WO2023007993A1 - フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法 - Google Patents

フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法 Download PDF

Info

Publication number
WO2023007993A1
WO2023007993A1 PCT/JP2022/024782 JP2022024782W WO2023007993A1 WO 2023007993 A1 WO2023007993 A1 WO 2023007993A1 JP 2022024782 W JP2022024782 W JP 2022024782W WO 2023007993 A1 WO2023007993 A1 WO 2023007993A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
subject
laser
light
reflected
Prior art date
Application number
PCT/JP2022/024782
Other languages
English (en)
French (fr)
Inventor
健夫 佐々木
裕美子 中
バンコア レ
高明 谷上
行弘 石井
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to CA3227292A priority Critical patent/CA3227292A1/en
Priority to EP22847401.1A priority patent/EP4369084A1/en
Publication of WO2023007993A1 publication Critical patent/WO2023007993A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to a flexoelectric liquid crystal composition, a liquid crystal element, a laser inspection system, and a method of analyzing a subject.
  • Ultrasonic flaw detection can be cited as a non-destructive inspection method. Ultrasonic flaw detection is widely used in various fields because it can detect the properties and deterioration of materials. A method using a laser is known as a means for performing ultrasonic flaw detection.
  • Patent Literature 1 proposes a laser ultrasonic inspection apparatus for non-destructively inspecting a defect or the like of a surface to be inspected by irradiating the surface to be inspected with a laser beam.
  • the laser ultrasonic inspection apparatus described in Patent Document 1 includes a photorefractive crystal for performing interference measurement by receiving the irradiation laser light and the reference laser light, and the photorefractive crystal is BSO, which is an inorganic crystal. (Bismuth Silicon Oxide) crystals are used.
  • Non-Patent Document 1 and Non-Patent Document 2 propose a laser ultrasonic inspection apparatus using a photorefractive material containing a polymer material instead of a photorefractive crystal.
  • Zamiri, S., et al. "Employing 532 nm Wavelength in a Laser Ultrasound Interferometer Based on Photorefractive Polymer Composites.” Open Access Library Journal, 2, e1247 (2015). DOI:10.4236/oalib.1101247.
  • Zamiri, S., et al. “Laser ultrasonic receivers based on organic photorefractive polymer composites” Appl. Phys. B (2014). 114:509 ⁇ 515 DOI 10.1007/s00340-013-5554-7.
  • the photorefractive effect is a phenomenon in which a refractive index grating (hologram) is formed in a medium that exhibits photoconductivity and electro-optical effects when laser light is allowed to interfere.
  • hologram refractive index grating
  • the subject is irradiated with a continuous wave laser, and the reflected light is incident on an element containing a photorefractive material (hereinafter also referred to as a "photorefractive element") to interfere with the reference light. cause optical wave coupling. Two-wave coupling is caused by the interference fringes and the refractive index grating being out of phase. As a result, the reflected light transmitted through the photorefractive element and detected is amplified, and the reference light is attenuated, so that the intensities of the reflected light and the reference light approach a constant value.
  • the subject is irradiated with a pulse laser having a pulse width of nanoseconds or less to generate ultrasonic waves on the surface of the subject.
  • Ultrasonic waves propagate through the object and are reflected by each surface of the object and defects, structures, etc. inside the object. Because the reflected ultrasonic wave appears on the continuous wave laser irradiation surface, Cause variations in reflected light. As a result, the phase of the reflected light is modulated, so that the phase of the interference fringes in the photorefractive material also changes, causing fluctuations in the light intensity of the reflected light and the reference light due to two-wave coupling. Therefore, by measuring the time from when the subject is irradiated with pulsed light to when the reflected light or reference light changes, it is possible to obtain information about the thickness of the subject, the defects inside the subject, the structure, etc. can be done.
  • inorganic crystals are used as in Patent Document 1, or polymers are used as in Non-Patent Documents 1 and 2. are doing
  • inorganic crystals or polymers such as barium titanate and lithium niobate are used for the photorefractive element, there is a problem that the response speed of the photorefractive effect is slow.
  • the vibration causes the refractive index grating to shift, causing modulation in the two-wave coupling, and ultrasonic flaw detection and measurement cannot be performed.
  • the frequency of vibrations in normal environments caused by automobiles and the like is 0.1 Hz to several tens of Hz, which is close to the response time (several seconds to several tens of milliseconds) of the photorefractive effect of inorganic crystals or polymers. In a normal environment, problems arise in ultrasonic flaw detection and measurement.
  • Non-Patent Document 1 a voltage of 5 kV is applied to a photorefractive material including a polymer material.
  • Non-Patent Document 2 shows that the response speed can be increased by increasing the voltage applied to the photorefractive element.
  • the technique of Non-Patent Document 2 merely indicates that a response time of 195 milliseconds or 60 milliseconds was obtained by applying a voltage of 5 kV to the photorefractive material. Improvement is desirable.
  • An object of the present invention is to provide a method for analyzing a subject.
  • Means for solving the above problems include the following embodiments. ⁇ 1> at least one smectic liquid crystal compound; a chiral dopant; a charge trapping agent; A flexoelectric liquid crystal composition exhibiting photoconductivity. ⁇ 2> The flexoelectric liquid crystal composition according to ⁇ 1>, wherein the chiral dopant comprises a photoconductive chiral dopant. ⁇ 3> The flexoelectric according to ⁇ 2>, wherein the photoconductive chiral dopant contains at least one of a compound represented by the following general formula (1) and a compound represented by the following general formula (2) liquid crystal composition.
  • R 1 and R 2 are each independently a hydrocarbon group having an asymmetric carbon.
  • R 1 and R 2 in the general formulas (1) and (2) are 2-methylbutyl groups.
  • smectic liquid crystal compound comprises a liquid crystal compound exhibiting a smectic C phase.
  • ⁇ 6> The fringe according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the chiral dopant is 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the smectic liquid crystal compound.
  • Xoelectric liquid crystal composition. ⁇ 7> a liquid crystal film formed from the flexoelectric liquid crystal composition according to any one of ⁇ 1> to ⁇ 6>; a pair of transparent substrates sandwiching the liquid crystal film; A liquid crystal element.
  • ⁇ 8> The liquid crystal element according to ⁇ 7>, wherein the liquid crystal film has a thickness of 5 ⁇ m to 15 ⁇ m.
  • ⁇ 9> a first laser emitting unit that generates ultrasonic vibrations on the surface of the subject by irradiating the subject with a pulse oscillation laser; a second laser emitting section that emits a continuous wave laser; a beam splitter that splits the continuous wave laser emitted from a second laser emission unit into irradiation light that is applied to the surface of the subject and reference light; In ⁇ 7> or ⁇ 8>, receiving the reflected light, which is the irradiation light irradiated onto the surface of the subject and reflected from the subject, and the reference light, and causing the reflected light and the reference light to interfere; the described liquid crystal element; a detection unit that detects at least one of the irradiation light and the reference light emitted from the liquid crystal element;
  • a laser inspection system comprising: ⁇ 10> a first laser emitting unit that generates ultrasonic vibrations on the surface of the subject by irradiating the subject with a pulse oscillation laser; a second laser emit
  • a subject analysis method for analyzing the properties of a subject using the laser inspection system according to ⁇ 9> or ⁇ 10> The detection unit is caused by interference between the reflected light, which is the irradiation light that is irradiated to the surface of the subject on which the ultrasonic vibration is generated and is reflected from the subject, and the reference light in the liquid crystal element.
  • a flexoelectric liquid crystal composition with excellent photorefractive effect response speed
  • a liquid crystal device and a laser inspection system comprising the composition
  • a method for analyzing a subject using this laser inspection system it is possible to provide a flexoelectric liquid crystal composition with excellent photorefractive effect response speed, a liquid crystal device and a laser inspection system comprising the composition, and a method for analyzing a subject using this laser inspection system.
  • FIG. 1 is a schematic configuration diagram showing a laser inspection system according to one aspect of the present disclosure
  • FIG. 1 is a schematic configuration diagram showing a liquid crystal element according to one embodiment of the present disclosure
  • FIG. It is a schematic block diagram which shows the laser inspection system based on other one form (embodiment 1) of this indication.
  • 1 is a schematic configuration diagram showing a laser inspection system used in Example 1.
  • FIG. 4 is a graph showing changes in intensity of transmitted light when an aluminum plate having a thickness of 2 mm, 3 mm or 5 mm is used as an object. 4 is a graph showing the relationship between longitudinal waves and transverse waves in ultrasonic vibration and changes in intensity of transmitted light.
  • FIG. 11 is a schematic configuration diagram showing a laser inspection system according to another embodiment (embodiment 2) of the present disclosure.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as lower and upper limits.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. .
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • the flexoelectric liquid crystal composition of the present disclosure includes at least one smectic liquid crystal compound, a chiral dopant, and a charge trapping agent, and exhibits photoconductivity.
  • a liquid crystal composition exhibiting a flexoelectric effect the response speed of the photorefractive effect is excellent.
  • a flexoelectric liquid crystal composition containing a smectic liquid crystal compound has suppressed light scattering.
  • the flexoelectric liquid crystal composition of the present disclosure is excellent in the response speed of the photorefractive effect, it is not necessary to increase the response speed by applying a high voltage to the liquid crystal element formed using the liquid crystal composition. Furthermore, data on the amplification and attenuation of light intensity due to two-wave coupling can be obtained within a time period faster than several tens of milliseconds where vibration noise is a problem, for example, microseconds to several milliseconds. It is hardly affected by vibration noise of 1 Hz to several tens of Hz.
  • vibration noise is a problem
  • a vibration noise it is possible to measure the thickness, internal defects, structure, and other properties of a subject even in a vibrating environment, and it is almost unaffected by air fluctuations. Therefore, a vibration isolator becomes unnecessary, and the device for measuring the property of the subject can be made smaller. Furthermore, non-contact diagnosis of objects such as steel frames and concrete can be performed by taking the device for measuring properties of the object outdoors.
  • the photorefractive effect is obtained, and the mechanism that enables measurement of the properties of the subject is as follows.
  • a flexoelectric liquid crystal composition includes a smectic liquid crystal compound exhibiting an electro-optical effect and a chiral dopant, a compound exhibiting photoconductivity, and a charge trapping agent.
  • the chiral dopant may be a photoconductive chiral dopant that also serves as a compound exhibiting photoconductivity. In this case, it is not necessary to add a separate compound exhibiting photoconductivity.
  • the compound exhibiting photoconductivity in the bright portion of the interference fringes absorbs the light and generates positive and negative charges.
  • Negative charges are captured by the charge trapping agent, while positive charges (holes) diffuse into the liquid crystal film.
  • Bright portions of the interference fringes are negatively charged and dark portions are positively charged, resulting in an electric field (internal electric field) due to the potential difference between the bright and dark portions.
  • This internal electric field causes an electro-optical effect that changes the refractive index and forms a refractive index grating.
  • the internal electric field changes the polarization direction of the liquid crystal film, forming lattice fringes in which the liquid crystal orientation changes periodically, and these lattice fringes function as refractive index gratings.
  • a refractive index grating occurs midway between the bright and dark portions of the interference fringes.
  • the refractive index grating due to the photorefractive effect has a specific effect on the transmission of interfering laser light.
  • a refractive index grating is formed that is out of phase with the light and dark phases of the interference fringes, only one of the interfering lights is diffracted and the other is not diffracted, resulting in contrasting transmission intensities of the respective laser beams. changes dramatically.
  • the transmission intensity of one increases and the transmission intensity of the other attenuates. This phenomenon is called photorefractive two-wave coupling.
  • Photorefractive two-wave coupling is caused by interference between two laser beams. Therefore, if the phase of one of the laser beams deviates even slightly, the conditions for two-wave coupling are not met, and the light transmitted through the liquid crystal element is lost. A change in intensity occurs. Therefore, this phenomenon can be used to detect the phase modulation of light.
  • a continuous wave (CW) laser beam is divided into two beams, one of which is used as a reference beam to enter a liquid crystal element, and the other beam is used as an irradiation beam to irradiate an object, which is a test object, and light reflected from the object is applied to the liquid crystal element.
  • the reference light and the reflected light are caused to interfere with each other, and the intensity of each light transmitted through the liquid crystal element is measured. Photorefractive two-wave coupling occurs, the reflected light is amplified, and the reference light is attenuated, both approaching a constant value.
  • the object is irradiated with a pulsed laser with a pulse width of nanoseconds or less to generate ultrasonic waves on the surface of the object.
  • Ultrasonic waves propagate inside an object and are reflected by each surface of the object and defects, structures, etc. inside the object.
  • a reflected wave appearing on the surface of the object causes variation in the reflection of the illumination light. Since the phase of the reflected wave of the irradiation light is modulated by the variation in reflection of the irradiation light, the phase of the interference fringes in the liquid crystal film also changes. As a result, the conditions for coupling the two light waves are not met, and the amplification/attenuation of the light changes.
  • the flexoelectric liquid crystal composition (hereinafter also referred to as "liquid crystal composition") of the present disclosure contains at least one smectic liquid crystal compound.
  • the smectic liquid crystal compound contained in the liquid crystal composition may be used singly or as a mixture of two or more.
  • the smectic liquid crystal compound is preferably a liquid crystal compound exhibiting a smectic C phase from the viewpoints of easily obtaining an alignment state with few defects, having high transparency, and suitably exhibiting a flexoelectric effect.
  • the liquid crystal compound exhibiting a smectic C phase may be of one type alone or may be a mixture of two or more types.
  • Liquid crystal compounds exhibiting a smectic C phase include, for example, mesogenic compounds having any of a phenylpyrimidine skeleton, a phenylpyridine skeleton, a biphenyl skeleton, and the like.
  • the liquid crystal compound exhibiting a smectic C phase preferably contains at least one of a 2-phenylpyrimidine derivative, a 2-phenylpyridine derivative and a biphenyl ester derivative.
  • the 2-phenylpyrimidine derivative is preferably, for example, an alkoxy-substituted 2-phenylpyrimidine derivative, more preferably a compound represented by the following chemical formula.
  • the 2-phenylpyrimidine derivative may be a single type or a mixture of two or more types, for example, a mixture of compounds represented by the following chemical formulas.
  • the 2-phenylpyridine derivative is preferably, for example, an alkoxy-substituted 2-phenylpyrimidine derivative, more preferably a compound represented by the following chemical formula.
  • the 2-phenylpyridine derivative may be a single type or a mixture of two or more types, for example, a mixture of compounds represented by the following chemical formulas.
  • biphenyl ester derivative for example, a compound in which a biphenyl skeleton and a phenyl skeleton are bonded via an ester bond is preferable, and a compound represented by the following chemical formula is more preferable.
  • the biphenyl ester derivative may be a single kind or a mixture of two or more kinds, for example, a mixture of two or more kinds of compounds represented by the following chemical formulas.
  • the liquid crystal composition of the present disclosure contains a chiral dopant.
  • a chiral dopant is a compound having an asymmetric structure, and a smectic liquid crystal compound exhibits an excellent flexoelectric effect due to the chiral site of the chiral dopant.
  • a smectic liquid crystal compound By using a smectic liquid crystal compound, a greater photorefractive effect than a ferroelectric liquid crystal can be obtained.
  • the chiral dopant preferably contains a photoconductive chiral dopant.
  • a photoconductive chiral dopant By using a photoconductive chiral dopant, the liquid crystal composition can exhibit photoconductivity without using a separate compound exhibiting photoconductivity.
  • the photoconductive chiral dopant may be used singly or as a mixture of two or more.
  • the photoconductive chiral dopant preferably contains at least one of a compound represented by the following general formula (1) and a compound represented by the following general formula (2).
  • R 1 and R 2 are each independently a hydrocarbon group having an asymmetric carbon.
  • R 1 and R 2 are each independently preferably an alkyl group having an asymmetric carbon, more preferably an alkyl group having an asymmetric carbon and having 4 to 10 carbon atoms. and more preferably an alkyl group having 5 to 8 carbon atoms.
  • R 1 and R 2 are particularly preferably 2-methylbutyl groups from the viewpoint that the smectic liquid crystal compound preferably exhibits a flexoelectric effect.
  • Compounds in which R 1 and R 2 in general formulas (1) and (2) are 2-methylbutyl groups are represented by the following chemical formulas.
  • the content of the chiral dopant may be 0.1 to 10 parts by mass, or may be 0.1 to 5 parts by mass with respect to 100 parts by mass of the total smectic liquid crystal compound.
  • the liquid crystal composition may contain a compound exhibiting photoconductivity from the viewpoint of exhibiting photoconductivity in the liquid crystal composition.
  • Compounds exhibiting photoconductivity include terthiophene compounds, oligothiophene compounds such as quattrothiophene compounds, thianocene compounds, carbazole compounds, and squaraine compounds.
  • the compound exhibiting photoconductivity may be used singly or as a mixture of two or more.
  • Oligothiophene-based compounds include compounds represented by the following chemical formulas.
  • Thianocene-based compounds include compounds represented by the following chemical formulas.
  • the carbazole-based compound is more preferably a compound represented by the following chemical formula.
  • the liquid crystal composition of the present disclosure contains a charge trapping agent.
  • a charge trapping agent is added to trap negative charges and lengthen the wavelength of absorbed light by charge transfer absorption.
  • Charge trapping agents include trinitrofluorenone (TNF), tetracyanoquinodimethane (TCNQ), fullerene derivatives and the like.
  • the content of the charge trapping agent may be 0.1 to 1 part by mass, or may be 0.1 to 0.3 part by mass with respect to 100 parts by mass of the total amount of the smectic liquid crystal compound. .
  • the liquid crystal composition of the present disclosure may contain smectic liquid crystal compounds, chiral dopants, compounds exhibiting photoconductivity, or components other than charge trapping agents.
  • Other components are not particularly limited as long as the effects of the liquid crystal composition of the present disclosure are exhibited, and examples thereof include surfactants, polymerization inhibitors, antioxidants, ultraviolet absorbers, and the like.
  • the liquid crystal composition of the present disclosure may or may not contain liquid crystal compounds other than smectic liquid crystal compounds.
  • the content of the liquid crystal compound other than the smectic liquid crystal compound in the liquid crystal composition may be 10 parts by mass or less, or 5 parts by mass or less with respect to 100 parts by mass of the smectic liquid crystal compound, from the viewpoint of suppressing light scattering. may be 0 parts by mass.
  • a liquid crystal device of the present disclosure includes a liquid crystal film formed from the flexoelectric liquid crystal composition of the present disclosure, and a pair of transparent substrates sandwiching the liquid crystal film.
  • the thickness of the liquid crystal film is preferably 5 ⁇ m to 15 ⁇ m, more preferably 6 ⁇ m to 13 ⁇ m, and even more preferably 8 ⁇ m to 12 ⁇ m.
  • a refractive index grating tends to be favorably formed
  • smectic liquid crystal tends to be favorably aligned.
  • the area of the main surface of the liquid crystal film is preferably 0.5 cm 2 to 5 cm 2 , more preferably 0.5 cm 2 to 1 cm 2 .
  • the liquid crystal film is sandwiched between a pair of transparent substrates.
  • the transparent substrate is not particularly limited and can be appropriately selected.
  • transparent substrates include glass substrates and plastic substrates (eg, polyethylene naphthalate (PEN) substrates, polyethylene terephthalate (PET) substrates, polycarbonate (PC) substrates, polyimide (PI) substrates, etc.).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • the thickness and shape of the transparent substrate are not particularly limited as long as they can sandwich the liquid crystal film.
  • the pair of transparent substrates may have an alignment film on the surface facing the liquid crystal film, or the liquid crystal film may be sandwiched between the pair of transparent substrates with the alignment film interposed therebetween.
  • the material of the alignment film is not particularly limited, and is the same as conventionally known alignment films.
  • materials for the alignment film include polyimide, polyvinyl alcohol, and polyester.
  • the alignment film may be rubbed.
  • the rubbing treatment can be performed by rubbing the surface of the alignment film in a fixed direction with a stick, roller, or the like wrapped with paper or cloth.
  • a polyimide film a polyimide solution is coated on a transparent substrate with a transparent electrode (for example, a glass substrate with a transparent electrode) by spin coating and dried, and a velvet cloth is wrapped around the polyimide-coated surface.
  • a rubbing treatment may be performed with a roller.
  • the rubbing strength when rubbing is performed is represented by the following formula.
  • R s is the rubbing strength (mm)
  • N is the number of times of rubbing
  • M is the length of the contact portion between the rubbing cloth and the substrate (mm)
  • r is the radius of the rubbing cloth roll (mm)
  • n is the rotation of the roller.
  • V is the moving velocity (mm ⁇ s ⁇ 1 ) of the alignment film-coated substrate.
  • the rubbing strength is preferably 200 mm to 250 mm. As a result, it tends to be possible to form an alignment layer with few alignment defects and high transparency.
  • a transparent electrode may be provided on each of the pair of transparent substrates, or a transparent electrode may be provided on each of the surfaces of the pair of transparent substrates facing the liquid crystal film. .
  • a transparent electrode may be provided between the transparent electrodes and the alignment films.
  • the liquid crystal film is formed by applying the aforementioned liquid crystal composition on one of the transparent substrates, preferably on the alignment film of one of the transparent electrodes, and sandwiching the applied liquid crystal composition between the other transparent substrates.
  • the method of applying the liquid crystal material to the transparent substrate include coating methods such as spin coating and spraying; inkjet methods; and screen printing methods.
  • the liquid crystal composition provided on the transparent substrate may be subjected to a drying treatment, if necessary.
  • two rubbing-treated transparent substrates with transparent electrodes may be bonded together via a 10 ⁇ m glass bead spacer or the like to form a liquid crystal element having a liquid crystal film. It is preferable that the pair of transparent substrates are laminated so that the rubbing directions are opposite to each other, that is, antiparallel orientation is achieved.
  • the laser inspection system of the present disclosure includes a first laser emitting unit that generates ultrasonic vibrations on the surface of the subject by irradiating the subject with a pulsed oscillation laser, and a second laser emitting unit that emits a continuous wave laser.
  • a liquid crystal element of the present disclosure that receives reflected light, which is the irradiation light reflected from the subject, and the reference light, and causes interference between the reflected light and the reference light; and the irradiation emitted from the liquid crystal element.
  • a detector that detects at least one of the light and the reference light.
  • the laser inspection system of the present disclosure uses a liquid crystal element with a liquid crystal film formed with a ferroelectric liquid crystal composition instead of the aforementioned liquid crystal element with a liquid crystal film formed with a flexoelectric liquid crystal composition. good too. Even when a liquid crystal element including a liquid crystal film formed of a ferroelectric liquid crystal composition is used, a photorefractive effect can be obtained, and a laser inspection system with excellent response speed can be obtained. On the other hand, from the viewpoint of suitably suppressing light scattering, it is preferable to use the aforementioned liquid crystal element having a liquid crystal film formed of a flexoelectric liquid crystal composition and a laser inspection system having the liquid crystal element.
  • the ferroelectric liquid crystal composition is not particularly limited, and includes conventionally known liquid crystal compositions exhibiting ferroelectricity.
  • ferroelectric liquid crystal materials described in JP-A-2008-216679, ferroelectric liquid crystal compositions described in JP-A-2009-108233, other known ferroelectric liquid crystal materials or ferroelectric A liquid crystal composition or the like may also be used.
  • the subject inspection method of the present disclosure analyzes the properties of the subject using the laser inspection system of the present disclosure (including the case of using a liquid crystal element provided with a liquid crystal film formed of a ferroelectric liquid crystal composition).
  • a method for analyzing a subject wherein the reflected light, which is the irradiation light irradiated to the surface of the subject on which ultrasonic vibration is generated and is reflected from the subject, and the reference light are emitted in the liquid crystal element.
  • the method analyzes the property of the subject based on the intensity change of the light detected by the detection unit due to the interference.
  • the liquid crystal element of the present disclosure is used in the laser inspection system and the inspection method of the subject of the present disclosure, properties such as internal defects and structures of the subject can be measured even in the vibrating environment as described above. be able to.
  • An embodiment of the laser inspection system of the present disclosure and a method of inspecting a subject using the same will be described below. Note that the laser inspection system of the present disclosure is not limited to the following specific configuration, and the subject inspection method of the present disclosure is not limited to the following method.
  • FIG. 1 shows a laser inspection system according to one embodiment of the present disclosure.
  • a subject is placed in a region 20 indicated by a dotted line in FIG.
  • the first laser emitting unit 1 is a laser irradiation device that emits a pulse oscillation laser toward the subject.
  • the pulsed oscillation laser emitted by the first laser emission section 1 is reflected by the mirror 4A, and the reflected pulsed oscillation laser is converged by the condenser lens 5A and then the surface of the subject placed in the area 20. (For example, the back surface) is irradiated. Ultrasonic vibration is generated on the surface of the subject by irradiating the surface of the subject with the pulsed oscillation laser.
  • the wavelength of the pulse oscillation laser emitted from the first laser emission unit 1 is preferably in the infrared region to the visible light region, and may be appropriately selected according to the subject.
  • a nanosecond Q-switched pulse laser may be used as the first laser emitting section 1.
  • the second laser emission unit 2 is a laser irradiation device that emits a continuous wave laser.
  • the continuous wave laser emitted from the second laser emitting section 2 is split by the beam splitter 3A into irradiation light with which the surface of the subject is irradiated and reference light.
  • the irradiation light split by the beam splitter 3A passes through the condensing lens 5B, the beam splitter 3B, and the condensing lens 5C in this order, and irradiates the surface (for example, the front surface) of the subject placed in the region 20 .
  • the surface of the subject irradiated with the pulsed oscillation laser and the surface of the subject irradiated with the irradiation light face each other, and the irradiation of the irradiation light on the subject is on the extension line of the irradiation position of the pulsed oscillation laser. area is located.
  • the wavelength of the continuous wave laser emitted from the second laser emission unit 2 is preferably in the ultraviolet region to the visible light region, and the absorption wavelength region of the subject, the compound exhibiting photoconductivity, or the photoconductivity chiral dopant, etc. can be selected as appropriate.
  • the irradiation light irradiated on the surface of the object and reflected from the object passes through the condensing lens 5C, the beam splitter 3B and the condensing lens 5D in this order as reflected light, and is applied to the liquid crystal film 12 of the liquid crystal element 10. .
  • the reference light split by the beam splitter 3A is reflected by the mirror 4B, condensed by the condensing lens 5B, and then applied to the liquid crystal film 12 of the liquid crystal element 10 .
  • the liquid crystal element 10 includes a pair of transparent substrates 11 and a liquid crystal film 12 sandwiched between the pair of transparent substrates.
  • An ITO transparent electrode 13 and an alignment film 14 are provided in order from the transparent substrate 11 side between the transparent substrate 11 and the liquid crystal film 12 .
  • the ITO transparent electrode 13 is electrically connected to the voltage applying means 7 , and an electric field is formed in the liquid crystal film 12 by applying a voltage to the ITO transparent electrode 13 . From the viewpoint of promoting separation of positive and negative charges by light irradiation, it is preferable to apply a voltage so that an electric field of about several V/ ⁇ m is formed in the liquid crystal film 12 .
  • the liquid crystal film 12 in the liquid crystal element 10 receives the reflected light and the reference light, and causes the reflected light and the reference light to interfere with each other. As a result, a refractive index grating whose phase is shifted from the bright and dark phases of the interference fringes is formed, and the reflected light is amplified by photorefractive two-wave coupling, while the reference light is attenuated.
  • the optical absorption transition moment of the photoconductive chiral dopant in the liquid crystal film is in the direction of the long axis of the molecule, and the photoconductive chiral dopant is aligned in the same direction as the smectic liquid crystal. It is preferable to increase the light absorption efficiency by
  • the detectors 6A and 6B detect the irradiation light and the reference light emitted from the liquid crystal element 10.
  • the light intensities of the irradiation light and the reference light detected by the detectors 6A and 6B are output by the display section 8. FIG.
  • the control unit 9 controls the first laser emission unit 1, and the object is detected from the first laser emission unit 1.
  • a pulse oscillation laser is emitted toward.
  • the emitted pulsed oscillation laser is irradiated onto the surface of the object.
  • the detector 6 ⁇ /b>C detects the irradiation timing of the pulse laser, and the detected irradiation timing is output by the display section 8 .
  • the pulse oscillation laser irradiated on the surface of the object generates ultrasonic waves on the surface of the object, which propagates through the object and is reflected by each surface of the object and defects and structures inside the object.
  • a reflected wave appearing on the surface of the object causes variation in the reflection of the irradiation light.
  • the phase of the reflected wave of the irradiation light is modulated as described above, and the phase of the interference fringes in the liquid crystal film 12 is also changed, resulting in a change in the amplification/attenuation of the light.
  • the thickness of the object at multiple places, the defect inside the object, the properties of the object such as the structure information may be obtained. For example, by obtaining information about the thickness of the object or defects inside the object at a plurality of locations, it is possible to grasp the structure of the object, the structure of the defect, and the like.
  • the laser inspection system of the present disclosure does not need to include all the members, devices, and the like configured as shown in FIG. 1, and may include members, devices, and the like other than the configuration illustrated in FIG.
  • the laser inspection system of the present disclosure may include optical members other than the configuration shown in FIG. Other lenses may be provided.
  • the laser inspection system of the present disclosure is not limited to a configuration in which an object is placed in the laser inspection system. It may be a system that inspects for.
  • a pulsed oscillation laser and a continuous oscillation laser can be coaxially irradiated onto a subject from the same direction to analyze the properties of the subject. can.
  • this configuration it is possible to perform non-contact measurement of the thickness of a steel frame or the like at a remote location, or internal flaw detection of a tunnel, bridge, or the like.
  • the laser inspection system of the present disclosure is mounted on a vehicle body, a moving device, or the like, it is possible to inspect the properties of the subject while moving the vehicle body, the moving device, or the like.
  • black circles in the figures represent vertically polarized light
  • double-headed arrows represent horizontally polarized light.
  • the laser inspection system 200 is configured to include only the detector 26 that detects the reference light emitted from the liquid crystal element 30, it may include a detector that detects the reflected light emitted from the liquid crystal element 30. Also, the laser inspection system 200 may include members, devices, etc. other than the configuration shown in FIG.
  • Laser inspection system of embodiment 2 A laser inspection system 300 shown in FIG. , detectors 36A and 36B, and a quarter-wave plate 37A.
  • the laser inspection system 200 of Embodiment 1 it is necessary to use a non-polarizing beam splitter as the beam splitter 23B.
  • the laser intensity is halved, and when the reflected light reflected by the object 50 is separated by the beam splitter 23B, the laser intensity is further halved (a total of four quarters). 1).
  • polarization beam splitters are used as the beam splitters 33A and 33B, and a dichroic mirror 34A that reflects light of a specific wavelength and transmits light of other wavelengths is used. .
  • the continuous wave laser reflected by the dichroic mirror 34A is irradiated to the beam splitters 33A and 33B.
  • the beam splitter 33A splits the light into vertically polarized laser beams and horizontally polarized laser beams, and the vertically polarized laser beams are reflected toward the subject 50 by the beam splitter 33B.
  • the vertically polarized laser beam reflected toward the object 50 passes through the quarter-wave plate 37A, is reflected by the object 50, and then passes through the quarter-wave plate 37A again.
  • the reflected light reflected by the subject 50 and transmitted through the quarter-wave plate 37A is horizontally polarized, and the horizontally polarized reflected light is transmitted through the beam splitter 33B and applied to the liquid crystal element 30.
  • the liquid crystal element 30 is also irradiated with the horizontally polarized laser beam split by the beam splitter 33A as reference light.
  • the reflected light and the reference light that have passed through the liquid crystal element 30 are detected by detectors 36A and 36B, respectively.
  • the beam splitters 33A and 33B which are polarizing beam splitters, intensity loss of the continuous wave laser is suppressed when the laser is transmitted and reflected by the beam splitters. As a result, it is possible to reduce the intensity of the continuous wave laser required for highly accurate detection.
  • Example 1 [Preparation of liquid crystal composition] A three-kind liquid crystal mixture of 2-phenylpyrimidine derivatives represented by the following chemical formula is used as a liquid crystal compound exhibiting a smectic C phase, and a compound having a terthiophene skeleton represented by the following chemical formula is used as a photoconductive chiral dopant, Trinitrofluorenone represented by the following chemical formula was used as a charge trapping agent.
  • a liquid crystal composition was prepared by mixing a liquid crystal compound, a photoconductive chiral dopant and a charge trapping agent in the following mixing ratio. Liquid crystal compound: 100 parts by mass Photoconductive chiral dopant: 5 parts by mass Charge trapping agent: 0.1 part by mass
  • a flat aluminum plate as a test object was placed in the dotted line portion in FIG. 4, and the thickness of the aluminum plate was measured.
  • a light with a wavelength of 473 nm is output from a CW laser and separated into an irradiation light to be irradiated on an aluminum plate by a polarized beam splitter and a reference light. was allowed to interfere with the reference light in the liquid crystal film.
  • the transmitted light intensity of the reflected light and the transmitted light intensity of the reference light at this time were detected by the detectors 1 and 2 and confirmed on the display unit.
  • the voltage applied to the liquid crystal film by the DC power supply was 20 V or less, and the electric field applied to the liquid crystal film was 2 V/ ⁇ m.
  • the rear surface of the aluminum plate was irradiated with a nanosecond pulse laser with a wavelength of 1064 nm, and the changes that occurred in the irradiation light or the reference light were investigated.
  • the irradiation timing of the pulse laser was detected by the detector 3 and confirmed on the display.
  • the irradiation position of the irradiation light and the irradiation position of the pulse laser were accurately recorded on the aluminum plate.
  • FIG. 5 shows changes in the transmitted light intensity of the reference light when an aluminum plate having a thickness of 2 mm, 3 mm, or 5 mm is used as an object.
  • Table 1 shows the results of obtaining the thickness of the aluminum plate from the arrival time of the longitudinal wave, the arrival time of the transverse wave, the transmission speed of the longitudinal wave, and the transmission speed of the transverse wave.
  • the measured value using the longitudinal wave and the measured value using the transverse wave correspond to the thickness of the aluminum plate with good accuracy, and the thickness of the subject can be measured by the method of this embodiment. was confirmed. Although many signals can be seen in the measurement results, for example, as shown in FIG. 6, these are ultrasonic vibrations that are reflected from the front and back surfaces of the aluminum plate. be.
  • a polymer material is used as the photorefractive material as described in Non-Patent Document 1 and Non-Patent Document 2
  • a high voltage of about 5 kV is applied to the photorefractive material to measure the thickness of the subject. I needed it.
  • the thickness of the subject can be measured with high accuracy by applying a low voltage of 20 V or less to the liquid crystal film. did it. Furthermore, in this example, even when a constant voltage as described above was applied to the liquid crystal film, a high response speed could be ensured.
  • Example 2 In Example 1, the same operation as in Example 1 was performed, except that the flat aluminum plate as the test object was changed to an aluminum plate having a curved dent. Regarding the aluminum plate having the curved recess, the thickness of the flat plate-like portion without the recess was 5 mm, and the thickness of the central portion of the recess was 3 mm.
  • FIG. 7 shows the relationship between the measurement position of the aluminum plate and the time change of the transmitted light intensity of the reflected light. As the measurement position of the aluminum plate corresponding to the irradiation position of the pulse laser, as shown in FIG.
  • the aluminum plate was divided into 5 equal parts, and a pulse laser was irradiated to the positions of the 5 equal parts as indicated by arrows, and the thickness of the aluminum plate corresponding to the irradiation position of the pulse laser was evaluated.
  • the distance in the length direction from the reference point to the central portion of the depression was 4 mm, and the distance between adjacent irradiation positions of the pulse laser was 1 mm.
  • FIG. 8 shows the relationship between the measurement position of the thickness of the aluminum plate and the measurement result of the thickness when the longitudinal wave is used.
  • a measurement position of 0 mm in FIG. 8 is a reference point.
  • the peak position of the transmitted light intensity fluctuates corresponding to the measurement position of the thickness of the aluminum plate. It was possible to grasp the shape of

Abstract

少なくとも1種のスメクチック液晶化合物と、キラルドーパントと、電荷捕捉剤と、を含み、光導電性を示す、フレクソエレクトリック液晶組成物。

Description

フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法
 本開示は、フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法に関する。
 非破壊で検査を行う手法として超音波探傷が挙げられる。超音波探傷は材料の特性や劣化を検出することができるため、様々な分野で広く使用されている。超音波探傷を行う手段としては、レーザを用いる方法が知られている。
 例えば、特許文献1では、被検査対象面にレーザ光を照射して非破壊で被検査対象面の欠陥などを検査するためのレーザ超音波検査装置が提案されている。特許文献1に記載のレーザ超音波検査装置は、照射レーザ光と前記リファレンス用レーザ光とを受光して干渉計測を行うためのフォトリフラクティブ結晶を備え、フォトリフラクティブ結晶としては、無機結晶であるBSO(Bismuth Silicon Oxide)結晶が用いられている。
 さらに、非特許文献1及び非特許文献2では、フォトリフラクティブ結晶の代わりにポリマー材料を含むフォトリフラクティブ材料を用いたレーザ超音波検査装置が提案されている。
特開2010-038880号公報
Zamiri, S., et al. "Employing 532 nm Wavelength in a Laser Ultrasound Interferometer Based on Photorefractive Polymer Composites." Open Access Library Journal, 2, e1247 (2015). DOI:10.4236/oalib.1101247. Zamiri, S., et al. "Laser ultrasonic receivers based on organic photorefractive polymer composites" Appl. Phys. B (2014). 114:509‐515 DOI 10.1007/s00340-013-5554-7.
 フォトリフラクティブ効果とは、光導電性及び電気光学効果を示す媒質中でレーザ光を干渉させた場合に、媒質中に屈折率格子(ホログラム)が形成される現象である。フォトリフラクティブ効果を示すフォトリフラクティブ材料及び超音波レーザを用いることで、物体内部の欠陥を探査したり、板状物体の厚さを非接触で測定したりすることができる。
 具体的には、被検体に向けて連続発振レーザを照射し、その反射光をフォトリフラクティブ材料を含む素子(以下、「フォトリフラクティブ素子」とも称する。)に入射して参照光と干渉させて2光波結合を生じさせる。2光波結合は干渉縞と屈折率格子の位相とがずれていることによって生じる。これにより、フォトリフラクティブ素子を透過して検出される反射光は増幅され、参照光は減衰することで、反射光及び参照光の強度は一定値に近づく。このとき、ナノ秒以下のパルス幅のパルスレーザを被検体に照射し、被検体表面で超音波を発生させる。超音波は被検体内部を伝わり、被検体の各面及び被検体内部の欠陥、構造等によって反射する。超音波の反射波が連続発振レーザの照射面に現れるため、
反射光に変動を生じさせる。これにより、反射光の位相に変調が生じるため、フォトリフラクティブ材料中の干渉縞の位相も変化し、2光波結合による反射光及び参照光の光強度に変動が生じる。そこで、パルス光を被検体に照射してから反射光又は参照光に変化が生じるまでの時間を計測することで、被検体の厚さ、被検体内部の欠陥、構造等についての情報を得ることができる。
 フォトリフラクティブ材料及び超音波レーザを用いた従来の超音波探傷計測では、フォトリフラクティブ材料として、特許文献1のように無機結晶を用いたり、非特許文献1及び非特許文献2のようにポリマーを用いたりしている。しかし、チタン酸バリウム、ニオブ酸リチウム等の無機結晶又はポリマーをフォトリフラクティブ素子に用いた場合、フォトリフラクティブ効果の応答速度が遅いという問題がある。
 フォトリフラクティブ効果の応答が遅い場合では、フォトリフラクティブ素子を静穏な環境において測定を行う必要がある。その理由としては、振動によって屈折率格子がずれて2光波結合に変調が生じ、超音波探傷計測が行えないためである。例えば、自動車等によって生じる通常の環境下での振動の周波数は0.1Hz~数十Hzであり、無機結晶又はポリマーのフォトリフラクティブ効果の応答時間(数秒~数十ミリ秒)に近い。通常の環境下では、超音波探傷計測に支障が生じる。そのため、フォトリフラクティブ素子に数キロボルト程度の電圧を印加して応答速度を速めたり、除振装置を備えた大掛かりな装置を超音波探傷計測に用いたりする必要がある。例えば、非特許文献1では、ポリマー材料を含むフォトリフラクティブ材料に5kVの電圧が印加されている。一方、非特許文献2では、フォトリフラクティブ素子に印加する電圧を大きくすることで応答速度を速めることができたことが示されている。しかし、非特許文献2の技術では、フォトリフラクティブ材料に5kVの電圧を印加することで195ミリ秒又は60ミリ秒の応答時間が得られたことが示されているにすぎず、さらなる応答速度の改善が望ましい。
 本開示は、上記のような事情に鑑みてなされたものであり、フォトリフラクティブ効果の応答速度に優れるフレクソエレクトリック液晶組成物、これを備える液晶素子及びレーザ検査システム並びにこのレーザ検査システムを用いた被検体の分析方法を提供することを目的とする。
 前記課題を解決するための手段には、以下の実施態様が含まれる。
<1> 少なくとも1種のスメクチック液晶化合物と、
 キラルドーパントと、
 電荷捕捉剤と、を含み、
 光導電性を示す、フレクソエレクトリック液晶組成物。
<2> 前記キラルドーパントは、光導電性キラルドーパントを含む<1>に記載のフレクソエレクトリック液晶組成物。
<3> 前記光導電性キラルドーパントは、以下の一般式(1)で表される化合物及び以下の一般式(2)で表される化合物の少なくとも一方を含む<2>に記載のフレクソエレクトリック液晶組成物。
Figure JPOXMLDOC01-appb-C000002
(一般式(1)及び一般式(2)中、R及びRはそれぞれ独立に不斉炭素を有する炭化水素基である。)
<4> 前記一般式(1)及び前記一般式(2)中、R及びRは、2-メチルブチル基である<3>に記載のフレクソエレクトリック液晶組成物。
<5> 前記スメクチック液晶化合物は、スメクチックC相を示す液晶化合物を含む<1>又は<1>~<4>のいずれか1つに記載のフレクソエレクトリック液晶組成物。
<6> 前記キラルドーパントの含有率は、前記スメクチック液晶化合物全量100質量部に対して、0.1質量部~10質量部である<1>~<5>のいずれか1つに記載のフレクソエレクトリック液晶組成物。
<7> <1>~<6>のいずれか1つに記載されたフレクソエレクトリック液晶組成物によって形成された液晶膜と、
 前記液晶膜を挟む一対の透明基板と、
 を備える液晶素子。
<8> 前記液晶膜の厚さが5μm~15μmである<7>に記載の液晶素子。
<9> 被検体にパルス発振レーザを照射することによって前記被検体の表面に超音波振動を発生させる第1のレーザ出射部と、
 連続発振レーザを出射する第2のレーザ出射部と、
 第2のレーザ出射部から出射される前記連続発振レーザを、前記被検体の表面に照射される照射光と、参照光とに分割するビームスプリッタと、
 前記被検体の表面に照射されて前記被検体から反射された前記照射光である反射光、及び前記参照光を受光し、前記反射光及び前記参照光を干渉させる<7>又は<8>に記載の液晶素子と、
 前記液晶素子から出射された前記照射光及び前記参照光の少なくとも一方の光を検出する検出部と、
 を備えるレーザ検査システム。
<10> 被検体にパルス発振レーザを照射することによって前記被検体の表面に超音波振動を発生させる第1のレーザ出射部と、
 連続発振レーザを出射する第2のレーザ出射部と、
 第2のレーザ出射部から出射される前記連続発振レーザを、前記被検体の表面に照射される照射光と、参照光とに分割するビームスプリッタと、
 前記被検体の表面に照射されて前記被検体から反射された前記照射光である反射光、及
び前記参照光を受光し、前記反射光及び前記参照光を干渉させる液晶素子と、
 前記液晶素子から出射された前記照射光及び前記参照光の少なくとも一方の光を検出する検出部と、
 を備え、
 前記液晶素子は、強誘電性液晶組成物によって形成された液晶膜及び前記液晶膜を挟む一対の透明基板を備えるレーザ検査システム。
<11> <9>又は<10>に記載のレーザ検査システムを用いて被検体の性状を分析する被検体の分析方法であって、
 前記被検体の超音波振動が発生した表面に照射されて前記被検体から反射された前記照射光である前記反射光、及び前記参照光が前記液晶素子内にて干渉することによる、前記検出部にて検出された光の強度変化に基づいて、前記被検体の性状を分析する被検体の分析方法。
 本開示によれば、フォトリフラクティブ効果の応答速度に優れるフレクソエレクトリック液晶組成物、これを備える液晶素子及びレーザ検査システム並びにこのレーザ検査システムを用いた被検体の分析方法を提供することができる。
本開示の一形態に係るレーザ検査システムを示す概略構成図である。 本開示の一形態に係る液晶素子を示す概略構成図である。 本開示の他の一形態(実施態様1)に係るレーザ検査システムを示す概略構成図である。 実施例1にて使用したレーザ検査システムを示す概略構成図である。 厚さ2mm、3mm又は5mmのアルミ板を被検体として用いた場合の透過光強度の変化を示すグラフである。 超音波振動における縦波及び横波と、透過光強度の変化との関係を示すグラフである。 アルミ板の測定位置と、反射光の透過光強度の時間変化との関係を示すグラフである。 アルミ板の厚さの測定位置と、厚さの計測結果との関係を示すグラフである。 本開示の他の一形態(実施態様2)に係るレーザ検査システムを示す概略構成図である。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
[フレクソエレクトリック液晶組成物]
 本開示のフレクソエレクトリック液晶組成物は、少なくとも1種のスメクチック液晶化合物と、キラルドーパントと、電荷捕捉剤と、を含み、光導電性を示す。フレクソエレクトリック効果を示す液晶組成物を用いることでフォトリフラクティブ効果の応答速度に優れる。さらに、スメクチック液晶化合物を含むフレクソエレクトリック液晶組成物は、光散乱が抑制される。
 本開示のフレクソエレクトリック液晶組成物は、フォトリフラクティブ効果の応答速度に優れることによって、当該液晶組成物を用いて形成される液晶素子に高電圧を印加して応答速度を速める必要がない。さらに、振動ノイズが問題となる数十ミリ秒よりも速い時間内、例えば、マイクロ秒~数ミリ秒にて2光波結合による光強度の増幅減衰に関するデータを取得できるため、当該液晶素子は、0.1Hz~数十Hzの振動ノイズの影響をほとんど受けない。液晶素子を用いることで、振動する環境下でも被検体の厚さ、内部欠陥、構造等の性状を計測することができ、空気の揺動による影響もほとんど受けることがない。そのため、除振装置が不要となり、被検体の性状を計測する装置の小型化が可能である。さらに、当該被検体の性状を計測する装置を屋外に持ち出して鉄骨、コンクリートなどの被検体の非接触診断が可能である。
 本開示のフレクソエレクトリック液晶組成物を用いて形成される液晶素子を用いることで、大きく動く対象物についての性状計測も可能となる。そのため、近赤外レーザを用いることで皮膚下組織の探査も可能となる。
 本開示のフレクソエレクトリック液晶組成物を用いて形成される液晶素子を用いることで、フォトリフラクティブ効果が得られ、被検体の性状を計測することが可能となるメカニズムは以下の通りである。
 フレクソエレクトリック液晶組成物は、電気光学効果を示すスメクチック液晶化合物及
びキラルドーパントと、光導電性を示す化合物と、電荷捕捉剤と、を含む。後述するように、キラルドーパントは光導電性を示す化合物を兼ねる光導電性キラルドーパントであってもよく、この場合、別途光導電性を示す化合物を添加する必要はない。このようなフレクソエレクトリック液晶組成物から得られる液晶膜中で光を干渉させると、干渉縞の明るい部分で光導電性を示す化合物が光を吸収して正負の電荷を発生する。負電荷(電子)は電荷捕捉剤に捕捉される一方、正電荷(ホール)は液晶膜中に拡散する。干渉縞の明るい部分はマイナスに帯電し、暗い部分はプラスに帯電し、その結果、明るい部分と暗い部分との電位差よる電界(内部電界)が生じる。この内部電界によって電気光学効果が生じ、屈折率が変化し、屈折率格子が形成される。具体的には、内部電界によって液晶膜の分極方向が変化し、液晶配向が周期的に変化した格子縞が形成され、この格子縞が屈折率格子として機能する。屈折率格子は、干渉縞の明るい部分と暗い部分の中間で生じる。
 フォトリフラクティブ効果による屈折率格子は干渉しているレーザ光の透過に特異的な影響を及ぼす。干渉縞の明暗の位相から位相がずれた屈折率格子が形成されると、干渉している光のうち片方のみが回折され、もう一方が回折されなくなるため、それぞれのレーザ光の透過強度が対照的に変化する。干渉している2本のレーザ光のうち、片方の透過強度が増大し、もう一方の透過強度が減衰する。この現象をフォトリフラクティブ2光波結合という。
 フォトリフラクティブ2光波結合は、2本のレーザ光が干渉して生じているものであるため、片方のレーザ光の位相がわずかでもずれれば、2光波結合の条件から外れ、液晶素子の透過光強度に変化が生じる。したがって、この現象を利用して、光の位相変調を検出することができる。
 例えば、連続発振(CW)のレーザ光を2本に分け、一方を参照光として液晶素子に入射させ、他方を照射光として被検体である物体に照射し、物体からの反射光を上記液晶素子に入射させる。参照光と反射光とを干渉させ、それぞれの光が液晶素子を透過する強度を測定する。フォトリフラクティブ2光波結合が生じて反射光は増幅され、参照光は減衰して、どちらも一定値に近付く。
 次に、ナノ秒以下のパルス幅のパルスレーザを物体に照射し、物体表面で超音波を発生させる。超音波は物体内部を伝わり、物体の各面及び物体内部の欠陥、構造等によって反射する。物体表面に現れる反射波が、照射光の反射に変動を生じさせる。照射光の反射に変動が生じることで、照射光の反射波の位相に変調が生じるため、液晶膜中の干渉縞の位相も変化する。これにより、2光波結合の条件からずれることになるため、光の増幅減衰に変化が生じる。パルスレーザ光を物体に照射してから照射光に変化が生じるまでの時間を計測することで、物体の厚さ、物体内部の欠陥、構造等の物体の性状についての情報を得ることができる。
 以下、本開示のフレクソエレクトリック液晶組成物に含まれる各成分の詳細について説明する。
(スメクチック液晶化合物)
 本開示のフレクソエレクトリック液晶組成物(以下、「液晶組成物」とも称する。)は、少なくとも1種のスメクチック液晶化合物を含む。液晶組成物に含まれるスメクチック液晶化合物は、1種単独であってもよく、2種以上の混合物であってもよい。
 スメクチック液晶化合物は、欠陥の少ない配向状態が得られやすく、透明性が高い観点及びフレクソエレクトリック効果を好適に発現する観点から、スメクチックC相を示す液晶化合物であることが好ましい。スメクチックC相を示す液晶化合物は、1種単独であっ
てもよく、2種以上の混合物であってもよい。
 スメクチックC相を示す液晶化合物としては、例えば、フェニルピリミジン骨格、フェニルピリジン骨格、ビフェニル骨格等のいずれかを有するメソゲン化合物などが挙げられる。スメクチックC相を示す液晶化合物は、2-フェニルピリミジン誘導体、2-フェニルピリジン誘導体及びビフェニルエステル誘導体の少なくともいずれか1つを含むことが好ましい。
 2-フェニルピリミジン誘導体としては、例えば、アルコキシ置換2-フェニルピリミジン誘導体であることが好ましく、以下の化学式で表される化合物であることがより好ましい。2-フェニルピリミジン誘導体は、1種単独であってもよく、2種以上の混合物であってもよく、例えば、以下の化学式で表される化合物の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000003
 2-フェニルピリジン誘導体としては、例えば、アルコキシ置換2-フェニルピリミジン誘導体であることが好ましく、以下の化学式で表される化合物であることがより好ましい。2-フェニルピリジン誘導体は、1種単独であってもよく、2種以上の混合物であってもよく、例えば、以下の化学式で表される化合物の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000004
 ビフェニルエステル誘導体としては、例えば、ビフェニル骨格及びフェニル骨格がエステル結合を介して結合した化合物であることが好ましく、以下の化学式で表される化合物であることがより好ましい。ビフェニルエステル誘導体は、1種単独であってもよく、2種以上の混合物であってもよく、例えば、以下の化学式で表される化合物の2種以上の混合物であってもよい。
Figure JPOXMLDOC01-appb-C000005
 本開示の液晶組成物は、キラルドーパントを含む。キラルドーパントは、不斉構造を持つ化合物であり、キラルドーパントのキラル部位によってスメクチック液晶化合物は、優れたフレクソエレクトリック効果を示す。スメクチック液晶化合物を使用することで強誘電性を示す液晶よりも大きなフォトリフラクティブ効果が得られる。
 キラルドーパントは、光導電性キラルドーパントを含むことが好ましい。光導電性キラルドーパントを使用することで、光導電性を示す化合物を別途使用せずとも、液晶組成物に光導電性を発現させることができる。光導電性キラルドーパントは、1種単独であってもよく、2種以上の混合物であってもよい。
 光導電性キラルドーパントは、以下の一般式(1)で表される化合物及び以下の一般式(2)で表される化合物の少なくとも一方を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)及び一般式(2)中、R及びRはそれぞれ独立に不斉炭素を有する炭化水素基である。
 R及びRはそれぞれ独立に、不斉炭素を有するアルキル基であることが好ましく、不斉炭素を有し、炭素数が4~10であるアルキル基であることがより好ましく、不斉炭素を有し、炭素数が5~8であるアルキル基であることがさらに好ましい。R及びRは、スメクチック液晶化合物がフレクソエレクトリック効果を好適に示す観点から、2-メチルブチル基であることが特に好ましい。一般式(1)及び一般式(2)のR及びRが2-メチルブチル基である化合物は以下の化学式で表される。
Figure JPOXMLDOC01-appb-C000007

 
 
 キラルドーパントの含有量は、スメクチック液晶化合物全量100質量部に対して、0.1質量部~10質量部であってもよく、0.1質量部~5質量部であってもよい。
 キラルドーパントとして光導電性でないキラルドーパントを使用する場合には、液晶組成物に光導電性を発現させる観点から、液晶組成物が光導電性を示す化合物を含んでいればよい。
 光導電性を示す化合物としては、ターチオフェン系化合物、クワトロチオフェン系化合物等のオリゴチオフェン系化合物、チアノセン系化合物、カルバゾール系化合物、スクアライン系化合物などが挙げられる。光導電性を示す化合物は、1種単独であってもよく、2種以上の混合物であってもよい。
 オリゴチオフェン系化合物としては、以下の化学式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 チアノセン系化合物としては、以下の化学式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 カルバゾール系化合物としては、以下の化学式で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
(電荷捕捉剤)
 本開示の液晶組成物は、電荷捕捉剤を含む。電荷捕捉剤は負電荷の捕捉と電荷移動吸収による吸収光波長の長波長化のために添加される。電荷捕捉剤としては、トリニトロフルオレノン(TNF)、テトラシアノキノジメタン(TCNQ)、フラーレン誘導体等が挙げられる。
 電荷捕捉剤の含有量は、スメクチック液晶化合物全量100質量部に対して、0.1質量部~1質量部であってもよく、0.1質量部~0.3質量部であってもよい。
(その他の成分)
 本開示の液晶組成物は、スメクチック液晶化合物、キラルドーパント、光導電性を示す化合物、又は電荷捕捉剤以外のその他の成分を含んでいてもよい。その他の成分としては、本開示の液晶組成物の効果を奏する限りであれば特に限定されず、例えば、界面活性剤、重合禁止剤、酸化防止剤、紫外線吸収剤等が挙げられる。
 本開示の液晶組成物は、スメクチック液晶化合物以外の液晶化合物を含んでいてもよく、含んでいなくてもよい。液晶組成物におけるスメクチック液晶化合物以外の液晶化合物の含有量は、光散乱を抑制する観点から、スメクチック液晶化合物100質量部に対して10質量部以下であってもよく、5質量部以下であってもよく、0質量部であってもよい。
[液晶素子]
 本開示の液晶素子は、本開示のフレクソエレクトリック液晶組成物によって形成された液晶膜と、前記液晶膜を挟む一対の透明基板と、を備える。液晶膜の形成に前述のフレクソエレクトリック液晶組成物を用いることで、光散乱が抑制され、フォトリフラクティブ効果の応答速度に優れる液晶素子が得られる。この液晶素子及び超音波レーザを用いることで、前述のように振動する環境下でも被検体の内部欠陥、構造等の性状を計測することができる。
 液晶膜の厚さが5μm~15μmであることが好ましく、6μm~13μmであることがより好ましく、8μm~12μmであることがさらに好ましい。液晶膜の厚さが5μm以上であることで屈折率格子を好適に形成しやすい傾向にあり、液晶膜の厚さが15μm以下であることでスメクチック液晶が好適に配列する傾向にある。
 液晶膜の主面の面積は、配向欠陥を抑制する観点から、0.5cm~5cmであることが好ましく、0.5cm~1cmであることがより好ましい。
 液晶膜は、一対の透明基板によって挟まれている。
 透明基板としては特に制限されず、適宜選択することができる。透明基板としては、例えば、ガラス基板、プラスチック基板(例えば、ポリエチレンナフタレート(PEN)基板、ポリエチレンテレフタレート(PET)基板、ポリカーボネート(PC)基板、ポリイミド(PI)基板等)などが挙げられる。
 透明基板の厚さ、形状は、液晶膜を挟むことが可能であれば、特に限定されない。
 一対の透明基板は、液晶膜側の面に配向膜を備えていてもよく、配向膜を介して液晶膜が一対の透明基板に挟まれていてもよい。
 配向膜の材質としては、特に限定されず、従来公知の配向膜と同様である。例えば、配向膜の材質としては、ポリイミド、ポリビニルアルコール、ポリエステル等が挙げられる。
 配向膜はラビング処理が施されていてもよい。ラビング処理は、配向膜の表面を、紙又は布で巻いた棒、ローラ等で一定方向に擦ることにより実施することができる。一例として、配向膜がポリイミド膜である場合、透明電極付き透明基板(例えば、透明電極付きガラス基板)上にポリイミド溶液をスピンコートによって塗布乾燥し、ポリイミドが塗布された表面にベルベット布を巻いたローラによってラビング処理を行ってもよい。ラビング処理を行うときのラビング強度は、以下の式によって表される。
Figure JPOXMLDOC01-appb-M000011
 式中、Rはラビング強度(mm)、Nはラビング回数、Mはラビング布と基板とが接する部分の長さ(mm)、rはラビング布ロールの半径(mm)、nはローラの回転速度(rpm:回毎分)、Vは配向膜塗布基板の移動速度(mm・s-1)である。ラビング強度は、200mm~250mmであることが好ましい。これにより、配向欠陥が少なく透明性の高い配向層が形成できる傾向にある。
 光照射による正負の電荷分離を促す観点から、一対の透明基板には透明電極がそれぞれ設けられていてもよく、一対の透明基板の液晶膜側の面に透明電極がそれぞれ設けられていてもよい。一対の透明基板が配向膜を備える場合、透明電極と配向膜との間に透明電極が設けられていてもよい。
 液晶膜は、一方の透明基板上、好ましくは一方の透明電極の配向膜上に前述の液晶組成物を付与し、他方の透明基板で付与された液晶組成物を挟むことで形成される。透明基板への液晶材料の付与方法としては、例えば、スピンコート法、スプレー法等の塗布法;インクジェット法;スクリーン印刷法等が挙げられる。透明基板上に付与された液晶組成物に対して必要に応じて乾燥処理を施してもよい。
 一例として、ラビング処理が施された2枚の透明電極付き透明基板(例えば、透明電極付きガラス基板)を10μmのガラスビーズスペーサー等を介して貼り合わせて液晶膜を有する液晶素子としてもよい。一対の透明基板にてラビング方向が逆方向、すなわち、アンチパラレル配向になるように貼り合わせることが好ましい。
[レーザ検査システム]
 本開示のレーザ検査システムは、被検体にパルス発振レーザを照射することによって前記被検体の表面に超音波振動を発生させる第1のレーザ出射部と、連続発振レーザを出射する第2のレーザ出射部と、第2のレーザ出射部から出射される前記連続発振レーザを、前記被検体の表面に照射される照射光と、参照光とに分割するビームスプリッタと、前記被検体の表面に照射されて前記被検体から反射された前記照射光である反射光、及び前記参照光を受光し、前記反射光及び前記参照光を干渉させる本開示の液晶素子と、前記液晶素子から出射された前記照射光及び前記参照光の少なくとも一方の光を検出する検出部と、を備える。
 本開示のレーザ検査システムでは、フレクソエレクトリック液晶組成物によって形成された液晶膜を備える前述の液晶素子の代わりに、強誘電性液晶組成物によって形成された液晶膜を備える液晶素子を使用してもよい。強誘電性液晶組成物によって形成された液晶膜を備える液晶素子を使用した場合であっても、フォトリフラクティブ効果を得ることができ、応答速度に優れるレーザ検査システムが得られる。一方、光散乱を好適に抑制する観点では、フレクソエレクトリック液晶組成物によって形成された液晶膜を備える前述の液晶素子、及び、当該液晶素子を備えるレーザ検査システムを用いることが好ましい。
 強誘電性液晶組成物としては、特に限定されず、従来公知の強誘電性を示す液晶組成物が挙げられる。例えば、特開2008-216679号公報に記載されている強誘電性液晶材料、特開2009-108233号公報に記載されている強誘電性液晶組成物、その他公知の強誘電性液晶材料又は強誘電性液晶組成物等を用いてもよい。
[被検体の検査方法]
 本開示の被検体の検査方法は、本開示のレーザ検査システム(強誘電性液晶組成物によって形成された液晶膜を備える液晶素子を用いた場合も含む)を用いて被検体の性状を分析する被検体の分析方法であって、被検体の超音波振動が発生した表面に照射されて前記被検体から反射された前記照射光である前記反射光、及び前記参照光が前記液晶素子内にて干渉することによる、前記検出部にて検出された光の強度変化に基づいて、前記被検体の性状を分析する方法である。
 本開示のレーザ検査システム及び被検体の検査方法では、前述の本開示の液晶素子が用いられているため、前述のように振動する環境下でも被検体の内部欠陥、構造等の性状を計測することができる。以下、本開示のレーザ検査システムの一形態及びそれを用いた被検体の検査方法について説明する。なお、本開示のレーザ検査システムは以下の具体的な構成に限定されず、本開示の被検体の検査方法は以下の方法に限定されない。
 図1に本開示の一形態に係るレーザ検査システムを示す。図1に示すレーザ検査システム100は、第1のレーザ出射部1と、第2のレーザ出射部2と、ビームスプリッタ3A、3Bと、ミラー4A、4Bと、集光レンズ5A~5Eと、検出器6A~6Cと、電圧印加手段7と、表示部8と、制御部9と、液晶素子10と、を備える。そして、図1中の点線で表される領域20には、被検体が配置される。
 第1のレーザ出射部1は、被検体に向けてパルス発振レーザを出射するレーザ照射装置である。第1のレーザ出射部1にて出射されたパルス発振レーザはミラー4Aによって反射され、反射されたパルス発振レーザは集光レンズ5Aにて集光された後に領域20に配置された被検体の表面(例えば、ウラ面)に照射される。パルス発振レーザが被検体の表面に照射されることで、被検体の表面に超音波振動が発生する。
 第1のレーザ出射部1から出射されるパルス発振レーザの波長は、赤外域から可視光域であることが好ましく、被検体に応じて適宜選択すればよい。第1のレーザ出射部1としては、例えば、ナノ秒Qスイッチパルスレーザを使用すればよい。
 第2のレーザ出射部2は、連続発振レーザを出射するレーザ照射装置である。第2のレーザ出射部2から出射される連続発振レーザは、ビームスプリッタ3Aによって被検体の表面に照射される照射光と、参照光とに分割される。ビームスプリッタ3Aによって分割された照射光は、集光レンズ5B、ビームスプリッタ3B及び集光レンズ5Cをこの順で経て領域20に配置された被検体の表面(例えば、オモテ面)に照射される。このとき、パルス発振レーザが照射される被検体の表面と、照射光が照射される被検体の表面とは対面しており、パルス発振レーザの照射位置の延長線上に被検体における照射光の照射領域が位置する。
 第2のレーザ出射部2から出射される連続発振レーザの波長は、紫外域から可視光域であることが好ましく、被検体、光導電性を示す化合物又は光導電性キラルドーパントの吸収波長域等に応じて適宜選択すればよい。また、被検体からの反射光によって好適に干渉縞を形成させる観点から、連続発振レーザのコヒーレント長さ(可干渉長さ)が1cm以上のものを選択することが好ましい。
 被検体の表面に照射されて被検体から反射された照射光は、反射光として集光レンズ5C、ビームスプリッタ3B及び集光レンズ5Dをこの順で経て液晶素子10の液晶膜12に照射される。
 ビームスプリッタ3Aによって分割された参照光は、ミラー4Bによって反射され、集光レンズ5Bにて集光された後に液晶素子10の液晶膜12に照射される。
 図2に示すように、液晶素子10は、一対の透明基板11と、一対の透明基板に挟まれた液晶膜12とを備える。透明基板11と液晶膜12との間に透明基板11側から順にITO透明電極13及び配向膜14が設けられている。ITO透明電極13は、電圧印加手段7と電気的に接続しており、ITO透明電極13に電圧が印加されることで液晶膜12に電界が形成される。光照射による正負の電荷分離を促す観点から、液晶膜12に数V/μm程度の電界が形成されるように電圧が印加されることが好ましい。
 液晶素子10における液晶膜12は、反射光及び参照光を受光し、反射光及び参照光を干渉させる。これにより、干渉縞の明暗の位相から位相がずれた屈折率格子を形成し、フォトリフラクティブ2光波結合により反射光は増幅され、参照光は減衰する。
 液晶膜中の光導電性キラルドーパントの光吸収遷移モーメントは分子長軸方向であり、光導電性キラルドーパントはスメクチック液晶と同じ方向に並ぶため、レーザの偏光とスメクチック液晶の配向方向とがほぼ平行になるようにして、光の吸収効率を高めることが好ましい。
 検出器6A、6Bは、液晶素子10から出射された照射光及び参照光を検出する。検出器6A、6Bにて検出された照射光及び参照光の光強度は、表示部8にて出力される。
 表示部8にて出力された照射光及び参照光の光強度が一定値に近づいた後、制御部9にて第1のレーザ出射部1を制御し、第1のレーザ出射部1から被検体に向けてパルス発振レーザを出射する。出射されたパルス発振レーザは、被検体表面に照射される。検出器6Cは、パルスレーザの照射タイミングを検出し、検出された照射タイミングは表示部8にて出力される。被検体表面に照射されたパルス発振レーザは、被検体表面で超音波を発生させることで超音波は被検体内部を伝わり、被検体の各面及び被検体内部の欠陥、構造等によって反射する。被検体表面に現れる反射波が、照射光の反射に変動を生じさせる。これにより、前述のように照射光の反射波の位相に変調が生じるため、液晶膜12中の干渉縞の位相も変化し、その結果、光の増幅減衰に変化が生じる。パルス発振レーザを被検体に照射してから照射光に変化が生じるまでの時間を計測することで、被検体の厚さ、被検体内部の欠陥、構造等の被検体の性状についての情報を得ることができる。
 さらに、被検体におけるパルス発振レーザの照射位置及び連続発振レーザに基づく照射光の照射領域を変更して複数の箇所における被検体の厚さ、被検体内部の欠陥、構造等の被検体の性状についての情報を得てもよい。例えば、複数の箇所における被検体の厚さ又は被検体内部の欠陥についての情報を得ることで、被検体の構造、欠陥の構造等を把握することができる。
 本開示のレーザ検査システムは、図1に示す構成の部材、装置等を全て備えている必要はなく、また、図1に示す構成以外の部材、装置等を備えていてもよい。例えば、本開示のレーザ検査システムは、図1に示す構成以外の光学部材を備えていてもよく、NDフィルター、波長板、1/4波長板、半波長板、偏光板、フィルター、集光レンズ以外のレンズ等を備えていてもよい。
 本開示のレーザ検査システムは、被検体をレーザ検査システムに配置する構成に限定されず、例えば、トンネル、橋梁等の構造物を被検体とし、被検体内部の欠陥、構造等の被検体の性状について検査するシステムであってもよい。例えば、本開示のレーザ検査システムを図3に示すような構成とすることで、パルス発振レーザと連続発振レーザとを同軸で同じ方向から被検体に照射し、被検体の性状を分析することができる。この構成により、離れた場所にある鉄骨等の厚み測定、トンネル、橋梁等の内部探傷などを非接触で行うことができる。さらに、本開示のレーザ検査システムを車体、移動する装置等に搭載した状態で、車体、移動する装置等を移動させながら被検体の性状を検査することができる。
(実施態様1のレーザ検査システム)
 図3に示すレーザ検査システム200は、第1のレーザ出射部21と、第2のレーザ出射部22と、ビームスプリッタ23A、23Bと、ミラー24と、フィルター25と、検出器26と、1/4波長板27と、半波長板28A、28Bと、液晶素子30と、を備える。そして、第1のレーザ出射部21から照射されるパルス発振レーザと、第2のレーザ出射部22から照射される連続発振レーザとが同軸で同じ方向から被検体40に照射される。なお、本開示において、図中の丸中黒は縦偏光を表し、両矢印は横偏光を表す。
 レーザ検査システム200は、液晶素子30から出射された参照光を検出する検出器26のみを備える構成であるが、液晶素子30から出射された反射光を検出する検出器を備えていてもよい。また、レーザ検査システム200は、図3に示す構成以外の部材、装置等を備えていてもよい。
(実施態様2のレーザ検査システム)
 図9に示すレーザ検査システム300は、液晶素子30と、第1のレーザ出射部31と、第2のレーザ出射部32と、ビームスプリッタ33A、33Bと、ダイクロイックミラー34A、ミラー34Bと、フィルター35と、検出器36A、36Bと、1/4波長板37Aと、を備える。
 実施態様1のレーザ検査システム200では、ビームスプリッタ23Bとして無偏光ビームスプリッタを使用する必要がある。連続発振レーザがビームスプリッタ23Bを透過するときにレーザ強度が半分になり、さらに被検体50にて反射された反射光がビームスプリッタ23Bにて分離されるときにレーザ強度がさらに半分(合計四分の一)になる。
 一方、実施態様2のレーザ検査システム300では、ビームスプリッタ33A、33Bとして偏光ビームスプリッタを使用し、さらに、特定の波長の光を反射し、その他の波長の光を透過するダイクロイックミラー34Aを使用する。
 実施態様2では、ダイクロイックミラー34Aで反射された連続発振レーザがビームスプリッタ33A、33Bへ照射される。ビームスプリッタ33Aにて縦偏光及び横偏光のレーザにそれぞれ分割され、縦偏光のレーザがビームスプリッタ33Bにて被検体50側に反射される。被検体50側に反射された縦偏光のレーザが1/4波長板37Aを透過して被検体50にて反射された後、再度1/4波長板37Aを透過する。被検体50にて反射され、かつ1/4波長板37Aを透過した反射光は、横偏光となっており、横偏光の反射光がビームスプリッタ33Bを透過し、液晶素子30に照射される。さらに、ビームスプリッタ33Aにて分割された横偏光のレーザも参照光として液晶素子30に照射される。液晶素子30を透過した反射光及び参照光は、検出器36A、36Bでそれぞれ検出される。偏光ビームスプリッタであるビームスプリッタ33A、33Bを使用することで、レーザがビームスプリッタを透過及び反射する際の連続発振レーザの強度ロスが抑制される。その結果、高精度の検出に必要な連続発振レーザの強度を低下させることが可能となる。
 以下に本発明を実施例により説明するが、本発明は、これらの実施例に限定されるものではない。なお、以下の説明において、特に断りのない限り「%」はすべて質量基準であ
る。
<実施例1>
[液晶組成物の調製]
 以下の化学式で表される2-フェニルピリミジン誘導体の3種液晶混合物をスメクチックC相を示す液晶化合物として用い、以下の化学式で表されるターチオフェン骨格を有する化合物を光導電性キラルドーパントとして用い、以下の化学式で表されるトリニトロフルオレノンを電荷捕捉剤として用いた。液晶化合物、光導電性キラルドーパント及び電荷捕捉剤の以下の混合割合で混合して液晶組成物を調製した。
 液晶化合物:100質量部
 光導電性キラルドーパント:5質量部
 電荷捕捉剤:0.1質量部
Figure JPOXMLDOC01-appb-C000012
[液晶素子の作製]
 ITO(酸化インジウムスズ)透明電極が形成された透明基板に対して透明電極が形成された面にポリイミドを塗布し、ラビング強度が200mm~250mmの条件にてラビング処理を行い、配向膜を形成した。透明基板の配向膜が形成された面に前述の液晶組成物を塗布し、液晶組成物側に配向膜が形成された面が位置するように一対の透明基板で液晶組成物を挟むことで液晶膜を備える液晶素子を作製した。液晶膜の厚さは10μmであった。
[レーザ検査システムの準備]
 前述のようにして作製した液晶素子を用い、図4に示すようなレーザ検査システムを準備した。後述するように、図4における点線部に被検体を配置して被検体の厚さを測定した。
[被検体の厚さ測定]
 図4における点線部に被検体である平板状のアルミ板を配置してアルミ板の厚さを測定した。CWレーザから波長473nmの光を出力し、偏光ビームスピリッターによりアルミ板に照射する照射光と、参照光とに分離し、アルミ板のオモテ面に波長473nmの照射光を照射し、その反射光を、液晶膜中で参照光と干渉させた。このときの反射光の透過光強度及び参照光の透過光強度を検出器1及び検出器2で検出し、表示部にて確認した。また、DC電源によって液晶膜に印加された電圧は20V以下であり、液晶膜に印加された電界は2V/μmであった。
 次に、アルミ板のウラ面に波長1064nmのナノ秒パルスレーザを照射し、照射光又は参照光に生じる変化を調べた。パルスレーザの照射タイミングを検出器3で検出し、表示部にて確認した。アルミ板について、照射光の照射位置及びパルスレーザの照射位置を正確に記録した。
 パルスレーザの照射によってアルミ板表面で発生する超音波振動について、縦波及び横波がある。アルミ板中での伝達速度は縦波が6420m/sであり、横波が3040m/sである。超音波振動がウラ面からオモテ面に伝わることで、照射光の反射に変動が生じる。パルスレーザ照射から照射光の反射に変化が生じるまでの時間を計測することでアルミ板の面間距離、すなわち厚さを測定することができる。図5に厚さ2mm、3mm又は5mmのアルミ板を被検体として用いた場合の参照光の透過光強度の強度変化を示す。図5の(1)における矢印が各厚さのアルミ板における縦波到達時間を意味し、図5の(2)における矢印が各厚さのアルミ板における横波到達時間を意味する。縦波到達時間及び横波到達時間と、縦波の伝達速度及び横波の伝達速度から、アルミ板の厚さを求めた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 表1に示されるように、縦波を用いた計測値及び横波を用いた計測値は、アルミ板の厚さと精度よく対応しており、本実施例の方法によって被検体の厚さを測定できることが確認された。なお、測定結果には多数のシグナルが見られるが、例えば、図6に示すように、これらは超音波振動がアルミ板のオモテ面及びウラ面で反射された超音波振動が検出されたものである。
 前述の非特許文献1及び非特許文献2に記載されているようにポリマー材料をフォトリフラクティブ材料として用いた場合、5kV程度の高電圧をフォトリフラクティブ材料に印加して被検体の厚さを測定する必要があった。一方、本実施例のようにフレクソエレクトリック液晶組成物を用いて液晶膜を形成した場合、20V以下の低電圧を液晶膜に印加することで被検体の厚さを高精度で測定することができた。さらに、本実施例では、上記のような定電圧を液晶膜に印加した場合であっても、高い応答速度を確保することができた。
<実施例2>
 実施例1において、被検体である平板状のアルミ板を曲面の窪みを有するアルミ板に変更した以外は実施例1と同様の操作を行った。曲面の窪みを有するアルミ板について、窪みが無い平板状の部分の厚さが5mmであり、窪みの中央部の厚さが3mmであった。アルミ板の測定位置と、反射光の透過光強度の時間変化との関係を図7に示す。パルスレーザの照射位置に対応するアルミ板の測定位置としては、図7に示すように、窪みの外周近傍の一点を基準点とし、基準点から窪みの中央部までをアルミ板の長さ方向において5等分し、5等分された位置に対して矢印で示すようにパルスレーザを照射し、パルスレーザの照射位置に対応するアルミ板の厚さを評価した。なお、基準点から窪みの中央部までの
長さ方向における距離は4mmであり、パルスレーザの隣り合う照射位置の距離は1mmであった。アルミ板の厚さの測定位置と、縦波を用いた場合の厚さの計測結果との関係を図8に示す。図8中の測定位置0mmが基準点である。
 図8に示すように、アルミ板の厚さの測定位置に対応して透過光強度のピーク位置が変動し、その結果、窪みの測定位置におけるアルミ板の厚さの変動を確認することで窪みの形状を把握することが可能であった。
 2021年7月28日に出願された日本国特許出願2021-123643の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 1、21、31 第1のレーザ出射部
 2、22、32 第2のレーザ出射部
 3A、3B、23A、23B、33A、33B ビームスプリッタ
 4A、4B、24、34B ミラー
 5A~5E 集光レンズ
 6A~6C、26、36A、36B 検出器
 7 電圧印加手段
 8 表示部
 9 制御部
 10、30 液晶素子
 11 透明基板
 12 液晶膜
 13 ITO透明電極
 14 配向膜
 25、35 フィルター
 27、37A 1/4波長板
 28A、28B、38 1/2波長板
 34A ダイクロイックミラー
 40、50 被検体
 100、200、300 レーザ検査システム

Claims (12)

  1.  少なくとも1種のスメクチック液晶化合物と、
     キラルドーパントと、
     電荷捕捉剤と、を含み、
     光導電性を示す、フレクソエレクトリック液晶組成物。
  2.  前記キラルドーパントは、光導電性キラルドーパントを含む請求項1に記載のフレクソエレクトリック液晶組成物。
  3.  前記光導電性キラルドーパントは、以下の一般式(1)で表される化合物及び以下の一般式(2)で表される化合物の少なくとも一方を含む請求項2に記載のフレクソエレクトリック液晶組成物。
    Figure JPOXMLDOC01-appb-C000001

     
    (一般式(1)及び一般式(2)中、R及びRはそれぞれ独立に不斉炭素を有する炭化水素基である。)
  4.  前記一般式(1)及び前記一般式(2)中、R及びRは、2-メチルブチル基である請求項3に記載のフレクソエレクトリック液晶組成物。
  5.  前記スメクチック液晶化合物は、スメクチックC相を示す液晶化合物を含む請求項1に記載のフレクソエレクトリック液晶組成物。
  6.  前記キラルドーパントの含有量は、前記スメクチック液晶化合物全量100質量部に対して、0.1質量部~10質量部である請求項1に記載のフレクソエレクトリック液晶組成物。
  7.  請求項1~請求項6のいずれか1項に記載されたフレクソエレクトリック液晶組成物によって形成された液晶膜と、
     前記液晶膜を挟む一対の透明基板と、
     を備える液晶素子。
  8.  前記液晶膜の厚さが5μm~15μmである請求項7に記載の液晶素子。
  9.  被検体にパルス発振レーザを照射することによって前記被検体の表面に超音波振動を発生させる第1のレーザ出射部と、
     連続発振レーザを出射する第2のレーザ出射部と、
     第2のレーザ出射部から出射される前記連続発振レーザを、前記被検体の表面に照射される照射光と、参照光とに分割するビームスプリッタと、
     前記被検体の表面に照射されて前記被検体から反射された前記照射光である反射光、及
    び前記参照光を受光し、前記反射光及び前記参照光を干渉させる請求項7に記載の液晶素子と、
     前記液晶素子から出射された前記照射光及び前記参照光の少なくとも一方の光を検出する検出部と、
     を備えるレーザ検査システム。
  10.  被検体にパルス発振レーザを照射することによって前記被検体の表面に超音波振動を発生させる第1のレーザ出射部と、
     連続発振レーザを出射する第2のレーザ出射部と、
     第2のレーザ出射部から出射される前記連続発振レーザを、前記被検体の表面に照射される照射光と、参照光とに分割するビームスプリッタと、
     前記被検体の表面に照射されて前記被検体から反射された前記照射光である反射光、及
    び前記参照光を受光し、前記反射光及び前記参照光を干渉させる液晶素子と、
     前記液晶素子から出射された前記照射光及び前記参照光の少なくとも一方の光を検出する検出部と、
     を備え、
     前記液晶素子は、強誘電性液晶組成物によって形成された液晶膜及び前記液晶膜を挟む一対の透明基板を備えるレーザ検査システム。
  11.  請求項9に記載のレーザ検査システムを用いて被検体の性状を分析する被検体の分析方法であって、
     前記被検体の超音波振動が発生した表面に照射されて前記被検体から反射された前記照射光である前記反射光、及び前記参照光が前記液晶素子内にて干渉することによる、前記検出部にて検出された光の強度変化に基づいて、前記被検体の性状を分析する被検体の分析方法。
  12.  請求項10に記載のレーザ検査システムを用いて被検体の性状を分析する被検体の分析方法であって、
     前記被検体の超音波振動が発生した表面に照射されて前記被検体から反射された前記照射光である前記反射光、及び前記参照光が前記液晶素子内にて干渉することによる、前記検出部にて検出された光の強度変化に基づいて、前記被検体の性状を分析する被検体の分析方法。
PCT/JP2022/024782 2021-07-28 2022-06-21 フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法 WO2023007993A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3227292A CA3227292A1 (en) 2021-07-28 2022-06-21 Flexoelectric liquid crystal composition, liquid crystal element, laser inspection system, and method for analyzing test subject
EP22847401.1A EP4369084A1 (en) 2021-07-28 2022-06-21 Flexoelectric liquid crystal composition, liquid crystal element, laser inspection system, and method for analyzing test subject

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123643 2021-07-28
JP2021123643 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023007993A1 true WO2023007993A1 (ja) 2023-02-02

Family

ID=85086652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024782 WO2023007993A1 (ja) 2021-07-28 2022-06-21 フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法

Country Status (3)

Country Link
EP (1) EP4369084A1 (ja)
CA (1) CA3227292A1 (ja)
WO (1) WO2023007993A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147813A (ja) * 2003-11-14 2005-06-09 Kansai Electric Power Co Inc:The レーザ超音波による材料非破壊検査方法及び装置
JP2008216679A (ja) 2007-03-05 2008-09-18 Ricoh Co Ltd 強誘電性液晶素子の製造方法および製造装置
JP2009108233A (ja) 2007-10-31 2009-05-21 Dic Corp 液晶組成物及び強誘電性液晶組成物
JP2010038880A (ja) 2008-08-08 2010-02-18 Toshiba Corp レーザ超音波検査装置およびレーザ超音波検査方法
JP2021123643A (ja) 2020-02-05 2021-08-30 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、キット、成形品の製造方法および成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147813A (ja) * 2003-11-14 2005-06-09 Kansai Electric Power Co Inc:The レーザ超音波による材料非破壊検査方法及び装置
JP2008216679A (ja) 2007-03-05 2008-09-18 Ricoh Co Ltd 強誘電性液晶素子の製造方法および製造装置
JP2009108233A (ja) 2007-10-31 2009-05-21 Dic Corp 液晶組成物及び強誘電性液晶組成物
JP2010038880A (ja) 2008-08-08 2010-02-18 Toshiba Corp レーザ超音波検査装置およびレーザ超音波検査方法
JP2021123643A (ja) 2020-02-05 2021-08-30 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、キット、成形品の製造方法および成形品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SASAKI TAKEO: "Effect of chiral concentration of chiral smectic C liquid crystal mixture on the photorefractive property", SPIE PROCEEDINGS, SPIE, US, vol. 11367, 1 April 2020 (2020-04-01), US , pages 113670V - 113670V-10, XP060131068, ISBN: 978-1-5106-3673-6, DOI: 10.1117/12.2554925 *
ZAMIRI, S. ET AL.: "Employing 532 nm Wavelength in a Laser Ultrasound Interferometer Based on Photorefractive Polymer Composites", OPEN ACCESS LIBRARY JOURNAL, vol. 2, 2015, pages e1247
ZAMIRI, S. ET AL.: "Laser ultrasonic receivers based on organic photorefractive polymer composites", APPL. PHYS. B, vol. 114, 2014, pages 509 - 515

Also Published As

Publication number Publication date
CA3227292A1 (en) 2023-02-02
EP4369084A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
Klein et al. Homodyne detection of ultrasonic surface displacements using two-wave mixing in photorefractive polymers
US5827971A (en) Optical vibration detection spectral analysis assembly and method for detecting vibration in an object of interest
US7050178B2 (en) Method and apparatus for increasing signal to noise ratio in a photoacoustic film thickness measurement system
JP2001228123A (ja) 試料の物理的性質の測定装置
CN102770750A (zh) 涂装膜的检查装置及检查方法
WO1999006841A1 (en) Optical method for the determination of stress in thin films
US20110299089A1 (en) Compact liquid crystal based fourier transform spectrometer system
Wei et al. A new method for determining thin‐film refractive index and thickness using guided optical waves
WO2006085403A1 (ja) 実時間テラヘルツ・トモグラフィー装置および分光イメージング装置
Zamiri et al. Laser ultrasonic receivers based on organic photorefractive polymer composites
WO2023007993A1 (ja) フレクソエレクトリック液晶組成物、液晶素子、レーザ検査システム及び被検体の分析方法
WO2001061323A1 (fr) Instrument de mesure de la propriete physique d'un echantillon
WO2009121271A1 (en) Method and apparatus for phase sensitive surface plasmon resonance
JP3288670B2 (ja) 試料の物理的性質の測定装置
Lambert et al. Enhanced sum frequency generation from a monolayer adsorbed on a composite dielectric/metal substrate
Castillo et al. Applications of photothermal displacement spectroscopy to the study of asphaltenes adsorption
CN208847653U (zh) 一种实时偏振敏感的太赫兹时域椭偏仪
Fang et al. High extinction polarimeter for the precision measurement of the in-plane optical anisotropy of molecular monolayers
Ohno et al. Optical Waveguide Spectrometry of Acridine Orange in Monolayer and Langmuir− Blodgett Film
Sasaki et al. Photorefractive flexoelectric liquid crystal mixtures and their application to laser ultrasonics
Mounier et al. Detection of shear picosecond acoustic pulses by transient femtosecond polarimetry
US6356349B1 (en) Polariton wave imaging
Sasaki et al. Detection of phase change of light using photorefractive liquid crystal and its application to laser ultrasonics
Hajj et al. Electro-optical imaging microscopy of dye-doped artificial lipidic membranes
Sasaki et al. Photorefractive effect of smectic liquid crystals and their application to laser ultrasonic remote sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3227292

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023538330

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022847401

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022847401

Country of ref document: EP

Effective date: 20240206

NENP Non-entry into the national phase

Ref country code: DE