WO2023007972A1 - Positive photosensitive resin composition - Google Patents

Positive photosensitive resin composition Download PDF

Info

Publication number
WO2023007972A1
WO2023007972A1 PCT/JP2022/023848 JP2022023848W WO2023007972A1 WO 2023007972 A1 WO2023007972 A1 WO 2023007972A1 JP 2022023848 W JP2022023848 W JP 2022023848W WO 2023007972 A1 WO2023007972 A1 WO 2023007972A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
photosensitive resin
positive photosensitive
group
Prior art date
Application number
PCT/JP2022/023848
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 今井
勲 安達
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020247001062A priority Critical patent/KR20240036559A/en
Priority to CN202280050708.0A priority patent/CN117677901A/en
Priority to JP2023538323A priority patent/JPWO2023007972A1/ja
Publication of WO2023007972A1 publication Critical patent/WO2023007972A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/20Esters containing oxygen in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a positive photosensitive resin composition, a cured film obtained from the resin composition, a microlens, and a method for producing the same.
  • Imaging elements such as CCD image sensors and CMOS image sensors, or display elements such as liquid crystal displays and organic EL displays, often use minute lenses called microlenses to improve performance.
  • microlenses For example, providing the image sensor with microlenses has the effect of improving the light collection rate and enhancing the sensor sensitivity.
  • An etch-back method is known as one of methods for manufacturing microlenses (for example, Patent Document 1). Specifically, a microlens resin layer is formed on a color filter, a positive resist is applied on the resin layer, a part of the resist is exposed and developed, and a lens pattern is formed by heating as necessary. Then, by etching back using the lens pattern as an etching mask, the lens pattern shape is transferred to the microlens resin layer to fabricate the microlens.
  • the positive resist as it is as a lens
  • a method of using the positive resist as it is as a lens since it is necessary to have both the characteristics of a resist and the characteristics of a microlens, not only is positive patterning possible, but also the formed microlens has excellent transparency and chemical resistance.
  • a flexible resin composition is required.
  • the shape of the microlens differs depending on the design of the device, and various shapes such as a prism, a cylinder, a truncated pyramid, a truncated cone, and a truncated cone may be required.
  • Patent Document 2 proposes a photosensitive resin composition containing an alkali-soluble copolymer and a quinonediazide group-containing compound.
  • a microlens can be obtained by forming a resin pattern by exposure and development, and then crosslinking phenolic hydroxy groups and epoxy groups by heating.
  • Patent Documents 3 and 4 propose a radiation-sensitive resin composition containing a photoacid generator in addition to an alkali-soluble polymer and a quinonediazide compound.
  • a strong acid can be generated inside the resin pattern by re-exposing the resin pattern, and cationic polymerization can proceed, so that the temperature of the process can be lowered.
  • the film physical properties (sensitivity characteristics, patterning characteristics, etc.) of the exposed portion of the composition may be changed by PED.
  • PED means PostExposure Delay, and is a concept indicating an interval from an exposure process to the next process (development process, etc.).
  • Patent Document 4 describes an acid diffusion control agent that prevents acid generated in an exposed area from diffusing into an unexposed area for the purpose of suppressing changes in film properties in an unexposed area.
  • a chemically amplified positive resist as described in US Pat.
  • the acid diffusion control agent is different from the one that prevents changes in the film physical properties of the exposed area.
  • the present invention has been made based on the above circumstances, and its object is to enable positive patterning and to form a microlens having a desired shape even in a low-temperature process of 150° C. or less, Provided is a positive photosensitive resin composition capable of suppressing changes in film physical properties of exposed areas due to PED [Post Exposure Delay] while forming microlenses having excellent transparency and chemical resistance. is.
  • PED stability (PED resistance) improver an additive called a PED stability (PED resistance) improver. That is, in a positive photosensitive resin composition containing an alkali-soluble resin, a quinonediazide compound, and a photoacid generator, it was clarified that the change in film properties in the exposed area due to PED was caused by a cationic polymerization reaction in the exposed area.
  • PED stability (PED resistance) can be improved by adding a component that inhibits the initiation reaction or growth reaction of cationic polymerization in the part, and have completed the present invention.
  • the first aspect of the present invention is the following component (A), the following (B) component, the following (C) component and the following (D) component, or the following (A') component, the following (B) component, and the following (C) It is a positive photosensitive resin composition containing a component, the following component (D) and the following component (E), and further containing a solvent.
  • A') Component: Alkali-soluble resin having no acid-crosslinkable group
  • B) Component: Quinondiazide compound
  • Component Photoacid generator
  • Component PED stability improver
  • Component Component: Compound having at least two acid-crosslinkable groups in the molecule
  • the (A) component and the (A') component are, for example, alkali-soluble resins having a carboxy group.
  • the (A) component and the (A') component are, for example, alkali-soluble resins having phenolic hydroxy groups.
  • the (A) component and the (A') component are, for example, alkali-soluble resins having a structural unit represented by the following formula (1).
  • R 0 represents a hydrogen atom or a methyl group
  • X represents an -O- group or a -NH- group
  • R 1 represents a single bond or an alkylene group having 1 or 2 carbon atoms
  • R 2 represents represents a methyl group
  • a represents 1 or 2
  • b represents an integer of 0 to 2.
  • X represents, for example, a -NH- group.
  • the acid-crosslinkable group is, for example, a functional group containing an epoxy ring or an oxetane ring.
  • the polystyrene equivalent weight average molecular weights of the (A) component and the (A') component are, for example, 1,000 to 100,000.
  • the component (C) is, for example, a nonionic photoacid generator.
  • the nonionic photoacid generator is, for example, a photoacid generator represented by the following formula (2).
  • R 3 is a hydrocarbon group or perfluoroalkyl group having 1 to 10 carbon atoms
  • R 4 is a linear alkyl group or alkoxy group having 1 to 8 carbon atoms, or 3 carbon atoms to 8 branched alkyl or alkoxy groups).
  • the component (D) is, for example, a photobase generator or a basic compound.
  • the component (D) is, for example, amines.
  • component (D) is, for example, 0.1 to 3 parts by mass per 100 parts by mass of component (A).
  • the positive photosensitive resin composition of the present invention may further contain the following component (F).
  • the positive photosensitive resin composition of the present invention is for microlens production, for example.
  • a second aspect of the present invention is a cured film obtained from the positive photosensitive resin composition.
  • a third aspect of the present invention is a microlens produced from the positive photosensitive resin composition.
  • a fourth aspect of the present invention includes a coating step of coating the positive photosensitive resin composition on a substrate to form a resin film, and a first exposure step of exposing at least a portion of the resin film after the coating step. a developing step of removing the exposed portion of the resin film with a developer after the first exposure step to form a pattern of the unexposed portion of the resin film; and a second exposure of further exposing the pattern after the developing step. and a post-baking step of heating the pattern at a temperature of 150° C. or less after the second exposure step.
  • a reflow step of heating the pattern at a temperature of 150° C. or less may be included.
  • the base material is, for example, a substrate on which a color filter is formed.
  • a positive photosensitive resin composition containing an alkali-soluble resin, a quinonediazide compound, and a photoacid generator
  • the mechanism by which PED causes changes in the physical properties of the exposed portion of the film is as follows. That is, during the first exposure step for positive patterning, not only a carboxylic acid is generated from the quinonediazide compound in the exposed area, but also a slight amount of strong acid derived from the photoacid generator is generated, and this A cationic polymerization reaction of a cationically polymerizable group (e.g., epoxy group, epoxycycloalkyl group, oxetanyl group) contained in an alkali-soluble resin having an acid-crosslinkable group or a compound having an acid-crosslinkable group, starting from a strong acid.
  • a cationically polymerizable group e.g., epoxy group, epoxycycloalkyl group, oxetanyl group
  • the positive photosensitive resin composition of the present invention can undergo initiation reaction or growth reaction of cationic polymerization that progresses in the exposed area during the first exposure step for positive patterning. can be inhibited, and it is possible to improve PED stability (PED resistance).
  • the component (D) has different problems and effects from those of the acid diffusion controller described in Patent Document 4.
  • microlenses having a desired shape can be formed even in a low-temperature process of 150° C. or less, and the formed microlenses have excellent transparency and chemical resistance. It is possible to provide a positive photosensitive resin composition that can suppress changes in the film properties of the exposed area due to PED while having
  • the positive photosensitive resin composition of the present invention will be described in more detail.
  • the component (A) or component (A') contained in the positive photosensitive resin composition of the present invention is a resin soluble in an alkaline developer, and is capable of undergoing chemical amplification as described in Patent Document 5. It is clearly distinguished from alkali-insoluble resins used in positive resists and the like.
  • Component (A) or component (A') is not particularly limited as long as it is a resin soluble in an alkaline developer. resins, polyimide resins, polyamic acid resins, polybenzoxazole resins, hydroxystyrene resins, and cyclic olefin resins.
  • the alkali-soluble group contained in these alkali-soluble resins is usually a functional group having an acid dissociation constant pKa (the lowest value in the case of polyvalent acids) of 13 or less, and the acid dissociation constant pKa is preferable from the viewpoint of the development margin.
  • pKa the lowest value in the case of polyvalent acids
  • Specific examples include silanol groups, fluoroalcohol groups, maleimide groups, carboxy groups, and phenolic hydroxy groups.
  • These alkali-soluble groups may be contained alone or in combination of two or more in the alkali-soluble resin.
  • component (A) has an acid-crosslinkable group in its partial structure.
  • the acid-crosslinkable group is not particularly limited as long as it is a functional group capable of forming a covalent bond with itself or with another functional group under acidic conditions, for example, N-methylol group, N-methoxymethyl group , N-vinyl group, styryl group, vinyl ether group, epoxy group, epoxycycloalkyl group, oxetanyl group, tetrahydrofuranyl group, and tetrahydropyranyl group. From the viewpoint of low-temperature curability, cationically polymerizable groups are particularly preferred as acid-crosslinkable groups.
  • epoxy groups and epoxycycloalkyl groups which are functional groups containing an epoxy ring
  • oxetanyl groups which are functional groups containing an oxetane ring
  • These acid-crosslinkable groups may be contained alone or in combination of two or more in component (A). By having an acid-crosslinkable group in the partial structure of component (A), chemical resistance can be further improved. On the other hand, component (A') does not have an acid-crosslinkable group in its partial structure.
  • Component (A) or component (A') is a polymerization reaction (addition polymerization, ring-opening polymerization, condensation polymerization, addition polymerization) of a monomer having at least one alkali-soluble group or alkali-soluble group precursor and optionally other monomer condensation, polyaddition).
  • the polymerization reaction may be followed by a polymer reaction.
  • Various known methods can be employed for these polymerization reactions and polymer reactions.
  • the alkali-soluble resins of component (A) or component (A') may be used alone or in combination of two or more.
  • copolymers obtained by copolymerizing radically polymerizable monomers are particularly preferable.
  • alkali-soluble group-containing radically polymerizable monomer used as a polymerization component of the copolymer include the following monomers.
  • phenolic hydroxy group-containing monomer a monomer forming the structural unit represented by the formula (1) is particularly preferable from the viewpoint of heat resistance, and among these, (meth)acrylamide is particularly preferable. These monomers may be used individually by 1 type, or may be used in combination of 2 or more type.
  • component (A) in addition to the alkali-soluble group-containing radically polymerizable monomer, an acid-crosslinkable group-containing radically polymerizable monomer is included as a polymerization component.
  • component (A') no acid-crosslinkable group-containing radically polymerizable monomer is included as a polymerization component.
  • acid-crosslinkable group-containing radically polymerizable monomers include monomers shown below.
  • glycidyl (meth)acrylate ⁇ -ethylglycidyl acrylate, 3,4-epoxybutyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 6,7-epoxyheptyl (meth)acrylate, ⁇ -ethyl- Epoxy rings such as 6,7-epoxyheptyl acrylate, vinyl glycidyl ether, allyl glycidyl ether, isopropenyl glycidyl ether, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, vinylcyclohexene monoxide, etc.
  • a functional group-containing monomer comprising; 3-((meth)acryloyloxymethyl)oxetane, 3-((meth)acryloyloxymethyl)-2-methyloxetane, 3-((meth)acryloyloxymethyl)-3-ethyloxetane, 3-((meth) Acryloyloxymethyl)-2-phenyloxetane, 3-(2-(meth)acryloyloxyethyl)oxetane, 3-(2-(meth)acryloyloxyethyl)-2-ethyloxetane, 3-(2-(meth) acryloyloxyethyl)-3-ethyloxetane, 3-(2-(meth)acryloyloxyethyl)-2-phenyloxetane, 2-((meth)acryloyloxymethyl)oxetane, 2-((meth)acryloyloxymethyl) -3-methyloxetane,
  • component (A) or component (A') may optionally be polymerized with other radically polymerizable monomers
  • other radically polymerizable monomers include, for example, the following monomers. methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, dodecyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, 1-adamantyl (meth)acrylate ) acrylate
  • the molecular weight of component (A) or component (A') is 1,000 to 100,000, preferably 2,000 to 50,000 as a polystyrene equivalent weight average molecular weight MW calculated by gel permeation chromatography (GPC) or the like. , more preferably 5,000 to 30,000. Within the above range, a good pattern can be formed after development without impairing chemical resistance.
  • the glass transition temperature of component (A) or component (A') is 70°C to 150°C when a spherical or hemispherical microlens is produced.
  • a microlens having a desired spherical or hemispherical shape can be produced with good reflowability even in a low-temperature process of 150° C. or lower.
  • the component (B) contained in the positive photosensitive resin composition of the present invention is not particularly limited as long as it is a compound having a 1,2-quinonediazide group.
  • Condensates with sulfonic acid halides can be used. Specifically, 10 mol% to 100 mol%, preferably 20 mol% to 95 mol%, of the hydroxy groups of the hydroxy group-containing compound are esterified with the 1,2-naphthoquinonediazide sulfonic acid halide. compounds can be used. Various known methods can be employed for the condensation reaction.
  • hydroxy group-containing compound examples include compounds shown below.
  • Dihydroxybenzophenones such as 2,4-dihydroxybenzophenone; trihydroxybenzophenones such as 2,3,4-trihydroxybenzophenone and 2,4,6-trihydroxybenzophenone; 2,4,2′,4′-tetrahydroxybenzophenone, 2,3,4,3′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3,4,2′-tetra Tetrahydroxybenzophenones such as hydroxy-4'-methylbenzophenone and 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone; pentahydroxybenzophenones such as 2,3,4,2′,4′-pentahydroxybenzophenone and 2,3,4,2′,6′-pentahydroxybenzophenone; Hexahydroxybenzophenones such as 2,4,6,3′,4′,5′-hexahydroxybenzophenone and 3,4,5,3′,4′,5′-
  • 2,3,4,4'-tetrahydroxybenzophenone, 1,1,1-tris(p-hydroxyphenyl)ethane, and 4,4'-[1-[4-[1-[ 4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol is preferred.
  • 1,2-naphthoquinonediazide sulfonic acid halide 1,2-naphthoquinone diazide sulfonic acid chloride is preferable, and 1,2-naphthoquinone-2-diazide-4-sulfonic acid chloride and 1,2-naphthoquinone-2-diazide are used.
  • -5-sulfonic acid chloride is more preferred, and 1,2-naphthoquinone-2-diazide-5-sulfonic acid chloride is even more preferred.
  • the compounds of component (B) may be used singly or in combination of two or more.
  • the content of component (B) in the positive photosensitive resin composition of the present invention is 5 parts by mass to 100 parts by mass, preferably 10 parts by mass to 60 parts by mass, with respect to 100 parts by mass of component (A). It is preferably 15 to 40 parts by mass.
  • the component (C) contained in the positive-type photosensitive resin composition of the present invention is not particularly limited as long as it is a compound capable of generating an acid having an acid dissociation constant pKa of 4 or less upon exposure. Ionic photoacid generators can be mentioned.
  • ADEKA Arkles registered trademark
  • SP-056, SP-171 manufactured by ADEKA Co., Ltd.
  • CPI registered trademark
  • -100P -101A, -110A, - 110B, -110P, -200K, -210S, -300, -310B, -310FG, -400, -410B, -410S, VC-1FG, ES-1B (above, Sun-Apro ( Co., Ltd.), TPS-TF, TPS-CS, TPS-PFBS (manufactured by Toyo Gosei Co., Ltd.), TPS-102, TPS-103, TPS-105, TPS-106, TPS-109, TPS- 200, TPS-300, TPS-1000, HDS-109, MDS-103, MDS-105, MDS-109, M
  • nonionic photoacid generator for example, the products and compounds shown below can be used.
  • ADEKA Arkles registered trademark
  • SP-082, SP-606 manufactured by ADEKA Corporation
  • NA-CS1, NP-TM2, NP-SE10 manufactured by San-Apro Co., Ltd.
  • SI-105, SI-106, PI-106 NDI-101, NDI-105, NDI-106, NDI-109, NDI-1001, NDI-1004, NAI-100, NAI-101, NAI-105, NAI-106, NAI- N-sulfonyloxyimides such as 109, NAI-1002, NAI-1003, and NAI-1004 (manufactured by Midori Chemical Co., Ltd.);
  • IRGACURE registered trademark
  • PAG103, PAG121, PAG203 manufactured by BASF Japan Co., Ltd.
  • nonionic photoacid generators are preferable, N-sulfonyloxyimides are more preferable, and the formula ( Compounds represented by 2) are more preferred.
  • Specific examples of the compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-28).
  • the compounds of component (C) may be used singly or in combination of two or more.
  • the content of component (C) in the positive photosensitive resin composition of the present invention is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass, per 100 parts by mass of component (A). part by mass.
  • Component (D) contained in the positive photosensitive resin composition of the present invention is not particularly limited as long as it is a compound capable of inhibiting the initiation reaction or growth reaction of cationic polymerization in the exposed area. agents and basic compounds (amines, quaternary ammoniums, inorganic bases) and the like.
  • the photobase generator is not particularly limited as long as it is a compound capable of generating a base upon exposure.
  • the following products can be used.
  • Examples of the basic compound include compounds shown below. ethylamine, n-propylamine, isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, cyclobutylamine, n-pentylamine, isopentylamine, cyclopentylamine, n-hexylamine, cyclohexylamine, n-heptylamine, n -octylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, oleylamine, 2-ethylhexylamine, aniline, benzylamine, ethanolamine, propanolamine, butanolamine , 3-ethoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 1-amino-2-propanol
  • amines such as heterocyclic amines such as pyridine and imidazole; quaternary ammoniums such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and tetrabutylammonium hydroxide; Inorganic bases such as ammonia, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium phosphate and potassium phosphate.
  • amines are particularly preferred among these photobase generators and basic compounds.
  • the compounds of component (D) may be used singly or in combination of two or more.
  • the content of component (D) in the positive photosensitive resin composition of the present invention is 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, per 100 parts by mass of component (A). parts by mass, more preferably 0.1 to 3 parts by mass.
  • the quinonediazide compound of component (B) when the quinonediazide compound of component (B) is mixed with a basic compound such as an amine, it has the property of discoloring due to interaction.
  • the transparency of the microlens produced from the positive photosensitive resin composition of the invention is not significantly impaired.
  • the positive photosensitive resin composition of the present invention contains the (A') component, it contains the (E) component as an essential component, and when it contains the (A) component, it contains the (E) component as an optional component.
  • the component (E) is not particularly limited as long as it is a compound having at least two acid-crosslinkable groups in the molecule. For example, the following products and compounds can be used.
  • EPICLON (registered trademark) 830, 830-S, 835, 840, 840-S, 850, 850-S, 850-LC, HP-820 (manufactured by DIC Corporation), DENACOL (registered trademark) EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX-821, EX-830, EX-832, EX-841, EX-850, EX-851, EX-861, EX-920, EX-931, EX-991L, EX-313, EX-314, EX-321, EX-321L, EX-411, EX-421, EX-512, EX-521, EX-612, EX-614, EX-614B, EX-622 (Nagase ChemteX ( Co., Ltd.), jER (registered trademark) 152, 630, 825, 827, 828, 828EL, 828US
  • the compound of the component may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the content of component (E) is 5 parts by mass to 100 parts by mass with respect to 100 parts by mass of component (A) or component (A'). Parts by mass, preferably 10 to 50 parts by mass.
  • Chemical resistance can be improved by making content of a component into the said range.
  • Component (F) component which is included as an optional component in the positive photosensitive resin composition of the present invention, is not particularly limited as long as it is a substance capable of transferring the energy of irradiated light to other substances. tolquinone, 1-phenyl-1,2-propanedione, phenanthrene, anthracene, 9,10-diethoxyanthracene, 9,10-dipropyloxyanthracene, 9,10-dibutoxyanthracene, 9,10-dioctanoyloxy Anthracene, 3,7-dimethoxyanthracene, pyrene, perylene, xanthone, thioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, and the like.
  • the compound of the component may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the content of the (F) component is preferably 0.01 to 5 parts by mass per 100 parts by mass of the (A) component. is 0.05 to 3 parts by mass, more preferably 0.1 to 1 part by mass.
  • solvent contained in the positive photosensitive resin composition of the present invention dissolves components (A) to (D) or components (A') to (E) and optional components added as necessary.
  • Any organic solvent such as hydrocarbons, halogenated hydrocarbons, ethers, alcohols, aldehydes, ketones, esters, amides, nitriles, etc. can be used.
  • hydrocarbons examples include n-pentane, cyclopentane, methylcyclopentane, n-hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, n-heptane, benzene, toluene, o-xylene, m-xylene, Examples include p-xylene and mesitylene.
  • halogenated hydrocarbons examples include dichloromethane, chloroform, carbon tetrachloride, chloroethane, dichloroethane, trichloroethane, tetrachloroethane, hexachloroethane, dichloroethylene, trichloroethylene, tetrachloroethylene, chlorobenzene, hydrofluorocarbons and perfluorocarbons.
  • ethers examples include diethyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, diisobutyl ether, di-tert-butyl ether, di-n-pentyl ether, diisopentyl ether, di- n-hexyl ether, methyl-n-propyl ether, methyl isopropyl ether, ethyl-n-propyl ether, ethyl isopropyl ether, n-butyl methyl ether, isobutyl methyl ether, tert-butyl methyl ether, n-butyl ethyl ether, isobutyl ethyl ether, tert-butyl ethyl ether, methyl-n-pentyl ether, cyclopentyl methyl ether, n-hexyl methyl ether, cycl
  • Examples of the alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, tert-butyl alcohol, 1-pentanol, 2-pentanol.
  • aldehydes examples include ethanal, propanal, 2-methyl-1-propanal, butanal, 3-methylbutanal, pentanal and benzaldehyde.
  • ketones examples include acetone, 2-butanone, 2-pentanone, 3-pentanone, cyclopentanone, 2,4-pentanedione, 4-methyl-2-pentanone, 4-hydroxy-4-methyl-2 -pentanone, cyclohexanone and 2-heptanone.
  • esters examples include methyl formate, ethyl formate, n-propyl formate, isopropyl formate, n-butyl formate, isobutyl formate, tert-butyl formate, n-pentyl formate, isopentyl Formate, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, tert-butyl acetate, n-pentyl acetate, isopentyl acetate, cyclopentyl acetate tart, n-hexyl acetate, isohexyl acetate, cyclohexyl acetate, n-heptyl acetate, isoheptyl acetate, n-octyl acetate, isooctyl acetate, benzy
  • amides examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyramide, N-methylpyrrolidone and N-ethylpyrrolidone.
  • nitriles examples include acetonitrile, propionitrile and butyronitrile.
  • solvents may be used singly or in combination of two or more.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate
  • Propylene glycol monoethyl ether propylene glycol monopropyl ether
  • 2-heptanone ethyl lactate
  • n-butyl lactate cyclopentanone and cyclohexanone
  • the positive photosensitive resin composition of the present invention may optionally contain a surfactant for the purpose of improving coatability.
  • surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether and polyoxyethylene
  • Polyoxyethylene alkylaryl ethers such as nonylphenyl ether, polyoxyethylene/polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan trioleate
  • Sorbitan fatty acid esters such as stearates, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene
  • Ftergent series (manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, and Organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned. These surfactants may be used singly or in combination of two or more.
  • the content of the surfactant is 0.00 per 100 parts by mass of the total solid content excluding the solvent in the positive photosensitive resin composition. 001 to 3 parts by mass, preferably 0.005 to 1 part by mass, more preferably 0.01 to 0.5 parts by mass.
  • the positive photosensitive resin composition of the present invention contains additives such as curing aids, antioxidants, UV absorbers, plasticizers, adhesion aids, etc. as necessary, as long as the effects of the present invention are not impaired. be able to.
  • the method for preparing the positive photosensitive resin composition of the present invention is not particularly limited. A method of dissolving in a solvent to form a uniform solution can be mentioned. Moreover, if necessary, the solution may be filtered using a filter with a pore size of 0.1 ⁇ m to 10 ⁇ m.
  • a resin film is formed by applying the positive photosensitive resin composition of the present invention according to a method, preferably pre-baking using a heating means such as an oven or a hot plate, and removing the solvent. Pre-baking conditions are appropriately selected from the ranges of baking temperature of 60° C. to 130° C. and baking time of 20 seconds to 30 minutes.
  • the film thickness of the resin film to be formed is 0.1 ⁇ m to 10 ⁇ m, preferably 0.2 ⁇ m to 5 ⁇ m.
  • a predetermined mask For example, g-line, i-line, KrF excimer laser, and ArF excimer laser can be used as light for exposure.
  • the exposure dose is appropriately selected from the range of 20 mJ/cm 2 to 2000 mJ/cm 2 .
  • the developing method is not particularly limited, but includes, for example, a dipping method, a puddle method and a spraying method.
  • the development conditions are appropriately selected from the ranges of development temperature of 5° C. to 50° C. and development time of 10 seconds to 300 seconds.
  • the developer to be used is not particularly limited as long as it can remove the exposed areas, but examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium phosphate, potassium phosphate, and ammonia.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • a rinse solution may be used to wash away the developer.
  • a rinse solution may be used to wash away the developer.
  • it can be dried by rotating it with a spinnable device such as a spinner or a coater, or by blowing compressed air or compressed nitrogen.
  • the pattern formed after the development step is reflowed using a heating means such as an oven or a hot plate before the second exposure step described later.
  • a step may be included.
  • the reflow conditions are appropriately selected from a baking temperature range of 80° C. to 150° C. and a baking time range of 1 minute to 90 minutes.
  • the reflow temperature is T R [° C.]
  • the glass transition temperature of the alkali-soluble resin is T g [° C.]
  • the following formulas (3) and (4) are preferable, and more preferably the following formula (3 ) and the following formula (5), more preferably the following formula (3) and the following formula (6) are satisfied.
  • the pattern may reflow if (T g ⁇ 10) ⁇ T R is satisfied.
  • the spherical or hemispherical microlens can be produced.
  • the spherical or hemispherical microlens can be produced at a lower temperature. It becomes possible.
  • ⁇ Second exposure step> After the developing step or after the reflow step, the pattern is further exposed.
  • g-line, i-line, KrF excimer laser, and ArF excimer laser can be used as light for exposure.
  • the exposure amount is appropriately selected from the range of 100 mJ/cm 2 to 5000 mJ/cm 2 .
  • Post-baking process> After the second exposure step, the pattern is heated using heating means such as an oven or a hot plate. Post-baking conditions are appropriately selected from the ranges of baking temperature of 80° C. to 150° C. and baking time of 1 minute to 90 minutes.
  • Microlenses such as prisms, cylinders, truncated pyramids or truncated cones may be fabricated without reflowing the pattern.
  • T P the post-baking temperature
  • T g the glass transition temperature of the alkali-soluble resin
  • the following formulas (7) and (8) more preferably the following formula (7) and the following formula (9), more preferably the following formula (7) and the following formula (10) are satisfied.
  • the post-baking temperature is T P [°C] and the glass transition temperature of the alkali-soluble resin is T g [°C].
  • Formula (11) T g ⁇ T P ⁇ (T g +70)
  • the apparatus and conditions used for measuring the polystyrene-equivalent weight-average molecular weight MW of the alkali-soluble resin are as follows. Apparatus: GPC system manufactured by JASCO Corporation Column: Shodex (registered trademark) KF-804L and KF-803L Column oven: 40°C Flow rate: 1 mL/min Eluent: Tetrahydrofuran Sample concentration: 10 mg/mL Sample injection volume: 20 ⁇ L Reference material: Monodisperse polystyrene Detector: Differential refractometer
  • a solution prepared by mixing 4.5 g of propylene glycol monomethyl ether with 194 g of propylene glycol monomethyl ether as a solvent was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After the completion of dropping, reaction was continued for 15 hours to obtain a copolymer solution (solid content concentration: 30% by mass).
  • the polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 8,000. This copolymer was designated as alkali-soluble resin A-8.
  • Example 1 21.0 g of the alkali-soluble resin A'-1 obtained in Synthesis Example 1 as component (A'), 6.3 g of B-1 as component (B), and 0.3 g of C-1 as component (C). , 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, 39.9 g of propylene glycol monomethyl ether as solvent and 39.9 g of propylene glycol monomethyl ether acetate was blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
  • Example 2 60.0 g (21.0 g as solid content) of the alkali-soluble resin A'-2 obtained in Synthesis Example 2 as component (A'), 4.8 g of B-1 as component (B), and component (C) 0.2 g of C-1 as component (D), 0.1 g of D-1 as component (D), 10.5 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene as solvent 3.8 g of glycol monomethyl ether and 35.1 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 32% by mass).
  • Example 3 60.0 g (21.0 g as solid content) of the alkali-soluble resin A-3 obtained in Synthesis Example 3 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 14.0 g of ether and 22.7 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 30% by mass).
  • Example 4 60.0 g (21.0 g as solid content) of the alkali-soluble resin A-4 obtained in Synthesis Example 4 as component (A), 6.3 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 22.1 g of ether and 26.2 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 28% by mass).
  • Example 5 60.0 g (21.0 g as solid content) of the alkali-soluble resin A-5 obtained in Synthesis Example 5 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 14.0 g of ether and 22.7 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 30% by mass).
  • Example 7 > 70.0 g (21.0 g as solid content) of the alkali-soluble resin A-7 obtained in Synthesis Example 7 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 9.4 g of ether and 25.0 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 28% by mass).
  • Example 8 > 70.0 g (21.0 g as solid content) of the alkali-soluble resin A-8 obtained in Synthesis Example 8 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 6.6 g of ether and 23.8 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
  • Example 9 70.0 g (21.0 g as solid content) of the alkali-soluble resin A-8 obtained in Synthesis Example 8 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.3 g of -2, 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 6.8 g of ether and 23.9 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
  • Example 10 70.0 g (21.0 g as solid content) of the alkali-soluble resin A-9 obtained in Synthesis Example 9 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 6.6 g of ether and 23.8 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
  • Example 11 70.0 g (21.0 g as solid content) of the alkali-soluble resin A-10 obtained in Synthesis Example 10 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 30.2 g of ether and 79.2 g of propylene glycol monomethyl ether acetate were blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 17% by mass).
  • Example 12 A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11, except that 0.4 g of D-2 was used instead of D-1 as component (D).
  • Example 13 A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11, except that 0.02 g of D-3 was used as component (D) instead of D-1.
  • Example 14 Positive photosensitive in the same procedure as in Example 11 except that 0.04 g of D-4 (actually 0.4 g of 10% by weight tetramethylammonium hydroxide aqueous solution) was used as component (D) instead of D-1.
  • a flexible resin composition (solid concentration: 17% by mass) was obtained.
  • Example 15 A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11 except that 0.2 g of D-5 was used as component (D) instead of D-1.
  • Example 16 70.0 g (21.0 g as solid content) of the alkali-soluble resin A-10 obtained in Synthesis Example 10 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1, 0.1 g of D-1 as component (D), 0.01 g of R-40 as a surfactant, 25.1 g of propylene glycol monomethyl ether as a solvent, and propylene glycol monomethyl ether acetate. 74.1 g was blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid content concentration: 15% by mass).
  • Example 17 84.0 g (25.2 g as solid content) of the alkali-soluble resin A-10 obtained in Synthesis Example 10 as component (A), 5.8 g of B-1 as component (B), and C as component (C) -1 0.2 g, (D) component D-1 0.1 g, (E) component E-1 7.6 g, (F) component F-1 0.05 g, surfactant 0.01 g of R-40, 36.2 g of propylene glycol monomethyl ether and 95.0 g of propylene glycol monomethyl ether acetate as solvents were blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 ⁇ m to obtain a positive photosensitive resin composition (solid concentration: 17% by mass).
  • a mask forming a 1 ⁇ m ⁇ 1 ⁇ m square dot pattern/1 ⁇ m space was used. After that, within 10 minutes after the exposure, development was performed using a tetramethylammonium hydroxide (TMAH) aqueous solution with a concentration of 2.38% by mass. A square dot pattern of 1 ⁇ m ⁇ 1 ⁇ m was formed on the resin film with a thickness of 1 ⁇ m. Subsequently, the square dot pattern was baked on a hot plate at the reflow temperature shown in Table 2 for 5 minutes.
  • TMAH tetramethylammonium hydroxide
  • the square dot pattern was not baked at the reflow temperature. Furthermore, using the i-line stepper, the entire surface of the square dot pattern is subjected to a second exposure at 500 mJ/cm 2 , and then baked on a hot plate at the post-bake temperature shown in Table 2 for 10 minutes. Thus, a microlens was produced. The shape of the fabricated microlens was evaluated as " ⁇ " when it was a quadrangular prism or truncated quadrangular pyramid, and as " ⁇ " when it was spherical or hemispherical. Table 2 shows the evaluation results.
  • the silicon wafer on which the cured film was formed was immersed in propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, and a 2.38 mass% concentration tetramethylammonium hydroxide (TMAH) aqueous solution at 23°C for 5 minutes. bottom.
  • TMAH tetramethylammonium hydroxide
  • the film thickness of the cured film was measured before and after immersion, and the change in film thickness before and after immersion was calculated. If even one of the solvents used for immersion has a film thickness change of 10% or more compared to the film thickness before immersion, the chemical resistance is "x", and the film thickness change is less than 10% for all solvents. In that case, the chemical resistance was evaluated as “ ⁇ ”. Table 2 shows the evaluation results.
  • a mask for forming a 1 ⁇ m ⁇ 1 ⁇ m square dot pattern/1 ⁇ m space was used. After that, within 10 minutes after the first exposure, development is performed using a 2.38 mass % concentration tetramethylammonium hydroxide (TMAH) aqueous solution, and a square dot pattern of 4 ⁇ m ⁇ 4 ⁇ m is formed on the resin film having a thickness of 4 ⁇ m. A square dot pattern of 1 ⁇ m ⁇ 1 ⁇ m was formed on a resin film having a thickness of 1 ⁇ m (Condition 1).
  • TMAH tetramethylammonium hydroxide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[Problem] To provide a novel positive photosensitive resin composition. [Solution] A positive photosensitive resin composition: containing the following component (A), component (B), component (C), and component (D), or the following component (A'), component (B), component (C), component (D), and component (E); and further containing a solvent. Component (A): an alkali-soluble resin having an acid-crosslinkable group. Component (A'): an alkali-soluble resin that does not have an acid-crosslinkable group. Component (B): a quinone diazide compound. Component (C): a photoacid generator. Component (D): a PED stability improver. Component (E): a compound having at least two acid-crosslinkable groups in the molecule.

Description

ポジ型感光性樹脂組成物Positive photosensitive resin composition
本発明は、ポジ型感光性樹脂組成物、当該樹脂組成物より得られる硬化膜、マイクロレンズ及びその作製方法に関するものである。 TECHNICAL FIELD The present invention relates to a positive photosensitive resin composition, a cured film obtained from the resin composition, a microlens, and a method for producing the same.
CCDイメージセンサやCMOSイメージセンサなどの撮像素子、あるいは液晶ディスプレイや有機ELディスプレイ等の表示素子には、性能向上のためにマイクロレンズと呼ばれる微小なレンズがしばしば用いられる。例えば、前記イメージセンサにマイクロレンズを設けることは、集光率を向上させてセンサ感度を高める効果がある。 2. Description of the Related Art Imaging elements such as CCD image sensors and CMOS image sensors, or display elements such as liquid crystal displays and organic EL displays, often use minute lenses called microlenses to improve performance. For example, providing the image sensor with microlenses has the effect of improving the light collection rate and enhancing the sensor sensitivity.
マイクロレンズの作製方法の1つとして、エッチバック法が知られている(例えば、特許文献1)。すなわち、カラーフィルター上にマイクロレンズ用樹脂層を形成し、該樹脂層上にポジ型レジストを塗布し、該レジストの一部を露光及び現像し、必要に応じて加熱することでレンズパターンを形成し、該レンズパターンをエッチングマスクとしてエッチバックすることで、該レンズパターン形状をマイクロレンズ用樹脂層に転写してマイクロレンズを作製する。 An etch-back method is known as one of methods for manufacturing microlenses (for example, Patent Document 1). Specifically, a microlens resin layer is formed on a color filter, a positive resist is applied on the resin layer, a part of the resist is exposed and developed, and a lens pattern is formed by heating as necessary. Then, by etching back using the lens pattern as an etching mask, the lens pattern shape is transferred to the microlens resin layer to fabricate the microlens.
一方、製造コスト削減の観点から、前記ポジ型レジストをそのままレンズとして利用する方法が提案されている。この場合、レジストとしての特性とマイクロレンズとしての特性を併せ持つことが必要となるため、ポジ型パターニングが可能であるのみならず、形成されるマイクロレンズが優れた透明性及び薬品耐性を有する、感光性樹脂組成物が要求される。ここで、マイクロレンズの形状は素子の設計次第で異なり、角柱、円柱、角錐台、円錐台及び球欠等の様々な形状が要求され得る。球欠形状のマイクロレンズを作製する場合は、角柱又は角錐台等のパターンを形成した後にリフロー(加熱により流動化すること。メルトフロー又はサーマルフローともいう。)させる方法が知られている。 On the other hand, from the viewpoint of manufacturing cost reduction, a method of using the positive resist as it is as a lens has been proposed. In this case, since it is necessary to have both the characteristics of a resist and the characteristics of a microlens, not only is positive patterning possible, but also the formed microlens has excellent transparency and chemical resistance. A flexible resin composition is required. Here, the shape of the microlens differs depending on the design of the device, and various shapes such as a prism, a cylinder, a truncated pyramid, a truncated cone, and a truncated cone may be required. In the case of producing a spherical microlens, there is known a method of forming a pattern of prisms or truncated pyramids and then reflowing (fluidizing by heating; also referred to as melt flow or thermal flow).
例えば、特許文献2にはアルカリ可溶性共重合体及びキノンジアジド基含有化合物を含む感光性樹脂組成物が提案されている。該組成物を用いることで、露光及び現像により樹脂パターンを形成した後、加熱によりフェノール性ヒドロキシ基とエポキシ基とを架橋させてマイクロレンズを得ることができる。 For example, Patent Document 2 proposes a photosensitive resin composition containing an alkali-soluble copolymer and a quinonediazide group-containing compound. By using the composition, a microlens can be obtained by forming a resin pattern by exposure and development, and then crosslinking phenolic hydroxy groups and epoxy groups by heating.
しかし近年、有機デバイスやフレキシブルデバイス等の耐熱性が低いデバイスが用いられるようになってきたことから、プロセスの低温化の要求が増えている。それに伴って、低温プロセスでも良好な性能を有するマイクロレンズを作製することが可能な、ポジ型感光性樹脂組成物が望まれている。球欠形状のマイクロレンズを作製する場合には、低温でも十分にリフローすることが求められる。特許文献2に記載の感光性樹脂組成物は、フェノール性ヒドロキシ基とエポキシ基との熱硬化を採用しているが、この熱硬化反応は通常150℃を超える高温条件が必要であり、したがって150℃以下の低温プロセスには適さない。 However, in recent years, devices with low heat resistance, such as organic devices and flexible devices, have come to be used, so there is an increasing demand for lower temperature processes. Along with this, there is a demand for a positive photosensitive resin composition capable of producing a microlens having good performance even in a low-temperature process. In the case of producing a spherical microlens, sufficient reflow is required even at a low temperature. The photosensitive resin composition described in Patent Document 2 employs thermosetting of a phenolic hydroxy group and an epoxy group. Not suitable for low temperature processes below °C.
そこで特許文献3及び特許文献4では、アルカリ可溶性重合体、キノンジアジド化合物に加え、光酸発生剤を含む感放射線性樹脂組成物が提案されている。該組成物を用いることで、露光及び現像により樹脂パターンを形成した後、再度露光することにより樹脂パターン内部で強酸を発生させ、カチオン重合を進行させることができるためプロセスの低温化が可能となる。しかし、該組成物はPEDにより露光部の膜物性(感度特性やパターニング特性等)が変化する虞があった。ここで、PEDとはPostExposure Delay(露光後遅延)の意であり、露光工程から次の工程(現像工程等)までのインターバルを指す概念である。大型装置を用いてマイクロレンズを作製する場合、ウエハの搬送等に時間を要するため、実用性の観点から通常少なくとも2時間以上のPEDを許容し得るような高いPED安定性(PED耐性)の材料が必要とされる。このような背景を踏まえると、特許文献3及び特許文献4に記載されているようなアルカリ可溶性樹脂、キノンジアジド化合物及び光酸発生剤を含む感光性樹脂組成物は、低温プロセスでマイクロレンズを作製することができる点で優位性があるものの、PED安定性(PED耐性)に乏しく、またPEDによる露光部の膜物性変化の原因が不明であったため、PED安定性(PED耐性)の改善及びPEDによる膜物性変化の原因究明が望まれていた。 Therefore, Patent Documents 3 and 4 propose a radiation-sensitive resin composition containing a photoacid generator in addition to an alkali-soluble polymer and a quinonediazide compound. By using the composition, after a resin pattern is formed by exposure and development, a strong acid can be generated inside the resin pattern by re-exposing the resin pattern, and cationic polymerization can proceed, so that the temperature of the process can be lowered. . However, there is a possibility that the film physical properties (sensitivity characteristics, patterning characteristics, etc.) of the exposed portion of the composition may be changed by PED. Here, PED means PostExposure Delay, and is a concept indicating an interval from an exposure process to the next process (development process, etc.). When manufacturing microlenses using a large-scale apparatus, it takes time to transport the wafer, so from the viewpoint of practicality, a material with high PED stability (PED resistance) that can allow PED for at least 2 hours or more. is required. In view of this background, a photosensitive resin composition containing an alkali-soluble resin, a quinonediazide compound, and a photoacid generator, as described in Patent Documents 3 and 4, can be used to produce microlenses by a low-temperature process. Although it is superior in terms of being able to Investigation of the cause of changes in film properties has been desired.
また特許文献4には、未露光部の膜物性変化を抑制する目的で、露光部で発生した酸が未露光部へ拡散することを防ぐ酸拡散制御剤が記載されている。例えば、特許文献5に記載されている化学増幅ポジ型レジストは、塩基を酸拡散制御剤として添加することができる。しかしながら前記酸拡散制御剤は、露光部の膜物性変化を防ぐものとは異なる。 Further, Patent Document 4 describes an acid diffusion control agent that prevents acid generated in an exposed area from diffusing into an unexposed area for the purpose of suppressing changes in film properties in an unexposed area. For example, a chemically amplified positive resist as described in US Pat. However, the acid diffusion control agent is different from the one that prevents changes in the film physical properties of the exposed area.
特開平1-10666号公報JP-A-1-10666 特開2007-33518号公報JP-A-2007-33518 特開2009-75329号公報JP 2009-75329 A 特開2020-101659号公報JP 2020-101659 A 国際公開2007/007176号WO 2007/007176
本発明は上記の事情に基づいてなされたものであり、その目的は、ポジ型パターニングが可能で、150℃以下の低温プロセスであっても所望の形状を有するマイクロレンズを形成することができ、形成されるマイクロレンズが優れた透明性及び薬品耐性を有しつつ、PED[Post Exposure Delay(露光後遅延)]による露光部の膜物性変化を抑制できるポジ型感光性樹脂組成物を提供することである。 The present invention has been made based on the above circumstances, and its object is to enable positive patterning and to form a microlens having a desired shape even in a low-temperature process of 150° C. or less, Provided is a positive photosensitive resin composition capable of suppressing changes in film physical properties of exposed areas due to PED [Post Exposure Delay] while forming microlenses having excellent transparency and chemical resistance. is.
本発明者らは、前記の課題を解決するべく鋭意検討を行った結果、PED安定性(PED耐性)向上剤と称する添加剤を見出した。すなわち、アルカリ可溶性樹脂、キノンジアジド化合物及び光酸発生剤を含有するポジ型感光性樹脂組成物において、PEDによる露光部の膜物性変化の原因が露光部におけるカチオン重合反応であることを明らかにし、露光部におけるカチオン重合の開始反応又は成長反応を阻害するような成分を添加することでPED安定性(PED耐性)の向上が可能であることを突き止め、本発明を完成するに至った。 The present inventors have made intensive studies to solve the above problems, and as a result, have found an additive called a PED stability (PED resistance) improver. That is, in a positive photosensitive resin composition containing an alkali-soluble resin, a quinonediazide compound, and a photoacid generator, it was clarified that the change in film properties in the exposed area due to PED was caused by a cationic polymerization reaction in the exposed area. The present inventors have found that PED stability (PED resistance) can be improved by adding a component that inhibits the initiation reaction or growth reaction of cationic polymerization in the part, and have completed the present invention.
本発明の第一態様は、下記(A)成分、下記(B)成分、下記(C)成分及び下記(D)成分、又は下記(A´)成分、下記(B)成分、下記(C)成分、下記(D)成分及び下記(E)成分を含み、さらに溶剤を含むポジ型感光性樹脂組成物である。
(A)成分:酸架橋性基を有するアルカリ可溶性樹脂
(A´)成分:酸架橋性基を有さないアルカリ可溶性樹脂
(B)成分:キノンジアジド化合物
(C)成分:光酸発生剤
(D)成分:PED安定性向上剤
(E)成分:酸架橋性基を分子中に少なくとも2つ有する化合物
The first aspect of the present invention is the following component (A), the following (B) component, the following (C) component and the following (D) component, or the following (A') component, the following (B) component, and the following (C) It is a positive photosensitive resin composition containing a component, the following component (D) and the following component (E), and further containing a solvent.
Component (A): Alkali-soluble resin having an acid-crosslinkable group (A') Component: Alkali-soluble resin having no acid-crosslinkable group (B) Component: Quinondiazide compound (C) Component: Photoacid generator (D) Component: PED stability improver (E) Component: Compound having at least two acid-crosslinkable groups in the molecule
前記(A)成分及び前記(A´)成分は、例えばカルボキシ基を有するアルカリ可溶性樹脂である。 The (A) component and the (A') component are, for example, alkali-soluble resins having a carboxy group.
前記(A)成分及び前記(A´)成分は、例えばフェノール性ヒドロキシ基を有するアルカリ可溶性樹脂である。 The (A) component and the (A') component are, for example, alkali-soluble resins having phenolic hydroxy groups.
前記(A)成分及び前記(A´)成分は、例えば下記式(1)で表される構造単位を有するアルカリ可溶性樹脂である。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子又はメチル基を表し、Xは-O-基又は-NH-基を表し、Rは単結合又は炭素原子数1又は2のアルキレン基を表し、Rはメチル基を表し、aは1又は2を表し、bは0乃至2の整数を表す。)
The (A) component and the (A') component are, for example, alkali-soluble resins having a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(Wherein, R 0 represents a hydrogen atom or a methyl group, X represents an -O- group or a -NH- group, R 1 represents a single bond or an alkylene group having 1 or 2 carbon atoms, and R 2 represents represents a methyl group, a represents 1 or 2, and b represents an integer of 0 to 2.)
前記式(1)で表される構造単位においてXは、例えば-NH-基を表す。 In the structural unit represented by formula (1) above, X represents, for example, a -NH- group.
前記酸架橋性基は、例えばエポキシ環又はオキセタン環を含む官能基である。 The acid-crosslinkable group is, for example, a functional group containing an epoxy ring or an oxetane ring.
前記(A)成分及び前記(A´)成分のポリスチレン換算重量平均分子量は、例えば1,000乃至100,000である。 The polystyrene equivalent weight average molecular weights of the (A) component and the (A') component are, for example, 1,000 to 100,000.
前記(C)成分は、例えば非イオン性光酸発生剤である。該非イオン性光酸発生剤は、例えば下記式(2)で表される光酸発生剤である。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素原子数1乃至10の炭化水素基又はパーフルオロアルキル基であり、Rは炭素原子数1乃至8の直鎖状のアルキル基もしくはアルコキシ基、又は炭素原子数3乃至8の分岐鎖状のアルキル基もしくはアルコキシ基である。)
The component (C) is, for example, a nonionic photoacid generator. The nonionic photoacid generator is, for example, a photoacid generator represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 3 is a hydrocarbon group or perfluoroalkyl group having 1 to 10 carbon atoms, R 4 is a linear alkyl group or alkoxy group having 1 to 8 carbon atoms, or 3 carbon atoms to 8 branched alkyl or alkoxy groups).
前記(D)成分は、例えば光塩基発生剤又は塩基性化合物である。 The component (D) is, for example, a photobase generator or a basic compound.
前記(D)成分は、例えばアミン類である。 The component (D) is, for example, amines.
前記(D)成分の含有量は、例えば前記(A)成分100質量部に対し0.1質量部乃至3質量部である。 The content of component (D) is, for example, 0.1 to 3 parts by mass per 100 parts by mass of component (A).
本発明のポジ型感光性樹脂組成物は、下記(F)成分をさらに含有してもよい。
(F)成分:増感剤
The positive photosensitive resin composition of the present invention may further contain the following component (F).
(F) component: sensitizer
本発明のポジ型感光性樹脂組成物は、例えばマイクロレンズ作製用である。 The positive photosensitive resin composition of the present invention is for microlens production, for example.
本発明の第二態様は、前記ポジ型感光性樹脂組成物から得られる硬化膜である。 A second aspect of the present invention is a cured film obtained from the positive photosensitive resin composition.
本発明の第三態様は、前記ポジ型感光性樹脂組成物から作製されるマイクロレンズである。 A third aspect of the present invention is a microlens produced from the positive photosensitive resin composition.
本発明の第四態様は、前記ポジ型感光性樹脂組成物を基材上に塗布して樹脂膜を形成する塗布工程、前記塗布工程の後に樹脂膜の少なくとも一部を露光する第一露光工程、前記第一露光工程の後に前記樹脂膜の露光部を現像液により除去して該樹脂膜の未露光部のパターンを形成する現像工程、前記現像工程の後に前記パターンをさらに露光する第二露光工程、及び前記第二露光工程の後に前記パターンを150℃以下の温度で加熱するポストベーク工程を含む、マイクロレンズの作製方法である。 A fourth aspect of the present invention includes a coating step of coating the positive photosensitive resin composition on a substrate to form a resin film, and a first exposure step of exposing at least a portion of the resin film after the coating step. a developing step of removing the exposed portion of the resin film with a developer after the first exposure step to form a pattern of the unexposed portion of the resin film; and a second exposure of further exposing the pattern after the developing step. and a post-baking step of heating the pattern at a temperature of 150° C. or less after the second exposure step.
前記現像工程の後及び前記第二露光工程の前に、前記パターンを150℃以下の温度で加熱するリフロー工程を含んでもよい。 After the developing step and before the second exposure step, a reflow step of heating the pattern at a temperature of 150° C. or less may be included.
前記基材は、例えばカラーフィルターが形成された基板である。 The base material is, for example, a substrate on which a color filter is formed.
アルカリ可溶性樹脂、キノンジアジド化合物及び光酸発生剤を含有するポジ型感光性樹脂組成物において、PEDにより露光部の膜物性変化が起こる機構は次の通りである。すなわち、ポジ型パターニングのための第一の露光工程時、露光部においてキノンジアジド化合物からカルボン酸が生じるのみならず光酸発生剤由来の強酸も微量ながら生じ、次の現像工程までの間に、この強酸が起点となって酸架橋性基を有するアルカリ可溶性樹脂中又は酸架橋性基を有する化合物中に含まれるカチオン重合性基(例えば、エポキシ基、エポキシシクロアルキル基、オキセタニル基)のカチオン重合反応が進行し、結果として露光部の膜物性変化が起こる。そこで、本発明のポジ型感光性樹脂組成物は、前記(D)成分を添加することによって、ポジ型パターニングのための第一の露光工程時に露光部において進行するカチオン重合の開始反応又は成長反応を阻害することができ、PED安定性(PED耐性)を向上させることが可能となる。ここで、該(D)成分は、特許文献4に記載されている酸拡散制御剤と課題及び効果は異なる。 In a positive photosensitive resin composition containing an alkali-soluble resin, a quinonediazide compound, and a photoacid generator, the mechanism by which PED causes changes in the physical properties of the exposed portion of the film is as follows. That is, during the first exposure step for positive patterning, not only a carboxylic acid is generated from the quinonediazide compound in the exposed area, but also a slight amount of strong acid derived from the photoacid generator is generated, and this A cationic polymerization reaction of a cationically polymerizable group (e.g., epoxy group, epoxycycloalkyl group, oxetanyl group) contained in an alkali-soluble resin having an acid-crosslinkable group or a compound having an acid-crosslinkable group, starting from a strong acid. progresses, resulting in changes in film properties in the exposed areas. Therefore, by adding the component (D), the positive photosensitive resin composition of the present invention can undergo initiation reaction or growth reaction of cationic polymerization that progresses in the exposed area during the first exposure step for positive patterning. can be inhibited, and it is possible to improve PED stability (PED resistance). Here, the component (D) has different problems and effects from those of the acid diffusion controller described in Patent Document 4.
本発明によれば、ポジ型パターニングが可能で、150℃以下の低温プロセスであっても所望の形状を有するマイクロレンズを形成することができ、形成されるマイクロレンズが優れた透明性及び薬品耐性を有しつつ、PEDによる露光部の膜物性変化を抑制できるポジ型感光性樹脂組成物を提供することができる。 According to the present invention, positive patterning is possible, microlenses having a desired shape can be formed even in a low-temperature process of 150° C. or less, and the formed microlenses have excellent transparency and chemical resistance. It is possible to provide a positive photosensitive resin composition that can suppress changes in the film properties of the exposed area due to PED while having
本発明のポジ型感光性樹脂組成物について、より詳細に説明する。
[(A)成分/(A´)成分]
本発明のポジ型感光性樹脂組成物に含まれる(A)成分又は(A´)成分は、アルカリ現像液に可溶な樹脂であって、特許文献5に記載されているような、化学増幅ポジ型レジスト等に用いられるアルカリ不溶性樹脂とは明確に区別される。(A)成分又は(A´)成分はアルカリ現像液に可溶な樹脂であれば特に限定されず、例えば、ポリシロキサン樹脂、ノボラック樹脂、ポリビニルアルコール樹脂、メタクリル酸樹脂、メタクリル酸エステルなどのアクリル系樹脂、ポリイミド樹脂、ポリアミック酸樹脂、ポリベンゾオキサゾール樹脂、ヒドロキシスチレン樹脂、及び環状オレフィン系樹脂等が挙げられる。これらのアルカリ可溶性樹脂に含まれるアルカリ可溶性基は、通常、酸解離定数pKa(多価酸の場合は最も低い値)が13以下の官能基であり、現像マージンの観点から酸解離定数pKaが好ましくは0乃至13、より好ましくは4乃至12の官能基を用いることができる。具体例としては、シラノール基、フルオロアルコール基、マレイミド基、カルボキシ基、及びフェノール性ヒドロキシ基等が挙げられる。これらのアルカリ可溶性基は、アルカリ可溶性樹脂中に1種のみでも、2種以上含んでいてもよい。
The positive photosensitive resin composition of the present invention will be described in more detail.
[(A) component/(A') component]
The component (A) or component (A') contained in the positive photosensitive resin composition of the present invention is a resin soluble in an alkaline developer, and is capable of undergoing chemical amplification as described in Patent Document 5. It is clearly distinguished from alkali-insoluble resins used in positive resists and the like. Component (A) or component (A') is not particularly limited as long as it is a resin soluble in an alkaline developer. resins, polyimide resins, polyamic acid resins, polybenzoxazole resins, hydroxystyrene resins, and cyclic olefin resins. The alkali-soluble group contained in these alkali-soluble resins is usually a functional group having an acid dissociation constant pKa (the lowest value in the case of polyvalent acids) of 13 or less, and the acid dissociation constant pKa is preferable from the viewpoint of the development margin. can use 0 to 13, more preferably 4 to 12 functional groups. Specific examples include silanol groups, fluoroalcohol groups, maleimide groups, carboxy groups, and phenolic hydroxy groups. These alkali-soluble groups may be contained alone or in combination of two or more in the alkali-soluble resin.
また、(A)成分は、その部分構造に酸架橋性基を有する。ここで、酸架橋性基は、酸性条件において、それ自身と又は他の官能基と共有結合を形成し得る官能基であれば特に限定されず、例えば、N-メチロール基、N-メトキシメチル基、N-ビニル基、スチリル基、ビニルエーテル基、エポキシ基、エポキシシクロアルキル基、オキセタニル基、テトラヒドロフラニル基、及びテトラヒドロピラニル基等が挙げられる。低温硬化性の観点から特にカチオン重合性基が酸架橋性基として好ましく、その中でも特にエポキシ環を含む官能基であるエポキシ基及びエポキシシクロアルキル基、並びにオキセタン環を含む官能基であるオキセタニル基が好ましい。これらの酸架橋性基は、(A)成分中に1種のみでも、2種以上含んでいてもよい。(A)成分がその部分構造に酸架橋性基を有することで、薬品耐性をよりいっそう向上させることができる。一方、(A´)成分は、その部分構造に酸架橋性基を有さない。 In addition, component (A) has an acid-crosslinkable group in its partial structure. Here, the acid-crosslinkable group is not particularly limited as long as it is a functional group capable of forming a covalent bond with itself or with another functional group under acidic conditions, for example, N-methylol group, N-methoxymethyl group , N-vinyl group, styryl group, vinyl ether group, epoxy group, epoxycycloalkyl group, oxetanyl group, tetrahydrofuranyl group, and tetrahydropyranyl group. From the viewpoint of low-temperature curability, cationically polymerizable groups are particularly preferred as acid-crosslinkable groups. Among them, epoxy groups and epoxycycloalkyl groups, which are functional groups containing an epoxy ring, and oxetanyl groups, which are functional groups containing an oxetane ring, are particularly preferred. preferable. These acid-crosslinkable groups may be contained alone or in combination of two or more in component (A). By having an acid-crosslinkable group in the partial structure of component (A), chemical resistance can be further improved. On the other hand, component (A') does not have an acid-crosslinkable group in its partial structure.
(A)成分又は(A´)成分は、アルカリ可溶性基又はアルカリ可溶性基前駆体を少なくとも一つ有するモノマー及び必要に応じてその他のモノマーの重合反応(付加重合、開環重合、縮合重合、付加縮合、重付加)によって合成できる。また、任意で前記重合反応に続いて高分子反応を行ってもよい。これら重合反応及び高分子反応としては各種公知の方法を採用することができる。(A)成分又は(A´)成分のアルカリ可溶性樹脂は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 Component (A) or component (A') is a polymerization reaction (addition polymerization, ring-opening polymerization, condensation polymerization, addition polymerization) of a monomer having at least one alkali-soluble group or alkali-soluble group precursor and optionally other monomer condensation, polyaddition). Optionally, the polymerization reaction may be followed by a polymer reaction. Various known methods can be employed for these polymerization reactions and polymer reactions. The alkali-soluble resins of component (A) or component (A') may be used alone or in combination of two or more.
前記アルカリ可溶性樹脂の中でも特に、ラジカル重合性モノマーを共重合することによって得られる共重合体が好ましい。該共重合体の重合成分として用いられるアルカリ可溶性基含有ラジカル重合性モノマーとしては、例えば、以下に示すモノマーが挙げられる。
(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、無水マレイン酸、無水フマル酸、無水シトラコン酸、無水メサコン酸、無水イタコン酸、ビニル安息香酸、o-カルボキシフェニル(メタ)アクリレート、m-カルボキシフェニル(メタ)アクリレート、p-カルボキシフェニル(メタ)アクリレート、o-カルボキシフェニル(メタ)アクリルアミド、m-カルボキシフェニル(メタ)アクリルアミド、p-カルボキシフェニル(メタ)アクリルアミド、コハク酸モノ[2-(メタ)アクリロイルオキシエチル]、フタル酸モノ[2-(メタ)アクリロイルオキシエチル]、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、5-カルボキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-エチルビシクロ[2.2.1]ヘプト-2-エン、及び5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等のカルボキシ基又はカルボン酸無水物基を含有するモノマー;
o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、α-メチル-o-ヒドロキシスチレン、α-メチル-m-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-ヒドロキシフェニル(メタ)アクリレート、3-ヒドロキシフェニル(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、4-ヒドロキシベンジル(メタ)アクリレート、4-ヒドロキシフェネチル(メタ)アクリレート、3,5-ジメチル-4-ヒドロキシフェニル(メタ)アクリレート、3,5-ジメチル-4-ヒドロキシベンジル(メタ)アクリレート、3,5-ジメチル-4-ヒドロキシフェネチル(メタ)アクリレート、N-(2-ヒドロキシフェニル)(メタ)アクリルアミド、N-(3-ヒドロキシフェニル)(メタ)アクリルアミド、N-(4-ヒドロキシフェニル)(メタ)アクリルアミド、N-(4-ヒドロキシベンジル)(メタ)アクリルアミド、N-(4-ヒドロキシフェネチル)(メタ)アクリルアミド、N-(3,5-ジメチル-4-ヒドロキシフェニル)(メタ)アクリルアミド、N-(3,5-ジメチル-4-ヒドロキシベンジル)(メタ)アクリルアミド、及びN-(3,5-ジメチル-4-ヒドロキシフェネチル)(メタ)アクリルアミド等のフェノール性ヒドロキシ基含有モノマー。
 なお、本発明では、(メタ)アクリル酸とは、アクリル酸とメタクリル酸の両方をいう。
Among the above alkali-soluble resins, copolymers obtained by copolymerizing radically polymerizable monomers are particularly preferable. Examples of the alkali-soluble group-containing radically polymerizable monomer used as a polymerization component of the copolymer include the following monomers.
(Meth)acrylic acid, crotonic acid, maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, maleic anhydride, fumaric anhydride, citraconic anhydride, mesaconic anhydride, itaconic anhydride, vinyl benzoic acid, o- Carboxyphenyl (meth)acrylate, m-carboxyphenyl (meth)acrylate, p-carboxyphenyl (meth)acrylate, o-carboxyphenyl (meth)acrylamide, m-carboxyphenyl (meth)acrylamide, p-carboxyphenyl (meth) Acrylamide, mono[2-(meth)acryloyloxyethyl] succinate, mono[2-(meth)acryloyloxyethyl] phthalate, ω-carboxypolycaprolactone mono(meth)acrylate, 5-carboxybicyclo[2.2. 1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene, 5-carboxy-5-methylbicyclo[2.2.1]hept-2-ene, 5 - carboxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-ethylbicyclo[ 2.2.1]hept-2-ene and monomers containing a carboxy group or a carboxylic anhydride group such as 5,6-dicarboxybicyclo[2.2.1]hept-2-ene anhydride;
o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, α-methyl-o-hydroxystyrene, α-methyl-m-hydroxystyrene, α-methyl-p-hydroxystyrene, 2-hydroxyphenyl (meth)acrylate , 3-hydroxyphenyl (meth)acrylate, 4-hydroxyphenyl (meth)acrylate, 4-hydroxybenzyl (meth)acrylate, 4-hydroxyphenethyl (meth)acrylate, 3,5-dimethyl-4-hydroxyphenyl (meth)acrylate acrylates, 3,5-dimethyl-4-hydroxybenzyl (meth)acrylate, 3,5-dimethyl-4-hydroxyphenethyl (meth)acrylate, N-(2-hydroxyphenyl) (meth)acrylamide, N-(3- hydroxyphenyl)(meth)acrylamide, N-(4-hydroxyphenyl)(meth)acrylamide, N-(4-hydroxybenzyl)(meth)acrylamide, N-(4-hydroxyphenethyl)(meth)acrylamide, N-( 3,5-dimethyl-4-hydroxyphenyl)(meth)acrylamide, N-(3,5-dimethyl-4-hydroxybenzyl)(meth)acrylamide, and N-(3,5-dimethyl-4-hydroxyphenethyl) (meth)acrylamide and other phenolic hydroxyl group-containing monomers;
In the present invention, (meth)acrylic acid refers to both acrylic acid and methacrylic acid.
フェノール性ヒドロキシ基含有モノマーとしては、耐熱性等の観点から特に前記式(1)で表される構造単位を形成するモノマーが好ましく、その中でも特に(メタ)アクリルアミドが好ましい。これらのモノマーは1種単独で使用しても、2種以上を組み合わせて使用してもよい。 As the phenolic hydroxy group-containing monomer, a monomer forming the structural unit represented by the formula (1) is particularly preferable from the viewpoint of heat resistance, and among these, (meth)acrylamide is particularly preferable. These monomers may be used individually by 1 type, or may be used in combination of 2 or more type.
(A)成分の場合、前記アルカリ可溶性基含有ラジカル重合性モノマーに加え、酸架橋性基含有ラジカル重合性モノマーを重合成分として含む。一方、(A´)成分の場合、酸架橋性基含有ラジカル重合性モノマーを重合成分として含まない。酸架橋性基含有ラジカル重合性モノマーとしては、例えば、以下に示すモノマーが挙げられる。
グリシジル(メタ)アクリレート、α-エチルグリシジルアクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、6,7-エポキシヘプチル(メタ)アクリレート、α-エチル-6,7-エポキシヘプチルアクリレート、ビニルグリシジルエーテル、アリルグリシジルエーテル、イソプロペニルグリシジルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、ビニルシクロヘキセンモノオキシド等のエポキシ環を含む官能基含有モノマー;
3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-メチルオキセタン、3-((メタ)アクリロイルオキシメチル)-3-エチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、3-(2-(メタ)アクリロイルオキシエチル)オキセタン、3-(2-(メタ)アクリロイルオキシエチル)-2-エチルオキセタン、3-(2-(メタ)アクリロイルオキシエチル)-3-エチルオキセタン、3-(2-(メタ)アクリロイルオキシエチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、2-((メタ)アクリロイルオキシメチル)-3-メチルオキセタン、2-((メタ)アクリロイルオキシメチル)-4-エチルオキセタン、2-((メタ)アクリロイルオキシメチル)-3-フェニルオキセタン、2-(2-(メタ)アクリロイルオキシエチル)オキセタン、2-(2-(メタ)アクリロイルオキシエチル)-3-エチルオキセタン、2-(2-(メタ)アクリロイルオキシエチル)-4-エチルオキセタン、2-(2-(メタ)アクリロイルオキシエチル)-3-フェニルオキセタン等のオキセタン環を含む官能基含有モノマー。
これらの酸架橋性基含有ラジカル重合性モノマーは1種単独で使用しても、2種以上を組み合わせて使用してもよい。
In the case of component (A), in addition to the alkali-soluble group-containing radically polymerizable monomer, an acid-crosslinkable group-containing radically polymerizable monomer is included as a polymerization component. On the other hand, in the case of the component (A'), no acid-crosslinkable group-containing radically polymerizable monomer is included as a polymerization component. Examples of acid-crosslinkable group-containing radically polymerizable monomers include monomers shown below.
glycidyl (meth)acrylate, α-ethylglycidyl acrylate, 3,4-epoxybutyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 6,7-epoxyheptyl (meth)acrylate, α-ethyl- Epoxy rings such as 6,7-epoxyheptyl acrylate, vinyl glycidyl ether, allyl glycidyl ether, isopropenyl glycidyl ether, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, vinylcyclohexene monoxide, etc. a functional group-containing monomer comprising;
3-((meth)acryloyloxymethyl)oxetane, 3-((meth)acryloyloxymethyl)-2-methyloxetane, 3-((meth)acryloyloxymethyl)-3-ethyloxetane, 3-((meth) Acryloyloxymethyl)-2-phenyloxetane, 3-(2-(meth)acryloyloxyethyl)oxetane, 3-(2-(meth)acryloyloxyethyl)-2-ethyloxetane, 3-(2-(meth) acryloyloxyethyl)-3-ethyloxetane, 3-(2-(meth)acryloyloxyethyl)-2-phenyloxetane, 2-((meth)acryloyloxymethyl)oxetane, 2-((meth)acryloyloxymethyl) -3-methyloxetane, 2-((meth)acryloyloxymethyl)-4-ethyloxetane, 2-((meth)acryloyloxymethyl)-3-phenyloxetane, 2-(2-(meth)acryloyloxyethyl) Oxetane, 2-(2-(meth)acryloyloxyethyl)-3-ethyloxetane, 2-(2-(meth)acryloyloxyethyl)-4-ethyloxetane, 2-(2-(meth)acryloyloxyethyl) - Functional group-containing monomers containing an oxetane ring such as 3-phenyloxetane.
These acid-crosslinkable group-containing radically polymerizable monomers may be used alone or in combination of two or more.
また、(A)成分又は(A´)成分は必要に応じてその他のラジカル重合性モノマーを重合成分としてもよく、その他のラジカル重合性モノマーとしては、例えば、以下に示すモノマーが挙げられる。
メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、フェニル(メタ)アクリレート、o-メトキシフェニル(メタ)アクリレート、m-メトキシフェニル(メタ)アクリレート、p-メトキシフェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、ナフチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、トリフルオロメチル(メタ)アクリレート、(メタ)アクリルアミド、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、1-ビニルナフタレン、2-ビニルナフタレン、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、塩化ビニル、塩化ビニリデン、(メタ)アクリロニトリル、酢酸ビニル。
これらのその他のラジカル重合性モノマーは1種単独で使用しても、2種以上を組み合わせて使用してもよい。
In addition, component (A) or component (A') may optionally be polymerized with other radically polymerizable monomers, and other radically polymerizable monomers include, for example, the following monomers.
methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, dodecyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, 1-adamantyl (meth)acrylate ) acrylate, phenyl (meth) acrylate, o-methoxyphenyl (meth) acrylate, m-methoxyphenyl (meth) acrylate, p-methoxyphenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxy Diethylene glycol (meth)acrylate, naphthyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 4-hydroxy Butyl (meth)acrylate, methoxyethylene glycol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, methoxytetraethyleneglycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, ethyl carbitol (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, trifluoromethyl ( meth)acrylate, (meth)acrylamide, styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, p-tert- Butylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-benzylmaleimide, N-naphthylmaleimide amide, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, vinyl chloride, vinylidene chloride, (meth)acrylonitrile, vinyl acetate.
These other radically polymerizable monomers may be used singly or in combination of two or more.
(A)成分又は(A´)成分の分子量は、ゲル浸透クロマトグラフィ(GPC)等によって算出されるポリスチレン換算重量平均分子量Mとして1,000乃至100,000、好ましくは2,000乃至50,000、より好ましくは5,000乃至30,000である。上記範囲内とすることで、薬品耐性を損なうことなく現像後に良好なパターンを形成することができる。 The molecular weight of component (A) or component (A') is 1,000 to 100,000, preferably 2,000 to 50,000 as a polystyrene equivalent weight average molecular weight MW calculated by gel permeation chromatography (GPC) or the like. , more preferably 5,000 to 30,000. Within the above range, a good pattern can be formed after development without impairing chemical resistance.
球欠形状又は半球形状のマイクロレンズを作製する場合、(A)成分又は(A´)成分のガラス転移温度は、70℃乃至150℃である。上記範囲内とすることで、150℃以下の低温プロセスにおいても良好なリフロー性を有し、所望の球欠形状又は半球形状のマイクロレンズを作製することができる。 The glass transition temperature of component (A) or component (A') is 70°C to 150°C when a spherical or hemispherical microlens is produced. By setting the temperature within the above range, a microlens having a desired spherical or hemispherical shape can be produced with good reflowability even in a low-temperature process of 150° C. or lower.
[(B)成分]
本発明のポジ型感光性樹脂組成物に含まれる(B)成分は、1,2-キノンジアジド基を有する化合物であれば特に限定されず、例えば、ヒドロキシ基含有化合物と、1,2-ナフトキノンジアジドスルホン酸ハライドとの縮合物を用いることができる。具体的には、前記ヒドロキシ基含有化合物のヒドロキシ基のうち、10モル%乃至100モル%、好ましくは20モル%乃至95モル%が、前記1,2-ナフトキノンジアジドスルホン酸ハライドでエステル化された化合物を用いることができる。前記縮合反応は、各種公知の方法を採用することができる。
[(B) component]
The component (B) contained in the positive photosensitive resin composition of the present invention is not particularly limited as long as it is a compound having a 1,2-quinonediazide group. Condensates with sulfonic acid halides can be used. Specifically, 10 mol% to 100 mol%, preferably 20 mol% to 95 mol%, of the hydroxy groups of the hydroxy group-containing compound are esterified with the 1,2-naphthoquinonediazide sulfonic acid halide. compounds can be used. Various known methods can be employed for the condensation reaction.
前記ヒドロキシ基含有化合物としては、例えば、以下に示す化合物が挙げられる。
2,4-ジヒドロキシベンゾフェノン等のジヒドロキシベンゾフェノン類;
2,3,4-トリヒドロキシベンゾフェノン及び2,4,6-トリヒドロキシベンゾフェノン等のトリヒドロキシベンゾフェノン類;
2,4,2’,4’-テトラヒドロキシベンゾフェノン、2,3,4,3’-テトラヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,2’-テトラヒドロキシ-4’-メチルベンゾフェノン、及び2,3,4,4’-テトラヒドロキシ-3’-メトキシベンゾフェノン等のテトラヒドロキシベンゾフェノン類;
2,3,4,2’,4’-ペンタヒドロキシベンゾフェノン及び2,3,4,2’,6’-ペンタヒドロキシベンゾフェノン等のペンタヒドロキシベンゾフェノン類;
2,4,6,3’,4’,5’-ヘキサヒドロキシベンゾフェノン及び3,4,5,3’,4’,5’-ヘキサヒドロキシベンゾフェノン等のヘキサヒドロキシベンゾフェノン類;
2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3,3-トリス(4-ヒドロキシフェニル)ブタン、ビス(2,4-ジヒドロキシフェニル)メタン、ビス(p-ヒドロキシフェニル)メタン、トリス(p-ヒドロキシフェニル)メタン、1,1,1-トリス(p-ヒドロキシフェニル)エタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2,2-ビス(2,3,4-トリヒドロキシフェニル)プロパン、1,1,3-トリス(2,5-ジメチル-4-ヒドロキシフェニル)-3-フェニルプロパン、4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノール、ビス(2,5-ジメチル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、3,3,3’,3’-テトラメチル-1,1’-スピロビインデン-5,6,7,5’,6’,7’-ヘキサノール、及び2,2,4-トリメチル-7,2’,4’-トリヒドロキシフラバン等の(ポリヒドロキシフェニル)アルカン類;
フェノール、o-クレゾール、m-クレゾール、p-クレゾール、ハイドロキノン、レゾルシノール、カテコール、ガリック酸メチル、ガリック酸エチル、2-メチル-2-(2,4-ジヒドロキシフェニル)-4-(4-ヒドロキシフェニル)-7-ヒドロキシクロマン、1-[1-(3-{1-(4-ヒドロキシフェニル)-1-メチルエチル}-4,6-ジヒドロキシフェニル)-1-メチルエチル]-3-(1-(3-{1-(4-ヒドロキシフェニル)-1-メチルエチル}-4,6-ジヒドロキシフェニル)-1-メチルエチル)ベンゼン、及び4,6-ビス{1-(4-ヒドロキシフェニル)-1-メチルエチル}-1,3-ジヒドロキシベンゼン等のその他化合物。
これらの化合物の中でも、2,3,4,4’-テトラヒドロキシベンゾフェノン、1,1,1-トリス(p-ヒドロキシフェニル)エタン、及び4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノールが好ましい。
Examples of the hydroxy group-containing compound include compounds shown below.
Dihydroxybenzophenones such as 2,4-dihydroxybenzophenone;
trihydroxybenzophenones such as 2,3,4-trihydroxybenzophenone and 2,4,6-trihydroxybenzophenone;
2,4,2′,4′-tetrahydroxybenzophenone, 2,3,4,3′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3,4,2′-tetra Tetrahydroxybenzophenones such as hydroxy-4'-methylbenzophenone and 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone;
pentahydroxybenzophenones such as 2,3,4,2′,4′-pentahydroxybenzophenone and 2,3,4,2′,6′-pentahydroxybenzophenone;
Hexahydroxybenzophenones such as 2,4,6,3′,4′,5′-hexahydroxybenzophenone and 3,4,5,3′,4′,5′-hexahydroxybenzophenone;
2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,3,3-tris(4-hydroxyphenyl)butane, bis(2,4-dihydroxyphenyl) methane, bis(p-hydroxyphenyl)methane, tris(p-hydroxyphenyl)methane, 1,1,1-tris(p-hydroxyphenyl)ethane, bis(2,3,4-trihydroxyphenyl)methane, 2 , 2-bis(2,3,4-trihydroxyphenyl)propane, 1,1,3-tris(2,5-dimethyl-4-hydroxyphenyl)-3-phenylpropane, 4,4′-[1- [4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane, 3,3,3′ ,3′-tetramethyl-1,1′-spirobiindene-5,6,7,5′,6′,7′-hexanol and 2,2,4-trimethyl-7,2′,4′- (polyhydroxyphenyl)alkanes such as trihydroxyflavanes;
Phenol, o-cresol, m-cresol, p-cresol, hydroquinone, resorcinol, catechol, methyl gallate, ethyl gallate, 2-methyl-2-(2,4-dihydroxyphenyl)-4-(4-hydroxyphenyl) )-7-hydroxychroman, 1-[1-(3-{1-(4-hydroxyphenyl)-1-methylethyl}-4,6-dihydroxyphenyl)-1-methylethyl]-3-(1- (3-{1-(4-hydroxyphenyl)-1-methylethyl}-4,6-dihydroxyphenyl)-1-methylethyl)benzene, and 4,6-bis{1-(4-hydroxyphenyl)- Other compounds such as 1-methylethyl}-1,3-dihydroxybenzene.
Among these compounds, 2,3,4,4'-tetrahydroxybenzophenone, 1,1,1-tris(p-hydroxyphenyl)ethane, and 4,4'-[1-[4-[1-[ 4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol is preferred.
前記1,2-ナフトキノンジアジドスルホン酸ハライドとしては、1,2-ナフトキノンジアジドスルホン酸クロリドが好ましく、1,2-ナフトキノン-2-ジアジド-4-スルホン酸クロリド及び1,2-ナフトキノン-2-ジアジド-5-スルホン酸クロリドがより好ましく、1,2-ナフトキノン-2-ジアジド-5-スルホン酸クロリドがさらに好ましい。 As the 1,2-naphthoquinonediazide sulfonic acid halide, 1,2-naphthoquinone diazide sulfonic acid chloride is preferable, and 1,2-naphthoquinone-2-diazide-4-sulfonic acid chloride and 1,2-naphthoquinone-2-diazide are used. -5-sulfonic acid chloride is more preferred, and 1,2-naphthoquinone-2-diazide-5-sulfonic acid chloride is even more preferred.
(B)成分の化合物は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 The compounds of component (B) may be used singly or in combination of two or more.
本発明のポジ型感光性樹脂組成物の(B)成分の含有量は、(A)成分100質量部に対して、5質量部乃至100質量部、好ましくは10質量部乃至60質量部、より好ましくは15質量部乃至40質量部である。(B)成分の含有量を上記範囲内とすることで、感度を著しく低下させることなく露光部と未露光部との間のアルカリ現像液に対する溶解度差を大きくすることができ、比較的低露光量でポジ型パタ-ニングが可能となる。 The content of component (B) in the positive photosensitive resin composition of the present invention is 5 parts by mass to 100 parts by mass, preferably 10 parts by mass to 60 parts by mass, with respect to 100 parts by mass of component (A). It is preferably 15 to 40 parts by mass. By setting the content of component (B) within the above range, it is possible to increase the difference in solubility in an alkaline developer between the exposed area and the unexposed area without significantly lowering the sensitivity, resulting in relatively low exposure. Positive type patterning is possible with a large amount.
[(C)成分]
本発明のポジ型感光性樹脂組成物に含まれる(C)成分は、露光により酸解離定数pKaが4以下の酸を生じ得る化合物であれば特に限定されず、イオン性光酸発生剤及び非イオン性光酸発生剤が挙げられる。
[(C) component]
The component (C) contained in the positive-type photosensitive resin composition of the present invention is not particularly limited as long as it is a compound capable of generating an acid having an acid dissociation constant pKa of 4 or less upon exposure. Ionic photoacid generators can be mentioned.
イオン性光酸発生剤としては、例えば、以下に示す商品及び化合物を用いることができる。
アデカアークルズ(登録商標)SP-056、同SP-171(以上、(株)ADEKA製)、CPI(登録商標)-100B(40)、同-100P、同-101A、同-110A、同-110B、同-110P、同-200K、同-210S、同-300、同-310B、同-310FG、同-400、同-410B、同-410S、VC-1FG、ES-1B(以上、サンアプロ(株)製)、TPS-TF、TPS-CS、TPS-PFBS(以上、東洋合成工業(株)製)、TPS-102、TPS-103、TPS-105、TPS-106、TPS-109、TPS-200、TPS-300、TPS-1000、HDS-109、MDS-103、MDS-105、MDS-109、MDS-205、MDS-209、BDS-109、MNPS-109、DTS-102、DTS-103、DTS-105、DTS-200、NDS-103、NDS-105、NDS-155、及びNDS-165(以上、みどり化学(株)製)等のアリールスルホニウム塩類;
アデカアークルズ(登録商標)SP-140(以上、(株)ADEKA製)、IK-1、IK-1PC(80)、IK-1FG、(以上、サンアプロ(株)製)、DTBPI-PFBS(以上、東洋合成工業(株)製)、DPI-105、DPI-106、DPI-109、DPI-201、BI-105、MPI-105、MPI-106、MPI-109、BBI-102、BBI-103、BBI-105、BBI-106、BBI-109、BBI-110、BBI-200、BBI-201、BBI-300、及びBBI-301(以上、みどり化学(株)製)等のアリールヨードニウム塩類。
As the ionic photoacid generator, for example, the products and compounds shown below can be used.
ADEKA Arkles (registered trademark) SP-056, SP-171 (manufactured by ADEKA Co., Ltd.), CPI (registered trademark) -100B (40), -100P, -101A, -110A, - 110B, -110P, -200K, -210S, -300, -310B, -310FG, -400, -410B, -410S, VC-1FG, ES-1B (above, Sun-Apro ( Co., Ltd.), TPS-TF, TPS-CS, TPS-PFBS (manufactured by Toyo Gosei Co., Ltd.), TPS-102, TPS-103, TPS-105, TPS-106, TPS-109, TPS- 200, TPS-300, TPS-1000, HDS-109, MDS-103, MDS-105, MDS-109, MDS-205, MDS-209, BDS-109, MNPS-109, DTS-102, DTS-103, Arylsulfonium salts such as DTS-105, DTS-200, NDS-103, NDS-105, NDS-155, and NDS-165 (manufactured by Midori Chemical Co., Ltd.);
ADEKA Arkles (registered trademark) SP-140 (manufactured by ADEKA Co., Ltd.), IK-1, IK-1PC (80), IK-1FG (manufactured by San-Apro Co., Ltd.), DTBPI-PFBS (manufactured by San-Apro Co., Ltd.) , manufactured by Toyo Gosei Co., Ltd.), DPI-105, DPI-106, DPI-109, DPI-201, BI-105, MPI-105, MPI-106, MPI-109, BBI-102, BBI-103, Aryliodonium salts such as BBI-105, BBI-106, BBI-109, BBI-110, BBI-200, BBI-201, BBI-300, and BBI-301 (manufactured by Midori Chemical Co., Ltd.).
非イオン性光酸発生剤としては、例えば、以下に示す商品及び化合物を用いることができる。
アデカアークルズ(登録商標)SP-082、同SP-606(以上、(株)ADEKA製)、NA-CS1、NP-TM2、NP-SE10(以上、サンアプロ(株)製)、SI-105、SI-106、PI-106、NDI-101、NDI-105、NDI-106、NDI-109、NDI-1001、NDI-1004、NAI-100、NAI-101、NAI-105、NAI-106、NAI-109、NAI-1002、NAI-1003、及びNAI-1004(以上、みどり化学(株)製)等のN-スルホニルオキシイミド類;
IRGACURE(登録商標)PAG103、同PAG121、同PAG203(以上、BASFジャパン(株)製)、PAI-01、PAI-101、PAI-106、PAI-1001、PAI-1002、PAI-1003、及びPAI-1004(以上、みどり化学(株)製)等のオキシムスルホネート類;
TAZ-100、TAZ-101、TAZ-102、TAZ-103、TAZ-104、TAZ-107、TAZ-108、TAZ-109、TAZ-110、TAZ-113、TAZ-114、TAZ-118、TAZ-122、TAZ-123、TAZ-203、及びTAZ-204(以上、みどり化学(株)製)等のトリアジン類。
As the nonionic photoacid generator, for example, the products and compounds shown below can be used.
ADEKA Arkles (registered trademark) SP-082, SP-606 (manufactured by ADEKA Corporation), NA-CS1, NP-TM2, NP-SE10 (manufactured by San-Apro Co., Ltd.), SI-105, SI-106, PI-106, NDI-101, NDI-105, NDI-106, NDI-109, NDI-1001, NDI-1004, NAI-100, NAI-101, NAI-105, NAI-106, NAI- N-sulfonyloxyimides such as 109, NAI-1002, NAI-1003, and NAI-1004 (manufactured by Midori Chemical Co., Ltd.);
IRGACURE (registered trademark) PAG103, PAG121, PAG203 (manufactured by BASF Japan Co., Ltd.), PAI-01, PAI-101, PAI-106, PAI-1001, PAI-1002, PAI-1003, and PAI- oxime sulfonates such as 1004 (manufactured by Midori Chemical Co., Ltd.);
TAZ-100, TAZ-101, TAZ-102, TAZ-103, TAZ-104, TAZ-107, TAZ-108, TAZ-109, TAZ-110, TAZ-113, TAZ-114, TAZ-118, TAZ- triazines such as 122, TAZ-123, TAZ-203, and TAZ-204 (manufactured by Midori Chemical Co., Ltd.);
これらのイオン性光酸発生剤及び非イオン性光酸発生剤の中でも、保存安定性や感度の観点から非イオン性光酸発生剤が好ましく、N-スルホニルオキシイミド類がより好ましく、前記式(2)で表される化合物がさらに好ましい。前記式(2)で表される化合物の具体例としては、下記式(2-1)乃至下記式(2-28)で表される化合物が挙げられる。 Among these ionic photoacid generators and nonionic photoacid generators, from the viewpoint of storage stability and sensitivity, nonionic photoacid generators are preferable, N-sulfonyloxyimides are more preferable, and the formula ( Compounds represented by 2) are more preferred. Specific examples of the compound represented by the formula (2) include compounds represented by the following formulas (2-1) to (2-28).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(C)成分の化合物は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 The compounds of component (C) may be used singly or in combination of two or more.
本発明のポジ型感光性樹脂組成物の(C)成分の含有量は、(A)成分100質量部に対して、0.1質量部乃至10質量部、好ましくは0.5質量部乃至5質量部である。(C)成分の含有量を上記範囲内とすることで、透明性を損なうことなく薬品耐性を向上させることができる。 The content of component (C) in the positive photosensitive resin composition of the present invention is 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass, per 100 parts by mass of component (A). part by mass. By setting the content of component (C) within the above range, chemical resistance can be improved without impairing transparency.
[(D)成分]
本発明のポジ型感光性樹脂組成物に含まれる(D)成分は、露光部におけるカチオン重合の開始反応又は成長反応を阻害することができる化合物であれば特に限定されず、例えば、光塩基発生剤及び塩基性化合物(アミン類、第4級アンモニウム類、無機塩基類)等が挙げられる。
[(D) component]
Component (D) contained in the positive photosensitive resin composition of the present invention is not particularly limited as long as it is a compound capable of inhibiting the initiation reaction or growth reaction of cationic polymerization in the exposed area. agents and basic compounds (amines, quaternary ammoniums, inorganic bases) and the like.
前記光塩基発生剤としては、露光により塩基を生じ得る化合物であれば特に限定されず、例えば、以下に示す商品を用いることができる。
WPBG-018、同-027、同-140、同-165、同-266、同-300、同-345(以上、富士フイルム和光純薬(株)製)、NBC-101及びANC-101(以上、みどり化学(株)製)。
The photobase generator is not particularly limited as long as it is a compound capable of generating a base upon exposure. For example, the following products can be used.
WPBG-018, -027, -140, -165, -266, -300, -345 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), NBC-101 and ANC-101 (above , manufactured by Midori Chemical Co., Ltd.).
前記塩基性化合物としては、例えば、以下に示す化合物が挙げられる。
エチルアミン、n-プロピルアミン、イソプロピルアミン、シクロプロピルアミン、n-ブチルアミン、イソブチルアミン、シクロブチルアミン、n-ペンチルアミン、イソぺンチルアミン、シクロペンチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、n-へプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、オレイルアミン、2-エチルへキシルアミン、アニリン、ベンジルアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、3-エトキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、1-アミノ-2-プロパノール及びエチレンジアミン等の第1級アミン、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジアリルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジシクロペンチルアミン、ジ-n-ヘキシルアミン、ジシクロヘキシルアミン、ジフェニルアミン、ジベンジルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジ-n-ノニルアミン、ジ-n-デシルアミン、ジ-n-ウンデシルアミン、ジ-n-ドデシルアミン、ジ-n-トリデシルアミン、N-メチル-n-ブチルアミン、N-メチルシクロヘキシルアミン、N-エチルメチルアミン、N-エチル-n-プロピルアミン、N-エチルイソプロピルアミン、N-エチル-n-ブチルアミン、N-エチルシクロヘキシルアミン、N-エチル-n-ヘプチルアミン、N-イソプロピルシクロヘキシルアミン、N-フェニルベンジルアミン、N-(2-メトキシエチル)イソプロピルアミン、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、2-(n-プロピルアミノ)エタノール、2-(イソプロピルアミノ)エタノール、2-(n-ブチルアミノ)エタノール、2-(イソブチルアミノ)エタノール、ジエタノールアミン及びジブタノールアミン等の第2級アミン、トリエチルアミン、トリ-n-プロピルアミン、トリアリルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリフェニルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、トリ-n-ウンデシルアミン、N-メチルジフェニルアミン、N-メチルジシクロヘキシルアミン、N-メチルジデシルアミン、N,N-ジエチルメチルアミン、N,N-ジエチルシクロヘキシルアミン、N,N-ジメチルブチルアミン、N-エチルジ-n-プロピルアミン、N-エチルジイソプロピルアミン、N,N-ジメチルエタノールアミン、N,N-ジメチル-n-プロパノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-ブチルジエタノールアミン、トリエタノールアミン、トリ-n-プロパノールアミン、トリイソプロパノールアミン、テトラメチルエチレンジアミン及びテトラエチルエチレンジアミン等の第3級アミン、ピロリジン、メチルピロリジン、ピペリジン、メチルピペリジン、ピペラジン、キヌクリジン、1,4-ジアザビシクロ[2.2.2]オクタン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ピリジン及びイミダゾ-ル等の複素環式アミン等のアミン類;
水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム及び水酸化テトラブチルアンモニウム等の第4級アンモニウム類;
アンモニア、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、リン酸ナトリウム及びリン酸カリウム等の無機塩基類。
Examples of the basic compound include compounds shown below.
ethylamine, n-propylamine, isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, cyclobutylamine, n-pentylamine, isopentylamine, cyclopentylamine, n-hexylamine, cyclohexylamine, n-heptylamine, n -octylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, oleylamine, 2-ethylhexylamine, aniline, benzylamine, ethanolamine, propanolamine, butanolamine , 3-ethoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 1-amino-2-propanol and primary amines such as ethylenediamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine , diallylamine, di-n-butylamine, diisobutylamine, di-n-pentylamine, dicyclopentylamine, di-n-hexylamine, dicyclohexylamine, diphenylamine, dibenzylamine, di-n-heptylamine, di-n- Octylamine, di-n-nonylamine, di-n-decylamine, di-n-undecylamine, di-n-dodecylamine, di-n-tridecylamine, N-methyl-n-butylamine, N-methylcyclohexyl Amine, N-ethylmethylamine, N-ethyl-n-propylamine, N-ethylisopropylamine, N-ethyl-n-butylamine, N-ethylcyclohexylamine, N-ethyl-n-heptylamine, N-isopropylcyclohexyl Amine, N-phenylbenzylamine, N-(2-methoxyethyl)isopropylamine, 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(n-propylamino)ethanol, 2-(isopropylamino ) secondary amines such as ethanol, 2-(n-butylamino)ethanol, 2-(isobutylamino)ethanol, diethanolamine and dibutanolamine, triethylamine, tri-n-propylamine, triallylamine, triisopropylamine, tri -n-butylamine, triisobutylamine, tri-n-pentylamine, tri-n-hexylamine, triphenylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri -n-decylamine, tri-n-undecylamine, N-methyldiphenylamine, N-methyldicyclohexylamine, N-methyldidecylamine, N,N-diethylmethylamine, N,N-diethylcyclohexylamine, N,N -dimethylbutylamine, N-ethyldi-n-propylamine, N-ethyldiisopropylamine, N,N-dimethylethanolamine, N,N-dimethyl-n-propanolamine, N,N-diethylethanolamine, N,N- Tertiary amines such as dibutylethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N-butyldiethanolamine, triethanolamine, tri-n-propanolamine, triisopropanolamine, tetramethylethylenediamine and tetraethylethylenediamine, pyrrolidine, methyl pyrrolidine, piperidine, methylpiperidine, piperazine, quinuclidine, 1,4-diazabicyclo[2.2.2]octane, 1,5-diazabicyclo[4.3.0]-5-nonene, 1,8-diazabicyclo[5. 4.0]-7-undecene, amines such as heterocyclic amines such as pyridine and imidazole;
quaternary ammoniums such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and tetrabutylammonium hydroxide;
Inorganic bases such as ammonia, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium phosphate and potassium phosphate.
溶解性の観点から、これらの光塩基発生剤及び塩基性化合物の中でも特にアミン類が好ましい。(D)成分の化合物は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 From the viewpoint of solubility, amines are particularly preferred among these photobase generators and basic compounds. The compounds of component (D) may be used singly or in combination of two or more.
本発明のポジ型感光性樹脂組成物の(D)成分の含有量は、(A)成分100質量部に対して、0.01質量部乃至10質量部、好ましくは0.05質量部乃至5質量部、より好ましくは0.1質量部乃至3質量部である。(D)成分の含有量を上記範囲内とすることで、PED安定性(PED耐性)と薬品耐性を両立させることができる。 The content of component (D) in the positive photosensitive resin composition of the present invention is 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, per 100 parts by mass of component (A). parts by mass, more preferably 0.1 to 3 parts by mass. By setting the content of component (D) within the above range, both PED stability (PED resistance) and chemical resistance can be achieved.
なお、一般に(B)成分のキノンジアジド化合物は、アミン類等の塩基性化合物と混合すると、相互作用により変色する性質があるが、本発明のポジ型感光性樹脂組成物から得られる硬化膜及び本発明のポジ型感光性樹脂組成物から作製されるマイクロレンズの透明性を著しく損なうことは無い。 Generally, when the quinonediazide compound of component (B) is mixed with a basic compound such as an amine, it has the property of discoloring due to interaction. The transparency of the microlens produced from the positive photosensitive resin composition of the invention is not significantly impaired.
[(E)成分]
本発明のポジ型感光性樹脂組成物が、(A´)成分を含む場合、(E)成分を必須成分として含み、(A)成分を含む場合、(E)成分を任意成分として含む。該(E)成分は、前記酸架橋性基を分子中に少なくとも2つ有する化合物であれば特に限定されず、例えば、以下に示す商品及び化合物を用いることができる。
EPICLON(登録商標)830、同830-S、同835、同840、同840-S、同850、同850-S、同850-LC、同HP-820(以上、DIC(株)製)、DENACOL(登録商標)EX-201、同EX-211、同EX-212、同EX-252、同EX-810、同EX-811、同EX-821、同EX-830、同EX-832、同EX-841、同EX-850、同EX-851、同EX-861、同EX-920、同EX-931、同EX-991L、同EX-313、同EX-314、同EX-321、同EX-321L、同EX-411、同EX-421、同EX-512、同EX-521、同EX-612、同EX-614、同EX-614B、同EX-622(以上、ナガセケムテックス(株)製)、jER(登録商標)152、同630、同825、同827、同828、同828EL、同828US、同828XA(以上、三菱ケミカル(株)製)、TETRAD(登録商標)-C、同-X(以上、三菱ガス化学(株)製)、セロキサイド(登録商標)2021P、同2081、エポリード(登録商標)GT401(以上、(株)ダイセル製)、エポトート(登録商標)YD-115、同YD-115CA、同YD-127、同YD-128、同YD-128G、同YD-128S、同YD-128CA、同YD-8125、同YD-825GS、同YDF-170、同YDF-170N、同YDF-8170C、同YDF-870GS、同ZX-1059、同YH-404、同YH-434、同YH-434L、同YH-513、同YH-523、同ST-3000(以上、日鉄ケミカル&マテリアル(株)製)、アデカレジン(登録商標)EP-4100、同EP-4100G、同EP-4100E、同EP-4100TX、同EP-4300E、同EP-4400、同EP-4520S、同EP-4530、同EP-4901、同EP-4901E、同EP-4000、同EP-4005、同EP-7001、同EP-4080E、同EPU-6、同EPU-7N、同EPU-11F、同EPU-15F、同EPU-1395、同EPU-73B、同EPU-17、同EPU-17T-6、同EPR-1415-1、同EPR-2000、同EPR-2007、アデカグリシロール(登録商標)ED-503、同ED-503G、同ED-506、同ED-523T、同ED-505(以上、(株)ADEKA製)、スミエポキシ(登録商標)ELM-434、同ELM-434L、同ELM-434VL、同ELM-100、同ELM-100H(以上、住友化学(株)製)、エポライトM-1230、同40E,同100E、同200E、同400E、同70P、同200P、同400P、同1500NP、同1600、同80MF、同4000、同3002(N)(以上、共栄社化学(株)製)及びエポカリック(登録商標)THI-DE(ENEOS(株)製)等の多官能エポキシ樹脂;
ETERNACOLL(登録商標)OXBP、同OXIPA(以上、宇部興産(株)製)、アロンオキセタン(登録商標)OXT-121及び同OXT-221(以上、東亞合成(株)製)等の多官能オキセタン樹脂。
[(E) component]
When the positive photosensitive resin composition of the present invention contains the (A') component, it contains the (E) component as an essential component, and when it contains the (A) component, it contains the (E) component as an optional component. The component (E) is not particularly limited as long as it is a compound having at least two acid-crosslinkable groups in the molecule. For example, the following products and compounds can be used.
EPICLON (registered trademark) 830, 830-S, 835, 840, 840-S, 850, 850-S, 850-LC, HP-820 (manufactured by DIC Corporation), DENACOL (registered trademark) EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX-821, EX-830, EX-832, EX-841, EX-850, EX-851, EX-861, EX-920, EX-931, EX-991L, EX-313, EX-314, EX-321, EX-321L, EX-411, EX-421, EX-512, EX-521, EX-612, EX-614, EX-614B, EX-622 (Nagase ChemteX ( Co., Ltd.), jER (registered trademark) 152, 630, 825, 827, 828, 828EL, 828US, 828XA (manufactured by Mitsubishi Chemical Corporation), TETRAD (registered trademark)-C , Same-X (manufactured by Mitsubishi Gas Chemical Co., Ltd.), Celoxide (registered trademark) 2021P, 2081, Epolead (registered trademark) GT401 (manufactured by Daicel Co., Ltd.), Epotato (registered trademark) YD-115 , YD-115CA, YD-127, YD-128, YD-128G, YD-128S, YD-128CA, YD-8125, YD-825GS, YDF-170, YDF-170N , YDF-8170C, YDF-870GS, ZX-1059, YH-404, YH-434, YH-434L, YH-513, YH-523, ST-3000 (Nippon Steel Chemical & Material Co., Ltd.), ADEKA RESIN (registered trademark) EP-4100, EP-4100G, EP-4100E, EP-4100TX, EP-4300E, EP-4400, EP-4520S, EP -4530, EP-4901, EP-4901E, EP-4000, EP-4005, EP-7001, EP-4080E, EPU-6, EPU-7N, EPU-11F, EPU -15F, EPU-1395, EPU-73B, EPU-17, EPU-17T-6, EPR-1415-1, EPR-2000, EPR-2007, ADEKA GLYCIROL (registered trademark) ED -503, ED-503G, ED-506, ED-52 3T, ED-505 (above, manufactured by ADEKA Co., Ltd.), Sumiepoxy (registered trademark) ELM-434, ELM-434L, ELM-434VL, ELM-100, ELM-100H (above, Sumitomo Chemical ( Co., Ltd.), Epolite M-1230, 40E, 100E, 200E, 400E, 70P, 200P, 400P, 1500NP, 1600, 80MF, 4000, 3002 (N) (above) , Kyoeisha Chemical Co., Ltd.) and multifunctional epoxy resins such as Epocalic (registered trademark) THI-DE (manufactured by ENEOS Co., Ltd.);
Polyfunctional oxetane resins such as ETERNACOLL (registered trademark) OXBP, ETERNACOLL OXIPA (manufactured by Ube Industries, Ltd.), Aron Oxetane (registered trademark) OXT-121 and ETERNACOLL OXT-221 (manufactured by Toagosei Co., Ltd.) .
(E)成分の化合物は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 (E) The compound of the component may be used individually by 1 type, or may be used in combination of 2 or more types.
本発明のポジ型感光性樹脂組成物が(E)成分を含む場合、(E)成分の含有量は、(A)成分又は(A´)成分100質量部に対して、5質量部乃至100質量部、好ましくは10質量部乃至50質量部である。(E)成分の含有量を上記範囲内とすることで、薬品耐性を向上させることができる。 When the positive photosensitive resin composition of the present invention contains component (E), the content of component (E) is 5 parts by mass to 100 parts by mass with respect to 100 parts by mass of component (A) or component (A'). Parts by mass, preferably 10 to 50 parts by mass. (E) Chemical resistance can be improved by making content of a component into the said range.
[(F)成分]
本発明のポジ型感光性樹脂組成物に任意成分として含まれる(F)成分は、照射された光のエネルギーを他の物質に渡すことができる物質であれば特に限定されず、例えば、p-トルキノン、1-フェニル-1,2-プロパンジオン、フェナントレン、アントラセン、9,10-ジエトキシアントラセン、9,10-ジプロピルオキシアントラセン、9,10-ジブトキシアントラセン、9,10-ジオクタノイルオキシアントラセン、3,7-ジメトキシアントラセン、ピレン、ペリレン、キサントン、チオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、及び2-イソプロピルチオキサントン等が挙げられる。
[(F) component]
Component (F), which is included as an optional component in the positive photosensitive resin composition of the present invention, is not particularly limited as long as it is a substance capable of transferring the energy of irradiated light to other substances. tolquinone, 1-phenyl-1,2-propanedione, phenanthrene, anthracene, 9,10-diethoxyanthracene, 9,10-dipropyloxyanthracene, 9,10-dibutoxyanthracene, 9,10-dioctanoyloxy Anthracene, 3,7-dimethoxyanthracene, pyrene, perylene, xanthone, thioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, and the like.
(F)成分の化合物は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 (F) The compound of the component may be used individually by 1 type, or may be used in combination of 2 or more types.
本発明のポジ型感光性樹脂組成物が(F)成分を含む場合、(F)成分の含有量は、(A)成分100質量部に対して、0.01質量部乃至5質量部、好ましくは0.05質量部乃至3質量部、より好ましくは0.1質量部乃至1質量部である。(F)成分の含有量を上記範囲内とすることで、透明性を損なうことなく(C)成分の光酸発生剤に対して効果的に増感作用を発現し、薬品耐性を向上させることができる。 When the positive photosensitive resin composition of the present invention contains the (F) component, the content of the (F) component is preferably 0.01 to 5 parts by mass per 100 parts by mass of the (A) component. is 0.05 to 3 parts by mass, more preferably 0.1 to 1 part by mass. By setting the content of the component (F) within the above range, the photoacid generator of the component (C) is effectively sensitized without impairing the transparency, and the chemical resistance is improved. can be done.
[溶剤]
本発明のポジ型感光性樹脂組成物に含まれる溶剤は、(A)成分乃至(D)成分、又は(A´)成分乃至(E)成分、並びに必要に応じて添加される任意成分を溶解するものであれば特に限定されず、例えば、炭化水素類、ハロゲン化炭化水素類、エーテル類、アルコール類、アルデヒド類、ケトン類、エステル類、アミド類、及びニトリル類等の全ての有機溶媒を使用することができる。
[solvent]
The solvent contained in the positive photosensitive resin composition of the present invention dissolves components (A) to (D) or components (A') to (E) and optional components added as necessary. Any organic solvent such as hydrocarbons, halogenated hydrocarbons, ethers, alcohols, aldehydes, ketones, esters, amides, nitriles, etc. can be used.
前記炭化水素類としては、例えば、n-ペンタン、シクロペンタン、メチルシクロペンタン、n-ヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、n-ヘプタン、ベンゼン、トルエン、о-キシレン、m-キシレン、p-キシレン及びメシチレン等が挙げられる。 Examples of the hydrocarbons include n-pentane, cyclopentane, methylcyclopentane, n-hexane, isohexane, cyclohexane, methylcyclohexane, ethylcyclohexane, n-heptane, benzene, toluene, o-xylene, m-xylene, Examples include p-xylene and mesitylene.
前記ハロゲン化炭化水素類としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、クロロエタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、ヘキサクロロエタン、ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、ハイドロフルオロカーボン及びパーフルオロカーボン等が挙げられる。 Examples of the halogenated hydrocarbons include dichloromethane, chloroform, carbon tetrachloride, chloroethane, dichloroethane, trichloroethane, tetrachloroethane, hexachloroethane, dichloroethylene, trichloroethylene, tetrachloroethylene, chlorobenzene, hydrofluorocarbons and perfluorocarbons.
前記エーテル類としては、例えば、ジエチルエーテル、ジ-n-プロピルエーテル、ジイソプロピルエーテル、ジ-n-ブチルエーテル、ジイソブチルエーテル、ジ-tert-ブチルエーテル、ジ-n-ペンチルエーテル、ジイソペンチルエーテル、ジ-n-ヘキシルエーテル、メチル-n-プロピルエーテル、メチルイソプロピルエーテル、エチル-n-プロピルエーテル、エチルイソプロピルエーテル、n-ブチルメチルエーテル、イソブチルメチルエーテル、tert-ブチルメチルエーテル、n-ブチルエチルエーテル、イソブチルエチルエーテル、tert-ブチルエチルエーテル、メチル-n-ペンチルエーテル、シクロペンチルメチルエーテル、n-ヘキシルメチルエーテル、シクロヘキシルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキサン、1,4-ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル及びトリプロピレングリコールジブチルエーテル等が挙げられる。 Examples of the ethers include diethyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, diisobutyl ether, di-tert-butyl ether, di-n-pentyl ether, diisopentyl ether, di- n-hexyl ether, methyl-n-propyl ether, methyl isopropyl ether, ethyl-n-propyl ether, ethyl isopropyl ether, n-butyl methyl ether, isobutyl methyl ether, tert-butyl methyl ether, n-butyl ethyl ether, isobutyl ethyl ether, tert-butyl ethyl ether, methyl-n-pentyl ether, cyclopentyl methyl ether, n-hexyl methyl ether, cyclohexyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxane, 1,4-dioxane, ethylene glycol dimethyl ether , ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether and tripropylene glycol dibutyl ether.
前記アルコール類としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-2-ブタノール、ネオペンチルアルコール、シクロペンタノール、メチルシクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、シクロヘキサノール、メチルシクロヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、4-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、4-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル及びトリプロピレングリコールモノブチルエーテル等の1価アルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,3-プロパンジオール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ペンタンジオール、1,4-ペンタンジオール、1,3-ペンタンジオール、1,2-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール及び1,2-ヘキサンジオール等の2価アルコール、並びにグリセリン等の3価アルコール等が挙げられる。 Examples of the alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, tert-butyl alcohol, 1-pentanol, 2-pentanol. , 3-pentanol, 2-methyl-1-butanol, 3-methyl-2-butanol, neopentyl alcohol, cyclopentanol, methylcyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, cyclohexanol, Methylcyclohexanol, 1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 1-octanol, 2-octanol, 3-octanol, 4-octanol, 2-ethyl-1-hexanol, benzyl alcohol, ethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, tri Monohydric alcohols such as propylene glycol monomethyl ether, tripropylene glycol monoethyl ether and tripropylene glycol monobutyl ether, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-propanediol, propylene glycol, dipropylene glycol, Tripropylene glycol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 1,5-pentanediol, 1,4-pentanediol, 1,3-pentanediol, 1,2- Pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol and 1 , 2-hexanediol, and trihydric alcohols such as glycerin.
前記アルデヒド類としては、例えば、エタナール、プロパナール、2-メチル-1-プロパナール、ブタナール、3-メチルブタナール、ペンタナール及びベンズアルデヒド等が挙げられる。 Examples of the aldehydes include ethanal, propanal, 2-methyl-1-propanal, butanal, 3-methylbutanal, pentanal and benzaldehyde.
前記ケトン類としては、例えば、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、シクロペンタノン、2,4-ペンタンジオン、4-メチル-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノン及び2-ヘプタノン等が挙げられる。 Examples of the ketones include acetone, 2-butanone, 2-pentanone, 3-pentanone, cyclopentanone, 2,4-pentanedione, 4-methyl-2-pentanone, 4-hydroxy-4-methyl-2 -pentanone, cyclohexanone and 2-heptanone.
前記エステル類としては、例えば、メチルホルマート、エチルホルマート、n-プロピルホルマート、イソプロピルホルマート、n-ブチルホルマート、イソブチルホルマート、tert-ブチルホルマート、n-ペンチルホルマート、イソペンチルホルマート、メチルアセタート、エチルアセタート、n-プロピルアセタート、イソプロピルアセタート、n-ブチルアセタート、イソブチルアセタート、tert-ブチルアセタート、n-ペンチルアセタート、イソペンチルアセタート、シクロペンチルアセタート、n-へキシルアセタート、イソへキシルアセタート、シクロヘキシルアセタート、n-ヘプチルアセタート、イソヘプチルアセタート、n-オクチルアセタート、イソオクチルアセタート、ベンジルアセタート、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールジアセタート、ジエチレングリコールモノメチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、トリエチレングリコールモノメチルエーテルアセタート、トリエチレングリコールモノエチルエーテルアセタート、トリエチレングリコールモノブチルエーテルアセタート、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノエチルエーテルアセタート、プロピレングリコールモノブチルエーテルアセタート、プロピレングリコールジアセタート、ジプロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノエチルエーテルアセタート、ジプロピレングリコールモノブチルエーテルアセタート、トリプロピレングリコールモノメチルエーテルアセタート、トリプロピレングリコールモノエチルエーテルアセタート、トリプロピレングリコールモノブチルエーテルアセタート、メチルプロピオナート、エチルプロピオナート、n-プロピルプロピオナート、イソプロピルプロピオナート、n-ブチルプロピオナート、イソブチルプロピオナート、tert-ブチルプロピオナート、メチルブチラート、エチルブチラート、n-プロピルブチラート、イソプロピルブチラート、n-ブチルブチラート、イソブチルブチラート、tert-ブチルブチラート、メチルイソブチラート、エチルイソブチラート、n-プロピルイソブチラート、イソプロピルイソブチラート、n-ブチルイソブチラート、イソブチルイソブチラート、tert-ブチルイソブチラート、メチルラクタート、エチルラクタート、n-プロピルラクタート、イソプロピルラクタート、n-ブチルラクタート、イソブチルラクタート、tert-ブチルラクタート、メチルアセトアセタート、エチルアセトアセタート、n-プロピルアセトアセタート、イソプロピルアセトアセタート、n-ブチルアセトアセタート、イソブチルアセトアセタート、tert-ブチルアセトアセタート、ジメチルマロナート、ジエチルマロナート、トリアセチン、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン及びε-カプロラクトン等が挙げられる。 Examples of the esters include methyl formate, ethyl formate, n-propyl formate, isopropyl formate, n-butyl formate, isobutyl formate, tert-butyl formate, n-pentyl formate, isopentyl Formate, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, tert-butyl acetate, n-pentyl acetate, isopentyl acetate, cyclopentyl acetate tart, n-hexyl acetate, isohexyl acetate, cyclohexyl acetate, n-heptyl acetate, isoheptyl acetate, n-octyl acetate, isooctyl acetate, benzyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol diacetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol mono ethyl ether acetate, triethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, Propylene Glycol Monoethyl Ether Acetate, Dipropylene Glycol Monobutyl Ether Acetate, Tripropylene Glycol Monomethyl Ether Acetate, Tripropylene Glycol Monoethyl Ether Acetate, Tripropylene Glycol Monobutyl Ether Acetate, Methyl Propionate, Ethyl Propionate , n-propyl propionate, isopropyl propionate, n-butyl propionate, isobutyl propionate, tert-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, n-butyl butyrate, isobutyl butyrate, tert-butyl butyrate, methyl isobutyrate , ethyl isobutyrate, n-propyl isobutyrate, isopropyl isobutyrate, n-butyl isobutyrate, isobutyl isobutyrate, tert-butyl isobutyrate, methyl lactate, ethyl lactate, n-propyl lactate , isopropyl lactate, n-butyl lactate, isobutyl lactate, tert-butyl lactate, methyl acetoacetate, ethyl acetoacetate, n-propyl acetoacetate, isopropyl acetoacetate, n-butyl acetoacetate, isobutylacetoacetate, tert-butylacetoacetate, dimethylmalonate, diethylmalonate, triacetin, γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-valerolactone, δ-caprolactone and ε-caprolactone, and the like. be done.
前記アミド類としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン及びN-エチルピロリドン等が挙げられる。 Examples of the amides include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyramide, N-methylpyrrolidone and N-ethylpyrrolidone.
前記ニトリル類としては、例えば、アセトニトリル、プロピオニトリル及びブチロニトリル等が挙げられる。 Examples of the nitriles include acetonitrile, propionitrile and butyronitrile.
これらの溶剤は1種単独で使用しても、2種以上を組み合わせて使用してもよい。 These solvents may be used singly or in combination of two or more.
これらの溶剤の中でも、本発明のポジ型感光性樹脂組成物を基材上に塗布して形成される硬化膜のレベリング性の向上の観点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、2-ヘプタノン、エチルラクタート、n-ブチルラクタート、シクロペンタノン及びシクロヘキサノンが好ましい。 Among these solvents, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether, propylene glycol monopropyl ether, 2-heptanone, ethyl lactate, n-butyl lactate, cyclopentanone and cyclohexanone are preferred.
[界面活性剤、その他添加剤]
本発明のポジ型感光性樹脂組成物は、塗布性を向上させる目的で、任意で界面活性剤を含有することもできる。界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル及びポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン/ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレート、ソルビタントリオレート、及びソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレート、及びポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ(登録商標)EF301、同EF303、同EF352(以上、三菱マテリアル電子化成(株)製)、メガファック(登録商標)F-171、同F-173、同R-30、同R-40、同R-40-LM(以上、DIC(株)製)、フロラードFC430、同FC431(以上、住友スリーエム(株)製)、アサヒガード(登録商標)AG710、サーフロン(登録商標)S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(AGC(株)製)、FTX-206D、FTX-212D、FTX-218、FTX-220D、FTX-230D、FTX-240D、FTX-212P、FTX-220P、FTX-228P、FTX-240G等のフタージェントシリーズ((株)ネオス製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマーKP341(信越化学工業(株)製)を挙げることができる。これらの界面活性剤は1種単独で使用しても、2種以上を組み合わせて使用してもよい。
[Surfactant and other additives]
The positive photosensitive resin composition of the present invention may optionally contain a surfactant for the purpose of improving coatability. Examples of surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether and polyoxyethylene Polyoxyethylene alkylaryl ethers such as nonylphenyl ether, polyoxyethylene/polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan trioleate Sorbitan fatty acid esters such as stearates, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, and polyoxyethylene sorbitan tristearate Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters, F-top (registered trademark) EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.), Megafac (registered trademark) F-171 , F-173, R-30, R-40, R-40-LM (manufactured by DIC Corporation), Florado FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710, Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Inc.), FTX-206D, FTX-212D, FTX- 218, FTX-220D, FTX-230D, FTX-240D, FTX-212P, FTX-220P, FTX-228P, FTX-240G, etc. Ftergent series (manufactured by Neos Co., Ltd.) and other fluorine-based surfactants, and Organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned. These surfactants may be used singly or in combination of two or more.
本発明のポジ型感光性樹脂組成物が界面活性剤を含む場合、界面活性剤の含有量は、該ポジ型感光性樹脂組成物中の溶剤を除く全固形分100質量部に対し、0.001質量部乃至3質量部、好ましくは0.005質量部乃至1質量部であり、より好ましくは0.01質量部乃至0.5質量部である。 When the positive photosensitive resin composition of the present invention contains a surfactant, the content of the surfactant is 0.00 per 100 parts by mass of the total solid content excluding the solvent in the positive photosensitive resin composition. 001 to 3 parts by mass, preferably 0.005 to 1 part by mass, more preferably 0.01 to 0.5 parts by mass.
本発明のポジ型感光性樹脂組成物は、本発明の効果を損なわない限りにおいて、必要に応じて硬化助剤、酸化防止剤、紫外線吸収剤、可塑剤、密着助剤等の添加剤を含むことができる。 The positive photosensitive resin composition of the present invention contains additives such as curing aids, antioxidants, UV absorbers, plasticizers, adhesion aids, etc. as necessary, as long as the effects of the present invention are not impaired. be able to.
[ポジ型感光性樹脂組成物の調製方法]
本発明のポジ型感光性樹脂組成物の調製方法は特に限定されないが、例えば、(A)成分乃至(D)成分、又は(A´)成分乃至(E)成分、及び任意でその他の成分を溶剤に溶解し、均一な溶液とする方法が挙げられる。また、必要に応じて、該溶液を孔径0.1μm乃至10μmのフィルターを用いてろ過してもよい。
[Method for preparing positive photosensitive resin composition]
The method for preparing the positive photosensitive resin composition of the present invention is not particularly limited. A method of dissolving in a solvent to form a uniform solution can be mentioned. Moreover, if necessary, the solution may be filtered using a filter with a pore size of 0.1 μm to 10 μm.
[マイクロレンズの作製方法]
本発明のポジ型感光性樹脂組成物を用いたマイクロレンズの作製例について説明する。
<塗布工程>
基材(例えば、半導体基板、ガラス基板、石英基板、プラスチック基板、シリコンウエハー及びこれらの表面に各種金属膜又はカラーフィルター等の素子が形成された基板)上に、スピナー又はコーター等の適当な塗布方法により本発明のポジ型感光性樹脂組成物を塗布し、好ましくはオーブン又はホットプレート等の加熱手段を用いてプリベークを行って溶剤を除去することにより樹脂膜を形成する。プリベーク条件は、ベーク温度60℃乃至130℃、ベーク時間20秒間乃至30分間の範囲から適宜選択される。形成される樹脂膜の膜厚としては、0.1μm乃至10μm、好ましくは0.2μm乃至5μmである。
[Method for producing a microlens]
An example of producing a microlens using the positive photosensitive resin composition of the present invention will be described.
<Coating process>
Appropriate coating using a spinner, coater, etc. on a substrate (e.g., semiconductor substrate, glass substrate, quartz substrate, plastic substrate, silicon wafer, and substrates having elements such as various metal films or color filters formed on these surfaces) A resin film is formed by applying the positive photosensitive resin composition of the present invention according to a method, preferably pre-baking using a heating means such as an oven or a hot plate, and removing the solvent. Pre-baking conditions are appropriately selected from the ranges of baking temperature of 60° C. to 130° C. and baking time of 20 seconds to 30 minutes. The film thickness of the resin film to be formed is 0.1 μm to 10 μm, preferably 0.2 μm to 5 μm.
<第一露光工程>
前記塗布工程の後、形成された樹脂膜の少なくとも一部に、所定のマスクを介して露光する。露光する光線としては、例えば、g線、i線、KrFエキシマレーザー及びArFエキシマレーザーを使用することができる。露光量は、20mJ/cm乃至2000mJ/cmの範囲から適宜選択される。
<First exposure step>
After the coating step, at least part of the formed resin film is exposed through a predetermined mask. For example, g-line, i-line, KrF excimer laser, and ArF excimer laser can be used as light for exposure. The exposure dose is appropriately selected from the range of 20 mJ/cm 2 to 2000 mJ/cm 2 .
<現像工程>
前記第一露光工程の後、樹脂膜の露光部を現像液により除去し、該樹脂膜の未露光部のパターンを形成する。現像方法は特に限定されないが、例えば、ディップ法、パドル法及びスプレー法が挙げられる。現像条件は、現像温度5℃乃至50℃、現像時間10秒乃至300秒の範囲から適宜選択される。使用する現像液としては、露光部を除去することができる限り特に限定されないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、リン酸ナトリウム、リン酸カリウム、アンモニア、テトラメチルアンモニウムヒドロキシド(TMAH)、及びテトラエチルアンモニウムヒドロキシド(TEAH)等のアルカリ水溶液が挙げられる。また、アルカリ水溶液に界面活性剤や有機溶媒を適当量添加したものを現像液として使用してもよい。これらの現像液は1種単独で、又は2種以上を組み合わせて使用してもよい。
<Development process>
After the first exposure step, the exposed portion of the resin film is removed with a developer to form a pattern of the unexposed portion of the resin film. The developing method is not particularly limited, but includes, for example, a dipping method, a puddle method and a spraying method. The development conditions are appropriately selected from the ranges of development temperature of 5° C. to 50° C. and development time of 10 seconds to 300 seconds. The developer to be used is not particularly limited as long as it can remove the exposed areas, but examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium phosphate, potassium phosphate, and ammonia. , tetramethylammonium hydroxide (TMAH), and tetraethylammonium hydroxide (TEAH). Moreover, you may use what added appropriate amounts of surfactant and an organic solvent to alkaline aqueous solution as a developer. These developers may be used singly or in combination of two or more.
現像後、現像液を洗い流すためにリンス液でリンスしてもよい。現像又はリンスの後、残存した現像液又はリンス液を除去するために、スピナー又はコーター等のスピン可能な装置で回転させることにより、あるいは圧縮空気や圧縮窒素を吹きかけることにより乾燥させることができる。 After development, a rinse solution may be used to wash away the developer. After development or rinsing, in order to remove the remaining developing solution or rinsing solution, it can be dried by rotating it with a spinnable device such as a spinner or a coater, or by blowing compressed air or compressed nitrogen.
<リフロー工程>
球欠形状又は半球形状のマイクロレンズを作製する場合は、前記現像工程の後に形成されたパターンを、後述する第二露光工程の前に、オーブン又はホットプレート等の加熱手段を用いて加熱するリフロー工程を含んでもよい。リフロー条件は、ベーク温度80℃乃至150℃、ベーク時間1分間乃至90分間の範囲から適宜選択される。ここで、リフロー温度をT[℃]、アルカリ可溶性樹脂のガラス転移温度をT[℃]としたとき、好ましくは下記式(3)且つ下記式(4)、より好ましくは下記式(3)且つ下記式(5)、さらに好ましくは下記式(3)且つ下記式(6)を満たす。なお、リフロー温度Tがアルカリ可溶性樹脂のガラス転移温度T以下であっても、(T-10)≦Tを満たす場合、前記パターンはリフローする場合がある。
式(3):80≦T≦150
式(4):(T-10)≦T≦(T+60)
式(5):T≦T≦(T+50)
式(6):(T+10)≦T≦(T+40)
上記関係式を満たすことで、前記パターンが良好なリフロー性を示し、且つ過剰なリフローにより隣接するパターン同士が融合することを防ぎ、所望の球欠形状又は半球形状のマイクロレンズが得られる。なお、リフロー工程を省略しても球欠形状又は半球形状のマイクロレンズを作製することはできるが、リフロー工程を含むことによって、より低温で球欠形状又は半球形状のマイクロレンズを作製することが可能となる。
<Reflow process>
In the case of producing a spherical or hemispherical microlens, the pattern formed after the development step is reflowed using a heating means such as an oven or a hot plate before the second exposure step described later. A step may be included. The reflow conditions are appropriately selected from a baking temperature range of 80° C. to 150° C. and a baking time range of 1 minute to 90 minutes. Here, when the reflow temperature is T R [° C.] and the glass transition temperature of the alkali-soluble resin is T g [° C.], the following formulas (3) and (4) are preferable, and more preferably the following formula (3 ) and the following formula (5), more preferably the following formula (3) and the following formula (6) are satisfied. Even if the reflow temperature T R is equal to or lower than the glass transition temperature T g of the alkali-soluble resin, the pattern may reflow if (T g −10)≦T R is satisfied.
Formula (3): 80≦T R ≦150
Formula (4): (T g −10)≦T R ≦(T g +60)
Formula (5): T g ≤ TR ≤ (T g +50 )
Formula (6): (T g +10) ≤ TR ≤ (T g +40 )
By satisfying the above relational expression, the pattern exhibits good reflowability and prevents adjacent patterns from merging due to excessive reflow, thereby obtaining a desired spherical or hemispherical microlens. Even if the reflow process is omitted, the spherical or hemispherical microlens can be produced. However, by including the reflow process, the spherical or hemispherical microlens can be produced at a lower temperature. It becomes possible.
<第二露光工程>
前記現像工程の後、又は前記リフロー工程の後、前記パターンをさらに露光する。露光する光線としては、例えば、g線、i線、KrFエキシマレーザー及びArFエキシマレーザーを使用することができる。露光量は、100mJ/cm乃至5000mJ/cmの範囲から適宜選択される。
<Second exposure step>
After the developing step or after the reflow step, the pattern is further exposed. For example, g-line, i-line, KrF excimer laser, and ArF excimer laser can be used as light for exposure. The exposure amount is appropriately selected from the range of 100 mJ/cm 2 to 5000 mJ/cm 2 .
<ポストベーク工程>
前記第二露光工程の後、前記パターンをオーブン又はホットプレート等の加熱手段を用いて加熱する。ポストベーク条件は、ベーク温度80℃乃至150℃、ベーク時間1分間乃至90分間の範囲から適宜選択される。
<Post-baking process>
After the second exposure step, the pattern is heated using heating means such as an oven or a hot plate. Post-baking conditions are appropriately selected from the ranges of baking temperature of 80° C. to 150° C. and baking time of 1 minute to 90 minutes.
前記パターンをリフローさせずに角柱、円柱、角錐台又は円錐台等のマイクロレンズを作製してもよい。その場合は、ポストベーク温度をT[℃]、アルカリ可溶性樹脂のガラス転移温度をT[℃]としたとき、好ましくは下記式(7)且つ下記式(8)、より好ましくは下記式(7)且つ下記式(9)、さらに好ましくは下記式(7)且つ下記式(10)を満たす。
式(7):80≦T≦150
式(8):T≦T
式(9):T≦(T-10)
式(10):T≦(T-20)
上記関係式を満たすことで、前記パターンがリフローすることを防ぎ、所望の角柱、円柱、角錐台又は円錐台状のマイクロレンズが得られる。
Microlenses such as prisms, cylinders, truncated pyramids or truncated cones may be fabricated without reflowing the pattern. In that case, when the post-baking temperature is T P [° C.] and the glass transition temperature of the alkali-soluble resin is T g [° C.], preferably the following formulas (7) and (8), more preferably the following formula (7) and the following formula (9), more preferably the following formula (7) and the following formula (10) are satisfied.
Formula (7): 80≦T P ≦150
Formula (8): T P ≤ T g
Formula (9): T P ≤ (T g -10)
Formula (10): T P ≤ (T g -20)
By satisfying the above relational expression, the pattern is prevented from reflowing, and a desired prismatic, cylindrical, truncated pyramidal or truncated conical microlens can be obtained.
球欠形状又は半球形状のマイクロレンズを作製する際、リフロー工程を含まない場合、ポストベーク温度をT[℃]、アルカリ可溶性樹脂のガラス転移温度をT[℃]としたとき、好ましくは前記式(7)且つ下記式(11)、より好ましくは前記式(7)且つ下記式(12)、さらに好ましくは前記式(7)且つ下記式(13)を満たす。
式(11):T≦T≦(T+70)
式(12):(T+10)≦T≦(T+60)
式(13):(T+20)≦T≦(T+50)
上記関係式を満たすことで、リフロー工程を実施せずとも前記パターンが良好なリフロー性を示し、且つ過剰なリフローにより隣接するパターン同士が融合することを防ぎ、所望の球欠形状又は半球形状のマイクロレンズが得られる。
When the reflow process is not included when producing a spherical or hemispherical microlens, the post-baking temperature is T P [°C] and the glass transition temperature of the alkali-soluble resin is T g [°C]. The above formula (7) and the following formula (11), more preferably the above formula (7) and the following formula (12), more preferably the above formula (7) and the following formula (13) are satisfied.
Formula (11): T g ≤ T P ≤ (T g +70)
Formula (12): (T g +10) ≤ T P ≤ (T g +60)
Formula (13): (T g +20) ≤ T P ≤ (T g +50)
By satisfying the above relational expression, the pattern exhibits good reflowability without performing the reflow process, and the adjacent patterns are prevented from being fused together due to excessive reflow. A microlens is obtained.
球欠形状又は半球形状のマイクロレンズを作製する際、リフロー工程を含む場合、ポストベーク温度をT[℃]、リフロー温度をT[℃]としたとき、好ましくは前記式(3)及び前記式(7)且つ下記式(14)、より好ましくは前記式(3)及び前記式(7)且つ下記式(15)、さらに好ましくは前記式(3)及び前記式(7)且つ下記式(16)を満たす。
式(14):T≦(T+40)
式(15):T≦(T+30)
式(16):T≦(T+20)
上記関係式を満たすことで、球欠形状又は半球形状のマイクロレンズの形状を制御しやすくなる。
When a reflow process is included in the production of a spherical or hemispherical microlens, when the post-baking temperature is T P [°C] and the reflow temperature is T R [°C], the formula (3) and The above formula (7) and the following formula (14), more preferably the above formulas (3) and (7) and the following formula (15), more preferably the above formulas (3) and (7) and the following formula (16) is satisfied.
Formula (14): T P ≤ (T R +40)
Formula (15): T P ≤ (T R +30)
Formula (16): T P ≤ (T R +20)
Satisfying the above relational expression makes it easier to control the shape of the spherical or hemispherical microlens.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.
アルカリ可溶性樹脂のポリスチレン換算重量平均分子量Mの測定に用いた装置及び条件は以下の通りである。
装置:日本分光(株)製GPCシステム
カラム:Shodex(登録商標)KF-804L及びKF-803L
カラムオーブン:40℃
流量:1mL/分
溶離液:テトラヒドロフラン
試料濃度:10mg/mL
試料注入量:20μL
標準物質:単分散ポリスチレン
検出器:示差屈折計
The apparatus and conditions used for measuring the polystyrene-equivalent weight-average molecular weight MW of the alkali-soluble resin are as follows.
Apparatus: GPC system manufactured by JASCO Corporation Column: Shodex (registered trademark) KF-804L and KF-803L
Column oven: 40°C
Flow rate: 1 mL/min Eluent: Tetrahydrofuran Sample concentration: 10 mg/mL
Sample injection volume: 20 μL
Reference material: Monodisperse polystyrene Detector: Differential refractometer
実施例及び比較例で用いた化合物は以下の通りである。
<(B)成分>
B-1:4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノール1モルと1,2-ナフトキノン-2-ジアジド-5-スルホン酸クロリド1.5モルとの縮合物
<(C)成分>
C-1:アデカアークルズ(登録商標)SP-606((株)ADEKA製)
C-2:CPI-110P(サンアプロ(株)製)
<(D)成分>
D-1:トリペンチルアミン(東京化成工業(株)製)
D-2:N-エチルジイソプロピルアミン(東京化成工業(株)製)
D-3:水酸化カリウム(純正化学(株)製)
D-4:水酸化テトラメチルアンモニウム((東京化成工業(株)製)
D-5:WPBG-018(富士フイルム和光純薬(株)製)
<(E)成分>
E-1:エポリード(登録商標)GT401((株)ダイセル製)
<(F)成分>
F-1:2-イソプロピルチオキサントン(東京化成工業(株)製)
<界面活性剤>
R-40:メガファック(登録商標)R-40(DIC(株)製)
The compounds used in Examples and Comparative Examples are as follows.
<(B) Component>
B-1: 1 mol of 4,4′-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol and 1,2-naphthoquinone-2-diazide-5- Condensate with 1.5 mol of sulfonyl chloride <Component (C)>
C-1: ADEKA Arkles (registered trademark) SP-606 (manufactured by ADEKA Co., Ltd.)
C-2: CPI-110P (manufactured by San-Apro Co., Ltd.)
<(D) Component>
D-1: Tripentylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
D-2: N-ethyldiisopropylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
D-3: Potassium hydroxide (manufactured by Junsei Chemical Co., Ltd.)
D-4: Tetramethylammonium hydroxide ((manufactured by Tokyo Chemical Industry Co., Ltd.)
D-5: WPBG-018 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
<(E) component>
E-1: Epolead (registered trademark) GT401 (manufactured by Daicel Corporation)
<(F) Component>
F-1: 2-Isopropylthioxanthone (manufactured by Tokyo Chemical Industry Co., Ltd.)
<Surfactant>
R-40: Megafac (registered trademark) R-40 (manufactured by DIC Corporation)
[(A)成分の合成]
<合成例1>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル90gを入れ、加温したオイルバスに浸漬して70℃に保持した。次に、モノマーとしてメタクリル酸20g、メチルメタクリレート40g及びスチレン40g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル5.0g、溶剤としてプロピレングリコールモノメチルエーテル105gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで、共重合体の溶液(固形分濃度35質量%)を得た。該溶液を、3Lのヘキサン中に撹拌しながら注ぎ入れ、沈殿物を回収し、減圧乾燥機を用いて乾燥させることで共重合体の粉末を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは14,000であった。該共重合体をアルカリ可溶性樹脂A´-1とした。
[Synthesis of component (A)]
<Synthesis Example 1>
A stir bar and 90 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 70°C. Next, a mixed solution of 20 g of methacrylic acid, 40 g of methyl methacrylate and 40 g of styrene as monomers, 5.0 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and 105 g of propylene glycol monomethyl ether as a solvent was added dropwise. It was placed in a funnel, connected to the flask, and after purging with nitrogen, it was added dropwise over 3 hours while stirring. After completion of the dropwise addition, reaction was continued for 15 hours to obtain a copolymer solution (solid concentration: 35% by mass). The solution was poured into 3 L of hexane with stirring, and the precipitate was collected and dried using a vacuum drier to obtain a copolymer powder. The polystyrene-equivalent weight-average molecular weight MW of the resulting copolymer was 14,000. This copolymer was designated as alkali-soluble resin A'-1.
<合成例2>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル90gを入れ、加温したオイルバスに浸漬して70℃に保持した。次に、モノマーとしてアクリル酸10g、4-ヒドロキシブチルアクリレート30g及びスチレン60g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル4.5g、溶剤としてプロピレングリコールモノメチルエーテル105gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは18,000であった。該共重合体をアルカリ可溶性樹脂A´-2とした。
<Synthesis Example 2>
A stir bar and 90 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 70°C. Next, a solution obtained by mixing 10 g of acrylic acid, 30 g of 4-hydroxybutyl acrylate and 60 g of styrene as monomers, 4.5 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and 105 g of propylene glycol monomethyl ether as a solvent. was placed in a dropping funnel, connected to the flask, and after purging with nitrogen, it was added dropwise over 3 hours while stirring. After completion of the dropwise addition, reaction was continued for 15 hours to obtain a copolymer solution (solid concentration: 35% by mass). The polystyrene-equivalent weight-average molecular weight MW of the resulting copolymer was 18,000. This copolymer was designated as alkali-soluble resin A'-2.
<合成例3>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル90gを入れ、加温したオイルバスに浸漬して80℃に保持した。次に、モノマーとして4-ヒドロキシフェニルメタクリレート52g、3,4-エポキシシクロヘキシルメチルメタクリレート20g及びブチルメタクリレート28g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル4.9g、溶剤としてプロピレングリコールモノメチルエーテル105gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは17,000であった。該共重合体をアルカリ可溶性樹脂A-3とした。
<Synthesis Example 3>
A stirrer and 90 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 80°C. Next, 52 g of 4-hydroxyphenyl methacrylate, 20 g of 3,4-epoxycyclohexylmethyl methacrylate and 28 g of butyl methacrylate as monomers, 4.9 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and propylene glycol as a solvent. A solution mixed with 105 g of monomethyl ether was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After completion of the dropwise addition, reaction was continued for 15 hours to obtain a copolymer solution (solid concentration: 35% by mass). The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 17,000. This copolymer was designated as alkali-soluble resin A-3.
<合成例4>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル88gを入れ、加温したオイルバスに浸漬して75℃に保持した。次に、モノマーとして4-ヒドロキシフェニルメタクリレート50g及び3,4-エポキシシクロヘキシルメチルメタクリレート50g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル2.6g、溶剤としてプロピレングリコールモノメチルエーテル103gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは32,000であった。該共重合体をアルカリ可溶性樹脂A-4とした。
<Synthesis Example 4>
A stirrer and 88 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 75°C. Next, 50 g of 4-hydroxyphenyl methacrylate and 50 g of 3,4-epoxycyclohexylmethyl methacrylate as monomers, 2.6 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and 103 g of propylene glycol monomethyl ether as a solvent were added. The mixed solution was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After completion of the dropwise addition, reaction was continued for 15 hours to obtain a copolymer solution (solid concentration: 35% by mass). The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 32,000. This copolymer was designated as alkali-soluble resin A-4.
<合成例5>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル89gを入れ、加温したオイルバスに浸漬して80℃に保持した。次に、モノマーとして4-ヒドロキシフェニルメタクリレート42g及び3,4-エポキシシクロヘキシルメチルメタクリレート58g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル4.4g、溶剤としてプロピレングリコールモノメチルエーテル104gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは14,000であった。該共重合体をアルカリ可溶性樹脂A-5とした。
<Synthesis Example 5>
A stir bar and 89 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 80°C. Next, 42 g of 4-hydroxyphenyl methacrylate and 58 g of 3,4-epoxycyclohexylmethyl methacrylate as monomers, 4.4 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and 104 g of propylene glycol monomethyl ether as a solvent were added. The mixed solution was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After completion of the dropwise addition, reaction was continued for 15 hours to obtain a copolymer solution (solid concentration: 35% by mass). The polystyrene-equivalent weight-average molecular weight MW of the resulting copolymer was 14,000. This copolymer was designated as alkali-soluble resin A-5.
<合成例6>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル90gを入れ、加温したオイルバスに浸漬して80℃に保持した。次に、モノマーとして4-ヒドロキシフェニルメタクリレート40g及び3-(メタクリロイルオキシメチル)-3-エチルオキセタン60g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル4.5g、溶剤としてプロピレングリコールモノメチルエーテル105gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで、共重合体の溶液(固形分濃度35質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは11,000であった。該共重合体をアルカリ可溶性樹脂A-6とした。
<Synthesis Example 6>
A stirrer and 90 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 80°C. 40 g of 4-hydroxyphenyl methacrylate and 60 g of 3-(methacryloyloxymethyl)-3-ethyloxetane as monomers, 4.5 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and propylene glycol as a solvent. A solution mixed with 105 g of monomethyl ether was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After completion of the dropwise addition, reaction was continued for 15 hours to obtain a copolymer solution (solid concentration: 35% by mass). The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 11,000. This copolymer was designated as alkali-soluble resin A-6.
<合成例7>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル50gを入れ、加温したオイルバスに浸漬して80℃に保持した。次に、モノマーとしてN-(4-ヒドロキシフェニル)メタクリルアミド40g及び3,4-エポキシシクロヘキシルメチルメタクリレート60g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル4.4g、溶剤としてプロピレングリコールモノメチルエーテル194gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは11,000であった。該共重合体をアルカリ可溶性樹脂A-7とした。
<Synthesis Example 7>
A stir bar and 50 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 80°C. Next, 40 g of N-(4-hydroxyphenyl) methacrylamide and 60 g of 3,4-epoxycyclohexylmethyl methacrylate as monomers, 4.4 g of 2,2'-azobisisobutyronitrile as a thermal radical generator, and propylene as a solvent. A solution mixed with 194 g of glycol monomethyl ether was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After the completion of dropping, reaction was continued for 15 hours to obtain a copolymer solution (solid content concentration: 30% by mass). The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 11,000. This copolymer was designated as alkali-soluble resin A-7.
<合成例8>
フラスコに撹拌子と、溶剤としてプロピレングリコールモノメチルエーテル50gを入れ、加温したオイルバスに浸漬して87℃に保持した。次に、モノマーとしてN-(4-ヒドロキシフェニル)メタクリルアミド30g、3,4-エポキシシクロヘキシルメチルメタクリレート60g及び2-ヒドロキシエチルメタクリレート10g、熱ラジカル発生剤として2,2’-アゾビスイソブチロニトリル4.5g、溶剤としてプロピレングリコールモノメチルエーテル194gを混合した溶液を、滴下漏斗に入れて前記フラスコに接続し、窒素置換した後、撹拌しながら3時間かけて滴下した。滴下終了後、さらに15時間反応させることで共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは8,000であった。該共重合体をアルカリ可溶性樹脂A-8とした。
<Synthesis Example 8>
A stirrer and 50 g of propylene glycol monomethyl ether as a solvent were placed in a flask, which was immersed in a heated oil bath and maintained at 87°C. Next, 30 g of N-(4-hydroxyphenyl) methacrylamide, 60 g of 3,4-epoxycyclohexylmethyl methacrylate and 10 g of 2-hydroxyethyl methacrylate as monomers, and 2,2′-azobisisobutyronitrile as a thermal radical generator. A solution prepared by mixing 4.5 g of propylene glycol monomethyl ether with 194 g of propylene glycol monomethyl ether as a solvent was placed in a dropping funnel, connected to the flask, purged with nitrogen, and then added dropwise over 3 hours while stirring. After the completion of dropping, reaction was continued for 15 hours to obtain a copolymer solution (solid content concentration: 30% by mass). The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 8,000. This copolymer was designated as alkali-soluble resin A-8.
<合成例9>
N-(4-ヒドロキシフェニル)メタクリルアミドを25g、2-ヒドロキシエチルメタクリレートを15g、2,2’-アゾビスイソブチロニトリルを4.6g使用する以外は合成例8と同様の方法で、共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは8,000であった。該共重合体をアルカリ可溶性樹脂A-9とした。
<Synthesis Example 9>
In the same manner as in Synthesis Example 8, except that 25 g of N-(4-hydroxyphenyl) methacrylamide, 15 g of 2-hydroxyethyl methacrylate, and 4.6 g of 2,2'-azobisisobutyronitrile were used. A polymer solution (solid concentration: 30% by mass) was obtained. The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 8,000. This copolymer was designated as alkali-soluble resin A-9.
<合成例10>
N-(4-ヒドロキシフェニル)メタクリルアミドを20g、2-ヒドロキシエチルメタクリレートを20g、2,2’-アゾビスイソブチロニトリルを4.7g使用する以外は合成例8と同様の方法で、共重合体の溶液(固形分濃度30質量%)を得た。得られた共重合体のポリスチレン換算重量平均分子量Mは8,000であった。該共重合体をアルカリ可溶性樹脂A-10とした。
<Synthesis Example 10>
In the same manner as in Synthesis Example 8, except that 20 g of N-(4-hydroxyphenyl) methacrylamide, 20 g of 2-hydroxyethyl methacrylate, and 4.7 g of 2,2'-azobisisobutyronitrile were used. A polymer solution (solid concentration: 30% by mass) was obtained. The polystyrene-equivalent weight-average molecular weight MW of the obtained copolymer was 8,000. This copolymer was designated as alkali-soluble resin A-10.
[ポジ型感光性樹脂組成物の調製]
<実施例1>
(A´)成分として合成例1で得られたアルカリ可溶性樹脂A´-1を21.0g、(B)成分としてB-1を6.3g、(C)成分としてC-1を0.3g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを39.9g及びプロピレングリコールモノメチルエーテルアセタートを39.9g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度29質量%)を得た。
[Preparation of positive photosensitive resin composition]
<Example 1>
21.0 g of the alkali-soluble resin A'-1 obtained in Synthesis Example 1 as component (A'), 6.3 g of B-1 as component (B), and 0.3 g of C-1 as component (C). , 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, 39.9 g of propylene glycol monomethyl ether as solvent and 39.9 g of propylene glycol monomethyl ether acetate was blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
<実施例2>
(A´)成分として合成例2で得られたアルカリ可溶性樹脂A´-2を60.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を10.5g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを3.8g及びプロピレングリコールモノメチルエーテルアセタートを35.1g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度32質量%)を得た。
<Example 2>
60.0 g (21.0 g as solid content) of the alkali-soluble resin A'-2 obtained in Synthesis Example 2 as component (A'), 4.8 g of B-1 as component (B), and component (C) 0.2 g of C-1 as component (D), 0.1 g of D-1 as component (D), 10.5 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene as solvent 3.8 g of glycol monomethyl ether and 35.1 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 32% by mass).
<実施例3>
(A)成分として合成例3で得られたアルカリ可溶性樹脂A-3を60.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを14.0g及びプロピレングリコールモノメチルエーテルアセタートを22.7g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度30質量%)を得た。
<Example 3>
60.0 g (21.0 g as solid content) of the alkali-soluble resin A-3 obtained in Synthesis Example 3 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 14.0 g of ether and 22.7 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 30% by mass).
<実施例4>
(A)成分として合成例4で得られたアルカリ可溶性樹脂A-4を60.0g(固形分として21.0g)、(B)成分としてB-1を6.3g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを22.1g及びプロピレングリコールモノメチルエーテルアセタートを26.2g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度28質量%)を得た。
<Example 4>
60.0 g (21.0 g as solid content) of the alkali-soluble resin A-4 obtained in Synthesis Example 4 as component (A), 6.3 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 22.1 g of ether and 26.2 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 28% by mass).
<実施例5>
(A)成分として合成例5で得られたアルカリ可溶性樹脂A-5を60.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを14.0g及びプロピレングリコールモノメチルエーテルアセタートを22.7g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度30質量%)を得た。
<Example 5>
60.0 g (21.0 g as solid content) of the alkali-soluble resin A-5 obtained in Synthesis Example 5 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 14.0 g of ether and 22.7 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 30% by mass).
<実施例6>
(A)成分として合成例6で得られたアルカリ可溶性樹脂A-6を60.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.4g、(D)成分としてD-1を0.2g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを14.4g及びプロピレングリコールモノメチルエーテルアセタートを22.9g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度30質量%)を得た。
<Example 6>
60.0 g (21.0 g as solid content) of the alkali-soluble resin A-6 obtained in Synthesis Example 6 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.4 g of D-1 as component (D), 0.2 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 14.4 g of ether and 22.9 g of propylene glycol monomethyl ether acetate were blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 30% by mass).
<実施例7>
(A)成分として合成例7で得られたアルカリ可溶性樹脂A-7を70.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを9.4g及びプロピレングリコールモノメチルエーテルアセタートを25.0g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度28質量%)を得た。
<Example 7>
70.0 g (21.0 g as solid content) of the alkali-soluble resin A-7 obtained in Synthesis Example 7 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 9.4 g of ether and 25.0 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 28% by mass).
<実施例8>
(A)成分として合成例8で得られたアルカリ可溶性樹脂A-8を70.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを6.6g及びプロピレングリコールモノメチルエーテルアセタートを23.8g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度29質量%)を得た。
<Example 8>
70.0 g (21.0 g as solid content) of the alkali-soluble resin A-8 obtained in Synthesis Example 8 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 6.6 g of ether and 23.8 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
<実施例9>
(A)成分として合成例8で得られたアルカリ可溶性樹脂A-8を70.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-2を0.3g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを6.8g及びプロピレングリコールモノメチルエーテルアセタートを23.9g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度29質量%)を得た。
<Example 9>
70.0 g (21.0 g as solid content) of the alkali-soluble resin A-8 obtained in Synthesis Example 8 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.3 g of -2, 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 6.8 g of ether and 23.9 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
<実施例10>
(A)成分として合成例9で得られたアルカリ可溶性樹脂A-9を70.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを6.6g及びプロピレングリコールモノメチルエーテルアセタートを23.8g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度29質量%)を得た。
<Example 10>
70.0 g (21.0 g as solid content) of the alkali-soluble resin A-9 obtained in Synthesis Example 9 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 6.6 g of ether and 23.8 g of propylene glycol monomethyl ether acetate were blended to form a homogeneous solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 29% by mass).
<実施例11>
(A)成分として合成例10で得られたアルカリ可溶性樹脂A-10を70.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を6.3g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを30.2g及びプロピレングリコールモノメチルエーテルアセタートを79.2g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Example 11>
70.0 g (21.0 g as solid content) of the alkali-soluble resin A-10 obtained in Synthesis Example 10 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1 as component (D), 0.1 g of D-1 as component (D), 6.3 g of E-1 as component (E), 0.01 g of R-40 as surfactant, propylene glycol monomethyl as solvent 30.2 g of ether and 79.2 g of propylene glycol monomethyl ether acetate were blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 17% by mass).
<実施例12>
(D)成分としてD-1の代わりにD-2を0.4g使用する以外は実施例11と同様の手順でポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Example 12>
A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11, except that 0.4 g of D-2 was used instead of D-1 as component (D).
<実施例13>
(D)成分としてD-1の代わりにD-3を0.02g使用する以外は実施例11と同様の手順でポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Example 13>
A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11, except that 0.02 g of D-3 was used as component (D) instead of D-1.
<実施例14>
(D)成分としてD-1の代わりにD-4を0.04g(実際は10質量%の水酸化テトラメチルアンモニウム水溶液を0.4g)使用する以外は実施例11と同様の手順でポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Example 14>
Positive photosensitive in the same procedure as in Example 11 except that 0.04 g of D-4 (actually 0.4 g of 10% by weight tetramethylammonium hydroxide aqueous solution) was used as component (D) instead of D-1. A flexible resin composition (solid concentration: 17% by mass) was obtained.
<実施例15>
(D)成分としてD-1の代わりにD-5を0.2g使用する以外は実施例11と同様の手順でポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Example 15>
A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11 except that 0.2 g of D-5 was used as component (D) instead of D-1.
<実施例16>
(A)成分として合成例10で得られたアルカリ可溶性樹脂A-10を70.0g(固形分として21.0g)、(B)成分としてB-1を4.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを25.1g及びプロピレングリコールモノメチルエーテルアセタートを74.1g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度15質量%)を得た。
<Example 16>
70.0 g (21.0 g as solid content) of the alkali-soluble resin A-10 obtained in Synthesis Example 10 as component (A), 4.8 g of B-1 as component (B), and C as component (C) 0.2 g of D-1, 0.1 g of D-1 as component (D), 0.01 g of R-40 as a surfactant, 25.1 g of propylene glycol monomethyl ether as a solvent, and propylene glycol monomethyl ether acetate. 74.1 g was blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid content concentration: 15% by mass).
<実施例17>
(A)成分として合成例10で得られたアルカリ可溶性樹脂A-10を84.0g(固形分として25.2g)、(B)成分としてB-1を5.8g、(C)成分としてC-1を0.2g、(D)成分としてD-1を0.1g、(E)成分としてE-1を7.6g、(F)成分としてF-1を0.05g、界面活性剤としてR-40を0.01g、溶剤としてプロピレングリコールモノメチルエーテルを36.2g及びプロピレングリコールモノメチルエーテルアセタートを95.0g配合し、均一溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いて濾過し、ポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Example 17>
84.0 g (25.2 g as solid content) of the alkali-soluble resin A-10 obtained in Synthesis Example 10 as component (A), 5.8 g of B-1 as component (B), and C as component (C) -1 0.2 g, (D) component D-1 0.1 g, (E) component E-1 7.6 g, (F) component F-1 0.05 g, surfactant 0.01 g of R-40, 36.2 g of propylene glycol monomethyl ether and 95.0 g of propylene glycol monomethyl ether acetate as solvents were blended to form a uniform solution. Then, it was filtered using a polyethylene microfilter with a pore size of 0.10 μm to obtain a positive photosensitive resin composition (solid concentration: 17% by mass).
<比較例1>
(D)成分を配合しない以外は実施例1と同様の手順でポジ型感光性樹脂組成物(固形分濃度29質量%)を得た。
<Comparative Example 1>
A positive photosensitive resin composition (solid concentration: 29% by mass) was obtained in the same manner as in Example 1, except that component (D) was not blended.
<比較例2>
(D)成分を配合しない以外は実施例11と同様の手順でポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Comparative Example 2>
A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11, except that component (D) was not blended.
<比較例3>
(C)成分を配合しない以外は実施例11と同様の手順でポジ型感光性樹脂組成物(固形分濃度17質量%)を得た。
<Comparative Example 3>
A positive photosensitive resin composition (solid concentration: 17% by mass) was obtained in the same manner as in Example 11, except that component (C) was not blended.
実施例1乃至実施例17並びに比較例1乃至比較例3のポジ型感光性樹脂組成物に含まれる各成分、及び(A)成分又は(A´)成分100質量部に対する(B)成分乃至(F)成分の含有量を、表1に表す。
Figure JPOXMLDOC01-appb-T000006
Each component contained in the positive photosensitive resin compositions of Examples 1 to 17 and Comparative Examples 1 to 3, and component (A) or component (B) to ( Table 1 shows the content of component F).
Figure JPOXMLDOC01-appb-T000006
[レンズ形状評価]
実施例1乃至実施例17並びに比較例1乃至比較例3で調製したポジ型感光性樹脂組成物を、それぞれシリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上で80℃、90秒間プリベークを行い、表2に記載の膜厚を有する樹脂膜を形成した。次に、該樹脂膜に対して、i線ステッパー(NSR-2205i12D、NA=0.63、(株)ニコン製)を用い、所定のマスクを介して表2に記載の露光量で第一露光を行った。ここで、該マスクとしては、膜厚4μmの樹脂膜(実施例1乃至実施例10並びに比較例1)については4μm×4μmの正方形ドットパターン/4μmスペースを形成するマスクを、膜厚1μmの樹脂膜(実施例11乃至実施例17並びに比較例2及び比較例3)については1μm×1μmの正方形ドットパターン/1μmスペースを形成するマスクを用いた。その後、露光してから10分以内に2.38質量%濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液を用いて現像を行い、膜厚4μmの樹脂膜については4μm×4μmの正方形ドットパターンを、膜厚1μmの樹脂膜については1μm×1μmの正方形ドットパターンを形成した。続いて、前記正方形ドットパターンに対し、ホットプレート上で表2に記載のリフロー温度にて5分間ベークを行った。但し、表2においてリフロー温度を“無し”と表示した実施例及び比較例については、前記正方形ドットパターンに対しリフロー温度でベークをしなかった。さらに、前記i線ステッパーを用い、前記正方形ドットパターン全面に対して500mJ/cmにて第二の露光をした後、ホットプレート上で表2に記載のポストベーク温度にて10分間ベークを行うことで、マイクロレンズを作製した。作製したマイクロレンズの形状が、四角柱又は四角錐台であるものを“□”、球欠形状又は半球形状であるものを“〇”と評価した。評価結果を表2に示す。
[Lens shape evaluation]
The positive photosensitive resin compositions prepared in Examples 1 to 17 and Comparative Examples 1 to 3 were each applied onto a silicon wafer using a spin coater, and prebaked on a hot plate at 80°C for 90 seconds. was performed to form a resin film having the film thickness shown in Table 2. Next, the resin film was first exposed through a predetermined mask with an exposure amount shown in Table 2 using an i-line stepper (NSR-2205i12D, NA=0.63, manufactured by Nikon Corporation). did Here, for the 4 μm-thick resin film (Examples 1 to 10 and Comparative Example 1), a mask for forming a 4 μm×4 μm square dot pattern/4 μm space was used as the mask. For the films (Examples 11 to 17 and Comparative Examples 2 and 3), a mask forming a 1 μm×1 μm square dot pattern/1 μm space was used. After that, within 10 minutes after the exposure, development was performed using a tetramethylammonium hydroxide (TMAH) aqueous solution with a concentration of 2.38% by mass. A square dot pattern of 1 μm×1 μm was formed on the resin film with a thickness of 1 μm. Subsequently, the square dot pattern was baked on a hot plate at the reflow temperature shown in Table 2 for 5 minutes. However, in the examples and comparative examples in which the reflow temperature is indicated as "none" in Table 2, the square dot pattern was not baked at the reflow temperature. Furthermore, using the i-line stepper, the entire surface of the square dot pattern is subjected to a second exposure at 500 mJ/cm 2 , and then baked on a hot plate at the post-bake temperature shown in Table 2 for 10 minutes. Thus, a microlens was produced. The shape of the fabricated microlens was evaluated as "□" when it was a quadrangular prism or truncated quadrangular pyramid, and as "◯" when it was spherical or hemispherical. Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[薬品耐性評価]
実施例1乃至実施例17並びに比較例1乃至比較例3で調製したポジ型感光性樹脂組成物を、それぞれシリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上で80℃、90秒間プリベークを行い、表2に記載の膜厚を有する樹脂膜を形成した。次に、該樹脂膜の全面に対して、前記i線ステッパーを用いて500mJ/cmにて露光した後、ホットプレート上で表2に記載のポストベーク温度にて10分間ベークを行うことで、硬化膜を形成した。硬化膜が形成されたシリコンウエハーを、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセタート、シクロヘキサノン及び2.38質量%濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液それぞれに、23℃にて5分間浸漬した。浸漬前及び浸漬後の前記硬化膜の膜厚測定を行い、浸漬前後での膜厚変化を算出した。前記浸漬に使用した溶剤のうち、一つでも浸漬前の膜厚に対して10%以上の膜厚増減がある場合は薬品耐性“×”、全ての溶剤について膜厚増減が10%未満である場合は薬品耐性“○”と評価した。評価結果を表2に示す。
[Chemical resistance evaluation]
The positive photosensitive resin compositions prepared in Examples 1 to 17 and Comparative Examples 1 to 3 were each applied onto a silicon wafer using a spin coater, and prebaked on a hot plate at 80°C for 90 seconds. was performed to form a resin film having the film thickness shown in Table 2. Next, the entire surface of the resin film was exposed at 500 mJ/cm 2 using the i-line stepper, and then baked on a hot plate at the post-baking temperature shown in Table 2 for 10 minutes. , to form a cured film. The silicon wafer on which the cured film was formed was immersed in propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, and a 2.38 mass% concentration tetramethylammonium hydroxide (TMAH) aqueous solution at 23°C for 5 minutes. bottom. The film thickness of the cured film was measured before and after immersion, and the change in film thickness before and after immersion was calculated. If even one of the solvents used for immersion has a film thickness change of 10% or more compared to the film thickness before immersion, the chemical resistance is "x", and the film thickness change is less than 10% for all solvents. In that case, the chemical resistance was evaluated as “○”. Table 2 shows the evaluation results.
[透明性評価]
実施例1乃至実施例17並びに比較例1乃至比較例3で調製したポジ型感光性樹脂組成物を、それぞれ石英基板上にスピンコーターを用いて塗布し、ホットプレート上で80℃、90秒間プリベークを行い、表2に記載の膜厚を有する樹脂膜を形成した。次に、該樹脂膜の全面に対して、前記i線ステッパーを用いて500mJ/cmにて露光した後、ホットプレート上で表2に記載のポストベーク温度にて10分間ベークを行うことで、硬化膜を形成した。硬化膜が形成された石英基板を、紫外可視分光光度計UV-2550((株)島津製作所製)を用いて、波長400nmにおける透過率を測定した。波長400nmにおける透過率が90%未満である場合は透明性“×”、90%以上である場合は透明性“○”とした。評価結果を表2に示す。
[Transparency evaluation]
The positive photosensitive resin compositions prepared in Examples 1 to 17 and Comparative Examples 1 to 3 were each applied onto a quartz substrate using a spin coater, and prebaked on a hot plate at 80°C for 90 seconds. was performed to form a resin film having the film thickness shown in Table 2. Next, the entire surface of the resin film was exposed at 500 mJ/cm 2 using the i-line stepper, and then baked on a hot plate at the post-baking temperature shown in Table 2 for 10 minutes. , to form a cured film. The transmittance of the quartz substrate on which the cured film was formed was measured at a wavelength of 400 nm using an ultraviolet-visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation). When the transmittance at a wavelength of 400 nm was less than 90%, the transparency was evaluated as "X", and when the transmittance was 90% or more, the transparency was evaluated as "O". Table 2 shows the evaluation results.
[PED安定性(PED耐性)評価]
実施例1乃至実施例17並びに比較例1乃至比較例3で調製したポジ型感光性樹脂組成物を、それぞれシリコンウエハー上にスピンコーターを用いて塗布し、ホットプレート上で80℃、90秒間プリベークを行い、表2に記載の膜厚を有する樹脂膜を形成した。次に、該樹脂膜に対して、前記i線ステッパーを用い、所定のマスクを介して表2に記載の露光量で第一露光を行った。ここで、該マスクとしては、膜厚4μmの樹脂膜(実施例1乃至実施例10並びに比較例1)については4μm×4μm正方形ドットパターン/4μmスペースを形成するマスクを、膜厚1μmの樹脂膜(実施例11乃至実施例17並びに比較例2及び比較例3)については1μm×1μm正方形ドットパターン/1μmスペースを形成するマスクを用いた。その後、前記第一露光から10分以内に2.38質量%濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液を用いて現像を行い、膜厚4μmの樹脂膜については4μm×4μmの正方形ドットパターンを、膜厚1μmの樹脂膜については1μm×1μmの正方形ドットパターンを形成した(条件1)。
[PED stability (PED resistance) evaluation]
The positive photosensitive resin compositions prepared in Examples 1 to 17 and Comparative Examples 1 to 3 were each applied onto a silicon wafer using a spin coater, and prebaked on a hot plate at 80°C for 90 seconds. was performed to form a resin film having the film thickness shown in Table 2. Next, the resin film was subjected to the first exposure with the exposure shown in Table 2 using the i-line stepper through a predetermined mask. Here, as the mask, for the 4 μm-thick resin film (Examples 1 to 10 and Comparative Example 1), a mask for forming a 4 μm×4 μm square dot pattern/4 μm space was used. For (Examples 11 to 17 and Comparative Examples 2 and 3), a mask for forming a 1 μm×1 μm square dot pattern/1 μm space was used. After that, within 10 minutes after the first exposure, development is performed using a 2.38 mass % concentration tetramethylammonium hydroxide (TMAH) aqueous solution, and a square dot pattern of 4 μm×4 μm is formed on the resin film having a thickness of 4 μm. A square dot pattern of 1 μm×1 μm was formed on a resin film having a thickness of 1 μm (Condition 1).
一方、実施例1乃至実施例17並びに比較例1乃至比較例3で調製したポジ型感光性樹脂組成物を用い、前記第一露光から次の現像までの間に、23℃にて2時間のインターバルを空ける以外は上記条件1と同じ手順により、膜厚4μmの樹脂膜については4μm×4μmの正方形ドットパターンを、膜厚1μmの樹脂膜については1μm×1μmの正方形ドットパターンを、シリコンウエハー上に形成した(条件2)。条件1ではポジ型パターニングが可能であるにも関わらず、条件2では露光部が現像液に十分に溶解せずポジ型パターニングが不可能である場合はPED安定性(PED耐性)“×”、条件1及び条件2のどちらでもポジ型パターニングが可能である場合はPED安定性(PED耐性)“〇”とした。評価結果を表2に示す。 On the other hand, using the positive photosensitive resin compositions prepared in Examples 1 to 17 and Comparative Examples 1 to 3, the time from the first exposure to the next development was 2 hours at 23 ° C. A square dot pattern of 4 μm × 4 μm for a resin film with a thickness of 4 μm and a square dot pattern of 1 μm × 1 μm for a resin film with a thickness of 1 μm are formed on a silicon wafer by the same procedure as in Condition 1 above except that an interval is provided. (Condition 2). Although positive patterning is possible under condition 1, PED stability (PED resistance) is "x" when the exposed portion is not sufficiently dissolved in the developer under condition 2 and positive patterning is impossible. The PED stability (PED resistance) was evaluated as "◯" when positive patterning was possible under both conditions 1 and 2. Table 2 shows the evaluation results.
表2の結果から、本発明のポジ型感光性樹脂組成物を用いることで、150℃以下の低温プロセスであっても所望の形状を有するマイクロレンズを形成することができ、それらマイクロレンズは高薬品耐性、高透明性、及び高PED安定性(PED耐性)を有することが示された。 From the results in Table 2, by using the positive photosensitive resin composition of the present invention, it is possible to form microlenses having a desired shape even in a low-temperature process of 150° C. or less. It was shown to have chemical resistance, high transparency, and high PED stability (PED resistance).

Claims (19)

  1. 下記(A)成分、下記(B)成分、下記(C)成分及び下記(D)成分、又は下記(A´)成分、下記(B)成分、下記(C)成分、下記(D)成分及び下記(E)成分を含み、さらに溶剤を含むポジ型感光性樹脂組成物。
    (A)成分:酸架橋性基を有するアルカリ可溶性樹脂
    (A´)成分:酸架橋性基を有さないアルカリ可溶性樹脂
    (B)成分:キノンジアジド化合物
    (C)成分:光酸発生剤
    (D)成分:PED安定性向上剤
    (E)成分:酸架橋性基を分子中に少なくとも2つ有する化合物
    The following (A) component, the following (B) component, the following (C) component and the following (D) component, or the following (A') component, the following (B) component, the following (C) component, the following (D) component and A positive photosensitive resin composition containing the following component (E) and further containing a solvent.
    Component (A): Alkali-soluble resin having an acid-crosslinkable group (A') Component: Alkali-soluble resin having no acid-crosslinkable group (B) Component: Quinondiazide compound (C) Component: Photoacid generator (D) Component: PED stability improver (E) Component: Compound having at least two acid-crosslinkable groups in the molecule
  2. 前記(A)成分及び前記(A´)成分はカルボキシ基を有するアルカリ可溶性樹脂である、請求項1に記載のポジ型感光性樹脂組成物。 2. The positive photosensitive resin composition according to claim 1, wherein said (A) component and said (A') component are alkali-soluble resins having a carboxy group.
  3. 前記(A)成分及び前記(A´)成分はフェノール性ヒドロキシ基を有するアルカリ可溶性樹脂である、請求項1に記載のポジ型感光性樹脂組成物。 2. The positive photosensitive resin composition according to claim 1, wherein said (A) component and said (A') component are alkali-soluble resins having a phenolic hydroxy group.
  4. 前記(A)成分及び前記(A´)成分は下記式(1)で表される構造単位を有するアルカリ可溶性樹脂である、請求項3に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はメチル基を表し、Xは-O-基又は-NH-基を表し、Rは単結合又は炭素原子数1又は2のアルキレン基を表し、Rはメチル基を表し、aは1又は2を表し、bは0乃至2の整数を表す。)
    4. The positive photosensitive resin composition according to claim 3, wherein said (A) component and said (A') component are alkali-soluble resins having a structural unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 0 represents a hydrogen atom or a methyl group, X represents an -O- group or a -NH- group, R 1 represents a single bond or an alkylene group having 1 or 2 carbon atoms, and R 2 represents represents a methyl group, a represents 1 or 2, and b represents an integer of 0 to 2.)
  5. 前記式(1)で表される構造単位においてXは-NH-基を表す、請求項4に記載のポジ型感光性樹脂組成物。 5. The positive photosensitive resin composition according to claim 4, wherein X in the structural unit represented by formula (1) represents a -NH- group.
  6. 前記酸架橋性基がエポキシ環又はオキセタン環を含む官能基である、請求項1乃至請求項5のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 5, wherein the acid-crosslinkable group is a functional group containing an epoxy ring or an oxetane ring.
  7. 前記(A)成分及び(A´)成分のポリスチレン換算重量平均分子量が1,000乃至100,000である、請求項1乃至請求項6のいずれか一項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 6, wherein the polystyrene-equivalent weight average molecular weights of the (A) component and the (A') component are 1,000 to 100,000. .
  8. 前記(C)成分は非イオン性光酸発生剤である、請求項1乃至請求項7のいずれか一項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 7, wherein the component (C) is a nonionic photoacid generator.
  9. 前記非イオン性光酸発生剤は下記式(2)で表される光酸発生剤である、請求項8に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素原子数1乃至10の炭化水素基又はパーフルオロアルキル基であり、Rは炭素原子数1乃至8の直鎖状のアルキル基もしくはアルコキシ基、又は炭素原子数3乃至8の分岐鎖状のアルキル基もしくはアルコキシ基である。)
    The positive photosensitive resin composition according to claim 8, wherein the nonionic photoacid generator is a photoacid generator represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 is a hydrocarbon group or perfluoroalkyl group having 1 to 10 carbon atoms, R 4 is a linear alkyl group or alkoxy group having 1 to 8 carbon atoms, or 3 carbon atoms to 8 branched alkyl or alkoxy groups).
  10. 前記(D)成分は光塩基発生剤又は塩基性化合物である、請求項1乃至請求項9のいずれか一項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 9, wherein the component (D) is a photobase generator or a basic compound.
  11. 前記(D)成分はアミン類である、請求項1乃至請求項10のいずれか一項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 10, wherein the component (D) is an amine.
  12. 前記(D)成分の含有量は前記(A)成分100質量部に対し0.1質量部乃至3質量部である、請求項1乃至請求項11のいずれか一項に記載のポジ型感光性樹脂組成物。 The positive photosensitive material according to any one of claims 1 to 11, wherein the content of component (D) is 0.1 parts by mass to 3 parts by mass with respect to 100 parts by mass of component (A). Resin composition.
  13. 下記(F)成分をさらに含有する、請求項1乃至請求項12のいずれか一項に記載のポジ型感光性樹脂組成物。
    (F)成分:増感剤
    The positive photosensitive resin composition according to any one of claims 1 to 12, further comprising the following component (F).
    (F) component: sensitizer
  14. マイクロレンズ作製用である、請求項1乃至請求項13のいずれか一項に記載のポジ型感光性樹脂組成物。 14. The positive photosensitive resin composition according to any one of claims 1 to 13, which is used for producing microlenses.
  15. 請求項1乃至請求項14のいずれか一項に記載のポジ型感光性樹脂組成物から得られる硬化膜。 A cured film obtained from the positive photosensitive resin composition according to any one of claims 1 to 14.
  16. 請求項1乃至請求項14のいずれか一項に記載のポジ型感光性樹脂組成物から作製されるマイクロレンズ。 A microlens produced from the positive photosensitive resin composition according to any one of claims 1 to 14.
  17. 請求項1乃至請求項14のいずれか一項に記載のポジ型感光性樹脂組成物を基材上に塗布して樹脂膜を形成する塗布工程、前記塗布工程の後に樹脂膜の少なくとも一部を露光する第一露光工程、前記第一露光工程の後に前記樹脂膜の露光部を現像液により除去して該樹脂膜の未露光部のパターンを形成する現像工程、前記現像工程の後に前記パターンをさらに露光する第二露光工程、及び前記第二露光工程の後に前記パターンを150℃以下の温度で加熱するポストベーク工程を含む、マイクロレンズの作製方法。 A coating step of coating the positive photosensitive resin composition according to any one of claims 1 to 14 on a substrate to form a resin film, and after the coating step, at least part of the resin film is a first exposure step of exposing to light, a development step of removing the exposed portion of the resin film with a developer after the first exposure step to form a pattern of the unexposed portion of the resin film, and removing the pattern after the development step. A method for producing a microlens, comprising a second exposure step of further exposing, and a post-baking step of heating the pattern at a temperature of 150° C. or less after the second exposure step.
  18. 前記現像工程の後及び前記第二露光工程の前に、前記パターンを150℃以下の温度で加熱するリフロー工程を含む、請求項17に記載のマイクロレンズの作製方法。 18. The method of manufacturing a microlens according to claim 17, further comprising a reflow step of heating the pattern at a temperature of 150[deg.] C. or less after the developing step and before the second exposure step.
  19. 前記基材は、カラーフィルターが形成された基板である、請求項17又は請求項18に記載のマイクロレンズの作製方法。 19. The method of manufacturing a microlens according to claim 17, wherein the base material is a substrate on which a color filter is formed.
PCT/JP2022/023848 2021-07-28 2022-06-14 Positive photosensitive resin composition WO2023007972A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247001062A KR20240036559A (en) 2021-07-28 2022-06-14 Positive photosensitive resin composition
CN202280050708.0A CN117677901A (en) 2021-07-28 2022-06-14 Positive photosensitive resin composition
JP2023538323A JPWO2023007972A1 (en) 2021-07-28 2022-06-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123289 2021-07-28
JP2021123289 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023007972A1 true WO2023007972A1 (en) 2023-02-02

Family

ID=85086662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023848 WO2023007972A1 (en) 2021-07-28 2022-06-14 Positive photosensitive resin composition

Country Status (5)

Country Link
JP (1) JPWO2023007972A1 (en)
KR (1) KR20240036559A (en)
CN (1) CN117677901A (en)
TW (1) TW202309655A (en)
WO (1) WO2023007972A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065488A (en) * 2005-09-01 2007-03-15 Jsr Corp Radiation sensitive resin composition for forming insulating film and method for producing insulating film
JP2011138116A (en) * 2009-12-04 2011-07-14 Jsr Corp Radiation sensitive resin composition, interlayer insulating film, and method for forming the same
JP2014186309A (en) * 2013-02-19 2014-10-02 Jsr Corp Negative-type radiation-sensitive resin composition, hardened film for display element, method of forming hardened film for display element and display element
JP2018097084A (en) * 2016-12-09 2018-06-21 東京応化工業株式会社 Energy susceptible composition used for forming flattened film or microlens on base material, manufacturing method of cured body, cured body, manufacturing method of microlens, and cmos image sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776810B2 (en) 1987-07-03 1998-07-16 ソニー株式会社 Method for manufacturing solid-state imaging device
US7135401B2 (en) 2004-05-06 2006-11-14 Micron Technology, Inc. Methods of forming electrical connections for semiconductor constructions
JP4644857B2 (en) 2005-07-22 2011-03-09 昭和電工株式会社 Photosensitive resin composition
JP5003376B2 (en) 2007-09-20 2012-08-15 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP7450333B2 (en) 2018-12-21 2024-03-15 Jsr株式会社 Radiation-sensitive resin composition and method for forming microlenses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065488A (en) * 2005-09-01 2007-03-15 Jsr Corp Radiation sensitive resin composition for forming insulating film and method for producing insulating film
JP2011138116A (en) * 2009-12-04 2011-07-14 Jsr Corp Radiation sensitive resin composition, interlayer insulating film, and method for forming the same
JP2014186309A (en) * 2013-02-19 2014-10-02 Jsr Corp Negative-type radiation-sensitive resin composition, hardened film for display element, method of forming hardened film for display element and display element
JP2018097084A (en) * 2016-12-09 2018-06-21 東京応化工業株式会社 Energy susceptible composition used for forming flattened film or microlens on base material, manufacturing method of cured body, cured body, manufacturing method of microlens, and cmos image sensor

Also Published As

Publication number Publication date
CN117677901A (en) 2024-03-08
TW202309655A (en) 2023-03-01
KR20240036559A (en) 2024-03-20
JPWO2023007972A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP4644857B2 (en) Photosensitive resin composition
TWI736307B (en) Positive photosensitive resin composition and organic EL element separator
JP2008009121A (en) Colored positive radiation-sensitive resin composition
WO2012105288A1 (en) Photosensitive resin composition for formation of microlenses
TWI477518B (en) Photosensitive resin composition for microlens
JP2021176017A (en) Radiation-sensitive composition
KR20130107210A (en) Radiation-sensitive composition
JP4713262B2 (en) Photosensitive resin composition
TWI797892B (en) Photosensitive resin composition and organic EL element partition wall
KR20240018628A (en) Positive photosensitive resin composition
WO2023007972A1 (en) Positive photosensitive resin composition
JP6258866B2 (en) Photosensitive resin composition and resin film
JP3842750B2 (en) Photosensitive resin composition
KR101180541B1 (en) Radiosensitive resin composition
WO2023007941A1 (en) Positive photosensitive resin composition containing specific copolymer
TWI802158B (en) Photosensitive resin composition and organic EL element partition wall
TWI836710B (en) Positive photosensitive resin composition
TWI775465B (en) Positive photosensitive resin composition and organic EL element separator
JP2023080993A (en) Photosensitive resin composition and organic el element barrier
CN117480451A (en) Positive photosensitive resin composition and organic EL element partition wall
WO2022220080A1 (en) Photosensitive resin composition and organic el element partition wall
WO2023140248A1 (en) Method for producing lens, radiation-sensitive composition for producing lens, lens, imaging element, imaging device, display element, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538323

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280050708.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE