WO2023008039A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2023008039A1
WO2023008039A1 PCT/JP2022/025529 JP2022025529W WO2023008039A1 WO 2023008039 A1 WO2023008039 A1 WO 2023008039A1 JP 2022025529 W JP2022025529 W JP 2022025529W WO 2023008039 A1 WO2023008039 A1 WO 2023008039A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
guard
plasma
plasma reactor
processing
Prior art date
Application number
PCT/JP2022/025529
Other languages
French (fr)
Japanese (ja)
Inventor
敏光 難波
基 西出
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023008039A1 publication Critical patent/WO2023008039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • a substrate processing apparatus includes a spin chuck that rotates a substrate in a horizontal position, a plasma nozzle that irradiates the upper surface of the substrate with plasma, a processing liquid nozzle that discharges a processing liquid onto the upper surface of the substrate, and each nozzle. It includes a nozzle moving part that moves, a guard that receives the processing liquid that scatters from the periphery of the substrate, and a guard elevating part that elevates the guard.
  • the substrate processing apparatus discharges the processing liquid from the processing liquid nozzle onto the upper surface of the rotating substrate while the guard is raised to form a liquid film of the processing liquid on the upper surface of the substrate.
  • the substrate processing apparatus irradiates the entire surface of the substrate with plasma by reciprocating the plasma nozzle along the upper surface of the rotating substrate. As a result, the substrate can be dried while suppressing pattern collapse.
  • a flat plasma reactor in order to irradiate the substrate with plasma more uniformly, it is desirable to arrange a flat plasma reactor so as to face the upper surface of the substrate. This is because such flat plasma can irradiate the upper surface of the substrate with plasma over a wide range.
  • the temperature at the periphery is significantly lower than the temperature at the center. Therefore, even if a flat plasma reactor is designed with a size that can irradiate the entire upper surface of the substrate with plasma, the temperature at the periphery of the substrate may be significantly lower than the temperature at the center. In this case, the degree of processing on the substrate varies due to the temperature difference.
  • the plasma reactor may interfere with the guard.
  • an object of the present disclosure is to provide a technology capable of improving the uniformity of processing on a substrate by enlarging the size of the plasma reactor.
  • a first aspect of a substrate processing apparatus includes a substrate holding portion that holds a substrate, a plurality of guards that have a cylindrical shape surrounding the substrate holding portion and are concentrically provided, and a guard that is perpendicular to the substrate holding portion.
  • a plasma reactor that is provided above and spreads outside the peripheral edge of the substrate held by the substrate holding part in a plan view, and moves the plasma reactor up and down relative to the substrate holding part.
  • a second aspect of the substrate processing apparatus is the substrate processing apparatus according to the first aspect, wherein in the processing state, the distance between the plasma reactor and the outermost guard is equal to the outermost guard and the substrate. It is narrower than the interval with the holding part.
  • a third aspect of the substrate processing apparatus is the substrate processing apparatus according to the second aspect, wherein the plasma reactor abuts against the guard in the vertical direction in the processing state.
  • a fourth aspect of the substrate processing apparatus is the substrate processing apparatus according to the third aspect, wherein the lower surface of the portion of the plasma reactor outside the peripheral edge of the substrate and the upper surface of the outermost peripheral guard are At least one of them is provided with an elastic sealing member that is in close contact with the other.
  • a fifth aspect of the substrate processing apparatus is the substrate processing apparatus according to the second aspect, wherein the lower surface of the portion outside the peripheral edge of the substrate in the plasma reactor is, in the processing state, the outermost peripheral guard.
  • a labyrinth structure having irregularities in the radial direction is formed together with the upper surface of the .
  • a sixth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to fifth aspects, wherein the outer portion of the plasma reactor outside the peripheral edge of the substrate protrudes downward.
  • the inner diameter of the outer portion is larger than the diameter of the substrate, and the lower surface of the outer portion is lower than the upper surface of the substrate held by the substrate holder in the processing state.
  • a seventh aspect of the substrate processing apparatus is the substrate processing apparatus according to the sixth aspect, wherein the inner diameter of the outer portion of the plasma reactor is equal to or smaller than the upper opening diameter of the outermost guard.
  • An eighth aspect of the substrate processing apparatus is the substrate processing apparatus according to the sixth or seventh aspect, wherein the substrate holding part includes a spin base facing the substrate vertically below the substrate, The inner diameter of the outer portion is larger than the diameter of the spin base.
  • a ninth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the sixth to eighth aspects, wherein the plasma reactor includes an electrode assembly to which power for plasma is supplied, and the outer A portion supports the electrode assembly from below.
  • a tenth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to ninth aspects, wherein a processing liquid is supplied to the main surface of the substrate held by the substrate holding part.
  • the substrate holder includes a rotation mechanism that rotates the substrate around a rotation axis extending in a vertical direction, and the second elevating mechanism moves at least the outermost guard with respect to the substrate holder.
  • the nozzle discharges the processing liquid, the substrate holding part rotates the substrate, and the upper position is such that the upper end is vertically above the upper surface of the substrate. position.
  • a substrate holding part is provided at a holding step for holding a substrate and a position facing the upper surface of the substrate held by the substrate holding part, and is positioned outside the substrate in plan view.
  • a lighting step for lighting the spreading plasma reactor, and a guard having a cylindrical shape surrounding the substrate holding portion and having an upper end of an outermost guard among a plurality of concentrically provided guards held by the substrate holding portion.
  • a second aspect of the substrate processing method is the substrate processing method according to the first aspect, wherein the moving step relatively moves at least the outermost guard to the lower position with respect to the substrate holding part. and a plasma moving step of relatively moving the plasma reactor to the plasma processing position with respect to the substrate holder after the guard moving step.
  • a third aspect of the substrate processing method is the substrate processing method according to the first aspect, wherein the moving step relatively moves at least the outermost guard to the lower position with respect to the substrate holding part. and a plasma moving step of relatively moving the plasma reactor to the plasma processing position with respect to the substrate holder in parallel with the guard moving step.
  • the guard can be positioned vertically below the plasma reactor in the processing state. Therefore, the size of the plasma reactor in plan view can be designed to be large without depending on the guard. Therefore, the plasma reactor can irradiate the substrate with plasma with the central portion of the plasma reactor having a relatively uniform temperature facing the entire surface of the substrate, thereby improving the uniformity of the substrate processing.
  • the atmosphere between the plasma reactor and the substrate passes through the gap between the guard and the substrate holder more easily than the gap between the plasma reactor and the guard, and is exhausted to the outside through the exhaust part. easy to be That is, it is possible to prevent the atmosphere from flowing out of the guard through the gap between the plasma reactor and the guard.
  • the substrate processing apparatus it is possible to further suppress the atmosphere from flowing out of the guard.
  • the substrate processing apparatus it is possible to further suppress the atmosphere from flowing out of the guard.
  • gas is allowed to flow into the guard from the outside of the guard through the gap between the plasma reactor and the outermost guard while suppressing the atmosphere from flowing out of the guard. be able to. Therefore, the atmosphere between the plasma reactor and the substrate can be replaced with a clean atmosphere.
  • the outer portion can function as a guard.
  • the atmosphere that flows vertically downward along the inner peripheral surface of the outer peripheral edge portion does not easily collide with the upper surface of the guard, and easily passes through the gap between the guard and the substrate holding portion.
  • the atmosphere flowing vertically downward along the inner peripheral surface of the outer peripheral portion is less likely to collide with the upper surface of the spin base, and easily passes through the gap between the guard and the substrate holding portion.
  • the outer portion that supports the electrode assembly can function as a guard. Therefore, the manufacturing cost of the plasma reactor can be reduced compared to the case where a member functioning as a guard is separately provided in the plasma reactor.
  • the guard can catch the processing liquid scattered from the periphery of the substrate.
  • collision between the plasma reactor and the guard can be suppressed.
  • FIG. 4 is a block diagram schematically showing an example of the internal configuration of a control unit;
  • FIG. 3 is a diagram schematically showing an example of a configuration of a processing unit according to the first embodiment;
  • FIG. 1 is a cross-sectional view schematically showing an example of the configuration of a plasma reactor;
  • FIG. 1 is a plan view schematically showing an example of the configuration of a plasma reactor;
  • FIG. 4 is a flow chart showing an example of the operation of a processing unit;
  • FIG. 4 is a diagram schematically showing an example of a state of a processing unit in a liquid film forming process; It is a flowchart which shows an example of the operation
  • FIG. 4 is a graph showing an example of spatial temperature distribution around the plasma reactor; It is a figure which shows roughly an example of the appearance of the processing unit in a plasma irradiation process.
  • 12 is an enlarged view showing an enlarged part of the processing unit of FIG. 11; FIG. It is an enlarged view which shows roughly an example of a part of appearance of a processing unit in a plasma irradiation process. It is a figure which shows roughly an example of a structure of the processing unit concerning 2nd Embodiment.
  • FIG. 10 is an enlarged view schematically showing an example of a portion of the processing unit in the plasma irradiation process according to the second embodiment; It is a figure which shows roughly the modification of a structure of the processing unit concerning 2nd Embodiment.
  • FIG. 11 is a diagram schematically showing an example of a configuration of a processing unit according to a third embodiment;
  • FIG. 11 is an enlarged view schematically showing an example of a portion of a processing unit in a plasma irradiation step according to the third embodiment;
  • Shapes having unevenness or chamfering are also represented.
  • the terms “comprise”, “comprise”, “comprise”, “include” or “have” an element are not exclusive expressions that exclude the presence of other elements.
  • the phrase “at least one of A, B and C” includes only A, only B, only C, any two of A, B and C, and all of A, B and C.
  • FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing apparatus 100.
  • the substrate processing apparatus 100 is a single wafer processing apparatus that processes substrates W to be processed one by one.
  • the substrate W is, for example, a semiconductor substrate and has a disk shape.
  • the substrate W includes a photomask glass substrate, a liquid crystal display glass substrate, a plasma display glass substrate, a FED (Field Emission Display) substrate, an optical disk substrate, a magnetic disk substrate, and a magneto-optical substrate.
  • Various substrates such as disk substrates can be applied.
  • the shape of the substrate is not limited to a disk shape, and various shapes such as a rectangular plate shape can be adopted.
  • the substrate processing apparatus 100 includes a load port 101 , an indexer robot 110 , a main transfer robot 120 , a plurality of processing units 130 and a control section 90 .
  • a plurality of load ports 101 are arranged side by side along one horizontal direction. Each load port 101 is an interface section for loading/unloading the substrate W into/from the substrate processing apparatus 100 .
  • a carrier C which is a substrate container for accommodating substrates W, is loaded into each load port 101 from the outside. Each load port 101 holds the loaded carrier C. As shown in FIG.
  • the indexer robot 110 is a transport robot that transports the substrate W between the carrier C held by each load port 101 and the main transport robot 120 .
  • the indexer robot 110 can move along the direction in which the load ports 101 are arranged, and can stop at a position facing each carrier C. As shown in FIG.
  • the indexer robot 110 can perform an operation of picking up the substrates W from each carrier C and an operation of transferring the substrates W to each carrier C. As shown in FIG.
  • the main transport robot 120 is a transport robot that transports substrates W between the indexer robot 110 and each processing unit 130 .
  • the main transport robot 120 can perform an operation of receiving the substrate W from the indexer robot 110 and an operation of transferring the substrate W to the indexer robot 110 . Further, the main transport robot 120 can perform an operation of loading the substrate W into each processing unit 130 and an operation of unloading the substrate W from each processing unit 130 .
  • 12 processing units 130 are arranged in the substrate processing apparatus 100 .
  • four towers each including three vertically stacked processing units 130 are provided so as to surround the main transfer robot 120 .
  • FIG. 1 one of the three-tiered processing units 130 is schematically shown. Note that the number of processing units 130 in the substrate processing apparatus 100 is not limited to 12, and may be changed as appropriate.
  • the main transport robot 120 is provided so as to be surrounded by four towers.
  • the main transport robot 120 loads unprocessed substrates W received from the indexer robot 110 into the processing units 130 .
  • Each processing unit 130 processes a substrate W.
  • FIG. Further, the main transport robot 120 unloads the processed substrate W from each processing unit 130 and passes it to the indexer robot 110 .
  • FIG. 2 is a functional block diagram schematically showing an example of the internal configuration of the control section 90.
  • the control unit 90 is an electronic circuit and has, for example, a data processing unit 91 and a storage unit 92 .
  • the data processing section 91 and the storage section 92 are interconnected via a bus 93 .
  • the data processing unit 91 may be an arithmetic processing device such as a CPU (Central Processor Unit).
  • the storage unit 92 may have a non-temporary storage unit (eg, ROM (Read Only Memory) or hard disk) 921 and a temporary storage unit (eg, RAM (Random Access Memory)) 922 .
  • the non-temporary storage unit 921 may store, for example, a program that defines processing to be executed by the control unit 90 .
  • the control unit 90 can execute the processing specified in the program.
  • part or all of the processing executed by the control unit 90 may be executed by hardware.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the processing unit 130. As shown in FIG. It is not necessary for all the processing units 130 belonging to the substrate processing apparatus 100 to have the configuration shown in FIG. 3, and at least one processing unit 130 may have the configuration.
  • the processing unit 130 illustrated in FIG. 3 is an apparatus that performs processing on the substrate W using plasma.
  • the substrate W is, for example, a semiconductor substrate and has a disk shape.
  • the size of the substrate W is not particularly limited, its diameter R1 is, for example, about 300 mm.
  • the treatment using plasma need not be particularly limited, a more specific example includes organic matter removal treatment.
  • the organic substance removing process is a process for removing organic substances on the main surface of the substrate W, and a resist can be applied as the organic substances.
  • the organic matter removing treatment can also be said to be a resist removing treatment.
  • the processing unit 130 includes a plasma reactor 1, a substrate holder 3, and a guard 7.
  • processing unit 130 also includes chamber 80 .
  • the chamber 80 forms a processing chamber for processing the substrate W, and accommodates various components described later.
  • the substrate holding part 3 is provided inside the chamber 80 and holds the substrate W in a horizontal posture.
  • the horizontal posture referred to here is a posture in which the thickness direction of the substrate W is along the vertical direction.
  • the substrate holder 3 includes a spin base 31 and multiple chuck pins 32 .
  • the spin base 31 has a disk shape and is provided below the substrate W in the vertical direction.
  • the spin base 31 is provided in such a posture that its thickness direction is along the vertical direction.
  • a plurality of chuck pins 32 are erected on the upper surface of the spin base 31 and grip the peripheral edge of the substrate W.
  • the substrate holding part 3 does not necessarily have to have the chuck pins 32 .
  • the substrate holding part 3 may suck the substrate W by sucking the lower surface of the substrate W.
  • the substrate holder 3 further includes a rotation mechanism 33, which rotates the substrate W around the rotation axis Q1.
  • the rotation axis Q1 is an axis that passes through the center of the substrate W and extends in the vertical direction.
  • Rotation mechanism 33 includes, for example, shaft 34 and motor 35 .
  • the upper end of shaft 34 is connected to the lower surface of spin base 31 .
  • the motor 35 rotates the shaft 34 around the rotation axis Q1 to rotate the spin base 31 .
  • the substrate W held by the plurality of chuck pins 32 rotates around the rotation axis Q1.
  • Such a substrate holding part 3 can also be called a spin chuck.
  • the radial direction about the rotation axis Q1 is simply referred to as the radial direction.
  • the processing unit 130 also includes the nozzle 4.
  • the nozzle 4 is provided in the chamber 80 and used to supply the substrate W with the processing liquid.
  • the nozzle 4 is connected to a processing liquid supply source 44 via a supply pipe 41 .
  • the processing liquid supply source 44 includes, for example, a tank (not shown) that stores the processing liquid.
  • the processing liquid includes, for example, at least one chemical liquid of sulfuric acid, sulfate, peroxosulfate, and peroxosulfate.
  • a valve 42 is interposed in the supply pipe 41 . By opening the valve 42 , the processing liquid from the processing liquid supply source 44 is supplied to the nozzle 4 through the supply pipe 41 and discharged from the discharge port 4 a of the nozzle 4 .
  • the nozzle 4 is movably provided by a nozzle moving mechanism 45.
  • a nozzle moving mechanism 45 moves the nozzle 4 between the nozzle processing position and the nozzle standby position.
  • the nozzle processing position is a position where the nozzle 4 discharges the processing liquid toward the main surface (for example, the upper surface) of the substrate W.
  • the nozzle processing position is, for example, a position vertically above the substrate W and facing the central portion of the substrate W in the vertical direction.
  • the nozzle standby position is, for example, a position radially outside the peripheral edge of the substrate W.
  • FIG. 3 shows the nozzles 4 stopped at the nozzle standby position.
  • the nozzle moving mechanism 45 has, for example, a ball screw mechanism or an arm turning mechanism.
  • the arm turning mechanism includes an arm, a support column, and a motor (none of which are shown).
  • the arm has a horizontally extending rod-like shape, the tip of the arm is connected to the nozzle 4, and the base end of the arm is connected to the support column.
  • the support column extends vertically and is rotatable around its central axis. When the motor rotates the support column, the arm turns and the nozzle 4 moves in the circumferential direction around the central axis.
  • a support column is provided so that the nozzle processing position and the nozzle standby position are positioned on the moving path of the nozzle 4 .
  • the nozzle 4 may sequentially eject multiple types of treatment liquids.
  • the nozzle 4 may be connected to another processing liquid supply source (not shown) through a supply pipe (not shown) branched from the supply pipe 41 .
  • multiple nozzles 4 may be provided and each nozzle 4 may be connected to multiple processing liquid supplies.
  • the nozzle moving mechanism 45 may move the plurality of nozzles 4 together or individually.
  • the treatment liquid for example, pure water and rinsing liquid such as isopropyl alcohol can be applied.
  • the guard 7 is provided inside the chamber 80 and has a tubular shape for surrounding the substrate holding part 3 and the substrate W held by the substrate holding part 3 .
  • the guard 7 is provided to catch the processing liquid scattered from the periphery of the substrate W. As shown in FIG.
  • the guard 7 includes a cylindrical portion 71 surrounding the substrate holding portion 3, an inclined portion 72 and an upper end portion 73.
  • the inclined portion 72 is inclined so as to approach the rotation axis Q1 as it goes vertically upward. That is, the inner diameter and the outer diameter of the inclined portion 72 decrease vertically upward.
  • the upper end of the cylindrical portion 71 is continuous with the lower end of the inclined portion 72, and the cylindrical portion 71 extends along the vertical direction.
  • the upper end of the inclined portion 72 is continuous with the outer peripheral edge of the upper end portion 73 .
  • the upper end portion 73 has a ring-shaped plate shape extending horizontally.
  • the upper and lower surfaces of upper end 73 are parallel to the horizontal plane.
  • An inner peripheral edge of the upper end portion 73 forms an upper opening of the guard 7 .
  • the processing unit 130 includes multiple guards 7 .
  • a plurality of guards 7 are provided concentrically and all surround the substrate holder 3 .
  • two guards 7 are provided.
  • the outermost guard 7 is called guard 7A
  • the innermost guard 7 is also called guard 7B.
  • the guard 7 can be moved up and down by a guard elevating mechanism 75 (corresponding to a second elevating mechanism).
  • a guard elevating mechanism 75 elevates the guard 7 between the upper position and the guard standby position.
  • the upper position is the position where the guard 7 receives the processing liquid.
  • the guard standby position is, for example, a position where the upper surface of the upper end portion 73 of the guard 7 is vertically below the upper surface of the spin base 31 .
  • the example of FIG. 3 shows the guard 7 stopped at the guard standby position.
  • the guard lifting mechanism 75 may include, for example, a ball screw mechanism and a motor that applies a driving force to the ball screw mechanism, or may include an air cylinder. When a plurality of guards 7 are provided, the guard lifting mechanism 75 lifts and lowers the guards 7 individually.
  • the processing liquid scattered from the peripheral edge of the substrate W is received by the inner peripheral surface of the guard 7B and flows down along the inner peripheral surface of the guard 7B. do.
  • a cup 76 receives the processing liquid flowing down along the inner peripheral surface of the guard 7B.
  • the processing liquid is recovered through a recovery pipe 77 connected to the cup 76, for example, in a tank of the same type of processing liquid supply source.
  • the processing liquid scattered from the peripheral edge of the substrate W is received by the inner peripheral surface of the guard 7A. It flows down along the inner peripheral surface.
  • a cup (not shown) catches the processing liquid flowing down along the inner peripheral surface of the guard 7A.
  • the processing liquid is recovered, for example, in a tank of the same type of processing liquid supply source through a recovery pipe (not shown) connected to the cup.
  • the plasma reactor 1 is a plasma generator that generates plasma, and is provided in the chamber 80 at a position facing the upper surface of the substrate W held by the substrate holding part 3 in the vertical direction.
  • the plasma reactor 1 is connected to a power supply 16 for plasma, receives power from the power supply 16, and converts surrounding gas into plasma.
  • the plasma reactor 1 generates plasma under atmospheric pressure.
  • the atmospheric pressure here is, for example, 80% or more of the standard pressure and 120% or less of the standard pressure.
  • the plasma reactor 1 is a flat plasma reactor having a flat shape.
  • the plasma reactor 1 extends radially outward from the periphery of the substrate W in plan view.
  • the outer periphery of the plasma reactor 1 has, for example, a circular shape in plan view, and its outer diameter R2 is larger than the diameter R1 of the substrate W.
  • the outer diameter R2 of the plasma reactor 1 is larger than the inner diameter (corresponding to the upper opening diameter) R3 of the upper end portion 73 of the guard 7 .
  • the portion of the plasma reactor 1 outside the peripheral edge of the substrate W faces the upper end portion 73 of the guard 7 in the vertical direction.
  • An example of a specific internal configuration of the plasma reactor 1 will be detailed later.
  • the plasma reactor 1 is provided to be vertically movable by a plasma lifting mechanism 15 (corresponding to a first lifting mechanism).
  • the plasma elevating mechanism 15 elevates the plasma reactor 1 between the plasma processing position and the plasma standby position.
  • the plasma processing position is a position where the substrate W is processed using plasma from the plasma reactor 1 .
  • the distance between the plasma reactor 1 and the upper surface of the substrate W is, for example, about several mm (specifically, about 2 mm).
  • the plasma standby position is a position when the substrate W is not processed using plasma, and is a position vertically above the plasma processing position.
  • FIG. 3 shows the plasma reactor 1 stopped at the plasma standby position.
  • the plasma elevating mechanism 15 may include, for example, a ball screw mechanism and a motor for driving the ball screw mechanism, or may include an air cylinder.
  • the plasma reactor 1 can move from the plasma standby position to the plasma processing position with the nozzle 4 retracted to the nozzle standby position and all the guards 7 being lowered to, for example, the guard standby position.
  • the plasma reactor 1 moves to the plasma processing position, for example, with the liquid film F1 of the processing liquid formed on the upper surface of the substrate W (see also FIG. 9).
  • the plasma reactor 1 irradiates the upper surface of the substrate W with plasma in a processing state in which the guard 7 is positioned at the lower position (for example, the guard standby position) and the plasma reactor 1 is positioned at the plasma processing position.
  • various active species are generated.
  • plasmatization of air can generate various active species such as oxygen radicals, hydroxyl radicals, and ozone gas.
  • active species act on the upper surface of the substrate W.
  • the active species act on the liquid film of the processing liquid (here, sulfuric acid) on the upper surface of the substrate W. As shown in FIG. This enhances the processing performance of the processing liquid.
  • Caro's acid with high processing performance (here, oxidizing power).
  • Caro's acid is also called peroxomonosulfate.
  • the Caro's acid acts on the resist on the substrate W, so that the resist can be removed by oxidation.
  • the temperature around the plasma reactor 1 increases.
  • the temperature is several hundred degrees Celsius, and as a more specific example, it ranges from about 200 degrees Celsius to about 350 degrees Celsius.
  • the processing liquid on the upper surface of the substrate W evaporates easily, and the atmosphere immediately above the substrate W contains a large amount of volatile components of the processing liquid. If such an atmosphere of the processing liquid diffuses into the chamber 80, the volatile components of the processing liquid may adhere to the members inside the chamber 80, causing problems. Therefore, in order to suppress such diffusion of the processing liquid atmosphere, the processing unit 130 is provided with an air supply section 81 and an exhaust section 82 .
  • the air supply section 81 is provided on the ceiling of the chamber 80.
  • the gas supply unit 81 sucks gas (for example, air) from the outside of the chamber 80 , removes impurities from the gas with a filter, and supplies the removed gas to the inside of the chamber 80 . A so-called down flow is thereby formed in the chamber 80 .
  • the air supply unit 81 is, for example, a fan filter unit.
  • the exhaust section 82 includes a cylindrical member 83 and an exhaust pipe 84.
  • a tubular member 83 is provided within the chamber 80 .
  • the tubular member 83 has a tubular shape and surrounds the guard 7 from the outer peripheral side of the outermost guard 7 .
  • a cylindrical member 83 is provided on the floor of the chamber 80 .
  • An upstream end of an exhaust pipe 84 is connected to a lower portion of the cylindrical member 83, and a suction mechanism (not shown) is connected to a downstream end of the exhaust pipe 84.
  • the processing liquid atmosphere above the substrate W flows into the upstream end of the exhaust pipe 84 through the inside of the guard 7 and is discharged to the outside of the chamber 80 through the exhaust pipe 84 .
  • the flow of this airflow is schematically indicated by dashed arrows.
  • FIG. 4 is a cross-sectional view schematically showing an example of the configuration of the plasma reactor 1
  • FIG. 5 is a plan view schematically showing an example of the configuration of the plasma reactor 1.
  • plasma reactor 1 includes electrode assembly 10 and holding member 20 .
  • the electrode assembly 10 includes a first electrode section 11 and a second electrode section 12 .
  • the first electrode portion 11 has a comb shape including a plurality of first linear electrodes 111 and first collective electrodes 112 .
  • the second electrode portion 12 also has a comb shape including a plurality of second linear electrodes 121 and second collective electrodes 122 .
  • the first linear electrode 111 and the second linear electrode 121 are made of a conductive material such as a metal material (eg, tungsten) and have a rod-like shape (eg, cylindrical shape) extending along the horizontal longitudinal direction.
  • a metal material eg, tungsten
  • the first linear electrodes 111 and the second linear electrodes 121 are provided parallel to each other and arranged alternately in the arrangement direction perpendicular to and horizontal to the longitudinal direction.
  • the first collective electrode 112 connects ends (base ends) on one side in the longitudinal direction of the plurality of first linear electrodes 111 .
  • the second collective electrode 122 connects the ends (base ends) on the other side in the longitudinal direction of the plurality of second linear electrodes 121 .
  • the first collective electrode 112 and the second collective electrode 122 have arcuate plate shapes with substantially the same diameter that curve in opposite directions.
  • the first collective electrode 112 and the second collective electrode 122 are made of a conductive material such as a metal material (for example, aluminum).
  • each first linear electrode 111 is covered with the first dielectric 13 and each second linear electrode 121 is covered with the second dielectric .
  • the first dielectric 13 and the second dielectric 14 are made of dielectric materials such as quartz and ceramics.
  • Each of the first dielectric 13 and the second dielectric 14 has, for example, a tubular shape extending along the longitudinal direction.
  • a first linear electrode 111 is inserted into the first dielectric 13 along the longitudinal direction, and a second linear electrode 121 is inserted into the second dielectric 14 along the longitudinal direction.
  • the first linear electrode 111 and the second linear electrode 121 can be suppressed from being sputtered by the plasma.
  • contamination of the substrate W caused by sputtered particles can be suppressed.
  • the plasma reactor 1 is provided with a partition member 17 .
  • the partition member 17 is made of dielectric material such as quartz and ceramics.
  • the partition member 17 has, for example, a disc shape, and is provided in a posture in which the thickness direction thereof extends along the vertical direction.
  • First linear electrode 111 and first dielectric 13 are provided on the upper surface of partition member 17
  • second linear electrode 121 and second dielectric 14 are provided on the lower surface of partition member 17 .
  • the holding member 20 is made of an insulating material such as fluorine-based resin, and holds the first electrode portion 11, the second electrode portion 12, the first dielectric 13, the second dielectric 14 and the partition member 17 integrally.
  • the holding member 20 has a ring shape centered on the rotation axis Q1 in plan view.
  • the holding member 20 includes an upper member 21 and a lower member 22 that are connected together.
  • the upper member 21 and the lower member 22 sandwich at least the first collective electrode 112 and the second collective electrode 122 from opposite sides in the vertical direction.
  • the lower member 22 contacts at least the lower surface of each of the first collective electrode 112 and the second collective electrode 122 to support them.
  • the holding member 20 protrudes vertically upward and downward from the electrode assembly 10 . That is, the ring-shaped upper member 21 protrudes vertically above the electrode assembly 10 , and the ring-shaped lower member 22 protrudes below the electrode assembly 10 .
  • the inner peripheral surface 23 of the ring-shaped lower member 22 is, for example, a cylindrical surface centered on the rotation axis Q1. In the example of FIG. 4, the inner peripheral surface 23 of the lower member 22 is located radially outside the peripheral edge of the substrate W. In the example of FIG. That is, the inner diameter R21 of the lower member 22 is larger than the diameter R1 of the substrate W. As shown in FIG. In the example of FIG. 4, the lower surface 24 of the lower member 22 is parallel to the horizontal plane.
  • the first electrode portion 11 and the second electrode portion 12 are electrically connected to a power source 16 for plasma.
  • the power supply 16 has, for example, a switching power supply circuit (not shown), and outputs voltage for plasma between the first electrode portion 11 and the second electrode portion 12 .
  • the power supply 16 outputs a high frequency voltage as a voltage for plasma.
  • an electric field for plasma is generated between the first linear electrode 111 and the second linear electrode 121 .
  • the gas around the first linear electrode 111 and the second linear electrode 121 becomes plasma (so-called dielectric barrier discharge).
  • the base end and the tip of the first linear electrode 111 are located radially outside the peripheral edge of the substrate W, and the base end and the tip of the second linear electrode 121 are located radially outside the peripheral edge of the substrate W. are also located radially outward. All first linear electrodes 111 and all second linear electrodes 121 may be the same.
  • the plasma reactor 1 can generate plasma in a two-dimensional range wider than the upper surface of the substrate W in plan view, and the active species can act on the upper surface of the substrate W more uniformly.
  • FIG. 6 is a flow chart showing an example of the operation of the processing unit 130.
  • the substrate holding part 3 holds the substrate W (step S1: holding step).
  • the main transport robot 120 transfers the unprocessed substrate W to the substrate holding unit 3, and the substrate holding unit 3 holds the substrate W.
  • FIG. 1 the substrate holding part 3 holds the substrate W (step S1: holding step).
  • FIG. 7 is a diagram schematically showing an example of the state of the processing unit 130 in the liquid film forming process.
  • the nozzle moving mechanism 45 moves the nozzle 4 to the nozzle processing position, and the guard lifting mechanism 75 lifts the guard 7 to the upper position.
  • both guard 7A and guard 7B are in the upper position.
  • the substrate holder 3 rotates the substrate W around the rotation axis Q1, and the valve 42 is opened.
  • the processing liquid is supplied from the ejection port 4a of the nozzle 4 toward the upper surface of the substrate W during rotation.
  • sulfuric acid is supplied as the processing liquid.
  • the processing liquid that has landed on the upper surface of the substrate W spreads over the upper surface of the substrate W. As shown in FIG. As a result, a liquid film F1 of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG. In addition, the processing liquid scattered from the peripheral edge of the substrate W is received by the inner peripheral surface of the guard 7B.
  • the valve 42 is closed to stop the supply of the treatment liquid, and the nozzle moving mechanism 45 moves the nozzle 4 to the nozzle standby position. Further, the substrate holding part 3 reduces the rotation speed of the substrate W. FIG. More specifically, the substrate holding unit 3 reduces the rotation speed to a speed (for example, 40 rpm or less) at which the liquid film F1 on the upper surface of the substrate W can be maintained (so-called paddle processing). The rotation speed of the substrate W may be zero.
  • the film thickness of the liquid film F1 is, for example, 0.1 mm or more and 2.0 mm or less, preferably about 0.2 mm. In other words, the discharge amount of the treatment liquid and the rotation speed of the substrate W in the liquid film forming process are adjusted so that the film thickness of the liquid film F1 becomes the target value.
  • FIG. 8 is a flow chart showing a specific example of the plasma processing process
  • FIG. 9 is a diagram schematically showing an example of the state of the processing unit 130 in the plasma processing process.
  • the guard lifting mechanism 75 lowers the guard 7 to the lower position (step S31: guard moving step).
  • the lower position referred to here is a position where the upper end 711 of the inner peripheral surface of the outermost guard 7A is vertically below the upper surface of the substrate W held by the substrate holding portion 3 .
  • a position where the upper end 711 of the guard 7A is vertically below the lower surface of the substrate W may be adopted, or the upper end 711 of the guard 7A is below the upper surface of the spin base 31. position may be employed, or a guard standby position may be employed.
  • the guard standby position is adopted as the lower position. That is, the guard elevating mechanism 75 lowers the guard 7A and the guard 7B to the guard standby position.
  • the power supply 16 outputs voltage for plasma to the plasma reactor 1 (step S32: lighting step). Thereby, plasma is generated around the plasma reactor 1 .
  • the lighting process may be performed before the guard moving process.
  • the plasma elevating mechanism 15 lowers the plasma reactor 1 from the plasma standby position to the plasma processing position (step S33: plasma movement step).
  • the plasma reactor 1 can irradiate the substrate W with plasma (step S34: plasma irradiation step).
  • the plasma processing position is a position close to the substrate W to the extent that the substrate W can be irradiated with plasma.
  • FIG. 9 shows the state of the processing unit 130 in the plasma irradiation process.
  • the plasma reactor 1 is located at the plasma processing position, irradiates the liquid film F1 on the upper surface of the substrate W with plasma, and supplies active species to the liquid film F1.
  • the processing performance of the processing liquid is improved, and the processing liquid acts on the substrate W with high processing performance. More specifically, oxygen radicals react with sulfuric acid to produce Caro's acid, which removes the resist on the substrate W.
  • the substrate holder 3 may rotate the substrate W at a low speed (for example, 40 rpm or less), or may stop the rotation of the substrate W.
  • a low speed for example, 40 rpm or less
  • the active species act more uniformly on the substrate W, so that the uniformity of processing on the substrate W can be improved.
  • the plasma elevating mechanism 15 raises the plasma reactor 1 to the plasma standby position, and the power supply 16 stops outputting voltage (step S35).
  • the processing unit 130 performs a rinsing process on the upper surface of the substrate W (step S4: rinsing process). Specifically, the processing unit 130 supplies the rinsing liquid from the nozzle 4 to the top surface of the substrate W during rotation, and replaces the processing liquid on the top surface of the substrate W with the rinsing liquid.
  • step S5 drying process
  • the substrate holding unit 3 rotates the substrate W at a higher rotation speed than the plasma processing step, thereby drying the substrate W (so-called spin drying).
  • the main transport robot 120 unloads the processed substrate W from the processing unit 130 .
  • the plasma reactor 1 in the plasma processing step, the plasma reactor 1 is stopped at the plasma processing position while the upper end 711 of the guard 7 is stopped at the lower position below the lower surface of the substrate W. (See Figure 9). That is, the upper end of the guard 7A is at a lower position than when the guard 7 is positioned at the upper position. Therefore, even if the size of the plasma reactor 1 in plan view is increased, the plasma reactor 1 can be lowered to a plasma processing position closer to the substrate W without physically interfering with the guard 7 . That is, by lowering the guard 7A located below the plasma reactor 1 to a lower position, the plasma reactor 1 can also be lowered further.
  • FIG. 10 is a graph showing an example of spatial temperature distribution around the plasma reactor 1.
  • the horizontal axis indicates the radial distance from the center of the plasma reactor 1 (that is, the rotation axis Q1), and the vertical axis indicates the temperature at a position vertically below the plasma reactor 1 by 10 mm.
  • the example in FIG. 10 also shows a plasma generation region where plasma is generated.
  • the temperature gradually decreases as the distance from the center increases. is relatively small.
  • the temperature drops sharply as the distance from the center increases. That is, the temperature at the peripheral edge of the plasma generation region is significantly lower than the temperature at the center of the plasma generation region.
  • the temperature distribution of the upper surface of the substrate W is affected by the temperature distribution of the plasma reactor 1 . Therefore, when the size of the plasma reactor 1 in a plan view is about the same as that of the substrate W, even if the entire upper surface of the substrate W can be irradiated with plasma, the temperature of the periphery of the substrate W is higher than that of the central portion. becomes smaller. Therefore, a difference occurs in the degree of processing between the central portion and the peripheral portion of the substrate W.
  • the guard 7 is positioned vertically below the plasma reactor 1 in the plasma irradiation step, so the outer diameter R2 and the inner diameter R21 of the plasma reactor 1 are irrelevant to the inner diameter R3 of the guard 7. can be designed to Therefore, the size of the plasma reactor 1 can be increased to widen the plasma generation area.
  • the size of the plasma reactor 1 can be designed such that a region with a more uniform temperature distribution faces the entire upper surface of the substrate W. FIG. According to this structure, the temperature distribution on the upper surface of the substrate W can be made more uniform, and the uniformity of the processing of the substrate W can be improved.
  • the ambient temperature rises up to several hundred degrees Celsius, as described above, so the processing liquid on the substrate W is likely to evaporate. Therefore, the atmosphere between the substrate W and the plasma reactor 1 contains many volatile components of the processing liquid.
  • an air supply unit 81 and an exhaust unit 82 are provided. can flow into In the example of FIG. 9, a part of the possible flow of the processing liquid atmosphere is schematically indicated by dashed arrows.
  • the possibility of the processing liquid atmosphere flowing out of the guard 7 increases as the rotation speed of the substrate W in the plasma processing step increases.
  • the guard lifting mechanism 75 may position the guard 7A at a guard intermediate position higher than the guard standby position in the plasma processing process.
  • FIG. 11 is a diagram schematically showing an example of the state of the processing unit 130 in the plasma processing step
  • FIG. 12 shows a portion of the processing unit 130 (specifically, the area surrounded by the dashed line) in FIG. It is an enlarged view which expands and shows.
  • the plasma reactor 1 stops at the plasma processing position
  • the guard 7A stops at the guard intermediate position.
  • the guard intermediate position is a position where the distance D1 between the plasma reactor 1 positioned at the plasma processing position and the outermost guard 7A is narrower than the distance D2 between the guard 7A and the substrate holder 3.
  • the distance D1 is the distance between the lower surface 24 of the lower member 22 of the plasma reactor 1 and the upper surface of the upper end portion 73 of the guard 7A
  • the distance D2 is the inner peripheral edge of the upper end portion 73 of the guard 7A. and the side of the spin base 31. Even when the guard 7A stops at the guard intermediate position, the upper end 711 of the inner peripheral surface of the guard 7A is positioned below the upper surface of the substrate W, so the guard intermediate position is also included in the concept of the lower position.
  • the space D1 becomes narrower than the space D2, so the processing liquid atmosphere flows more easily through the gap between the guard 7A and the substrate holder 3 than between the plasma reactor 1 and the guard 7A. . According to this, it is possible to suppress the processing liquid atmosphere from flowing out of the guard 7 and diffusing into the chamber 80 .
  • the processing liquid may splash from the periphery of the substrate W. If the interval D1 is equal to or smaller than the interval D2, the processing liquid also hardly passes through the gap between the plasma reactor 1 and the guard 7 and easily flows down through the gap between the guard 7 and the substrate holder 3 . Therefore, it is possible to prevent the processing liquid from flowing out of the guard 7 .
  • the lower member 22 (corresponding to the outer portion) positioned outside the peripheral edge of the substrate W in the plasma reactor 1 has a ring shape and protrudes vertically below the electrode assembly 10 . .
  • the lower surface 24 of the lower member 22 is located vertically below the upper surface of the substrate W in the plasma processing step (see FIGS. 9, 11 and 12). That is, the lower surface 24 of the lower member 22 is positioned vertically below the lower surface of the substrate W in the processing state in which the plasma reactor 1 is positioned at the plasma processing position.
  • the inner peripheral surface 23 of the lower member 22 can surround the space above the substrate W. FIG. Therefore, the lower member 22 can substantially function as part of the guard.
  • the processing liquid atmosphere between the plasma reactor 1 and the substrate W flows radially outward, it collides with the inner peripheral surface 23 of the lower member 22 and vertically downward along the inner peripheral surface 23 . flow. Moreover, even if the processing liquid scatters radially outward from the peripheral edge of the substrate W, the processing liquid collides with the inner peripheral surface 23 of the lower member 22 and also flows vertically downward along the inner peripheral surface 23 .
  • the atmosphere of the processing liquid and the flow of the processing liquid are schematically indicated by two-dot chain arrows.
  • the lower end peripheral edge 231 of the inner peripheral surface 23 of the lower member 22 may be located radially inward from the inner peripheral edge of the upper end portion 73 of the guard 7 .
  • the inner diameter R21 of the lower member 22 is smaller than the inner diameter R3 of the guard 7 .
  • the lower end peripheral edge 231 of the inner peripheral surface 23 of the lower member 22 may be located radially outside the peripheral edge of the substrate holding part 3 (that is, the side surface of the spin base 31). .
  • the inner diameter R21 of the lower member 22 is larger than the diameter R4 of the spin base 31.
  • the spin base 31 rotates around the rotation axis Q1, if the processing liquid atmosphere and the processing liquid collide with the upper surface of the spin base 31, they can receive centrifugal force and flow radially outward again. This increases the possibility that the processing liquid atmosphere and the processing liquid flow out of the guard.
  • the inner diameter R21 of the lower member 22 is larger than the diameter R4 of the spin base 31, the amount of the processing liquid atmosphere and the processing liquid colliding with the spin base 31 can be reduced. Outflow to the outside of the guard 7 can be further suppressed.
  • the lower member 22 that supports the electrode assembly 10 from below can function as a guard. Therefore, the manufacturing cost of the plasma reactor 1 can be reduced compared to the case where the plasma reactor 1 is separately provided with a member functioning as a guard.
  • the guard elevating mechanism 75 raises not only the outermost guard 7A but also the other guards 7B to a position higher than the guard standby position in the plasma processing process.
  • the gap between the guards 7A and 7B is narrowed, so that the possibility of the processing liquid flowing into the space between the guards 7A and 7B can be reduced, and more processing liquid can flow into the cup 76. can flow down. Therefore, more processing liquid can be recovered appropriately.
  • the plasma transfer step (step S33) is performed after the guard transfer step (step S31). That is, the plasma elevating mechanism 15 starts lowering the plasma reactor 1 after the guard 7 stops at the lower position. According to this, it is possible to more reliably avoid collision between the plasma reactor 1 and the guard 7 at a high speed.
  • the plasma transfer process may be performed in parallel with the guard transfer process.
  • the descent speed and descent timing of the plasma reactor 1 and the guard 7 should be adjusted so that the plasma reactor 1 does not collide with the guard 7 at a high speed.
  • the plasma elevating mechanism 15 may lower the plasma reactor 1 so that the plasma reactor 1 reaches the plasma processing position after the guard 7 reaches the lower position.
  • the processing throughput can be improved.
  • the plasma reactor 1 and the outermost guard 7A are separated from each other in the vertical direction in the plasma processing step (see FIG. 12, for example). However, this is not necessarily the case, and the plasma reactor 1 and guard 7A may be in contact with each other in the vertical direction. In other words, a position where the outermost guard 7A contacts the plasma reactor 1 in the vertical direction may be adopted as the guard intermediate position.
  • FIG. 13 is an enlarged view schematically showing an example of the state of the processing unit 130 in the plasma processing process.
  • the lower surface 24 of the lower member 22 of the plasma reactor 1 is in contact with the upper surface of the upper end portion 73 of the outermost guard 7A.
  • the gap between the lower member 22 of the plasma reactor 1 and the upper end portion 73 of the guard 7A can be further reduced, so that the outflow of the processing liquid atmosphere and the processing liquid to the outside of the guard 7 can be further suppressed. can.
  • FIG. 14 is a diagram schematically showing an example of the configuration of the processing unit 130A according to the second embodiment
  • FIG. 15 is an enlarged view showing an example of the state of the processing unit 130A in the plasma processing step. is.
  • the configuration of the processing unit 130A according to the second embodiment is the same as that of the processing unit 130 according to the first embodiment, except for the presence or absence of the elastic seal member 5.
  • the seal member 5 is provided on the outermost guard 7A. That is, the guard 7A includes a cylinder portion 71, an inclined portion 72, an upper end portion 73, and a seal member 5. As shown in FIG.
  • the seal member 5 is made of an elastic member, for example, an elastic resin such as silicone or rubber.
  • the seal member 5 is attached to the upper surface of the upper end portion 73 of the guard 7A and faces the plasma reactor 1 in the vertical direction.
  • the seal member 5 is in close contact with the lower surface 24 of the lower member 22 of the plasma reactor 1 in the plasma processing step as described later. Thereby, the adhesion between the plasma reactor 1 and the guard 7A can be improved.
  • the seal member 5 has a ring shape centered on the rotation axis Q1, and its lower end is attached to the upper surface of the upper end portion 73.
  • the sealing member 5 has a bent shape.
  • the seal member 5 includes an upper ring portion 51 and a lower ring portion 52 .
  • the upper ring portion 51 has an inclined ring shape in which the inner diameter and the outer diameter decrease from the vertically upward direction to the vertically downward direction.
  • the lower ring portion 52 has an inclined ring shape in which the inner diameter and the outer diameter increase from the vertically upward direction to the vertically downward direction.
  • Such a sealing member 5 can be easily elastically deformed so that the distance between the upper end of the upper ring portion 51 and the lower end of the lower ring portion 52 is narrowed.
  • the guard elevating mechanism 75 moves the guard 7A to the guard intermediate position where the lower surface 24 of the lower member 22 of the plasma reactor 1 contacts the upper end of the seal member 5 .
  • the seal member 5 is pressed vertically downward by the plasma reactor 1 and is elastically deformed, and is in close contact with the plasma reactor 1 .
  • FIG. 16 is a diagram schematically showing a modification of the processing unit 130A.
  • the sealing member 5 is provided in the plasma reactor 1.
  • plasma reactor 1 includes sealing member 5 .
  • the seal member 5 is attached to the lower surface 24 of the lower member 22 of the plasma reactor 1 and vertically faces the upper end portion 73 of the guard 7A.
  • An example of the specific shape of the seal member 5 is as described above.
  • the plasma reactor 1 contacts the guard 7A in the vertical direction in the plasma processing step. Specifically, the lower end of the seal member 5 of the plasma reactor 1 contacts the upper surface of the upper end portion 73 of the guard 7A. At this time, the seal member 5 is pressed vertically downward by the plasma reactor 1 and is elastically deformed. That is, as the guard intermediate position, the position where the lower end of the seal member 5 located at the plasma processing position is in close contact with the upper surface of the guard 7A is adopted.
  • the sealing member 5 is provided only on one of the plasma reactor 1 and the guard 7A, but may be provided on both. In this case, in the plasma processing step, the sealing member 5 of the plasma reactor 1 and the sealing member 5 of the guard 7A may be in close contact in the vertical direction.
  • FIG. 17 is a diagram schematically showing an example of the configuration of the processing unit 130B according to the third embodiment
  • FIG. 18 is an enlarged view showing an example of the state of the processing unit 130B in the plasma processing step. is.
  • the configuration of the processing unit 130B according to the third embodiment is the same as that of the processing unit 130 according to the first embodiment, except for the presence or absence of the labyrinth structure 55.
  • FIG. 17 is a diagram schematically showing an example of the configuration of the processing unit 130B according to the third embodiment
  • FIG. 18 is an enlarged view showing an example of the state of the processing unit 130B in the plasma processing step. is.
  • the configuration of the processing unit 130B according to the third embodiment is the same as that of the processing unit 130 according to the first embodiment, except for the presence or absence of the labyrinth structure 55.
  • the labyrinth structure 55 is realized by the uneven shape of the plasma reactor 1 and the guard 7A (see FIG. 18). A specific example will be described below.
  • the lower member 22 of the plasma reactor 1 protrudes vertically below the electrode assembly 10, and the lower member 22 forms a convex portion.
  • a convex portion 74 and a convex portion 78 are provided on the upper surface of the upper end portion 73 of the guard 7A.
  • the convex portion 74 protrudes vertically upward from the upper surface of the upper end portion 73 at a position radially inner than the lower member 22 .
  • the convex portion 78 protrudes vertically upward from the upper surface of the upper end portion 73 at a position radially outside the lower member 22 .
  • a concave portion (groove) 79 is formed on the upper surface of the upper end portion 73 of the guard 7A at a position facing the lower member 22 in the vertical direction.
  • Concave portion 79 is formed by convex portion 74 and convex portion 78 .
  • Each of the protrusions 74 and 78 has, for example, a ring shape centered on the rotation axis Q1.
  • the recess 79 also has a ring shape around the rotation axis Q1.
  • the lower member 22 which is the convex portion of the plasma reactor 1
  • the lower member 22 is positioned in the concave portion of the guard 7A. 79 is loosely inserted. That is, the lower surface 24 of the lower member 22 is located vertically below both the upper ends of the projections 74 and the upper ends of the projections 78 . However, the bottom surface of the lower member 22 is separated from the bottom surface of the recess 79 .
  • the lower member 22 of the plasma reactor 1 is located between the projections 74 and 78 in the radial direction and faces them with a gap therebetween.
  • the lower member 22 of the plasma reactor 1 and the projections 74 and 78 of the guard 7A form a labyrinth structure 55 having irregularities in the radial direction. According to this structure, the gap between the plasma reactor 1 and the guard 7A functions as a labyrinth seal. Therefore, in the plasma processing step, it is possible to prevent the processing liquid atmosphere and the processing liquid from flowing out through the gap between the plasma reactor 1 and the guard 7A.
  • the substrate processing apparatus 100 and the substrate processing method have been described in detail, but the above description is illustrative in all aspects, and the substrate processing apparatus 100 and the substrate processing method are limited thereto. isn't it. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of this disclosure. Each configuration described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
  • the plasma elevating mechanism 15 elevates the plasma reactor 1, it is not necessarily limited to this. Since the plasma elevating mechanism 15 only needs to elevate the plasma reactor 1 relative to the substrate holding part 3, the substrate holding part 3 may be elevated and lowered. may Further, since the guard lifting mechanism 75 only needs to lift the guard 7 with respect to the substrate holding portion 3, the substrate holding portion 3 may be lifted or lowered, or the substrate holding portion 3 and the guard 7 may be lifted and lowered.
  • the processing for the substrate W is not necessarily limited to the resist removal processing.
  • it can be applied to all treatments that can improve the treating ability of the treatment liquid by means of active species.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a technology capable of expanding the size of a plasma reactor and improving uniformity of substrate processing. This substrate processing device is provided with a substrate holding unit (3), a plurality of guards (7), a plasma reactor (1), a first elevator mechanism (15), and a second elevator mechanism (75). The substrate holding unit (3) holds a substrate (W). The plurality of guards (7) have a cylindrical shape surrounding the substrate holding unit (3), and are provided concentrically. The plasma reactor (1) is provided vertically upward of the substrate holding unit (3), and extends outward of the peripheral edges of the substrate as seen in a plan view. The plasma reactor (1) radiates a plasma onto the substrate (W) in a processing state in which the plurality of guards (7) are positioned at a lower position where an upper end (711) of an inner circumferential surface of the outermost guard (7A) is vertically downward of an upper surface of the substrate (W), and the plasma reactor (1) is positioned at a plasma processing position in close proximity to the substrate (W).

Description

基板処理装置および基板処理方法SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
 本開示は、基板処理装置および基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 従来から、基板に対してプラズマを照射する基板処理装置が提案されている(例えば特許文献1,2)。特許文献1では、基板処理装置は、基板を水平姿勢で回転させるスピンチャックと、基板の上面にプラズマを照射するプラズマノズルと、基板の上面に処理液を吐出する処理液ノズルと、各ノズルを移動させるノズル移動部と、基板の周縁から飛散する処理液を受け止めるためのガードと、ガードを昇降させるガード昇降部とを含んでいる。 Conventionally, substrate processing apparatuses that irradiate plasma onto substrates have been proposed (for example, Patent Documents 1 and 2). In Patent Document 1, a substrate processing apparatus includes a spin chuck that rotates a substrate in a horizontal position, a plasma nozzle that irradiates the upper surface of the substrate with plasma, a processing liquid nozzle that discharges a processing liquid onto the upper surface of the substrate, and each nozzle. It includes a nozzle moving part that moves, a guard that receives the processing liquid that scatters from the periphery of the substrate, and a guard elevating part that elevates the guard.
 特許文献1では、基板処理装置は、ガードを上昇させた状態で、処理液ノズルから回転中の基板の上面に処理液を吐出して、基板の上面に処理液の液膜を形成する。そして、基板処理装置は回転中の基板の上面に沿ってプラズマノズルを往復移動させることにより、基板の全面にプラズマを照射する。これにより、パターン倒壊を抑制しつつ基板を乾燥させることができる。 In Patent Document 1, the substrate processing apparatus discharges the processing liquid from the processing liquid nozzle onto the upper surface of the rotating substrate while the guard is raised to form a liquid film of the processing liquid on the upper surface of the substrate. The substrate processing apparatus irradiates the entire surface of the substrate with plasma by reciprocating the plasma nozzle along the upper surface of the rotating substrate. As a result, the substrate can be dried while suppressing pattern collapse.
特開2020-181892号公報JP 2020-181892 A 特開2004-165636号公報JP 2004-165636 A
 基板に対して適切にプラズマを照射するには、プラズマリアクタを基板に近づけることが望ましい。プラズマリアクタが基板から離れると、プラズマあるいは活性種が基板へ到達する前に消失するからである。 In order to properly irradiate the substrate with plasma, it is desirable to bring the plasma reactor closer to the substrate. This is because when the plasma reactor is separated from the substrate, plasma or active species disappear before reaching the substrate.
 また、基板に対してより均一にプラズマを照射するためには、平型のプラズマリアクタを基板の上面と向かい合うように配置することが望ましい。このような平型のプラズマは基板の上面に対して広い範囲でプラズマを照射できるからである。 Also, in order to irradiate the substrate with plasma more uniformly, it is desirable to arrange a flat plasma reactor so as to face the upper surface of the substrate. This is because such flat plasma can irradiate the upper surface of the substrate with plasma over a wide range.
 しかしながら、平型のプラズマリアクタにおいて、その周縁の温度が中央の温度よりも顕著に低下することが分かった。よって、基板の上面の全面にプラズマを照射できる程度のサイズで平型のプラズマリアクタを設計しても、基板の周縁部における温度が中央部における温度よりも顕著に低下する場合もある。この場合、温度差に起因して、基板に対する処理の程度がばらついてしまう。 However, in the flat plasma reactor, it was found that the temperature at the periphery is significantly lower than the temperature at the center. Therefore, even if a flat plasma reactor is designed with a size that can irradiate the entire upper surface of the substrate with plasma, the temperature at the periphery of the substrate may be significantly lower than the temperature at the center. In this case, the degree of processing on the substrate varies due to the temperature difference.
 この問題を解決するために、平面視におけるプラズマリアクタのサイズをさらに拡大すると、プラズマリアクタがガードと干渉する可能性がある。 In order to solve this problem, if the size of the plasma reactor in plan view is further increased, the plasma reactor may interfere with the guard.
 そこで、本開示は、プラズマリアクタのサイズを拡大して基板に対する処理の均一性を向上できる技術を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a technology capable of improving the uniformity of processing on a substrate by enlarging the size of the plasma reactor.
 基板処理装置の第1の態様は、基板を保持する基板保持部と、前記基板保持部を囲む筒状形状を有し、同心状に設けられた複数のガードと、前記基板保持部よりも鉛直上方に設けられており、平面視において、前記基板保持部によって保持された前記基板の周縁よりも外側に広がっているプラズマリアクタと、前記プラズマリアクタを前記基板保持部に対して相対的に昇降させる第1昇降機構と、前記複数のガードを前記基板保持部に対して相対的に昇降させる第2昇降機構とを備え、前記複数のガードのうち最外周のガードの内周面の上端が前記基板の上面よりも鉛直下方となる下位置に前記複数のガードが位置し、かつ、前記プラズマリアクタが前記基板に対して近接したプラズマ処理位置に位置する処理状態で、前記プラズマリアクタは前記基板にプラズマを照射する。 A first aspect of a substrate processing apparatus includes a substrate holding portion that holds a substrate, a plurality of guards that have a cylindrical shape surrounding the substrate holding portion and are concentrically provided, and a guard that is perpendicular to the substrate holding portion. A plasma reactor that is provided above and spreads outside the peripheral edge of the substrate held by the substrate holding part in a plan view, and moves the plasma reactor up and down relative to the substrate holding part. A first elevating mechanism and a second elevating mechanism for relatively elevating the plurality of guards with respect to the substrate holding portion, wherein the upper end of the inner peripheral surface of the outermost guard among the plurality of guards is positioned above the substrate. in a processing state in which the plurality of guards are positioned vertically below the upper surface of the plasma reactor and the plasma reactor is positioned at a plasma processing position close to the substrate; to irradiate.
 基板処理装置の第2の態様は、第1の態様にかかる基板処理装置であって、前記処理状態において、前記プラズマリアクタと前記最外周のガードとの間隔は、前記最外周のガードと前記基板保持部との間隔よりも狭い。 A second aspect of the substrate processing apparatus is the substrate processing apparatus according to the first aspect, wherein in the processing state, the distance between the plasma reactor and the outermost guard is equal to the outermost guard and the substrate. It is narrower than the interval with the holding part.
 基板処理装置の第3の態様は、第2の態様にかかる基板処理装置であって、前記処理状態において、前記プラズマリアクタは鉛直方向において前記ガードに当接する。 A third aspect of the substrate processing apparatus is the substrate processing apparatus according to the second aspect, wherein the plasma reactor abuts against the guard in the vertical direction in the processing state.
 基板処理装置の第4の態様は、第3の態様にかかる基板処理装置であって、前記プラズマリアクタのうち前記基板の周縁よりも外側の部分の下面、および、前記最外周のガードの上面の少なくともいずれかに一方には、他方と密着する弾性のシール部材が設けられている。 A fourth aspect of the substrate processing apparatus is the substrate processing apparatus according to the third aspect, wherein the lower surface of the portion of the plasma reactor outside the peripheral edge of the substrate and the upper surface of the outermost peripheral guard are At least one of them is provided with an elastic sealing member that is in close contact with the other.
 基板処理装置の第5の態様は、第2の態様にかかる基板処理装置であって、前記プラズマリアクタのうち前記基板の周縁よりも外側部分の下面は、前記処理状態において、前記最外周のガードの上面とともに、径方向に凹凸を呈するラビリンス構造を形成する。 A fifth aspect of the substrate processing apparatus is the substrate processing apparatus according to the second aspect, wherein the lower surface of the portion outside the peripheral edge of the substrate in the plasma reactor is, in the processing state, the outermost peripheral guard. A labyrinth structure having irregularities in the radial direction is formed together with the upper surface of the .
 基板処理装置の第6の態様は、第1から第5のいずれか一つの態様にかかる基板処理装置であって、前記プラズマリアクタのうち前記基板の周縁よりも外側の外側部分は、下方に突出するリング形状を有しており、前記外側部分の内径は前記基板の直径よりも大きく、前記処理状態において、前記外側部分の下面は、前記基板保持部によって保持された前記基板の上面よりも下方に位置する。 A sixth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to fifth aspects, wherein the outer portion of the plasma reactor outside the peripheral edge of the substrate protrudes downward. The inner diameter of the outer portion is larger than the diameter of the substrate, and the lower surface of the outer portion is lower than the upper surface of the substrate held by the substrate holder in the processing state. Located in
 基板処理装置の第7の態様は、第6の態様にかかる基板処理装置であって、前記プラズマリアクタの前記外側部分の内径は、前記最外周のガードの上部開口径以下である。 A seventh aspect of the substrate processing apparatus is the substrate processing apparatus according to the sixth aspect, wherein the inner diameter of the outer portion of the plasma reactor is equal to or smaller than the upper opening diameter of the outermost guard.
 基板処理装置の第8の態様は、第6または第7の態様にかかる基板処理装置であって、前記基板保持部は、前記基板よりも鉛直下方において前記基板と対向するスピンベースを含み、前記外側部分の内径は、前記スピンベースの直径よりも大きい。 An eighth aspect of the substrate processing apparatus is the substrate processing apparatus according to the sixth or seventh aspect, wherein the substrate holding part includes a spin base facing the substrate vertically below the substrate, The inner diameter of the outer portion is larger than the diameter of the spin base.
 基板処理装置の第9の態様は、第6から第8のいずれか一つの態様にかかる基板処理装置であって、前記プラズマリアクタは、プラズマ用の電力が供給される電極アセンブリを含み、前記外側部分は、前記電極アセンブリを下方から支持する。 A ninth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the sixth to eighth aspects, wherein the plasma reactor includes an electrode assembly to which power for plasma is supplied, and the outer A portion supports the electrode assembly from below.
 基板処理装置の第10の態様は、第1から第9のいずれか一つの態様にかかる基板処理装置であって、前記基板保持部によって保持された前記基板の主面に対して処理液を供給するノズルをさらに備え、前記基板保持部は、鉛直方向に沿う回転軸線のまわりで前記基板を回転させる回転機構を含み、前記第2昇降機構が少なくとも前記最外周のガードを前記基板保持部に対して上位置に相対的に上昇させた状態で、前記ノズルが処理液を吐出し、前記基板保持部が前記基板を回転させ、前記上位置は、前記上端が前記基板の上面よりも鉛直上方となる位置である。 A tenth aspect of the substrate processing apparatus is the substrate processing apparatus according to any one of the first to ninth aspects, wherein a processing liquid is supplied to the main surface of the substrate held by the substrate holding part. The substrate holder includes a rotation mechanism that rotates the substrate around a rotation axis extending in a vertical direction, and the second elevating mechanism moves at least the outermost guard with respect to the substrate holder. The nozzle discharges the processing liquid, the substrate holding part rotates the substrate, and the upper position is such that the upper end is vertically above the upper surface of the substrate. position.
 基板処理方法の第1の態様は、基板保持部が基板を保持する保持工程と、前記基板保持部によって保持された前記基板の上面と向かい合う位置に設けられ、平面視において前記基板よりも外側に広がっているプラズマリアクタを点灯させる点灯工程と、前記基板保持部を囲む筒状形状を有し、同心状に設けられた複数のガードのうち最外周のガードの上端が、前記基板保持部によって保持された前記基板よりも低くなる下位置に前記ガードを前記基板保持部に対して位置させ、かつ、前記プラズマリアクタを、前記基板の前記上面に近接するプラズマ処理位置に移動させる移動工程と、を備える。 According to a first aspect of the substrate processing method, a substrate holding part is provided at a holding step for holding a substrate and a position facing the upper surface of the substrate held by the substrate holding part, and is positioned outside the substrate in plan view. A lighting step for lighting the spreading plasma reactor, and a guard having a cylindrical shape surrounding the substrate holding portion and having an upper end of an outermost guard among a plurality of concentrically provided guards held by the substrate holding portion. a moving step of positioning the guard with respect to the substrate holder at a lower position lower than the substrate, and moving the plasma reactor to a plasma processing position close to the upper surface of the substrate; Prepare.
 基板処理方法の第2の態様は、第1の態様にかかる基板処理方法であって、前記移動工程は、少なくとも前記最外周のガードを前記基板保持部に対して前記下位置に相対的に移動させるガード移動工程と、前記ガード移動工程の後に、前記プラズマリアクタを前記基板保持部に対して前記プラズマ処理位置に相対的に移動させるプラズマ移動工程とを含む。 A second aspect of the substrate processing method is the substrate processing method according to the first aspect, wherein the moving step relatively moves at least the outermost guard to the lower position with respect to the substrate holding part. and a plasma moving step of relatively moving the plasma reactor to the plasma processing position with respect to the substrate holder after the guard moving step.
 基板処理方法の第3の態様は、第1の態様にかかる基板処理方法であって、前記移動工程は、少なくとも前記最外周のガードを前記基板保持部に対して前記下位置に相対的に移動させるガード移動工程と、前記ガード移動工程と並行して、前記プラズマリアクタを前記基板保持部に対して前記プラズマ処理位置に相対的に移動させるプラズマ移動工程とを含む。 A third aspect of the substrate processing method is the substrate processing method according to the first aspect, wherein the moving step relatively moves at least the outermost guard to the lower position with respect to the substrate holding part. and a plasma moving step of relatively moving the plasma reactor to the plasma processing position with respect to the substrate holder in parallel with the guard moving step.
 基板処理装置の第1の態様および基板処理方法の第1の態様によれば、処理状態において、ガードをプラズマリアクタよりも鉛直下方に位置させることができる。よって、平面視におけるプラズマリアクタのサイズをガードに依らずに大きく設計することができる。このため、温度が比較的に均一なプラズマリアクタの中央部を基板の全面に対向させて、プラズマリアクタが基板にプラズマを照射することができ、基板に対する処理の均一性を向上させることができる。 According to the first aspect of the substrate processing apparatus and the first aspect of the substrate processing method, the guard can be positioned vertically below the plasma reactor in the processing state. Therefore, the size of the plasma reactor in plan view can be designed to be large without depending on the guard. Therefore, the plasma reactor can irradiate the substrate with plasma with the central portion of the plasma reactor having a relatively uniform temperature facing the entire surface of the substrate, thereby improving the uniformity of the substrate processing.
 基板処理装置の第2の態様によれば、プラズマリアクタと基板との間の雰囲気がプラズマリアクタとガードとの間隙よりもガードと基板保持部との間隙を通過しやすく、排気部を通じて外部に排気されやすい。つまり、雰囲気がプラズマリアクタとガードとの間隙を通じてガード外に流出することを抑制することができる。 According to the second aspect of the substrate processing apparatus, the atmosphere between the plasma reactor and the substrate passes through the gap between the guard and the substrate holder more easily than the gap between the plasma reactor and the guard, and is exhausted to the outside through the exhaust part. easy to be That is, it is possible to prevent the atmosphere from flowing out of the guard through the gap between the plasma reactor and the guard.
 基板処理装置の第3の態様によれば、雰囲気がガード外に流出することをさらに抑制できる。 According to the third aspect of the substrate processing apparatus, it is possible to further suppress the atmosphere from flowing out of the guard.
 基板処理装置の第4の態様によれば、雰囲気がガード外に流出することをさらに抑制できる。 According to the fourth aspect of the substrate processing apparatus, it is possible to further suppress the atmosphere from flowing out of the guard.
 基板処理装置の第5の態様によれば、雰囲気がガード外に流出することを抑制しつつ、ガードの外側からプラズマリアクタと最外周のガードとの間の間隙を通じてガードの内にガスを流入させることができる。よって、プラズマリアクタと基板との間の雰囲気を清浄な雰囲気に置換できる。 According to the fifth aspect of the substrate processing apparatus, gas is allowed to flow into the guard from the outside of the guard through the gap between the plasma reactor and the outermost guard while suppressing the atmosphere from flowing out of the guard. be able to. Therefore, the atmosphere between the plasma reactor and the substrate can be replaced with a clean atmosphere.
 基板処理装置の第6の態様によれば、外側部分をガードとして機能させることができる。 According to the sixth aspect of the substrate processing apparatus, the outer portion can function as a guard.
 基板処理装置の第7の態様によれば、外周縁部の内周面に沿って鉛直下方に流下する雰囲気がガードの上面に衝突しにくく、ガードと基板保持部との間隙を通過しやすい。 According to the seventh aspect of the substrate processing apparatus, the atmosphere that flows vertically downward along the inner peripheral surface of the outer peripheral edge portion does not easily collide with the upper surface of the guard, and easily passes through the gap between the guard and the substrate holding portion.
 基板処理装置の第8の態様によれば、外周縁部の内周面に沿って鉛直下方に流下する雰囲気がスピンベースの上面に衝突しにくく、ガードと基板保持部との間隙を通過しやすい。 According to the eighth aspect of the substrate processing apparatus, the atmosphere flowing vertically downward along the inner peripheral surface of the outer peripheral portion is less likely to collide with the upper surface of the spin base, and easily passes through the gap between the guard and the substrate holding portion. .
 基板処理装置の第9の態様によれば、電極アセンブリを支持する外側部分をガードとして機能させることができる。よって、別途にガードとして機能する部材をプラズマリアクタに設ける場合に比べて、プラズマリアクタの製造コストを低減させることができる。 According to the ninth aspect of the substrate processing apparatus, the outer portion that supports the electrode assembly can function as a guard. Therefore, the manufacturing cost of the plasma reactor can be reduced compared to the case where a member functioning as a guard is separately provided in the plasma reactor.
 基板処理装置の第10の態様によれば、基板の周縁から飛散した処理液をガードで受け止めることができる。 According to the tenth aspect of the substrate processing apparatus, the guard can catch the processing liquid scattered from the periphery of the substrate.
 基板処理方法の第2の態様によれば、プラズマリアクタとガードとの衝突を抑制することができる。 According to the second aspect of the substrate processing method, collision between the plasma reactor and the guard can be suppressed.
 基板処理方法の第3の態様によれば、スループットを向上させることができる。 According to the third aspect of the substrate processing method, throughput can be improved.
基板処理装置の構成の一例を概略的に示す平面図である。It is a top view which shows roughly an example of a structure of a substrate processing apparatus. 制御部の内部構成の一例を概略的に示すブロック図である。4 is a block diagram schematically showing an example of the internal configuration of a control unit; FIG. 第1の実施の形態にかかる処理ユニットの構成の一例を概略的に示す図である。3 is a diagram schematically showing an example of a configuration of a processing unit according to the first embodiment; FIG. プラズマリアクタの構成の一例を概略的に示す断面図である。1 is a cross-sectional view schematically showing an example of the configuration of a plasma reactor; FIG. プラズマリアクタの構成の一例を概略的に示す平面図である。1 is a plan view schematically showing an example of the configuration of a plasma reactor; FIG. 処理ユニットの動作の一例を示すフローチャートである。4 is a flow chart showing an example of the operation of a processing unit; 液膜形成工程における処理ユニットの様子の一例を概略的に示す図である。FIG. 4 is a diagram schematically showing an example of a state of a processing unit in a liquid film forming process; プラズマ処理工程の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation|movement of a plasma processing process. プラズマ照射工程における処理ユニットの様子の一例を概略的に示す図である。It is a figure which shows roughly an example of the appearance of the processing unit in a plasma irradiation process. プラズマリアクタの周囲の空間的な温度分布の一例を示すグラフである。4 is a graph showing an example of spatial temperature distribution around the plasma reactor; プラズマ照射工程における処理ユニットの様子の一例を概略的に示す図である。It is a figure which shows roughly an example of the appearance of the processing unit in a plasma irradiation process. 図11の処理ユニットの一部を拡大して示す拡大図である。12 is an enlarged view showing an enlarged part of the processing unit of FIG. 11; FIG. プラズマ照射工程における処理ユニットの様子の一部の一例を概略的に示す拡大図である。It is an enlarged view which shows roughly an example of a part of appearance of a processing unit in a plasma irradiation process. 第2の実施の形態にかかる処理ユニットの構成の一例を概略的に示す図である。It is a figure which shows roughly an example of a structure of the processing unit concerning 2nd Embodiment. 第2の実施の形態にかかる、プラズマ照射工程における処理ユニットの様子の一部の一例を概略的に示す拡大図である。FIG. 10 is an enlarged view schematically showing an example of a portion of the processing unit in the plasma irradiation process according to the second embodiment; 第2の実施の形態にかかる処理ユニットの構成の変形例を概略的に示す図である。It is a figure which shows roughly the modification of a structure of the processing unit concerning 2nd Embodiment. 第3の実施の形態にかかる処理ユニットの構成の一例を概略的に示す図である。FIG. 11 is a diagram schematically showing an example of a configuration of a processing unit according to a third embodiment; FIG. 第3の実施の形態にかかる、プラズマ照射工程における処理ユニットの様子の一部の一例を概略的に示す拡大図である。FIG. 11 is an enlarged view schematically showing an example of a portion of a processing unit in a plasma irradiation step according to the third embodiment;
 以下、添付の図面を参照しながら、実施の形態について説明する。なお、この実施の形態に記載されている構成要素はあくまでも例示であり、本開示の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法または数が誇張または簡略化して図示されている場合がある。 Embodiments will be described below with reference to the attached drawings. Note that the components described in this embodiment are merely examples, and the scope of the present disclosure is not intended to be limited to them. In the drawings, for ease of understanding, the dimensions or number of each part may be exaggerated or simplified as necessary.
 相対的または絶対的な位置関係を示す表現(例えば「一方向に」「一方向に沿って」「平行」「直交」「中心」「同心」「同軸」など)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。等しい状態であることを示す表現(例えば「同一」「等しい」「均質」など)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。形状を示す表現(例えば、「四角形状」または「円筒形状」など)は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸または面取りなどを有する形状も表すものとする。一の構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現は、他の構成要素の存在を除外する排他的表現ではない。「A,BおよびCの少なくともいずれか一つ」という表現は、Aのみ、Bのみ、Cのみ、A,BおよびCのうち任意の2つ、ならびに、A,BおよびCの全てを含む。 Expressions indicating relative or absolute positional relationships (e.g., "in one direction", "along one direction", "parallel", "perpendicular", "center", "concentric", "coaxial", etc.) are used unless otherwise specified. Not only the positional relationship is strictly expressed, but also the relatively displaced state in terms of angle or distance within the range of tolerance or equivalent function. Expressions indicating equality (e.g., "same", "equal", "homogeneous", etc.), unless otherwise specified, not only express quantitatively strictly equality, but also tolerances or equivalent functions can be obtained It shall also represent the state in which there is a difference. Expressions indicating shapes (e.g., "square shape" or "cylindrical shape"), unless otherwise specified, not only represent the shape strictly geometrically, but also to the extent that the same effect can be obtained, such as Shapes having unevenness or chamfering are also represented. The terms "comprise", "comprise", "comprise", "include" or "have" an element are not exclusive expressions that exclude the presence of other elements. The phrase "at least one of A, B and C" includes only A, only B, only C, any two of A, B and C, and all of A, B and C.
 <第1の実施の形態>
 <基板処理装置の全体構成>
 図1は、基板処理装置100の構成の一例を概略的に示す平面図である。基板処理装置100は、処理対象である基板Wを1枚ずつ処理する枚葉式の処理装置である。
<First embodiment>
<Overall Configuration of Substrate Processing Apparatus>
FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing apparatus 100. FIG. The substrate processing apparatus 100 is a single wafer processing apparatus that processes substrates W to be processed one by one.
 基板Wは例えば半導体基板であり、円板形状を有する。なお、基板Wには、半導体基板の他、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板および光磁気ディスク用基板などの各種基板を適用可能である。また基板の形状も円板形状に限らず、例えば矩形の板状形状など種々の形状を採用できる。 The substrate W is, for example, a semiconductor substrate and has a disk shape. In addition to the semiconductor substrate, the substrate W includes a photomask glass substrate, a liquid crystal display glass substrate, a plasma display glass substrate, a FED (Field Emission Display) substrate, an optical disk substrate, a magnetic disk substrate, and a magneto-optical substrate. Various substrates such as disk substrates can be applied. Also, the shape of the substrate is not limited to a disk shape, and various shapes such as a rectangular plate shape can be adopted.
 基板処理装置100はロードポート101とインデクサロボット110と主搬送ロボット120と複数の処理ユニット130と制御部90とを含む。 The substrate processing apparatus 100 includes a load port 101 , an indexer robot 110 , a main transfer robot 120 , a plurality of processing units 130 and a control section 90 .
 複数のロードポート101は水平な一方向に沿って並んで配置される。各ロードポート101は、基板Wを基板処理装置100に搬出入するためのインターフェース部である。各ロードポート101には、基板Wを収容する基板収容器であるキャリアCが外部から搬入される。各ロードポート101は、搬入されたキャリアCを保持する。 A plurality of load ports 101 are arranged side by side along one horizontal direction. Each load port 101 is an interface section for loading/unloading the substrate W into/from the substrate processing apparatus 100 . A carrier C, which is a substrate container for accommodating substrates W, is loaded into each load port 101 from the outside. Each load port 101 holds the loaded carrier C. As shown in FIG.
 インデクサロボット110は、各ロードポート101に保持されたキャリアCと、主搬送ロボット120との間で基板Wを搬送する搬送ロボットである。インデクサロボット110はロードポート101が並ぶ方向に沿って移動可能であり、各キャリアCと対面する位置で停止可能である。インデクサロボット110は、各キャリアCから基板Wを取り出す動作と、各キャリアCに基板Wを受け渡す動作とを行うことができる。 The indexer robot 110 is a transport robot that transports the substrate W between the carrier C held by each load port 101 and the main transport robot 120 . The indexer robot 110 can move along the direction in which the load ports 101 are arranged, and can stop at a position facing each carrier C. As shown in FIG. The indexer robot 110 can perform an operation of picking up the substrates W from each carrier C and an operation of transferring the substrates W to each carrier C. As shown in FIG.
 主搬送ロボット120は、インデクサロボット110と各処理ユニット130との間で基板Wを搬送する搬送ロボットである。主搬送ロボット120はインデクサロボット110から基板Wを受け取る動作と、インデクサロボット110に基板Wを受け渡す動作とを行うことができる。また、主搬送ロボット120は各処理ユニット130に基板Wを搬入する動作と、各処理ユニット130から基板Wを搬出する動作とを行うことができる。 The main transport robot 120 is a transport robot that transports substrates W between the indexer robot 110 and each processing unit 130 . The main transport robot 120 can perform an operation of receiving the substrate W from the indexer robot 110 and an operation of transferring the substrate W to the indexer robot 110 . Further, the main transport robot 120 can perform an operation of loading the substrate W into each processing unit 130 and an operation of unloading the substrate W from each processing unit 130 .
 基板処理装置100には、例えば12個の処理ユニット130が配置される。具体的には、鉛直方向に積層された3個の処理ユニット130を含むタワーの4つが、主搬送ロボット120の周囲を取り囲むようにして設けられる。図1では、3段に重ねられた処理ユニット130の1つが概略的に示されている。なお、基板処理装置100における処理ユニット130の数は、12個に限定されるものではなく、適宜変更されてもよい。 For example, 12 processing units 130 are arranged in the substrate processing apparatus 100 . Specifically, four towers each including three vertically stacked processing units 130 are provided so as to surround the main transfer robot 120 . In FIG. 1, one of the three-tiered processing units 130 is schematically shown. Note that the number of processing units 130 in the substrate processing apparatus 100 is not limited to 12, and may be changed as appropriate.
 主搬送ロボット120は、4つのタワーによって囲まれるように設けられている。主搬送ロボット120は、インデクサロボット110から受け取る未処理の基板Wを各処理ユニット130内に搬入する。各処理ユニット130は基板Wを処理する。また、主搬送ロボット120は、各処理ユニット130から処理済みの基板Wを搬出してインデクサロボット110に渡す。 The main transport robot 120 is provided so as to be surrounded by four towers. The main transport robot 120 loads unprocessed substrates W received from the indexer robot 110 into the processing units 130 . Each processing unit 130 processes a substrate W. FIG. Further, the main transport robot 120 unloads the processed substrate W from each processing unit 130 and passes it to the indexer robot 110 .
 制御部90は、基板処理装置100の各構成要素の動作を制御する。図2は、制御部90の内部構成の一例を概略的に示す機能ブロック図である。制御部90は電子回路であって、例えばデータ処理部91および記憶部92を有している。図2の具体例では、データ処理部91と記憶部92とはバス93を介して相互に接続されている。データ処理部91は例えばCPU(Central Processor Unit)などの演算処理装置であってもよい。記憶部92は非一時的な記憶部(例えばROM(Read Only Memory)またはハードディスク)921および一時的な記憶部(例えばRAM(Random Access Memory))922を有していてもよい。非一時的な記憶部921には、例えば制御部90が実行する処理を規定するプログラムが記憶されていてもよい。データ処理部91がこのプログラムを実行することにより、制御部90が、プログラムに規定された処理を実行することができる。もちろん、制御部90が実行する処理の一部または全部がハードウェアによって実行されてもよい。 The control unit 90 controls the operation of each component of the substrate processing apparatus 100 . FIG. 2 is a functional block diagram schematically showing an example of the internal configuration of the control section 90. As shown in FIG. The control unit 90 is an electronic circuit and has, for example, a data processing unit 91 and a storage unit 92 . In the specific example of FIG. 2, the data processing section 91 and the storage section 92 are interconnected via a bus 93 . The data processing unit 91 may be an arithmetic processing device such as a CPU (Central Processor Unit). The storage unit 92 may have a non-temporary storage unit (eg, ROM (Read Only Memory) or hard disk) 921 and a temporary storage unit (eg, RAM (Random Access Memory)) 922 . The non-temporary storage unit 921 may store, for example, a program that defines processing to be executed by the control unit 90 . By the data processing unit 91 executing this program, the control unit 90 can execute the processing specified in the program. Of course, part or all of the processing executed by the control unit 90 may be executed by hardware.
 <処理ユニット>
 図3は、処理ユニット130の構成の一例を概略的に示す図である。なお、基板処理装置100に属する全ての処理ユニット130が図3に示された構成を有している必要はなく、少なくとも一つの処理ユニット130が当該構成を有していればよい。
<Processing unit>
FIG. 3 is a diagram schematically showing an example of the configuration of the processing unit 130. As shown in FIG. It is not necessary for all the processing units 130 belonging to the substrate processing apparatus 100 to have the configuration shown in FIG. 3, and at least one processing unit 130 may have the configuration.
 図3に例示される処理ユニット130は、プラズマを用いた処理を基板Wに対して行う装置である。基板Wは、例えば、半導体基板であり、円板形状を有する。基板Wのサイズは特に制限されないものの、その直径R1は例えば約300mmである。プラズマを用いた処理は特に制限される必要がないものの、より具体的な一例として、有機物除去処理を含む。有機物除去処理とは、基板Wの主面上の有機物を除去する処理であり、当該有機物としてレジストを適用できる。有機物がレジストである場合、有機物除去処理はレジスト除去処理であるともいえる。 The processing unit 130 illustrated in FIG. 3 is an apparatus that performs processing on the substrate W using plasma. The substrate W is, for example, a semiconductor substrate and has a disk shape. Although the size of the substrate W is not particularly limited, its diameter R1 is, for example, about 300 mm. Although the treatment using plasma need not be particularly limited, a more specific example includes organic matter removal treatment. The organic substance removing process is a process for removing organic substances on the main surface of the substrate W, and a resist can be applied as the organic substances. When the organic matter is a resist, the organic matter removing treatment can also be said to be a resist removing treatment.
 処理ユニット130はプラズマリアクタ1と基板保持部3とガード7とを含んでいる。図3の例では、処理ユニット130はチャンバ80も含んでいる。チャンバ80は、基板Wを処理するための処理室を形成しており、後述の各種の構成要素を収容する。 The processing unit 130 includes a plasma reactor 1, a substrate holder 3, and a guard 7. In the example of FIG. 3, processing unit 130 also includes chamber 80 . The chamber 80 forms a processing chamber for processing the substrate W, and accommodates various components described later.
 基板保持部3はチャンバ80内に設けられており、基板Wを水平姿勢で保持する。ここでいう水平姿勢とは、基板Wの厚み方向が鉛直方向に沿う姿勢である。図3の例では、基板保持部3はスピンベース31と複数のチャックピン32とを含んでいる。スピンベース31は円板形状を有し、基板Wよりも鉛直下方に設けられている。スピンベース31は、その厚み方向が鉛直方向に沿う姿勢で設けられる。複数のチャックピン32はスピンベース31の上面に立設されており、基板Wの周縁を把持する。なお、基板保持部3は必ずしもチャックピン32を有する必要はない。例えば、基板保持部3は基板Wの下面を吸引して基板Wを吸着してもよい。 The substrate holding part 3 is provided inside the chamber 80 and holds the substrate W in a horizontal posture. The horizontal posture referred to here is a posture in which the thickness direction of the substrate W is along the vertical direction. In the example of FIG. 3, the substrate holder 3 includes a spin base 31 and multiple chuck pins 32 . The spin base 31 has a disk shape and is provided below the substrate W in the vertical direction. The spin base 31 is provided in such a posture that its thickness direction is along the vertical direction. A plurality of chuck pins 32 are erected on the upper surface of the spin base 31 and grip the peripheral edge of the substrate W. As shown in FIG. It should be noted that the substrate holding part 3 does not necessarily have to have the chuck pins 32 . For example, the substrate holding part 3 may suck the substrate W by sucking the lower surface of the substrate W. As shown in FIG.
 図3の例では、基板保持部3は回転機構33をさらに含んでおり、回転軸線Q1のまわりで基板Wを回転させる。回転軸線Q1は基板Wの中心部を通り、かつ、鉛直方向に沿う軸である。回転機構33は例えばシャフト34およびモータ35を含む。シャフト34の上端はスピンベース31の下面に連結される。モータ35はシャフト34を回転軸線Q1のまわりで回転させて、スピンベース31を回転させる。これにより、複数のチャックピン32によって保持された基板Wが回転軸線Q1のまわりで回転する。このような基板保持部3はスピンチャックとも呼ばれ得る。以下では、回転軸線Q1についての径方向を単に径方向と呼ぶ。 In the example of FIG. 3, the substrate holder 3 further includes a rotation mechanism 33, which rotates the substrate W around the rotation axis Q1. The rotation axis Q1 is an axis that passes through the center of the substrate W and extends in the vertical direction. Rotation mechanism 33 includes, for example, shaft 34 and motor 35 . The upper end of shaft 34 is connected to the lower surface of spin base 31 . The motor 35 rotates the shaft 34 around the rotation axis Q1 to rotate the spin base 31 . Thereby, the substrate W held by the plurality of chuck pins 32 rotates around the rotation axis Q1. Such a substrate holding part 3 can also be called a spin chuck. Hereinafter, the radial direction about the rotation axis Q1 is simply referred to as the radial direction.
 図3の例では、処理ユニット130はノズル4も含んでいる。ノズル4はチャンバ80内に設けられ、基板Wへの処理液の供給に用いられる。ノズル4は供給管41を介して処理液供給源44に接続される。処理液供給源44は、例えば、処理液を貯留するタンク(不図示)を含む。処理液は、例えば、硫酸、硫酸塩、ペルオキソ硫酸およびペルオキソ硫酸塩のうちの少なくとも1つの薬液を含む。供給管41にはバルブ42が介装される。バルブ42が開くことにより、処理液供給源44からの処理液が供給管41を通じてノズル4に供給され、ノズル4の吐出口4aから吐出される。 In the example of FIG. 3, the processing unit 130 also includes the nozzle 4. The nozzle 4 is provided in the chamber 80 and used to supply the substrate W with the processing liquid. The nozzle 4 is connected to a processing liquid supply source 44 via a supply pipe 41 . The processing liquid supply source 44 includes, for example, a tank (not shown) that stores the processing liquid. The processing liquid includes, for example, at least one chemical liquid of sulfuric acid, sulfate, peroxosulfate, and peroxosulfate. A valve 42 is interposed in the supply pipe 41 . By opening the valve 42 , the processing liquid from the processing liquid supply source 44 is supplied to the nozzle 4 through the supply pipe 41 and discharged from the discharge port 4 a of the nozzle 4 .
 図3の例では、ノズル4はノズル移動機構45によって移動可能に設けられる。ノズル移動機構45はノズル4をノズル処理位置とノズル待機位置との間で移動させる。ノズル処理位置とは、ノズル4が基板Wの主面(例えば上面)に向けて処理液を吐出する位置である。ノズル処理位置は、例えば、基板Wよりも鉛直上方であって、基板Wの中心部と鉛直方向において対向する位置である。ノズル待機位置は、例えば、基板Wの周縁よりも径方向外側の位置である。図3では、ノズル待機位置で停止するノズル4が示されている。 In the example of FIG. 3, the nozzle 4 is movably provided by a nozzle moving mechanism 45. A nozzle moving mechanism 45 moves the nozzle 4 between the nozzle processing position and the nozzle standby position. The nozzle processing position is a position where the nozzle 4 discharges the processing liquid toward the main surface (for example, the upper surface) of the substrate W. As shown in FIG. The nozzle processing position is, for example, a position vertically above the substrate W and facing the central portion of the substrate W in the vertical direction. The nozzle standby position is, for example, a position radially outside the peripheral edge of the substrate W. As shown in FIG. FIG. 3 shows the nozzles 4 stopped at the nozzle standby position.
 ノズル移動機構45は、例えば、ボールねじ機構またはアーム旋回機構を有する。アーム旋回機構は、いずれも不図示のアームと支持柱とモータとを含む。アームは水平に延在する棒状形状を有し、アームの先端にはノズル4が連結され、アームの基端が支持柱に連結される。支持柱は鉛直方向に沿って延びており、その中心軸のまわりで回転可能に設けられる。モータが支持柱を回転させることにより、アームが旋回し、ノズル4が中心軸のまわりで周方向に沿って移動する。このノズル4の移動経路上にノズル処理位置とノズル待機位置とが位置するように、支持柱が設けられる。 The nozzle moving mechanism 45 has, for example, a ball screw mechanism or an arm turning mechanism. The arm turning mechanism includes an arm, a support column, and a motor (none of which are shown). The arm has a horizontally extending rod-like shape, the tip of the arm is connected to the nozzle 4, and the base end of the arm is connected to the support column. The support column extends vertically and is rotatable around its central axis. When the motor rotates the support column, the arm turns and the nozzle 4 moves in the circumferential direction around the central axis. A support column is provided so that the nozzle processing position and the nozzle standby position are positioned on the moving path of the nozzle 4 .
 ノズル4がノズル処理位置に位置する状態でバルブ42が開くと、ノズル4から基板Wの上面に向かって処理液が吐出される(図7も参照)。基板保持部3が基板Wを回転させることにより、処理液は遠心力により基板Wの上面を広がって、基板Wの周縁から外側に飛散する。これにより、基板Wの上面には処理液の液膜F1が形成される。 When the valve 42 is opened with the nozzle 4 positioned at the nozzle processing position, the processing liquid is discharged from the nozzle 4 toward the upper surface of the substrate W (see also FIG. 7). When the substrate holding unit 3 rotates the substrate W, the processing liquid spreads over the upper surface of the substrate W due to centrifugal force and scatters outward from the peripheral edge of the substrate W. FIG. As a result, a liquid film F1 of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG.
 ノズル4は複数種類の処理液を順次に吐出してもよい。この場合、ノズル4は供給管41から分岐した供給管(不図示)を通じて他の処理液供給源(不図示)に接続されてもよい。あるいは、複数のノズル4が設けられ、各ノズル4がそれぞれ複数の処理液供給源に接続されてもよい。ノズル移動機構45は複数のノズル4を一体に移動させてもよく、個別に移動させてもよい。処理液としては、例えば、純水およびイソプロピルアルコール等のリンス液を適用できる。 The nozzle 4 may sequentially eject multiple types of treatment liquids. In this case, the nozzle 4 may be connected to another processing liquid supply source (not shown) through a supply pipe (not shown) branched from the supply pipe 41 . Alternatively, multiple nozzles 4 may be provided and each nozzle 4 may be connected to multiple processing liquid supplies. The nozzle moving mechanism 45 may move the plurality of nozzles 4 together or individually. As the treatment liquid, for example, pure water and rinsing liquid such as isopropyl alcohol can be applied.
 ガード7はチャンバ80内に設けられており、基板保持部3、および、基板保持部3によって保持された基板Wを取り囲むための筒状形状を有する。ガード7は、基板Wの周縁から飛散した処理液を受け止めるために設けられる。 The guard 7 is provided inside the chamber 80 and has a tubular shape for surrounding the substrate holding part 3 and the substrate W held by the substrate holding part 3 . The guard 7 is provided to catch the processing liquid scattered from the periphery of the substrate W. As shown in FIG.
 図3の例では、ガード7は、いずれも基板保持部3を囲む筒部71、傾斜部72および上端部73を含む。傾斜部72は鉛直上方に向かうにつれて回転軸線Q1に近づくように傾斜している。つまり、傾斜部72の内径および外径は鉛直上方に向かうにつれて小さくなる。筒部71の上端は傾斜部72の下端に連続しており、筒部71は鉛直方向に沿って延在する。図3の例では、傾斜部72の上端は上端部73の外周縁に連続している。上端部73は、水平に延在するリング状の板状形状を有する。図3の例では、上端部73の上面および下面は水平面に平行である。上端部73の内周縁はガード7の上部開口を形成する。 In the example of FIG. 3, the guard 7 includes a cylindrical portion 71 surrounding the substrate holding portion 3, an inclined portion 72 and an upper end portion 73. The inclined portion 72 is inclined so as to approach the rotation axis Q1 as it goes vertically upward. That is, the inner diameter and the outer diameter of the inclined portion 72 decrease vertically upward. The upper end of the cylindrical portion 71 is continuous with the lower end of the inclined portion 72, and the cylindrical portion 71 extends along the vertical direction. In the example of FIG. 3 , the upper end of the inclined portion 72 is continuous with the outer peripheral edge of the upper end portion 73 . The upper end portion 73 has a ring-shaped plate shape extending horizontally. In the example of FIG. 3, the upper and lower surfaces of upper end 73 are parallel to the horizontal plane. An inner peripheral edge of the upper end portion 73 forms an upper opening of the guard 7 .
 図3の例では、処理ユニット130は複数のガード7を含んでいる。複数のガード7は同心状に設けられており、いずれも基板保持部3を囲む。図3の例では、2つのガード7が設けられており、以下では、最外周のガード7をガード7Aと呼び、最内周のガード7をガード7Bとも呼ぶ。 In the example of FIG. 3, the processing unit 130 includes multiple guards 7 . A plurality of guards 7 are provided concentrically and all surround the substrate holder 3 . In the example of FIG. 3, two guards 7 are provided. Hereinafter, the outermost guard 7 is called guard 7A, and the innermost guard 7 is also called guard 7B.
 ガード7はガード昇降機構75(第2昇降機構に相当)によって昇降可能に設けられている。ガード昇降機構75はガード7を上位置とガード待機位置との間で昇降させる。上位置は、ガード7が処理液を受け止める位置であり、具体的には、ガード7の内周面の上端711が基板Wの上面よりも鉛直上方となる位置である。ガード待機位置は、例えば、ガード7の上端部73の上面がスピンベース31の上面よりも鉛直下方となる位置である。図3の例では、ガード待機位置で停止するガード7が示されている。ガード昇降機構75は、例えば、ボールねじ機構と、該ボールねじ機構に駆動力を与えるモータとを含んでもよく、あるいは、エアシリンダを含んでもよい。複数のガード7が設けられる場合、ガード昇降機構75はガード7を個別に昇降させる。 The guard 7 can be moved up and down by a guard elevating mechanism 75 (corresponding to a second elevating mechanism). A guard elevating mechanism 75 elevates the guard 7 between the upper position and the guard standby position. The upper position is the position where the guard 7 receives the processing liquid. The guard standby position is, for example, a position where the upper surface of the upper end portion 73 of the guard 7 is vertically below the upper surface of the spin base 31 . The example of FIG. 3 shows the guard 7 stopped at the guard standby position. The guard lifting mechanism 75 may include, for example, a ball screw mechanism and a motor that applies a driving force to the ball screw mechanism, or may include an air cylinder. When a plurality of guards 7 are provided, the guard lifting mechanism 75 lifts and lowers the guards 7 individually.
 ガード昇降機構75がガード7Aおよびガード7Bを上位置に上昇させた状態では、基板Wの周縁から飛散した処理液はガード7Bの内周面で受け止められ、ガード7Bの内周面に沿って流下する。ガード7Bの内周面に沿って流下した処理液はカップ76によって受け止められる。処理液は、カップ76に接続された回収配管77を通じて、例えば、同じ種類の処理液供給源のタンクに回収される。 When the guard elevating mechanism 75 raises the guards 7A and 7B to the upper position, the processing liquid scattered from the peripheral edge of the substrate W is received by the inner peripheral surface of the guard 7B and flows down along the inner peripheral surface of the guard 7B. do. A cup 76 receives the processing liquid flowing down along the inner peripheral surface of the guard 7B. The processing liquid is recovered through a recovery pipe 77 connected to the cup 76, for example, in a tank of the same type of processing liquid supply source.
 ガード昇降機構75がガード7Bをガード待機位置に下降させ、ガード7Aを上位置に上昇させた状態では、基板Wの周縁から飛散した処理液はガード7Aの内周面で受け止められ、ガード7Aの内周面に沿って流下する。ガード7Aの内周面に沿って流下した処理液はカップ(不図示)によって受け止められる。処理液は、該カップに接続された不図示の回収配管を通じて、例えば、同じ種類の処理液供給源のタンクに回収される。 In a state in which the guard elevating mechanism 75 lowers the guard 7B to the guard standby position and raises the guard 7A to the upper position, the processing liquid scattered from the peripheral edge of the substrate W is received by the inner peripheral surface of the guard 7A. It flows down along the inner peripheral surface. A cup (not shown) catches the processing liquid flowing down along the inner peripheral surface of the guard 7A. The processing liquid is recovered, for example, in a tank of the same type of processing liquid supply source through a recovery pipe (not shown) connected to the cup.
 以上のように、複数のガード7が設けられることにより、処理液をその種類に応じて回収することができる。 As described above, by providing a plurality of guards 7, it is possible to collect the processing liquid according to its type.
 プラズマリアクタ1はプラズマを発生させるプラズマ発生装置であり、チャンバ80内において、基板保持部3によって保持された基板Wの上面と鉛直方向において対向する位置に設けられる。プラズマリアクタ1はプラズマ用の電源16に接続されており、電源16からの電力を受けて周囲のガスをプラズマ化させる。なおここでは一例として、プラズマリアクタ1は大気圧下でプラズマを発生させる。ここでいう大気圧とは、例えば、標準気圧の80%以上、かつ、標準気圧の120%以下である。 The plasma reactor 1 is a plasma generator that generates plasma, and is provided in the chamber 80 at a position facing the upper surface of the substrate W held by the substrate holding part 3 in the vertical direction. The plasma reactor 1 is connected to a power supply 16 for plasma, receives power from the power supply 16, and converts surrounding gas into plasma. Here, as an example, the plasma reactor 1 generates plasma under atmospheric pressure. The atmospheric pressure here is, for example, 80% or more of the standard pressure and 120% or less of the standard pressure.
 プラズマリアクタ1は、扁平な形状を有する平型のプラズマリアクタである。プラズマリアクタ1は、平面視において、基板Wの周縁よりも径方向外側に広がっている。プラズマリアクタ1の外周縁は平面視において例えば円形状を有し、その外径R2は基板Wの直径R1よりも大きい。図3の例では、プラズマリアクタ1の外径R2はガード7の上端部73の内径(上部開口径に相当)R3よりも大きい。この構造によれば、プラズマリアクタ1のうち基板Wの周縁よりも外側の部分はガード7の上端部73と鉛直方向において対向する。プラズマリアクタ1の具体的な内部構成の一例は後に詳述する。 The plasma reactor 1 is a flat plasma reactor having a flat shape. The plasma reactor 1 extends radially outward from the periphery of the substrate W in plan view. The outer periphery of the plasma reactor 1 has, for example, a circular shape in plan view, and its outer diameter R2 is larger than the diameter R1 of the substrate W. As shown in FIG. In the example of FIG. 3, the outer diameter R2 of the plasma reactor 1 is larger than the inner diameter (corresponding to the upper opening diameter) R3 of the upper end portion 73 of the guard 7 . According to this structure, the portion of the plasma reactor 1 outside the peripheral edge of the substrate W faces the upper end portion 73 of the guard 7 in the vertical direction. An example of a specific internal configuration of the plasma reactor 1 will be detailed later.
 プラズマリアクタ1はプラズマ昇降機構15(第1昇降機構に相当)によって昇降可能に設けられる。プラズマ昇降機構15は、プラズマリアクタ1をプラズマ処理位置とプラズマ待機位置との間で昇降させる。プラズマ処理位置は、プラズマリアクタ1によるプラズマを用いて基板Wを処理するときの位置である。プラズマ処理位置において、プラズマリアクタ1と基板Wの上面との間の距離は例えば数mm程度(具体的には、2mm程度)である。プラズマ待機位置は、プラズマを用いた処理を基板Wに対して行わないときの位置であり、プラズマ処理位置よりも鉛直上方の位置である。図3では、プラズマ待機位置で停止するプラズマリアクタ1が示されている。プラズマ昇降機構15は、例えば、ボールねじ機構と、該ボールねじ機構に駆動力を与えるモータとを含んでもよく、あるいは、エアシリンダを含んでもよい。 The plasma reactor 1 is provided to be vertically movable by a plasma lifting mechanism 15 (corresponding to a first lifting mechanism). The plasma elevating mechanism 15 elevates the plasma reactor 1 between the plasma processing position and the plasma standby position. The plasma processing position is a position where the substrate W is processed using plasma from the plasma reactor 1 . At the plasma processing position, the distance between the plasma reactor 1 and the upper surface of the substrate W is, for example, about several mm (specifically, about 2 mm). The plasma standby position is a position when the substrate W is not processed using plasma, and is a position vertically above the plasma processing position. FIG. 3 shows the plasma reactor 1 stopped at the plasma standby position. The plasma elevating mechanism 15 may include, for example, a ball screw mechanism and a motor for driving the ball screw mechanism, or may include an air cylinder.
 プラズマリアクタ1は、ノズル4がノズル待機位置に退避し、かつ、全てのガード7が例えばガード待機位置に下降した状態で、プラズマ待機位置からプラズマ処理位置へと移動することができる。プラズマリアクタ1は、例えば、基板Wの上面に処理液の液膜F1が形成された状態で、プラズマ処理位置に移動する(図9も参照)。 The plasma reactor 1 can move from the plasma standby position to the plasma processing position with the nozzle 4 retracted to the nozzle standby position and all the guards 7 being lowered to, for example, the guard standby position. The plasma reactor 1 moves to the plasma processing position, for example, with the liquid film F1 of the processing liquid formed on the upper surface of the substrate W (see also FIG. 9).
 プラズマリアクタ1は、ガード7が下位置(例えばガード待機位置)に位置し、かつ、プラズマリアクタ1がプラズマ処理位置に位置する処理状態で、基板Wの上面にプラズマを照射する。プラズマリアクタ1がプラズマを発生させると、種々の活性種が生じる。例えば、空気がプラズマ化することにより、酸素ラジカル、ヒドロキシルラジカルおよびオゾンガス等の種々の活性種が生じ得る。これらの活性種は基板Wの上面に作用する。具体的な一例として、活性種は基板Wの上面の処理液(ここでは硫酸)の液膜に作用する。これにより、処理液の処理性能が高まる。具体的には、活性種と硫酸との反応により、処理性能(ここでは酸化力)の高いカロ酸が生成される。カロ酸はペルオキソ一硫酸とも呼ばれる。当該カロ酸が基板Wのレジストに作用することで、レジストを酸化除去することができる。 The plasma reactor 1 irradiates the upper surface of the substrate W with plasma in a processing state in which the guard 7 is positioned at the lower position (for example, the guard standby position) and the plasma reactor 1 is positioned at the plasma processing position. When the plasma reactor 1 generates plasma, various active species are generated. For example, plasmatization of air can generate various active species such as oxygen radicals, hydroxyl radicals, and ozone gas. These active species act on the upper surface of the substrate W. As shown in FIG. As a specific example, the active species act on the liquid film of the processing liquid (here, sulfuric acid) on the upper surface of the substrate W. As shown in FIG. This enhances the processing performance of the processing liquid. Specifically, the reaction between active species and sulfuric acid produces caro's acid with high processing performance (here, oxidizing power). Caro's acid is also called peroxomonosulfate. The Caro's acid acts on the resist on the substrate W, so that the resist can be removed by oxidation.
 ところで、プラズマの発生に起因して、プラズマリアクタ1の周囲の温度は高くなる。例えば、温度は摂氏数100度、より具体的な一例として、摂氏200度から摂氏350度程度に至る。これにより、基板Wの上面の処理液が蒸発しやすくなり、基板Wの直上の雰囲気には処理液の揮発成分が多く含まれることとなる。このような処理液雰囲気がチャンバ80内に拡散すると、処理液の揮発成分がチャンバ80内の部材に付着して不具合を生じさせ得る。そこで、このような処理液雰囲気の拡散を抑制するために、処理ユニット130には給気部81および排気部82が設けられている。 By the way, due to the generation of plasma, the temperature around the plasma reactor 1 increases. For example, the temperature is several hundred degrees Celsius, and as a more specific example, it ranges from about 200 degrees Celsius to about 350 degrees Celsius. As a result, the processing liquid on the upper surface of the substrate W evaporates easily, and the atmosphere immediately above the substrate W contains a large amount of volatile components of the processing liquid. If such an atmosphere of the processing liquid diffuses into the chamber 80, the volatile components of the processing liquid may adhere to the members inside the chamber 80, causing problems. Therefore, in order to suppress such diffusion of the processing liquid atmosphere, the processing unit 130 is provided with an air supply section 81 and an exhaust section 82 .
 図3の例では、給気部81はチャンバ80の天井に設けられている。給気部81はチャンバ80の外部からガス(例えば空気)を吸入し、当該ガスの不純物をフィルタで除去し、除去後のガスをチャンバ80の内部に供給する。これにより、チャンバ80内にいわゆるダウンフローが形成される。給気部81は例えばファンフィルタユニットである。 In the example of FIG. 3, the air supply section 81 is provided on the ceiling of the chamber 80. The gas supply unit 81 sucks gas (for example, air) from the outside of the chamber 80 , removes impurities from the gas with a filter, and supplies the removed gas to the inside of the chamber 80 . A so-called down flow is thereby formed in the chamber 80 . The air supply unit 81 is, for example, a fan filter unit.
 図3の例では、排気部82は筒部材83および排気管84を含んでいる。筒部材83はチャンバ80内に設けられる。筒部材83は筒状の形状を有し、最外周のガード7よりも外周側からガード7を囲んでいる。筒部材83はチャンバ80の床面に設けられる。筒部材83の下部には排気管84の上流端が接続されており、排気管84の下流端には不図示の吸引機構に接続される。基板Wよりも上方の処理液雰囲気はガード7の内部を通じて排気管84の上流端に流入し、排気管84を通じてチャンバ80の外部に排出される。図3では、この気流の流れを模式的に破線の矢印で示している。 In the example of FIG. 3, the exhaust section 82 includes a cylindrical member 83 and an exhaust pipe 84. A tubular member 83 is provided within the chamber 80 . The tubular member 83 has a tubular shape and surrounds the guard 7 from the outer peripheral side of the outermost guard 7 . A cylindrical member 83 is provided on the floor of the chamber 80 . An upstream end of an exhaust pipe 84 is connected to a lower portion of the cylindrical member 83, and a suction mechanism (not shown) is connected to a downstream end of the exhaust pipe 84. As shown in FIG. The processing liquid atmosphere above the substrate W flows into the upstream end of the exhaust pipe 84 through the inside of the guard 7 and is discharged to the outside of the chamber 80 through the exhaust pipe 84 . In FIG. 3, the flow of this airflow is schematically indicated by dashed arrows.
 次に、プラズマリアクタ1の構成の具体的な一例について説明する。図4は、プラズマリアクタ1の構成の一例を概略的に示す断面図であり、図5は、プラズマリアクタ1の構成の一例を概略的に示す平面図である。図4および図5の例では、プラズマリアクタ1は電極アセンブリ10と保持部材20とを含む。 Next, a specific example of the configuration of the plasma reactor 1 will be described. FIG. 4 is a cross-sectional view schematically showing an example of the configuration of the plasma reactor 1, and FIG. 5 is a plan view schematically showing an example of the configuration of the plasma reactor 1. As shown in FIG. In the example of FIGS. 4 and 5, plasma reactor 1 includes electrode assembly 10 and holding member 20 .
 図4および図5の例では、電極アセンブリ10は第1電極部11と第2電極部12とを含む。第1電極部11は、複数の第1線状電極111と第1集合電極112とを含む櫛形状を有している。第2電極部12も、複数の第2線状電極121と第2集合電極122とを含む櫛形状を有している。 In the examples of FIGS. 4 and 5, the electrode assembly 10 includes a first electrode section 11 and a second electrode section 12 . The first electrode portion 11 has a comb shape including a plurality of first linear electrodes 111 and first collective electrodes 112 . The second electrode portion 12 also has a comb shape including a plurality of second linear electrodes 121 and second collective electrodes 122 .
 第1線状電極111および第2線状電極121は金属材料(例えばタングステン)等の導電性材料によって形成され、水平な長手方向に沿って延在する棒状形状(例えば円柱形状)を有する。図5の例では、平面視において、第1線状電極111および第2線状電極121は互いに平行に設けられており、長手方向に垂直かつ水平な配列方向において交互に配列される。第1集合電極112は複数の第1線状電極111の長手方向の一方側の端部(基端)どうしを連結する。第2集合電極122は複数の第2線状電極121の長手方向の他方側の端部(基端)どうしを連結する。図5の例では、第1集合電極112および第2集合電極122は、互いに反対側に湾曲する、略同径の円弧状の平板形状を有している。第1集合電極112および第2集合電極122は金属材料(例えばアルミニウム)等の導電性材料によって形成される。 The first linear electrode 111 and the second linear electrode 121 are made of a conductive material such as a metal material (eg, tungsten) and have a rod-like shape (eg, cylindrical shape) extending along the horizontal longitudinal direction. In the example of FIG. 5, in plan view, the first linear electrodes 111 and the second linear electrodes 121 are provided parallel to each other and arranged alternately in the arrangement direction perpendicular to and horizontal to the longitudinal direction. The first collective electrode 112 connects ends (base ends) on one side in the longitudinal direction of the plurality of first linear electrodes 111 . The second collective electrode 122 connects the ends (base ends) on the other side in the longitudinal direction of the plurality of second linear electrodes 121 . In the example of FIG. 5, the first collective electrode 112 and the second collective electrode 122 have arcuate plate shapes with substantially the same diameter that curve in opposite directions. The first collective electrode 112 and the second collective electrode 122 are made of a conductive material such as a metal material (for example, aluminum).
 図4および図5の例では、各第1線状電極111は第1誘電体13によって覆われ、各第2線状電極121は第2誘電体14によって覆われる。第1誘電体13および第2誘電体14は石英およびセラミックス等の誘電体材料によって形成される。各第1誘電体13および第2誘電体14は、例えば、長手方向に沿って延在する筒状形状を有する。第1誘電体13には第1線状電極111が長手方向に沿って挿入され、第2誘電体14には第2線状電極121が長手方向に沿って挿入される。これにより、第1線状電極111および第2線状電極121がプラズマにスパッタされることを抑制できる。ひいては、スパッタ粒子に起因した基板Wの汚染を抑制することができる。 In the examples of FIGS. 4 and 5, each first linear electrode 111 is covered with the first dielectric 13 and each second linear electrode 121 is covered with the second dielectric . The first dielectric 13 and the second dielectric 14 are made of dielectric materials such as quartz and ceramics. Each of the first dielectric 13 and the second dielectric 14 has, for example, a tubular shape extending along the longitudinal direction. A first linear electrode 111 is inserted into the first dielectric 13 along the longitudinal direction, and a second linear electrode 121 is inserted into the second dielectric 14 along the longitudinal direction. Thereby, the first linear electrode 111 and the second linear electrode 121 can be suppressed from being sputtered by the plasma. As a result, contamination of the substrate W caused by sputtered particles can be suppressed.
 図4および図5の例では、プラズマリアクタ1には仕切部材17が設けられている。仕切部材17は石英およびセラミックス等の誘電体材料によって形成される。仕切部材17は例えば円板形状を有し、その厚み方向が鉛直方向に沿う姿勢で設けられる。第1線状電極111および第1誘電体13は仕切部材17の上面に設けられ、第2線状電極121および第2誘電体14は仕切部材17の下面に設けられる。 In the examples of FIGS. 4 and 5, the plasma reactor 1 is provided with a partition member 17 . The partition member 17 is made of dielectric material such as quartz and ceramics. The partition member 17 has, for example, a disc shape, and is provided in a posture in which the thickness direction thereof extends along the vertical direction. First linear electrode 111 and first dielectric 13 are provided on the upper surface of partition member 17 , and second linear electrode 121 and second dielectric 14 are provided on the lower surface of partition member 17 .
 保持部材20は例えばフッ素系樹脂等の絶縁材料によって形成され、第1電極部11、第2電極部12、第1誘電体13、第2誘電体14および仕切部材17を一体的に保持する。例えば、保持部材20は平面視において、回転軸線Q1を中心としたリング形状を有している。図4の例では、保持部材20は、互いに連結された上部材21および下部材22を含んでいる。上部材21および下部材22は、少なくとも第1集合電極112および第2集合電極122の各々を鉛直方向において互いに反対側から挟む。下部材22は少なくとも第1集合電極112および第2集合電極122の各々の下面に接触して、これらを支持する。 The holding member 20 is made of an insulating material such as fluorine-based resin, and holds the first electrode portion 11, the second electrode portion 12, the first dielectric 13, the second dielectric 14 and the partition member 17 integrally. For example, the holding member 20 has a ring shape centered on the rotation axis Q1 in plan view. In the example of FIG. 4, the holding member 20 includes an upper member 21 and a lower member 22 that are connected together. The upper member 21 and the lower member 22 sandwich at least the first collective electrode 112 and the second collective electrode 122 from opposite sides in the vertical direction. The lower member 22 contacts at least the lower surface of each of the first collective electrode 112 and the second collective electrode 122 to support them.
 このようなプラズマリアクタ1において、保持部材20は電極アセンブリ10よりも鉛直上方および鉛直下方に突出している。つまり、リング状の上部材21は電極アセンブリ10よりも鉛直上方に突出し、リング状の下部材22は電極アセンブリ10よりも下方に突出している。リング状の下部材22の内周面23は、例えば、回転軸線Q1を中心とした円筒面である。図4の例では、下部材22の内周面23は基板Wの周縁よりも径方向外側に位置している。つまり、下部材22の内径R21は基板Wの直径R1よりも大きい。図4の例では、下部材22の下面24は水平面に平行である。 In such a plasma reactor 1 , the holding member 20 protrudes vertically upward and downward from the electrode assembly 10 . That is, the ring-shaped upper member 21 protrudes vertically above the electrode assembly 10 , and the ring-shaped lower member 22 protrudes below the electrode assembly 10 . The inner peripheral surface 23 of the ring-shaped lower member 22 is, for example, a cylindrical surface centered on the rotation axis Q1. In the example of FIG. 4, the inner peripheral surface 23 of the lower member 22 is located radially outside the peripheral edge of the substrate W. In the example of FIG. That is, the inner diameter R21 of the lower member 22 is larger than the diameter R1 of the substrate W. As shown in FIG. In the example of FIG. 4, the lower surface 24 of the lower member 22 is parallel to the horizontal plane.
 第1電極部11および第2電極部12はプラズマ用の電源16に電気的に接続される。電源16は例えば不図示のスイッチング電源回路を有しており、第1電極部11と第2電極部12との間にプラズマ用の電圧を出力する。具体的な一例として、電源16はプラズマ用の電圧として高周波電圧を出力する。これにより、第1線状電極111と第2線状電極121との間にプラズマ用の電界が生じる。当該電界に応じて、第1線状電極111および第2線状電極121の周囲のガスがプラズマ化する(いわゆる誘電体バリア放電)。 The first electrode portion 11 and the second electrode portion 12 are electrically connected to a power source 16 for plasma. The power supply 16 has, for example, a switching power supply circuit (not shown), and outputs voltage for plasma between the first electrode portion 11 and the second electrode portion 12 . As a specific example, the power supply 16 outputs a high frequency voltage as a voltage for plasma. Thereby, an electric field for plasma is generated between the first linear electrode 111 and the second linear electrode 121 . According to the electric field, the gas around the first linear electrode 111 and the second linear electrode 121 becomes plasma (so-called dielectric barrier discharge).
 図4の例では、第1線状電極111の基端および先端は基板Wの周縁よりも径方向外側に位置しており、第2線状電極121の基端および先端は基板Wの周縁よりも径方向外側に位置している。全ての第1線状電極111および全ての第2線状電極121も同様であるとよい。この構造によれば、プラズマリアクタ1は平面視において、基板Wの上面よりも広い2次元範囲でプラズマを発生させることができ、基板Wの上面により均一に活性種を作用させることができる。 In the example of FIG. 4, the base end and the tip of the first linear electrode 111 are located radially outside the peripheral edge of the substrate W, and the base end and the tip of the second linear electrode 121 are located radially outside the peripheral edge of the substrate W. are also located radially outward. All first linear electrodes 111 and all second linear electrodes 121 may be the same. According to this structure, the plasma reactor 1 can generate plasma in a two-dimensional range wider than the upper surface of the substrate W in plan view, and the active species can act on the upper surface of the substrate W more uniformly.
 <基板処理装置の動作例>
 次に、処理ユニット130の動作の一例について説明する。図6は、処理ユニット130の動作の一例を示すフローチャートである。まず、基板保持部3が基板Wを保持する(ステップS1:保持工程)。具体的には、主搬送ロボット120が未処理の基板Wを基板保持部3に渡し、基板保持部3が該基板Wを保持する。
<Example of operation of substrate processing apparatus>
Next, an example of the operation of the processing unit 130 will be described. FIG. 6 is a flow chart showing an example of the operation of the processing unit 130. As shown in FIG. First, the substrate holding part 3 holds the substrate W (step S1: holding step). Specifically, the main transport robot 120 transfers the unprocessed substrate W to the substrate holding unit 3, and the substrate holding unit 3 holds the substrate W. FIG.
 次に、処理ユニット130は基板Wの上面に処理液の液膜F1を形成する(ステップS2:液膜形成工程)。図7は、液膜形成工程における処理ユニット130の様子の一例を概略的に示す図である。図7に例示されるように、ノズル移動機構45はノズル4をノズル処理位置に移動させ、ガード昇降機構75はガード7を上位置に上昇させる。図7の例では、ガード7Aおよびガード7Bの両方が上位置に位置している。そして、基板保持部3が基板Wを回転軸線Q1のまわりで回転させ、バルブ42が開く。これにより、処理液がノズル4の吐出口4aから回転中の基板Wの上面に向かって供給される。ここでは、処理液として硫酸が供給される。基板Wの上面に着液した処理液は基板Wの上面で広がる。これにより、基板Wの上面に処理液の液膜F1が形成される。なお、基板Wの周縁から飛散した処理液はガード7Bの内周面で受け止められる。 Next, the processing unit 130 forms a liquid film F1 of the processing liquid on the upper surface of the substrate W (step S2: liquid film forming step). FIG. 7 is a diagram schematically showing an example of the state of the processing unit 130 in the liquid film forming process. As illustrated in FIG. 7, the nozzle moving mechanism 45 moves the nozzle 4 to the nozzle processing position, and the guard lifting mechanism 75 lifts the guard 7 to the upper position. In the example of FIG. 7, both guard 7A and guard 7B are in the upper position. Then, the substrate holder 3 rotates the substrate W around the rotation axis Q1, and the valve 42 is opened. As a result, the processing liquid is supplied from the ejection port 4a of the nozzle 4 toward the upper surface of the substrate W during rotation. Here, sulfuric acid is supplied as the processing liquid. The processing liquid that has landed on the upper surface of the substrate W spreads over the upper surface of the substrate W. As shown in FIG. As a result, a liquid film F1 of the processing liquid is formed on the upper surface of the substrate W. As shown in FIG. In addition, the processing liquid scattered from the peripheral edge of the substrate W is received by the inner peripheral surface of the guard 7B.
 処理液の液膜F1が形成されると、バルブ42が閉じて処理液の供給が停止し、ノズル移動機構45はノズル4をノズル待機位置に移動させる。また、基板保持部3が基板Wの回転速度を低下させる。より具体的には、基板保持部3は回転速度を、基板Wの上面の液膜F1が維持できる程度の速度(例えば40rpm以下)に低下させる(いわゆるパドル処理)。基板Wの回転速度はゼロであってもよい。液膜F1の膜厚は、例えば、0.1mm以上、かつ、2.0mm以下であり、好ましくは0.2mm程度である。言い換えれば、液膜F1の膜厚がこの目標値となるように、液膜形成工程における処理液の吐出量および基板Wの回転速度が調整される。 When the liquid film F1 of the treatment liquid is formed, the valve 42 is closed to stop the supply of the treatment liquid, and the nozzle moving mechanism 45 moves the nozzle 4 to the nozzle standby position. Further, the substrate holding part 3 reduces the rotation speed of the substrate W. FIG. More specifically, the substrate holding unit 3 reduces the rotation speed to a speed (for example, 40 rpm or less) at which the liquid film F1 on the upper surface of the substrate W can be maintained (so-called paddle processing). The rotation speed of the substrate W may be zero. The film thickness of the liquid film F1 is, for example, 0.1 mm or more and 2.0 mm or less, preferably about 0.2 mm. In other words, the discharge amount of the treatment liquid and the rotation speed of the substrate W in the liquid film forming process are adjusted so that the film thickness of the liquid film F1 becomes the target value.
 次に、処理ユニット130は基板Wに対するプラズマ処理を行う(ステップS3:プラズマ処理工程)。図8は、プラズマ処理工程の具体的な一例を示すフローチャートであり、図9は、プラズマ処理工程における処理ユニット130の様子の一例を概略的に示す図である。 Next, the processing unit 130 performs plasma processing on the substrate W (step S3: plasma processing step). FIG. 8 is a flow chart showing a specific example of the plasma processing process, and FIG. 9 is a diagram schematically showing an example of the state of the processing unit 130 in the plasma processing process.
 図8の例では、まず、ガード昇降機構75がガード7を下位置に下降させる(ステップS31:ガード移動工程)。ここでいう下位置とは、最外周のガード7Aの内周面の上端711が、基板保持部3によって保持された基板Wの上面よりも鉛直下方となる位置である。下位置の具体的な一例として、ガード7Aの上端711が基板Wの下面よりも鉛直下方となる位置を採用してもよいし、ガード7Aの上端711がスピンベース31の上面よりも下方となる位置を採用してもよいし、あるいは、ガード待機位置を採用してもよい。ここでは下位置としてガード待機位置を採用する。つまり、ガード昇降機構75はガード7Aおよびガード7Bをガード待機位置に下降させる。 In the example of FIG. 8, first, the guard lifting mechanism 75 lowers the guard 7 to the lower position (step S31: guard moving step). The lower position referred to here is a position where the upper end 711 of the inner peripheral surface of the outermost guard 7A is vertically below the upper surface of the substrate W held by the substrate holding portion 3 . As a specific example of the lower position, a position where the upper end 711 of the guard 7A is vertically below the lower surface of the substrate W may be adopted, or the upper end 711 of the guard 7A is below the upper surface of the spin base 31. position may be employed, or a guard standby position may be employed. Here, the guard standby position is adopted as the lower position. That is, the guard elevating mechanism 75 lowers the guard 7A and the guard 7B to the guard standby position.
 次に、電源16がプラズマリアクタ1にプラズマ用の電圧を出力する(ステップS32:点灯工程)。これにより、プラズマリアクタ1の周囲にプラズマが生成される。なお、点灯工程はガード移動工程の前に実行されてもよい。 Next, the power supply 16 outputs voltage for plasma to the plasma reactor 1 (step S32: lighting step). Thereby, plasma is generated around the plasma reactor 1 . Note that the lighting process may be performed before the guard moving process.
 次に、プラズマ昇降機構15はプラズマリアクタ1をプラズマ待機位置からプラズマ処理位置に下降させる(ステップS33:プラズマ移動工程)。プラズマリアクタ1がプラズマ処理位置に位置する状態では、プラズマリアクタ1は基板Wにプラズマを照射することができる(ステップS34:プラズマ照射工程)。言い換えれば、プラズマ処理位置は、基板Wにプラズマを照射可能な程度に基板Wに近接した位置である。 Next, the plasma elevating mechanism 15 lowers the plasma reactor 1 from the plasma standby position to the plasma processing position (step S33: plasma movement step). When the plasma reactor 1 is positioned at the plasma processing position, the plasma reactor 1 can irradiate the substrate W with plasma (step S34: plasma irradiation step). In other words, the plasma processing position is a position close to the substrate W to the extent that the substrate W can be irradiated with plasma.
 図9は、プラズマ照射工程における処理ユニット130の様子を示している。図9の例では、プラズマリアクタ1はプラズマ処理位置に位置しており、基板Wの上面の液膜F1にプラズマを照射して、液膜F1に活性種を供給する。これにより、処理液の処理性能が向上し、高い処理性能で処理液が基板Wに対して作用する。より具体的には、酸素ラジカルが硫酸と反応してカロ酸を生成し、カロ酸が基板Wのレジストを除去する。 FIG. 9 shows the state of the processing unit 130 in the plasma irradiation process. In the example of FIG. 9, the plasma reactor 1 is located at the plasma processing position, irradiates the liquid film F1 on the upper surface of the substrate W with plasma, and supplies active species to the liquid film F1. As a result, the processing performance of the processing liquid is improved, and the processing liquid acts on the substrate W with high processing performance. More specifically, oxygen radicals react with sulfuric acid to produce Caro's acid, which removes the resist on the substrate W. FIG.
 このプラズマ照射工程において、基板保持部3は基板Wを低速(例えば、40rpm以下)で回転させてもよく、あるいは、基板Wの回転を停止させてもよい。基板Wが回転する場合には、活性種が基板Wに対してより均一に作用するので、基板Wに対する処理の均一性を向上させることができる。 In this plasma irradiation process, the substrate holder 3 may rotate the substrate W at a low speed (for example, 40 rpm or less), or may stop the rotation of the substrate W. When the substrate W rotates, the active species act more uniformly on the substrate W, so that the uniformity of processing on the substrate W can be improved.
 そして、基板Wのレジストが十分に除去されると、プラズマ昇降機構15はプラズマリアクタ1をプラズマ待機位置に上昇させ、電源16が電圧の出力を停止する(ステップS35)。 Then, when the resist on the substrate W is sufficiently removed, the plasma elevating mechanism 15 raises the plasma reactor 1 to the plasma standby position, and the power supply 16 stops outputting voltage (step S35).
 次に、処理ユニット130は基板Wの上面に対するリンス処理を行う(ステップS4:リンス工程)。具体的には、処理ユニット130は回転中の基板Wの上面にノズル4からリンス液を供給し、基板Wの上面の処理液をリンス液に置換する。 Next, the processing unit 130 performs a rinsing process on the upper surface of the substrate W (step S4: rinsing process). Specifically, the processing unit 130 supplies the rinsing liquid from the nozzle 4 to the top surface of the substrate W during rotation, and replaces the processing liquid on the top surface of the substrate W with the rinsing liquid.
 次に、処理ユニット130は基板Wに対する乾燥処理を行う(ステップS5:乾燥工程)。例えば基板保持部3がプラズマ処理工程よりも高い回転速度で基板Wを回転させることにより、基板Wを乾燥させる(いわゆるスピンドライ)。次に、主搬送ロボット120が処理済みの基板Wを処理ユニット130から搬出する。 Next, the processing unit 130 performs a drying process on the substrate W (step S5: drying process). For example, the substrate holding unit 3 rotates the substrate W at a higher rotation speed than the plasma processing step, thereby drying the substrate W (so-called spin drying). Next, the main transport robot 120 unloads the processed substrate W from the processing unit 130 .
 <実施の形態の効果>
 以上のように、本実施の形態では、プラズマ処理工程において、ガード7はその上端711が基板Wの下面よりも下方となる下位置で停止した状態で、プラズマリアクタ1がプラズマ処理位置で停止している(図9参照)。つまり、ガード7が上位置に位置する場合に比して、ガード7Aの上端はより低い位置にある。よって、平面視におけるプラズマリアクタ1のサイズを大きくしても、プラズマリアクタ1はガード7と物理的に干渉せずに、基板Wにより近接したプラズマ処理位置に下降することができる。つまり、プラズマリアクタ1よりも下方に位置するガード7Aを、より低い下位置に下降させることにより、プラズマリアクタ1もより下方に下降させることができるのである。
<Effect of Embodiment>
As described above, in the present embodiment, in the plasma processing step, the plasma reactor 1 is stopped at the plasma processing position while the upper end 711 of the guard 7 is stopped at the lower position below the lower surface of the substrate W. (See Figure 9). That is, the upper end of the guard 7A is at a lower position than when the guard 7 is positioned at the upper position. Therefore, even if the size of the plasma reactor 1 in plan view is increased, the plasma reactor 1 can be lowered to a plasma processing position closer to the substrate W without physically interfering with the guard 7 . That is, by lowering the guard 7A located below the plasma reactor 1 to a lower position, the plasma reactor 1 can also be lowered further.
 ここで、プラズマリアクタ1の温度分布について説明する。プラズマリアクタ1がプラズマを発生させると、プラズマの発生に起因して温度が上昇する。図10は、プラズマリアクタ1の周囲の空間的な温度分布の一例を示すグラフである。横軸は、プラズマリアクタ1の中心(つまり回転軸線Q1)からの径方向の距離を示しており、縦軸は、プラズマリアクタ1よりも10mmだけ鉛直下方の位置の温度を示している。 Here, the temperature distribution of the plasma reactor 1 will be explained. When the plasma reactor 1 generates plasma, the temperature rises due to the plasma generation. FIG. 10 is a graph showing an example of spatial temperature distribution around the plasma reactor 1. In FIG. The horizontal axis indicates the radial distance from the center of the plasma reactor 1 (that is, the rotation axis Q1), and the vertical axis indicates the temperature at a position vertically below the plasma reactor 1 by 10 mm.
 図10の例では、プラズマが発生するプラズマ発生領域も示している。図10から理解できるように、プラズマリアクタ1の中心と、該中心から径方向に約130mm離れた中間位置との間の領域において、温度は中心から離れるにしたがって徐々に低下するものの、その低下量は比較的に小さい。一方で、中間位置からプラズマ発生領域の周縁位置(距離が約150mmの位置)との間の領域では、温度は中心から離れるにしたがってより急峻に低下する。つまり、プラズマ発生領域の周縁部の温度はプラズマ発生領域の中央の温度よりも顕著に低くなる。 The example in FIG. 10 also shows a plasma generation region where plasma is generated. As can be understood from FIG. 10, in the region between the center of the plasma reactor 1 and an intermediate position about 130 mm away from the center in the radial direction, the temperature gradually decreases as the distance from the center increases. is relatively small. On the other hand, in the region between the intermediate position and the edge position of the plasma generation region (position at a distance of about 150 mm), the temperature drops sharply as the distance from the center increases. That is, the temperature at the peripheral edge of the plasma generation region is significantly lower than the temperature at the center of the plasma generation region.
 そして、プラズマリアクタ1はプラズマ照射工程において基板Wに近接するので、基板Wの上面の温度分布はプラズマリアクタ1の温度分布の影響を受ける。よって、プラズマリアクタ1の平面視におけるサイズが基板Wと同程度の場合、たとえ基板Wの上面の全面にプラズマを照射することができたとしても、基板Wの周縁の温度が中央部の温度よりも小さくなる。そのため、基板Wの中央部と周縁部との間で処理の程度に差異が生じてしまう。 Since the plasma reactor 1 is close to the substrate W in the plasma irradiation process, the temperature distribution of the upper surface of the substrate W is affected by the temperature distribution of the plasma reactor 1 . Therefore, when the size of the plasma reactor 1 in a plan view is about the same as that of the substrate W, even if the entire upper surface of the substrate W can be irradiated with plasma, the temperature of the periphery of the substrate W is higher than that of the central portion. becomes smaller. Therefore, a difference occurs in the degree of processing between the central portion and the peripheral portion of the substrate W. FIG.
 これに対して、本実施の形態では、プラズマ照射工程において、ガード7はプラズマリアクタ1よりも鉛直下方に位置するので、プラズマリアクタ1の外径R2および内径R21をガード7の内径R3とは無関係に設計することができる。よって、プラズマリアクタ1のサイズを大きくしてプラズマ発生領域をより広くすることができる。具体的には、温度分布がより均一な領域が基板Wの上面の全面と対向する程度に、プラズマリアクタ1のサイズを設計することができる。この構造によれば、基板Wの上面の温度分布をより均一化でき、基板Wに対する処理の均一性を向上させることができる。 In contrast, in the present embodiment, the guard 7 is positioned vertically below the plasma reactor 1 in the plasma irradiation step, so the outer diameter R2 and the inner diameter R21 of the plasma reactor 1 are irrelevant to the inner diameter R3 of the guard 7. can be designed to Therefore, the size of the plasma reactor 1 can be increased to widen the plasma generation area. Specifically, the size of the plasma reactor 1 can be designed such that a region with a more uniform temperature distribution faces the entire upper surface of the substrate W. FIG. According to this structure, the temperature distribution on the upper surface of the substrate W can be made more uniform, and the uniformity of the processing of the substrate W can be improved.
 <プラズマリアクタ1とガード7との間隙>
 図9の例では、プラズマ処理工程において、ガード7はガード待機位置で停止しているので、プラズマリアクタ1の下部材22とガード7Aの上端部73との間には、比較的に広い間隙が生じている。
<Gap Between Plasma Reactor 1 and Guard 7>
In the example of FIG. 9, since the guard 7 is stopped at the guard standby position in the plasma processing step, there is a relatively wide gap between the lower member 22 of the plasma reactor 1 and the upper end portion 73 of the guard 7A. is occurring.
 さて、プラズマリアクタ1がプラズマを発生させると、上述の通り、周囲の温度が摂氏数100度まで高くなるので、基板W上の処理液は蒸発しやすくなる。よって、基板Wとプラズマリアクタ1との間の雰囲気には処理液の揮発成分が多く含まれることになる。 Now, when the plasma reactor 1 generates plasma, the ambient temperature rises up to several hundred degrees Celsius, as described above, so the processing liquid on the substrate W is likely to evaporate. Therefore, the atmosphere between the substrate W and the plasma reactor 1 contains many volatile components of the processing liquid.
 本実施の形態では、給気部81および排気部82(図3を参照)が設けられているものの、プラズマリアクタ1とガード7との間隙が広いほど、処理液雰囲気は該間隙を通じてガード7外に流出し得る。図9の例では、生じ得る処理液雰囲気の一部の流れを模式的に破線の矢印で示している。この処理液雰囲気のガード7外への流出の可能性は、プラズマ処理工程における基板Wの回転速度が高くなるほど高くなる。 In the present embodiment, an air supply unit 81 and an exhaust unit 82 (see FIG. 3) are provided. can flow into In the example of FIG. 9, a part of the possible flow of the processing liquid atmosphere is schematically indicated by dashed arrows. The possibility of the processing liquid atmosphere flowing out of the guard 7 increases as the rotation speed of the substrate W in the plasma processing step increases.
 そこで、このような流出を抑制するために、プラズマ処理工程において、ガード昇降機構75はガード7Aをガード待機位置よりも高いガード中間位置に位置させてもよい。図11は、プラズマ処理工程における処理ユニット130の様子の一例を概略的に示す図であり、図12は、図11の処理ユニット130の一部(具体的には破線で囲まれた領域)を拡大して示す拡大図である。 Therefore, in order to suppress such an outflow, the guard lifting mechanism 75 may position the guard 7A at a guard intermediate position higher than the guard standby position in the plasma processing process. FIG. 11 is a diagram schematically showing an example of the state of the processing unit 130 in the plasma processing step, and FIG. 12 shows a portion of the processing unit 130 (specifically, the area surrounded by the dashed line) in FIG. It is an enlarged view which expands and shows.
 図11および図12の例では、プラズマリアクタ1はプラズマ処理位置で停止し、ガード7Aはガード中間位置で停止している。ガード中間位置とは、プラズマ処理位置に位置するプラズマリアクタ1と最外周のガード7Aとの間隔D1が、ガード7Aと基板保持部3との間隔D2よりも狭い位置である。図12の例では、間隔D1は、プラズマリアクタ1の下部材22の下面24とガード7Aの上端部73の上面との間の距離であり、間隔D2は、ガード7Aの上端部73の内周縁とスピンベース31の側面との間の距離である。ガード7Aがガード中間位置で停止した状態でも、ガード7Aの内周面の上端711は基板Wの上面よりも下方に位置するので、ガード中間位置も下位置の概念に含まれる。 In the examples of FIGS. 11 and 12, the plasma reactor 1 stops at the plasma processing position, and the guard 7A stops at the guard intermediate position. The guard intermediate position is a position where the distance D1 between the plasma reactor 1 positioned at the plasma processing position and the outermost guard 7A is narrower than the distance D2 between the guard 7A and the substrate holder 3. FIG. In the example of FIG. 12, the distance D1 is the distance between the lower surface 24 of the lower member 22 of the plasma reactor 1 and the upper surface of the upper end portion 73 of the guard 7A, and the distance D2 is the inner peripheral edge of the upper end portion 73 of the guard 7A. and the side of the spin base 31. Even when the guard 7A stops at the guard intermediate position, the upper end 711 of the inner peripheral surface of the guard 7A is positioned below the upper surface of the substrate W, so the guard intermediate position is also included in the concept of the lower position.
 ガード7Aがガード中間位置で停止すれば、間隔D1が間隔D2よりも狭くなるので、処理液雰囲気はプラズマリアクタ1とガード7Aとの間隙よりもガード7Aと基板保持部3との間隙を流れやすい。これによれば、処理液雰囲気がガード7外に流出してチャンバ80内に拡散することを抑制することができる。 If the guard 7A stops at the guard intermediate position, the space D1 becomes narrower than the space D2, so the processing liquid atmosphere flows more easily through the gap between the guard 7A and the substrate holder 3 than between the plasma reactor 1 and the guard 7A. . According to this, it is possible to suppress the processing liquid atmosphere from flowing out of the guard 7 and diffusing into the chamber 80 .
 また、プラズマ処理工程において基板保持部3が基板Wを回転させる場合には、基板Wの周縁から処理液が飛散し得る。間隔D1が間隔D2以下であれば、この処理液もプラズマリアクタ1とガード7との間隙を通過しにくく、ガード7と基板保持部3との間隙を流下しやすい。よって、処理液がガード7よりも外側に流出することを抑制することができる。 Further, when the substrate holding unit 3 rotates the substrate W in the plasma processing step, the processing liquid may splash from the periphery of the substrate W. If the interval D1 is equal to or smaller than the interval D2, the processing liquid also hardly passes through the gap between the plasma reactor 1 and the guard 7 and easily flows down through the gap between the guard 7 and the substrate holder 3 . Therefore, it is possible to prevent the processing liquid from flowing out of the guard 7 .
 また、間隔D1が狭くなると、排気部82による排気によって、ガード7の内部の負圧が強まる。このため、ガード7の外側からプラズマリアクタ1とガード7との間隙を径方向内側に通過する気流の流速が高くなる。この気流により、処理液雰囲気および処理液はプラズマリアクタ1とガード7との間隙を径方向外側に通過しにくくなり、処理液雰囲気および処理液のガード7外への流出がさらに抑制される。 Further, when the interval D1 becomes narrower, the negative pressure inside the guard 7 increases due to the exhaust by the exhaust section 82 . Therefore, the flow velocity of the airflow passing radially inward through the gap between the plasma reactor 1 and the guard 7 from the outside of the guard 7 increases. This airflow makes it difficult for the processing liquid atmosphere and the processing liquid to pass through the gap between the plasma reactor 1 and the guard 7 in the radial direction, further suppressing the flow of the processing liquid atmosphere and the processing liquid to the outside of the guard 7 .
 <プラズマリアクタの外側部分>
 上述の例では、プラズマリアクタ1のうち基板Wの周縁よりも外側に位置する下部材22(外側部分に相当)は、リング形状を有しており、電極アセンブリ10よりも鉛直下方に突出している。この下部材22の下面24は、プラズマ処理工程において、基板Wの上面よりも鉛直下方に位置している(図9、図11および図12参照)。つまり、プラズマリアクタ1がプラズマ処理位置に位置する処理状態において、下部材22の下面24は基板Wの下面よりも鉛直下方に位置する。この場合、下部材22の内周面23は基板Wよりも上方の空間を取り囲むことができる。このため、下部材22を実質的にガードの一部として機能させることができる。
<Outer portion of plasma reactor>
In the above example, the lower member 22 (corresponding to the outer portion) positioned outside the peripheral edge of the substrate W in the plasma reactor 1 has a ring shape and protrudes vertically below the electrode assembly 10 . . The lower surface 24 of the lower member 22 is located vertically below the upper surface of the substrate W in the plasma processing step (see FIGS. 9, 11 and 12). That is, the lower surface 24 of the lower member 22 is positioned vertically below the lower surface of the substrate W in the processing state in which the plasma reactor 1 is positioned at the plasma processing position. In this case, the inner peripheral surface 23 of the lower member 22 can surround the space above the substrate W. FIG. Therefore, the lower member 22 can substantially function as part of the guard.
 具体的には、プラズマリアクタ1と基板Wとの間の処理液雰囲気が径方向外側に流れると、下部材22の内周面23に衝突し、内周面23に沿って鉛直下方に向かって流れる。また、処理液が基板Wの周縁から径方向外側に飛散しても、その処理液は下部材22の内周面23に衝突し、やはり内周面23に沿って鉛直下方に流下する。図12の例では、処理液雰囲気および処理液の流れを模式的に二点鎖線の矢印で示している。 Specifically, when the processing liquid atmosphere between the plasma reactor 1 and the substrate W flows radially outward, it collides with the inner peripheral surface 23 of the lower member 22 and vertically downward along the inner peripheral surface 23 . flow. Moreover, even if the processing liquid scatters radially outward from the peripheral edge of the substrate W, the processing liquid collides with the inner peripheral surface 23 of the lower member 22 and also flows vertically downward along the inner peripheral surface 23 . In the example of FIG. 12, the atmosphere of the processing liquid and the flow of the processing liquid are schematically indicated by two-dot chain arrows.
 この構造によれば、処理液雰囲気および処理液はプラズマリアクタ1とガード7との間隙を径方向外側に通過しにくいので、ガード7外に流出する処理液雰囲気および処理液を抑制することができる。 According to this structure, it is difficult for the processing liquid atmosphere and the processing liquid to pass through the gap between the plasma reactor 1 and the guard 7 to the outside in the radial direction. .
 図12に例示されるように、下部材22の内周面23の下端周縁231はガード7の上端部73の内周縁よりも径方向内側に位置してもよい。言い換えれば、下部材22の内径R21はガード7の内径R3よりも小さい。この構造によれば、下部材22の内周面23に沿って鉛直下方に流れる処理液雰囲気および処理液は、ガード7の上面にほとんど衝突せずに、ガード7と基板保持部3との間隙を通過することができる。したがって、処理液雰囲気および処理液のガード7外への流出をさらに抑制することができる。 As exemplified in FIG. 12 , the lower end peripheral edge 231 of the inner peripheral surface 23 of the lower member 22 may be located radially inward from the inner peripheral edge of the upper end portion 73 of the guard 7 . In other words, the inner diameter R21 of the lower member 22 is smaller than the inner diameter R3 of the guard 7 . According to this structure, the processing liquid atmosphere and the processing liquid flowing vertically downward along the inner peripheral surface 23 of the lower member 22 hardly collide with the upper surface of the guard 7, and the gap between the guard 7 and the substrate holding section 3 is maintained. can pass through. Therefore, outflow of the processing liquid atmosphere and the processing liquid to the outside of the guard 7 can be further suppressed.
 また、図12に例示されるように、下部材22の内周面23の下端周縁231は基板保持部3の周縁(つまり、スピンベース31の側面)よりも径方向外側に位置してもよい。言い換えれば、下部材22の内径R21はスピンベース31の直径R4よりも大きい。この構造によれば、下部材22の内周面23に沿って鉛直下方に流れる処理液雰囲気および処理液はスピンベース31の上面に衝突しにくい。 Further, as illustrated in FIG. 12 , the lower end peripheral edge 231 of the inner peripheral surface 23 of the lower member 22 may be located radially outside the peripheral edge of the substrate holding part 3 (that is, the side surface of the spin base 31). . In other words, the inner diameter R21 of the lower member 22 is larger than the diameter R4 of the spin base 31. As shown in FIG. According to this structure, the processing liquid atmosphere and the processing liquid flowing vertically downward along the inner peripheral surface 23 of the lower member 22 are less likely to collide with the upper surface of the spin base 31 .
 スピンベース31は回転軸線Q1のまわりで回転するので、もし、処理液雰囲気および処理液がスピンベース31の上面に衝突すると、遠心力を受けて再び径方向外側に向かって流れ得る。これにより、処理液雰囲気および処理液のガード外へ流出する可能性が高まる。 Since the spin base 31 rotates around the rotation axis Q1, if the processing liquid atmosphere and the processing liquid collide with the upper surface of the spin base 31, they can receive centrifugal force and flow radially outward again. This increases the possibility that the processing liquid atmosphere and the processing liquid flow out of the guard.
 これに対して、下部材22の内径R21がスピンベース31の直径R4よりも大きければ、スピンベース31に衝突する処理液雰囲気および処理液を低減させることができるので、処理液雰囲気および処理液のガード7外への流出をさらに抑制することができる。 On the other hand, if the inner diameter R21 of the lower member 22 is larger than the diameter R4 of the spin base 31, the amount of the processing liquid atmosphere and the processing liquid colliding with the spin base 31 can be reduced. Outflow to the outside of the guard 7 can be further suppressed.
 しかも、電極アセンブリ10を下方から支持する下部材22をガードとして機能させることができる。よって、別途にガードとして機能する部材をプラズマリアクタ1に設ける場合に比べて、プラズマリアクタ1の製造コストを低減させることができる。 Moreover, the lower member 22 that supports the electrode assembly 10 from below can function as a guard. Therefore, the manufacturing cost of the plasma reactor 1 can be reduced compared to the case where the plasma reactor 1 is separately provided with a member functioning as a guard.
 <ガード7Aおよびガード7B>
 図11および図12の例では、ガード昇降機構75はプラズマ処理工程において、最外周のガード7Aのみならず他のガード7Bもガード待機位置よりも高い位置に上昇させている。これによれば、ガード7Aとガード7Bとの間隔が狭くなるので、処理液がガード7Aとガード7Bとの間に流入する可能性を低減させることができ、より多くの処理液をカップ76に流下させることができる。このため、より多くの処理液を適切に回収することができる。
<Guard 7A and Guard 7B>
In the example of FIGS. 11 and 12, the guard elevating mechanism 75 raises not only the outermost guard 7A but also the other guards 7B to a position higher than the guard standby position in the plasma processing process. With this configuration, the gap between the guards 7A and 7B is narrowed, so that the possibility of the processing liquid flowing into the space between the guards 7A and 7B can be reduced, and more processing liquid can flow into the cup 76. can flow down. Therefore, more processing liquid can be recovered appropriately.
 <プラズマリアクタとガードの移動タイミング>
 図8の例では、プラズマ移動工程(ステップS33)はガード移動工程(ステップS31)の後に行われる。つまり、ガード7が下位置で停止した以後に、プラズマ昇降機構15はプラズマリアクタ1を下降させ始める。これによれば、プラズマリアクタ1とガード7とが高い速度で衝突することをより確実に回避することができる。
<Moving timing of plasma reactor and guard>
In the example of FIG. 8, the plasma transfer step (step S33) is performed after the guard transfer step (step S31). That is, the plasma elevating mechanism 15 starts lowering the plasma reactor 1 after the guard 7 stops at the lower position. According to this, it is possible to more reliably avoid collision between the plasma reactor 1 and the guard 7 at a high speed.
 その一方で、プラズマ移動工程はガード移動工程と並行して行われても構わない。要するに、プラズマリアクタ1がガード7と高い速度で衝突しないように、プラズマリアクタ1およびガード7の下降速度および下降タイミングが調整されていればよい。例えば、プラズマ昇降機構15は、ガード7が下位置に到着した以後にプラズマリアクタ1がプラズマ処理位置に到着するように、プラズマリアクタ1を下降させればよい。 On the other hand, the plasma transfer process may be performed in parallel with the guard transfer process. In short, the descent speed and descent timing of the plasma reactor 1 and the guard 7 should be adjusted so that the plasma reactor 1 does not collide with the guard 7 at a high speed. For example, the plasma elevating mechanism 15 may lower the plasma reactor 1 so that the plasma reactor 1 reaches the plasma processing position after the guard 7 reaches the lower position.
 プラズマ移動工程とガード移動工程とを並行して行う場合には、処理のスループットを向上させ得る。 When the plasma transfer process and the guard transfer process are performed in parallel, the processing throughput can be improved.
 <ガード中間位置>
 上述の例では、プラズマ処理工程において、プラズマリアクタ1および最外周のガード7Aは鉛直方向において互いに離れている(例えば図12参照)。しかしながら、必ずしもこれに限らず、プラズマリアクタ1およびガード7Aが鉛直方向において互いに接触していてもよい。言い換えれば、ガード中間位置として、最外周のガード7Aがプラズマリアクタ1と鉛直方向において接触する位置を採用してもよい。
<Guard middle position>
In the above example, the plasma reactor 1 and the outermost guard 7A are separated from each other in the vertical direction in the plasma processing step (see FIG. 12, for example). However, this is not necessarily the case, and the plasma reactor 1 and guard 7A may be in contact with each other in the vertical direction. In other words, a position where the outermost guard 7A contacts the plasma reactor 1 in the vertical direction may be adopted as the guard intermediate position.
 図13は、プラズマ処理工程における処理ユニット130の様子の一例を概略的に示す拡大図である。図13の例では、プラズマリアクタ1の下部材22の下面24が最外周のガード7Aの上端部73の上面に当接している。 FIG. 13 is an enlarged view schematically showing an example of the state of the processing unit 130 in the plasma processing process. In the example of FIG. 13, the lower surface 24 of the lower member 22 of the plasma reactor 1 is in contact with the upper surface of the upper end portion 73 of the outermost guard 7A.
 これによれば、プラズマリアクタ1の下部材22とガード7Aの上端部73との間隙をさらに低減させることができるので、処理液雰囲気および処理液のガード7外への流出をさらに抑制することができる。 According to this, the gap between the lower member 22 of the plasma reactor 1 and the upper end portion 73 of the guard 7A can be further reduced, so that the outflow of the processing liquid atmosphere and the processing liquid to the outside of the guard 7 can be further suppressed. can.
 <第2の実施の形態>
 図14は、第2の実施の形態にかかる処理ユニット130Aの構成の一例を概略的に示す図であり、図15は、プラズマ処理工程における処理ユニット130Aの様子の一例を拡大して示す拡大図である。第2の実施の形態にかかる処理ユニット130Aの構成は、弾性のシール部材5の有無を除いて、第1の実施の形態にかかる処理ユニット130と同様である。
<Second Embodiment>
FIG. 14 is a diagram schematically showing an example of the configuration of the processing unit 130A according to the second embodiment, and FIG. 15 is an enlarged view showing an example of the state of the processing unit 130A in the plasma processing step. is. The configuration of the processing unit 130A according to the second embodiment is the same as that of the processing unit 130 according to the first embodiment, except for the presence or absence of the elastic seal member 5. FIG.
 図14および図15の例では、シール部材5は最外周のガード7Aに設けられている。つまり、ガード7Aは筒部71と傾斜部72と上端部73とシール部材5とを含む。シール部材5は弾性部材によって形成され、例えば、シリコーンおよびゴム等の弾性樹脂によって形成される。シール部材5はガード7Aの上端部73の上面に取り付けられており、プラズマリアクタ1と鉛直方向において対向する。シール部材5は、後述のようにプラズマ処理工程において、プラズマリアクタ1の下部材22の下面24と密着する。これにより、プラズマリアクタ1とガード7Aとの密着性を向上させることができる。 In the examples of FIGS. 14 and 15, the seal member 5 is provided on the outermost guard 7A. That is, the guard 7A includes a cylinder portion 71, an inclined portion 72, an upper end portion 73, and a seal member 5. As shown in FIG. The seal member 5 is made of an elastic member, for example, an elastic resin such as silicone or rubber. The seal member 5 is attached to the upper surface of the upper end portion 73 of the guard 7A and faces the plasma reactor 1 in the vertical direction. The seal member 5 is in close contact with the lower surface 24 of the lower member 22 of the plasma reactor 1 in the plasma processing step as described later. Thereby, the adhesion between the plasma reactor 1 and the guard 7A can be improved.
 シール部材5は回転軸線Q1を中心としたリング形状を有しており、その下端が上端部73の上面に取り付けられる。図15の例では、シール部材5は屈曲形状を有している。具体的には、シール部材5は上リング部51と下リング部52とを含む。上リング部51は、鉛直上方から鉛直下方に向かうにつれて内径および外径が小さくなるリング傾斜形状を有している。下リング部52は、鉛直上方から鉛直下方に向かうにしたがって内径および外径が大きくなるリング傾斜形状を有しており、下リング部52の上端は上リング部51の下端に連続している。このようなシール部材5は、上リング部51の上端と下リング部52の下端との間隔が狭くなるように、容易に弾性変形することができる。 The seal member 5 has a ring shape centered on the rotation axis Q1, and its lower end is attached to the upper surface of the upper end portion 73. In the example of FIG. 15, the sealing member 5 has a bent shape. Specifically, the seal member 5 includes an upper ring portion 51 and a lower ring portion 52 . The upper ring portion 51 has an inclined ring shape in which the inner diameter and the outer diameter decrease from the vertically upward direction to the vertically downward direction. The lower ring portion 52 has an inclined ring shape in which the inner diameter and the outer diameter increase from the vertically upward direction to the vertically downward direction. Such a sealing member 5 can be easily elastically deformed so that the distance between the upper end of the upper ring portion 51 and the lower end of the lower ring portion 52 is narrowed.
 処理ユニット130Aの動作の一例は第1の実施の形態と同様である。ただし、図15に例示されるように、プラズマ処理工程において、ガード昇降機構75は、プラズマリアクタ1の下部材22の下面24がシール部材5の上端に当接するガード中間位置に、ガード7Aを移動させる。このとき、シール部材5はプラズマリアクタ1によって鉛直下方に押圧されて弾性変形しており、プラズマリアクタ1に密着する。 An example of the operation of the processing unit 130A is the same as in the first embodiment. However, as exemplified in FIG. 15, in the plasma processing step, the guard elevating mechanism 75 moves the guard 7A to the guard intermediate position where the lower surface 24 of the lower member 22 of the plasma reactor 1 contacts the upper end of the seal member 5 . Let At this time, the seal member 5 is pressed vertically downward by the plasma reactor 1 and is elastically deformed, and is in close contact with the plasma reactor 1 .
 これによれば、プラズマリアクタ1とガード7Aとの間には隙間がほとんど生じない。よって、プラズマ処理工程において、処理液雰囲気および処理液がガード7外に流出することをさらに抑制あるいは回避することができる。 According to this, there is almost no gap between the plasma reactor 1 and the guard 7A. Therefore, it is possible to further suppress or prevent the processing liquid atmosphere and the processing liquid from flowing out of the guard 7 in the plasma processing step.
 図16は、処理ユニット130Aの変形例を概略的に示す図である。図16の例では、シール部材5はプラズマリアクタ1に設けられている。言い換えれば、プラズマリアクタ1がシール部材5を含んでいる。シール部材5はプラズマリアクタ1の下部材22の下面24に取り付けられており、ガード7Aの上端部73と鉛直方向において対向する。シール部材5の具体的な形状の一例は上述の通りである。 FIG. 16 is a diagram schematically showing a modification of the processing unit 130A. In the example of FIG. 16, the sealing member 5 is provided in the plasma reactor 1. In the example of FIG. In other words, plasma reactor 1 includes sealing member 5 . The seal member 5 is attached to the lower surface 24 of the lower member 22 of the plasma reactor 1 and vertically faces the upper end portion 73 of the guard 7A. An example of the specific shape of the seal member 5 is as described above.
 この変形例においても、プラズマ処理工程において、プラズマリアクタ1がガード7Aと鉛直方向において当接する。具体的には、プラズマリアクタ1のシール部材5の下端がガード7Aの上端部73の上面に当接する。このとき、シール部材5はプラズマリアクタ1によって鉛直下方に押圧され、弾性変形している。つまり、ガード中間位置として、プラズマ処理位置に位置するシール部材5の下端が、ガード7Aの上面と密着する位置を採用する。 Also in this modification, the plasma reactor 1 contacts the guard 7A in the vertical direction in the plasma processing step. Specifically, the lower end of the seal member 5 of the plasma reactor 1 contacts the upper surface of the upper end portion 73 of the guard 7A. At this time, the seal member 5 is pressed vertically downward by the plasma reactor 1 and is elastically deformed. That is, as the guard intermediate position, the position where the lower end of the seal member 5 located at the plasma processing position is in close contact with the upper surface of the guard 7A is adopted.
 これによっても、プラズマ処理工程において、処理液雰囲気および処理液がガード7外に流出することをさらに抑制あるいは回避することができる。 This also makes it possible to further suppress or prevent the processing liquid atmosphere and the processing liquid from flowing out of the guard 7 in the plasma processing step.
 上述の例では、シール部材5はプラズマリアクタ1およびガード7Aの一方のみに設けられているものの、両方に設けられてもよい。この場合、プラズマ処理工程において、プラズマリアクタ1のシール部材5とガード7Aのシール部材5が鉛直方向において密着してもよい。 In the above example, the sealing member 5 is provided only on one of the plasma reactor 1 and the guard 7A, but may be provided on both. In this case, in the plasma processing step, the sealing member 5 of the plasma reactor 1 and the sealing member 5 of the guard 7A may be in close contact in the vertical direction.
 <第3の実施の形態>
 図17は、第3の実施の形態にかかる処理ユニット130Bの構成の一例を概略的に示す図であり、図18は、プラズマ処理工程における処理ユニット130Bの様子の一例を拡大して示す拡大図である。第3の実施の形態にかかる処理ユニット130Bの構成は、ラビリンス構造55の有無を除いて、第1の実施の形態にかかる処理ユニット130と同様である。
<Third Embodiment>
FIG. 17 is a diagram schematically showing an example of the configuration of the processing unit 130B according to the third embodiment, and FIG. 18 is an enlarged view showing an example of the state of the processing unit 130B in the plasma processing step. is. The configuration of the processing unit 130B according to the third embodiment is the same as that of the processing unit 130 according to the first embodiment, except for the presence or absence of the labyrinth structure 55. FIG.
 ラビリンス構造55は、プラズマリアクタ1およびガード7Aの凹凸形状によって実現される(図18を参照)。以下、具体例について説明する。 The labyrinth structure 55 is realized by the uneven shape of the plasma reactor 1 and the guard 7A (see FIG. 18). A specific example will be described below.
 図18の例では、プラズマリアクタ1の下部材22は電極アセンブリ10よりも鉛直下方に突出しており、下部材22が凸部を形成する。また、図18の例では、ガード7Aの上端部73の上面には凸部74および凸部78が設けられている。凸部74は下部材22よりも径方向内側の位置において上端部73の上面よりも鉛直上方に突出している。凸部78は、下部材22よりも径方向外側の位置において上端部73の上面よりも鉛直上方に突出している。言い換えれば、ガード7Aの上端部73の上面には、下部材22と鉛直方向において対向する位置に凹部(溝)79が形成される。凹部79は凸部74および凸部78によって形成される。凸部74および凸部78の各々は、例えば回転軸線Q1を中心としたリング形状を有する。この場合、凹部79も回転軸線Q1を中心としたリング形状を有する。 In the example of FIG. 18, the lower member 22 of the plasma reactor 1 protrudes vertically below the electrode assembly 10, and the lower member 22 forms a convex portion. Further, in the example of FIG. 18, a convex portion 74 and a convex portion 78 are provided on the upper surface of the upper end portion 73 of the guard 7A. The convex portion 74 protrudes vertically upward from the upper surface of the upper end portion 73 at a position radially inner than the lower member 22 . The convex portion 78 protrudes vertically upward from the upper surface of the upper end portion 73 at a position radially outside the lower member 22 . In other words, a concave portion (groove) 79 is formed on the upper surface of the upper end portion 73 of the guard 7A at a position facing the lower member 22 in the vertical direction. Concave portion 79 is formed by convex portion 74 and convex portion 78 . Each of the protrusions 74 and 78 has, for example, a ring shape centered on the rotation axis Q1. In this case, the recess 79 also has a ring shape around the rotation axis Q1.
 図18に例示されるように、プラズマリアクタ1がプラズマ処理位置に位置し、かつ、ガード7Aが下位置に位置する処理状態において、プラズマリアクタ1の凸部である下部材22がガード7Aの凹部79の内部に遊挿される。つまり、下部材22の下面24が凸部74の上端および凸部78の上端の両方よりも鉛直下方に位置する。ただし、下部材22の下面は凹部79の底面から離れている。プラズマリアクタ1の下部材22は径方向において凸部74と凸部78との間に位置しており、それぞれと間隔を隔てて対向する。 As illustrated in FIG. 18, in a processing state in which the plasma reactor 1 is positioned at the plasma processing position and the guard 7A is positioned at the lower position, the lower member 22, which is the convex portion of the plasma reactor 1, is positioned in the concave portion of the guard 7A. 79 is loosely inserted. That is, the lower surface 24 of the lower member 22 is located vertically below both the upper ends of the projections 74 and the upper ends of the projections 78 . However, the bottom surface of the lower member 22 is separated from the bottom surface of the recess 79 . The lower member 22 of the plasma reactor 1 is located between the projections 74 and 78 in the radial direction and faces them with a gap therebetween.
 このようなプラズマリアクタ1の下部材22、ガード7Aの凸部74および凸部78は、径方向に凹凸を呈するラビリンス構造55を形成する。この構造によれば、プラズマリアクタ1とガード7Aとの間隙がラビリンスシールとして機能する。このため、プラズマ処理工程において、処理液雰囲気および処理液がプラズマリアクタ1とガード7Aとの間隙を通じて外側に流出することを抑制することができる。 The lower member 22 of the plasma reactor 1 and the projections 74 and 78 of the guard 7A form a labyrinth structure 55 having irregularities in the radial direction. According to this structure, the gap between the plasma reactor 1 and the guard 7A functions as a labyrinth seal. Therefore, in the plasma processing step, it is possible to prevent the processing liquid atmosphere and the processing liquid from flowing out through the gap between the plasma reactor 1 and the guard 7A.
 また、プラズマリアクタ1とガード7Aとの間には間隙が生じているので、ガード7よりも外側のガスが該間隙を通じてガード7A内に流入し、排気部82を通じて外部に排出され得る。よって、清浄なガスをガード7A内に流入させることができる。このため、基板Wよりも上方の雰囲気をより清浄にすることができる。 Also, since a gap is formed between the plasma reactor 1 and the guard 7A, gas outside the guard 7 flows into the guard 7A through the gap and can be discharged to the outside through the exhaust section 82. Therefore, clean gas can flow into the guard 7A. Therefore, the atmosphere above the substrate W can be made cleaner.
 以上のように、基板処理装置100および基板処理方法は詳細に説明されたが、上記の説明は、全ての局面において、例示であって、基板処理装置100および基板処理方法がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 As described above, the substrate processing apparatus 100 and the substrate processing method have been described in detail, but the above description is illustrative in all aspects, and the substrate processing apparatus 100 and the substrate processing method are limited thereto. isn't it. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of this disclosure. Each configuration described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
 例えば、プラズマ昇降機構15はプラズマリアクタ1を昇降させているものの、必ずしもこれに限らない。プラズマ昇降機構15は基板保持部3に対してプラズマリアクタ1を相対的に昇降させればよいので、基板保持部3を昇降させてもよく、プラズマリアクタ1および基板保持部3の両方を昇降させてもよい。また、ガード昇降機構75は基板保持部3に対してガード7を昇降させればよいので、基板保持部3を昇降させてもよく、基板保持部3およびガード7を昇降させてもよい。 For example, although the plasma elevating mechanism 15 elevates the plasma reactor 1, it is not necessarily limited to this. Since the plasma elevating mechanism 15 only needs to elevate the plasma reactor 1 relative to the substrate holding part 3, the substrate holding part 3 may be elevated and lowered. may Further, since the guard lifting mechanism 75 only needs to lift the guard 7 with respect to the substrate holding portion 3, the substrate holding portion 3 may be lifted or lowered, or the substrate holding portion 3 and the guard 7 may be lifted and lowered.
 また、基板Wに対する処理は必ずしもレジスト除去処理に限らない。例えば、活性種により処理液の処理能力を向上させることができる全ての処理に適用可能である。 Also, the processing for the substrate W is not necessarily limited to the resist removal processing. For example, it can be applied to all treatments that can improve the treating ability of the treatment liquid by means of active species.
 1 プラズマリアクタ
 22 外側部分(下部材)
 15 第1昇降機構(プラズマ昇降機構)
 3 基板保持部
 33 回転機構
 7,7A,7B ガード
 75 第2昇降機構(ガード昇降機構)
 S1 保持工程
 S31 ガード移動工程
 S32 点灯工程
 S33 プラズマ移動工程
1 plasma reactor 22 outer part (lower member)
15 First lifting mechanism (plasma lifting mechanism)
3 substrate holder 33 rotation mechanism 7, 7A, 7B guard 75 second elevating mechanism (guard elevating mechanism)
S1 holding step S31 guard moving step S32 lighting step S33 plasma moving step

Claims (13)

  1.  基板を保持する基板保持部と、
     前記基板保持部を囲む筒状形状を有し、同心状に設けられた複数のガードと、
     前記基板保持部よりも鉛直上方に設けられており、平面視において、前記基板保持部によって保持された前記基板の周縁よりも外側に広がっているプラズマリアクタと、
     前記プラズマリアクタを前記基板保持部に対して相対的に昇降させる第1昇降機構と、
     前記複数のガードを前記基板保持部に対して相対的に昇降させる第2昇降機構と
    を備え、
     前記複数のガードのうち最外周のガードの内周面の上端が前記基板の上面よりも鉛直下方となる下位置に前記複数のガードが位置し、かつ、前記プラズマリアクタが前記基板に対して近接したプラズマ処理位置に位置する処理状態で、前記プラズマリアクタは前記基板にプラズマを照射する、基板処理装置。
    a substrate holder that holds the substrate;
    a plurality of concentric guards having a cylindrical shape surrounding the substrate holding portion;
    a plasma reactor that is provided vertically above the substrate holding part and spreads outward from the peripheral edge of the substrate held by the substrate holding part in a plan view;
    a first elevating mechanism for elevating the plasma reactor relative to the substrate holder;
    a second elevating mechanism for relatively elevating the plurality of guards with respect to the substrate holding unit;
    Among the plurality of guards, the upper end of the inner peripheral surface of the outermost guard is positioned vertically below the upper surface of the substrate, and the plasma reactor is close to the substrate. The substrate processing apparatus, wherein the plasma reactor irradiates the substrate with plasma in the processing state located at the plasma processing position.
  2.  請求項1に記載の基板処理装置であって、
     前記処理状態において、前記プラズマリアクタと前記最外周のガードとの間隔は、前記最外周のガードと前記基板保持部との間隔よりも狭い、基板処理装置。
    The substrate processing apparatus according to claim 1,
    The substrate processing apparatus, wherein in the processing state, the distance between the plasma reactor and the outermost guard is narrower than the distance between the outermost guard and the substrate holding part.
  3.  請求項2に記載の基板処理装置であって、
     前記処理状態において、前記プラズマリアクタは鉛直方向において前記ガードに当接する、基板処理装置。
    The substrate processing apparatus according to claim 2,
    The substrate processing apparatus, wherein in the processing state, the plasma reactor abuts the guard in a vertical direction.
  4.  請求項3に記載の基板処理装置であって、
     前記プラズマリアクタのうち前記基板の周縁よりも外側の部分の下面、および、前記最外周のガードの上面の少なくともいずれかに一方には、他方と密着する弾性のシール部材が設けられている、基板処理装置。
    The substrate processing apparatus according to claim 3,
    An elastic sealing member is provided on at least one of a lower surface of a portion of the plasma reactor outside the periphery of the substrate and an upper surface of the outermost peripheral guard, the sealing member being in close contact with the other. processing equipment.
  5.  請求項2に記載の基板処理装置であって、
     前記プラズマリアクタのうち前記基板の周縁よりも外側部分の下面は、前記処理状態において、前記最外周のガードの上面とともに、径方向に凹凸を呈するラビリンス構造を形成する、基板処理装置。
    The substrate processing apparatus according to claim 2,
    A substrate processing apparatus, wherein a lower surface of a portion of the plasma reactor outside a peripheral edge of the substrate forms, in the processing state, a labyrinth structure having irregularities in a radial direction together with an upper surface of the outermost guard.
  6.  請求項1から請求項5のいずれか一つに記載の基板処理装置であって、
     前記プラズマリアクタのうち前記基板の周縁よりも外側の外側部分は、下方に突出するリング形状を有しており、
     前記外側部分の内径は前記基板の直径よりも大きく、
     前記処理状態において、前記外側部分の下面は、前記基板保持部によって保持された前記基板の上面よりも下方に位置する、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 5,
    an outer portion of the plasma reactor outside the peripheral edge of the substrate has a ring shape projecting downward;
    the inner diameter of the outer portion is greater than the diameter of the substrate;
    The substrate processing apparatus, wherein, in the processing state, the lower surface of the outer portion is located below the upper surface of the substrate held by the substrate holding part.
  7.  請求項6に記載の基板処理装置であって、
     前記プラズマリアクタの前記外側部分の内径は、前記最外周のガードの上部開口径以下である、基板処理装置。
    The substrate processing apparatus according to claim 6,
    The substrate processing apparatus, wherein the inner diameter of the outer portion of the plasma reactor is equal to or smaller than the upper opening diameter of the outermost guard.
  8.  請求項6または請求項7に記載の基板処理装置であって、
     前記基板保持部は、前記基板よりも鉛直下方において前記基板と対向するスピンベースを含み、
     前記外側部分の内径は、前記スピンベースの直径よりも大きい、基板処理装置。
    The substrate processing apparatus according to claim 6 or 7,
    the substrate holding unit includes a spin base facing the substrate vertically below the substrate;
    The substrate processing apparatus, wherein the inner diameter of the outer portion is larger than the diameter of the spin base.
  9.  請求項6から請求項8のいずれか一つに記載の基板処理装置であって、
     前記プラズマリアクタは、プラズマ用の電力が供給される電極アセンブリを含み、
     前記外側部分は、前記電極アセンブリを下方から支持する、基板処理装置。
    The substrate processing apparatus according to any one of claims 6 to 8,
    the plasma reactor includes an electrode assembly powered for the plasma;
    The substrate processing apparatus, wherein the outer portion supports the electrode assembly from below.
  10.  請求項1から請求項9のいずれか一つに記載の基板処理装置であって、
     前記基板保持部によって保持された前記基板の主面に対して処理液を供給するノズルをさらに備え、
     前記基板保持部は、鉛直方向に沿う回転軸線のまわりで前記基板を回転させる回転機構を含み、
     前記第2昇降機構が少なくとも前記最外周のガードを前記基板保持部に対して上位置に相対的に上昇させた状態で、前記ノズルが処理液を吐出し、前記基板保持部が前記基板を回転させ、
     前記上位置は、前記上端が前記基板の上面よりも鉛直上方となる位置である、基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 9,
    further comprising a nozzle for supplying a treatment liquid to the main surface of the substrate held by the substrate holding part;
    the substrate holding unit includes a rotation mechanism that rotates the substrate around a vertical rotation axis,
    In a state in which the second elevating mechanism moves at least the outermost guard upward relative to the substrate holder, the nozzle discharges the processing liquid, and the substrate holder rotates the substrate. let
    The substrate processing apparatus, wherein the upper position is a position where the upper end is vertically above the upper surface of the substrate.
  11.  基板保持部が基板を保持する保持工程と、
     前記基板保持部によって保持された前記基板の上面と向かい合う位置に設けられ、平面視において前記基板よりも外側に広がっているプラズマリアクタを点灯させる点灯工程と、
     前記基板保持部を囲む筒状形状を有し、同心状に設けられた複数のガードのうち最外周のガードの上端が、前記基板保持部によって保持された前記基板よりも低くなる下位置に前記ガードを前記基板保持部に対して位置させ、かつ、前記プラズマリアクタを、前記基板の前記上面に近接するプラズマ処理位置に移動させる移動工程と、
    を備える、基板処理方法。
    a holding step in which the substrate holding portion holds the substrate;
    a lighting step of lighting a plasma reactor that is provided at a position facing the upper surface of the substrate held by the substrate holding portion and spreads outward from the substrate in a plan view;
    It has a cylindrical shape surrounding the substrate holding portion, and the upper end of the outermost guard among a plurality of guards provided concentrically is positioned at a lower position lower than the substrate held by the substrate holding portion. a moving step of positioning a guard relative to the substrate holder and moving the plasma reactor to a plasma processing position proximate to the top surface of the substrate;
    A substrate processing method comprising:
  12.  請求項11に記載の基板処理方法であって、
     前記移動工程は、
     少なくとも前記最外周のガードを前記基板保持部に対して前記下位置に相対的に移動させるガード移動工程と、
     前記ガード移動工程の後に、前記プラズマリアクタを前記基板保持部に対して前記プラズマ処理位置に相対的に移動させるプラズマ移動工程と
    を含む、基板処理方法。
    The substrate processing method according to claim 11,
    The moving step includes
    a guard moving step of relatively moving at least the outermost guard to the lower position with respect to the substrate holding portion;
    and a plasma moving step of relatively moving the plasma reactor to the plasma processing position with respect to the substrate holder after the guard moving step.
  13.  請求項11に記載の基板処理方法であって、
     前記移動工程は、
     少なくとも前記最外周のガードを前記基板保持部に対して前記下位置に相対的に移動させるガード移動工程と、
     前記ガード移動工程と並行して、前記プラズマリアクタを前記基板保持部に対して前記プラズマ処理位置に相対的に移動させるプラズマ移動工程と
    を含む、基板処理方法。
    The substrate processing method according to claim 11,
    The moving step includes
    a guard moving step of relatively moving at least the outermost guard to the lower position with respect to the substrate holding portion;
    and a plasma moving step of relatively moving the plasma reactor to the plasma processing position with respect to the substrate holder in parallel with the guard moving step.
PCT/JP2022/025529 2021-07-28 2022-06-27 Substrate processing device and substrate processing method WO2023008039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021123421A JP2023018993A (en) 2021-07-28 2021-07-28 Substrate processing device and substrate processing method
JP2021-123421 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008039A1 true WO2023008039A1 (en) 2023-02-02

Family

ID=85087929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025529 WO2023008039A1 (en) 2021-07-28 2022-06-27 Substrate processing device and substrate processing method

Country Status (2)

Country Link
JP (1) JP2023018993A (en)
WO (1) WO2023008039A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370059A (en) * 2001-03-13 2002-12-24 Tokyo Electron Ltd Film-forming method and film-forming device
JP2004096086A (en) * 2002-07-08 2004-03-25 Tokyo Electron Ltd Treatment equipment and processing method
JP2008053728A (en) * 2006-08-24 2008-03-06 Semes Co Ltd Apparatus for processing substrate and method therefore
JP2017208435A (en) * 2016-05-18 2017-11-24 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2018032728A (en) * 2016-08-24 2018-03-01 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2020004561A (en) * 2018-06-27 2020-01-09 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2020031176A (en) * 2018-08-24 2020-02-27 株式会社Screenホールディングス Substrate processing apparatus
JP2020031177A (en) * 2018-08-24 2020-02-27 株式会社Screenホールディングス Substrate processing apparatus
JP2020181892A (en) * 2019-04-25 2020-11-05 株式会社Screenホールディングス Substrate processing method, semiconductor manufacturing method, and substrate processing apparatus
JP2020198356A (en) * 2019-05-31 2020-12-10 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370059A (en) * 2001-03-13 2002-12-24 Tokyo Electron Ltd Film-forming method and film-forming device
JP2004096086A (en) * 2002-07-08 2004-03-25 Tokyo Electron Ltd Treatment equipment and processing method
JP2008053728A (en) * 2006-08-24 2008-03-06 Semes Co Ltd Apparatus for processing substrate and method therefore
JP2017208435A (en) * 2016-05-18 2017-11-24 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2018032728A (en) * 2016-08-24 2018-03-01 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2020004561A (en) * 2018-06-27 2020-01-09 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2020031176A (en) * 2018-08-24 2020-02-27 株式会社Screenホールディングス Substrate processing apparatus
JP2020031177A (en) * 2018-08-24 2020-02-27 株式会社Screenホールディングス Substrate processing apparatus
JP2020181892A (en) * 2019-04-25 2020-11-05 株式会社Screenホールディングス Substrate processing method, semiconductor manufacturing method, and substrate processing apparatus
JP2020198356A (en) * 2019-05-31 2020-12-10 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP2023018993A (en) 2023-02-09
TW202310128A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
TWI455230B (en) Liquid treatment device, liquid treatment method and memory medium
JP6057334B2 (en) Substrate processing equipment
JP5967519B2 (en) Substrate processing apparatus and substrate processing method
JP6593591B2 (en) Substrate processing method
JP2013201334A (en) Substrate processing apparatus and substrate processing method
JP4209819B2 (en) Substrate heating apparatus and substrate heating method
WO2023008039A1 (en) Substrate processing device and substrate processing method
JP7324043B2 (en) Substrate processing equipment
KR20210052794A (en) Apparatus for treating substrate
JP5112931B2 (en) Substrate processing equipment
TWI837720B (en) Substrate processing device and substrate processing method
JP2022171969A (en) Substrate processing apparatus
US11201067B2 (en) Substrate treatment method and substrate treatment device
KR102624576B1 (en) Apparatuse for treating substrate
JP7437154B2 (en) Substrate processing apparatus and substrate processing method
JP2012244129A (en) Liquid processing apparatus and liquid processing method
WO2023021856A1 (en) Substrate processing device
WO2023042487A1 (en) Substrate processing device and substrate processing method
KR20220002532A (en) Substrate processing apparatus, substrate processing method, and computer-readable storage medium
JP2023084976A (en) Substrate processing device and substrate processing method
JP2017175041A (en) Substrate processing apparatus and substrate processing method
WO2023037663A1 (en) Substrate processing method and substrate processing device
JP2023095119A (en) Substrate processing apparatus and plasma generation device
JP2023122439A (en) Substrate processing device and substrate processing method
TW202228860A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE