WO2023008061A1 - Battery-monitoring device - Google Patents

Battery-monitoring device Download PDF

Info

Publication number
WO2023008061A1
WO2023008061A1 PCT/JP2022/025958 JP2022025958W WO2023008061A1 WO 2023008061 A1 WO2023008061 A1 WO 2023008061A1 JP 2022025958 W JP2022025958 W JP 2022025958W WO 2023008061 A1 WO2023008061 A1 WO 2023008061A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
storage battery
battery
approximation function
approximation
Prior art date
Application number
PCT/JP2022/025958
Other languages
French (fr)
Japanese (ja)
Inventor
福郎 北川
基正 飯塚
裕基 堀
正規 内山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280051538.8A priority Critical patent/CN117730262A/en
Publication of WO2023008061A1 publication Critical patent/WO2023008061A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery monitoring device that monitors storage batteries.
  • lithium-ion batteries for example, have attracted attention as lightweight and high-energy-density storage batteries.
  • Some lithium-ion batteries have a plateau region, ie, a region in which the change in battery voltage is small as the storage capacity of the storage battery changes. In the plateau region, it is difficult to calculate the storage capacity of the storage battery using the capacity-voltage characteristic that indicates the correlation between the storage capacity and the battery voltage.
  • the amount of voltage change at the singular point is minute. Therefore, when a large current flows through the storage battery, such as during high-speed charging, noise generated in the battery voltage makes it impossible to detect a singular point based on the amount of voltage change. I am concerned that it is not possible.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a battery monitoring device capable of specifying a predetermined capacity of a storage battery without using the amount of voltage change of the storage battery.
  • a first means for solving the above problems is applied to a storage battery in which the amount of reaction heat changes at a predetermined capacity when the storage capacity changes with energization, and a parameter that correlates with the amount of reaction heat of the storage battery during energization is determined.
  • a data storage unit for storing time-series calorie data obtained and composed of the parameter and the storage capacity; and a second data group having a larger capacity than the boundary, a first approximation function that approximates the first data group with a linear function, and a second data group that approximates the second data group with a linear function an approximation calculation unit that calculates two approximation functions; an approximation error between the first approximation function and each of the heat quantity data in the first data group; and the second approximation function and each of the heat quantity data in the second data group.
  • an error sum calculation unit that calculates the sum of errors that are the sum of the approximation errors of an acquisition unit that acquires a plurality of error sums by calculating the function and the second approximation function and calculating the error sum by the error sum calculation unit; and corresponding to the minimum error sum among the plurality of error sums.
  • a specifying unit that specifies the predetermined capacity of the storage battery based on the first approximation function and the second approximation function.
  • an inflection point occurs at the given capacity in the relationship between the parameter that correlates with the reaction heat amount of the storage battery and the storage capacity.
  • the present inventors have found that in the relationship between the parameter that correlates with the reaction heat amount of the storage battery and the storage capacity, highly accurate linear approximation is possible on the lower capacity side and the higher capacity side than the predetermined capacity, and that the linear approximation is possible at the predetermined capacity. Focusing on the fact that the slope changes, the inventors have found a method of specifying the predetermined capacity of the storage battery based on the relationship between the above parameters and the storage capacity.
  • time-series calorie data consisting of a parameter correlated with the reaction calorie of the storage battery and the storage capacity are divided into a first data group with a lower capacity than a predetermined boundary and a second data group with a higher capacity than the boundary. and calculating a first approximation function that approximates the first data group with a linear function and a second approximation function that approximates the second data group with a linear function, and calculates the first approximation function and the first data group and the approximation error between the second approximation function and each calorie data in the second data group.
  • the boundary is changed to the low-capacity side or the high-capacity side, and a plurality of error sums are obtained by calculating the first approximation function and the second approximation function and calculating the error sum for each of the changed boundaries.
  • the predetermined capacity of the storage battery is specified based on the first approximation function and the second approximation function corresponding to the minimum error sum among the plurality of error sums.
  • the predetermined capacity of the storage battery can be identified based on the correlation between the parameter that correlates with the amount of reaction heat of the storage battery and the storage capacity, and the predetermined capacity of the storage battery can be identified without using the voltage change amount of the storage battery. can do.
  • the parameter has a characteristic that it increases in a situation where a large current flows through the storage battery. Therefore, even when it is difficult to appropriately specify the predetermined capacity of the storage battery based on the amount of voltage change due to a large current flowing through the storage battery, such as during high-speed charging, the predetermined capacity of the storage battery can be specified.
  • the data storage unit stores the time-series heat amount data during charging of the storage battery, and the acquisition unit gradually lowers the boundary from the storage capacity of the storage battery on the fully charged side. Change to capacity.
  • the storage capacity at the start of charging is arbitrary
  • the storage capacity at the end of charging is considered to be a substantially constant storage capacity (full charge capacity).
  • the boundary when changing the boundary between the first data group and the second data group, the storage capacity of the storage battery is gradually changed from the fully charged side to the low capacity side.
  • the boundary when dividing into a first data group having a lower capacity than the boundary and a second data group having a higher capacity than the boundary, the boundary can be set based on a substantially constant storage capacity. It is possible to prevent the occurrence of a situation in which there is no calorie data in the data group, and to appropriately specify the predetermined capacity of the storage battery.
  • the parameter is a battery temperature indicating the temperature of the storage battery
  • the approximation calculation unit uses time-series heat amount data including the battery temperature and the storage capacity to calculate the first approximation A function and the second approximation function are calculated.
  • the battery temperature changes with the change in the reaction heat amount, and an inflection point occurs at the given capacity in the relationship between the battery temperature and the storage capacity.
  • the parameter is the impedance of the storage battery
  • the approximation calculation unit calculates the first approximation function and the second Calculate the approximation function.
  • the impedance changes due to the temperature change when the reaction heat changes, and an inflection point occurs at the given capacity in the relationship between the impedance and the storage capacity.
  • an impedance calculation unit obtains a response signal of the storage battery to the AC signal while a predetermined AC signal is applied to the storage battery, and calculates the impedance based on the response signal.
  • the frequency of the signal is set to a frequency below the ohmic frequency corresponding to the ohmic resistance of the storage battery.
  • the frequency of the AC signal is set to a frequency equal to or lower than the ohmic frequency.
  • the calculated impedance is strongly affected by the reaction resistance. Since the reaction resistance is highly dependent on temperature, the amount of change in impedance at a given capacity tends to be large. Therefore, by using the reaction resistance, it is possible to accurately specify the predetermined capacity of the storage battery.
  • the sixth means comprises a slope determination unit for determining whether the absolute value of the slope of the first approximation function is greater than the absolute value of the slope of the second approximation function, and the error sum calculation unit determines the slope The error sum is calculated on condition that the absolute value of the slope of the first approximation function is determined by the unit to be larger than the absolute value of the slope of the second approximation function.
  • the absolute value of the slope of the first approximation function (approximation function on the low capacity side) is greater than the absolute value of the slope of the second approximation function (approximation function on the high capacity side).
  • the slope relationship of each approximation function may be reversed.
  • the predetermined capacity may be erroneously specified. In this respect, according to the above configuration, the predetermined capacity can be obtained correctly based on the first approximation function and the second approximation function.
  • a charging current storage unit that stores time-series charging current data until the storage battery reaches a fully charged state; an integrated value calculation unit that calculates an integrated current value of the charging current that has flowed through the storage battery in a period from the specified capacity specified by the above to a fully charged state; and a deterioration state determination unit for determining.
  • the state of deterioration of the storage battery is determined based on the predetermined capacity and integrated current value.
  • the storage capacity at which the amount of reaction heat changes in the storage battery that is, the predetermined capacity
  • the deterioration state of the storage battery can be properly determined by obtaining the predetermined capacity of the storage battery as described above and calculating the current integrated value up to the full charge capacity based on the predetermined capacity.
  • the storage battery contains graphite in the negative electrode.
  • the electrode structure changes at the negative electrode, causing a change in the amount of reaction heat. Therefore, the predetermined capacity of the storage battery can be specified by using the change in the amount of reaction heat.
  • the storage battery contains lithium iron phosphate in the positive electrode.
  • the amount of change in voltage of the storage battery due to changes in the storage capacity of the storage battery is small, and it is difficult to specify the predetermined capacity of the storage battery based on the amount of change in voltage.
  • the predetermined capacity of the storage battery can be specified without using the voltage change amount of the storage battery.
  • FIG. 1 is a circuit diagram of a power supply system
  • FIG. 2 is a diagram showing the configuration of a storage battery
  • FIG. 3 is a diagram showing the correlation between the storage capacity, the battery voltage, and the amount of reaction heat
  • FIG. 4 is a diagram showing the correlation between the storage capacity and the battery temperature
  • FIG. 5 is a flowchart of determination processing in the first embodiment
  • FIG. 6 is a flowchart of the predetermined capacity identification process
  • FIG. 7 is a diagram showing a plurality of boundary candidates
  • FIG. 8 is a diagram showing changes in the first approximation function and the second approximation function when the boundary is changed
  • FIG. 1 is a circuit diagram of a power supply system
  • FIG. 2 is a diagram showing the configuration of a storage battery
  • FIG. 3 is a diagram showing the correlation between the storage capacity, the battery voltage, and the amount of reaction heat
  • FIG. 4 is a diagram showing the correlation between the storage capacity and the battery temperature
  • FIG. 5 is a flowchart
  • FIG. 9 is a diagram showing changes in the error sum when the boundary is changed
  • FIG. 10 is a diagram showing the correlation between the storage capacity and the impedance
  • FIG. 11 is a flowchart of determination processing in the second embodiment
  • FIG. 12 is a diagram showing changes in the first approximation function and the second approximation function when the boundary is changed.
  • the power supply system 10 is a system that supplies electric power to an electrical load 20 such as a rotating machine (motor generator), and includes a storage battery 40 .
  • a relay switch SMR system main relay switch
  • a relay switch SMR is connected to at least one of a positive power supply path L1 connecting the positive electrode of the storage battery 40 and the electrical load 20 and a negative power supply path L2 connecting the negative electrode of the storage battery 40 and the electrical load 20.
  • a relay switch SMR is configured to switch between energization and energization cutoff between the storage battery 40 and the electric load 20 .
  • a lithium ion storage battery is used as the storage battery 40 .
  • a positive charging path L3 is connected to the positive power supply path L1, and a negative charging path L4 is connected to the negative power supply path L2. ing.
  • the storage battery 40 is configured to be connectable to an external charging device outside the power supply system 10 via a pair of connection terminals 21, and is charged by the external charging device.
  • the configuration of the storage battery 40 will be described based on FIG.
  • the storage battery 40 includes an electrode body 44 , an electrolyte 45 , and a housing case 46 that houses the electrode body 44 and the electrolyte 45 .
  • the electrolyte 45 is a non-aqueous electrolyte such as organic solvent ethylene carbonate or diethyl carbonate.
  • the housing case 46 is made of, for example, an aluminum alloy, and external terminals 47 are provided at both longitudinal ends of the upper surface thereof.
  • the electrode body 44 is composed of a positive electrode conductive plate 44a as a positive electrode, a negative electrode conductive plate 44b as a negative electrode, and a separator 44c arranged between the positive electrode conductive plate 44a and the negative electrode conductive plate 44b.
  • the positive electrode conductive plate 44a is composed of a positive electrode metal foil 44d made of a metal foil such as aluminum, and a positive electrode active material 44e applied to the front and rear surfaces of the positive electrode metal foil 44d.
  • the positive electrode active material 44e is olivine-type iron phosphate, that is, lithium iron phosphate.
  • the negative electrode conductive plate 44b is composed of a negative electrode metal foil 44f made of a thin metal such as copper and a negative electrode active material 44g applied to the front and rear surfaces of the negative electrode metal foil 44f. 44 g of negative electrode active materials are graphite, such as graphite and carbon.
  • the separator 44c is a porous insulating film made of polyethylene resin. The electrode body 44 conducts electricity by moving lithium ions between the positive electrode conductive plate 44a and the negative electrode conductive plate 44b via the separator 44c.
  • FIG. 2 an equivalent circuit model of the complex impedance Zm of the storage battery 40 is shown.
  • the complex impedance Zm of the storage battery 40 is composed of a series connection of an ohmic resistance Rohm, a reaction resistance Rct, and a diffusion resistance Rw.
  • the ohmic resistance Rohm is a current-carrying resistance in the electrodes and the electrolytic solution that constitute the storage battery 40 .
  • the reaction resistance Rct represents the resistance due to the electrode interfacial reaction in the electrode, and is expressed as a parallel connection of the resistance component 42a and the capacitance component 42b.
  • the diffusion resistance Rw represents the resistance associated with the diffusion of lithium ions into the electrode active material applied to the electrode surface.
  • the power supply system 10 includes a battery measuring device 50 that measures the state of the storage battery 40 and an ECU 60 that controls the electric load 20 .
  • the battery measuring device 50 is a device that measures the storage capacity Q and SOH (state of deterioration) of the storage battery 40 .
  • the battery measuring device 50 includes a current modulation circuit 51, a first voltmeter 52, and a control device 53 as a battery monitoring device.
  • the current modulation circuit 51 is a circuit that applies a predetermined AC signal to the storage battery 40 to be measured.
  • the current modulation circuit 51 has an oscillator 51 a and a first ammeter 51 b connected in series with the oscillator 51 a and is connected to the storage battery 40 by a first electrical path 81 .
  • the oscillator 51 a generates an AC signal instructed by the control device 53 and applies it to the storage battery 40 .
  • the AC signal is, for example, a sine wave signal or a square wave signal.
  • the first ammeter 51 b measures the current signal generated in the first electrical path 81 and outputs the measured current signal data to the controller 53 .
  • the first voltmeter 52 is connected to the storage battery 40 via a second electrical path 82 different from the first electrical path 81 .
  • a response signal (voltage fluctuation) reflecting the complex impedance Zm of the storage battery 40 is generated in the first voltmeter 52 when an AC signal is applied.
  • the first voltmeter 52 measures this response signal and outputs the measured response signal data to the control device 53 .
  • the battery measuring device 50 also includes a second ammeter 54 , a second voltmeter 55 and a thermometer 56 .
  • the second ammeter 54 is provided in the positive electrode side power supply path L1.
  • the second ammeter 54 measures the battery current I of the storage battery 40 and outputs the measured battery current data to the control device 53 .
  • the second voltmeter 55 is connected in parallel with the electrical load 20 .
  • the second voltmeter 55 measures the battery voltage V of the storage battery 40 and outputs the measured battery voltage data to the control device 53 .
  • the thermometer 56 is, for example, a thermocouple or a thermistor, and is arranged near the storage battery 40 .
  • the thermometer 56 measures the battery temperature T of the storage battery 40 and outputs the measured battery temperature data to the control device 53 .
  • the control device 53 is mainly composed of a microcomputer, and implements various control functions by executing programs stored in its own storage device. Based on the battery current I and the battery voltage V, the control device 53 grasps the drive state of the electric load 20 and outputs the drive state to the ECU 60 .
  • the control device 53 also calculates the complex impedance Zm of the storage battery 40, that is, the real part ReZm and the imaginary part ImZm of the complex impedance Zm, based on the response signal and the current signal.
  • the controller 53 creates, for example, a complex impedance plane plot (Cole-Cole plot) based on the calculation results, and grasps the characteristics of the positive conductive plate 44a, the negative conductive plate 44b, the electrolyte 45, and the like.
  • a complex impedance plane plot of the storage battery 40 is shown in FIG.
  • the upper side of the vertical axis is written as "-ImZm", that is, the imaginary part is inverted.
  • the complex impedance Zm changes according to the frequency ⁇ r of the AC signal indicated by the indication signal, and an arc Cr, which is a semicircular locus, appears in the low frequency region.
  • the imaginary part ImZm of the complex impedance Zm becomes zero at the end point PA on the high frequency side of the arc Cr.
  • the value of the real part ReZm of the complex impedance Zm at this end point PA represents the ohmic resistance Rohm.
  • a straight line Pr which is a linear locus, appears on the low-frequency side of the arc Cr.
  • the connection point between the arc Cr and the straight line Pr is the low-frequency end point PB of the arc Cr
  • the value of the real part ReZm of the complex impedance Zm at the end point PB and the real part ReZm of the complex impedance Zm at the end point PA The difference value of the values represents the reaction resistance Rct.
  • FIG. 3 shows the correlation between the storage capacity Q and the battery voltage V in the storage battery 40.
  • the olivine-based storage battery 40 using lithium iron phosphate as the positive electrode active material 44e has a region in which the change in the battery voltage V due to the change in capacity is small, that is, a plateau region. It is difficult to calculate the storage capacity Q of the storage battery 40 using the correlation between the storage capacity Q and the battery voltage V in the plateau region.
  • the predetermined capacity QA of the storage battery 40 is specified by detecting the singular point using the voltage change amount of the battery voltage V. can do.
  • the amount of voltage change at the singular point is very small. Therefore, in a situation where a large current flows in the storage battery 40, such as during high-speed charging, noise generated in the battery voltage V makes it impossible to detect a singular point based on the amount of voltage change. difficult to identify.
  • FIG. 3 shows the correlation between the storage capacity Q and the amount of reaction heat H in the storage battery 40 .
  • Reaction heat quantity H is the product of battery temperature T, battery current I, and heat generation coefficient dV/dT.
  • Heat generation coefficient dV/dT is the amount of change in open circuit voltage per unit temperature. have a value.
  • the reaction heat quantity H changes at a predetermined capacity QA.
  • Battery temperature T changes at a predetermined capacity QA.
  • FIG. 4 in the correlation between the storage capacity Q and the battery temperature T, an inflection point occurs at a predetermined capacity QA.
  • the present inventors have found that in the correlation between the storage capacity Q and the battery temperature T, highly accurate linear approximation is possible on the lower capacity side and the higher capacity side than the predetermined capacity QA, and the slope of the straight line at the predetermined capacity QA We focused on the change in In the storage battery 40, the slope of the linear approximation is positive both on the lower capacity side and on the higher capacity side than the predetermined capacity QA. The slope of the linear approximation is smaller than the side.
  • the inventors have found a method of specifying the predetermined capacity QA of the storage battery 40 based on the correlation between the storage capacity Q and the battery temperature T. FIG.
  • the control device 53 acquires time-series calorie data consisting of the storage capacity Q and the battery temperature T when energized, and spreads the acquired calorie data from a predetermined boundary B.
  • a first approximation function F1 that approximates the first data group DA with a linear function and a second approximation function F2 that approximates the second data group DB with a linear function are calculated, and the first approximation function F1 and the first data group are calculated.
  • An error sum G is calculated which is the sum of an approximation error between each calorie data in DA and an approximation error between the second approximation function F2 and each calorie data in the second data group DB. Then, the boundary B is changed to the low-capacity side or the high-capacity side, and the calculation of the first approximation function F1 and the second approximation function F2 and the calculation of the error sum G are performed for each of the changed boundaries B. , and based on the first approximation function F1 and the second approximation function F2 corresponding to the minimum error sum G among the plurality of error sums G, the predetermined capacity QA of the storage battery 40 is specified. Carry out specific processing.
  • the predetermined capacity QA of the storage battery 40 can be identified based on the correlation between the storage capacity Q and the battery temperature T, and the predetermined capacity QA of the storage battery 40 can be obtained without using the voltage change amount of the storage battery 40. QA can be specified.
  • FIG. 5 shows a flowchart of the determination processing of this embodiment.
  • the determination process includes the predetermined capacity identification process described above, and determines the SOH based on the predetermined capacity QA of the storage battery 40 identified by the predetermined capacity identification process.
  • the control device 53 When charging the storage battery 40, the control device 53 repeatedly performs the determination process at each predetermined control cycle.
  • step S11 it is determined whether charging of the storage battery 40 has been completed. If the storage battery 40 is not fully charged and the charging of the storage battery 40 continues, the process proceeds to step S12. On the other hand, when the storage battery 40 is fully charged, the process proceeds to step S14.
  • the fully charged state of the storage battery 40 is, for example, a state in which the battery voltage V of the storage battery 40 reaches a predetermined full charge voltage, or a state in which the storage battery 40 exits the plateau region as the capacity increases and the battery voltage V changes as the capacity changes. means that the has become larger.
  • step S12 the battery current I is measured and stored as charging current data.
  • step S13 the battery temperature T is measured, the storage capacity Q of the storage battery 40 is calculated by current integration using the charging current data, and heat quantity data consisting of the storage capacity Q and the battery temperature T is stored.
  • steps S12 and S13 are repeatedly performed while the storage battery 40 is being charged.
  • step S12 time-series charging current data until the storage battery 40 reaches the fully charged state is stored
  • step S13 time-series heat amount data until the storage battery 40 reaches the fully charged state is stored.
  • the process of step S12 corresponds to the "charging current storage section”
  • the process of step S13 corresponds to the "data storage section”.
  • step S14 a predetermined capacity identification process is performed.
  • FIG. 6 shows a flowchart of the predetermined capacity specifying process.
  • a plurality of boundary candidate BAs arranged at equal intervals are determined in the range of the storage capacity Q for which the battery temperature data is obtained, and selected from the plurality of boundary candidate BAs.
  • One boundary candidate BA is set as the boundary B.
  • the calorie data with a capacity lower than the boundary B is the first data group DA
  • the calorie data with a capacity higher than the boundary B is the second data group DB.
  • the boundary candidate BA located on the highest capacity side among the plurality of boundary candidate BAs is set as the boundary B. FIG. This minimizes the amount of heat data included in the second data group DB.
  • step S22 a first approximation function F1 and a second approximation function F2 are calculated.
  • the first approximation function F1 and the second approximation function F2 are calculated using, for example, the method of least squares.
  • step S23 it is determined whether or not the absolute value of the first slope ⁇ 1, which is the slope of the first approximation function F1, is greater than the absolute value of the second slope ⁇ 2, which is the slope of the second approximation function F2. If the absolute value of the first slope ⁇ 1 is greater than the absolute value of the second slope ⁇ 2, the process proceeds to step S24.
  • step S22 corresponds to the "approximation calculation unit”
  • the process of step S23 corresponds to the "inclination determination unit”.
  • step S24 the error sum G is calculated.
  • the error sum G is calculated using residuals, for example.
  • the storage capacity Q and the battery temperature T indicated by the heat quantity data stored for the i-th time are assumed to be the storage capacity Qi and the battery temperature Ti.
  • the first approximation function F1 and the second approximation function F2 the value corresponding to the storage capacity Qi is assumed to be the approximation value Fi.
  • the error sum G can be expressed by the following formula (1). It should be noted that in the present embodiment, the process of step S24 corresponds to the "error sum calculation unit".
  • step S25 it is determined whether or not the error sum G calculated in step S24 is the minimum. At this time, if the error sum G calculated this time is smaller than the minimum value of the error sums G up to the previous time, it is assumed that the error sum G this time is the minimum.
  • step S26 the first approximation function F1 and the second approximation function F2 calculated in step S22 are stored, and the process proceeds to step S27. On the other hand, if the error sum G is not the minimum, the process proceeds to step S27 without storing the first approximation function F1 and the second approximation function F2 calculated in step S22.
  • step S27 it is determined whether or not to move the boundary B to the low capacity side.
  • the setting range of the boundary B is determined in advance, and the boundary B is gradually changed from the storage capacity Q of the storage battery 40 on the fully charged side to the low capacity side.
  • the boundary candidate BA set as the boundary B is sequentially changed from the boundary candidate BA positioned on the highest capacity side to the boundary candidate BA positioned on the lowest capacity side.
  • it is determined whether or not the current boundary B for which the sum of errors G has been calculated is the boundary candidate BA on the lowest capacity side among the plurality of boundary candidate BAs in the set range of the boundary B.
  • step S28 the boundary B is moved to the low capacity side, and the process returns to step S22.
  • step S29 the processing of steps S21 and S28 corresponds to the "dividing section".
  • each boundary candidate BA is set as the boundary B once. Every time each boundary candidate BA is set as the boundary B, the first approximation function F1 and the second approximation function F2 are calculated, and the error sum G is acquired. Then, the smallest error sum G is selected from among the plurality of error sums G obtained. Note that, in the present embodiment, repetition of the processing of steps S22 to S26 corresponds to the "acquisition unit".
  • step S29 the predetermined capacity QA of the storage battery 40 is identified based on the first approximation function F1 and the second approximation function F2 stored in step S26, and the predetermined capacity identification process ends. If a plurality of first approximation functions F1 and second approximation functions F2 are stored in step S26, the last stored first approximation function among the plurality of first approximation functions F1 and second approximation functions F2 A predetermined capacity QA of the storage battery 40 is specified based on F1 and the second approximation function F2. In this embodiment, the storage capacity Q at the intersection X of the first approximation function F1 and the second approximation function F2 is specified as the predetermined capacity QA. It should be noted that in the present embodiment, the process of step S29 corresponds to the "specification unit".
  • step S15 in the first approximation function F1 and the second approximation function F2 used to calculate the predetermined capacity QA in step S29, the slope that is the difference between the absolute value of the first slope ⁇ 1 and the absolute value of the second slope ⁇ 2 It is determined whether or not the difference ⁇ is greater than the threshold ⁇ th.
  • the predetermined capacity QA is not included in the range of the storage capacity Q for which the battery temperature data is acquired and the slope difference ⁇ is smaller than the threshold ⁇ th, the determination process is terminated.
  • the predetermined capacity QA is included in the range of the storage capacity Q for which the battery temperature data is acquired and the slope difference ⁇ is larger than the threshold ⁇ th, the process proceeds to step S16.
  • step S16 using the time-series charging current data stored in step S12, the battery current I that flowed through the storage battery 40 during the period from the specified capacity QA specified in step S29 until the storage battery 40 reached a fully charged state is calculated. to calculate the integrated current value ⁇ Q.
  • step S17 SOH is determined based on the current integrated value ⁇ Q calculated in step S17, and the determination process ends.
  • the process of step S16 corresponds to the "integrated value calculation unit”
  • the process of step S17 corresponds to the "degradation state determination unit”.
  • the predetermined capacity QA is specified by the predetermined capacity specifying process and the integrated current value ⁇ QN for the case where the storage battery 40 is new is acquired in advance
  • the SOH can be determined based on the integrated current value ⁇ Q. can.
  • FIG. 8 shows an example of the predetermined capacity specifying process.
  • 8A to 8C show a first approximation function F1 and a second approximation function F1 and a second approximation function when three different boundary candidates BA among the plurality of boundary candidates BA shown in FIG. 7 are set as the boundary B. F2 is shown.
  • the boundary B is set on the higher capacity side than the predetermined capacity QA.
  • the approximation accuracy of the second approximation function F2 is good, but the approximation accuracy of the first approximation function F1 is poor. Therefore, although the approximation error between the second approximation function F2 and each calorie data in the second data group DB is small, the approximation error between the first approximation function F1 and each calorie data in the first data group DA is large, and the error sum G increases.
  • the boundary B is set near the predetermined capacity QA.
  • the approximation accuracy of the first approximation function F1 and the second approximation function F2 is improved. Therefore, both the approximation error between the first approximation function F1 and each calorie data in the first data group DA and the approximation error between the second approximation function F2 and each calorie data in the second data group DB are small, and the error sum G becomes smaller.
  • the boundary B is set on the lower capacity side than the predetermined capacity QA.
  • the approximation accuracy of the first approximation function F1 is good, but the approximation accuracy of the second approximation function F2 is poor. Therefore, although the approximation error between the first approximation function F1 and each calorie data in the first data group DA is small, the approximation error between the second approximation function F2 and each calorie data in the second data group DB becomes large, and the error sum G increases.
  • the boundary B corresponding to the minimum error sum G is the boundary B in FIG. 8(B).
  • the predetermined capacity QA is specified by the storage capacity Q at the intersection X of the first approximation function F1 and the second approximation function F2 in FIG. 8(B).
  • the predetermined capacity QA of the storage battery 40 can be specified based on the correlation between the battery temperature T, which correlates with the amount of reaction heat H of the storage battery 40, and the storage capacity Q. Therefore, the predetermined capacity QA of the storage battery 40 can be specified without using the voltage change amount of the storage battery 40 .
  • the battery temperature T has a characteristic that it becomes high when a large current flows through the storage battery 40 . Therefore, even when it is difficult to appropriately specify the predetermined capacity QA of the storage battery 40 based on the amount of voltage change due to a large current flowing through the storage battery 40, such as during high-speed charging, the predetermined capacity QA of the storage battery 40 can be specified. can do.
  • the storage capacity Q at the start of charging is arbitrary, the storage capacity Q at the end of charging is considered to be a substantially constant storage capacity (full charge capacity).
  • the storage capacity Q of the storage battery 40 is gradually changed from the full charge side to the low capacity side.
  • the boundary B is set based on a generally constant storage capacity Q.
  • the battery temperature T changes with the change in the amount of reaction heat H, and the relationship between the battery temperature T and the storage capacity Q varies at the predetermined capacity QA.
  • a point occurs.
  • the first approximation function F1 and the second approximation function F2 are calculated using the time-series heat amount data including the battery temperature T and the storage capacity Q, the first approximation function F1 and the second approximation function F2 are calculated.
  • the inflection point can be detected using the second approximation function F2. Therefore, even if it is difficult to appropriately specify the predetermined capacity QA of the storage battery 40 based on the amount of voltage change, the predetermined capacity QA of the storage battery 40 can be specified.
  • the degree of change in the battery temperature T associated with the change in the amount of reaction heat H varies depending on factors outside the storage battery 40, such as the amount of heat released to the outside air, and the degree of change may not be determined unconditionally.
  • the predetermined capacity QA is specified from the minimum boundary B of the error sum G regardless of the degree of change in battery temperature T. FIG. Therefore, resistance to factors outside the storage battery 40 can be enhanced.
  • the absolute value of the first slope ⁇ 1 of the first approximation function F1 is the second approximation function It is larger than the absolute value of the second slope ⁇ 2 of F2.
  • the predetermined capacity QA may be erroneously specified based on .
  • the predetermined capacity QA can be obtained correctly based on the first approximation function F1 and the second approximation function F2.
  • the SOH of the storage battery 40 is determined based on the predetermined capacity QA and the integrated current value ⁇ Q.
  • the storage capacity Q at which the amount of reaction heat H changes in the storage battery 40 that is, the predetermined capacity QA, does not change even if the storage battery 40 deteriorates. do.
  • the SOH of the storage battery 40 can be properly determined by obtaining the predetermined capacity QA of the storage battery 40 as in the present embodiment and calculating the integrated current value ⁇ Q up to the full charge capacity based on the predetermined capacity QA. can.
  • the storage battery 40 contains graphite in the negative electrode, when the storage capacity Q reaches the predetermined capacity QA, the electrode structure changes in the negative electrode, and the reaction heat amount H changes.
  • the storage battery 40 contains lithium iron phosphate in the positive electrode, the voltage change amount of the storage battery 40 due to the change in the storage capacity Q of the storage battery 40 is small, and the predetermined capacity QA of the storage battery 40 is specified based on the voltage change amount. difficult.
  • the predetermined capacity QA of the storage battery 40 is specified based on the battery temperature T that correlates with the amount of reaction heat H of the storage battery 40, the predetermined capacity QA of the storage battery 40 is specified without using the voltage change amount of the storage battery 40. be able to.
  • FIG. 10 shows the correlation between the storage capacity Q and the real part ReZm of the complex impedance Zm.
  • the complex impedance Zm changes with the temperature change that accompanies the change in the reaction heat quantity H at a predetermined capacity QA.
  • an inflection point occurs at a predetermined capacitance QA in the correlation between the storage capacitance Q and the real part ReZm of the complex impedance Zm.
  • the predetermined capacity QA of the storage battery 40 is specified based on the correlation between the storage capacity Q and the real part ReZm of the complex impedance Zm.
  • FIG. 11 shows a flowchart of the determination processing of this embodiment.
  • the same steps as those shown in FIG. 6 are denoted by the same step numbers for convenience, and description thereof will be omitted.
  • step S31 the complex impedance Zm is calculated.
  • the frequency of the AC signal applied to the storage battery 40 when calculating the complex impedance Zm is set to a constant frequency equal to or lower than the ohmic frequency corresponding to the ohmic resistance Rohm of the storage battery 40 indicated by the end point PA in FIG. Specifically, the frequency is set to correspond to the end point PB in FIG.
  • the process of step S31 corresponds to the "impedance calculator".
  • step S13 heat quantity data consisting of the storage capacity Q and the complex impedance Zm calculated in step S31 is stored.
  • the real part ReZm of the complex impedance Zm is used to calculate the first approximation function F1 and the second approximation function F2, and the error sum G is calculated to specify the predetermined capacity QA.
  • FIG. 12 shows an example of the predetermined capacity specifying process.
  • three different boundary candidates BA among the plurality of boundary candidates BA defined in the range of the storage capacity Q from which the complex impedance Zm is obtained are set as boundaries B.
  • a first approximation function F1 and a second approximation function F2 are shown for the case.
  • the boundary B is set on the higher capacity side than the predetermined capacity QA, and the error sum G becomes large.
  • the boundary B is set near the predetermined capacity QA, and the error sum G is small.
  • the boundary B is set on the lower capacity side than the predetermined capacity QA, and the error sum G becomes large.
  • the boundary B corresponding to the minimum error sum G is the boundary B in FIG. 12(B).
  • the predetermined capacity QA is specified by the storage capacity Q at the intersection X of the first approximation function F1 and the second approximation function F2 in FIG. 12(B).
  • the complex impedance Zm changes due to temperature changes when the amount of reaction heat H changes, and the relationship between the complex impedance Zm and the storage capacity Q
  • An inflection point occurs at the capacitance QA.
  • the first approximation function F1 and the second approximation function F2 are calculated using the time-series calorie data including the complex impedance Zm and the storage capacity Q, the first approximation function F1 and the second approximation function F2 are calculated.
  • the inflection point can be detected using the second approximation function F2. Therefore, even if it is difficult to appropriately specify the predetermined capacity QA of the storage battery 40 based on the amount of voltage change, the predetermined capacity QA of the storage battery 40 can be specified.
  • the frequency of the AC signal is set to a frequency equal to or lower than the ohmic frequency.
  • the calculated complex impedance Zm is strongly influenced by the reaction resistance. Since the reaction resistance strongly depends on the temperature, the amount of change in the complex impedance Zm at the predetermined capacitance QA tends to increase. Therefore, by using the reaction resistance, the predetermined capacity QA of the storage battery 40 can be specified with high accuracy.
  • the time-series heat amount data when charging the storage battery 40 was shown, but the time-series heat amount data may be stored when the storage battery 40 is discharged.
  • the polarity of the reaction heat quantity H is reversed during discharge. This reversal changes the tendency of the temperature change in the reaction heat amount H at the predetermined capacity QA, and the direction of the inequality sign in step S23 is reversed.
  • the storage capacity range defined as the setting range of boundary B is divided into a low capacity range, an intermediate range, and a high capacity range in order from the low capacity side, and the interval of boundary B is set in the low capacity range and high capacity range. It may be relatively large and in the intermediate range the spacing of the boundaries B may be relatively small.
  • the predetermined capacity QA calculated in the past may be referred to, the interval of the boundary B may be made relatively small in the neighborhood including the predetermined capacity QA, and the interval of the boundary B may be made relatively large in the area other than the neighborhood.
  • the error sum G may be calculated as Further, for example, in FIGS. 8 and 12, the area between the graph indicated by the first approximation function F1 and the graph indicated by the first data group DA, and the area indicated by the graph indicated by the second approximation function F2 and the second data group DB The sum of the areas between the graphs may be calculated as the error sum G.
  • the boundary candidate BA set as the boundary B is positioned on the highest capacity side.
  • An example of sequentially changing from the boundary candidate BA to the boundary candidate BA located on the lowest capacity side has been shown, but the present invention is not limited to this.
  • the predetermined capacity QA calculated in the past may be referenced, and instead of the boundary candidate BA located on the highest capacity side, the boundary candidate BA based on the predetermined capacity QA may be changed to the low capacity side.
  • the boundary candidate BA located on the lowest capacity side may be changed as follows. According to the predetermined capacity specifying process of FIG. 6, as the boundary B is gradually changed from the fully charged storage capacity Q to the low capacity side, the error sum G gradually decreases and then increases. In this case, in step S27, it may be determined whether or not to move the boundary B to the low capacity side based on the error sum G turning from decreasing to increasing.
  • control device 53 determines that the error sum G has changed from decreasing to increasing as the boundary B is changed to the lower capacity side, it is not necessary to change the boundary B to the lower capacity side. As such, it may be determined that the boundary B is not moved to the low capacity side (NO in step S27).
  • the first approximation function F1 and the second approximation function F2 when specifying the predetermined capacity QA of the storage battery 40 based on the first approximation function F1 and the second approximation function F2 corresponding to the minimum error sum G, the first approximation function F1 and the second approximation function
  • the present invention is not limited to this.
  • the storage capacity Q at the boundary B corresponding to the minimum error sum G may be specified as the predetermined capacity QA.
  • the storage battery 40 has one peculiar point (predetermined capacity QA) is shown, but the present invention is not limited to this, and the storage battery 40 may have a plurality of peculiar points (predetermined capacity QA). .
  • the complex impedance Zm may be calculated by dividing the change in the battery voltage V by the change in the battery current I when the frequency characteristics and the like of the electric load 20 change during energization.
  • the predetermined capacity identification process is performed when the storage battery 40 is in a fully charged state.
  • the predetermined capacity specifying process may be performed on the condition that it is stored.
  • the controller and method described in the present disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program; may be implemented.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

This battery-monitoring device (53) is applied to a storage battery (40) in which a reaction heat amount changes by a prescribed volume when the electric power storage capacity changes in association with conduction of electric power. The battery-monitoring device comprises: a data storage unit for storing heat amount data that comprise the electric power storage capacity and a parameter related to a reaction heat amount; a division unit for dividing the heat amount data into a first data group pertaining to a capacity lower than a boundary and a second data group pertaining to a capacity higher than the boundary; an approximation calculation unit for calculating a first approximation function that approximates the first data group using a linear function, and a second approximation function that approximates the second data group using a linear function; an error sum calculation unit for calculating an error sum, which is the sum of an approximation error between the first approximation function and the heat amount data in the first data group and an approximation error between the second approximation function and the heat amount data in the second data group; an acquisition unit for modifying the boundary, inducing calculation of the error sum, and acquiring a plurality of error sums; and an identification unit for identifying a prescribed capacity on the basis of the first and second approximation functions that correspond to the lowest error sum among the plurality of error sums.

Description

電池監視装置battery monitor 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年7月29日に出願された日本出願番号2021-124006号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-124006 filed on July 29, 2021, and the contents thereof are incorporated herein.
 本開示は、蓄電池を監視する電池監視装置に関する。 The present disclosure relates to a battery monitoring device that monitors storage batteries.
 近年、軽量且つ高エネルギー密度の蓄電池として例えばリチウムイオン電池が注目されている。リチウムイオン電池では、蓄電池の蓄電容量の変化に伴う電池電圧の変化が小さい領域、すなわちプラトー領域を有するものが存在する。プラトー領域では、蓄電容量と電池電圧との相関関係を示す容量-電圧特性を用いて蓄電池の蓄電容量を算出することが難しい。 In recent years, lithium-ion batteries, for example, have attracted attention as lightweight and high-energy-density storage batteries. Some lithium-ion batteries have a plateau region, ie, a region in which the change in battery voltage is small as the storage capacity of the storage battery changes. In the plateau region, it is difficult to calculate the storage capacity of the storage battery using the capacity-voltage characteristic that indicates the correlation between the storage capacity and the battery voltage.
 リチウムイオン電池の蓄電容量を算出する技術として、プラトー領域内において容量変化に伴い電池電圧が段差状に変化する特異点を利用する技術が知られている。特異点を有する蓄電池では、蓄電池の劣化によらず蓄電池の所定容量で特異点が現れるため、特異点を検出することで、蓄電池の所定容量を求めることができる。例えば特許文献1では、蓄電池の電池電圧を検出し、この電池電圧の時間変化量である電圧変化量に基づいて、特異点を検出している。 As a technology for calculating the storage capacity of a lithium-ion battery, a technology that uses a singular point where the battery voltage changes stepwise as the capacity changes within the plateau region is known. In a storage battery having a peculiar point, the peculiar point appears at a predetermined capacity of the storage battery regardless of deterioration of the storage battery. Therefore, the predetermined capacity of the storage battery can be obtained by detecting the peculiar point. For example, in Patent Literature 1, the battery voltage of a storage battery is detected, and a singular point is detected based on the amount of voltage change, which is the amount of change in the battery voltage over time.
特開2014-167457号公報JP 2014-167457 A
 特異点における電圧変化量は微小である。そのため、例えば高速充電時など、蓄電池に大電流が流れる状況では、電池電圧に生じるノイズにより、電圧変化量に基づいて特異点を検出することができず、蓄電池の所定容量を適正に求めることができないことが懸念される。 The amount of voltage change at the singular point is minute. Therefore, when a large current flows through the storage battery, such as during high-speed charging, noise generated in the battery voltage makes it impossible to detect a singular point based on the amount of voltage change. I am concerned that it is not possible.
 本開示は上記課題に鑑みたものであり、その目的は、蓄電池の電圧変化量を用いずに蓄電池の所定容量を特定することができる電池監視装置を提供することにある。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a battery monitoring device capable of specifying a predetermined capacity of a storage battery without using the amount of voltage change of the storage battery.
 上記課題を解決するための第1の手段は、通電に伴い蓄電容量が変化する際に所定容量で反応熱量の変化が生じる蓄電池に適用され、通電時において前記蓄電池の反応熱量に相関するパラメータを取得し、当該パラメータと前記蓄電容量とからなる時系列の熱量データを記憶するデータ記憶部と、前記データ記憶部により記憶された前記熱量データを、所定の境界よりも低容量の第1データ群と、前記境界よりも高容量の第2データ群とに分割する分割部と、前記第1データ群を一次関数で近似した第1近似関数と、前記第2データ群を一次関数で近似した第2近似関数とを算出する近似算出部と、前記第1近似関数と前記第1データ群における前記各熱量データとの近似誤差と、前記第2近似関数と前記第2データ群における前記各熱量データとの近似誤差との和である誤差和を算出する誤差和算出部と、前記境界を低容量側又は高容量側に変更し、該変更した境界ごとに、前記近似算出部による前記第1近似関数及び前記第2近似関数の算出と、前記誤差和算出部による誤差和の算出とを行わせ、複数の誤差和を取得する取得部と、前記複数の誤差和のうち最小の誤差和に対応する前記第1近似関数及び前記第2近似関数に基づいて、前記蓄電池の前記所定容量を特定する特定部と、を備える。 A first means for solving the above problems is applied to a storage battery in which the amount of reaction heat changes at a predetermined capacity when the storage capacity changes with energization, and a parameter that correlates with the amount of reaction heat of the storage battery during energization is determined. a data storage unit for storing time-series calorie data obtained and composed of the parameter and the storage capacity; and a second data group having a larger capacity than the boundary, a first approximation function that approximates the first data group with a linear function, and a second data group that approximates the second data group with a linear function an approximation calculation unit that calculates two approximation functions; an approximation error between the first approximation function and each of the heat quantity data in the first data group; and the second approximation function and each of the heat quantity data in the second data group. and an error sum calculation unit that calculates the sum of errors that are the sum of the approximation errors of an acquisition unit that acquires a plurality of error sums by calculating the function and the second approximation function and calculating the error sum by the error sum calculation unit; and corresponding to the minimum error sum among the plurality of error sums. and a specifying unit that specifies the predetermined capacity of the storage battery based on the first approximation function and the second approximation function.
 通電に伴い所定容量で反応熱量の変化が生じる蓄電池では、蓄電池の反応熱量に相関するパラメータと蓄電容量との関係において所定容量で変曲点が生じる。本発明者らは、蓄電池の反応熱量に相関するパラメータと蓄電容量との関係において、所定容量よりも低容量側及び高容量側では高精度な直線近似が可能となり、かつ所定容量でその直線の傾きが変化することに着目し、上記パラメータ及び蓄電容量の関係に基づいて蓄電池の所定容量を特定する方法を見出した。 In a storage battery in which the amount of reaction heat changes at a given capacity with energization, an inflection point occurs at the given capacity in the relationship between the parameter that correlates with the reaction heat amount of the storage battery and the storage capacity. The present inventors have found that in the relationship between the parameter that correlates with the reaction heat amount of the storage battery and the storage capacity, highly accurate linear approximation is possible on the lower capacity side and the higher capacity side than the predetermined capacity, and that the linear approximation is possible at the predetermined capacity. Focusing on the fact that the slope changes, the inventors have found a method of specifying the predetermined capacity of the storage battery based on the relationship between the above parameters and the storage capacity.
 具体的には、蓄電池の反応熱量に相関するパラメータと蓄電容量とからなる時系列の熱量データを、所定の境界よりも低容量の第1データ群と、境界よりも高容量の第2データ群とに分割し、第1データ群を一次関数で近似した第1近似関数と、第2データ群を一次関数で近似した第2近似関数とを算出するとともに、第1近似関数と第1データ群における各熱量データとの近似誤差と、第2近似関数と第2データ群における各熱量データとの近似誤差との和である誤差和を算出する。そして、境界を低容量側又は高容量側に変更し、該変更した境界ごとに、第1近似関数及び第2近似関数の算出と、誤差和の算出とを行わせた複数の誤差和を取得し、該複数の誤差和のうち最小の誤差和に対応する第1近似関数及び第2近似関数に基づいて、蓄電池の所定容量を特定するようにした。 Specifically, time-series calorie data consisting of a parameter correlated with the reaction calorie of the storage battery and the storage capacity are divided into a first data group with a lower capacity than a predetermined boundary and a second data group with a higher capacity than the boundary. and calculating a first approximation function that approximates the first data group with a linear function and a second approximation function that approximates the second data group with a linear function, and calculates the first approximation function and the first data group and the approximation error between the second approximation function and each calorie data in the second data group. Then, the boundary is changed to the low-capacity side or the high-capacity side, and a plurality of error sums are obtained by calculating the first approximation function and the second approximation function and calculating the error sum for each of the changed boundaries. Then, the predetermined capacity of the storage battery is specified based on the first approximation function and the second approximation function corresponding to the minimum error sum among the plurality of error sums.
 上記構成によれば、蓄電池の反応熱量に相関するパラメータと蓄電容量との相関関係に基づいて蓄電池の所定容量を特定することができ、蓄電池の電圧変化量を用いずに蓄電池の所定容量を特定することができる。また、該パラメータは、蓄電池に大電流が流れる状況において大きくなる特性を有する。そのため、例えば高速充電時など、蓄電池に大電流が流れ、電圧変化量に基づいて蓄電池の所定容量を適正に特定することが難しい場合であっても、蓄電池の所定容量を特定することができる。 According to the above configuration, the predetermined capacity of the storage battery can be identified based on the correlation between the parameter that correlates with the amount of reaction heat of the storage battery and the storage capacity, and the predetermined capacity of the storage battery can be identified without using the voltage change amount of the storage battery. can do. In addition, the parameter has a characteristic that it increases in a situation where a large current flows through the storage battery. Therefore, even when it is difficult to appropriately specify the predetermined capacity of the storage battery based on the amount of voltage change due to a large current flowing through the storage battery, such as during high-speed charging, the predetermined capacity of the storage battery can be specified.
 第2の手段では、前記データ記憶部は、前記蓄電池の充電時において時系列の前記熱量データを記憶し、前記取得部は、前記境界を、前記蓄電池の満充電側の蓄電容量から徐々に低容量側に変更させる。 In the second means, the data storage unit stores the time-series heat amount data during charging of the storage battery, and the acquisition unit gradually lowers the boundary from the storage capacity of the storage battery on the fully charged side. Change to capacity.
 蓄電池の充電時には、任意の蓄電容量から充電が開始され、その後、満充電状態になった時点で充電が終了されることが想定される。つまり、充電開始時の蓄電容量は任意であるのに対し、充電終了時の蓄電容量は、概ね一定の蓄電容量(満充電容量)となると考えられる。上記構成では、第1データ群と第2データ群との境界を変更する場合に、蓄電池の満充電側の蓄電容量から徐々に低容量側に変更させるようにした。これにより、境界よりも低容量の第1データ群と、境界よりも高容量の第2データ群とに分割する場合において、概ね一定の蓄電容量を基準として境界を設定することができ、第1データ群の熱量データが存在しない状況を生じにくくすることができるとともに、蓄電池の所定容量を適正に特定することができる。 When charging the storage battery, it is assumed that charging will start from an arbitrary storage capacity, and then end when the battery reaches a fully charged state. In other words, while the storage capacity at the start of charging is arbitrary, the storage capacity at the end of charging is considered to be a substantially constant storage capacity (full charge capacity). In the above configuration, when changing the boundary between the first data group and the second data group, the storage capacity of the storage battery is gradually changed from the fully charged side to the low capacity side. As a result, when dividing into a first data group having a lower capacity than the boundary and a second data group having a higher capacity than the boundary, the boundary can be set based on a substantially constant storage capacity. It is possible to prevent the occurrence of a situation in which there is no calorie data in the data group, and to appropriately specify the predetermined capacity of the storage battery.
 第3の手段では、前記パラメータは、前記蓄電池の温度を示す電池温度であり、前記近似算出部は、前記電池温度と前記蓄電容量とからなる時系列の熱量データを用いて、前記第1近似関数と前記第2近似関数とを算出する。 In the third means, the parameter is a battery temperature indicating the temperature of the storage battery, and the approximation calculation unit uses time-series heat amount data including the battery temperature and the storage capacity to calculate the first approximation A function and the second approximation function are calculated.
 通電に伴い所定容量で反応熱量の変化が生じる蓄電池では、反応熱量の変化に伴って電池温度が変化し、電池温度と蓄電容量との関係において所定容量で変曲点が生じる。上記構成によれば、電池温度と蓄電容量とからなる時系列の熱量データを用いて、第1近似関数と第2近似関数とを算出するため、これら第1近似関数と第2近似関数とを用いて変曲点を検出することができ、蓄電池の所定容量を特定することができる。 In a storage battery in which the amount of reaction heat changes at a given capacity with energization, the battery temperature changes with the change in the reaction heat amount, and an inflection point occurs at the given capacity in the relationship between the battery temperature and the storage capacity. According to the above configuration, since the first approximation function and the second approximation function are calculated using the time-series heat amount data consisting of the battery temperature and the storage capacity, the first approximation function and the second approximation function are calculated. can be used to detect the inflection point and to identify the predetermined capacity of the storage battery.
 第4の手段では、前記パラメータは、前記蓄電池のインピーダンスであり、前記近似算出部は、前記インピーダンスと前記蓄電容量とからなる時系列の熱量データを用いて、前記第1近似関数と前記第2近似関数とを算出する。 In the fourth means, the parameter is the impedance of the storage battery, and the approximation calculation unit calculates the first approximation function and the second Calculate the approximation function.
 通電に伴い所定容量で反応熱量の変化が生じる蓄電池では、反応熱量の変化が生じた際の温度変化によりインピーダンスが変化し、インピーダンスと蓄電容量との関係において所定容量で変曲点が生じる。上記構成によれば、インピーダンスと蓄電容量とからなる時系列の熱量データを用いて、第1近似関数と第2近似関数とを算出するため、これら第1近似関数と第2近似関数とを用いて変曲点を検出することができ、蓄電池の所定容量を特定することができる。 In a storage battery in which the amount of reaction heat changes at a given capacity with energization, the impedance changes due to the temperature change when the reaction heat changes, and an inflection point occurs at the given capacity in the relationship between the impedance and the storage capacity. According to the above configuration, since the first approximation function and the second approximation function are calculated using the time-series heat amount data consisting of the impedance and the storage capacity, the first approximation function and the second approximation function are used. can detect the point of inflection and specify the predetermined capacity of the storage battery.
 第5の手段では、前記蓄電池に所定の交流信号を印加した状態で前記交流信号に対する前記蓄電池の応答信号を取得し、その応答信号に基づいて前記インピーダンスを算出するインピーダンス算出部を備え、前記交流信号の周波数は、前記蓄電池のオーミック抵抗に対応するオーミック周波数以下の周波数に設定されている。 In a fifth means, an impedance calculation unit obtains a response signal of the storage battery to the AC signal while a predetermined AC signal is applied to the storage battery, and calculates the impedance based on the response signal. The frequency of the signal is set to a frequency below the ohmic frequency corresponding to the ohmic resistance of the storage battery.
 上記構成では、蓄電池のインピーダンスを算出する場合に、交流信号の周波数をオーミック周波数以下の周波数に設定する。特にオーミック周波数よりも低い周波数では、算出されるインピーダンスにおいて、反応抵抗の影響が強くなる。反応抵抗は温度依存性が強いため、所定容量におけるインピーダンスの変化量が大きくなりやすい。そのため、反応抵抗を用いることで、蓄電池の所定容量を精度よく特定することができる。 In the above configuration, when calculating the impedance of the storage battery, the frequency of the AC signal is set to a frequency equal to or lower than the ohmic frequency. Especially at frequencies lower than the ohmic frequency, the calculated impedance is strongly affected by the reaction resistance. Since the reaction resistance is highly dependent on temperature, the amount of change in impedance at a given capacity tends to be large. Therefore, by using the reaction resistance, it is possible to accurately specify the predetermined capacity of the storage battery.
 第6の手段では、前記第1近似関数の傾きの絶対値が前記第2近似関数の傾きの絶対値よりも大きいことを判定する傾き判定部を備え、前記誤差和算出部は、前記傾き判定部により前記第1近似関数の傾きの絶対値が前記第2近似関数の傾きの絶対値よりも大きいと判定されたことを条件に、前記誤差和を算出する。 The sixth means comprises a slope determination unit for determining whether the absolute value of the slope of the first approximation function is greater than the absolute value of the slope of the second approximation function, and the error sum calculation unit determines the slope The error sum is calculated on condition that the absolute value of the slope of the first approximation function is determined by the unit to be larger than the absolute value of the slope of the second approximation function.
 蓄電池の反応熱量に相関するパラメータと蓄電容量との関係では、蓄電池の所定容量を含むその近傍領域に境界が設定されると、第1近似関数(低容量側の近似関数)の傾きの絶対値が第2近似関数(高容量側の近似関数)の傾きの絶対値よりも大きくなる。ただし、蓄電容量の広範囲においては、境界の設定によっては各近似関数の傾きの関係が逆になることが考えられ、各近似関数の傾きの関係を考慮しないと、誤った近似による近似関数に基づいて所定容量が誤って特定されることが懸念される。この点、上記構成によれば、第1近似関数と第2近似関数とに基づいて、所定容量を正しく求めることができる。 In the relationship between the parameter that correlates with the reaction heat amount of the storage battery and the storage capacity, when the boundary is set in the vicinity area including the predetermined capacity of the storage battery, the absolute value of the slope of the first approximation function (approximation function on the low capacity side) is greater than the absolute value of the slope of the second approximation function (approximation function on the high capacity side). However, in a wide range of storage capacity, depending on the setting of the boundary, the slope relationship of each approximation function may be reversed. There is a concern that the predetermined capacity may be erroneously specified. In this respect, according to the above configuration, the predetermined capacity can be obtained correctly based on the first approximation function and the second approximation function.
 第7の手段では、前記蓄電池が充電される場合において、前記蓄電池が満充電状態になるまでの時系列の充電電流データを記憶する充電電流記憶部と、前記充電電流データを用い、前記特定部により特定された前記所定容量から満充電状態になるまでの期間で前記蓄電池に流れた充電電流の電流積算値を算出する積算値算出部と、前記電流積算値に基づいて前記蓄電池の劣化状態を判定する劣化状態判定部と、を備える。 In the seventh means, when the storage battery is charged, a charging current storage unit that stores time-series charging current data until the storage battery reaches a fully charged state; an integrated value calculation unit that calculates an integrated current value of the charging current that has flowed through the storage battery in a period from the specified capacity specified by the above to a fully charged state; and a deterioration state determination unit for determining.
 蓄電池の劣化状態は、所定容量及び電流積算値に基づいて判定される。ここで、蓄電池において反応熱量の変化が生じる蓄電容量、すなわち所定容量は、蓄電池が劣化しても変わらない一方、満充電状態となる蓄電容量は、蓄電池の劣化により変化する。この場合、上記のとおり蓄電池における所定容量を求め、その所定容量を基準として満充電容までの電流積算値を算出することで、蓄電池の劣化状態を適正に判定することができる。 The state of deterioration of the storage battery is determined based on the predetermined capacity and integrated current value. Here, the storage capacity at which the amount of reaction heat changes in the storage battery, that is, the predetermined capacity, does not change even if the storage battery deteriorates, while the storage capacity in the fully charged state changes due to deterioration of the storage battery. In this case, the deterioration state of the storage battery can be properly determined by obtaining the predetermined capacity of the storage battery as described above and calculating the current integrated value up to the full charge capacity based on the predetermined capacity.
 第8の手段では、前記蓄電池は、負極に黒鉛を含む。負極に黒鉛を含む蓄電池では、蓄電容量が所定容量となる場合に、負極で電極構造が変化し、反応熱量の変化が生じる。そのため、この反応熱量の変化を利用することで、蓄電池の所定容量を特定することができる。 In the eighth means, the storage battery contains graphite in the negative electrode. In a storage battery containing graphite in the negative electrode, when the storage capacity reaches a predetermined capacity, the electrode structure changes at the negative electrode, causing a change in the amount of reaction heat. Therefore, the predetermined capacity of the storage battery can be specified by using the change in the amount of reaction heat.
 第9の手段では、前記蓄電池は、正極にリン酸鉄リチウムを含む。正極にリン酸鉄リチウムを含むオリビン系の蓄電池では、蓄電池の蓄電容量の変化に伴う蓄電池の電圧変化量が小さく、電圧変化量に基づいて蓄電池の所定容量を特定することが難しい。上記構成では、蓄電池の反応熱量に相関するパラメータに基づいて蓄電池の所定容量を特定するため、蓄電池の電圧変化量を用いずに蓄電池の所定容量を特定することができる。 In the ninth means, the storage battery contains lithium iron phosphate in the positive electrode. In an olivine-based storage battery containing lithium iron phosphate in the positive electrode, the amount of change in voltage of the storage battery due to changes in the storage capacity of the storage battery is small, and it is difficult to specify the predetermined capacity of the storage battery based on the amount of change in voltage. In the above configuration, since the predetermined capacity of the storage battery is specified based on the parameter that correlates with the amount of reaction heat of the storage battery, the predetermined capacity of the storage battery can be specified without using the voltage change amount of the storage battery.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電源システムの回路図であり、 図2は、蓄電池の構成を示す図であり、 図3は、蓄電容量と電池電圧及び反応熱量との相関関係を示す図であり、 図4は、蓄電容量と電池温度との相関関係を示す図であり、 図5は、第1実施形態における判定処理のフローチャートであり、 図6は、所定容量特定処理のフローチャートであり、 図7は、複数の境界候補を示す図であり、 図8は、境界を変更した場合の第1近似関数及び第2近似関数の変化を示す図であり、 図9は、境界を変更した場合の誤差和の変化を示す図であり、 図10は、蓄電容量とインピーダンスとの相関関係を示す図であり、 図11は、第2実施形態における判定処理のフローチャートであり、 図12は、境界を変更した場合の第1近似関数及び第2近似関数の変化を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a circuit diagram of a power supply system; FIG. 2 is a diagram showing the configuration of a storage battery, FIG. 3 is a diagram showing the correlation between the storage capacity, the battery voltage, and the amount of reaction heat, FIG. 4 is a diagram showing the correlation between the storage capacity and the battery temperature, FIG. 5 is a flowchart of determination processing in the first embodiment, FIG. 6 is a flowchart of the predetermined capacity identification process, FIG. 7 is a diagram showing a plurality of boundary candidates; FIG. 8 is a diagram showing changes in the first approximation function and the second approximation function when the boundary is changed, FIG. 9 is a diagram showing changes in the error sum when the boundary is changed, FIG. 10 is a diagram showing the correlation between the storage capacity and the impedance, FIG. 11 is a flowchart of determination processing in the second embodiment, FIG. 12 is a diagram showing changes in the first approximation function and the second approximation function when the boundary is changed.
 (第1実施形態)
 以下、電池監視装置を車両(例えば、ハイブリッド車や電気自動車)の電源システムに適用した第1実施形態について、図面を参照しつつ説明する。
(First embodiment)
A first embodiment in which a battery monitoring device is applied to a power supply system of a vehicle (for example, a hybrid vehicle or an electric vehicle) will be described below with reference to the drawings.
 図1に示すように、電源システム10は、回転機(モータジェネレータ)などの電気負荷20に電力を供給するシステムであり、蓄電池40を備えている。蓄電池40の正極と電気負荷20とを接続する正極側電源経路L1及び蓄電池40の負極と電気負荷20とを接続する負極側電源経路L2の少なくとも一方には、リレースイッチSMR(システムメインリレースイッチ)が設けられており、リレースイッチSMRにより、蓄電池40と電気負荷20との間の通電及び通電遮断が切り替え可能に構成されている。なお、本実施形態では、蓄電池40として、リチウムイオン蓄電池が用いられている。 As shown in FIG. 1, the power supply system 10 is a system that supplies electric power to an electrical load 20 such as a rotating machine (motor generator), and includes a storage battery 40 . A relay switch SMR (system main relay switch) is connected to at least one of a positive power supply path L1 connecting the positive electrode of the storage battery 40 and the electrical load 20 and a negative power supply path L2 connecting the negative electrode of the storage battery 40 and the electrical load 20. is provided, and a relay switch SMR is configured to switch between energization and energization cutoff between the storage battery 40 and the electric load 20 . In addition, in this embodiment, a lithium ion storage battery is used as the storage battery 40 .
 正極側電源経路L1には正極側充電経路L3が接続され、負極側電源経路L2には負極側充電経路L4が接続されており、これら各充電経路L3,L4に一対の接続端子21が設けられている。蓄電池40は、一対の接続端子21により電源システム10外部の外部充電装置に接続可能に構成されており、外部充電装置により充電される。 A positive charging path L3 is connected to the positive power supply path L1, and a negative charging path L4 is connected to the negative power supply path L2. ing. The storage battery 40 is configured to be connectable to an external charging device outside the power supply system 10 via a pair of connection terminals 21, and is charged by the external charging device.
 図2に基づいて蓄電池40の構成について説明する。蓄電池40は、電極体44と、電解質45と、電極体44及び電解質45を収容する収容ケース46と、を備えている。電解質45は、非水電解液であり、例えば有機溶剤のエチレンカーボネートやジエチルカーボネート等である。収容ケース46は、例えばアルミニウム合金により形成されており、その上面の長手方向両端に、外部端子47が設けられている。 The configuration of the storage battery 40 will be described based on FIG. The storage battery 40 includes an electrode body 44 , an electrolyte 45 , and a housing case 46 that houses the electrode body 44 and the electrolyte 45 . The electrolyte 45 is a non-aqueous electrolyte such as organic solvent ethylene carbonate or diethyl carbonate. The housing case 46 is made of, for example, an aluminum alloy, and external terminals 47 are provided at both longitudinal ends of the upper surface thereof.
 電極体44は、正極としての正極導電板44aと、負極としての負極導電板44bと、正極導電板44aと負極導電板44bとの間に配置されるセパレータ44cとにより構成されている。 The electrode body 44 is composed of a positive electrode conductive plate 44a as a positive electrode, a negative electrode conductive plate 44b as a negative electrode, and a separator 44c arranged between the positive electrode conductive plate 44a and the negative electrode conductive plate 44b.
 正極導電板44aは、アルミニウム等の金属箔から構成される正極金属箔44dと、この正極金属箔44dの表裏面に塗布された正極活物質44eとから構成される。正極活物質44eは、オリビン型リン酸鉄、すなわちリン酸鉄リチウムである。負極導電板44bは、銅等の金属薄から構成される負極金属箔44fと、この負極金属箔44fの表裏面に塗布された負極活物質44gとから構成される。負極活物質44gは、グラファイトやカーボン等の黒鉛である。セパレータ44cは、ポリエチレン樹脂により形成された多孔質の絶縁膜である。電極体44は、セパレータ44cを介して、正極導電板44aと負極導電板44bとの間でリチウムイオンが移動することにより通電する。 The positive electrode conductive plate 44a is composed of a positive electrode metal foil 44d made of a metal foil such as aluminum, and a positive electrode active material 44e applied to the front and rear surfaces of the positive electrode metal foil 44d. The positive electrode active material 44e is olivine-type iron phosphate, that is, lithium iron phosphate. The negative electrode conductive plate 44b is composed of a negative electrode metal foil 44f made of a thin metal such as copper and a negative electrode active material 44g applied to the front and rear surfaces of the negative electrode metal foil 44f. 44 g of negative electrode active materials are graphite, such as graphite and carbon. The separator 44c is a porous insulating film made of polyethylene resin. The electrode body 44 conducts electricity by moving lithium ions between the positive electrode conductive plate 44a and the negative electrode conductive plate 44b via the separator 44c.
 図2では、蓄電池40の複素インピーダンスZmの等価回路モデルが示されている。この等価回路モデルでは、蓄電池40の複素インピーダンスZmは、オーミック抵抗Rohmと反応抵抗Rctと拡散抵抗Rwとの直列接続体により構成されている。オーミック抵抗Rohmは、蓄電池40を構成する電極や電解液での通電抵抗である。反応抵抗Rctは、電極における電極界面反応による抵抗を表すものであり、抵抗成分42aと容量成分42bとの並列接続体として表される。拡散抵抗Rwは、電極表面に塗布された電極活物質内部へのリチウムイオンの拡散に伴う抵抗を表すものである。 In FIG. 2, an equivalent circuit model of the complex impedance Zm of the storage battery 40 is shown. In this equivalent circuit model, the complex impedance Zm of the storage battery 40 is composed of a series connection of an ohmic resistance Rohm, a reaction resistance Rct, and a diffusion resistance Rw. The ohmic resistance Rohm is a current-carrying resistance in the electrodes and the electrolytic solution that constitute the storage battery 40 . The reaction resistance Rct represents the resistance due to the electrode interfacial reaction in the electrode, and is expressed as a parallel connection of the resistance component 42a and the capacitance component 42b. The diffusion resistance Rw represents the resistance associated with the diffusion of lithium ions into the electrode active material applied to the electrode surface.
 また、図1に示すように、電源システム10は、蓄電池40の状態を測定する電池測定装置50と、電気負荷20を制御するECU60と、を備えている。電池測定装置50は、蓄電池40の蓄電容量Q及びSOH(劣化状態)などを測定する装置である。電池測定装置50は、電流モジュレーション回路51と、第1電圧計52と、電池監視装置としての制御装置53と、を備えている。 Also, as shown in FIG. 1 , the power supply system 10 includes a battery measuring device 50 that measures the state of the storage battery 40 and an ECU 60 that controls the electric load 20 . The battery measuring device 50 is a device that measures the storage capacity Q and SOH (state of deterioration) of the storage battery 40 . The battery measuring device 50 includes a current modulation circuit 51, a first voltmeter 52, and a control device 53 as a battery monitoring device.
 電流モジュレーション回路51は、測定対象である蓄電池40に所定の交流信号を印加する回路である。電流モジュレーション回路51は、発振器51aと、発振器51aに直列に接続された第1電流計51bとを有し、第1電気経路81により蓄電池40に接続されている。 The current modulation circuit 51 is a circuit that applies a predetermined AC signal to the storage battery 40 to be measured. The current modulation circuit 51 has an oscillator 51 a and a first ammeter 51 b connected in series with the oscillator 51 a and is connected to the storage battery 40 by a first electrical path 81 .
 発振器51aは、制御装置53から指示された交流信号を生成し、蓄電池40に印加する。交流信号は、例えば正弦波信号や矩形波信号である。第1電流計51bは、第1電気経路81に生じる電流信号を測定し、測定した電流信号データを制御装置53に出力する。 The oscillator 51 a generates an AC signal instructed by the control device 53 and applies it to the storage battery 40 . The AC signal is, for example, a sine wave signal or a square wave signal. The first ammeter 51 b measures the current signal generated in the first electrical path 81 and outputs the measured current signal data to the controller 53 .
 第1電圧計52は、第1電気経路81と異なる第2電気経路82により蓄電池40に接続されている。第1電圧計52には、交流信号の印加時、蓄電池40の複素インピーダンスZmを反映した応答信号(電圧変動)が生じる。第1電圧計52は、この応答信号を測定し、測定した応答信号データを制御装置53に出力する。 The first voltmeter 52 is connected to the storage battery 40 via a second electrical path 82 different from the first electrical path 81 . A response signal (voltage fluctuation) reflecting the complex impedance Zm of the storage battery 40 is generated in the first voltmeter 52 when an AC signal is applied. The first voltmeter 52 measures this response signal and outputs the measured response signal data to the control device 53 .
 また、電池測定装置50は、第2電流計54と、第2電圧計55と、温度計56と、を備えている。第2電流計54は、正極側電源経路L1に設けられている。第2電流計54は、蓄電池40の電池電流Iを測定し、測定した電池電流データを制御装置53に出力する。第2電圧計55は、電気負荷20に並列に接続されている。第2電圧計55は、蓄電池40の電池電圧Vを測定し、測定した電池電圧データを制御装置53に出力する。温度計56は、例えば熱電対やサーミスタであり、蓄電池40の近傍に配置されている。温度計56は、蓄電池40の電池温度Tを測定し、測定した電池温度データを制御装置53に出力する。 The battery measuring device 50 also includes a second ammeter 54 , a second voltmeter 55 and a thermometer 56 . The second ammeter 54 is provided in the positive electrode side power supply path L1. The second ammeter 54 measures the battery current I of the storage battery 40 and outputs the measured battery current data to the control device 53 . The second voltmeter 55 is connected in parallel with the electrical load 20 . The second voltmeter 55 measures the battery voltage V of the storage battery 40 and outputs the measured battery voltage data to the control device 53 . The thermometer 56 is, for example, a thermocouple or a thermistor, and is arranged near the storage battery 40 . The thermometer 56 measures the battery temperature T of the storage battery 40 and outputs the measured battery temperature data to the control device 53 .
 制御装置53は、マイコンを主体として構成され、自身が備える記憶装置に記憶されたプログラムを実行することにより、各種制御機能を実現する。制御装置53は、電池電流I及び電池電圧Vに基づいて、電気負荷20の駆動状態を把握し、その駆動状態をECU60に出力する。 The control device 53 is mainly composed of a microcomputer, and implements various control functions by executing programs stored in its own storage device. Based on the battery current I and the battery voltage V, the control device 53 grasps the drive state of the electric load 20 and outputs the drive state to the ECU 60 .
 また、制御装置53は、応答信号及び電流信号に基づいて、蓄電池40の複素インピーダンスZm、つまり複素インピーダンスZmの実部ReZm及び虚部ImZmを算出する。制御装置53は、算出結果に基づいて、例えば、複素インピーダンス平面プロット(コールコールプロット)を作成し、正極導電板44a、負極導電板44b、及び電解質45などの特性を把握する。 The control device 53 also calculates the complex impedance Zm of the storage battery 40, that is, the real part ReZm and the imaginary part ImZm of the complex impedance Zm, based on the response signal and the current signal. The controller 53 creates, for example, a complex impedance plane plot (Cole-Cole plot) based on the calculation results, and grasps the characteristics of the positive conductive plate 44a, the negative conductive plate 44b, the electrolyte 45, and the like.
 図2に、蓄電池40の複素インピーダンス平面プロットを示す。複素インピーダンス平面プロットでは、容量成分に着目したベクトル軌跡を第一象限に示すために、縦軸の上側が「-ImZm」となるように、つまり虚数部が反転するように記載されている。 A complex impedance plane plot of the storage battery 40 is shown in FIG. In the complex impedance plane plot, in order to show the vector trajectory focusing on the capacitance component in the first quadrant, the upper side of the vertical axis is written as "-ImZm", that is, the imaginary part is inverted.
 複素インピーダンス平面プロット上においては、指示信号により指示された交流信号の周波数ωrにより複素インピーダンスZmが変化し、低周波領域に半円状の軌跡である円弧Crが現れる。円弧Crにおける高周波側の端点PAでは、複素インピーダンスZmの虚部ImZmがゼロとなる。この端点PAにおける複素インピーダンスZmの実部ReZmの値が、オーミック抵抗Rohmを表す。 On the complex impedance plane plot, the complex impedance Zm changes according to the frequency ωr of the AC signal indicated by the indication signal, and an arc Cr, which is a semicircular locus, appears in the low frequency region. The imaginary part ImZm of the complex impedance Zm becomes zero at the end point PA on the high frequency side of the arc Cr. The value of the real part ReZm of the complex impedance Zm at this end point PA represents the ohmic resistance Rohm.
 円弧Crの低周波側には、直線状の軌跡である直線Prが現れる。円弧Crと直線Prとの接続点を、円弧Crにおける低周波側の端点PBとした場合に、端点PBにおける複素インピーダンスZmの実部ReZmの値と、端点PAにおける複素インピーダンスZmの実部ReZmの値の差分値が、反応抵抗Rctを表す。 A straight line Pr, which is a linear locus, appears on the low-frequency side of the arc Cr. When the connection point between the arc Cr and the straight line Pr is the low-frequency end point PB of the arc Cr, the value of the real part ReZm of the complex impedance Zm at the end point PB and the real part ReZm of the complex impedance Zm at the end point PA The difference value of the values represents the reaction resistance Rct.
 さらに、制御装置53は、電池電流I及び電池電圧Vに基づいて、蓄電池40の蓄電容量Q及びSOHを把握する。図3に、蓄電池40における蓄電容量Qと電池電圧Vとの相関関係を示す。図3に示すように、正極活物質44eにリン酸鉄リチウムを用いたオリビン系の蓄電池40は、容量変化に伴う電池電圧Vの変化が小さい領域、すなわちプラトー領域を有する。プラトー領域では、蓄電容量Qと電池電圧Vとの相関関係を用いて蓄電池40の蓄電容量Qを算出することが難しい。 Furthermore, based on the battery current I and the battery voltage V, the control device 53 grasps the storage capacity Q and SOH of the storage battery 40 . FIG. 3 shows the correlation between the storage capacity Q and the battery voltage V in the storage battery 40. As shown in FIG. As shown in FIG. 3, the olivine-based storage battery 40 using lithium iron phosphate as the positive electrode active material 44e has a region in which the change in the battery voltage V due to the change in capacity is small, that is, a plateau region. It is difficult to calculate the storage capacity Q of the storage battery 40 using the correlation between the storage capacity Q and the battery voltage V in the plateau region.
 プラトー領域内には、容量変化に伴い電池電圧Vが段差状に変化する特異点が存在する。蓄電池40では、蓄電池40の劣化によらず蓄電池40の所定容量QAで特異点が現れるため、電池電圧Vの電圧変化量を用いて特異点を検出することで、蓄電池40の所定容量QAを特定することができる。しかし、特異点における電圧変化量は微小である。そのため、例えば高速充電時など、蓄電池40に大電流が流れる状況では、電池電圧Vに生じるノイズにより、電圧変化量に基づいて特異点を検出することができず、蓄電池40の所定容量QAを適正に特定することが難しい。 Within the plateau region, there is a singular point where the battery voltage V changes stepwise as the capacity changes. In the storage battery 40, since a singular point appears at the predetermined capacity QA of the storage battery 40 regardless of deterioration of the storage battery 40, the predetermined capacity QA of the storage battery 40 is specified by detecting the singular point using the voltage change amount of the battery voltage V. can do. However, the amount of voltage change at the singular point is very small. Therefore, in a situation where a large current flows in the storage battery 40, such as during high-speed charging, noise generated in the battery voltage V makes it impossible to detect a singular point based on the amount of voltage change. difficult to identify.
 図3に、蓄電池40における蓄電容量Qと反応熱量Hとの相関関係を示す。反応熱量Hは、電池温度Tと電池電流Iと発熱係数dV/dTとの積であり、発熱係数dV/dTは、単位温度当たりの開路電圧の変化量であり、蓄電容量Q毎に固有の値を持つ。負極活物質44gに黒鉛を用いたオリビン系の蓄電池40では、通電に伴い蓄電容量Qが変化する際において、所定容量QAで反応熱量Hの変化が生じるため、反応熱量Hに相関するパラメータである電池温度Tが所定容量QAで変化する。その結果、図4に示すように、蓄電容量Qと電池温度Tとの相関関係において、所定容量QAで変曲点が生じる。 FIG. 3 shows the correlation between the storage capacity Q and the amount of reaction heat H in the storage battery 40 . Reaction heat quantity H is the product of battery temperature T, battery current I, and heat generation coefficient dV/dT. Heat generation coefficient dV/dT is the amount of change in open circuit voltage per unit temperature. have a value. In the olivine-based storage battery 40 using graphite as the negative electrode active material 44g, when the storage capacity Q changes with the passage of electricity, the reaction heat quantity H changes at a predetermined capacity QA. Battery temperature T changes at a predetermined capacity QA. As a result, as shown in FIG. 4, in the correlation between the storage capacity Q and the battery temperature T, an inflection point occurs at a predetermined capacity QA.
 本発明者らは、蓄電容量Qと電池温度Tとの相関関係において、所定容量QAよりも低容量側及び高容量側では高精度な直線近似が可能となり、かつ所定容量QAでその直線の傾きが変化することに着目した。蓄電池40では、所定容量QAよりも低容量側及び高容量側における直線近似の傾きは共に正であり、蓄電容量Qの増加に伴って電池温度Tが単調増加するとともに、高容量側では低容量側よりも直線近似の傾きが小さくなる。本発明者らは、蓄電容量Qと電池温度Tとの相関関係に基づいて蓄電池40の所定容量QAを特定する方法を見出した。 The present inventors have found that in the correlation between the storage capacity Q and the battery temperature T, highly accurate linear approximation is possible on the lower capacity side and the higher capacity side than the predetermined capacity QA, and the slope of the straight line at the predetermined capacity QA We focused on the change in In the storage battery 40, the slope of the linear approximation is positive both on the lower capacity side and on the higher capacity side than the predetermined capacity QA. The slope of the linear approximation is smaller than the side. The inventors have found a method of specifying the predetermined capacity QA of the storage battery 40 based on the correlation between the storage capacity Q and the battery temperature T. FIG.
 具体的には、図8に示すように、制御装置53は、通電時に蓄電容量Qと電池温度Tとからなる時系列の熱量データを取得し、取得された熱量データを、所定の境界Bよりも低容量の第1データ群DAと、境界Bよりも高容量の第2データ群DBとに分割する。第1データ群DAを一次関数で近似した第1近似関数F1と、第2データ群DBを一次関数で近似した第2近似関数F2とを算出するとともに、第1近似関数F1と第1データ群DAにおける各熱量データとの近似誤差と、第2近似関数F2と第2データ群DBにおける各熱量データとの近似誤差との和である誤差和Gを算出する。そして、境界Bを低容量側又は高容量側に変更し、該変更した境界Bごとに、第1近似関数F1及び第2近似関数F2の算出と、誤差和Gの算出とを行わせた複数の誤差和Gを取得し、該複数の誤差和Gのうち最小の誤差和Gに対応する第1近似関数F1及び第2近似関数F2に基づいて、蓄電池40の所定容量QAを特定する所定容量特定処理を実施する。所定容量特定処理によれば、蓄電容量Qと電池温度Tとの相関関係に基づいて蓄電池40の所定容量QAを特定することができ、蓄電池40の電圧変化量を用いずに蓄電池40の所定容量QAを特定することができる。 Specifically, as shown in FIG. 8, the control device 53 acquires time-series calorie data consisting of the storage capacity Q and the battery temperature T when energized, and spreads the acquired calorie data from a predetermined boundary B. A first data group DA with a smaller capacity than the boundary B and a second data group DB with a higher capacity than the boundary B. A first approximation function F1 that approximates the first data group DA with a linear function and a second approximation function F2 that approximates the second data group DB with a linear function are calculated, and the first approximation function F1 and the first data group are calculated. An error sum G is calculated which is the sum of an approximation error between each calorie data in DA and an approximation error between the second approximation function F2 and each calorie data in the second data group DB. Then, the boundary B is changed to the low-capacity side or the high-capacity side, and the calculation of the first approximation function F1 and the second approximation function F2 and the calculation of the error sum G are performed for each of the changed boundaries B. , and based on the first approximation function F1 and the second approximation function F2 corresponding to the minimum error sum G among the plurality of error sums G, the predetermined capacity QA of the storage battery 40 is specified. Carry out specific processing. According to the predetermined capacity identification process, the predetermined capacity QA of the storage battery 40 can be identified based on the correlation between the storage capacity Q and the battery temperature T, and the predetermined capacity QA of the storage battery 40 can be obtained without using the voltage change amount of the storage battery 40. QA can be specified.
 図5に、本実施形態の判定処理のフローチャートを示す。判定処理は、上述の所定容量特定処理を含むとともに、該所定容量特定処理により特定された蓄電池40の所定容量QAに基づいてSOHを判定する処理である。制御装置53は、蓄電池40の充電時に、所定の制御周期毎に判定処理を繰り返し実施する。 FIG. 5 shows a flowchart of the determination processing of this embodiment. The determination process includes the predetermined capacity identification process described above, and determines the SOH based on the predetermined capacity QA of the storage battery 40 identified by the predetermined capacity identification process. When charging the storage battery 40, the control device 53 repeatedly performs the determination process at each predetermined control cycle.
 判定処理を開始すると、ステップS11では、蓄電池40の充電が終了したか否かを判定する。蓄電池40が満充電状態となっておらず、蓄電池40の充電が継続されている場合、ステップS12に進む。一方、蓄電池40が満充電状態となっている場合、ステップS14に進む。なお、蓄電池40の満充電状態は、例えば蓄電池40の電池電圧Vが所定の満充電電圧となった状態、または容量上昇に伴い蓄電池40がプラトー領域を脱し、容量変化に伴う電池電圧Vの変化が大きくなった状態を意味する。 When the determination process is started, in step S11, it is determined whether charging of the storage battery 40 has been completed. If the storage battery 40 is not fully charged and the charging of the storage battery 40 continues, the process proceeds to step S12. On the other hand, when the storage battery 40 is fully charged, the process proceeds to step S14. Note that the fully charged state of the storage battery 40 is, for example, a state in which the battery voltage V of the storage battery 40 reaches a predetermined full charge voltage, or a state in which the storage battery 40 exits the plateau region as the capacity increases and the battery voltage V changes as the capacity changes. means that the has become larger.
 ステップS12では、電池電流Iを計測し、充電電流データとして記憶する。続くステップS13では、電池温度Tを計測するとともに、充電電流データを用いた電流積算により蓄電池40の蓄電容量Qを算出し、蓄電容量Qと電池温度Tとからなる熱量データを記憶する。 In step S12, the battery current I is measured and stored as charging current data. In the subsequent step S13, the battery temperature T is measured, the storage capacity Q of the storage battery 40 is calculated by current integration using the charging current data, and heat quantity data consisting of the storage capacity Q and the battery temperature T is stored.
 蓄電池40の充電中、ステップS12,S13の処理が繰り返し実施される。その結果、ステップS12では、蓄電池40が満充電状態になるまでの時系列の充電電流データが記憶され、ステップS13では、蓄電池40が満充電状態になるまでの時系列の熱量データが記憶される。なお、本実施形態において、ステップS12の処理が「充電電流記憶部」に相当し、ステップS13の処理が「データ記憶部」に相当する。 The processes of steps S12 and S13 are repeatedly performed while the storage battery 40 is being charged. As a result, in step S12, time-series charging current data until the storage battery 40 reaches the fully charged state is stored, and in step S13, time-series heat amount data until the storage battery 40 reaches the fully charged state is stored. . In this embodiment, the process of step S12 corresponds to the "charging current storage section", and the process of step S13 corresponds to the "data storage section".
 ステップS14では、所定容量特定処理を実施する。図6に、所定容量特定処理のフローチャートを示す。所定容量特定処理を開始すると、ステップS21では、第1近似関数F1と第2近似関数F2とを算出するための初回の境界Bを設定する。 In step S14, a predetermined capacity identification process is performed. FIG. 6 shows a flowchart of the predetermined capacity specifying process. When the predetermined capacity specifying process is started, in step S21, an initial boundary B for calculating the first approximation function F1 and the second approximation function F2 is set.
 図7に示すように、本実施形態では、電池温度データが取得された蓄電容量Qの範囲において、等間隔に配置された複数の境界候補BAが定められ、複数の境界候補BAから選択された1つの境界候補BAが境界Bとして設定される。このとき、境界Bよりも低容量の熱量データが第1データ群DAであり、境界Bよりも高容量の熱量データが第2データ群DBである。ステップS21では、複数の境界候補BAのうち、最も高容量側に位置する境界候補BAを境界Bとして設定する。これにより、第2データ群DBに含まれる熱量データが最小となる。 As shown in FIG. 7, in the present embodiment, a plurality of boundary candidate BAs arranged at equal intervals are determined in the range of the storage capacity Q for which the battery temperature data is obtained, and selected from the plurality of boundary candidate BAs. One boundary candidate BA is set as the boundary B. At this time, the calorie data with a capacity lower than the boundary B is the first data group DA, and the calorie data with a capacity higher than the boundary B is the second data group DB. In step S21, the boundary candidate BA located on the highest capacity side among the plurality of boundary candidate BAs is set as the boundary B. FIG. This minimizes the amount of heat data included in the second data group DB.
 ステップS22では、第1近似関数F1及び第2近似関数F2を算出する。第1近似関数F1及び第2近似関数F2は、例えば最小二乗法を用いて算出される。続くステップS23では、第1近似関数F1の傾きである第1傾きθ1の絶対値が、第2近似関数F2の傾きである第2傾きθ2の絶対値よりも大きいか否かを判定する。第1傾きθ1の絶対値が第2傾きθ2の絶対値よりも大きい場合、ステップS24に進む。一方、第1傾きθ1の絶対値が第2傾きθ2の絶対値よりも小さい場合、誤差和Gを算出することなくステップS27に進む。なお、本実施形態において、ステップS22の処理が「近似算出部」に相当し、ステップS23の処理が「傾き判定部」に相当する。 In step S22, a first approximation function F1 and a second approximation function F2 are calculated. The first approximation function F1 and the second approximation function F2 are calculated using, for example, the method of least squares. In subsequent step S23, it is determined whether or not the absolute value of the first slope θ1, which is the slope of the first approximation function F1, is greater than the absolute value of the second slope θ2, which is the slope of the second approximation function F2. If the absolute value of the first slope θ1 is greater than the absolute value of the second slope θ2, the process proceeds to step S24. On the other hand, if the absolute value of the first slope θ1 is smaller than the absolute value of the second slope θ2, the error sum G is not calculated and the process proceeds to step S27. In the present embodiment, the process of step S22 corresponds to the "approximation calculation unit", and the process of step S23 corresponds to the "inclination determination unit".
 ステップS24では、誤差和Gを算出する。誤差和Gは、例えば残差を用いて算出される。図8(A)に示すように、時系列の熱量データにおいて、i回目(iは自然数)に記憶された熱量データが示す蓄電容量Q及び電池温度Tを、蓄電容量Qi及び電池温度Tiとする。また、第1近似関数F1及び第2近似関数F2において、蓄電容量Qiに対応する値を近似値Fiとする。この場合、時系列の熱量データのデータ数をnとすると、誤差和Gは、以下の数式(1)のように表すことができる。なお、本実施形態において、ステップS24の処理が「誤差和算出部」に相当する。 In step S24, the error sum G is calculated. The error sum G is calculated using residuals, for example. As shown in FIG. 8A, in the time-series heat quantity data, the storage capacity Q and the battery temperature T indicated by the heat quantity data stored for the i-th time (i is a natural number) are assumed to be the storage capacity Qi and the battery temperature Ti. . In the first approximation function F1 and the second approximation function F2, the value corresponding to the storage capacity Qi is assumed to be the approximation value Fi. In this case, assuming that the number of time-series heat quantity data is n, the error sum G can be expressed by the following formula (1). It should be noted that in the present embodiment, the process of step S24 corresponds to the "error sum calculation unit".
Figure JPOXMLDOC01-appb-M000001
 ステップS25では、ステップS24で算出された誤差和Gが最小であるか否かを判定する。このとき、今回算出した誤差和Gが前回までの誤差和Gの最小値よりも小さければ、今回の誤差和Gが最小であるとする。誤差和Gが最小である場合、ステップS26において、ステップS22で算出された第1近似関数F1及び第2近似関数F2を記憶し、ステップS27に進む。一方、誤差和Gが最小でない場合、ステップS22で算出された第1近似関数F1及び第2近似関数F2を記憶することなくステップS27に進む。
Figure JPOXMLDOC01-appb-M000001
In step S25, it is determined whether or not the error sum G calculated in step S24 is the minimum. At this time, if the error sum G calculated this time is smaller than the minimum value of the error sums G up to the previous time, it is assumed that the error sum G this time is the minimum. When the error sum G is the minimum, in step S26, the first approximation function F1 and the second approximation function F2 calculated in step S22 are stored, and the process proceeds to step S27. On the other hand, if the error sum G is not the minimum, the process proceeds to step S27 without storing the first approximation function F1 and the second approximation function F2 calculated in step S22.
 ステップS27では、境界Bを低容量側に移動するか否かを判定する。本実施形態では、境界Bの設定範囲を予め定めておき、境界Bを、蓄電池40の満充電側の蓄電容量Qから徐々に低容量側に変更させる。具体的には、境界Bとして設定される境界候補BAを、最も高容量側に位置する境界候補BAから最も低容量側に位置する境界候補BAへと順々に変更させる。ステップS27では、誤差和Gを算出した今回の境界Bが、境界Bの設定範囲における複数の境界候補BAのうち最も低容量側の境界候補BAであったか否かを判定し、最も低容量側の境界候補BAでなければ、境界Bを低容量側に移動可能であるとし、ステップS28に進む。ステップS28では、境界Bを低容量側に移動させ、ステップS22に戻る。一方、今回の境界Bが、最も低容量側の境界候補BAであれば、ステップS29に進む。なお、本実施形態において、ステップS21,S28の処理が「分割部」に相当する。 In step S27, it is determined whether or not to move the boundary B to the low capacity side. In this embodiment, the setting range of the boundary B is determined in advance, and the boundary B is gradually changed from the storage capacity Q of the storage battery 40 on the fully charged side to the low capacity side. Specifically, the boundary candidate BA set as the boundary B is sequentially changed from the boundary candidate BA positioned on the highest capacity side to the boundary candidate BA positioned on the lowest capacity side. In step S27, it is determined whether or not the current boundary B for which the sum of errors G has been calculated is the boundary candidate BA on the lowest capacity side among the plurality of boundary candidate BAs in the set range of the boundary B. If it is not the boundary candidate BA, it is determined that the boundary B can be moved to the low capacity side, and the process proceeds to step S28. In step S28, the boundary B is moved to the low capacity side, and the process returns to step S22. On the other hand, if the current boundary B is the boundary candidate BA on the lowest capacity side, the process proceeds to step S29. It should be noted that in the present embodiment, the processing of steps S21 and S28 corresponds to the "dividing section".
 つまり、所定容量特定処理では、各境界候補BAがそれぞれ1回ずつ境界Bとして設定される。各境界候補BAが境界Bとして設定されるごとに、第1近似関数F1及び第2近似関数F2が算出され、誤差和Gが取得される。そして、取得された複数の誤差和Gのち、最小の誤差和Gが選択される。なお、本実施形態において、ステップS22~S26の処理の繰り返しが「取得部」に相当する。 That is, in the predetermined capacity identification process, each boundary candidate BA is set as the boundary B once. Every time each boundary candidate BA is set as the boundary B, the first approximation function F1 and the second approximation function F2 are calculated, and the error sum G is acquired. Then, the smallest error sum G is selected from among the plurality of error sums G obtained. Note that, in the present embodiment, repetition of the processing of steps S22 to S26 corresponds to the "acquisition unit".
 ステップS29では、ステップS26で記憶された第1近似関数F1及び第2近似関数F2に基づいて、蓄電池40の所定容量QAを特定し、所定容量特定処理を終了する。ステップS26で複数の第1近似関数F1及び第2近似関数F2が記憶されている場合には、複数の第1近似関数F1及び第2近似関数F2のうち、最後に記憶された第1近似関数F1及び第2近似関数F2に基づいて、蓄電池40の所定容量QAを特定する。本実施形態では、第1近似関数F1及び第2近似関数F2の交点Xの蓄電容量Qを所定容量QAとして特定する。なお、本実施形態において、ステップS29の処理が「特定部」に相当する。 In step S29, the predetermined capacity QA of the storage battery 40 is identified based on the first approximation function F1 and the second approximation function F2 stored in step S26, and the predetermined capacity identification process ends. If a plurality of first approximation functions F1 and second approximation functions F2 are stored in step S26, the last stored first approximation function among the plurality of first approximation functions F1 and second approximation functions F2 A predetermined capacity QA of the storage battery 40 is specified based on F1 and the second approximation function F2. In this embodiment, the storage capacity Q at the intersection X of the first approximation function F1 and the second approximation function F2 is specified as the predetermined capacity QA. It should be noted that in the present embodiment, the process of step S29 corresponds to the "specification unit".
 図6に戻り、所定容量特定処理が終了すると、ステップS15に進む。ステップS15では、ステップS29において所定容量QAの算出に用いられた第1近似関数F1及び第2近似関数F2において、第1傾きθ1の絶対値と第2傾きθ2の絶対値との差である傾き差Δθが閾値θthよりも大きいか否かを判定する。電池温度データが取得された蓄電容量Qの範囲に所定容量QAが含まれておらず、傾き差Δθが閾値θthよりも小さい場合には、判定処理を終了する。一方、電池温度データが取得された蓄電容量Qの範囲に所定容量QAが含まれおり、傾き差Δθが閾値θthよりも大きい場合には、ステップS16に進む。 Returning to FIG. 6, when the predetermined capacity specifying process ends, the process proceeds to step S15. In step S15, in the first approximation function F1 and the second approximation function F2 used to calculate the predetermined capacity QA in step S29, the slope that is the difference between the absolute value of the first slope θ1 and the absolute value of the second slope θ2 It is determined whether or not the difference Δθ is greater than the threshold θth. When the predetermined capacity QA is not included in the range of the storage capacity Q for which the battery temperature data is acquired and the slope difference Δθ is smaller than the threshold θth, the determination process is terminated. On the other hand, when the predetermined capacity QA is included in the range of the storage capacity Q for which the battery temperature data is acquired and the slope difference Δθ is larger than the threshold θth, the process proceeds to step S16.
 ステップS16では、ステップS12で記憶された時系列の充電電流データを用い、ステップS29において特定された所定容量QAから、蓄電池40が満充電状態になるまでの期間で蓄電池40に流れた電池電流Iの電流積算値ΔQを算出する。続くステップS17では、ステップS17で算出された電流積算値ΔQに基づいてSOHを判定し、判定処理を終了する。なお、本実施形態において、ステップS16の処理が「積算値算出部」に相当し、ステップS17の処理が「劣化状態判定部」に相当する。 In step S16, using the time-series charging current data stored in step S12, the battery current I that flowed through the storage battery 40 during the period from the specified capacity QA specified in step S29 until the storage battery 40 reached a fully charged state is calculated. to calculate the integrated current value ΔQ. In the subsequent step S17, SOH is determined based on the current integrated value ΔQ calculated in step S17, and the determination process ends. In this embodiment, the process of step S16 corresponds to the "integrated value calculation unit", and the process of step S17 corresponds to the "degradation state determination unit".
 SOHの判定方法について説明する。蓄電池40が新品である場合の満充電状態の蓄電容量Qは、蓄電池40が新品である場合の電流積算値ΔQNを用いて、Q=QA+ΔQNと表すことができる。そのため、蓄電池40のSOHは、以下の数式(2)のように表すことができる。所定容量特定処理により所定容量QAが特定されており、且つ蓄電池40が新品である場合の電流積算値ΔQNが予め取得されている場合には、電流積算値ΔQに基づいてSOHを判定することができる。 Explain how to determine SOH. The fully charged storage capacity Q when the storage battery 40 is new can be expressed as Q=QA+ΔQN using the integrated current value ΔQN when the storage battery 40 is new. Therefore, the SOH of the storage battery 40 can be represented by the following formula (2). When the predetermined capacity QA is specified by the predetermined capacity specifying process and the integrated current value ΔQN for the case where the storage battery 40 is new is acquired in advance, the SOH can be determined based on the integrated current value ΔQ. can.
Figure JPOXMLDOC01-appb-M000002
 続いて、図8に、所定容量特定処理の一例を示す。図8(A)~(C)には、図7に示す複数の境界候補BAのうち、互いに異なる3つの境界候補BAが境界Bとして設定された場合の第1近似関数F1及び第2近似関数F2が示されている。
Figure JPOXMLDOC01-appb-M000002
Next, FIG. 8 shows an example of the predetermined capacity specifying process. 8A to 8C show a first approximation function F1 and a second approximation function F1 and a second approximation function when three different boundary candidates BA among the plurality of boundary candidates BA shown in FIG. 7 are set as the boundary B. F2 is shown.
 図8(A)では、境界Bが所定容量QAよりも高容量側に設定されている。この場合、第2近似関数F2の近似精度はよいものの、第1近似関数F1の近似精度は悪くなる。そのため、第2近似関数F2と第2データ群DBにおける各熱量データとの近似誤差は小さいものの、第1近似関数F1と第1データ群DAにおける各熱量データとの近似誤差が大きくなり、誤差和Gが大きくなる。 In FIG. 8(A), the boundary B is set on the higher capacity side than the predetermined capacity QA. In this case, the approximation accuracy of the second approximation function F2 is good, but the approximation accuracy of the first approximation function F1 is poor. Therefore, although the approximation error between the second approximation function F2 and each calorie data in the second data group DB is small, the approximation error between the first approximation function F1 and each calorie data in the first data group DA is large, and the error sum G increases.
 図8(B)では、境界Bが所定容量QA近傍に設定されている。この場合、第1近似関数F1及び第2近似関数F2の近似精度はよくなる。そのため、及び第1近似関数F1と第1データ群DAにおける各熱量データとの近似誤差、及び第2近似関数F2と第2データ群DBにおける各熱量データとの近似誤差が共に小さくなり、誤差和Gが小さくなる。 In FIG. 8(B), the boundary B is set near the predetermined capacity QA. In this case, the approximation accuracy of the first approximation function F1 and the second approximation function F2 is improved. Therefore, both the approximation error between the first approximation function F1 and each calorie data in the first data group DA and the approximation error between the second approximation function F2 and each calorie data in the second data group DB are small, and the error sum G becomes smaller.
 図8(C)では、境界Bが所定容量QAよりも低容量側に設定されている。この場合、第1近似関数F1の近似精度はよいものの、第2近似関数F2の近似精度は悪くなる。そのため、第1近似関数F1と第1データ群DAにおける各熱量データとの近似誤差は小さいものの、第2近似関数F2と第2データ群DBにおける各熱量データとの近似誤差が大きくなり、誤差和Gが大きくなる。 In FIG. 8(C), the boundary B is set on the lower capacity side than the predetermined capacity QA. In this case, the approximation accuracy of the first approximation function F1 is good, but the approximation accuracy of the second approximation function F2 is poor. Therefore, although the approximation error between the first approximation function F1 and each calorie data in the first data group DA is small, the approximation error between the second approximation function F2 and each calorie data in the second data group DB becomes large, and the error sum G increases.
 その結果、図9に示すように、境界Bを高容量側から低容量側に徐々に変更すると、誤差和Gは、減少してした後に上昇し、誤差和Gの減少範囲と上昇範囲との間に最小の誤差和Gが現れる。本実施形態では、最小の誤差和Gに対応する境界Bが、図8(B)の境界Bである。この場合、図8(B)における第1近似関数F1及び第2近似関数F2の交点Xの蓄電容量Qにより、所定容量QAが特定される。 As a result, as shown in FIG. 9, when the boundary B is gradually changed from the high-capacity side to the low-capacity side, the error sum G decreases and then increases. A minimum error sum G appears in between. In this embodiment, the boundary B corresponding to the minimum error sum G is the boundary B in FIG. 8(B). In this case, the predetermined capacity QA is specified by the storage capacity Q at the intersection X of the first approximation function F1 and the second approximation function F2 in FIG. 8(B).
 以上詳述した本実施形態によれば、以下の効果が得られる。 According to the present embodiment detailed above, the following effects can be obtained.
 本実施形態によれば、蓄電池40の反応熱量Hに相関する電池温度Tと蓄電容量Qとの相関関係に基づいて蓄電池40の所定容量QAを特定することができる。そのため、蓄電池40の電圧変化量を用いずに蓄電池40の所定容量QAを特定することができる。また、電池温度Tは、蓄電池40に大電流が流れる状況において高くなる特性を有する。そのため、例えば高速充電時など、蓄電池40に大電流が流れ、電圧変化量に基づいて蓄電池40の所定容量QAを適正に特定することが難しい場合であっても、蓄電池40の所定容量QAを特定することができる。 According to this embodiment, the predetermined capacity QA of the storage battery 40 can be specified based on the correlation between the battery temperature T, which correlates with the amount of reaction heat H of the storage battery 40, and the storage capacity Q. Therefore, the predetermined capacity QA of the storage battery 40 can be specified without using the voltage change amount of the storage battery 40 . Moreover, the battery temperature T has a characteristic that it becomes high when a large current flows through the storage battery 40 . Therefore, even when it is difficult to appropriately specify the predetermined capacity QA of the storage battery 40 based on the amount of voltage change due to a large current flowing through the storage battery 40, such as during high-speed charging, the predetermined capacity QA of the storage battery 40 can be specified. can do.
 蓄電池40の充電時には、任意の蓄電容量Qから充電が開始され、その後、満充電状態になった時点で充電が終了される。つまり、充電開始時の蓄電容量Qは任意であるのに対し、充電終了時の蓄電容量Qは、概ね一定の蓄電容量(満充電容量)となると考えられる。本実施形態では、第1データ群DAと第2データ群DBとの境界Bを変更する場合に、蓄電池40の満充電側の蓄電容量Qから徐々に低容量側に変更させるようにした。これにより、境界Bよりも低容量の第1データ群DAと、境界Bよりも高容量の第2データ群DBとに分割する場合において、概ね一定の蓄電容量Qを基準として境界Bを設定することができ、第1データ群DAの熱量データが存在しない状況を生じにくくすることができるとともに、蓄電池40の所定容量QAを適正に特定することができる。 When charging the storage battery 40, charging starts from an arbitrary storage capacity Q, and then ends when the battery reaches a fully charged state. That is, while the storage capacity Q at the start of charging is arbitrary, the storage capacity Q at the end of charging is considered to be a substantially constant storage capacity (full charge capacity). In this embodiment, when changing the boundary B between the first data group DA and the second data group DB, the storage capacity Q of the storage battery 40 is gradually changed from the full charge side to the low capacity side. As a result, when dividing into a first data group DA having a capacity lower than that of the boundary B and a second data group DB having a capacity higher than that of the boundary B, the boundary B is set based on a generally constant storage capacity Q. Thus, it is possible to make it difficult for the situation in which the heat quantity data of the first data group DA does not exist, and to appropriately specify the predetermined capacity QA of the storage battery 40 .
 通電に伴い所定容量QAで反応熱量Hの変化が生じる蓄電池40では、反応熱量Hの変化に伴って電池温度Tが変化し、電池温度Tと蓄電容量Qとの関係において所定容量QAで変曲点が生じる。本実施形態によれば、電池温度Tと蓄電容量Qとからなる時系列の熱量データを用いて、第1近似関数F1と第2近似関数F2とを算出するため、これら第1近似関数F1と第2近似関数F2とを用いて変曲点を検出することができる。そのため、電圧変化量に基づいて蓄電池40の所定容量QAを適正に特定することが難しい場合であっても、蓄電池40の所定容量QAを特定することができる。 In the storage battery 40 in which the amount of reaction heat H changes with a predetermined capacity QA as electricity is supplied, the battery temperature T changes with the change in the amount of reaction heat H, and the relationship between the battery temperature T and the storage capacity Q varies at the predetermined capacity QA. A point occurs. According to the present embodiment, since the first approximation function F1 and the second approximation function F2 are calculated using the time-series heat amount data including the battery temperature T and the storage capacity Q, the first approximation function F1 and the second approximation function F2 are calculated. The inflection point can be detected using the second approximation function F2. Therefore, even if it is difficult to appropriately specify the predetermined capacity QA of the storage battery 40 based on the amount of voltage change, the predetermined capacity QA of the storage battery 40 can be specified.
 また、反応熱量Hの変化に伴う電池温度Tの変化度合は、外気放熱量などの蓄電池40外の因子によって異なり、該変化度合は一概に決まらないことがある。本実施形態では、電池温度Tの変化度合の大小に関わらず、誤差和Gの最小の境界Bから所定容量QAを特定する。そのため、蓄電池40外の因子への耐性を強くすることができる。 Also, the degree of change in the battery temperature T associated with the change in the amount of reaction heat H varies depending on factors outside the storage battery 40, such as the amount of heat released to the outside air, and the degree of change may not be determined unconditionally. In this embodiment, the predetermined capacity QA is specified from the minimum boundary B of the error sum G regardless of the degree of change in battery temperature T. FIG. Therefore, resistance to factors outside the storage battery 40 can be enhanced.
 電池温度Tと蓄電容量Qとの関係では、蓄電池40の所定容量QAを含むその近傍領域に境界Bが設定されると、第1近似関数F1の第1傾きθ1の絶対値が第2近似関数F2の第2傾きθ2の絶対値よりも大きくなる。ただし、蓄電容量Qの広範囲においては、境界Bの設定によっては各近似関数の傾きの関係が逆になることが考えられ、各近似関数の傾きの関係を考慮しないと、誤った近似による近似関数に基づいて所定容量QAが誤って特定されることが懸念される。この点、本実施形態によれば、第1近似関数F1と第2近似関数F2とに基づいて、所定容量QAを正しく求めることができる。 In the relationship between the battery temperature T and the storage capacity Q, when the boundary B is set in the vicinity area including the predetermined capacity QA of the storage battery 40, the absolute value of the first slope θ1 of the first approximation function F1 is the second approximation function It is larger than the absolute value of the second slope θ2 of F2. However, in the wide range of the storage capacity Q, depending on the setting of the boundary B, it is possible that the relationship between the slopes of each approximation function is reversed. There is a concern that the predetermined capacity QA may be erroneously specified based on . In this regard, according to the present embodiment, the predetermined capacity QA can be obtained correctly based on the first approximation function F1 and the second approximation function F2.
 蓄電池40のSOHは、所定容量QA及び電流積算値ΔQに基づいて判定される。ここで、蓄電池40において反応熱量Hの変化が生じる蓄電容量Q、すなわち所定容量QAは、蓄電池40が劣化しても変わらない一方、満充電状態となる蓄電容量Qは、蓄電池40の劣化により変化する。この場合、本実施形態のとおり蓄電池40における所定容量QAを求め、その所定容量QAを基準として満充電容までの電流積算値ΔQを算出することで、蓄電池40のSOHを適正に判定することができる。 The SOH of the storage battery 40 is determined based on the predetermined capacity QA and the integrated current value ΔQ. Here, the storage capacity Q at which the amount of reaction heat H changes in the storage battery 40, that is, the predetermined capacity QA, does not change even if the storage battery 40 deteriorates. do. In this case, the SOH of the storage battery 40 can be properly determined by obtaining the predetermined capacity QA of the storage battery 40 as in the present embodiment and calculating the integrated current value ΔQ up to the full charge capacity based on the predetermined capacity QA. can.
 蓄電池40は、負極に黒鉛を含むため、蓄電容量Qが所定容量QAとなる場合に、負極で電極構造が変化し、反応熱量Hの変化が生じる。一方、蓄電池40は、正極にリン酸鉄リチウムを含むため、蓄電池40の蓄電容量Qの変化に伴う蓄電池40の電圧変化量が小さく、電圧変化量に基づいて蓄電池40の所定容量QAを特定することが難しい。本実施形態では、蓄電池40の反応熱量Hに相関する電池温度Tに基づいて蓄電池40の所定容量QAを特定するため、蓄電池40の電圧変化量を用いずに蓄電池40の所定容量QAを特定することができる。 Since the storage battery 40 contains graphite in the negative electrode, when the storage capacity Q reaches the predetermined capacity QA, the electrode structure changes in the negative electrode, and the reaction heat amount H changes. On the other hand, since the storage battery 40 contains lithium iron phosphate in the positive electrode, the voltage change amount of the storage battery 40 due to the change in the storage capacity Q of the storage battery 40 is small, and the predetermined capacity QA of the storage battery 40 is specified based on the voltage change amount. difficult. In this embodiment, since the predetermined capacity QA of the storage battery 40 is specified based on the battery temperature T that correlates with the amount of reaction heat H of the storage battery 40, the predetermined capacity QA of the storage battery 40 is specified without using the voltage change amount of the storage battery 40. be able to.
 (第2実施形態)
 以下、第2実施形態について、先の第1実施形態との相違点を中心に図10~図12を参照しつつ説明する。本実施形態では、反応熱量Hに相関するパラメータが複素インピーダンスZmである点で第1実施形態と異なる。
(Second embodiment)
The second embodiment will be described below with reference to FIGS. 10 to 12, focusing on differences from the first embodiment. This embodiment differs from the first embodiment in that the parameter correlated with the amount of reaction heat H is the complex impedance Zm.
 図10に、蓄電容量Qと複素インピーダンスZmの実部ReZmとの相関関係を示す。負極活物質44gに黒鉛を用いたオリビン系の蓄電池40では、通電に伴い蓄電容量Qが変化する際において、所定容量QAで反応熱量Hの変化を伴う温度変化に伴い複素インピーダンスZmが変化する。その結果、図10に示すように、蓄電容量Qと複素インピーダンスZmの実部ReZmとの相関関係において、所定容量QAで変曲点が生じる。 FIG. 10 shows the correlation between the storage capacity Q and the real part ReZm of the complex impedance Zm. In the olivine-based storage battery 40 using graphite as the negative electrode active material 44g, when the storage capacity Q changes with energization, the complex impedance Zm changes with the temperature change that accompanies the change in the reaction heat quantity H at a predetermined capacity QA. As a result, as shown in FIG. 10, an inflection point occurs at a predetermined capacitance QA in the correlation between the storage capacitance Q and the real part ReZm of the complex impedance Zm.
 蓄電容量Qと複素インピーダンスZmの実部ReZmとの相関関係において、所定容量QAよりも低容量側及び高容量側では高精度な直線近似が可能となり、かつ所定容量QAでその直線の傾きが変化する。蓄電池40では、所定容量QAよりも低容量側及び高容量側における直線近似の傾きは共に負であり、蓄電容量Qの増加に伴って電池温度Tが単調減少するとともに、高容量側では低容量側よりも直線近似の傾きが大きくなる。本実施形態では、蓄電容量Qと複素インピーダンスZmの実部ReZmとの相関関係に基づいて蓄電池40の所定容量QAを特定する。 In the correlation between the storage capacity Q and the real part ReZm of the complex impedance Zm, highly accurate linear approximation is possible on the lower capacity side and the higher capacity side than the predetermined capacity QA, and the slope of the straight line changes at the predetermined capacity QA. do. In the storage battery 40, the slopes of the linear approximation are both negative on the lower capacity side and on the higher capacity side than the predetermined capacity QA. The slope of the linear approximation becomes larger than the side. In this embodiment, the predetermined capacity QA of the storage battery 40 is specified based on the correlation between the storage capacity Q and the real part ReZm of the complex impedance Zm.
 図11に、本実施形態の判定処理のフローチャートを示す。なお、図11において、先の図6に示した処理と同一の処理については、便宜上、同一のステップ番号を付して説明を省略する。 FIG. 11 shows a flowchart of the determination processing of this embodiment. In FIG. 11, the same steps as those shown in FIG. 6 are denoted by the same step numbers for convenience, and description thereof will be omitted.
 本実施形態の判定処理では、ステップS12で充電電流データを記憶すると、ステップS31に進む。ステップS31では、複素インピーダンスZmを算出する。本実施形態では、複素インピーダンスZmを算出する際に蓄電池40に印加する交流信号の周波数を、図2に端点PAで示す蓄電池40のオーミック抵抗Rohmに対応するオーミック周波数以下の一定周波数に設定する。具体的には、図2の端点PBに対応する周波数に設定する。なお、本実施形態において、ステップS31の処理が「インピーダンス算出部」に相当する。 In the determination process of the present embodiment, after storing the charging current data in step S12, the process proceeds to step S31. In step S31, the complex impedance Zm is calculated. In this embodiment, the frequency of the AC signal applied to the storage battery 40 when calculating the complex impedance Zm is set to a constant frequency equal to or lower than the ohmic frequency corresponding to the ohmic resistance Rohm of the storage battery 40 indicated by the end point PA in FIG. Specifically, the frequency is set to correspond to the end point PB in FIG. It should be noted that in the present embodiment, the process of step S31 corresponds to the "impedance calculator".
 続くステップS13では、蓄電容量QとステップS31で算出した複素インピーダンスZmとからなる熱量データを記憶する。本実施形態の所定容量特定処理では、ステップS13で記憶された複素インピーダンスZmのうち、複素インピーダンスZmの実部ReZmを用いて第1近似関数F1及び第2近似関数F2を算出するとともに誤差和Gを算出し、所定容量QAを特定する。 In the following step S13, heat quantity data consisting of the storage capacity Q and the complex impedance Zm calculated in step S31 is stored. In the predetermined capacitance identification process of the present embodiment, of the complex impedance Zm stored in step S13, the real part ReZm of the complex impedance Zm is used to calculate the first approximation function F1 and the second approximation function F2, and the error sum G is calculated to specify the predetermined capacity QA.
 続いて、図12に、所定容量特定処理の一例を示す。図12(A)~(C)には、複素インピーダンスZmが取得された蓄電容量Qの範囲に定められた複数の境界候補BAのうち、互いに異なる3つの境界候補BAが境界Bとして設定された場合の第1近似関数F1及び第2近似関数F2が示されている。 Next, FIG. 12 shows an example of the predetermined capacity specifying process. In FIGS. 12A to 12C, three different boundary candidates BA among the plurality of boundary candidates BA defined in the range of the storage capacity Q from which the complex impedance Zm is obtained are set as boundaries B. A first approximation function F1 and a second approximation function F2 are shown for the case.
 図12(A)では、境界Bが所定容量QAよりも高容量側に設定されており、誤差和Gが大きくなる。図12(B)では、境界Bが所定容量QA近傍に設定されており、誤差和Gが小さくなる。図12(C)では、境界Bが所定容量QAよりも低容量側に設定されており、誤差和Gが大きくなる。 In FIG. 12(A), the boundary B is set on the higher capacity side than the predetermined capacity QA, and the error sum G becomes large. In FIG. 12B, the boundary B is set near the predetermined capacity QA, and the error sum G is small. In FIG. 12C, the boundary B is set on the lower capacity side than the predetermined capacity QA, and the error sum G becomes large.
 その結果、図9に示すように、境界Bを高容量側から低容量側に徐々に変更すると、最小の誤差和Gが現れる。本実施形態では、最小の誤差和Gに対応する境界Bが、図12(B)の境界Bである。この場合、図12(B)における第1近似関数F1及び第2近似関数F2の交点Xの蓄電容量Qにより、所定容量QAが特定される。 As a result, as shown in FIG. 9, when the boundary B is gradually changed from the high capacity side to the low capacity side, the minimum error sum G appears. In this embodiment, the boundary B corresponding to the minimum error sum G is the boundary B in FIG. 12(B). In this case, the predetermined capacity QA is specified by the storage capacity Q at the intersection X of the first approximation function F1 and the second approximation function F2 in FIG. 12(B).
 以上詳述した本実施形態によれば、以下の効果が得られる。 According to the present embodiment detailed above, the following effects can be obtained.
 通電に伴い所定容量QAで反応熱量Hの変化が生じる蓄電池40では、反応熱量Hの変化が生じた際の温度変化により複素インピーダンスZmが変化し、複素インピーダンスZmと蓄電容量Qとの関係において所定容量QAで変曲点が生じる。本実施形態によれば、複素インピーダンスZmと蓄電容量Qとからなる時系列の熱量データを用いて、第1近似関数F1と第2近似関数F2とを算出するため、これら第1近似関数F1と第2近似関数F2とを用いて変曲点を検出することができる。そのため、電圧変化量に基づいて蓄電池40の所定容量QAを適正に特定することが難しい場合であっても、蓄電池40の所定容量QAを特定することができる。 In the storage battery 40 in which the amount of reaction heat H changes with a predetermined capacity QA as electricity is supplied, the complex impedance Zm changes due to temperature changes when the amount of reaction heat H changes, and the relationship between the complex impedance Zm and the storage capacity Q An inflection point occurs at the capacitance QA. According to the present embodiment, since the first approximation function F1 and the second approximation function F2 are calculated using the time-series calorie data including the complex impedance Zm and the storage capacity Q, the first approximation function F1 and the second approximation function F2 are calculated. The inflection point can be detected using the second approximation function F2. Therefore, even if it is difficult to appropriately specify the predetermined capacity QA of the storage battery 40 based on the amount of voltage change, the predetermined capacity QA of the storage battery 40 can be specified.
 本実施形態では、蓄電池40の複素インピーダンスZmを算出する場合に、交流信号の周波数をオーミック周波数以下の周波数に設定する。特にオーミック周波数よりも低い周波数では、算出される複素インピーダンスZmにおいて、反応抵抗の影響が強くなる。反応抵抗は温度依存性が強いため、所定容量QAにおける複素インピーダンスZmの変化量が大きくなりやすい。そのため、反応抵抗を用いることで、蓄電池40の所定容量QAを精度よく特定することができる。 In this embodiment, when calculating the complex impedance Zm of the storage battery 40, the frequency of the AC signal is set to a frequency equal to or lower than the ohmic frequency. In particular, at frequencies lower than the ohmic frequency, the calculated complex impedance Zm is strongly influenced by the reaction resistance. Since the reaction resistance strongly depends on the temperature, the amount of change in the complex impedance Zm at the predetermined capacitance QA tends to increase. Therefore, by using the reaction resistance, the predetermined capacity QA of the storage battery 40 can be specified with high accuracy.
 (その他の実施形態)
 本開示は上記実施形態の記載内容に限定されず、次のように実施されてもよい。
(Other embodiments)
The present disclosure is not limited to the description of the above embodiments, and may be implemented as follows.
 ・上記実施形態では、蓄電池40の充電時に時系列の熱量データを記憶する例を示したが、蓄電池40の放電時に時系列の熱量データを記憶してもよい。但し、放電時は反応熱量Hの正負が逆転する。この逆転により、所定容量QAにおける反応熱量Hでの温度変化の傾向が変わり、ステップS23における不等号の向きが逆転する。 - In the above embodiment, an example of storing the time-series heat amount data when charging the storage battery 40 was shown, but the time-series heat amount data may be stored when the storage battery 40 is discharged. However, the polarity of the reaction heat quantity H is reversed during discharge. This reversal changes the tendency of the temperature change in the reaction heat amount H at the predetermined capacity QA, and the direction of the inequality sign in step S23 is reversed.
 ・上記実施形態では、複数の境界Bを等間隔で変更する例を示したが、境界Bの間隔が不均等であってもよい。例えば、境界Bの設定範囲として定められた蓄電容量範囲を、低容量側から順に低容量範囲、中間範囲、高容量範囲として区分しておき、低容量範囲及び高容量範囲では境界Bの間隔を比較的大きくし、中間範囲では境界Bの間隔を比較的小さくしてもよい。また、過去に算出した所定容量QAを参照し、その所定容量QAを含む近傍範囲で境界Bの間隔を比較的小さくし、その近傍範囲以外で境界Bの間隔を比較的大きくしてもよい。 · In the above embodiment, an example of changing the plurality of boundaries B at equal intervals was shown, but the intervals between the boundaries B may be uneven. For example, the storage capacity range defined as the setting range of boundary B is divided into a low capacity range, an intermediate range, and a high capacity range in order from the low capacity side, and the interval of boundary B is set in the low capacity range and high capacity range. It may be relatively large and in the intermediate range the spacing of the boundaries B may be relatively small. Alternatively, the predetermined capacity QA calculated in the past may be referred to, the interval of the boundary B may be made relatively small in the neighborhood including the predetermined capacity QA, and the interval of the boundary B may be made relatively large in the area other than the neighborhood.
 ・上記実施形態では、残差を用いて誤差和Gを算出する例を示したが、これに限られない。例えば、第1近似関数F1と第1データ群DAにおける各熱量データとの分散と、第1近似関数F1と第1データ群DAにおける各熱量データとの分散との和の平方根を、誤差和Gとして算出してもよい。また例えば、図8,図12において、第1近似関数F1が示すグラフと第1データ群DAが示すグラフとの間の面積と、第2近似関数F2が示すグラフと第2データ群DBが示すグラフとの間の面積との和を、誤差和Gとして算出してもよい。 · In the above embodiment, an example of calculating the sum of errors G using residuals was shown, but the present invention is not limited to this. For example, the error sum G may be calculated as Further, for example, in FIGS. 8 and 12, the area between the graph indicated by the first approximation function F1 and the graph indicated by the first data group DA, and the area indicated by the graph indicated by the second approximation function F2 and the second data group DB The sum of the areas between the graphs may be calculated as the error sum G.
 ・上記実施形態では、境界Bを、蓄電池40の満充電側の蓄電容量Qから徐々に低容量側に変更させる場合に、境界Bとして設定される境界候補BAを、最も高容量側に位置する境界候補BAから最も低容量側に位置する境界候補BAへと順々に変更させる例を示したが、これに限られない。例えば、過去に算出した所定容量QAを参照し、最も高容量側に位置する境界候補BAに代えて、その所定容量QAに基づく境界候補BAから低容量側に変更するようにしてもよい。 In the above embodiment, when the boundary B is gradually changed from the storage capacity Q on the fully charged side of the storage battery 40 to the low capacity side, the boundary candidate BA set as the boundary B is positioned on the highest capacity side. An example of sequentially changing from the boundary candidate BA to the boundary candidate BA located on the lowest capacity side has been shown, but the present invention is not limited to this. For example, the predetermined capacity QA calculated in the past may be referenced, and instead of the boundary candidate BA located on the highest capacity side, the boundary candidate BA based on the predetermined capacity QA may be changed to the low capacity side.
 また、最も低容量側に位置する境界候補BAを、以下のように変更してもよい。図6の所定容量特定処理によれば、境界Bが満充電側の蓄電容量Qから徐々に低容量側に変更されるのに伴い、誤差和Gが徐々に減少した後に増加に転じる。この場合、ステップS27において、誤差和Gが減少から増加に転じたことに基づいて、境界Bを低容量側に移動するか否かを判定する構成としてもよい。 Also, the boundary candidate BA located on the lowest capacity side may be changed as follows. According to the predetermined capacity specifying process of FIG. 6, as the boundary B is gradually changed from the fully charged storage capacity Q to the low capacity side, the error sum G gradually decreases and then increases. In this case, in step S27, it may be determined whether or not to move the boundary B to the low capacity side based on the error sum G turning from decreasing to increasing.
 つまり、制御装置53は、境界Bの低容量側への変更に伴い誤差和Gが減少から増加に転じたと判定した場合に、境界Bをそれよりも低容量側に変更することが不要であるとして、境界Bを低容量側に移動させない旨を判定する(ステップS27をNOとする)ようにしてもよい。 In other words, when the control device 53 determines that the error sum G has changed from decreasing to increasing as the boundary B is changed to the lower capacity side, it is not necessary to change the boundary B to the lower capacity side. As such, it may be determined that the boundary B is not moved to the low capacity side (NO in step S27).
 ・上記実施形態では、記憶した熱量データを全て用いる例を示したが、これに限られない。例えば、熱量データの一部に、電池温度Tが蓄電容量Qに対して単調増加しない部分や、複素インピーダンスZmが蓄電容量Qに対して単調減少しない部分が存在する場合には、これら熱量データが外乱を含んでいる可能性がある。この場合は単調増加又は単調減少している熱量データだけを抜粋して用いるようにしてもよい。 - In the above embodiment, an example in which all the stored heat quantity data is used has been shown, but the present invention is not limited to this. For example, if part of the calorie data includes a portion where the battery temperature T does not monotonically increase with respect to the storage capacity Q, or a portion where the complex impedance Zm does not monotonically decrease with respect to the storage capacity Q, these calorie data It may contain disturbances. In this case, it is also possible to extract and use only the heat amount data that monotonously increases or monotonically decreases.
 ・上記実施形態では、最小の誤差和Gに対応する第1近似関数F1及び第2近似関数F2に基づいて蓄電池40の所定容量QAを特定する場合に、第1近似関数F1及び第2近似関数F2の交点Xの蓄電容量Qを所定容量QAとして特定する例を示したが、これに限られない。最小の誤差和Gに対応する境界Bの蓄電容量Qを所定容量QAとして特定してもよい。 In the above embodiment, when specifying the predetermined capacity QA of the storage battery 40 based on the first approximation function F1 and the second approximation function F2 corresponding to the minimum error sum G, the first approximation function F1 and the second approximation function Although an example in which the storage capacity Q at the intersection X of F2 is specified as the predetermined capacity QA has been shown, the present invention is not limited to this. The storage capacity Q at the boundary B corresponding to the minimum error sum G may be specified as the predetermined capacity QA.
 ・上記実施形態では、蓄電池40としてプラトー領域を有する蓄電池を用いる例を示したが、プラトー領域を有しない蓄電池に対して、本実施形態の技術が用いられてもよい。 - In the above embodiment, an example of using a storage battery having a plateau region as the storage battery 40 was shown, but the technology of the present embodiment may be used for a storage battery that does not have a plateau region.
 ・上記実施形態では、蓄電池40が1つの特異点(所定容量QA)を有する例を示したが、これに限られず、蓄電池40が複数の特異点(所定容量QA)を有していてもよい。 - In the above embodiment, an example in which the storage battery 40 has one peculiar point (predetermined capacity QA) is shown, but the present invention is not limited to this, and the storage battery 40 may have a plurality of peculiar points (predetermined capacity QA). .
 ・上記第2実施形態では、蓄電池40の所定容量QAを特定する場合に、複素インピーダンスZmの実部ReZmを用いる例を示したが、虚部ImZmを用いてもよければ、実部ReZmと虚部ImZmとの両方を用いてもよい。 - In the above-described second embodiment, when specifying the predetermined capacity QA of the storage battery 40, an example was shown in which the real part ReZm of the complex impedance Zm was used. Both the part ImZm may be used.
 ・上記第2実施形態では、複素インピーダンスZmを算出する際に発振器51aにより交流信号を印加する形態を示したが、これに限られない。例えば、通電時に電気負荷20の周波数特性等が変化した場合において、電池電圧Vの変化を電池電流Iの変化で除すことにより複素インピーダンスZmを算出してもよい。 · In the above-described second embodiment, a form in which an AC signal is applied by the oscillator 51a when calculating the complex impedance Zm has been shown, but the present invention is not limited to this. For example, the complex impedance Zm may be calculated by dividing the change in the battery voltage V by the change in the battery current I when the frequency characteristics and the like of the electric load 20 change during energization.
 ・上記実施形態では、蓄電池40が満充電状態となっている場合に所定容量特定処理を実施するようにしたが、それに加えて、蓄電池40が満充電状態となるまでに所定数の熱量データが記憶されたことを条件に、所定容量特定処理を実施するようにしてもよい。 In the above embodiment, the predetermined capacity identification process is performed when the storage battery 40 is in a fully charged state. The predetermined capacity specifying process may be performed on the condition that it is stored.
 ・本開示に記載の制御装置及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 - The controller and method described in the present disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program; may be implemented. Alternatively, the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (9)

  1.  通電に伴い蓄電容量が変化する際に所定容量で反応熱量の変化が生じる蓄電池(40)に適用され、
     通電時において前記蓄電池の反応熱量に相関するパラメータを取得し、当該パラメータと前記蓄電容量とからなる時系列の熱量データを記憶するデータ記憶部と、
     前記データ記憶部により記憶された前記熱量データを、所定の境界よりも低容量の第1データ群と、前記境界よりも高容量の第2データ群とに分割する分割部と、
     前記第1データ群を一次関数で近似した第1近似関数と、前記第2データ群を一次関数で近似した第2近似関数とを算出する近似算出部と、
     前記第1近似関数と前記第1データ群における前記各熱量データとの近似誤差と、前記第2近似関数と前記第2データ群における前記各熱量データとの近似誤差との和である誤差和を算出する誤差和算出部と、
     前記境界を低容量側又は高容量側に変更し、該変更した境界ごとに、前記近似算出部による前記第1近似関数及び前記第2近似関数の算出と、前記誤差和算出部による誤差和の算出とを行わせ、複数の誤差和を取得する取得部と、
     前記複数の誤差和のうち最小の誤差和に対応する前記第1近似関数及び前記第2近似関数に基づいて、前記蓄電池の前記所定容量を特定する特定部と、を備える電池監視装置(53)。
    Applied to a storage battery (40) in which the amount of reaction heat changes with a predetermined capacity when the storage capacity changes with energization,
    a data storage unit that acquires a parameter that correlates with the amount of reaction heat of the storage battery when energized, and that stores time-series heat amount data consisting of the parameter and the storage capacity;
    a dividing unit that divides the calorie data stored by the data storage unit into a first data group having a capacity lower than a predetermined boundary and a second data group having a capacity higher than the boundary;
    an approximation calculator that calculates a first approximation function that approximates the first data group with a linear function and a second approximation function that approximates the second data group with a linear function;
    An error sum that is the sum of an approximation error between the first approximation function and each of the heat quantity data in the first data group and an approximation error between the second approximation function and each of the heat quantity data in the second data group an error sum calculation unit for calculating;
    changing the boundary to the low-capacity side or the high-capacity side, calculating the first approximation function and the second approximation function by the approximation calculation unit, and calculating the error sum by the error sum calculation unit for each of the changed boundaries an acquisition unit that performs calculation and acquires a plurality of sums of errors;
    a battery monitoring device (53) comprising: a specifying unit that specifies the predetermined capacity of the storage battery based on the first approximation function and the second approximation function corresponding to the minimum error sum among the plurality of error sums. .
  2.  前記データ記憶部は、前記蓄電池の充電時において時系列の前記熱量データを記憶し、
     前記取得部は、前記境界を、前記蓄電池の満充電側の蓄電容量から徐々に低容量側に変更させる、請求項1に記載の電池監視装置。
    The data storage unit stores the time-series calorie data during charging of the storage battery,
    2. The battery monitoring device according to claim 1, wherein said acquisition unit gradually changes said boundary from a fully charged side of said storage battery to a lower capacity side.
  3.  前記パラメータは、前記蓄電池の温度を示す電池温度であり、
     前記近似算出部は、前記電池温度と前記蓄電容量とからなる時系列の熱量データを用いて、前記第1近似関数と前記第2近似関数とを算出する、請求項1又は2に記載の電池監視装置。
    The parameter is a battery temperature indicating the temperature of the storage battery,
    3. The battery according to claim 1, wherein the approximation calculation unit calculates the first approximation function and the second approximation function using time-series heat amount data including the battery temperature and the storage capacity. surveillance equipment.
  4.  前記パラメータは、前記蓄電池のインピーダンスであり、
     前記近似算出部は、前記インピーダンスと前記蓄電容量とからなる時系列の熱量データを用いて、前記第1近似関数と前記第2近似関数とを算出する、請求項1又は2に記載の電池監視装置。
    the parameter is the impedance of the storage battery,
    3. The battery monitoring system according to claim 1, wherein said approximation calculator calculates said first approximation function and said second approximation function using time-series heat amount data including said impedance and said storage capacity. Device.
  5.  前記蓄電池に所定の交流信号を印加した状態で前記交流信号に対する前記蓄電池の応答信号を取得し、その応答信号に基づいて前記インピーダンスを算出するインピーダンス算出部を備え、
     前記交流信号の周波数は、前記蓄電池のオーミック抵抗に対応するオーミック周波数以下の周波数に設定されている、請求項4に記載の電池監視装置。
    an impedance calculation unit that acquires a response signal of the storage battery to the AC signal while a predetermined AC signal is applied to the storage battery, and calculates the impedance based on the response signal;
    5. The battery monitoring device according to claim 4, wherein the frequency of said AC signal is set to a frequency equal to or lower than an ohmic frequency corresponding to the ohmic resistance of said storage battery.
  6.  前記第1近似関数の傾きの絶対値が前記第2近似関数の傾きの絶対値よりも大きいことを判定する傾き判定部を備え、
     前記誤差和算出部は、前記傾き判定部により前記第1近似関数の傾きの絶対値が前記第2近似関数の傾きの絶対値よりも大きいと判定されたことを条件に、前記誤差和を算出する、請求項1~5のいずれか一項に記載の電池監視装置。
    a slope determination unit that determines whether the absolute value of the slope of the first approximation function is greater than the absolute value of the slope of the second approximation function;
    The error sum calculation unit calculates the error sum on condition that the slope determination unit determines that the absolute value of the slope of the first approximation function is larger than the absolute value of the slope of the second approximation function. The battery monitoring device according to any one of claims 1 to 5.
  7.  前記蓄電池が充電される場合において、前記蓄電池が満充電状態になるまでの時系列の充電電流データを記憶する充電電流記憶部と、
     前記充電電流データを用い、前記特定部により特定された前記所定容量から満充電状態になるまでの期間で前記蓄電池に流れた充電電流の電流積算値を算出する積算値算出部と、
     前記電流積算値に基づいて前記蓄電池の劣化状態を判定する劣化状態判定部と、を備える請求項1~6のいずれか一項に記載の電池監視装置。
    a charging current storage unit that stores time-series charging current data until the storage battery reaches a fully charged state when the storage battery is charged;
    an integrated value calculation unit that uses the charging current data to calculate an integrated current value of the charging current that has flowed through the storage battery in a period from the predetermined capacity specified by the specifying unit to a fully charged state;
    The battery monitoring device according to any one of claims 1 to 6, further comprising a deterioration state determination unit that determines a deterioration state of the storage battery based on the integrated current value.
  8.  前記蓄電池は、負極に黒鉛を含む請求項1~7のいずれか一項に記載の電池監視装置。 The battery monitoring device according to any one of claims 1 to 7, wherein the storage battery contains graphite in the negative electrode.
  9.  前記蓄電池は、正極にリン酸鉄リチウムを含む、請求項8に記載の電池監視装置。 The battery monitoring device according to claim 8, wherein the storage battery contains lithium iron phosphate in the positive electrode.
PCT/JP2022/025958 2021-07-29 2022-06-29 Battery-monitoring device WO2023008061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280051538.8A CN117730262A (en) 2021-07-29 2022-06-29 Battery monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124006A JP2023019349A (en) 2021-07-29 2021-07-29 Battery monitoring device
JP2021-124006 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008061A1 true WO2023008061A1 (en) 2023-02-02

Family

ID=85087921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025958 WO2023008061A1 (en) 2021-07-29 2022-06-29 Battery-monitoring device

Country Status (3)

Country Link
JP (1) JP2023019349A (en)
CN (1) CN117730262A (en)
WO (1) WO2023008061A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195337A1 (en) * 2022-04-07 2023-10-12 株式会社デンソー Remaining battery estimation device
WO2023195336A1 (en) * 2022-04-07 2023-10-12 株式会社デンソー Remaining battery power estimation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102033A (en) * 1992-09-17 1994-04-12 Mitsubishi Electric Corp Range finding method
JP2008022589A (en) * 2006-07-10 2008-01-31 Toyota Motor Corp Power supply system and vehicle equipped with the same, and temperature management method
JP2019061741A (en) * 2017-09-22 2019-04-18 三菱自動車工業株式会社 Secondary battery system
JP2021012106A (en) * 2019-07-05 2021-02-04 スズキ株式会社 SOC estimation device
JP2021048016A (en) * 2019-09-17 2021-03-25 学校法人早稲田大学 Battery status estimation method and battery system
CN112924872A (en) * 2021-01-22 2021-06-08 苏州宇量电池有限公司 Method for monitoring state of charge of lithium iron phosphate battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102033A (en) * 1992-09-17 1994-04-12 Mitsubishi Electric Corp Range finding method
JP2008022589A (en) * 2006-07-10 2008-01-31 Toyota Motor Corp Power supply system and vehicle equipped with the same, and temperature management method
JP2019061741A (en) * 2017-09-22 2019-04-18 三菱自動車工業株式会社 Secondary battery system
JP2021012106A (en) * 2019-07-05 2021-02-04 スズキ株式会社 SOC estimation device
JP2021048016A (en) * 2019-09-17 2021-03-25 学校法人早稲田大学 Battery status estimation method and battery system
CN112924872A (en) * 2021-01-22 2021-06-08 苏州宇量电池有限公司 Method for monitoring state of charge of lithium iron phosphate battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195337A1 (en) * 2022-04-07 2023-10-12 株式会社デンソー Remaining battery estimation device
WO2023195336A1 (en) * 2022-04-07 2023-10-12 株式会社デンソー Remaining battery power estimation device

Also Published As

Publication number Publication date
CN117730262A (en) 2024-03-19
JP2023019349A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US20240118344A1 (en) Device detecting abnormality of secondary battery, abnormality detection method, and program
WO2023008061A1 (en) Battery-monitoring device
US10534038B2 (en) Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
US10459035B2 (en) Charge state estimation method for lithium ion battery and charge state estimation device for lithium ion battery by using correspondence between voltage charge rate and the state of charge of the lithium ion battery
US10281530B2 (en) Battery capacity measuring device and battery capacity measuring method
US9121911B2 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
JP6019368B2 (en) Power storage device state estimation method
JP5971477B2 (en) Secondary battery state estimation device
JP6668905B2 (en) Battery deterioration estimation device
JP6337233B2 (en) Battery evaluation method and battery characteristic evaluation apparatus
WO2013114669A1 (en) State of charge detection device
US11650262B2 (en) Aging determination method of battery, aging determination apparatus of battery, management system of battery, battery-mounted device, and non-transitory storage medium
CN106997026B (en) Method and device for determining the residual capacity of a lead-acid battery
JP7261477B2 (en) Battery state estimation method and battery system
KR20220068806A (en) Apparatus and method for diagnosing battery
Nejad et al. Sensitivity of lumped parameter battery models to constituent parallel-RC element parameterisation error
US20130295424A1 (en) Electrolyte-Based Battery Cell, Method and System for Determining the State of Charge of Electrolyte-Based Batteries
JP4954791B2 (en) Voltage prediction method for power storage devices
WO2022176317A1 (en) Secondary battery control device
JP2017044568A (en) Battery state measurement method and battery state measurement device
JP7194385B2 (en) Assembled battery evaluation method and battery system
JP2019053017A (en) Battery abnormality diagnosis method
WO2023095263A1 (en) Battery diagnosis method, battery diagnosis device, battery management system, and battery diagnosis program
WO2023100241A1 (en) Secondary battery diagnosis method, charge/discharge control method, diagnosis device, management system, and diagnosis program
JP7510394B2 (en) Battery Measuring Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051538.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849130

Country of ref document: EP

Kind code of ref document: A1