WO2023007880A1 - 積層造形物の製造方法、及び積層造形システム - Google Patents

積層造形物の製造方法、及び積層造形システム Download PDF

Info

Publication number
WO2023007880A1
WO2023007880A1 PCT/JP2022/018179 JP2022018179W WO2023007880A1 WO 2023007880 A1 WO2023007880 A1 WO 2023007880A1 JP 2022018179 W JP2022018179 W JP 2022018179W WO 2023007880 A1 WO2023007880 A1 WO 2023007880A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
laminate
contour
welding head
manufacturing
Prior art date
Application number
PCT/JP2022/018179
Other languages
English (en)
French (fr)
Inventor
秀峰 坪田
正宏 木村
智遥 溜
裕介 佐野
泰隆 坂野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP22848963.9A priority Critical patent/EP4364874A1/en
Priority to KR1020247006240A priority patent/KR20240040775A/ko
Publication of WO2023007880A1 publication Critical patent/WO2023007880A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • TECHNICAL FIELD The present disclosure relates to a method for manufacturing a laminate-manufactured article and a laminate-manufacturing system. This application claims priority to Japanese Patent Application No. 2021-125245 filed in Japan on July 30, 2021, the contents of which are incorporated herein.
  • Patent Document 1 discloses a method of manufacturing a laminate-molded product by laminating weld beads formed by melting and solidifying a filler material.
  • the present disclosure has been made to solve the above problems, and aims to provide a method for manufacturing a laminate-molded article capable of efficiently manufacturing a laminate-molded article, and a laminate-molding system.
  • a method for manufacturing a laminate-molded article according to the present disclosure includes a core part forming step of laminate-molding a core portion, which is an inner portion of the laminate-molded article, with a first weld bead having a first resolution. and, after the core forming step, the contour portion, which is the outer portion of the layered product, is laminated on the surface of the core with a second weld bead having a second resolution higher than the first resolution. and a shaping contour shaping step.
  • a laminate manufacturing system includes a welding head and a laminate manufacturing control device that controls the welding head so that the welding head forms a laminate-molded object, wherein the laminate manufacturing controller controls the laminate-molding a core forming control unit for controlling the welding head to laminate-manufacture the core, which is the inner part of the object, with a first weld bead having a first resolution; after laminating the outer portion of the laminate with a second weld bead of a second resolution higher than the first resolution onto the surface of the core. and a contour shaping control unit that controls the
  • FIG. 1 is a diagram showing the configuration of a layered manufacturing system according to a first embodiment of the present disclosure
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing a main part of a laser welding head as an example of a welding head according to a first embodiment of the present disclosure
  • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing main parts of an arc welding head as an example of a welding head according to a first embodiment of the present disclosure
  • 1 is a functional block diagram showing the configuration of a layered manufacturing control device according to a first embodiment of the present disclosure
  • FIG. 4 is a flow chart showing a procedure of a method for manufacturing a laminate-molded article according to the first embodiment of the present disclosure
  • FIG. 4A is a diagram schematically showing a core part shaping process according to the first embodiment of the present disclosure
  • FIG. 4A is a diagram schematically showing a contour portion forming process according to the first embodiment of the present disclosure
  • It is a figure which shows typically the modification of the manufacturing method of the laminate-molded article which concerns on 1st embodiment of this indication.
  • It is a figure which shows the structure of the lamination-modeling system which concerns on 2nd embodiment of this indication.
  • It is a functional block diagram showing the configuration of a layered manufacturing control device according to a second embodiment of the present disclosure.
  • FIG. 6 is a flow chart showing a procedure of a method for manufacturing a laminate-molded article according to the second embodiment of the present disclosure
  • FIG. 10 is a diagram schematically showing a core part shaping process according to the second embodiment of the present disclosure
  • FIG. 10 is a diagram schematically showing a contour portion forming process according to the second embodiment of the present disclosure
  • 2 is a hardware configuration diagram showing the configuration of a computer according to each embodiment of the present disclosure
  • FIG. 1 a laminate manufacturing system 1 according to a first embodiment of the present disclosure and a method for manufacturing a laminate model 10 will be described with reference to FIGS. 1 to 7.
  • FIG. The layered manufacturing system 1 of the present embodiment builds up the surface of the stage 2 using a metal filler material to form a layered product 10 .
  • the layered manufacturing system 1 of the present embodiment is applicable to various three-dimensional layered manufacturing techniques such as 3D printers.
  • the layered manufacturing system 1 includes a stage 2 , a welding head 20 and a layered manufacturing control device 40 .
  • FIG. 1 schematically shows a cross section of a laminate-molded article 10 .
  • stage 2 is a plate-like member made of a metal material.
  • the surface of the stage 2 on which the laminate-molded article 10 is modeled is a flat surface.
  • normal direction the normal direction to the surface of the stage 2
  • plane direction the direction along the surface of the stage 2
  • a welding head 20 is arranged to face the surface of the stage 2 .
  • the welding head 20 melts the filler material to form a drop-shaped weld bead 3 on the surface of the stage 2 .
  • the filler metal is a metallic material. Examples of filler materials include stainless steel, titanium alloys, nickel alloys, aluminum alloys, and chromium alloys.
  • the filler material may be the same metal as stage 2 or a different metal from stage 2 .
  • a plurality of weld beads 3 are continuously formed in the planar direction of the surface of the stage 2 . By laminating a plurality of weld beads 3 in the normal direction of the surface of the stage 2, a desired laminate-molded article 10 is formed.
  • the weld bead 3 is the minimum unit that constitutes the laminate-molded article 10 . Therefore, the dimension of the weld bead 3 is a factor that determines the shape accuracy of the laminate-molded article 10 .
  • the maximum dimension of the weld bead 3 in the planar direction of the surface of the stage 2 may be simply referred to as "bead width".
  • the size of the bead width may be expressed as the resolution of the weld bead 3 because the weld bead 3 appears to be stippled.
  • the larger the bead width the lower the resolution of the weld bead 3, and the smaller the bead width, the higher the resolution of the weld bead 3.
  • the welding head 20 forms two types of weld beads 3, a first weld bead 3a having a first resolution and a second weld bead 3b having a second resolution higher than the first resolution.
  • the first weld bead 3a and the second weld bead 3b are made of the same filler material.
  • the welding head 20 may be the laser welding head 20a or the arc welding head 20b.
  • the welding method in this embodiment can be changed as appropriate.
  • the heat source is laser light L.
  • powder P for example, is used as the filler material.
  • the laser welding head 20a has a head body 21, a laser source 22, and a powder feeder (not shown).
  • the head body 21 is provided at a position separated from the surface of the stage 2 in the normal direction.
  • the head body 21 is formed in a truncated cone shape that tapers as it approaches the surface of the stage 2 .
  • the central axis of the head body 21 extends in the normal direction of the surface of the stage 2 .
  • the central axis of the head body 21 may be slightly inclined with respect to the normal to the surface of the stage 2 .
  • a laser passage 23 and a powder supply passage 24 are formed in the head body 21 .
  • the laser passage 23 penetrates the head body 21 along the central axis of the head body 21 .
  • the laser passage 23 is tapered as it approaches the surface of the stage 2 when viewed from the side.
  • the powder supply path 24 axially penetrates the head body 21 .
  • the powder supply path 24 is formed along the outer peripheral surface of the head body 21 .
  • the powder supply path 24 is formed symmetrically across the laser path 23 in a side view.
  • the powder supply path 24 linearly approaches the central axis of the head body 21 as it approaches the stage 2 .
  • the laser source 22 is arranged at a position spaced apart from the stage 2 .
  • a laser source 22 emits laser light L toward the surface of the stage 2 .
  • the laser light L travels straight in the axial direction within the laser passage 23 of the head body 21 and irradiates the surface of the stage 2 .
  • a spot of the laser light L is generated on the surface of the stage 2 .
  • a powder supply unit (not shown) supplies the powder P to the head body 21 .
  • the powder P is supplied into the powder supply path 24 of the head main body 21 .
  • a carrier gas flows through the powder supply path 24 toward the surface of the stage 2 . Therefore, the powder P is jetted onto the spot of the laser beam L on the stage 2 by the flow of the carrier gas in the powder supply path 24 .
  • the injected powder P is melted by the laser beam L and becomes the weld bead 3 .
  • the shape and bead width of the weld bead 3 can be adjusted by adjusting the energy of the laser beam L and the spot shape of the laser beam L.
  • the shape of the spot of the laser light L is changed by an optical element (not shown) through which the laser light L passes before the surface of the stage 2 is irradiated.
  • the optical elements are, for example, diffusers and focusing lenses.
  • the spot shape of the laser light L can be controlled by precise curvature control of the optical element.
  • the heat source is the arc A.
  • a wire W for example, is used as the filler material.
  • the arc welding head 20b has a head body 21, an electrode 26 and a wire W.
  • the head body 21 is provided at a position separated from the surface of the stage 2 in the normal direction.
  • the head main body 21 is formed in a cylindrical shape.
  • the central axis of the head body 21 extends along the normal direction of the surface of the stage 2 .
  • the electrode 26 is formed in a bar shape extending in one direction.
  • the electrodes 26 are inserted through the head body 21 .
  • the end of the electrode 26 on the surface side of the stage 2 is covered with the head body 21 from the radial outside.
  • a positive voltage is applied to the electrode 26 .
  • the voltage difference between the electrode 26 and the stage 2 exceeds a predetermined value, the air between the electrode 26 and the stage 2 breaks down and discharges. An arc A is thereby generated between the electrode 26 and the stage 2 .
  • a wire insertion passage 27 is formed through the electrode 26 in the axial direction.
  • a wire W is inserted through the wire insertion passage 27 .
  • the tip of the wire W protrudes from the electrode 26 and is covered with the head body 21 from the outside in the radial direction.
  • a positive voltage is applied to the wire W via the electrode 26 .
  • the voltage difference between the wire W and the stage 2 exceeds a predetermined value, the air between the wire W and the stage 2 breaks down and discharges.
  • arc A is generated in the space between wire W and stage 2 .
  • the tip of the wire W is melted by this arc A and becomes a weld bead 3 .
  • the wire W is sequentially fed toward the arc A as much as necessary to form the weld bead 3 .
  • the shape and bead width of the weld bead 3 can be adjusted by adjusting the voltage applied to the electrode 26 to adjust the energy of the arc A.
  • the welding head 20 is the laser welding head 20a or the arc welding head 20b in the above embodiment, the welding head 20 is not limited to this, and the welding head 20 may be an electron beam shaping head.
  • the electron beam shaping head uses a metal wire W as a filler material, similar to the arc welding head 20b.
  • the electron beam shaping head melts the wire W with an electron beam to form a weld bead 3 .
  • a method of supplying a metal filler material from the welding head 20 and simultaneously melting it with a heat source such as a laser beam L, an arc A, or an electron beam and stacking it on a desired location is called a “deposition method”.
  • the layered manufacturing control device 40 controls the welding head 20 so that the welding head 20 models the layered article 10 .
  • the layered manufacturing control device 40 is connected to the welding head 20 by wire or wirelessly.
  • the layered manufacturing control device 40 includes processing units such as a modeled object data acquisition unit 41 , a region specifying unit 42 , an operation setting unit 43 , a core part modeling control unit 44 , and an outline part modeling control unit 45 .
  • the modeled object data acquisition unit 41 acquires modeled object data of the laminate-molded object 10 .
  • the modeled article data includes data of the final shape of the layered article 10 .
  • the region specifying unit 42 specifies a core region for forming the core portion 11 and a contour region for forming the contour portion 12 based on the final shape of the laminate-molded article 10 .
  • the operation setting unit 43 sets the operation of the welding head 20 to shape the core portion 11 based on the core region, and sets the operation of the welding head 20 to shape the contour portion 12 based on the contour region.
  • the core part shaping control unit 44 controls the welding head 20 so that the core part 11 is laminate-molded with the first welding bead 3a.
  • the contour part shaping control unit 45 controls the welding head 20 so that the contour part 12 is laminate-molded on the surface of the core part 11 by the second welding bead 3b.
  • the method for manufacturing the laminate-molded article 10 includes a modeled article data acquisition step S11, a region specifying step S12, an operation setting step S13, a core portion forming step S14, and an outline portion forming step S15.
  • the modeled object data acquisition unit 41 acquires modeled object data of the layered product 10 .
  • a region specifying step S12 is performed after the modeled object data obtaining step S11.
  • the area specifying unit 42 specifies the core area and the contour area based on the modeled object data.
  • the laminate-molded article 10 can be distinguished into a core portion 11 that is an inner portion of the laminate-molded article 10 and a contour portion 12 that is an outer portion of the laminate-molded article 10 .
  • a portion outside a predetermined thickness including the surface of the layered product 10 in the modeled object data is specified as a contour region, and a portion inside the contour region is specified as a core region.
  • An operation setting step S13 is performed after the region specifying step S12.
  • the operation setting unit 43 sets the operation of the welding head 20 so as to shape the core portion 11 based on the core region, and sets the operation of the welding head 20 so as to shape the contour portion 12 based on the contour region. Set behavior.
  • the core part shaping process S14 is performed after the operation setting process S13. As shown in FIG. 6, in the core portion forming step S14, the core portion 11 is laminate-molded with the first weld bead 3a. FIG. 6 schematically shows a cross section of the formed core portion 11 .
  • the core forming control unit 44 controls the welding head 20 based on the settings of the operation setting unit 43, and layer-forms the core 11 in the core region.
  • the head body 21 of the welding head 20 is arranged at a position separated from the core area on the surface of the stage 2 by a predetermined distance in the normal direction.
  • the head body 21 moves in the planar direction of the surface of the stage 2 while maintaining the separation distance from the surface of the stage 2 . More specifically, the head body 21 moves in a direction perpendicular to the direction of the reciprocating motion while repeating linear reciprocating motion along the surface direction.
  • the welding head 20 repeats the temporary stop of the head body 21 and the formation of the first weld bead 3a. In this manner, a plurality of first weld beads 3a are continuously formed in the core region on the surface of the stage 2. As shown in FIG.
  • the plurality of formed first weld beads 3a all have substantially the same resolution.
  • the first layer of the core portion 11 is formed by integrating the plurality of first weld beads 3a.
  • the second layer is modeled.
  • the head body 21 is separated from the surface of the stage 2 in the normal direction by the height of one layer.
  • the welding head 20 operates in the same manner as when forming the first layer, and forms the second layer on top of the first layer.
  • the third and subsequent layers are modeled in the same way as the second layer. In this manner, multiple layers of the core portion 11 are formed in one core portion forming step S14.
  • the outline forming step S15 is performed after the core forming step S14.
  • the contour part 12 is laminate-molded on the surface of the core part 11 formed in the previous core part forming step S14 using the second weld bead 3b.
  • FIG. 7 schematically shows cross sections of the formed core portion 11 and contour portion 12 .
  • the contour part forming control unit 45 controls the welding head 20 based on the setting of the operation setting unit 43, and layer-forms the contour part 12 in the contour area.
  • the contour part 12 is shaped by the same height as the core part 11 shaped in the previous core part shaping step S14.
  • the head main body 21 of the welding head 20 moves in the planar direction while repeating linear reciprocating motions, similarly to the core part shaping step S14.
  • the welding head 20 repeats the suspension of the head body 21 and the formation of the second weld bead 3b.
  • a plurality of second weld beads 3b are continuously formed along the contour of the core portion 11 when viewed from the normal direction.
  • the plurality of formed second weld beads 3b all have substantially the same resolution.
  • the first layer of the contour portion 12 is formed by integrating the plurality of second weld beads 3b.
  • Each layer of the outline portion 12 is desirably shaped only in the outward movement of the reciprocating motion of the head body 21 .
  • the outline portion 12 may be formed so as to cover the surface of the outline portion 12 located on the opposite side of the stage 2 as necessary.
  • the first layer When the first layer is modeled, it shifts to the second layer.
  • the head body 21 In the modeling of the second layer, the head body 21 is separated from the surface of the stage 2 in the normal direction by the height of one layer. After that, the welding head 20 operates in the same manner as when forming the first layer, and forms the second layer on top of the first layer.
  • the third and subsequent layers are modeled in the same way as the second layer.
  • the outline portion 12 is formed until it reaches the same height as the core portion 11 formed in the previous core portion forming step S14.
  • the core portion forming step S14 and the contour portion forming step S15 may be performed by laser welding using the powder P as a filler material, or may be performed by arc welding using the wire W as a filler material.
  • the layered manufacturing control device 40 determines whether or not the manufacturing of the layered article 10 is completed based on the modeled article data (step S16). When it is determined that the laminate-molded article 10 has not been manufactured (step S16; NO), the laminate-molded control apparatus 40 proceeds to the core part-molding step S14.
  • the lamination-molding control apparatus 40 complete
  • the core portion 11 is modeled with the first weld bead 3a having a relatively low resolution, and the second weld bead having a relatively high resolution is used.
  • the contour part 12 is laminate-molded.
  • the contour part forming process S15 is performed after the core part forming process S14, the contour part 12 can be formed while supporting the contour part 12 with the core part 11 . Thereby, it is possible to prevent the outline portion 12 from tilting during the shaping of the outline portion 12 . Therefore, the accuracy of the contour portion 12 can be improved. Furthermore, since the contour forming step S15 is performed after the core forming step S14, each layer of the contour portion 12 may be formed only in the outward movement of the reciprocating motion of the head body 21. FIG. In this case, since only one molten pool (pool) is generated in the contour portion forming step S15, it is possible to suppress an increase in the number of bead lap locations of the second weld bead 3b. Thereby, it is possible to suppress the occurrence of poor fusion in the contour portion 12 . Therefore, it is possible to suppress the occurrence of defects in the contour portion 12 .
  • the core portion 11 can be formed in the core region specified in advance, the accuracy of the core portion 11 can be improved.
  • the outline portion 12 can be formed in the previously specified outline area, the accuracy of the outline portion 12 can be improved.
  • the resolution of the weld bead 3 can be easily adjusted by adjusting the spot shape of the laser beam L.
  • the precision of the laminate-molded article 10 can be improved.
  • laser welding has an advantage over electron beam welding in that it does not require a vacuum state and can be downsized.
  • electron beam welding is performed in a vacuum, so defects can be reduced when the filler metal is a metal that is easily oxidized, and the electron beam is not reflected.
  • the advantage is that the energy efficiency can be close to 100%.
  • the weld bead 3 can be formed at high speed, so the time required for modeling the laminate-molded article 10 can be shortened. Moreover, since the wire W is relatively inexpensive as a filler material, the manufacturing cost can be reduced.
  • ⁇ Modification of First Embodiment> As a modified example of the first embodiment, for example, the one shown in FIG. 8 may be adopted. In this modification, the welding head 20 and the core part shaping control unit 44 in the laminate shaping system 1 and the core part shaping step S14 of the manufacturing method of the laminate-molded article 10 are different from those of the first embodiment.
  • the welding head 20 has a first weld bead 3a and a second weld bead 3b, as well as a third weld bead having a third resolution higher than the first resolution and lower than the second resolution.
  • Three types of weld beads 3 of weld bead 3c are formed.
  • the third weld bead 3c is made of the same filler material as the first weld bead 3a and the second weld bead 3b. Note that the third resolution may be higher than the first resolution, and may be the same as or higher than the second resolution.
  • the core part shaping control part 44 controls the welding head 20 so that the surface part 13 including the surface of the core part 11 is laminate-molded with the third welding bead 3c.
  • the surface portion 13 constitutes a side surface of the core portion 11 rising from the surface of the stage 2 .
  • the core part molding control unit 44 controls the welding head so that the part inside the surface part 13 of the core part 11 (hereinafter referred to as the core part 14) is layered and molded. 20.
  • the method for manufacturing the laminate-molded article 10 is performed in the same order as in the above-described first embodiment.
  • a modeled object data acquisition step S11 is performed.
  • a region specifying step S12 is performed after the modeled object data obtaining step S11.
  • An operation setting step S13 is performed after the area specifying step S12.
  • the core forming step S14 is performed.
  • the contour portion forming step S15 is performed.
  • the determination of the end of the step (step S16) is performed.
  • the core forming step S14 which is different from the first embodiment, will be described below.
  • the core forming step S14 includes a surface forming step and an internal forming step. After the operation setting step S13, the surface forming step is performed. In the surface portion forming step, the surface portion 13 of the core portion 11 is laminate-molded with the third weld bead 3c. An internal shaping process is performed after the surface part shaping process. In the internal molding process, the core portion 14 of the core portion 11 is laminate-molded with the first weld bead 3a.
  • the accuracy of the surface of the core portion 11 can be improved as compared with the case where the core portion 11 is formed only with the first weld bead 3a.
  • the outline portion 12 can be formed on the surface of the core portion 11 with high accuracy, so that the accuracy of the surface of the laminate-molded article 10 can be further improved.
  • the time required to shape the entire core part 11 can be shortened. Therefore, the laminate-molded article 10 can be manufactured more efficiently.
  • the surface portion 13 of the core portion 11 may be shaped first, and then the core portion 14 of the core portion 11 may be shaped.
  • the layered manufacturing system 1 of the second embodiment further includes a state detection unit 4, and the layered manufacturing control device 40 does not have the region specifying unit 42 of the first embodiment, and further includes an accuracy determination unit 46.
  • the method for manufacturing the laminate-molded article 10 of the second embodiment further includes an accuracy determination step S24 for determining the accuracy of the surface of the core portion 11 between the core portion shaping step S23 and the contour portion shaping step S26.
  • the layered manufacturing system 1 includes a stage 2 , a welding head 20 , a layered manufacturing control device 40 , and a state detector 4 .
  • the state detector 4 detects the state of the surface of the core 11 .
  • the state of the surface of the core portion 11 includes, for example, the surface roughness of the surface of the core portion 11 .
  • Examples of the state detection unit 4 include sensors, cameras, and the like.
  • the layered manufacturing control device 40 includes a modeled object data acquisition unit 41, an operation setting unit 43, a core part modeling control unit 44, an accuracy determination unit 46, an outline part modeling control unit 45, Prepare.
  • the modeled object data acquisition unit 41 acquires modeled object data of the laminate-molded object 10 .
  • the modeled article data includes data of the final shape of the layered article 10 .
  • the operation setting unit 43 sets the operation of the welding head 20 so as to form the core part 11 corresponding to the final shape of the layered article 10 based on the article data.
  • the operation setting unit 43 sets the operation of the welding head 20 so as to shape the contoured portion 12 based on the state of the surface of the core portion 11 .
  • Accuracy determination unit 46 determines the accuracy of the surface of core 11 based on the detection result of state detection unit 4 .
  • the contour part molding control unit 45 controls the welding head 20 so that the contour part 12 is laminate-molded only when the accuracy determination unit 46 determines that the accuracy is not appropriate.
  • the method for manufacturing the laminate-molded article 10 includes a modeled article data acquisition step S21, operation setting steps S22 and S25, a core portion forming step S23, an accuracy determination step S24, and an outline portion forming step S26.
  • the modeled object data acquisition step S21 is performed.
  • a first operation setting step S22 is performed.
  • the operation setting unit 43 sets the operation of the welding head 20 so as to form the core portion 11 based on the object data.
  • the core forming step S23 is performed. As shown in FIG. 12 , in the core portion forming step S23, the core portion 11 corresponding to the final shape of the modeled object is layer-molded with the first weld bead 3a. FIG. 12 schematically shows a cross section of the formed core portion 11 .
  • the core part shaping control unit 44 controls the welding head 20 based on the setting of the operation setting part 43, and the core part 11 is laminate-molded.
  • the accuracy determination process S24 is performed after the core part shaping process S23.
  • the state detection unit 4 detects the state of the surface of the core portion 11 formed in the previous core portion shaping step S23. Subsequently, the accuracy determination section 46 determines the accuracy of the surface of the core portion 11 . Only when the accuracy determination unit 46 determines that the accuracy of the surface of the core 11 is not appropriate (accuracy determination step S24; NO), the process proceeds to the second operation setting step S25. When the accuracy determination unit 46 determines that the accuracy of the surface of the core 11 is appropriate (accuracy determination step S24; YES), it is determined whether the process is finished.
  • the operation setting unit 43 sets the operation of the welding head 20 so as to form the contoured portion 12 based on the state of the surface of the core portion 11.
  • the contour forming process S26 is performed after the second operation setting process S25.
  • the contour part 12 is laminate-molded on the surface of the core part 11 formed in the previous core part forming step S23 with the second weld bead 3b.
  • FIG. 13 schematically shows cross sections of the formed core portion 11 and contour portion 12 .
  • the contour part forming control section 45 controls the welding head 20 based on the setting of the operation setting section 43, and the contour part 12 is lamination-molded.
  • the contour portion 12 may be formed from the middle of the side surface of the core portion 11 .
  • the accuracy determination unit 46 determines that the accuracy of the surface of the core portion 11 is appropriate, or after the contour portion forming step S26, it is determined whether the process is finished. In determining the end of the process, the layered manufacturing control device 40 determines whether or not the manufacturing of the layered article 10 is completed based on the modeled article data (step S27). When it is determined that the laminate-molded article 10 has not been manufactured (step S27; NO), the laminate-molded control device 40 proceeds to the core portion molding step S23.
  • the lamination-molding control apparatus 40 complete
  • the core part 11 may be entirely shaped in one core part shaping step S23.
  • the contour portion forming step S26 may not be performed even once until the laminate-molded article 10 is completed.
  • the molding of the contour portion 12 can be omitted. Thereby, while being able to shorten the time which manufacture of the laminate-molded article 10 requires, a manufacturing cost can be reduced. Therefore, the laminate-molded article 10 can be efficiently manufactured. Further, after the core portion 11 is entirely shaped in one core portion shaping process, the outline portion 12 can be shaped as necessary. Thereby, the laminate-molded article 10 can be manufactured without moving the laminate-molded article 10 in the middle of manufacture more than necessary. That is, the handling of the laminate-molded article 10 can be minimized. This effect is particularly suitable when the laminate-molded article 10 is a large-sized structure.
  • FIG. 14 is a hardware configuration diagram showing the configuration of the computer 1100 according to this embodiment.
  • Computer 1100 comprises processor 1110 , main memory 1120 , storage 1130 and interface 1140 .
  • the above-described layered manufacturing control device 40 is implemented in the computer 1100.
  • the operation of each processing unit described above is stored in the storage 1130 in the form of a program.
  • the processor 1110 reads a program from the storage 1130, develops it in the main memory 1120, and executes the above processing according to the program. Also, the processor 1110 secures a storage area in the main memory 1120 according to the program.
  • the program may be for realizing part of the functions that the computer 1100 exhibits.
  • the program may function in combination with another program already stored in storage 1130 or in combination with another program installed in another device.
  • the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • part or all of the functions implemented by processor 1110 may be implemented by the integrated circuit.
  • Examples of the storage 1130 include magnetic disks, magneto-optical disks, and semiconductor memories.
  • the storage 1130 may be an internal medium directly connected to the bus of the computer 1100, or an external medium connected to the computer 1100 via the interface 1140 or communication line.
  • the computer 1100 receiving the delivery may develop the program in the main memory 1120 and execute the above process.
  • the program may be for realizing part of the functions described above.
  • the program may be a so-called difference file (difference program) that implements the above-described functions in combination with another program already stored in the storage 1130 .
  • the filler material is a metal material, but the filler material is not limited to this, and may be, for example, a resin material.
  • the first weld bead 3a and the second weld bead 3b are formed of the same filler material, but are not limited to this, and may be formed of different filler materials. .
  • the powder P is used as the filler material when the welding head 20 is the laser welding head 20a.
  • the filler material is the wire W when the welding head 20 is the arc welding head 20b, the filler material is not limited to this, and the powder P may be used as the filler material.
  • the core forming step S14 includes the surface forming step and the internal forming step has been described, but this modification may also be applied to the second embodiment. That is, the core portion shaping step S23 may include the surface portion shaping step and the internal shaping step.
  • the welding head 20 is operated when forming the core portion 11 and the contour portion 12.
  • the present invention is not limited to this, and the stage 2 may be operated. Both head 20 and stage 2 may be operated.
  • the contour part 12 is laminated after a part of the core part 11 is laminated, but the present invention is not limited to this. Part 12 may be additively manufactured.
  • the plurality of formed first weld beads 3a all have substantially the same resolution, but the present invention is not limited to this.
  • the first resolution of the first weld bead 3a should be lower than the second resolution of the second weld bead 3b.
  • the core portion 11 may be subdivided into a plurality of regions and the resolution of the first weld bead 3a may be changed for each region.
  • the core portion 11 is formed in a plurality of layers in one core portion forming steps S14 and S23. Also, the core portion 11 may be formed in only one layer.
  • the plurality of formed second weld beads 3b are all assumed to have approximately the same resolution, but the present invention is not limited to this.
  • the second resolution of the second weld bead 3b should be higher than the first resolution of the first weld bead 3a.
  • the contour portion 12 may be subdivided into a plurality of regions and the resolution of the second weld bead 3b may be changed for each region.
  • weaving welding may be performed in the core portion forming steps S14 and S23 and the contour portion forming steps S15 and S26 of the above embodiment. Although the detailed mechanism is omitted, weaving welding may be performed by oscillating both the heat source and the filler material, may be performed by oscillating only the heat source, or may be performed by oscillating only the filler material. may be done.
  • the mechanism of the welding head 20 can be simplified when both the heat source and the filler material are oscillated. When only the heat source is oscillated, the stability of modeling can be improved. When only the filler material is oscillated, heat input controllability can be improved.
  • the method for manufacturing the laminate-molded article 10 according to the first aspect is to laminate-manufacture the core portion 11, which is the inner portion of the laminate-molded article 10, with the first weld bead 3a of the first resolution.
  • the outline portion 12 which is the outer portion of the laminate-molded article 10 is formed with a second weld bead having a second resolution higher than the first resolution.
  • 3b includes contour portion forming steps S15 and S26 in which lamination is formed on the surface of the core portion 11 .
  • the accuracy of the surface of the layered product 10 immediately after layered manufacturing can be improved.
  • the time which it takes to model the whole laminate-molded article 10 can be shortened. Therefore, the laminate-molded article 10 can be efficiently manufactured.
  • the method of manufacturing the laminate-molded article 10 of the second aspect is the method of manufacturing the laminate-molded article 10 of (1), wherein the core forming steps S14 and S23 include the surface of the core 11. After the surface shaping step of forming the surface portion 13 with a third weld bead 3c having a third resolution higher than the first resolution, and the surface shaping step, the inner side of the surface portion 13 in the core portion 11 and an internal molding step of laminate-molding the portion (core portion 14) with the first weld bead 3a having the first resolution.
  • the accuracy of the surface of the core portion 11 can be improved compared to the case where the core portion 11 is formed only with the first weld bead 3a. Moreover, compared with the case where the core part 11 is shaped only with the third weld bead 3c, the time required to shape the entire core part 11 can be shortened.
  • the method of manufacturing the laminate-molded article 10 of the third aspect is the method of manufacturing the laminate-molded article 10 of (1) or (2), wherein the laminate-molded article 10 further includes a region specifying step S12 for specifying a core region for shaping the core portion 11 and a contour region for shaping the contour portion 12 based on the final shape of 10, and the core portion forming step S14 includes the region specifying step S12.
  • the core portion 11 may be layer-molded in the core region identified by the step S15
  • the contour portion 12 may be layer-molded in the contour region identified in the region identification step S12 in the contour portion forming step S15.
  • the method of manufacturing the laminate-molded article 10 of the fourth aspect is the method of manufacturing the laminate-molded article 10 of (1) or (2), wherein the core portion forming step S23 and the contour portion forming step S26 Further includes an accuracy determination step S24 for determining the accuracy of the surface of the core portion 11 between the The contour 12 may be additively manufactured.
  • the molding of the contour portion 12 can be omitted. Thereby, the time required to manufacture the laminate-molded article 10 can be further shortened.
  • the method for manufacturing the laminate-molded article 10 of the fifth aspect is the method for manufacturing the laminate-molded article 10 according to any one of (1) to (4), wherein the core portion forming steps S14 and S23 and the contour
  • the part forming steps S15 and S26 may be performed by laser welding or electron beam welding.
  • the resolution of the weld bead 3 can be easily adjusted by adjusting the spot shape of the laser light L or electron beam. By increasing the resolution of the weld bead 3, the precision of the laminate-molded article 10 can be improved.
  • the method for manufacturing the laminate-molded article 10 of the sixth aspect is the method for manufacturing the laminate-molded article 10 according to any one of (1) to (4), wherein the core portion forming steps S14 and S23 and the contour The part forming steps S15 and S26 may be performed by arc welding.
  • the weld bead 3 can be formed at high speed, so that the time required for modeling the laminate-molded article 10 can be shortened.
  • the laminate manufacturing system 1 of the seventh aspect includes a welding head 20 and a laminate manufacturing control device 40 that controls the welding head 20 so that the welding head 20 models the laminate-molded article 10,
  • the lamination-molding control device 40 controls the welding head 20 so that the core portion 11, which is the inner portion of the laminate-molded article 10, is laminate-molded with the first weld bead 3a of the first resolution.
  • the contour part 12, which is the outer part of the laminate-molded article 10 is processed by the second resolution higher than the first resolution.
  • a contour part shaping control part 45 for controlling the welding head 20 so as to laminate and shape the surface of the core part 11 with two welding beads 3b.
  • the layered manufacturing system 1 of the eighth aspect is the layered manufacturing system 1 of (7), wherein the core part shaping control unit 44 changes the surface part 13 including the surface of the core part 11 to the first
  • the welding head 20 is controlled so as to laminate-manufacture with a third weld bead 3c having a third resolution higher than the resolution of , and after the surface portion 13 is laminate-manufactured, the surface portion 13 in the core portion 11
  • the welding head 20 may be controlled so that the inner portion (core portion 14) is laminate-molded with the first weld bead 3a having the first resolution.
  • the laminate manufacturing system 1 of the ninth aspect is the laminate manufacturing system 1 of (7) or (8), wherein the laminate manufacturing control device 40 is based on the final shape of the laminate-molded article 10. It further comprises an area specifying unit 42 for specifying a core area for shaping the core part 11 and a contour area for shaping the contour part 12 , and the core part shaping control part 44 controls the core area specified by the area specifying part 42 .
  • the welding head 20 is controlled so as to laminate-manufacture the core portion 11, and the contour portion modeling control section 45 laminate-manufactures the contour portion 12 in the contour region specified by the region specifying portion 42. Alternatively, the welding head 20 may be controlled.
  • the laminate manufacturing system 1 of the tenth aspect is the laminate manufacturing system 1 of (7) or (8), further comprising a state detection unit 4 for detecting the state of the surface of the core 11,
  • the layered manufacturing control device 40 further has an accuracy determination unit 46 that determines the accuracy of the surface of the core part 11 based on the detection result of the state detection unit 4, and the contour part molding control unit 45 performs the accuracy determination
  • the welding head 20 may be controlled to additively manufacture the contoured portion 12 only if the accuracy is determined by the unit 46 to be unsatisfactory.
  • the layered manufacturing system 1 of the eleventh aspect is the layered manufacturing system 1 according to any one of (7) to (10), wherein the welding head 20 is a laser welding head 20a that performs layered manufacturing by laser welding. Alternatively, it may be an electron beam molding head that performs layered molding by electron beam welding.
  • the laminate manufacturing system 1 of the twelfth aspect is the laminate manufacturing system 1 according to any one of (7) to (10), wherein the welding head 20 is an arc welding head 20b that performs laminate manufacturing by arc welding. may be
  • Processor 1120 Main memory 1130... Storage 1140... Interface A... Arc L... Laser light P... Powder S11, S21... Modeled object data acquisition process S12... Area identification process S13, S22, S25... Operation setting process S14, S23... Core part modeling process S15, S26... Contour part shaping Process S24... Precision judgment process W... Wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

積層造形物の製造方法は、積層造形物の内側の部分である芯部を、第一の解像度の第一溶接ビードで積層造形する芯部造形工程と、芯部造形工程の後に、積層造形物の外側の部分である輪郭部を、第一の解像度よりも高い第二の解像度の第二溶接ビードで、芯部の表面に積層造形する輪郭部造形工程と、を含む。

Description

積層造形物の製造方法、及び積層造形システム
 本開示は、積層造形物の製造方法、及び積層造形システムに関する。
 本願は、2021年7月30日に日本に出願された特願2021-125245号について優先権を主張し、その内容をここに援用する。
 特許文献1には、溶加材を溶融及び凝固させてなる溶接ビードを積層することにより、積層造形物を製造する方法が開示されている。
特開2021-24260号公報
 しかしながら、特許文献1に記載の積層造形物の製造方法では、溶接ビードの幅を大きく設定した場合、即ち、溶接ビードの解像度を低くした場合には、積層造形物の表面の精度が低く、仕上げ加工に時間を要してしまう場合があった。
 また、当初から溶接ビードの幅を小さくした場合、即ち、溶接ビードの解像度を高くした場合には、積層造形物の全体を造形するのに時間を要してしまう場合があった。
 本開示は、上記課題を解決するためになされたものであって、積層造形物を効率的に製造可能な積層造形物の製造方法、及び積層造形システムを提供することを目的とする。
 上記課題を解決するために、本開示に係る積層造形物の製造方法は、積層造形物の内側の部分である芯部を、第一の解像度の第一溶接ビードで積層造形する芯部造形工程と、前記芯部造形工程の後に、前記積層造形物の外側の部分である輪郭部を、前記第一の解像度よりも高い第二の解像度の第二溶接ビードで、前記芯部の表面に積層造形する輪郭部造形工程と、を含む。
 本開示に係る積層造形システムは、溶接ヘッドと、前記溶接ヘッドが積層造形物を造形するように該溶接ヘッドを制御する積層造形制御装置と、を備え、前記積層造形制御装置は、前記積層造形物の内側の部分である芯部を、第一の解像度の第一溶接ビードで積層造形するように前記溶接ヘッドを制御する芯部造形制御部と、前記芯部の少なくとも一部が積層造形された後に、前記積層造形物の外側の部分である輪郭部を、前記第一の解像度よりも高い第二の解像度の第二溶接ビードで前記芯部の表面に積層造形するように、前記溶接ヘッドを制御する輪郭部造形制御部と、を有する。
 本開示の積層造形物の製造方法、及び積層造形システムによれば、積層造形物を効率的に製造することができる。
本開示の第一実施形態に係る積層造形システムの構成を示す図である。 本開示の第一実施形態に係る溶接ヘッドの一例として、レーザ溶接ヘッドの要部を示す図である。 本開示の第一実施形態に係る溶接ヘッドの一例として、アーク溶接ヘッドの要部を示す図である。 本開示の第一実施形態に係る積層造形制御装置の構成を示す機能ブロック図である。 本開示の第一実施形態に係る積層造形物の製造方法の手順を示すフローチャートである。 本開示の第一実施形態に係る芯部造形工程を模式的に示す図である。 本開示の第一実施形態に係る輪郭部造形工程を模式的に示す図である。 本開示の第一実施形態に係る積層造形物の製造方法の変形例を模式的に示す図である。 本開示の第二実施形態に係る積層造形システムの構成を示す図である。 本開示の第二実施形態に係る積層造形制御装置の構成を示す機能ブロック図である。 本開示の第二実施形態に係る積層造形物の製造方法の手順を示すフローチャートである。 本開示の第二実施形態に係る芯部造形工程を模式的に示す図である。 本開示の第二実施形態に係る輪郭部造形工程を模式的に示す図である。 本開示の各実施形態に係るコンピュータの構成を示すハードウェア構成図である。
<第一実施形態>
(積層造形システム)
 以下、本開示の第一実施形態に係る積層造形システム1、及び積層造形物10の製造方法について、図1~図7を参照して説明する。
 本実施形態の積層造形システム1は、金属の溶加材を用いてステージ2の表面上に肉盛りを行い、積層造形物10を造形するものである。本実施形態の積層造形システム1は、例えば3Dプリンタ等、様々な3次元積層造形技術に適用可能である。
 図1に示すように積層造形システム1は、ステージ2と、溶接ヘッド20と、積層造形制御装置40と、を備える。図1には、積層造形物10の断面が模式的に示されている。
(ステージ)
 ステージ2は、金属材料により形成された板状の部材である。積層造形物10が造形されるステージ2の表面は、平坦面である。以下、このステージ2の表面の法線方向を単に「法線方向」といい、このステージ2の表面に沿う方向を単に「面方向」という場合がある。
(溶接ヘッド)
 溶接ヘッド20は、ステージ2の表面に対向して配置される。溶接ヘッド20は、溶加材を溶融し、ステージ2の表面上に液滴状の溶接ビード3を形成する。溶加材は、金属材料である。溶加材としては、例えばステンレスやチタン合金、ニッケル合金、アルミ合金、クロム合金等が挙げられる。溶加材は、ステージ2と同一の金属であってもよく、ステージ2と異なる金属であってもよい。溶接ビード3は、ステージ2の表面の面方向に連続して複数形成される。複数の溶接ビード3がステージ2の表面の法線方向に積層されることにより、目的とする積層造形物10が造形される。溶接ビード3は、積層造形物10を構成する最小単位である。このため、溶接ビード3の寸法は、積層造形物10の形状精度を決定する要素となる。
 以下、ステージ2の表面の面方向における溶接ビード3の最大寸法を、単に「ビード幅」という場合がある。
 積層造形物10の造形過程において、溶接ビード3によって点描されているように見えることから、ビード幅の大きさを溶接ビード3の解像度として表現する場合がある。以下、ビード幅が大きい程溶接ビード3の解像度が低いとし、ビード幅が小さい程溶接ビード3の解像度が高いとする。
 溶接ヘッド20は、第一の解像度を有する第一溶接ビード3aと、第一の解像度よりも高い第二の解像度を有する第二溶接ビード3bと、の2種類の溶接ビード3を形成する。第一溶接ビード3aと第二溶接ビード3bは、同一の溶加材により形成される。
 なお、溶接ヘッド20は、レーザ溶接ヘッド20aであってもよく、アーク溶接ヘッド20bであってもよい。本実施形態における溶接の方式は適宜変更可能である。
(レーザ溶接ヘッド)
 図2に示すように、溶接ヘッド20がレーザ溶接ヘッド20aである場合、熱源はレーザ光Lである。また、溶加材として例えば粉体Pが用いられる。レーザ溶接ヘッド20aは、ヘッド本体21と、レーザ源22と、不図示の粉体供給部と、を有する。
 ヘッド本体21は、ステージ2の表面から法線方向に離間した位置に設けられている。ヘッド本体21は、ステージ2の表面に接近するにしたがい先細る円錐台状に形成されている。ヘッド本体21の中心軸は、ステージ2の表面の法線方向に延びている。ヘッド本体21の中心軸は、ステージ2の表面の法線に対して僅かに傾斜していてもよい。ヘッド本体21には、レーザ通路23と、粉体供給路24と、が形成されている。
 レーザ通路23は、ヘッド本体21の中心軸に沿ってヘッド本体21を貫通している。レーザ通路23は、側面視で、ステージ2の表面に接近するにしたがい先細るテーパ状に形成されている。
 粉体供給路24は、ヘッド本体21を軸方向に貫通している。粉体供給路24は、ヘッド本体21の外周面に沿うように形成されている。粉体供給路24は、側面視で、レーザ通路23を挟んで対称に形成されている。粉体供給路24は、ステージ2に接近するにしたがい、ヘッド本体21の中心軸に対して、直線的に漸次接近している。
 レーザ源22は、ステージ2から離間した位置に配置されている。レーザ源22は、ステージ2の表面に向けてレーザ光Lを放出する。レーザ光Lは、ヘッド本体21のレーザ通路23内を軸方向に直進し、ステージ2の表面に照射される。ステージ2の表面には、レーザ光Lのスポットが発生する。
 不図示の粉体供給部は、ヘッド本体21に粉体Pを供給する。粉体Pは、ヘッド本体21の粉体供給路24内に供給される。粉体供給路24内には、ステージ2の表面に向かって搬送ガスが流通している。このため、粉体Pは、粉体供給路24内の搬送ガスの流れによってステージ2上のレーザ光Lのスポットに噴射される。噴射された粉体Pは、レーザ光Lによって溶融され、溶接ビード3となる。
 溶接ヘッド20がレーザ溶接ヘッド20aの場合、レーザ光Lのエネルギーやレーザ光Lのスポット形状を調節することにより、溶接ビード3の形状及びビード幅を調節可能である。レーザ光Lのスポット形状は、レーザ光Lがステージ2の表面に照射される前に通過する不図示の光学素子によって変化する。光学素子は、例えば拡散板と集束レンズである。光学素子の緻密な曲率制御によって、レーザ光Lのスポット形状を制御できる。
(アーク溶接ヘッド)
 図3に示すように、溶接ヘッド20がアーク溶接ヘッド20bである場合、熱源はアークAである。また、溶加材として例えばワイヤWが用いられる。アーク溶接ヘッド20bは、ヘッド本体21と、電極26と、ワイヤWと、を有する。
 ヘッド本体21は、ステージ2の表面から法線方向に離間した位置に設けられている。ヘッド本体21は、円筒状に形成されている。ヘッド本体21の中心軸は、ステージ2の表面の法線方向に沿っている。
 電極26は、一方向に延びる棒状に形成されている。電極26は、ヘッド本体21に挿通されている。ステージ2の表面側の電極26の端部は、ヘッド本体21によって径方向外側から覆われている。電極26には、正電圧が印加される。電極26とステージ2との電圧差が所定の値を超えると、電極26とステージ2との間の空気が絶縁破壊されて放電する。これにより、電極26とステージ2との間には、アークAが発生する。
 また、電極26には、軸方向に貫通するワイヤ挿通路27が形成されている。ワイヤ挿通路27には、ワイヤWが挿通される。ワイヤWの先端は、電極26から突出した状態で、ヘッド本体21によって径方向外側から覆われる。ワイヤWには、電極26を介して正電圧が印加される。ワイヤWとステージ2との電圧差が所定の値を超えると、ワイヤWとステージ2との間の空気が絶縁破壊されて放電する。これにより、ワイヤWとステージ2との間の空間に、アークAが発生する。ワイヤWの先端は、このアークAによって溶融され、溶接ビード3となる。ワイヤWは、溶接ビード3の形成に必要な分だけ、アークAに向けて順次送られる。
 溶接ヘッド20がアーク溶接ヘッド20bの場合、電極26に印加される電圧を調節してアークAのエネルギーを調節すること等により、溶接ビード3の形状及びビード幅を調節可能である。
 なお、上記実施形態では、溶接ヘッド20は、レーザ溶接ヘッド20aまたはアーク溶接ヘッド20bであるとしたが、これに限るものではなく、溶接ヘッド20が電子ビーム造形ヘッドであってもよい。電子ビーム造形ヘッドは、溶加材として、アーク溶接ヘッド20bと同様に金属のワイヤWを用いる。電子ビーム造形ヘッドは、電子ビームによりワイヤWを溶融して溶接ビード3を形成する。
 このように、金属の溶加材を溶接ヘッド20から供給すると同時にレーザ光LやアークA、電子ビーム等の熱源で溶融し所望の場所に積層する方式は、「デポジション方式」と呼ばれる。
(積層造形制御装置)
 続いて、本実施形態の積層造形制御装置40の構成について、図4を参照して説明する。
 積層造形制御装置40は、溶接ヘッド20が積層造形物10を造形するように溶接ヘッド20を制御する。積層造形制御装置40は、有線又は無線で溶接ヘッド20と接続されている。
 積層造形制御装置40は、造形物データ取得部41、領域特定部42、動作設定部43、芯部造形制御部44、及び輪郭部造形制御部45の各処理部を備える。
(造形物データ取得部)
 造形物データ取得部41は、積層造形物10の造形物データを取得する。造形物データには、積層造形物10の最終形状のデータが含まれている。
(領域特定部)
 領域特定部42は、積層造形物10の最終形状に基づいて芯部11を造形する芯領域と輪郭部12を造形する輪郭領域を特定する。
(動作設定部)
 動作設定部43は、芯領域に基づいて芯部11を造形するように溶接ヘッド20の動作を設定し、輪郭領域に基づいて輪郭部12を造形するように溶接ヘッド20の動作を設定する。
(芯部造形制御部)
 芯部造形制御部44は、第一溶接ビード3aで芯部11を積層造形するように溶接ヘッド20を制御する。
(輪郭部造形制御部)
 輪郭部造形制御部45は、第二溶接ビード3bで芯部11の表面に輪郭部12を積層造形するように、溶接ヘッド20を制御する。
(積層造形物の製造方法の手順)
 以下、積層造形システム1を用いた積層造形物10の製造方法の手順について、図5に示すフローチャートを参照して説明する。積層造形物10の製造方法は、造形物データ取得工程S11と、領域特定工程S12と、動作設定工程S13と、芯部造形工程S14と、輪郭部造形工程S15と、を含む。
 造形物データ取得工程S11では、造形物データ取得部41が積層造形物10の造形物データを取得する。
 造形物データ取得工程S11の後に領域特定工程S12が行われる。領域特定工程S12では、領域特定部42が造形物データに基づいて芯領域と輪郭領域を特定する。
 ここで図1に示すように、積層造形物10は、積層造形物10の内側部分である芯部11と、積層造形物10の外側部分である輪郭部12と、に区別できる。領域特定工程S12では、造形物データにおける積層造形物10の表面を含む所定の厚さの外側の部分を輪郭領域として特定し、当該輪郭領域よりも内側の部分を芯領域として特定する。
 領域特定工程S12の後に動作設定工程S13が行われる。動作設定工程S13では、動作設定部43が芯領域に基づいて芯部11を造形するように溶接ヘッド20の動作を設定し、輪郭領域に基づいて輪郭部12を造形するように溶接ヘッド20の動作を設定する。
 動作設定工程S13の後に芯部造形工程S14が行われる。図6に示すように、芯部造形工程S14では、第一溶接ビード3aで芯部11を積層造形する。図6には、形成された芯部11の断面が模式的に示されている。芯部造形工程S14では、芯部造形制御部44が動作設定部43の設定に基づいて溶接ヘッド20を制御し、芯領域に芯部11を積層造形する。
 溶接ヘッド20のヘッド本体21は、ステージ2の表面上の芯領域に対して、法線方向に所定の距離だけ離間した位置に配置される。ヘッド本体21は、ステージ2の表面との離間距離を維持しつつ、ステージ2の表面の面方向に移動する。より具体的には、ヘッド本体21は、面方向に沿う直線状の往復運動を繰り返しながら、往復運動の方向と直交する方向に移動する。溶接ヘッド20は、ヘッド本体21の一時停止と第一溶接ビード3aの形成とを繰り返す。このようにして、ステージ2の表面上の芯領域に複数の第一溶接ビード3aが連続して形成される。形成された複数の第一溶接ビード3aは、全て略同一の解像度を有する。複数の第一溶接ビード3aが一体化することにより、芯部11の一層目が造形される。
 一層目が造形されると、二層目の造形に移行する。二層目の造形では、ヘッド本体21は、一層分の高さだけステージ2の表面から法線方向に離間する。その後、溶接ヘッド20は、一層目の造形時と同様に稼働し、一層目の上に二層目を造形する。三層目以降は、二層目と同様に造形される。
 このようにして、一回の芯部造形工程S14で、芯部11が複数層造形される。
 芯部造形工程S14の後に輪郭部造形工程S15が行われる。図7に示すように、輪郭部造形工程S15では、第二溶接ビード3bで、直前の芯部造形工程S14で造形された芯部11の表面に輪郭部12を積層造形する。図7には、形成された芯部11及び輪郭部12の断面が模式的に示されている。輪郭部造形工程S15では、輪郭部造形制御部45が動作設定部43の設定に基づいて溶接ヘッド20を制御し、輪郭領域に輪郭部12を積層造形する。
 輪郭部造形工程S15では、直前の芯部造形工程S14で造形された芯部11と同じ高さだけ輪郭部12を造形する。溶接ヘッド20のヘッド本体21は、芯部造形工程S14と同様に、直線状の往復運動を繰り返しながら面方向に移動する。溶接ヘッド20は、ヘッド本体21の一時停止と第二溶接ビード3bの形成とを繰り返す。このようにして、法線方向から見て、芯部11の輪郭に沿って複数の第二溶接ビード3bが連続して形成される。形成された複数の第二溶接ビード3bは、全て略同一の解像度を有する。複数の第二溶接ビード3bが一体化することにより、輪郭部12の一層目が造形される。輪郭部12の各層は、ヘッド本体21の往復運動のうち往路のみで造形されることが望ましい。なお、輪郭部12は、必要に応じて、輪郭部12の表面のうちステージ2とは反対側に位置する表面を覆うように形成されてもよい。
 一層目が造形されると、二層目の造形に移行する。二層目の造形では、ヘッド本体21は、一層分の高さだけステージ2の表面から法線方向に離間する。その後、溶接ヘッド20は、一層目の造形時と同様に稼働し、一層目の上に二層目を造形する。三層目以降は、二層目と同様に造形される。輪郭部12は、直前の芯部造形工程S14で造形された芯部11と同じ高さになるまで形成される。
 芯部造形工程S14及び輪郭部造形工程S15は、粉体Pを溶加材としたレーザ溶接によって行われてもよく、ワイヤWを溶加材としたアーク溶接によって行われてもよい。
 輪郭部造形工程S15の後に工程終了の判定が行われる。工程終了の判定では、積層造形制御装置40が造形物データに基づいて積層造形物10の製造が終了している否かを判定する(ステップS16)。積層造形制御装置40は、積層造形物10の製造が終了していないと判定した場合に(ステップS16;NO)、芯部造形工程S14に移行する。
 積層造形制御装置40は、積層造形物10の製造が終了していると判定した場合に(ステップS16;YES)、溶接ヘッド20の動作を終了する。その後、積層造形物10の表面に仕上げ加工を施す。仕上げ加工としては、例えば切削や研磨等が挙げられる。仕上げ加工により、積層造形物10の表面精度が向上する。なお、仕上げ加工は、適宜省略可能である。
 このようにして、積層造形物10の製造が完了する。
(作用効果)
 以上のような積層造形システム1及び積層造形物10の製造方法によれば、解像度が相対的に低い第一溶接ビード3aで芯部11を造形し、解像度が相対的に高い第二溶接ビードで輪郭部12を積層造形する。
 これにより、第一溶接ビード3aのみで芯部11及び輪郭部12を造形する場合と比較して、積層造形直後の積層造形物10の表面の精度を向上させることができる。したがって、仕上げ加工の加工量を削減することができ、仕上げ加工にかかる時間を短縮させることができる。
 また、第二溶接ビード3bで芯部11及び輪郭部12を造形する場合と比較して、積層造形物10の全体を造形するのにかかる時間を短縮させることができる。したがって、積層造形物10を効率的に製造することができる。
 また、芯部造形工程S14の後に輪郭部造形工程S15が行われるため、芯部11で輪郭部12を支持しながら輪郭部12を造形することができる。これにより、輪郭部12の造形中に、輪郭部12が傾くことを抑制できる。したがって、輪郭部12の精度を向上させることができる。
 さらに、芯部造形工程S14の後に輪郭部造形工程S15が行われるため、輪郭部12の各層をヘッド本体21の往復運動のうち往路のみで造形できる場合がある。この場合、輪郭部造形工程S15では、溶融池(プール)が1つしか発生しないので、第二溶接ビード3bのビードラップ箇所が増えることを抑制できる。これにより、輪郭部12で融合不良が発生することを抑制できる。したがって、輪郭部12に欠陥が発生することを抑制できる。
 また、予め特定した芯領域に芯部11を造形できるので、芯部11の精度を向上させることができる。同様に、予め特定した輪郭領域に輪郭部12を造形できるので、輪郭部12の精度を向上させることができる。
 ここで、レーザ溶接のレーザ光Lは、スポット形状の調節が容易である。このため、レーザ溶接を用いた場合には、レーザ光Lのスポット形状を調節することにより、溶接ビード3の解像度を容易に調節できる。溶接ビード3の解像度を上げることで、積層造形物10の精度を向上させることができる。
 また、電子ビーム溶接を用いる場合でも、レーザ溶接を用いる場合と同様の効果を奏することができる。
 ただし、レーザ溶接は、電子ビーム溶接と比較して、真空状態を必要としないため小型化することができるという点で優位性がある。一方で、電子ビーム溶接は、レーザ溶接と比較して、真空状態で溶接するため溶加材が酸化しやすい金属の場合に欠陥を低減できるという点や、電子ビームが反射されることがないためエネルギー効率を100%に近い値にすることができるという点で優位性がある。
 また、アーク溶接を用いた場合には、溶接ビード3を高速に形成できるので、積層造形物10の造形にかかる時間を短縮させることができる。また、ワイヤWは、溶加材としては比較的安価であるため、製造コストを低減できる。
<第一実施形態の変形例>
 ここで第一実施形態の変形例として、例えば図8に示すものを採用してもよい。この変形例では、積層造形システム1における溶接ヘッド20と芯部造形制御部44、及び積層造形物10の製造方法のうち芯部造形工程S14が第一実施形態と異なる。
(溶接ヘッド)
 図8に示すように、溶接ヘッド20は、第一溶接ビード3a及び第二溶接ビード3bに加えて、第一の解像度よりも高く、第二の解像度よりも低い第三の解像度を有する第三溶接ビード3cの3種類の溶接ビード3を形成する。第三溶接ビード3cは、第一溶接ビード3a及び第二溶接ビード3bと、同一の溶加材により形成される。
 なお、第三の解像度は、第一の解像度よりも高ければよく、第二の解像度と同一、または第二の解像度よりも高くてもよい。
(芯部造形制御部)
 芯部造形制御部44は、芯部11の表面を含む表面部13を第三溶接ビード3cで積層造形するように溶接ヘッド20を制御する。表面部13は、ステージ2の表面から立ち上がる芯部11の側面を構成する。
 さらに、芯部造形制御部44は、表面部13が積層造形された後に、芯部11における表面部13よりも内側の部分(以下、コア部14と称する。)を積層造形するように溶接ヘッド20を制御する。
(積層造形物の製造方法の手順)
 積層造形物10の製造方法は、上述した第一実施形態と同様の順序で行われる。まず造形物データ取得工程S11が行われる。造形物データ取得工程S11の後に領域特定工程S12が行われる。領域特定工程S12の後に動作設定工程S13が行われる。動作設定工程S13の後に芯部造形工程S14が行われる。芯部造形工程S14の後に輪郭部造形工程S15が行われる。輪郭部造形工程S15の後に工程終了の判定(ステップS16)が行われる。以下、第一実施形態と異なる芯部造形工程S14について説明する。
(芯部造形工程)
 芯部造形工程S14では、表面部造形工程と、内部造形工程と、を含む。
 動作設定工程S13の後に表面部造形工程が行われる。表面部造形工程では、第三溶接ビード3cで芯部11のうち表面部13を積層造形する。
 表面部造形工程の後に内部造形工程が行われる。内部造形工程では、芯部11のうちコア部14を第一溶接ビード3aで積層造形する。
(作用効果)
 この変形例によれば、第一溶接ビード3aのみで芯部11を造形する場合と比較して、芯部11の表面の精度を向上させることができる。これにより、芯部11の表面に輪郭部12を精度よく造形することができるので、積層造形物10の表面の精度をさらに向上させることができる。また、第三溶接ビード3cのみで芯部11を造形する場合と比較して、芯部11の全体を造形するのにかかる時間を短縮させることができる。したがって、積層造形物10をさらに効率良く製造することができる。
 また、芯部11の表面部13を先に造形してから芯部11のコア部14を造形することができる。これにより、表面部13よりも重くなりやすいコア部14の側面に自重による垂れが発生することを抑制できる。すなわち、芯部11の表面が自重により垂れてしまうことを抑制し、芯部11の表面精度を向上することができる。
<第二実施形態>
 以下、本開示の第二実施形態に係る積層造形システム1、及び積層造形物10の製造方法について、図9~図13を参照して説明する。第二実施形態では、第一実施形態と同様の構成要素については同一の符号を付して詳細な説明を適宜省略する。第二実施形態の積層造形システム1は、状態検出部4をさらに備え、積層造形制御装置40は、第一実施形態の領域特定部42を有さず、精度判定部46をさらに有する。第二実施形態の積層造形物10の製造方法は、芯部造形工程S23と輪郭部造形工程S26との間に、芯部11の表面の精度を判定する精度判定工程S24をさらに含む。
(積層造形システム)
 図9に示すように、積層造形システム1は、ステージ2と、溶接ヘッド20と、積層造形制御装置40と、状態検出部4と、を備える。
(状態検出部)
 状態検出部4は、芯部11の表面の状態を検出する。芯部11の表面の状態としては、例えば芯部11の表面の表面粗さ等が挙げられる。状態検出部4としては、例えばセンサやカメラ等が挙げられる。
(積層造形制御装置)
 続いて、本実施形態の積層造形制御装置40の構成について、図10を参照して説明する。
 図10に示すように、積層造形制御装置40は、造形物データ取得部41と、動作設定部43と、芯部造形制御部44と、精度判定部46と、輪郭部造形制御部45と、を備える。
(造形物データ取得部)
 造形物データ取得部41は、積層造形物10の造形物データを取得する。造形物データには、積層造形物10の最終形状のデータが含まれている。
(動作設定部)
 動作設定部43は、造形物データに基づいて積層造形物10の最終形状に対応する芯部11を造形するように溶接ヘッド20の動作を設定する。動作設定部43は、芯部11の表面の状態に基づいて輪郭部12を造形するように溶接ヘッド20の動作を設定する。
(精度判定部)
 精度判定部46は、状態検出部4の検出結果に基づいて芯部11の表面の精度を判定する。
(輪郭部造形制御部)
 輪郭部造形制御部45は、精度判定部46によって精度が適正でないと判断された場合にのみ輪郭部12を積層造形するように溶接ヘッド20を制御する。
(積層造形物の製造方法の手順)
 以下、積層造形システム1を用いた積層造形物10の製造方法の手順について、図11に示すフローチャートを参照して説明する。積層造形物10の製造方法は、造形物データ取得工程S21と、動作設定工程S22,S25と、芯部造形工程S23と、精度判定工程S24と、輪郭部造形工程S26と、を含む。
 まず、造形物データ取得工程S21が行われる。造形物データ取得工程S21の後、第一の動作設定工程S22が行われる。
 第一の動作設定工程S22では、動作設定部43が造形物データに基づいて芯部11を造形するように溶接ヘッド20の動作を設定する。
 第一の動作設定工程S22の後に芯部造形工程S23が行われる。図12に示すように、芯部造形工程S23では、第一溶接ビード3aで造形物の最終形状に対応する芯部11を積層造形する。図12には、形成された芯部11の断面が模式的に示されている。芯部造形工程S23では、芯部造形制御部44が動作設定部43の設定に基づいて溶接ヘッド20を制御し、芯部11を積層造形する。
 芯部造形工程S23の後に精度判定工程S24が行われる。精度判定工程S24では、まず、状態検出部4が直前の芯部造形工程S23で形成された芯部11の表面の状態を検出する。続いて、精度判定部46が芯部11の表面の精度を判定する。精度判定部46が芯部11の表面の精度が適正でないと判断した場合にのみ(精度判定工程S24;NO)、第二の動作設定工程S25に移行する。精度判定部46が芯部11の表面の精度が適正であると判断した場合(精度判定工程S24;YES)、工程終了の判定が行われる。
 第二の動作設定工程S25では、動作設定部43が芯部11の表面の状態に基づいて輪郭部12を造形するように溶接ヘッド20の動作を設定する。
 第二の動作設定工程S25の後に輪郭部造形工程S26が行われる。図13に示すように、輪郭部造形工程S26では、第二溶接ビード3bで、直前の芯部造形工程S23で造形された芯部11の表面に輪郭部12を積層造形する。図13には、形成された芯部11及び輪郭部12の断面が模式的に示されている。輪郭部造形工程S26では、輪郭部造形制御部45が動作設定部43の設定に基づいて溶接ヘッド20を制御し、輪郭部12を積層造形する。輪郭部12は、芯部11の側面の途中から造形されてもよい。
 精度判定部46が芯部11の表面の精度が適正であると判断した場合、または輪郭部造形工程S26の後に工程終了の判定が行われる。工程終了の判定では、積層造形制御装置40が造形物データに基づいて積層造形物10の製造が終了している否かを判定する(ステップS27)。積層造形制御装置40は、積層造形物10の製造が終了していないと判定した場合に(ステップS27;NO)、芯部造形工程S23に移行する。
 積層造形制御装置40は、積層造形物10の製造が終了していると判定した場合に(ステップS27;YES)、溶接ヘッド20の動作を終了する。その後、積層造形物10の表面に仕上げ加工を施す。
 このようにして、積層造形物10の製造が完了する。
 なお、1回の芯部造形工程S23で芯部11を全て造形してもよい。また、積層造形物10の製造完了まで、一度も輪郭部造形工程S26が行われなくてもよい。
(作用効果)
 本実施形態によれば、芯部11の表面の状態の精度が適正である場合は、輪郭部12の造形を省略できる。これにより、積層造形物10の製造にかかる時間を短縮させることができるとともに、製造コストを低減できる。したがって、積層造形物10を効率的に製造することができる。
 また、1回の芯部造形工程で芯部11を全て造形した後に、必要に応じて輪郭部12を造形できる。これにより、製造途中の積層造形物10を必要以上に動かすことなく、積層造形物10を製造できる。すなわち、積層造形物10のハンドリングを最小限に抑えることができる。この効果は、積層造形物10が大型構造物である場合に特に好適である。
 なお、図14は、本実施形態に係るコンピュータ1100の構成を示すハードウェア構成図である。
 コンピュータ1100は、プロセッサ1110、メインメモリ1120、ストレージ1130、インタフェース1140を備える。
 上述の積層造形制御装置40は、コンピュータ1100に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、記憶領域をメインメモリ1120に確保する。
 プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、又は他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。また、コンピュータ1100は、上記構成に加えて、又は上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部又は全部が当該集積回路によって実現されてよい。
 ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリ等が挙げられる。ストレージ1130は、コンピュータ1100のバスに直接接続された内部メディアであってもよいし、インタフェース1140又は通信回線を介してコンピュータ1100に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、溶加材は、金属材料であるとしたが、これに限るものではなく、例えば樹脂材料であってもよい。
 なお、上記実施形態では、第一溶接ビード3aと第二溶接ビード3bは、同一の溶加材により形成されるとしたが、これに限るものではなく、異なる溶加材により形成されてもよい。
 なお、上記実施形態では、溶接ヘッド20がレーザ溶接ヘッド20aである場合の溶加材を粉体Pとしたが、これに限るものではなく、例えば溶加材をワイヤWとしてもよい。また、溶接ヘッド20がアーク溶接ヘッド20bである場合の溶加材をワイヤWとしたが、これに限るものではなく、例えば溶加材を粉体Pとしてもよい。
 なお、第一実施形態の変形例として、芯部造形工程S14が表面部造形工程と内部造形工程とを含む場合について説明したが、第二実施形態でもこの変形例が適用されてもよい。すなわち、芯部造形工程S23が表面部造形工程と内部造形工程とを含んでいてもよい。
 なお、上記実施形態では、芯部11及び輪郭部12を造形する際に、溶接ヘッド20のみを動作させるとしたが、これに限られるものではなく、例えばステージ2を動作させてもよく、溶接ヘッド20及びステージ2の両方を動作させてもよい。
 なお、上記実施形態では、芯部11の一部を積層造形した後に、輪郭部12を積層造形するとしたが、これに限られるものではなく、例えば芯部11の全てを積層造形した後に、輪郭部12を積層造形してもよい。
 なお、上記実施形態の芯部造形工程S14,S23では、形成された複数の第一溶接ビード3aは、全て略同一の解像度を有するとしたが、これに限られるものではない。第一溶接ビード3aの第一の解像度が、第二溶接ビード3bの第二の解像度よりも低ければよい。例えば、芯部11を複数の領域に細分化して、領域ごとに第一溶接ビード3aの解像度を変化させてもよい。
 なお、上記実施形態では、一回の芯部造形工程S14,S23で、芯部11が複数層造形されるとしたが、これに限られるものではなく、一回の芯部造形工程S14,S23で、芯部11が一層のみ形成されてもよい。
 なお、上記実施形態の輪郭部造形工程S15,S26では、形成された複数の第二溶接ビード3bは、全て略同一の解像度を有するとしたが、これに限られるものではない。第二溶接ビード3bの第二の解像度が、第一溶接ビード3aの第一の解像度よりも高ければよい。例えば、輪郭部12を複数の領域に細分化して、領域ごとに第二溶接ビード3bの解像度を変化させてもよい。
 なお、上記実施形態の芯部造形工程S14,S23及び輪郭部造形工程S15,S26では、ウィービング溶接を行ってもよい。詳細な機構は省略するが、ウィービング溶接は、熱源と溶加材の両方を揺動させて行われてもよく、熱源のみを揺動させて行われてもよく、溶加材のみ搖動させて行われてもよい。熱源と溶加材の両方を揺動させる場合、溶接ヘッド20の機構を簡略化できる。熱源のみを揺動させる場合、造形の安定性を向上させることができる。溶加材のみを揺動させる場合、入熱制御性を向上させることができる。
<付記>
 各実施形態に記載の積層造形物10の製造方法、及び積層造形システム1は、例えば以下のように把握される。
(1)第1の態様に係る積層造形物10の製造方法は、積層造形物10の内側の部分である芯部11を、第一の解像度の第一溶接ビード3aで積層造形する芯部造形工程S14,S23と、前記芯部造形工程S14,S23の後に、前記積層造形物10の外側の部分である輪郭部12を、前記第一の解像度よりも高い第二の解像度の第二溶接ビード3bで、前記芯部11の表面に積層造形する輪郭部造形工程S15,S26と、を含む。
 これにより、第一溶接ビード3aのみで芯部11及び輪郭部12を造形する場合と比較して、積層造形直後の積層造形物10の表面の精度を向上させることができる。また、第二溶接ビード3bのみで芯部11及び輪郭部12を造形する場合と比較して、積層造形物10の全体を造形するのにかかる時間を短縮させることができる。したがって、積層造形物10を効率的に製造できる。
(2)第2の態様の積層造形物10の製造方法は、(1)の積層造形物10の製造方法であって、前記芯部造形工程S14,S23は、前記芯部11の表面を含む表面部13を前記第一の解像度よりも高い第三の解像度の第三溶接ビード3cで形成する表面造形工程と、前記表面造形工程の後に、前記芯部11における前記表面部13よりも内側の部分(コア部14)を前記第一の解像度の第一溶接ビード3aで積層造形する内部造形工程と、を含んでもよい。
 これにより、第一溶接ビード3aのみで芯部11を造形する場合と比較して、芯部11の表面の精度を向上させることができる。また、第三溶接ビード3cのみで芯部11を造形する場合と比較して、芯部11の全体を造形するのにかかる時間を短縮させることができる。
(3)第3の態様の積層造形物10の製造方法は、(1)または(2)の積層造形物10の製造方法であって、前記芯部造形工程S14の前に、前記積層造形物10の最終形状に基づいて前記芯部11を造形する芯領域と前記輪郭部12を造形する輪郭領域を特定する領域特定工程S12をさらに含み、前記芯部造形工程S14では、前記領域特定工程S12によって特定された前記芯領域に前記芯部11を積層造形し、前記輪郭部造形工程S15では、前記領域特定工程S12によって特定された前記輪郭領域に前記輪郭部12を積層造形してもよい。
 これにより、予め特定した芯領域に芯部11を造形するとともに予め特定した輪郭領域に輪郭部12を造形することで、精度を高く維持しながら、積層造形物10の全体を造形するのにかかる時間を短縮させることができる。
(4)第4の態様の積層造形物10の製造方法は、(1)または(2)の積層造形物10の製造方法であって、前記芯部造形工程S23と前記輪郭部造形工程S26との間に、前記芯部11の表面の精度を判定する精度判定工程S24をさらに含み、前記輪郭部造形工程S26では、前記精度判定工程S24によって前記精度が適正でないと判定された場合にのみ前記輪郭部12を積層造形してもよい。
 これにより、芯部11の表面の状態の精度が適正である場合は、輪郭部12の造形を省略できる。これにより、積層造形物10の製造にかかる時間をさらに短縮できる。
(5)第5の態様の積層造形物10の製造方法は、(1)から(4)のいずれかの積層造形物10の製造方法であって、前記芯部造形工程S14,S23及び前記輪郭部造形工程S15,S26は、レーザ溶接または電子ビーム溶接によって行われてもよい。
 レーザ光Lまたは電子ビームのスポット形状を調節することにより、溶接ビード3の解像度を容易に調節できる。溶接ビード3の解像度を上げることで、積層造形物10の精度を向上させることができる。
(6)第6の態様の積層造形物10の製造方法は、(1)から(4)のいずれかの積層造形物10の製造方法であって、前記芯部造形工程S14,S23及び前記輪郭部造形工程S15,S26は、アーク溶接によって行われてもよい。
 これにより、溶接ビード3を高速に形成できるので、積層造形物10の造形にかかる時間を短縮させることができる。
(7)第7の態様の積層造形システム1は、溶接ヘッド20と、前記溶接ヘッド20が積層造形物10を造形するように該溶接ヘッド20を制御する積層造形制御装置40と、を備え、前記積層造形制御装置40は、前記積層造形物10の内側の部分である芯部11を、第一の解像度の第一溶接ビード3aで積層造形するように前記溶接ヘッド20を制御する芯部造形制御部44と、前記芯部11の少なくとも一部が積層造形された後に、前記積層造形物10の外側の部分である輪郭部12を、前記第一の解像度よりも高い第二の解像度の第二溶接ビード3bで前記芯部11の表面に積層造形するように、前記溶接ヘッド20を制御する輪郭部造形制御部45と、を有する。
(8)第8の態様の積層造形システム1は、(7)の積層造形システム1であって、前記芯部造形制御部44は、前記芯部11の表面を含む表面部13を前記第一の解像度よりも高い第三の解像度の第三溶接ビード3cで積層造形するように前記溶接ヘッド20を制御し、前記表面部13が積層造形された後に、前記芯部11における前記表面部13よりも内側の部分(コア部14)を前記第一の解像度の第一溶接ビード3aで積層造形するように前記溶接ヘッド20を制御してもよい。
(9)第9の態様の積層造形システム1は、(7)または(8)の積層造形システム1であって、前記積層造形制御装置40は、前記積層造形物10の最終形状に基づいて前記芯部11を造形する芯領域と前記輪郭部12を造形する輪郭領域を特定する領域特定部42をさらに備え、前記芯部造形制御部44は、前記領域特定部42によって特定された前記芯領域に前記芯部11を積層造形するように前記溶接ヘッド20を制御し、前記輪郭部造形制御部45は、前記領域特定部42によって特定された前記輪郭領域に前記輪郭部12を積層造形するように前記溶接ヘッド20を制御してもよい。
(10)第10の態様の積層造形システム1は、(7)または(8)の積層造形システム1であって、前記芯部11の表面の状態を検出する状態検出部4をさらに備え、前記積層造形制御装置40は、前記状態検出部4の検出結果に基づいて前記芯部11の表面の精度を判定する精度判定部46をさらに有し、前記輪郭部造形制御部45は、前記精度判定部46によって精度が適正でないと判定された場合にのみ前記輪郭部12を積層造形するように前記溶接ヘッド20を制御してもよい。
(11)第11の態様の積層造形システム1は、(7)から(10)のいずれかの積層造形システム1であって、前記溶接ヘッド20は、レーザ溶接によって積層造形を行うレーザ溶接ヘッド20aまたは電子ビーム溶接によって積層造形を行う電子ビーム造形ヘッドであってもよい。
(12)第12の態様の積層造形システム1は、(7)から(10)のいずれかの積層造形システム1であって、前記溶接ヘッド20は、アーク溶接によって積層造形を行うアーク溶接ヘッド20bであってもよい。
 本開示の積層造形物の製造方法、及び積層造形システムによれば、積層造形物を効率的に製造することができる。
1…積層造形システム 2…ステージ 3…溶接ビード 3a…第一溶接ビード 3b…第二溶接ビード 3c…第三溶接ビード 4…状態検出部 10…積層造形物 11…芯部 12…輪郭部 13…表面部 14…コア部 20…溶接ヘッド 20a…レーザ溶接ヘッド 20b…アーク溶接ヘッド 21…ヘッド本体 22…レーザ源 23…レーザ通路 24…粉体供給路 26…電極 27…ワイヤ挿通路 40…積層造形制御装置 41…造形物データ取得部 42…領域特定部 43…動作設定部 44…芯部造形制御部 45…輪郭部造形制御部 46…精度判定部 1110…プロセッサ 1120…メインメモリ 1130…ストレージ 1140…インタフェース A…アーク L…レーザ光 P…粉体 S11,S21…造形物データ取得工程 S12…領域特定工程 S13,S22,S25…動作設定工程 S14,S23…芯部造形工程 S15,S26…輪郭部造形工程 S24…精度判定工程 W…ワイヤ

Claims (12)

  1.  積層造形物の内側の部分である芯部を、第一の解像度の第一溶接ビードで積層造形する芯部造形工程と、
     前記芯部造形工程の後に、前記積層造形物の外側の部分である輪郭部を、前記第一の解像度よりも高い第二の解像度の第二溶接ビードで、前記芯部の表面に積層造形する輪郭部造形工程と、
    を含む積層造形物の製造方法。
  2.  前記芯部造形工程は、
     前記芯部の表面を含む表面部を前記第一の解像度よりも高い第三の解像度の第三溶接ビードで形成する表面造形工程と、
     前記表面造形工程の後に、前記芯部における前記表面部よりも内側の部分を前記第一の解像度の第一溶接ビードで積層造形する内部造形工程と、
    を含む請求項1に記載の積層造形物の製造方法。
  3.  前記芯部造形工程の前に、前記積層造形物の最終形状に基づいて前記芯部を造形する芯領域と前記輪郭部を造形する輪郭領域を特定する領域特定工程をさらに含み、
     前記芯部造形工程では、前記領域特定工程によって特定された前記芯領域に前記芯部を積層造形し、
     前記輪郭部造形工程では、前記領域特定工程によって特定された前記輪郭領域に前記輪郭部を積層造形する請求項1または2に記載の積層造形物の製造方法。
  4.  前記芯部造形工程と前記輪郭部造形工程との間に、前記芯部の表面の精度を判定する精度判定工程をさらに含み、
     前記輪郭部造形工程では、前記精度判定工程によって前記精度が適正でないと判定された場合にのみ前記輪郭部を積層造形する請求項1または2に記載の積層造形物の製造方法。
  5.  前記芯部造形工程及び前記輪郭部造形工程は、レーザ溶接または電子ビーム溶接によって行われる請求項1から4のいずれか一項に記載の積層造形物の製造方法。
  6.  前記芯部造形工程及び前記輪郭部造形工程は、アーク溶接によって行われる請求項1から4のいずれか一項に記載の積層造形物の製造方法。
  7.  溶接ヘッドと、
     前記溶接ヘッドが積層造形物を造形するように該溶接ヘッドを制御する積層造形制御装置と、
    を備え、
     前記積層造形制御装置は、
     前記積層造形物の内側の部分である芯部を、第一の解像度の第一溶接ビードで積層造形するように前記溶接ヘッドを制御する芯部造形制御部と、
     前記芯部の少なくとも一部が積層造形された後に、前記積層造形物の外側の部分である輪郭部を、前記第一の解像度よりも高い第二の解像度の第二溶接ビードで前記芯部の表面に積層造形するように、前記溶接ヘッドを制御する輪郭部造形制御部と、
    を有する積層造形システム。
  8.  前記芯部造形制御部は、
     前記芯部の表面を含む表面部を前記第一の解像度よりも高い第三の解像度の第三溶接ビードで積層造形するように前記溶接ヘッドを制御し、
     前記表面部が積層造形された後に、前記芯部における前記表面部よりも内側の部分を前記第一の解像度の第一溶接ビードで積層造形するように前記溶接ヘッドを制御する請求項7に記載の積層造形システム。
  9.  前記積層造形制御装置は、
     前記積層造形物の最終形状に基づいて前記芯部を造形する芯領域と前記輪郭部を造形する輪郭領域を特定する領域特定部をさらに備え、
     前記芯部造形制御部は、前記領域特定部によって特定された前記芯領域に前記芯部を積層造形するように前記溶接ヘッドを制御し、
     前記輪郭部造形制御部は、前記領域特定部によって特定された前記輪郭領域に前記輪郭部を積層造形するように前記溶接ヘッドを制御する請求項7または8に記載の積層造形システム。
  10.  前記芯部の表面の状態を検出する状態検出部をさらに備え、
     前記積層造形制御装置は、
     前記状態検出部の検出結果に基づいて前記芯部の表面の精度を判定する精度判定部をさらに有し、
     前記輪郭部造形制御部は、前記精度判定部によって精度が適正でないと判定された場合にのみ前記輪郭部を積層造形するように前記溶接ヘッドを制御する請求項7または8に記載の積層造形システム。
  11.  前記溶接ヘッドは、レーザ溶接によって積層造形を行うレーザ溶接ヘッドまたは電子ビーム溶接によって積層造形を行う電子ビーム造形ヘッドである請求項7から10のいずれか一項に記載の積層造形システム。
  12.  前記溶接ヘッドは、アーク溶接によって積層造形を行うアーク溶接ヘッドである請求項7から10のいずれか一項に記載の積層造形システム。
PCT/JP2022/018179 2021-07-30 2022-04-19 積層造形物の製造方法、及び積層造形システム WO2023007880A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22848963.9A EP4364874A1 (en) 2021-07-30 2022-04-19 Additive manufactured article manufacturing method and additive manufacturing system
KR1020247006240A KR20240040775A (ko) 2021-07-30 2022-04-19 적층 조형물의 제조 방법, 및 적층 조형 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021125245A JP2023020076A (ja) 2021-07-30 2021-07-30 積層造形物の製造方法、及び積層造形システム
JP2021-125245 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023007880A1 true WO2023007880A1 (ja) 2023-02-02

Family

ID=85086468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018179 WO2023007880A1 (ja) 2021-07-30 2022-04-19 積層造形物の製造方法、及び積層造形システム

Country Status (4)

Country Link
EP (1) EP4364874A1 (ja)
JP (1) JP2023020076A (ja)
KR (1) KR20240040775A (ja)
WO (1) WO2023007880A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075361A (ja) * 2015-10-15 2017-04-20 セイコーエプソン株式会社 三次元造形物の製造方法及び三次元造形物の製造装置
JP2021024260A (ja) 2019-08-09 2021-02-22 株式会社神戸製鋼所 積層造形物の製造システム、積層造形物の製造方法
JP2021085662A (ja) * 2019-11-25 2021-06-03 三菱重工業株式会社 形状検査装置、造形制御装置及び造形装置
JP2021115625A (ja) * 2020-01-29 2021-08-10 三菱電機株式会社 積層造形装置、積層造形方法及び加工経路生成方法
JP2021125245A (ja) 2020-02-01 2021-08-30 Assest株式会社 先物取引情報表示プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075361A (ja) * 2015-10-15 2017-04-20 セイコーエプソン株式会社 三次元造形物の製造方法及び三次元造形物の製造装置
JP2021024260A (ja) 2019-08-09 2021-02-22 株式会社神戸製鋼所 積層造形物の製造システム、積層造形物の製造方法
JP2021085662A (ja) * 2019-11-25 2021-06-03 三菱重工業株式会社 形状検査装置、造形制御装置及び造形装置
JP2021115625A (ja) * 2020-01-29 2021-08-10 三菱電機株式会社 積層造形装置、積層造形方法及び加工経路生成方法
JP2021125245A (ja) 2020-02-01 2021-08-30 Assest株式会社 先物取引情報表示プログラム

Also Published As

Publication number Publication date
EP4364874A1 (en) 2024-05-08
KR20240040775A (ko) 2024-03-28
JP2023020076A (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
CN110430959B (zh) 层叠造型物的制造方法、制造系统及存储介质
Jiménez et al. Powder-based laser hybrid additive manufacturing of metals: a review
Ding et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests
EP3541566B1 (en) Method of controlling the cooling rate of a melt pool of a powder bed, and direct metal laser melting manufacturing system with in-line laser scanner
EP3046702B1 (en) Method for additive manufacturing of a plurality of three-dimensional articles
KR101748860B1 (ko) 적층 가공을 위한 방법 및 장치
CN105945281B (zh) 零件与模具的熔积成形加工制造方法
JP6547262B2 (ja) 3次元形成装置および3次元形成方法
US10399146B2 (en) Contour scanning for additive manufacturing process
JP2021000825A (ja) セラミック及びその複合材料に適した積層造形法及び装置
CN111417485B (zh) 造型物的制造方法以及制造装置
CN111417486A (zh) 层叠造型物的设计方法、制造方法、制造装置、以及程序
US20190134911A1 (en) Apparatus and methods for build surface mapping
JP2019073797A (ja) 積層造形のための空気流制御
US11666985B2 (en) Gradient material control and programming of additive manufacturing processes
CN110695356B (zh) 一种基于送粉式增材制造法的弹体一体化制造方法
CN109732183B (zh) 一种磁控等离子弧增材制造方法
WO2023007880A1 (ja) 積層造形物の製造方法、及び積層造形システム
Heilemann et al. Laser metal deposition of bionic aluminum supports: reduction of the energy input for additive manufacturing of a fuselage
WO2019176759A1 (ja) 造形物の製造方法及び造形物
US20200261977A1 (en) Scan field variation compensation
WO2023007879A1 (ja) 積層造形物の製造方法、及び積層造形システム
CN107234239B (zh) 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
JP7362306B2 (ja) 三次元積層装置および方法
CN114450122A (zh) 加工程序生成装置、层叠造形装置、加工程序生成方法、层叠造形方法及机器学习装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848963

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022848963

Country of ref document: EP

Effective date: 20240131

ENP Entry into the national phase

Ref document number: 20247006240

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006240

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE