. 10 is 75N
  • sample No. 11 is 78N
  • sample No. 12 is 70N
  • sample No. 13 was 100N.
  • the total of Ti and Si is 98 atomic % or more, Ti, Si, and N repeatedly increase and decrease in the thickness direction, and the ratio of Ti to the metal elements is 80 atoms. % or more and 95 atomic % or less, and the ratio of Si is 5 atomic % or more and 20 atomic % or less. 2 to No. 11 and sample no.
  • No. 13 had a load of 75 N or more when the coating layer was peeled off, indicating that it has high adhesion.
  • the coated tool according to the embodiment includes a base (base 10 as an example) and a coating layer (covering layer 20 as an example) located on the base. have.
  • the coating layer has a second coating layer (as an example, the second coating layer 24) having Ti, Si and N.
  • the total amount of Ti and Si in the metal elements contained in the second coating layer is 98 atomic % or more.
  • Ti, Si, and N are repeatedly increased and decreased in the thickness direction.
  • a coated tool according to the present disclosure includes a rod-shaped body having an axis of rotation and extending from a first end to a second end, a cutting edge located at the first end of the body, and a cutting edge extending from the cutting edge to the second end of the body. It may have a groove extending spirally toward the side.

Abstract

A coated tool according to the present disclosure includes a substrate and a coating layer located on the substrate. The coating layer includes a second coating layer containing Ti, Si, and N. Of the metallic elements contained in the second coating layer, the total of Ti and Si is at least 98 atomic%. In the second coating layer, each of Ti, Si, and N repeats increase and decrease in the thickness direction.

Description

被覆工具および切削工具coated and cutting tools
 本開示は、被覆工具および切削工具に関する。 The present disclosure relates to coated tools and cutting tools.
 旋削加工や転削加工等の切削加工に用いられる工具として、超硬合金、サーメット、セラミックス等の基体の表面を被覆層でコーティングすることによって耐摩耗性等を向上させた被覆工具が知られている。 2. Description of the Related Art As a tool used for cutting such as turning and milling, there is known a coated tool whose wear resistance is improved by coating the surface of a substrate made of cemented carbide, cermet, ceramics, or the like with a coating layer. there is
特開平8-118106号公報JP-A-8-118106 特許第3934136号公報Japanese Patent No. 3934136
 本開示の一態様による被覆工具は、基体と、基体の上に位置する被覆層とを有する。被覆層は、TiとSiとNとを有する第2被覆層を有する。第2被覆層に含まれる金属元素のうち、TiおよびSiの合計は、98原子%以上である。第2被覆層は、厚み方向にTiとSiとNとが、それぞれ増減を繰り返している。 A coated tool according to one aspect of the present disclosure has a substrate and a coating layer located on the substrate. The coating layer has a second coating layer comprising Ti, Si and N. The total amount of Ti and Si in the metal elements contained in the second coating layer is 98 atomic % or more. In the second coating layer, Ti, Si, and N are repeatedly increased and decreased in the thickness direction.
図1は、実施形態に係る被覆工具の一例を示す斜視図である。1 is a perspective view showing an example of a coated tool according to an embodiment; FIG. 図2は、実施形態に係る被覆工具の一例を示す側断面図である。FIG. 2 is a side cross-sectional view showing an example of the coated tool according to the embodiment. 図3は、実施形態に係る被覆層の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a coating layer according to the embodiment; 図4は、図3に示すH部の模式拡大図である。4 is a schematic enlarged view of the H portion shown in FIG. 3. FIG. 図5は、実施形態に係る切削工具の一例を示す正面図である。FIG. 5 is a front view showing an example of the cutting tool according to the embodiment; 図6は、試料No.1~No.13が有する被覆層の構成を示す表である。FIG. 6 shows sample no. 1 to No. 13 is a table showing the structure of the coating layer of No. 13. FIG. 図7は、試料No.1~No.13に対する切削試験および剥離試験の結果をまとめた表である。FIG. 7 shows sample no. 1 to No. 13 is a table summarizing the results of cutting and peeling tests for No. 13;
 以下に、本開示による被覆工具および切削工具を実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本開示による被覆工具および切削工具が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。 Hereinafter, embodiments for carrying out the coated tool and cutting tool according to the present disclosure (hereinafter referred to as "embodiments") will be described in detail with reference to the drawings. It should be noted that this embodiment does not limit the coated tools and cutting tools according to the present disclosure. Further, each embodiment can be appropriately combined within a range that does not contradict the processing contents. Also, in each of the following embodiments, the same parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、例えば製造精度、設置精度などのずれを許容するものとする。 Further, in the embodiments described below, expressions such as "constant", "perpendicular", "perpendicular" or "parallel" may be used, but these expressions are strictly "constant", "perpendicular", " It does not have to be "perpendicular" or "parallel". That is, each of the expressions described above allows deviations in, for example, manufacturing accuracy and installation accuracy.
 上述した従来技術には、耐衝撃性を向上させるという点で更なる改善の余地がある。 The conventional technology described above has room for further improvement in terms of improving impact resistance.
<被覆工具>
 図1は、実施形態に係る被覆工具の一例を示す斜視図である。また、図2は、実施形態に係る被覆工具1の一例を示す側断面図である。図1に示すように、実施形態に係る被覆工具1は、チップ本体2を有する。
<Coated tool>
1 is a perspective view showing an example of a coated tool according to an embodiment; FIG. Moreover, FIG. 2 is a sectional side view which shows an example of the coated tool 1 which concerns on embodiment. As shown in FIG. 1, the coated tool 1 according to the embodiment has a tip body 2. As shown in FIG.
(チップ本体2)
 チップ本体2は、たとえば、上面および下面(図1に示すZ軸と交わる面)の形状が平行四辺形である六面体形状を有する。
(Chip body 2)
Chip body 2 has, for example, a hexahedral shape in which the upper and lower surfaces (surfaces intersecting the Z-axis shown in FIG. 1) are parallelograms.
 チップ本体2の1つのコーナー部は、切刃部として機能する。切刃部は、第1面(たとえば上面)と、第1面に連接する第2面(たとえば側面)とを有する。実施形態において、第1面は切削により生じた切屑をすくい取る「すくい面」として機能し、第2面は「逃げ面」として機能する。第1面と第2面とが交わる稜線の少なくとも一部には、切刃が位置しており、被覆工具1は、かかる切刃を被削材に当てることによって被削材を切削する。 One corner of the tip body 2 functions as a cutting edge. The cutting edge has a first surface (eg, top surface) and a second surface (eg, side surface) contiguous with the first surface. In the embodiment, the first surface functions as a "rake surface" for scooping chips generated by cutting, and the second surface functions as a "flank surface". A cutting edge is positioned on at least a part of the ridge line where the first surface and the second surface intersect, and the coated tool 1 cuts the work material by bringing the cutting edge into contact with the work material.
 チップ本体2の中央部には、チップ本体2を上下に貫通する貫通孔5が位置する。貫通孔5には、後述するホルダ70に被覆工具1を取り付けるためのネジ75が挿入される(図5参照)。 A through hole 5 penetrating vertically through the chip body 2 is located in the center of the chip body 2 . A screw 75 for attaching the coated tool 1 to a holder 70, which will be described later, is inserted into the through hole 5 (see FIG. 5).
 図2に示すように、チップ本体2は、基体10と、被覆層20とを有する。 As shown in FIG. 2, the chip body 2 has a substrate 10 and a coating layer 20. As shown in FIG.
(基体10)
 基体10は、たとえば超硬合金で形成される。超硬合金は、W(タングステン)、具体的には、WC(炭化タングステン)を含有する。また、超硬合金は、Ni(ニッケル)やCo(コバルト)を含有していてもよい。具体的には、基体10は、WC粒子を硬質相成分とし、Coを結合相の主成分とするWC基超硬合金からなる。
(Substrate 10)
Substrate 10 is made of cemented carbide, for example. Cemented carbide contains W (tungsten), specifically WC (tungsten carbide). Moreover, the cemented carbide may contain Ni (nickel) or Co (cobalt). Specifically, the substrate 10 is made of a WC-based cemented carbide containing WC particles as a hard phase component and Co as a main component of a binder phase.
 また、基体10は、サーメットで形成されてもよい。サーメットは、たとえばTi(チタン)、具体的には、TiC(炭化チタン)またはTiN(窒化チタン)を含有する。また、サーメットは、NiやCoを含有していてもよい。 Also, the substrate 10 may be made of cermet. The cermet contains, for example, Ti (titanium), specifically TiC (titanium carbide) or TiN (titanium nitride). Moreover, the cermet may contain Ni or Co.
 また、基体10は、立方晶窒化硼素(cBN)粒子を含有する立方晶窒化硼素質焼結体で形成されてもよい。基体10は、立方晶窒化硼素(cBN)粒子に限らず、六方晶窒化硼素(hBN)、菱面体晶窒化硼素(rBN)、ウルツ鉱窒化硼素(wBN)等の粒子を含有していてもよい。 Further, the base 10 may be formed of a cubic boron nitride sintered body containing cubic boron nitride (cBN) particles. Substrate 10 is not limited to cubic boron nitride (cBN) particles, but may contain particles such as hexagonal boron nitride (hBN), rhombohedral boron nitride (rBN), wurtzite boron nitride (wBN), and the like. .
(被覆層20)
 被覆層20は、例えば、基体10の耐摩耗性、耐熱性等を向上させることを目的として基体10に被覆される。図2の例では、被覆層20が基体10を全体的に被覆している。被覆層20は、少なくとも基体10の上に位置していればよい。被覆層20が基体10の第1面(ここでは、上面)に位置する場合、第1面の耐摩耗性、耐熱性が高い。被覆層20が基体10の第2面(ここでは、側面)に位置する場合、第2面の耐摩耗性、耐熱性が高い。
(Coating layer 20)
The coating layer 20 is coated on the substrate 10 for the purpose of improving wear resistance, heat resistance, etc. of the substrate 10, for example. In the example of FIG. 2, the coating layer 20 covers the substrate 10 entirely. The coating layer 20 may be positioned at least on the substrate 10 . When the coating layer 20 is located on the first surface (here, the upper surface) of the substrate 10, the first surface has high wear resistance and heat resistance. When the coating layer 20 is located on the second surface (here, side surface) of the substrate 10, the second surface has high wear resistance and heat resistance.
 ここで、被覆層20の具体的な構成について図3および図4を参照して説明する。図3は、実施形態に係る被覆層20の一例を示す断面図である。また、図4は、図3に示すH部の模式拡大図である。 Here, a specific configuration of the coating layer 20 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a cross-sectional view showing an example of the coating layer 20 according to the embodiment. Moreover, FIG. 4 is a model enlarged view of the H section shown in FIG.
 図3に示すように、被覆層20は、中間層22の上に位置する第1被覆層23と、第1被覆層23の上に位置する第2被覆層24とを有する。 As shown in FIG. 3 , the covering layer 20 has a first covering layer 23 positioned on the intermediate layer 22 and a second covering layer 24 positioned on the first covering layer 23 .
(第1被覆層23)
 第1被覆層23は、Al、第5族元素、第6族元素およびTiを除く第4族元素からなる群より選択される少なくとも1種の元素と、CおよびNからなる群より選択される少なくとも1種の元素と、Siおよび、Crとを有する。
(First covering layer 23)
The first coating layer 23 is selected from the group consisting of at least one element selected from the group consisting of Al, Group 5 elements, Group 6 elements and Group 4 elements excluding Ti, and C and N. It has at least one element, Si and Cr.
 具体的には、第1被覆層23は、AlとCrとSiとNとを含有する。すなわち、第1被覆層23は、Al、CrおよびSiの窒化物であるAlCrSiNを含有するAlCrSiN層であってもよい。なお、「AlCrSiN」との表記は、AlとCrとSiとNとが任意の割合で存在することを意味しており、必ずしもAlとCrとSiとNとが1対1対1対1で存在することを意味するものではない。 Specifically, the first coating layer 23 contains Al, Cr, Si, and N. That is, the first coating layer 23 may be an AlCrSiN layer containing AlCrSiN, which is a nitride of Al, Cr and Si. The notation "AlCrSiN" means that Al, Cr, Si and N are present in an arbitrary ratio, and the ratio of Al, Cr, Si and N is not necessarily 1:1:1:1. It is not meant to exist.
 このように、中間層22に含まれる金属(たとえば、Si)を含有する第1被覆層23を中間層22の上に位置させることで、中間層22と被覆層20との密着性が高い。これにより、被覆層20が中間層22から剥離し難くなるため、被覆層20の耐久性が高い。 By positioning the first covering layer 23 containing the metal (eg, Si) contained in the intermediate layer 22 on the intermediate layer 22 in this way, the adhesion between the intermediate layer 22 and the covering layer 20 is high. This makes it difficult for the covering layer 20 to separate from the intermediate layer 22, so that the durability of the covering layer 20 is high.
 図4に示すように、第1被覆層23は、複数の第1層23aと複数の第2層23bとを有する。第1被覆層23は、第1層23aと第2層23bとが厚み方向に交互に積層された縞状構造を有している。第1層23aは、中間層22に接する層であり、第2層23bは、第1層23a上に形成される。 As shown in FIG. 4, the first covering layer 23 has a plurality of first layers 23a and a plurality of second layers 23b. The first covering layer 23 has a striped structure in which first layers 23a and second layers 23b are alternately laminated in the thickness direction. The first layer 23a is a layer in contact with the intermediate layer 22, and the second layer 23b is formed on the first layer 23a.
 第1層23aおよび第2層23bの厚みは、それぞれ50nm以下としてもよい。薄く形成された第1層23aおよび第2層23bは、残留応力が小さく、剥離やクラック等が生じ難いため、被覆層20の耐久性が高くなる。 The thicknesses of the first layer 23a and the second layer 23b may each be 50 nm or less. Since the thin first layer 23a and the second layer 23b have a small residual stress and are less likely to be peeled off or cracked, the durability of the coating layer 20 is increased.
(第2被覆層24)
 第2被覆層24は、第1被覆層23のうち第2層23bと接する。第2被覆層24は、Ti、SiおよびNを有していてもよい。すなわち、第2被覆層24は、TiおよびSiを含有する窒化物層(TiSiN層)であってもよい。なお、「TiSiN層」との表記は、TiとSiとNとが任意の割合で存在することを意味しており、必ずしもTiとSiとNとが1対1対1で存在することを意味するものではない。
(Second covering layer 24)
The second covering layer 24 is in contact with the second layer 23 b of the first covering layer 23 . The second coating layer 24 may contain Ti, Si and N. That is, the second coating layer 24 may be a nitride layer (TiSiN layer) containing Ti and Si. Note that the expression “TiSiN layer” means that Ti, Si, and N are present in an arbitrary ratio, and that Ti, Si, and N are necessarily present in a ratio of 1:1:1. not something to do.
 これにより、たとえば、第2被覆層24の摩擦係数が低い場合には、被覆工具1の耐溶着性を向上させることができる。また、たとえば、第2被覆層24の硬度が高い場合には、被覆工具1の耐摩耗性を向上させることができる。また、たとえば、第2被覆層24の酸化開始温度が高い場合には、被覆工具1の耐酸化性を向上させることができる。 Thereby, for example, when the coefficient of friction of the second coating layer 24 is low, the adhesion resistance of the coated tool 1 can be improved. Moreover, for example, when the hardness of the second coating layer 24 is high, the wear resistance of the coated tool 1 can be improved. Further, for example, when the oxidation initiation temperature of the second coating layer 24 is high, the oxidation resistance of the coated tool 1 can be improved.
 第2被覆層24は、縞状構造を有していてもよい。この場合、第2被覆層24は、Tiの含有量(以下、「Ti含有量」と記載する)、Siの含有量(以下、「Si含有量」と記載する)およびNの含有量(以下、「N含有量」と記載する)が、第2被覆層24の厚み方向に沿ってそれぞれ増減を繰り返していてもよい。なお、第2被覆層24に含まれる金属元素のうち、TiおよびSiの合計は、98原子%以上であってもよい。 The second coating layer 24 may have a striped structure. In this case, the second coating layer 24 has a Ti content (hereinafter referred to as “Ti content”), a Si content (hereinafter referred to as “Si content”), and an N content (hereinafter referred to as “Si content”). , “N content”) may repeat increase and decrease along the thickness direction of the second coating layer 24 . Note that the total of Ti and Si in the metal elements contained in the second coating layer 24 may be 98 atomic % or more.
 かかる構成の第2被覆層24を有する被覆工具1は、被覆層の靭性が高まり、耐衝撃性に優れる。具体的には、かかる構成の第2被覆層24を有する被覆工具1は、耐欠損性・耐チッピング性に優れる。 The coated tool 1 having the second coating layer 24 having such a configuration has enhanced toughness of the coating layer and is excellent in impact resistance. Specifically, the coated tool 1 having the second coating layer 24 having such a configuration is excellent in fracture resistance and chipping resistance.
 また、第2被覆層24は、Ti含有量の増減の周期と、Si含有量の増減の周期とが異なる部分を有していてもよい。ここで、増減の周期とは、たとえば、第2被覆層24の厚み方向に沿ってTi含有量(Si含有量)が最大(または最小)となる位置から次に最大(または最小)となる位置までの距離のことである。 Also, the second coating layer 24 may have a portion where the period of increase and decrease of the Ti content differs from the period of increase and decrease of the Si content. Here, the cycle of increase and decrease is, for example, the position where the Ti content (Si content) is maximized (or minimized) along the thickness direction of the second coating layer 24 and then the next maximum (or minimum). It is the distance to
 かかる構成の第2被覆層24を有する被覆工具1は、高硬度を維持しつつ、靭性を向上し、耐衝撃性に優れる。 The coated tool 1 having the second coating layer 24 having such a configuration maintains high hardness, improves toughness, and has excellent impact resistance.
 Ti含有量の増減の周期、Si含有量の増減の周期およびN含有量の増減の周期は、1nm以上15nm以下であってもよい。 The period of increase/decrease of the Ti content, the period of increase/decrease of the Si content, and the period of increase/decrease of the N content may be 1 nm or more and 15 nm or less.
 かかる構成の第2被覆層24を有する被覆工具1は、被覆層内部の残留応力が緩和され、被覆層の密着性が向上し、耐衝撃性が向上する。 In the coated tool 1 having the second coating layer 24 having such a configuration, the residual stress inside the coating layer is relaxed, the adhesion of the coating layer is improved, and the impact resistance is improved.
 第2被覆層24の金属元素に占めるTiの比率は、80原子%以上95原子%以下であり、第2被覆層24の金属元素に占めるSiの比率は、5原子%以上20原子%以下であってもよい。 The ratio of Ti in the metal elements of the second coating layer 24 is 80 atomic % or more and 95 atomic % or less, and the ratio of Si in the metal elements of the second coating layer 24 is 5 atomic % or more and 20 atomic % or less. There may be.
 かかる構成の第2被覆層24を有する被覆工具1は、高硬度を維持しつつ、被覆層の密着性が向上し、さらに被覆層の靭性に優れ、高い耐衝撃性を示す。 The coated tool 1 having the second coating layer 24 having such a configuration has improved adhesion of the coating layer while maintaining high hardness, and furthermore has excellent toughness of the coating layer and exhibits high impact resistance.
 第2被覆層24の金属元素に占めるTiの比率は、82原子%以上90原子%以下であってもよい。 The ratio of Ti to the metal elements of the second coating layer 24 may be 82 atomic % or more and 90 atomic % or less.
 かかる構成の第2被覆層24を有する被覆工具1は、さらに靭性が向上し、高い耐衝撃性を示す。 The coated tool 1 having the second coating layer 24 having such a configuration further improves toughness and exhibits high impact resistance.
(中間層22)
 基体10と被覆層20との間には、中間層22が位置していてもよい。具体的には、中間層22は、一方の面(ここでは下面)において基体10の上面に接し、且つ、他方の面(ここでは上面)において被覆層20(第1被覆層23)の下面に接する。
(Intermediate layer 22)
An intermediate layer 22 may be positioned between the substrate 10 and the covering layer 20 . Specifically, the intermediate layer 22 is in contact with the upper surface of the substrate 10 on one surface (here, the lower surface) and on the lower surface of the coating layer 20 (the first coating layer 23) on the other surface (here, the upper surface). touch.
 中間層22は、基体10との密着性が被覆層20と比べて高い。このような特性を有する金属元素としては、たとえば、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、Y、Tiが挙げられる。中間層22は、上記金属元素のうち少なくとも1種以上の金属元素を含有する。たとえば、中間層22は、Tiを含有していても良い。なお、Siは、半金属元素であるが、本明細書においては、半金属元素も金属元素に含まれるものとする。 The intermediate layer 22 has higher adhesion to the substrate 10 than the coating layer 20 does. Examples of metal elements having such properties include Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, Y, and Ti. The intermediate layer 22 contains at least one metal element among the above metal elements. For example, intermediate layer 22 may contain Ti. Although Si is a metalloid element, metalloid elements are also included in metal elements in this specification.
 中間層22がTiを含有する場合、中間層22におけるTiの含有量は、1.5原子%以上であってもよい。たとえば、中間層22におけるTiの含有量は、2.0原子%以上であってもよい。 When the intermediate layer 22 contains Ti, the content of Ti in the intermediate layer 22 may be 1.5 atomic % or more. For example, the content of Ti in intermediate layer 22 may be 2.0 atomic % or more.
 中間層22は、上記金属元素(Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、Y、Ti)以外の成分を含有していてもよい。ただし、基体10との密着性の観点から、中間層22は、上記金属元素を合量で少なくとも95原子%以上含有していてもよい。より好ましくは、中間層22は、上記金属元素を合量で98原子%以上含有してもよい。なお、中間層22における金属成分の割合は、たとえば、STEM(走査透過電子顕微鏡)に付属しているEDS(エネルギー分散型X線分光器)を用いた分析により特定可能である。 The intermediate layer 22 may contain components other than the above metal elements (Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, Y, Ti). However, from the viewpoint of adhesion to the substrate 10, the intermediate layer 22 may contain at least 95 atomic percent of the above metal elements in total. More preferably, the intermediate layer 22 may contain the above metal elements in a total amount of 98 atomic % or more. The ratio of metal components in intermediate layer 22 can be identified by analysis using, for example, an EDS (energy dispersive X-ray spectroscope) attached to a STEM (scanning transmission electron microscope).
 このように、実施形態に係る被覆工具1では、基体10との濡れ性が被覆層20と比べて高い中間層22を基体10と被覆層20との間に設けることにより、基体10と被覆層20との密着性を向上させることができる。なお、中間層22は、被覆層20との密着性も高いため、被覆層20が中間層22から剥離するといったことも生じにくい。 Thus, in the coated tool 1 according to the embodiment, by providing the intermediate layer 22 between the substrate 10 and the coating layer 20, which has higher wettability with the substrate 10 than the coating layer 20, the substrate 10 and the coating layer 20 can be improved. In addition, since the intermediate layer 22 has high adhesion to the covering layer 20 , the covering layer 20 is less likely to separate from the intermediate layer 22 .
 なお、中間層22の厚みは、たとえば0.1nm以上、20.0nm未満であってもよい。 Note that the thickness of the intermediate layer 22 may be, for example, 0.1 nm or more and less than 20.0 nm.
<切削工具>
 次に、上述した被覆工具1を備えた切削工具の構成について図5を参照して説明する。図5は、実施形態に係る切削工具の一例を示す正面図である。
<Cutting tool>
Next, the configuration of a cutting tool provided with the above-described coated tool 1 will be described with reference to FIG. FIG. 5 is a front view showing an example of the cutting tool according to the embodiment;
 図5に示すように、実施形態に係る切削工具100は、被覆工具1と、被覆工具1を固定するためのホルダ70とを有する。 As shown in FIG. 5, the cutting tool 100 according to the embodiment has a coated tool 1 and a holder 70 for fixing the coated tool 1.
 ホルダ70は、第1端(図5における上端)から第2端(図5における下端)に向かって伸びる棒状の部材である。ホルダ70は、たとえば、鋼、鋳鉄製である。特に、これらの部材の中で靱性の高い鋼が用いられることが好ましい。 The holder 70 is a rod-shaped member extending from a first end (upper end in FIG. 5) toward a second end (lower end in FIG. 5). The holder 70 is made of steel or cast iron, for example. In particular, among these members, it is preferable to use steel with high toughness.
 ホルダ70は、第1端側の端部にポケット73を有する。ポケット73は、被覆工具1が装着される部分であり、被削材の回転方向と交わる着座面と、着座面に対して傾斜する拘束側面とを有する。着座面には、後述するネジ75を螺合させるネジ孔が設けられている。 The holder 70 has a pocket 73 at the end on the first end side. The pocket 73 is a portion to which the coated tool 1 is attached, and has a seating surface that intersects with the rotational direction of the work material and a restraining side surface that is inclined with respect to the seating surface. The seating surface is provided with screw holes into which screws 75, which will be described later, are screwed.
 被覆工具1は、ホルダ70のポケット73に位置し、ネジ75によってホルダ70に装着される。すなわち、被覆工具1の貫通孔5にネジ75を挿入し、このネジ75の先端をポケット73の着座面に形成されたネジ孔に挿入してネジ部同士を螺合させる。これにより、被覆工具1は、切刃部分がホルダ70から外方に突出するようにホルダ70に装着される。 The coated tool 1 is positioned in the pocket 73 of the holder 70 and attached to the holder 70 with screws 75 . That is, the screw 75 is inserted into the through hole 5 of the coated tool 1, and the tip of the screw 75 is inserted into the screw hole formed in the seating surface of the pocket 73 to screw the screw portions together. Thereby, the coated tool 1 is attached to the holder 70 so that the cutting edge portion protrudes outward from the holder 70 .
 実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工が挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に被覆工具1を用いてもよい。転削加工に用いられる切削工具としては、たとえば、平フライス、正面フライス、側フライス、溝切りフライスなどフライス、1枚刃エンドミル、複数刃エンドミル、テーパ刃エンドミル、ボールエンドミルなどのエンドミルなどが挙げられる。 The embodiment exemplifies a cutting tool used for so-called turning. Turning includes, for example, inner diameter machining, outer diameter machining, and grooving. The cutting tools are not limited to those used for turning. For example, the coated tool 1 may be used as a cutting tool used for milling. Examples of cutting tools used for milling include flat milling cutters, face milling cutters, side milling cutters, grooving milling cutters, single-blade end mills, multiple-blade end mills, tapered blade end mills, ball end mills, and other end mills. .
(製造方法)
 次に、本実施形態に係る被覆工具1の製造方法の一例について説明する。なお、本開示による被覆工具の製造方法は、下記の製造方法に限定されるものではない。
(Production method)
Next, an example of a method for manufacturing the coated tool 1 according to this embodiment will be described. In addition, the manufacturing method of the coated tool by this indication is not limited to the following manufacturing method.
 被覆層は、たとえば物理蒸着法により形成されてもよい。物理蒸着法としては、例えば、イオンプレーティング法及びスパッタリング法などが挙げられる。一例として、イオンプレーティング法で被覆層を作製する場合には、下記の方法によって被覆層を作製することができる。 The coating layer may be formed, for example, by physical vapor deposition. Examples of physical vapor deposition include ion plating and sputtering. As an example, when the coating layer is produced by the ion plating method, the coating layer can be produced by the following method.
 まず、第1被覆層をイオンプレーティング法で作製する方法の一例を示す。まず、一例としてCr、SiおよびAlの各金属ターゲット、または複合化した合金ターゲット、または焼結体ターゲットを準備する。 First, an example of a method for producing the first coating layer by ion plating is shown. First, as an example, metal targets of Cr, Si and Al, composite alloy targets, or sintered targets are prepared.
 次に、金属源である上記のターゲットをアーク放電またはグロー放電などによって蒸発させてイオン化する。イオン化した金属を、窒素源の窒素(N)ガス、などと反応させるとともに、基体の表面に蒸着させる。以上の手順によってAlCrSiN層を形成することが可能である。 Next, the target, which is a metal source, is vaporized and ionized by arc discharge, glow discharge, or the like. The ionized metal is reacted with a nitrogen source such as nitrogen (N 2 ) gas, etc., and deposited on the surface of the substrate. An AlCrSiN layer can be formed by the above procedure.
 上記の手順において、基体の温度を500~600℃とし、窒素ガス圧力を1.0~6.0Paとし、基体に-50~-200Vの直流バイアス電圧を印可して、アーク放電電流を100~200Aとしてもよい。 In the above procedure, the temperature of the substrate is set to 500 to 600° C., the nitrogen gas pressure is set to 1.0 to 6.0 Pa, a DC bias voltage of −50 to −200 V is applied to the substrate, and the arc discharge current is set to 100 to 100. It may be 200A.
 第1被覆層の組成は、アルミニウム金属ターゲット、クロム金属ターゲット、アルミニウム-シリコン複合化合金ターゲット、および、クロム-シリコン複合化合金ターゲットにかかるアーク放電・グロー放電時の電圧・電流値をそれぞれのターゲット毎に独立に制御することによって調整することができる。また、被覆層の組成は、被覆時間や雰囲気ガス圧の制御によっても調整することができる。実施形態の一例においてはアーク放電・グロー放電時の電圧・電流値を変化させることにより、ターゲット金属のイオン化量を変化させることができる。また、ターゲット毎にアーク放電・グロー放電時の電流値を周期的に変えることにより、ターゲット金属のイオン化量を周期的に変化させることができる。ターゲットのアーク放電・グロー放電時の電流値は、0.01~0.5minの間隔で周期的に変えることにより、ターゲット金属のイオン化量を周期的に変化させることができる。これにより被覆層の厚み方向において、各金属元素の含有割合がそれぞれの周期で変化する構成とすることができる。 For the composition of the first coating layer, the voltage and current values during arc discharge and glow discharge applied to an aluminum metal target, a chromium metal target, an aluminum-silicon composite alloy target, and a chromium-silicon composite alloy target are determined for each target. can be adjusted by controlling each independently. The composition of the coating layer can also be adjusted by controlling the coating time and atmospheric gas pressure. In one embodiment, the amount of ionization of the target metal can be changed by changing the voltage/current values during arc discharge/glow discharge. In addition, by periodically changing the current value during arc discharge/glow discharge for each target, the ionization amount of the target metal can be changed periodically. By periodically changing the current value during the arc discharge/glow discharge of the target at intervals of 0.01 to 0.5 min, the ionization amount of the target metal can be changed periodically. Thereby, in the thickness direction of the coating layer, the content ratio of each metal element can be changed at each cycle.
 上記の手順を行う際に、Al、Siの量が少なくなるように、また、Crの量が多くなるよう、Al、Si、Crの組成を変化させ、その後、Al、Siの量が多くなるように、また、Crの量が少なくなるよう、Al、Si、Crの組成を変化させることによって、第1層および第2層を有する第1被覆層を作製することが可能である。 When performing the above procedure, the composition of Al, Si, and Cr is changed so that the amounts of Al and Si are reduced and the amounts of Cr are increased, and then the amounts of Al and Si are increased. By varying the composition of Al, Si, and Cr, it is possible to produce a first coating layer having a first layer and a second layer, such that the amount of Cr is reduced.
 次に、TiSiN層である第2被覆層の製造方法の一例について説明する。 Next, an example of a method for manufacturing the second coating layer, which is a TiSiN layer, will be described.
 第2被覆層は、物理蒸着法により形成されてもよい。一例として、まず、Ti金属ターゲット及びTi-Si複合化合金ターゲットを準備する。そして、用意した各ターゲットにかかるアーク放電・グロー放電時の電圧・電流値をターゲット毎に独立に制御することによって縞状構造を有する第2被覆層を作製することができる。 The second coating layer may be formed by physical vapor deposition. As an example, first, a Ti metal target and a Ti—Si composite alloy target are prepared. Then, the second coating layer having a striped structure can be produced by independently controlling the voltage/current values applied to each prepared target during arc discharge/glow discharge for each target.
 上記の手順において、基体の温度を500~600℃とし、窒素ガス圧力を1.0~6.0Paとし、基体に-50~-200Vの直流バイアス電圧を印可して、アーク放電電流を100~200A、アーク電流の変化周期を0.01~0.5min、としてもよい。 In the above procedure, the temperature of the substrate is set to 500 to 600° C., the nitrogen gas pressure is set to 1.0 to 6.0 Pa, a DC bias voltage of −50 to −200 V is applied to the substrate, and the arc discharge current is set to 100 to 100. 200 A, and the arc current change period may be 0.01 to 0.5 min.
 以下、本開示の実施例を具体的に説明する。なお、本開示は以下に示す実施例に限定されるものではない。 Examples of the present disclosure will be specifically described below. Note that the present disclosure is not limited to the examples shown below.
 WCからなる基体の上に、TiSiN層である第2被覆層を形成した被覆工具を作製し、試料No.1~No.12とした。また、WCからなる基体の上に、AlCrSiN層である第1被覆層を形成し、第1被覆層の上に、TiSiN層である第2被覆層を形成した被覆工具を作製し、試料No.13とした。試料No.13が有する第1被覆層の組成は、(Al50Cr39Si11)Nである。なお、試料No.1~No.13のうち試料No.2~No.11、No.13は、本開示の実施例に相当する。また、試料No.1~No.13のうち試料No.1、No.12は、比較例に相当する。 A coated tool was prepared by forming a second coating layer, which is a TiSiN layer, on a substrate made of WC. 1 to No. 12. Also, a coated tool was prepared by forming a first coating layer, which is an AlCrSiN layer, on a substrate made of WC, and forming a second coating layer, which is a TiSiN layer, on the first coating layer. 13. Sample no. The composition of the first coating layer 13 has is (Al 50 Cr 39 Si 11 )N. In addition, sample no. 1 to No. Sample No. 13 out of 13 2 to No. 11, No. 13 corresponds to an example of the present disclosure. Moreover, sample no. 1 to No. Sample No. 13 out of 13 1, No. 12 corresponds to a comparative example.
 図6は、試料No.1~No.13が有する被覆層の構成を示す表である。図6に示すように、試料No.1が有する第2被覆層は、厚み方向に沿ってTi含有量およびSi含有量が増減しない。試料No.1が有する第2被覆層の平均Ti含有量は、86原子%であり、平均Si含有量は、14原子%である。また、試料No.1が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。 Fig. 6 shows sample No. 1 to No. 13 is a table showing the structure of the coating layer of No. 13. FIG. As shown in FIG. In the second coating layer of 1, the Ti content and the Si content do not increase or decrease along the thickness direction. Sample no. 1 has an average Ti content of 86 atomic % and an average Si content of 14 atomic % in the second coating layer. Moreover, sample no. 1 has a total value of Ti content and Si content of 100 atomic %.
 試料No.2~No.13が有する第2被覆層は、厚み方向に沿ってTi含有量およびSi含有量が増減する。  Sample No. 2 to No. In the second coating layer 13, the Ti content and the Si content increase or decrease along the thickness direction.
 試料No.2が有する被覆層は、Ti含有量の増減の周期が5nm、Si含有量の増減の周期が5nm、Ti含有量の最大値が87原子%、Si含有量の最大値が16原子%、Ti含有量の最小値が84原子%、Si含有量の最小値が13原子%、平均Ti含有量が86原子%、平均Si含有量が14原子%である。また、試料No.2が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 2 has a Ti content increase/decrease cycle of 5 nm, a Si content increase/decrease cycle of 5 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, and Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 2 has a total value of Ti content and Si content of 100 atomic %.
 試料No.3が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が87原子%、Si含有量の最大値が16原子%、Ti含有量の最小値が84原子%、Si含有量の最小値が13原子%、平均Ti含有量が86原子%、平均Si含有量が14原子%である。また、試料No.3が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 3 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, and Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 3 has a total value of Ti content and Si content of 100 atomic %.
 試料No.4が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が76原子%、Si含有量の最大値が27原子%、Ti含有量の最小値が73原子%、Si含有量の最小値が24原子%、平均Ti含有量が75原子%、平均Si含有量が25原子%である。また、試料No.4が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 4 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 76 atomic %, a maximum Si content of 27 atomic %, Ti The minimum content is 73 atomic %, the minimum Si content is 24 atomic %, the average Ti content is 75 atomic %, and the average Si content is 25 atomic %. Moreover, sample no. 4 has a total value of Ti content and Si content of 100 atomic %.
 試料No.5が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が81原子%、Si含有量の最大値が22原子%、Ti含有量の最小値が78原子%、Si含有量の最小値が19原子%、平均Ti含有量が80原子%、平均Si含有量が20原子%である。また、試料No.5が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 5 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 81 atomic%, a maximum Si content of 22 atomic%, and Ti The minimum content is 78 atomic %, the minimum Si content is 19 atomic %, the average Ti content is 80 atomic %, and the average Si content is 20 atomic %. Moreover, sample no. 5 has a total value of Ti content and Si content of 100 atomic %.
 試料No.6が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が91原子%、Si含有量の最大値が12原子%、Ti含有量の最小値が88原子%、Si含有量の最小値が9原子%、平均Ti含有量が90原子%、平均Si含有量が10原子%である。また、試料No.6が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 6 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 91 atomic percent, a maximum Si content of 12 atomic percent, and Ti The minimum content is 88 atomic %, the minimum Si content is 9 atomic %, the average Ti content is 90 atomic %, and the average Si content is 10 atomic %. Moreover, sample no. 6 has a total value of Ti content and Si content of 100 atomic %.
 試料No.7が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が96原子%、Si含有量の最大値が7原子%、Ti含有量の最小値が93原子%、Si含有量の最小値が4原子%、平均Ti含有量が95原子%、平均Si含有量が5原子%である。また、試料No.7が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 7 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 96 atomic %, a maximum Si content of 7 atomic %, and Ti The minimum content is 93 atomic %, the minimum Si content is 4 atomic %, the average Ti content is 95 atomic %, and the average Si content is 5 atomic %. Moreover, sample no. 7 has a total Ti content and Si content of 100 atomic %.
 試料No.8が有する被覆層は、Ti含有量の増減の周期が15nm、Si含有量の増減の周期が15nm、Ti含有量の最大値が87原子%、Si含有量の最大値が16原子%、Ti含有量の最小値が84原子%、Si含有量の最小値が13原子%、平均Ti含有量が86原子%、平均Si含有量が14原子%である。また、試料No.8が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 8 has a Ti content increase/decrease cycle of 15 nm, a Si content increase/decrease cycle of 15 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 8 has a total value of Ti content and Si content of 100 atomic %.
 試料No.9が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が5nm、Ti含有量の最大値が87原子%、Si含有量の最大値が16原子%、Ti含有量の最小値が84原子%、Si含有量の最小値が13原子%、平均Ti含有量が86原子%、平均Si含有量が14原子%である。また、試料No.9が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 9 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 5 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 9 has a total value of Ti content and Si content of 100 atomic %.
 試料No.10が有する被覆層は、Ti含有量の増減の周期が5nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が87原子%、Si含有量の最大値が16原子%、Ti含有量の最小値が84原子%、Si含有量の最小値が13原子%、平均Ti含有量が86原子%、平均Si含有量が14原子%である。また、試料No.10が有する第2被覆層は、Ti含有量とSi含有量との合計値が100原子%である。  Sample No. 10 has a Ti content increase/decrease cycle of 5 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 87 atomic %, a maximum Si content of 16 atomic %, Ti The minimum content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. The second coating layer 10 has a total value of Ti content and Si content of 100 atomic %.
 試料No.11が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が85原子%、Si含有量の最大値が13原子%、Ti含有量の最小値が82原子%、Si含有量の最小値が14原子%、平均Ti含有量が84原子%、平均Si含有量が14原子%である。また、試料No.11が有する第2被覆層は、Ti含有量とSi含有量との合計値が98原子%である。試料No.11が有する第2被覆層におけるTiおよびSi以外の残部は、Alである。  Sample No. 11 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 85 atomic percent, a maximum Si content of 13 atomic percent, and Ti The minimum content is 82 atomic %, the minimum Si content is 14 atomic %, the average Ti content is 84 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 11 has a total Ti content and Si content of 98 atomic %. Sample no. The balance other than Ti and Si in the second coating layer of 11 is Al.
 試料No.12が有する被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が82原子%、Si含有量の最大値が11原子%、Ti含有量の最小値が79原子%、Si含有量の最小値が8原子%、平均Ti含有量が81原子%、平均Si含有量が9原子%である。また、試料No.12が有する第2被覆層は、Ti含有量とSi含有量との合計値が90原子%である。試料No.12が有する第2被覆層におけるTiおよびSi以外の残部は、Alである。  Sample No. 12 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 82 atomic percent, a maximum Si content of 11 atomic percent, and Ti The minimum content is 79 atomic %, the minimum Si content is 8 atomic %, the average Ti content is 81 atomic %, and the average Si content is 9 atomic %. Moreover, sample no. 12 has a total Ti content and Si content of 90 atomic %. Sample no. The balance other than Ti and Si in the second coating layer of 12 is Al.
 試料No.13が有する第2被覆層は、Ti含有量の増減の周期が10nm、Si含有量の増減の周期が10nm、Ti含有量の最大値が87原子%、Si含有量の最大値が16原子%、Ti含有量の最小値が84原子%、Si含有量の最小値が13原子%、平均Ti含有量が86原子%、平均Si含有量が14原子%である。また、試料No.13は、第1被覆層として、Al50Cr39Si11)N層を有している。 Sample no. 13 has a Ti content increase/decrease cycle of 10 nm, a Si content increase/decrease cycle of 10 nm, a maximum Ti content of 87 atomic %, and a maximum Si content of 16 atomic %. , the minimum Ti content is 84 atomic %, the minimum Si content is 13 atomic %, the average Ti content is 86 atomic %, and the average Si content is 14 atomic %. Moreover, sample no. 13 has an Al 50 Cr 39 Si 11 )N layer as the first covering layer.
 図7は、試料No.1~No.13に対する切削試験および剥離試験の結果をまとめた表である。切削試験および剥離試験の各試験条件は、以下の通りである。 Fig. 7 shows sample No. 1 to No. 13 is a table summarizing the results of cutting and peeling tests for No. 13; The test conditions for the cutting test and peeling test are as follows.
<切削試験>
 切削試験は2枚刃超硬ボールエンドミル(型番:2KMBL0200-0800-S4)を用いて、以下の条件にて行った。
(1)切削方法:ポケット加工
(2)被削材 :SKD11H
(3)送りfz:1320mm/min
(4)回転数:16900/min
(5)切り込み:ap 0.08mm×ae 0.20mm
(6)状態:湿式
(7)クーラント:オイルミスト
(8)評価方法:切削長1mごとに刃先逃げ面を観察し、欠損(チッピングを含む)の有無を顕微鏡にて観察し、欠損が発生した時点の切削長から計算される衝突回数を求めた。
<Cutting test>
The cutting test was carried out under the following conditions using a two-flute carbide ball end mill (model number: 2KMBL0200-0800-S4).
(1) Cutting method: Pocket machining (2) Work material: SKD11H
(3) Feed fz: 1320mm/min
(4) RPM: 16900/min
(5) Cut: ap 0.08 mm x ae 0.20 mm
(6) Condition: Wet (7) Coolant: Oil mist (8) Evaluation method: Observe the flank of the cutting edge every 1 m of cutting length, and observe the presence or absence of chipping (including chipping) with a microscope. The number of collisions calculated from the cutting length at the time was determined.
<剥離試験>
 剥離試験は、スクラッチ試験機にて行った。荷重範囲20~150Nとして、剥離が生じたときの荷重にて評価を行った。
<Peeling test>
A peel test was performed using a scratch tester. The load range was 20 to 150 N, and the load at which peeling occurred was evaluated.
 図7に示すように、切削試験の結果は、試料No.1が59700回、試料No.2が74700回、試料No.3が99600回、試料No.4が64000回、試料No.5が69000回、試料No.6が74700回、試料No.7が64000回、試料No.8が81400回、試料No.9が89600回、試料No.10が64000回、試料No.11が64000回、試料No.12が59700回、試料No.13が128000回であった。  As shown in Fig. 7, the results of the cutting test were as follows. 1 is 59700 times, sample No. 2 for 74700 times, sample No. 3 for 99600 times, sample No. 4 64000 times, sample No. 5 is 69000 times, sample No. 6 for 74700 times, sample no. 7 for 64000 times, sample no. 8 is 81400 times, sample no. 9 89600 times, sample no. 10 is 64000 times, sample no. 11 is 64000 times, sample No. 12 is 59700 times, sample no. 13 was 128,000 times.
 このように、比較例に相当する試料No.1、No.12は、切削試験の結果が60000回未満であったのに対し、実施例に相当する試料No.2~No.11、No.13は、切削試験の結果は6000回以上であり、高い耐衝撃性を有していることがわかる。 Thus, the sample No. corresponding to the comparative example. 1, No. 12, the result of the cutting test was less than 60000 times, whereas sample No. 12 corresponding to the example. 2 to No. 11, No. No. 13 has a cutting test result of 6000 times or more, and it can be seen that it has high impact resistance.
 また、図7に示すように、剥離試験の結果は、試料No.1が70N、試料No.2が75N、試料No.3が80N、試料No.4が70N、試料No.5が75N、試料No.6が80N、試料No.7が90N、試料No.8が77N、試料No.9が78N、試料No.10が75N、試料No.11が78N、試料No.12が70N、試料No.13が100Nであった。 Also, as shown in FIG. 1 is 70N, sample No. 2 is 75N, sample No. 3 is 80N, sample No. 4 is 70N, sample No. 5 is 75N, sample No. 6 is 80N, sample No. 7 is 90N, sample No. 8 is 77N, sample No. 9 is 78N, sample No. 10 is 75N, sample No. 11 is 78N, sample No. 12 is 70N, sample No. 13 was 100N.
 第2被覆層に含まれる金属元素のうち、TiおよびSiの合計が98原子%以上であり、厚み方向にTiとSiとNとがそれぞれ増減を繰り返し、金属元素に占めるTiの比率が80原子%以上95原子%以下であり、Siの比率が5原子%以上20原子%以下である構成の試料No.2~No.11および試料No.13は、剥離試験において、被覆層の剥離時の荷重が75N以上であり、高い密着性を有していることがわかる。 Among the metal elements contained in the second coating layer, the total of Ti and Si is 98 atomic % or more, Ti, Si, and N repeatedly increase and decrease in the thickness direction, and the ratio of Ti to the metal elements is 80 atoms. % or more and 95 atomic % or less, and the ratio of Si is 5 atomic % or more and 20 atomic % or less. 2 to No. 11 and sample no. In the peeling test, No. 13 had a load of 75 N or more when the coating layer was peeled off, indicating that it has high adhesion.
 上述してきたように、実施形態に係る被覆工具(一例として、被覆工具1)は、基体(一例として、基体10)と、基体の上に位置する被覆層(一例として、被覆層20)とを有する。被覆層は、TiとSiとNとを有する第2被覆層(一例として、第2被覆層24)を有する。第2被覆層に含まれる金属元素のうち、TiおよびSiの合計は、98原子%以上である。第2被覆層は、厚み方向にTiとSiとNとが、それぞれ増減を繰り返している。 As described above, the coated tool according to the embodiment (coated tool 1 as an example) includes a base (base 10 as an example) and a coating layer (covering layer 20 as an example) located on the base. have. The coating layer has a second coating layer (as an example, the second coating layer 24) having Ti, Si and N. The total amount of Ti and Si in the metal elements contained in the second coating layer is 98 atomic % or more. In the second coating layer, Ti, Si, and N are repeatedly increased and decreased in the thickness direction.
 したがって、実施形態に係る被覆工具によれば、耐衝撃性を向上させることができる。 Therefore, according to the coated tool according to the embodiment, impact resistance can be improved.
 なお、図1に示した被覆工具1の形状はあくまで一例であって、本開示による被覆工具の形状を限定するものではない。本開示による被覆工具は、たとえば、回転軸を有し、第1端から第2端にかけて延びる棒形状の本体と、本体の第1端に位置する切刃と、切刃から本体の第2端の側に向かって螺旋状に延びた溝とを有していてもよい。 The shape of the coated tool 1 shown in FIG. 1 is merely an example, and does not limit the shape of the coated tool according to the present disclosure. A coated tool according to the present disclosure, for example, includes a rod-shaped body having an axis of rotation and extending from a first end to a second end, a cutting edge located at the first end of the body, and a cutting edge extending from the cutting edge to the second end of the body. It may have a groove extending spirally toward the side.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspects of the invention are not limited to the specific details and representative embodiments so shown and described. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.
 1 被覆工具
 2 チップ本体
 5 貫通孔
 10 基体
 20 被覆層
 22 中間層
 23 第1被覆層
 23a 第1層
 23b 第2層
 24 第2被覆層
 70 ホルダ
 73 ポケット
 75 ネジ
 100 切削工具
REFERENCE SIGNS LIST 1 coated tool 2 tip body 5 through hole 10 substrate 20 coating layer 22 intermediate layer 23 first coating layer 23a first layer 23b second layer 24 second coating layer 70 holder 73 pocket 75 screw 100 cutting tool

Claims (5)

  1.  基体と、該基体の上に位置する被覆層とを有し、
     前記被覆層は、TiとSiとNとを有する第2被覆層を有しており、
     前記第2被覆層に含まれる金属元素のうち、TiおよびSiの合計は、98原子%以上であり、
     前記第2被覆層は、厚み方向にTiとSiとNとが、それぞれ増減を繰り返している、被覆工具。
    having a substrate and a coating layer overlying the substrate;
    The coating layer has a second coating layer comprising Ti, Si and N,
    Among the metal elements contained in the second coating layer, the total of Ti and Si is 98 atomic % or more,
    The coated tool, wherein the second coating layer has Ti, Si, and N each repeating increase and decrease in the thickness direction.
  2.  Tiの増減の周期、Siの増減の周期およびNの増減の周期は、1nm以上15nm以下である、請求項1に記載の被覆工具。 The coated tool according to claim 1, wherein the period of increase/decrease of Ti, the period of increase/decrease of Si, and the period of increase/decrease of N are 1 nm or more and 15 nm or less.
  3.  前記第2被覆層の金属元素に占め
    るTiの比率は、80原子%以上95原子%以下であり、
     前記第2被覆層の金属元素に占めるSiの比率は、5原子%以上20原子%以下である、請求項1または2に記載の被覆工具。
    The ratio of Ti in the metal elements of the second coating layer is 80 atomic % or more and 95 atomic % or less,
    The coated tool according to claim 1 or 2, wherein the proportion of Si in the metal elements of said second coating layer is 5 atomic% or more and 20 atomic% or less.
  4.  前記第2被覆層の金属元素に占めるTiの比率は、82原子%以上90原子%以下である、請求項3に記載の被覆工具。 The coated tool according to claim 3, wherein the ratio of Ti to the metal elements in the second coating layer is 82 atomic % or more and 90 atomic % or less.
  5.  端部にポケットを有する棒状のホルダと、
     前記ポケット内に位置する、請求項1~4のいずれか一つに記載の被覆工具と
     を有する、切削工具。
    a rod-shaped holder having a pocket at its end;
    and a coated tool according to any one of claims 1 to 4, located within said pocket.
PCT/JP2022/027013 2021-07-30 2022-07-07 Coated tool and cutting tool WO2023008134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280045205.4A CN117545575A (en) 2021-07-30 2022-07-07 Coated cutting tool and cutting tool
JP2023538390A JPWO2023008134A1 (en) 2021-07-30 2022-07-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021125931 2021-07-30
JP2021-125931 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008134A1 true WO2023008134A1 (en) 2023-02-02

Family

ID=85086765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027013 WO2023008134A1 (en) 2021-07-30 2022-07-07 Coated tool and cutting tool

Country Status (3)

Country Link
JP (1) JPWO2023008134A1 (en)
CN (1) CN117545575A (en)
WO (1) WO2023008134A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331408A (en) * 2001-05-11 2002-11-19 Hitachi Tool Engineering Ltd Abrasion resistant coating film-covered tool
JP2009167498A (en) * 2008-01-18 2009-07-30 Hitachi Tool Engineering Ltd Hard film-coated member, and method for producing hard film-coated member
JP2018202505A (en) * 2017-05-31 2018-12-27 住友電気工業株式会社 Surface-coated cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331408A (en) * 2001-05-11 2002-11-19 Hitachi Tool Engineering Ltd Abrasion resistant coating film-covered tool
JP2009167498A (en) * 2008-01-18 2009-07-30 Hitachi Tool Engineering Ltd Hard film-coated member, and method for producing hard film-coated member
JP2018202505A (en) * 2017-05-31 2018-12-27 住友電気工業株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JPWO2023008134A1 (en) 2023-02-02
CN117545575A (en) 2024-02-09

Similar Documents

Publication Publication Date Title
EP2737967B1 (en) Cutting tool
EP2623241A1 (en) Cutting tool
WO2005089990A1 (en) Surface-coated cutting tool
JP2006181706A (en) Surface coated cutting tool and manufacturing method thereof
US20150343535A1 (en) Cutting tool
JP2017221992A (en) Surface-coated cutting tool
JP4398224B2 (en) Wear resistant parts
JP5315526B2 (en) Surface coated cutting tool
JP6642836B2 (en) Covered drill
JP2024022661A (en) Cutting tools
JP7354933B2 (en) Cutting tools
CN111565873B (en) Surface-coated cutting tool
WO2023008134A1 (en) Coated tool and cutting tool
KR20170137162A (en) The hard film and hard film coating member
WO2023008113A1 (en) Coated tool and cutting tool
WO2023008189A1 (en) Coated tool and cutting tool
JP5070621B2 (en) Surface coated cutting tool
WO2023007935A1 (en) Coated tool and cutting tool
WO2023008188A1 (en) Coated tool and cutting tool
WO2023008130A1 (en) Coated tool and cutting tool
JP4080481B2 (en) Surface-coated cutting tool and manufacturing method thereof
WO2023008131A1 (en) Coated tool and cutting tool
WO2023008133A1 (en) Coated tool and cutting tool
WO2023162683A1 (en) Coated tool and cutting tool
WO2023074310A1 (en) Insert and cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE