WO2023007813A1 - Measurement probe, adaptor, and measurement system - Google Patents

Measurement probe, adaptor, and measurement system Download PDF

Info

Publication number
WO2023007813A1
WO2023007813A1 PCT/JP2022/010592 JP2022010592W WO2023007813A1 WO 2023007813 A1 WO2023007813 A1 WO 2023007813A1 JP 2022010592 W JP2022010592 W JP 2022010592W WO 2023007813 A1 WO2023007813 A1 WO 2023007813A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
light
amount
sensor
conduit
Prior art date
Application number
PCT/JP2022/010592
Other languages
French (fr)
Japanese (ja)
Inventor
賢志 澤田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023007813A1 publication Critical patent/WO2023007813A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/20Closure caps or plugs for connectors or open ends of tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to measurement probes, adapters and measurement systems.
  • Various medical tubes are used to connect the inside and outside of the patient's body, such as bladder indwelling catheters, intravascular indwelling catheters, and drainage tubes.
  • a connector may be connected in the middle of these medical tubes (Patent Document 1).
  • Patent Literature 1 By using the connector of Patent Document 1, medical personnel can quickly perform tasks such as collecting body fluids from patients. However, the connector of Patent Literature 1 cannot continuously monitor components of a patient's bodily fluids.
  • the object is to provide a measurement probe or the like that can continuously monitor the patient's condition via a connector.
  • the measuring probe is attachable to and detachable from a connector arranged in the middle of a medical pipeline, and when attached to the connector, has a first pipeline that communicates with the medical pipeline; is detachable and has a second conduit that communicates with the first conduit, and when the syringe is not attached to the second connection, the second conduit is liquid-tight and a sensor for measuring the condition of the fluid flowing through the medical pipeline.
  • a measurement probe or the like that can continuously monitor the patient's condition via a connector.
  • FIG. 1 is an exploded view of a measuring probe;
  • FIG. FIG. 4 is a cross-sectional view of the measuring probe;
  • FIG. 3 is a view in the direction of arrow IV in FIG. 2;
  • 3 is a view in the direction of arrow V in FIG. 2;
  • FIG. FIG. 5 is a cross-sectional view taken along line VI-VI in FIG. 4;
  • It is an explanatory view explaining composition of a measuring device. 4 is a flowchart for explaining the flow of processing of a program;
  • FIG. 10 is a front view of an adapter of modification 1-1;
  • FIG. 10 is a view in the direction of arrow X in FIG. 9;
  • FIG. 10 is a view in the direction of arrow XI in FIG. 9;
  • FIG. 11 is a cross-sectional view taken along line XII-XII in FIG. 10;
  • FIG. 11 is a perspective view of a measurement probe of modification 1-2;
  • FIG. 11 is an enlarged view of the tip of the sensor probe of modification 1-3;
  • FIG. 10 is an enlarged cross-sectional view of the tip portion of the sensor probe of modification 1-4;
  • FIG. 11 is an enlarged cross-sectional view of the tip portion of the sensor probe of modification 1-5;
  • FIG. 10 is a front view of the measurement probe of Embodiment 2;
  • FIG. 18 is a view in the direction of arrow XVIII in FIG. 17;
  • FIG. 18 is a view in the direction of arrow XIX in FIG. 17;
  • FIG. 19 is a cross-sectional view taken along line XX-XX in FIG. 18;
  • FIG. 11 is a front view of a measurement probe according to Embodiment 3; 21. It is a XXII arrow directional view in FIG.
  • FIG. 22 is a cross-sectional view taken along line XXIII-XXIII in FIG. 21;
  • FIG. 11 is a front view of a measurement probe according to Embodiment 4; 24. It is a XXV arrow directional view in FIG.
  • FIG. 11 is an explanatory diagram for explaining how to use the measurement probe of Embodiment 4;
  • FIG. 11 is an explanatory diagram for explaining how to use the measurement probe of Embodiment 4;
  • FIG. 11 is an explanatory diagram for explaining how to use the measurement probe of Embodiment 4;
  • FIG. 11 is an explanatory diagram for explaining how to
  • FIG. 27 is a cross-sectional view taken along line XXVII in FIG. 26;
  • FIG. 12 is a time chart for explaining the operation of the measuring device of Embodiment 6;
  • FIG. FIG. 20 is a perspective view of a tip portion of a sensor probe of modification 6-1; It is an example of a screen of modification 6-2.
  • FIG. 11 is an explanatory diagram for explaining the configuration of a measuring device according to an eighth embodiment;
  • FIG. 20 is a functional block diagram of a measurement system according to Embodiment 9;
  • FIG. 1 is an explanatory diagram for explaining the configuration of the measurement system 10.
  • a catheter 161 is placed in a patient's blood vessel 169 .
  • the blood vessel 169 is a patient's arm vein and the catheter 161 is a peripheral vein indwelling catheter will be described as an example.
  • An infusion bag 162 is connected to the catheter 161 via a drip tube and clamp (not shown).
  • a connector 163 is connected to the middle of the catheter 161 .
  • Catheter 161, infusion bag 162 and connector 163 of the present embodiment have been conventionally used in the medical field.
  • the catheter 161 is an example of a medical conduit according to the present embodiment, which connects instruments inside and outside the patient's body.
  • the infusion bag 162 is an example of the extracorporeal device of this embodiment.
  • An infusion is an example of a fluid administered to a patient via a medical line.
  • the infusion administration route configured by the catheter 161, the infusion bag 162 and the connector 163 may be referred to as an infusion line.
  • a three-way stopcock, an infusion pump, or the like may be connected to the infusion line.
  • a method using a conventional infusion line is outlined.
  • the catheter 161 is left in the blood vessel 169 continuously for several days.
  • An infusion such as physiological saline, Ringer's solution, drugs, or blood for transfusion in the infusion bag 162 is continuously administered to the blood vessel 169 via the catheter 161 .
  • a user such as a doctor or nurse attaches a blood collection syringe to connector 163 and performs aspiration. Since there is no need to pierce the blood vessel 169 with a new needle each time blood is collected, the burden on the patient and the user can be reduced. That is, the connector 163 is used for collecting samples such as blood.
  • the user can also attach a syringe containing medicine to the connector 163 and inject it into the patient via the catheter 161 .
  • the user can administer the drug to the patient more quickly than when mixing the drug with the infusion in the infusion bag 162 .
  • connector 163 is also used for rapid administration of drugs.
  • a measuring probe 18 is attached to connector 163 instead of a blood sampling syringe.
  • the measurement probe 18 has an optical fiber 41 and a second connection portion 182 . Details of the configuration of the measurement probe 18 will be described later.
  • the optical fiber 41 is connected to the measuring device 30 and continuously measures the patient's blood condition.
  • the oxygen partial pressure (pO2) in the patient's blood is displayed on the display unit 35 in real time.
  • the user attaches the syringe 168 to the second connector 182 and performs aspiration.
  • FIG. 2 is an exploded view of the measurement probe 18.
  • the measuring probe 18 comprises an adapter 185, a sensor probe 40 and a plug 196.
  • FIG. Sensor probe 40 comprises optical fiber 41 , emitter 24 , optical fiber connector 411 and fiber plug 42 .
  • the light emitter 24 is arranged at one end of the optical fiber connector 411 .
  • the optical fiber connector 411 is arranged at the other end of the optical fiber 41 .
  • the fiber plug 42 is a rubber plug having a through hole and is inserted through the optical fiber 41 .
  • the plug 196 has a second connection portion 182 .
  • Plug 196 is, for example, a body fluid guide tube for a commercially available closed infusion system. Details of the light emitter 24 and details of the shape of the adapter 185 will be described later.
  • FIG. 3 is a cross-sectional view of the measurement probe 18.
  • FIG. 4 An optical fiber 41 is inserted through a first conduit 191 provided in the adapter 185 .
  • the optical fiber 41 is liquid-tightly secured to the adapter 185 by a fiber plug 42 .
  • the plug 196 is fixed to the measurement probe 18.
  • a through hole provided in the plug 196 communicates with the first conduit 191 via a second conduit 192 provided in the adapter 185 .
  • a through-hole provided in the plug 196 is liquid-tightly sealed by a valve body 197 arranged inside the second connecting portion 182 .
  • Valve body 197 is, for example, a rubber stopper having a slit.
  • the plug 196 may be fixed in advance to the 185 in a liquid-tight manner by adhesive or physical fitting.
  • FIG. 4 is a view in the direction of arrow IV in FIG. 5 is a view in the direction of arrow V in FIG. 2.
  • FIG. FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. The configuration of the adapter 185 will be described using FIGS. 4 to 6.
  • FIG. 4 is a view in the direction of arrow IV in FIG. 5 is a view in the direction of arrow V in FIG. 2.
  • FIG. FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. The configuration of the adapter 185 will be described using FIGS. 4 to 6.
  • FIG. 4 is a view in the direction of arrow IV in FIG. 5 is a view in the direction of arrow V in FIG. 2.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. The configuration of the adapter 185 will be described using FIGS. 4 to 6.
  • FIG. 4 is a view in the direction of arrow IV in FIG. 5 is a view in the direction
  • the adapter 185 includes a plate-like portion 183 , a first connection portion 181 and a plug mounting portion 186 .
  • the first connecting portion 181 protrudes from one surface of the plate-like portion 183 .
  • the plug attachment portion 186 protrudes from the side surface of the first connection portion 181 .
  • the first connecting portion 181 has the same shape as the tip of a syringe for collecting blood, and can be attached to and detached from the connector 163 .
  • a first pipeline 191 is provided inside the first connecting portion 181 .
  • the first pipeline 191 branches into a second pipeline 192 and a sensor pipeline 194 inside the adapter 185 .
  • the second conduit 192 opens at the end face of the plug attachment portion 186 .
  • the opening of the second pipeline 192 is provided with a stepped portion that is thicker on the opening side.
  • the sensor conduit 194 opens on the surface of the plate-like portion 183 .
  • the sensor conduit 194 has a smaller diameter than the first conduit 191 near the branch.
  • the opening of the sensor pipe line 194 is provided with a stepped portion having a larger diameter on the opening side.
  • a side wall of the stepped portion is tapered to be thicker on the opening side.
  • the first conduit 191, the sensor conduit 194 and the fiber plug 42 are examples of the sensor mounting portion of the present embodiment.
  • the plate-like portion 183 is provided with four band holes 189 .
  • the band hole 189 is a square hole through which the binding band 199 described using FIG. 1 can be inserted.
  • two band attachment portions 188 protrude from the plate-like portion 183 with the first connection portion 181 interposed therebetween.
  • Each band attachment portion 188 is provided with a band hole 189 .
  • the band hole 189 is also a square hole through which the binding band 199 can be inserted.
  • the band hole 189 is an example of the connector fixing portion of this embodiment, which is used when fixing the measurement probe 18 to the connector 163 .
  • the luminous body 24 is, for example, translucent resin in which phosphor is kneaded, and is applied to the end surface of the optical fiber 41 .
  • a phosphor is an example of a fluorescent dye in this embodiment.
  • a fluorescent material is used in which the fluorescence generated when exposed to excitation light changes in response to oxygen in blood. Fluorescence is an example of radiation emitted by light emitter 24 . Oxygen partial pressure and oxygen concentration in blood can be measured in real time by analyzing the characteristics of the fluorescence emitted by the phosphor.
  • the light-emitting body 24 may be applied, or may be molded as a separate body and then attached.
  • the outline of the measurement method using a fluorescent material will be explained.
  • the phosphor When irradiated with excitation light, the phosphor enters a high-energy excited state. Fluorescence is emitted from the phosphor in the excited state, and the phosphor returns to the ground state.
  • the properties of the fluorescence such as the intensity, phase angle and decay time of the emitted fluorescence, change based on the concentration of the quencher with which the fluorophore contacts. Therefore, the concentration of the quencher can be measured by analyzing the properties of the emitted light.
  • the quencher in this embodiment is oxygen.
  • Phosphors that use oxygen as a quencher include pyrylene derivatives, pyrene derivatives, porphyrin metal complexes, and the like.
  • the emitted light emitted by phosphors also includes phosphorescence. That is, measurements may be made by analyzing the properties of phosphorescence. Both fluorescence and phosphorescence properties may be analyzed simultaneously.
  • a phosphor that emits fluorescence in response to carbon dioxide in blood may be used.
  • By analyzing the properties of fluorescence it is possible to measure carbon dioxide partial pressure and carbon dioxide concentration in blood in real time.
  • Phosphors that change the properties of their emitted fluorescence with the proton index of blood may be used.
  • By analyzing the properties of fluorescence it is possible to measure the hydrogen ion index, or pH (potential of Hydrogen), of blood in real time.
  • the phosphor may react with ions such as potassium ions, sodium ions, or chloride ions to emit fluorescence.
  • ions such as potassium ions, sodium ions, or chloride ions
  • a fluorophore that responds similarly to multiple quenchers may be used.
  • a diffusion permeation film placed on the surface of the emitter 24 can select the quencher, ie the component to be measured, that contacts the phosphor.
  • the fluorescent properties of the phosphor also change depending on temperature and pressure.
  • blood temperature can be measured in real time.
  • the phosphor also changes its luminescence state depending on the pressure of the blood in contact with it.
  • the pressure of body fluids can be measured in situ in real time. That is, by analyzing the characteristics of the radiated light emitted by the light emitter 24, it is possible to simultaneously measure a plurality of items such as blood components, blood temperature, blood specific gravity, and blood flow rate.
  • a sensor that grasps the properties of body fluid by measuring absorbance without using a fluorescent substance may be used.
  • creatinine amount, urea nitrogen amount, lactic acid amount, glucose amount, HbA1c value, CRP (C-reactive protein) amount, uric acid amount, hemoglobin amount, free hemoglobin amount, hematocrit value, albumin amount, globmin amount, or bilirubin amount For example, absorbance in a specific wavelength range may be measured according to any parameter that indicates the state of blood.
  • the side surface of the optical fiber 41 is desirably covered with a coating (not shown).
  • the coating is desirably a light shield that prevents external light from entering from the side surface of the optical fiber 41 . It is possible to provide the sensor probe 40 that prevents the influence of noise due to ambient light.
  • FIG. 7 is an explanatory diagram illustrating the configuration of the measuring device 30.
  • the measurement device 30 includes a control unit 31, a main storage device 32, an auxiliary storage device 33, a communication unit 34, an input unit 36, a light source 51, an optical analyzer 52, a light guide path 55, It has a beam splitter 56 and a bus.
  • the control unit 31 is an arithmetic control device that executes the program of this embodiment.
  • One or a plurality of CPUs (Central Processing Units), GPUs (Graphics Processing Units), multi-core CPUs, or the like is used for the control unit 31 .
  • the control unit 31 is connected to each hardware unit constituting the measuring device 30 via a bus.
  • the main storage device 32 is a storage device such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), flash memory, or the like.
  • the main storage device 32 temporarily stores information necessary during the process performed by the control unit 31 and the program being executed by the control unit 31 .
  • the auxiliary storage device 33 is a storage device such as SRAM, flash memory, hard disk, or magnetic tape.
  • the auxiliary storage device 33 stores programs to be executed by the control unit 31 and various data necessary for executing the programs.
  • the communication unit 34 is an interface that performs communication between the measuring device 30 and a network or other equipment.
  • the display unit 35 is, for example, a liquid crystal display panel or an organic EL (electro-luminescence) panel.
  • the display unit 35 is attached to the housing of the measuring device 30 as shown in FIG.
  • the display unit 35 may be a separate display device from the measuring device 30 .
  • a screen of another device such as a biological information monitor may also serve as the display unit 35 .
  • the input unit 36 is a button or the like provided on the housing of the measuring device 30 .
  • the display unit 35 and the input unit 36 may be an integrated panel.
  • the input connector 371 is an optical connector to which the optical fiber 41 is connected.
  • the measurement device 30 may have multiple input connectors 371 .
  • the light source 51 is, for example, an LED (light emitting diode) or a laser diode.
  • the light source 51 irradiates the light emitter 24 with excitation light to excite the phosphor contained in the light emitter 24 .
  • the light emitted by the light source 51 hardly contains the wavelength of fluorescence emitted by the phosphor.
  • an excitation light filter may be installed to narrow down the light emitted from the light source 51 to a desired wavelength range.
  • the optical analyzer 52 analyzes the received light after converting it into an electrical signal using, for example, a photodiode.
  • a light guide path 55 connects between the light source 51 and the beam splitter 56, between the light analyzer 52 and the beam splitter 56, and between the beam splitter 56 and the input connector 371, respectively.
  • the wavelength range of the excitation light with which the light-emitting body 24 is irradiated can be precisely selected. Since noise due to wavelengths other than the excitation light does not occur, the measurement device 30 with high measurement accuracy can be provided.
  • An optical lens may be arranged in the middle of the light guide path 55 or at the end of the light guide path 55 . By effectively using the excitation light and the fluorescence, it is possible to provide the measurement device 30 with high measurement sensitivity.
  • the optical lens may be made of glass, quartz, plastic, or an elastic material such as silicon rubber.
  • the measurement device 30 may have a second light source that supplies reference light to the optical analyzer 52 in addition to the light source 51 that emits excitation light. It is possible to provide the measurement device 30 that performs analysis using reference light.
  • the reference light emitted from the second light source directly enters the light analyzer 52 .
  • the second light source and the optical analyzer 52 are connected, for example, by a dedicated light guide path. Between the second light source and the light analyzer 52 may be a cavity configured such that the light emitted from the second light source is incident on the light analyzer 52 .
  • FIG. 1 An outline of how to use the measurement system 10 will be described.
  • An infusion line is connected to the patient's vein.
  • the user inserts the optical fiber 41 into the adapter 185 to a position where it does not protrude from the first connecting portion 181 .
  • the user loosely inserts the fiber plug 42 into the adapter 185 and presses the optical fiber 41 and fiber plug 42 with a finger.
  • the user disinfects the connector 163 by wiping it with alcohol for disinfection or the like.
  • the user inserts the first connection portion 181 into the connector 163 .
  • a plug provided on the connector 163 is opened.
  • the user While holding down adapter 185 and fiber plug 42 , the user inserts optical fiber 41 until light emitter 24 enters blood vessel 169 . After that, the user firmly pushes the fiber plug 42 into the adapter 185 to fix the optical fiber 41 and the adapter 185 in a liquid-tight manner.
  • the user uses two binding bands 199 to fix the connector 163 and the adapter 185 .
  • the user connects the fiber optic connector 411 to the input connector 371 .
  • the connection part may be configured with a male-female screw shape like a luer lock syringe and fixed without a binding band.
  • the user may fix the connector 163 to the catheter 161, the drip stand, the bed rail, the patient's arm, or the like using medical tape or the like.
  • the user operates the measuring device 30 to operate the light source 51 .
  • the excitation light emitted from the light source 51 is applied to the light emitter 24 via the light guide path 55 , the beam splitter 56 and the optical fiber 41 .
  • the luminous body 24 comes into contact with blood, fluorescence corresponding to oxygen in the blood is emitted. That is, the light emitter 24 functions as a sensor capable of detecting oxygen partial pressure and oxygen concentration in blood.
  • the optical fiber 41 is an example of the light guide of this embodiment, which guides the fluorescence emitted from the light emitter 24 .
  • the input connector 371 is an example of the light-receiving part of the present embodiment that receives fluorescence light guided to the optical fiber 41 .
  • a beam splitter 56 causes the fluorescent light to enter an optical waveguide 55 leading to an optical analyzer 52 .
  • the optical analyzer 52 analyzes the characteristics of the incident fluorescence and outputs the oxygen partial pressure or oxygen concentration in the blood to the bus in real time.
  • the control unit 31 displays the oxygen partial pressure in blood output from the optical analyzer 52 on the display unit 35 .
  • the user wipes and disinfects the second connection part 182 and the valve body 197 with alcohol for disinfection or the like.
  • the user operates a clamp (not shown) to stop administration of the infusion.
  • the user then attaches the syringe 168 to the second connector 182 .
  • the slit of the valve body 197 is opened.
  • the user pulls the plunger of the second connection portion 182 to perform suction.
  • the user may replace the syringe 168 after confirming that blood has been sucked into the syringe 168 . By doing so, it is possible to collect blood that is not mixed with the components of the infusion solution.
  • the user removes the syringe 168 from the second connection section 182 .
  • the valve body 197 closes. The user then opens the clamp and resumes administering the infusion.
  • the user Before inserting the adapter 185 into the connector 163, the user may wind a tourniquet on the peripheral side of the position where the catheter 161 is inserted to stop venous blood flow. By doing so, the amount of bleeding from the gap between the sensor conduit 194 and the optical fiber 41 when the optical fiber 41 is inserted into the blood vessel 169 is reduced.
  • the user removes the optical fiber connector 411 from the input connector 371 when the measurement by the measuring device 30 is no longer required. After that, the user fixes the optical fiber 41 to the drip stand using, for example, medical tape. By doing so, the user can easily restart the measurement according to the patient's condition.
  • the user may remove the measurement probe 18 from the connector 163 if the possibility of restarting the measurement is low.
  • the plug provided on the connector 163 is closed, and the infusion line returns to the state before the measurement probe 18 was used.
  • FIG. 8 is a flowchart explaining the flow of program processing.
  • the control unit 31 starts the program of FIG. 8 when the user gives an instruction to operate the light source 51 .
  • the control unit 31 turns on the light source 51 (step S501).
  • the excitation light is applied to the light emitter 24 via the beam splitter 56 and the optical fiber 41 .
  • Fluorescence emitted from the phosphor of the light emitter 24 enters the optical analyzer 52 via the optical fiber 41 and the beam splitter 56 .
  • the optical analyzer 52 outputs oxygen partial pressure data in blood based on the fluorescence.
  • the control unit 31 acquires oxygen partial pressure data in blood from the optical analyzer 52 (step S502). By step S502, the control unit 31 realizes the function of the data acquisition unit that acquires data from the sensor held in the sensor holding unit.
  • the control unit 31 displays the oxygen partial pressure in the blood on the display unit 35 as illustrated in FIG. 1 (step S503).
  • the control unit 31 determines whether or not to end the process (step S504). For example, when an operation to turn off the light source 51 is received, or when the optical fiber 41 is removed from the input connector 371, the control unit 31 determines to end the process.
  • control unit 31 If it is determined not to end the process (NO in step S504), the control unit 31 returns to step S502. If it is determined to end the process (YES in step S504), the control unit 31 turns off the light source 51 (step S505). The control unit 31 terminates the process.
  • the measurement system 10 that can measure the patient's condition in real time using the connector 163 provided on the existing infusion line. For example, when the condition of a patient who was determined not to require real-time measurement at the beginning of treatment changes, the user can immediately start measurement using the infusion line that has already been placed in the patient.
  • the user may fix the optical fiber 41 in a state in which the light emitter 24 does not protrude from the catheter 161 into the blood vessel 169 . By doing so, the user can measure the status of the infusion being administered to the patient in real time.
  • the control unit 31 may notify the user, for example, when the oxygen partial pressure in the blood becomes equal to or less than the threshold. For example, the control unit 31 notifies the user through display on the display unit 35 or audio output from the measuring device 30 .
  • the control unit 31 may transmit the notification to a nurse station or the like via a network such as HIS (Hospital Information System) or EMR (Electronic Medical Record).
  • HIS Hospital Information System
  • EMR Electronic Medical Record
  • the control unit 31 may, for example, calculate an index representing the patient's condition based on the partial pressure of oxygen in blood and display it on the display unit 35 .
  • the index representing the patient's condition may be calculated by combining information obtained from other equipment such as a vital information monitor and the partial pressure of oxygen in the blood.
  • the optical analyzer 52 may output data indicating characteristics of fluorescence such as the intensity, phase angle and decay time of the received fluorescence to the bus. In such a case, the control unit 31 calculates the oxygen partial pressure in the blood, the oxygen concentration in the blood, or the like.
  • An optical analysis block composed of the light source 51 , the optical analyzer 52 , the light guide path 55 , the beam splitter 56 and the input connector 371 may be separate from the measuring device 30 .
  • the measurement device 30 of the present embodiment may be configured by combining a general-purpose information processing device such as a personal computer, tablet, or smartphone with the optical analysis block.
  • a general-purpose information processing device such as a personal computer, tablet, or smartphone
  • the optical analysis block and the information processing device are connected by wire or wirelessly.
  • the display of the display unit 35 shown in FIG. 1 is an example.
  • the measuring device 30 displays the potassium ion concentration or the amount of potassium ions in blood on the display unit 35 in real time.
  • the measuring probe 18 is preferably a single-use product that is supplied to the user in a sterile condition.
  • the adapter 185, the second connection section 182 and the sensor probe 40 that constitute the measurement probe 18 may be individually sterilized and supplied to the user.
  • a peripheral vein indwelling catheter is an example of the catheter 161 of the present embodiment.
  • Catheter 161 may be any medical tube such as a central venous catheter or feeding tube.
  • Modification 1-1 This modification relates to an adapter 185 integrated with a plug 196.
  • FIG. Descriptions of parts common to the first embodiment are omitted.
  • FIG. 9 is a front view of the adapter 185 of modification 1-1.
  • 10 is a view in the direction of arrow X in FIG. 9.
  • FIG. 11 is a view in the direction of arrow XI in FIG. 9.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 10.
  • the adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 .
  • a second connection portion 182 protrudes from the side surface of the first connection portion 181 .
  • the adapter 185 of this embodiment is integrally formed by resin injection molding or the like.
  • the adapter 185 has two independent pipelines, a first pipeline 191 and a sensor pipeline 194 .
  • the sensor pipe line 194 penetrates between the tip surface of the first connection portion 181 and the plate-like portion 183 .
  • the opening on the plate-like portion 183 side is provided with a stepped portion having a larger diameter on the opening side.
  • a side wall of the stepped portion is tapered to be thicker on the opening side.
  • the first pipe line 191 extends from the tip surface of the first connection portion 181 substantially parallel to the sensor pipe line 194 and bends toward the end surface of the second connection portion 182 along the way.
  • the first pipeline 191 is connected to a second pipeline 192 having a diameter larger than that of the first connecting portion 181 .
  • the second pipe line 192 opens to the end surface of the second connecting portion 182 .
  • a valve body 197 is arranged in the second connecting portion 182 .
  • the sensor conduit 194 is an example of the sensor mounting portion of this modification.
  • a lightweight and low-cost measuring probe 18 can be provided. Since the blood does not pass through the gap between the first connecting portion 181 and the optical fiber 41 when collecting blood from the second connecting portion 182, it is possible to provide the measuring probe 18 in which blood cells and the like are less likely to break.
  • Modification 1-2 This modification relates to a measuring probe 18 in which an adapter 185, a plug 196 and a sensor probe 40 are integrated. Descriptions of parts common to the first embodiment are omitted.
  • FIG. 13 is a perspective view of the measurement probe 18 of modification 1-2.
  • the adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 .
  • a second connection portion 182 and two band attachment portions 188 protrude from the side surface of the first connection portion 181 .
  • a valve body 197 having a slit is arranged in the second connecting portion 182 .
  • the band attachment portion 188 has a band hole 189 .
  • the optical fiber 41 is fixed to the adapter 185.
  • the light emitter 24 fixed to the tip of the optical fiber 41 is arranged near the tip of the first connection portion 181 .
  • the measurement probe 18 of this modified example is suitable for real-time measurement of the state of fluid flowing through the catheter 161 .
  • a connector 163 provided in the middle of a medical tube for discharging bodily fluids
  • the user can measure the condition of discharged bodily fluids in real time.
  • Medical tubes for draining bodily fluids are, for example, indwelling bladder catheters, urinary catheters, thoracic drainage tubes, peritoneal drainage tubes, or cerebral drainage tubes.
  • FIG. 14 is an enlarged view of the tip of the sensor probe 40 of Modification 1-3.
  • a sheet-shaped light emitter 24 is fixed to the end surface of the optical fiber 41 via an adhesive layer 249 .
  • the luminous body 24 is, for example, a translucent resin plate into which a phosphor is kneaded.
  • the light emitter 24 may be a translucent plate coated with phosphor.
  • FIG. 15 is an enlarged cross-sectional view of the tip portion of the sensor probe 40 of Modification 1-4.
  • the end of the optical fiber 41 is covered with the light emitter 24 .
  • the optical fiber 41 of this modification can be manufactured by immersing the tip of the optical fiber 41 in an uncured transparent resin in which a phosphor is kneaded, pulling it out, and then curing it.
  • a mold may be used to mold the transparent resin into which the phosphor is kneaded at the tip of the optical fiber 41 .
  • FIG. 16 is an enlarged cross-sectional view of the tip portion of the sensor probe 40 of Modification 1-5.
  • a plate-like light emitter 24 is fixed substantially perpendicular to the end face of the optical fiber 41 .
  • a light guide section 248 using, for example, translucent resin is arranged between the end of the optical fiber 41 and the light emitter 24 .
  • the optical fiber 41, the light guide portion 248, and the light emitter 24 are bonded and fixed with an adhesive (not shown).
  • the light guide portion 248 may also serve as an adhesive for adhesively fixing the optical fiber 41 and the light emitter 24 .
  • the present embodiment relates to a measurement probe 18 in which the blood sampling conduit is not bent. Descriptions of parts common to the first embodiment are omitted.
  • FIG. 17 is a front view of the measurement probe 18 of Embodiment 2.
  • FIG. 18 is a view in the direction of arrow XVIII in FIG. 17.
  • FIG. 19 is a view in the direction of arrow XIX in FIG. 17.
  • FIG. 20 is a cross-sectional view taken along line XX-XX in FIG. 18.
  • the measurement probe 18 includes an adapter 185, a plug 196, and a sensor probe 40.
  • the adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 .
  • the plate-like portion 183 is provided with four band holes 189 .
  • two band attachment portions 188 protrude from the plate-like portion 183 with the first connection portion 181 interposed therebetween.
  • Each band attachment portion 188 is provided with a band hole 189 .
  • the adapter 185 has two independent pipelines, a first pipeline 191 and a sensor pipeline 194 .
  • the first conduit 191 penetrates between the tip surface of the first connecting portion 181 and the plate-like portion 183 .
  • the opening on the plate-like portion 183 side is provided with a stepped portion having a larger diameter on the opening side, and a plug 196 is attached thereto.
  • first conduit 191 has a semi-circular cross-section.
  • the sensor pipe line 194 extends from the tip end surface of the first connection portion 181 substantially parallel to the first pipe line 191 and bends in the middle to open on the side surface of the first connection portion 181 .
  • An optical fiber 41 is inserted into the sensor conduit 194 and fixed in a liquid-tight manner.
  • the light emitter 24 fixed to the tip of the optical fiber 41 is arranged near the end surface of the first connection portion 181 .
  • the measurement probe 18 of the present embodiment is suitable for real-time measurement of the state of the infusion flowing through the catheter 161, like the measurement probe 18 of Modification 1-2.
  • the first conduit 191 since the first conduit 191 is not bent, it is possible to provide the measurement probe 18 in which solid components such as blood cells are less likely to break when a sample of fluid flowing through the catheter 161 is collected.
  • FIG. 21 is a front view of the measurement probe 18 of Embodiment 3.
  • FIG. 22 is a view in the direction of arrow XXII in FIG. 21.
  • FIG. 23 is a cross-sectional view taken along line XXIII--XXIII in FIG.
  • the measurement probe 18 includes an adapter 185, a plug 196, and a sensor probe 40.
  • the adapter 185 includes a first connecting portion 181 having a substantially frusto-conical shape.
  • a lock portion 184 having a luer lock structure is provided on the side surface of the first connection portion 181 . Since the luer lock structure has been widely used in the past, a detailed description thereof will be omitted.
  • the locking portion 184 is an example of the connector fixing portion of this embodiment, which is used when fixing the measurement probe 18 to the connector 163 .
  • the adapter 185 has two independent pipelines, a first pipeline 191 and a sensor pipeline 194 .
  • the first conduit 191 is a through hole extending along the central axis of the first connecting portion 181 .
  • a stepped portion having a larger diameter on the opening side is provided in the opening on the larger diameter side of the first connecting portion 181, and a plug 196 is attached thereto.
  • first conduit 191 has a semi-circular cross-section.
  • the sensor conduit 194 extends substantially parallel to the first conduit 191 from the end face of the first connecting part 181 on the small diameter side, and bends in the middle to open on the side surface of the first connecting part 181 .
  • An optical fiber 41 is inserted into the sensor conduit 194 and fixed in a liquid-tight manner.
  • the light emitter 24 fixed to the tip of the optical fiber 41 is arranged near the end surface of the first connection portion 181 .
  • the measurement probe 18 of the present embodiment is suitable for real-time measurement of the state of the infusion flowing through the catheter 161, like the measurement probe 18 of Modification 1-2.
  • the measuring probe 18 that can be easily fixed to the connector 163 by the luer lock structure. According to this embodiment, it is possible to provide the measurement probe 18 that is difficult to come off even when the internal pressure of the catheter 161 is high.
  • This embodiment relates to a measurement probe 18 having a conduit fixing portion 198 fixed to a catheter 161.
  • FIG. Descriptions of parts common to the first embodiment are omitted.
  • FIG. 24 is a front view of the measurement probe 18 of Embodiment 4.
  • FIG. 25 is a XXV arrow view in FIG. 24.
  • FIG. 24 is a front view of the measurement probe 18 of Embodiment 4.
  • FIG. 25 is a XXV arrow view in FIG. 24.
  • the measurement probe 18 includes an adapter 185, a plug 196, and a sensor probe 40.
  • the adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 .
  • a plug 196 and an abutting portion 195 are attached to the side surface of the first connecting portion 181 in order from the plate-like portion 183 side.
  • the plug 196 has a second connection portion 182 .
  • a valve body 197 is attached inside the second connecting portion 182 .
  • the abutting portion 195 has a flat plate shape, and has two pipeline fixing portions 198 projecting to the side opposite to the plate-like portion 183 .
  • the conduit fixing portion 198 has a substantially C-shaped plate shape.
  • the pipeline fixing part 198 is an example of the medical pipeline fixing part of this embodiment, which is used when fixing the measurement probe 18 to the catheter 161 .
  • FIG. 26 is an explanatory diagram explaining how to use the measurement probe 18 of the fourth embodiment.
  • 27 is a cross-sectional view taken along line XXVII in FIG. 26.
  • FIG. The abutting portion 195 abuts against the upper surface of the connector 163 , and the first connecting portion 181 is inserted into the connector 163 .
  • the optical fiber 41 protrudes from the tip of the first connecting portion 181 and is inserted inside the catheter 161 .
  • the conduit fixing portion 198 is fitted around the outer circumference of the catheter 161.
  • the conduit fixing portion 198 is an example of a fastener of the present embodiment that fastens the sensor probe 40 to the catheter 161 .
  • the shape of the pipeline fixing portion 198 shown in FIGS. 24 and 25 is an example.
  • the channel fixing portion 198 may have a fixing metal fitting or the like that connects both ends of the C-shaped plate and firmly fixes the measurement probe 18 from the catheter 161 so that it does not come off.
  • a band hole 189 through which the binding band 199 can be inserted may be provided in the abutting portion 195 .
  • a second sensor may be embedded in the conduit fixing portion 198 .
  • the second sensor is a non-wetted sensor that can measure the state of the fluid without contacting the fluid in the catheter 161 .
  • the second sensor is for example a thermocouple or a thermistor.
  • the second sensor may be a sensor of a laser flowmeter, a thermal flowmeter, or an ultrasonic flowmeter.
  • a transmitting sensor such as a laser or an ultrasonic wave may be arranged on one pipeline fixing portion 198
  • a receiving sensor may be arranged on the other pipeline fixing portion 198 . That is, the pipeline fixing portion 198 realizes the function of the sensor attachment portion of the present embodiment.
  • This embodiment relates to a measurement device 30 that includes a filter 57 that separates excitation light and fluorescence. Descriptions of parts common to the first embodiment are omitted.
  • FIG. 28 is an explanatory diagram for explaining the configuration of the measuring device 30 of Embodiment 5.
  • FIG. A filter 57 is arranged between the beam splitter 56 and the input connector 371 via the light guide path 55 .
  • the control unit 31 can adjust the wavelength range of light transmitted by the filter 57 .
  • the light source 51 of the present embodiment emits broadband light that includes fluorescence wavelengths in addition to excitation light wavelengths.
  • Light source 51 is, for example, a white LED.
  • FIG. 29 is a time chart explaining the operation of the measuring device 30 of Embodiment 5.
  • FIG. 29A shows ON and OFF timings of the light source 51 .
  • 29B shows the timing of the operation of filter 57.
  • FIG. b1 indicates that the filter 57 transmits the excitation light.
  • b2 indicates that the filter 57 transmits fluorescence.
  • FIG. 29C shows the timing at which the optical analyzer 52 operates. ON indicates the operation of analyzing the properties of fluorescence. OFF indicates an operation in which fluorescence characteristics are not analyzed.
  • the horizontal axes in FIGS. 29A to 29C all indicate time.
  • the light source 51 is in the ON state during the period from time t1 to time t2. During this period, the filter 57 transmits the excitation light. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the luminous body 24 is in contact with fluid such as blood or infusion, fluorescence corresponding to the state of the fluid is emitted.
  • the light source 51 is turned off during the period from time t2 to t3. During this period, filter 57 is transparent to fluorescence.
  • the optical analyzer 52 analyzes the fluorescence properties and outputs the partial pressure of oxygen in the fluid to the bus. After time t3, the same operation is repeated.
  • the measurement system 10 that can perform accurate measurements even when the light emitted by the light source 51 contains the wavelength of fluorescence.
  • This embodiment relates to a measurement system 10 that can simultaneously measure a plurality of items using a single light source 51.
  • FIG. Descriptions of the portions common to the fifth embodiment are omitted.
  • Two types of phosphors are mixed in the luminous body 24 of the present embodiment. That is, in this embodiment, two types of sensors are fixed to the tip of the bundle of optical fibers 41 .
  • the two types of phosphors are referred to as phosphor J and phosphor K in the following description.
  • the wavelengths of the fluorescence emitted by the phosphor J and the phosphor K are sufficiently separated.
  • FIG. 30 is a time chart explaining the operation of the measuring device 30 of Embodiment 6.
  • FIG. FIG. 30A shows ON and OFF timings of the light source 51 .
  • 30B shows the timing of the operation of filter 57.
  • FIG. b1j indicates that the filter 57 allows the excitation light of the phosphor J to pass therethrough.
  • b2j indicates that the filter 57 allows the fluorescence emitted by the phosphor J to pass through.
  • b1k indicates that the filter 57 allows the excitation light of the phosphor K to pass therethrough.
  • b2k indicates that the filter 57 allows the fluorescence emitted by the phosphor K to pass through.
  • FIG. 30C shows the timing at which the optical analyzer 52 operates.
  • cj indicates the operation of analyzing the characteristics of the fluorescence emitted by the phosphor J; ck indicates the operation of analyzing the properties of the fluorescence emitted by the phosphor K; OFF indicates an operation in which fluorescence characteristics are not analyzed.
  • the horizontal axes in FIGS. 30A to 30C all indicate time.
  • the light source 51 is in the ON state during the period from time t1 to time t2. During this period, the filter 57 allows the excitation light of the phosphor J to pass therethrough. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light emitter 24 is in contact with fluid such as blood or infusion, the phosphor J emits fluorescence corresponding to the state of the fluid.
  • the light source 51 is turned off during the period from time t2 to time t3. During this period, the filter 57 allows the fluorescence emitted by the phosphor J to pass therethrough.
  • the light analyzer 52 analyzes the properties of the fluorescence and outputs items related to the phosphor J on the bus.
  • the light source 51 is in the ON state during the period from time t3 to time t4. During this period, the filter 57 allows the excitation light of the phosphor K to pass therethrough. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light-emitting body 24 is in contact with fluid such as blood or infusion, the phosphor K emits fluorescence corresponding to the state of the fluid.
  • the light source 51 is turned off during the period from time t4 to time t5. During this period, the filter 57 allows the fluorescence emitted by the phosphor K to pass therethrough.
  • the light analyzer 52 analyzes the properties of the fluorescence and outputs items related to the phosphor K on the bus. After time t6, the same operation is repeated.
  • the measurement system 10 that can measure a plurality of items using one light source 51.
  • the light emitter 24 may have three or more types of phosphors.
  • the filter 57 sequentially transmits excitation light and fluorescence of each phosphor.
  • FIG. 31 is a perspective view of the distal end portion of the sensor probe 40 of modification 6-1.
  • a first light emitter 241 mixed with phosphor K and a second light emitter 242 mixed with phosphor J are arranged on the end face of optical fiber 41 .
  • FIG. 31 shows an example in which both the first light emitter 241 and the second light emitter 242 are semicircular, the first light emitter 241 and the second light emitter 242 are arranged concentrically. may The size of the first light emitter 241 and the size of the second light emitter 242 may be different.
  • the sensor probe 40 shown in FIG. 31 includes an optical fiber connector 411 to which a fiber bundle that guides the light emitted from the first light emitter 241 is connected, and a fiber that guides the light emitted from the second light emitter 242. and a fiber optic connector 411 to which the bundle is connected.
  • Two optical fiber connectors 411 can be used to connect to separate measurement devices 30, respectively.
  • Modification 6-2 This modification relates to a measuring device 30 that displays time-series data on a display unit 35.
  • FIG. Descriptions of the parts common to the sixth embodiment are omitted.
  • FIG. 32 is a screen example of modification 6-2.
  • the measuring device 30 measures oxygen partial pressure and temperature in real time.
  • the measuring device 30 of this modified example has a relatively large display section 35 .
  • An index field 67, a date and time field 61, an oxygen partial pressure field 62, a temperature field 63 and a graph field 68 are displayed on the screen.
  • the index column 67 displays indices representing the state of the kidney. The user can easily grasp the patient's kidney condition by combining the alphabet and the symbol "+" or "-".
  • the date and time column 61 displays the date, day of the week and time.
  • the oxygen partial pressure column 62 displays the oxygen partial pressure in the fluid. Temperature is displayed in the temperature column 63 . Time-series data of the oxygen partial pressure in the fluid and the temperature are displayed in the graph field 68 by line graphs.
  • the dashed line indicates time series data of oxygen partial pressure in the fluid
  • the solid line indicates time series data of temperature.
  • a dashed line displayed under the word "pO2" and a solid line displayed under the word "temperature” in the oxygen partial pressure column 62 function as a so-called legend column. The user can easily grasp which graph means what.
  • the line graph shown in the graph column 68 is an example of the graph format. Any type of graph that is convenient for a user to use in a clinical setting can be used in graph field 68 . For example, when the value per unit time is emphasized, a bar graph is used for displaying the graph field 68 . The user may be able to specify the format of the graph as appropriate.
  • Time series data may be displayed in tabular format instead of graphical format.
  • the control unit 31 may appropriately receive a setting change of the items and layout to be displayed on the display unit 35 by the user.
  • the user can use the measurement system 10 with settings that are easy to use depending on the situation.
  • FIG. 33 is an explanatory diagram illustrating the configuration of the measuring device 30 according to the seventh embodiment. In this embodiment, filter 57 is placed between beam splitter 56 and optical analyzer 52 .
  • FIG. 34 is a time chart explaining the operation of the measuring device 30 of the seventh embodiment.
  • FIG. 34A shows timing when the light source 51 operates. aj indicates that the light source 51 emits excitation light for the phosphor J; ak indicates that the light source 51 emits excitation light for the phosphor K;
  • FIG. ALL indicates that filter 57 transmits all light.
  • bj indicates that the filter 57 allows the fluorescence emitted by the phosphor J to pass through.
  • bk indicates that the filter 57 allows the fluorescence emitted by the phosphor K to pass through.
  • FIG. 34C shows the timing at which the optical analyzer 52 operates.
  • cj indicates the operation of analyzing the characteristics of the fluorescence emitted by the phosphor J; ck indicates the operation of analyzing the properties of the fluorescence emitted by the phosphor J; OFF indicates an operation in which fluorescence characteristics are not analyzed.
  • the horizontal axes in FIGS. 34A to 34C all indicate time.
  • the light source 51 emits excitation light that excites the phosphor J during the period from time t1 to time t2. During this period, filter 57 transmits all light. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light emitter 24 is in contact with fluid such as blood or infusion, the phosphor J emits light according to the state of the fluid.
  • the light source 51 is turned off during the period from time t2 to time t3. During this period, the filter 57 allows the fluorescence emitted by the phosphor J to pass therethrough.
  • Optical analyzer 52 analyzes the properties of the fluorescence emitted by phosphor J and outputs the results on a bus.
  • the light source 51 emits excitation light that excites the phosphor K during the period from time t3 to time t4. During this period, filter 57 transmits all light. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light emitter 24 is in contact with fluid such as blood or infusion, the phosphor K emits light according to the state of the fluid.
  • the light source 51 is turned off during the period from time t4 to time t5. During this period, the filter 57 allows the fluorescence emitted by the phosphor K to pass therethrough.
  • Optical analyzer 52 analyzes the properties of the fluorescence emitted by phosphor K and outputs the results on a bus. After time t5, the same operation is repeated.
  • one light source 51 and one light emitter 24 can be used to provide the measurement system 10 capable of measuring a plurality of items.
  • the light emitter 24 may have three or more types of phosphors.
  • the filter 57 sequentially switches the wavelength of light to be transmitted according to each phosphor.
  • the light source 51 may emit broadband light including both the excitation light for the phosphor J and the excitation light for the phosphor K.
  • light source 51 may emit white light. In that case, both aj and ak in FIG. 34A indicate that the light source 51 is in the ON state.
  • This embodiment relates to a measuring device 30 having a plurality of optical analyzers 52.
  • FIG. The description of the parts common to the seventh embodiment is omitted.
  • FIG. 35 is an explanatory diagram for explaining the configuration of the measuring device 30 according to the eighth embodiment.
  • the measurement device 30 includes two optical analyzers 52 , a first optical analyzer 521 and a second optical analyzer 522 , and two beam splitters 56 , a first beam splitter 561 and a second beam splitter 562 .
  • a first beam splitter 561 is connected between the light source 51 and the input connector 371 .
  • a second beam splitter 562 is connected between the first beam splitter 561 and the first optical analyzer 521 and the second optical analyzer 522 .
  • the second beam splitter 562 is a dichroic beam splitter that separates incident light based on wavelength.
  • the second beam splitter 562 realizes the function of a spectroscopic section that spectroscopically separates fluorescence emitted by a plurality of phosphors.
  • the light source 51 emits excitation light capable of exciting both the phosphor J and the phosphor K.
  • the phosphor J and the phosphor K are mixed in one light emitter 24, for example. 31, when the sensor probe 40 has a plurality of light emitters 24 of the first light emitter 241 and the second light emitter 242, one of the light emitters 24 is mixed with the phosphor J, The phosphor K may be mixed with the other light emitter 24 .
  • the excitation light irradiates the light emitter 24 through the light guide 55 , beam splitter 56 and optical fiber 41 .
  • phosphor J and phosphor K respectively emit fluorescence.
  • the fluorescence emitted by phosphor J and phosphor K enters the optical fiber 41 in a mixed state. Fluorescence light guided by the optical fiber 41 enters the first beam splitter 561 via the input connector 371 and the light guide path 55 .
  • the first beam splitter 561 causes the fluorescence to enter the light guide path 55 leading to the second beam splitter 562 .
  • the second beam splitter 562 separates the fluorescence into the fluorescence emitted by the phosphor J and the other light.
  • the fluorescence emitted by the phosphor J enters the first optical analyzer 521 and the other light enters the second optical analyzer 522 .
  • the first optical analyzer 521 analyzes the characteristics of the fluorescence emitted by the phosphor J and outputs the results to the bus.
  • a second optical analyzer 522 analyzes the properties of the fluorescence emitted by the phosphor K and outputs the results on a bus.
  • An optical filter that transmits only the fluorescence emitted by the phosphor K may be arranged between the second beam splitter 562 and the second optical analyzer 522 .
  • the light emitter 24 may include three or more types of phosphors, and the measurement device 30 may include the light analyzers 52 and beam splitters 56 corresponding to the number of phosphors.
  • an optical filter that passes only a specific wavelength may be arranged in the middle of the light guide 55 .
  • FIG. 36 is a functional block diagram of the measurement system 10 of the ninth embodiment.
  • Measurement system 10 includes measurement probe 18 and measurement device 30 .
  • the measurement probe 18 includes a first connection portion 181 , a second connection portion 182 , a valve body 197 and a sensor 24 .
  • the first connecting part 181 is attachable to and detachable from a connector 163 arranged in the middle of the medical conduit 161 and has a first conduit 191 that communicates with the medical conduit 161 when attached to the connector 163 .
  • the second connecting portion 182 has a second pipeline 192 to which the syringe 168 can be attached and detached and communicates with the first pipeline 191 .
  • the valve body 197 keeps the second pipeline 192 liquid-tight when the syringe 168 is not attached to the second connecting portion 182 .
  • Sensor 24 measures the state of the fluid flowing through medical conduit 161 .
  • the measurement device 30 includes a data acquisition section 85 and a display section 86.
  • the data acquisition unit 85 acquires data from the sensor 24 .
  • the display unit 86 displays information about the patient to whom the medical pipeline 161 is connected based on the acquired data.
  • measurement system 161 catheter (medical conduit) 162 infusion bag 163 connector 168 syringe 169 blood vessel 18 measurement probe 181 first connecting portion 182 second connecting portion 183 plate-like portion 184 locking portion 185 adapter 186 plug attaching portion 188 band attaching portion 189 band hole 191 first conduit 192 second 2 pipes 194 sensor pipe 195 abutting part 196 plug 197 valve body 198 pipe fixing part 199 binding band 24 luminous body (sensor) 241 first light emitter 242 second light emitter 248 light guide section 249 adhesive layer 30 measuring device 31 control section 32 main storage device 33 auxiliary storage device 34 communication section 35 display section 36 input section 371 input connector 40 sensor probe 41 optical fiber 42 Fiber plug 411 Optical fiber connector 51 Light source 52 Optical analyzer 521 First optical analyzer 522 Second optical analyzer 55 Light guiding path 56 Beam splitter 561 First beam splitter 562 Second beam splitter 57 Filter 61 Date and time field 62 Oxygen partial pressure field 63 temperature column 67 index column 68 graph column 85

Abstract

Disclosed is a measurement probe, etc. that enables continuous monitoring of the state of a patient via a connector. A measurement probe (18) comprises: a first connection part that has a first duct which is attachable and detachable to and from a connector (163) disposed midway along a medical duct (161) and which communicates with the medical duct (161) when attached to the connector (163); a second connection part (182) that has a second duct to and from which a syringe (168) is attachable and detachable and which communicates with the first duct; a valve body that keeps the second duct fluid-tight when the syringe (168) is not attached to the second connection part (182); and a sensor that measures the state of fluid which flows through the medical duct (161).

Description

測定用プローブ、アダプタおよび測定システムMeasuring probes, adapters and measuring systems
 本発明は、測定用プローブ、アダプタおよび測定システムに関する。 The present invention relates to measurement probes, adapters and measurement systems.
 膀胱留置カテーテル、血管内留置カテーテルおよびドレナージチューブ等、患者の体内と体外とを接続する様々な医療用チューブが使用されている。これらの医療用チューブの途中に、コネクタが接続される場合がある(特許文献1)。 Various medical tubes are used to connect the inside and outside of the patient's body, such as bladder indwelling catheters, intravascular indwelling catheters, and drainage tubes. A connector may be connected in the middle of these medical tubes (Patent Document 1).
国際公開第2010/073643号WO2010/073643
 特許文献1のコネクタを使用することにより、医療者は患者からの体液の採取等の作業を速やかに行なえる。しかしながら特許文献1のコネクタでは、患者の体液の成分等の連続的なモニタリングは行なえない。 By using the connector of Patent Document 1, medical personnel can quickly perform tasks such as collecting body fluids from patients. However, the connector of Patent Literature 1 cannot continuously monitor components of a patient's bodily fluids.
 一つの側面では、コネクタを介して患者の状態を連続的にモニタリングできる測定用プローブ等を提供することを目的とする。 In one aspect, the object is to provide a measurement probe or the like that can continuously monitor the patient's condition via a connector.
 測定用プローブは、医療用管路の途中に配置されるコネクタに着脱可能であり、前記コネクタに取り付けた場合に前記医療用管路に連通する第1管路を有する第1接続部と、シリンジを着脱可能であり、前記第1管路と連通する第2管路を有する第2接続部と、前記第2接続部にシリンジが取り付けられていない場合に、前記第2管路を液密に保つ弁体と、前記医療用管路を流れる流体の状態を測定するセンサとを備える。 The measuring probe is attachable to and detachable from a connector arranged in the middle of a medical pipeline, and when attached to the connector, has a first pipeline that communicates with the medical pipeline; is detachable and has a second conduit that communicates with the first conduit, and when the syringe is not attached to the second connection, the second conduit is liquid-tight and a sensor for measuring the condition of the fluid flowing through the medical pipeline.
 一つの側面では、コネクタを介して患者の状態を連続的にモニタリングできる測定用プローブ等を提供できる。 In one aspect, it is possible to provide a measurement probe or the like that can continuously monitor the patient's condition via a connector.
測定システムの構成を説明する説明図である。It is an explanatory view explaining composition of a measurement system. 測定用プローブの分解図である。1 is an exploded view of a measuring probe; FIG. 測定用プローブの断面図である。FIG. 4 is a cross-sectional view of the measuring probe; 図2におけるIV矢視図である。FIG. 3 is a view in the direction of arrow IV in FIG. 2; 図2におけるV矢視図である。3 is a view in the direction of arrow V in FIG. 2; FIG. 図4におけるVI-VI線による断面図である。FIG. 5 is a cross-sectional view taken along line VI-VI in FIG. 4; 測定装置の構成を説明する説明図である。It is an explanatory view explaining composition of a measuring device. プログラムの処理の流れを説明するフローチャートである。4 is a flowchart for explaining the flow of processing of a program; 変形例1-1のアダプタの正面図である。FIG. 10 is a front view of an adapter of modification 1-1; 図9におけるX矢視図である。FIG. 10 is a view in the direction of arrow X in FIG. 9; 図9におけるXI矢視図である。FIG. 10 is a view in the direction of arrow XI in FIG. 9; 図10におけるXII-XII線による断面図である。FIG. 11 is a cross-sectional view taken along line XII-XII in FIG. 10; 変形例1-2の測定用プローブの斜視図である。FIG. 11 is a perspective view of a measurement probe of modification 1-2; 変形例1-3のセンサプローブの先端部拡大図である。FIG. 11 is an enlarged view of the tip of the sensor probe of modification 1-3; 変形例1-4のセンサプローブの先端部拡大断面図である。FIG. 10 is an enlarged cross-sectional view of the tip portion of the sensor probe of modification 1-4; 変形例1-5のセンサプローブの先端部拡大断面図である。FIG. 11 is an enlarged cross-sectional view of the tip portion of the sensor probe of modification 1-5; 実施の形態2の測定用プローブの正面図である。FIG. 10 is a front view of the measurement probe of Embodiment 2; 図17におけるXVIII矢視図である。FIG. 18 is a view in the direction of arrow XVIII in FIG. 17; 図17におけるXIX矢視図である。FIG. 18 is a view in the direction of arrow XIX in FIG. 17; 図18におけるXX-XX線による断面図である。FIG. 19 is a cross-sectional view taken along line XX-XX in FIG. 18; 実施の形態3の測定用プローブの正面図である。FIG. 11 is a front view of a measurement probe according to Embodiment 3; 図21におけるXXII矢視図である。21. It is a XXII arrow directional view in FIG. 図21におけるXXIII-XXIII線による断面図である。FIG. 22 is a cross-sectional view taken along line XXIII-XXIII in FIG. 21; 実施の形態4の測定用プローブの正面図である。FIG. 11 is a front view of a measurement probe according to Embodiment 4; 図24におけるXXV矢視図である。24. It is a XXV arrow directional view in FIG. 実施の形態4の測定用プローブの使用方法を説明する説明図である。FIG. 11 is an explanatory diagram for explaining how to use the measurement probe of Embodiment 4; 図26におけるXXVII矢視断面図である。FIG. 27 is a cross-sectional view taken along line XXVII in FIG. 26; 実施の形態5の測定装置の構成を説明する説明図である。FIG. 11 is an explanatory diagram for explaining the configuration of a measuring device according to Embodiment 5; 実施の形態5の測定装置の動作を説明するタイムチャートである。10 is a time chart for explaining the operation of the measuring device according to Embodiment 5; 実施の形態6の測定装置の動作を説明するタイムチャートである。FIG. 12 is a time chart for explaining the operation of the measuring device of Embodiment 6; FIG. 変形例6-1のセンサプローブ先端部の斜視図である。FIG. 20 is a perspective view of a tip portion of a sensor probe of modification 6-1; 変形例6-2の画面例である。It is an example of a screen of modification 6-2. 実施の形態7の測定装置の構成を説明する説明図である。FIG. 11 is an explanatory diagram for explaining the configuration of a measuring device according to Embodiment 7; 実施の形態7の測定装置の動作を説明するタイムチャートである。13 is a time chart for explaining the operation of the measuring device of Embodiment 7; 実施の形態8の測定装置の構成を説明する説明図である。FIG. 11 is an explanatory diagram for explaining the configuration of a measuring device according to an eighth embodiment; 実施の形態9の測定システムの機能ブロック図である。FIG. 20 is a functional block diagram of a measurement system according to Embodiment 9;
[実施の形態1]
 図1は、測定システム10の構成を説明する説明図である。患者の血管169にカテーテル161が留置されている。実施の形態においては、血管169は患者の腕の静脈であり、カテーテル161は末梢静脈留置カテーテルである場合を例にして説明する。
[Embodiment 1]
FIG. 1 is an explanatory diagram for explaining the configuration of the measurement system 10. As shown in FIG. A catheter 161 is placed in a patient's blood vessel 169 . In the embodiment, the case where the blood vessel 169 is a patient's arm vein and the catheter 161 is a peripheral vein indwelling catheter will be described as an example.
 カテーテル161には、図示を省略する点滴筒およびクレンメを介して輸液バッグ162が接続されている。カテーテル161の途中に、コネクタ163が接続されている。本実施の形態のカテーテル161、輸液バッグ162およびコネクタ163は、従来から医療現場で使用されている。なおカテーテル161は、患者の体内と体外の器具とを接続する、本実施の形態の医療用管路の例示である。輸液バッグ162は、本実施の形態の体外の器具の例示である。輸液は、医療用管路を介して患者に投与される流体の例示である。 An infusion bag 162 is connected to the catheter 161 via a drip tube and clamp (not shown). A connector 163 is connected to the middle of the catheter 161 . Catheter 161, infusion bag 162 and connector 163 of the present embodiment have been conventionally used in the medical field. Note that the catheter 161 is an example of a medical conduit according to the present embodiment, which connects instruments inside and outside the patient's body. The infusion bag 162 is an example of the extracorporeal device of this embodiment. An infusion is an example of a fluid administered to a patient via a medical line.
 以下の説明では、カテーテル161、輸液バッグ162およびコネクタ163により構成された輸液投与経路を、輸液ラインと記載する場合がある。輸液ラインには、三方活栓または輸液ポンプ等が接続されていてもよい。従来の輸液ラインを使用する方法の概要を説明する。 In the following description, the infusion administration route configured by the catheter 161, the infusion bag 162 and the connector 163 may be referred to as an infusion line. A three-way stopcock, an infusion pump, or the like may be connected to the infusion line. A method using a conventional infusion line is outlined.
 カテーテル161は、数日間継続して血管169に留置される。輸液バッグ162内の生理食塩水、リンゲル液、薬剤または輸血用血液等の輸液が、カテーテル161を介して血管169に連続的に投与される。検査のために患者の血液を採取する場合、医師または看護師等のユーザは、コネクタ163に採血用シリンジを取り付けて、吸引を行なう。採血のたびに血管169に新たに針を刺す必要が無いため、患者およびユーザの負担を軽減できる。すなわち、コネクタ163は血液等のサンプル採取用に使用される。 The catheter 161 is left in the blood vessel 169 continuously for several days. An infusion such as physiological saline, Ringer's solution, drugs, or blood for transfusion in the infusion bag 162 is continuously administered to the blood vessel 169 via the catheter 161 . When collecting a patient's blood for testing, a user such as a doctor or nurse attaches a blood collection syringe to connector 163 and performs aspiration. Since there is no need to pierce the blood vessel 169 with a new needle each time blood is collected, the burden on the patient and the user can be reduced. That is, the connector 163 is used for collecting samples such as blood.
 ユーザは、薬剤を入れたシリンジをコネクタ163に取り付けて、カテーテル161を介して患者に注入することもできる。ユーザは、輸液バッグ162中の輸液に薬剤を混ぜる場合よりも、速やかに患者に薬剤を投与できる。すなわちコネクタ163は、薬剤の急速投与にも使用される。 The user can also attach a syringe containing medicine to the connector 163 and inject it into the patient via the catheter 161 . The user can administer the drug to the patient more quickly than when mixing the drug with the infusion in the infusion bag 162 . Thus, connector 163 is also used for rapid administration of drugs.
 本実施の形態においては、コネクタ163に採血用シリンジの代わりに測定用プローブ18が取り付けられている。本実施の形態においては、コネクタ163と測定用プローブ18とが、2本の結束バンド199により固定されている構成を例にして説明する。測定用プローブ18は、光ファイバ41および第2接続部182を有する。測定用プローブ18の構成の詳細については、後述する。 In the present embodiment, a measuring probe 18 is attached to connector 163 instead of a blood sampling syringe. In this embodiment, a configuration in which the connector 163 and the measurement probe 18 are fixed by two binding bands 199 will be described as an example. The measurement probe 18 has an optical fiber 41 and a second connection portion 182 . Details of the configuration of the measurement probe 18 will be described later.
 光ファイバ41は、測定装置30に接続されており、患者の血液の状態を連続的に測定する。図1に示す例では、表示部35に患者の血液中の酸素分圧(pO2)がリアルタイムで表示されている。採血が必要である場合、ユーザは第2接続部182にシリンジ168を取り付けて吸引を行なう。薬剤の急速投与が必要である場合、ユーザは第2接続部182にシリンジ168を取り付けて、薬剤の注入を行なう。 The optical fiber 41 is connected to the measuring device 30 and continuously measures the patient's blood condition. In the example shown in FIG. 1, the oxygen partial pressure (pO2) in the patient's blood is displayed on the display unit 35 in real time. When blood sampling is required, the user attaches the syringe 168 to the second connector 182 and performs aspiration. When rapid administration of the drug is required, the user attaches the syringe 168 to the second connector 182 and injects the drug.
 図2は、測定用プローブ18の分解図である。測定用プローブ18は、アダプタ185、センサプローブ40およびプラグ196を備える。センサプローブ40は、光ファイバ41、発光体24、光ファイバコネクタ411およびファイバ栓42を備える。発光体24は、光ファイバコネクタ411の一端に配置されている。光ファイバコネクタ411は、光ファイバ41の他端に配置されている。ファイバ栓42は、貫通孔を有するゴム栓であり、光ファイバ41に挿通されている。 FIG. 2 is an exploded view of the measurement probe 18. FIG. The measuring probe 18 comprises an adapter 185, a sensor probe 40 and a plug 196. FIG. Sensor probe 40 comprises optical fiber 41 , emitter 24 , optical fiber connector 411 and fiber plug 42 . The light emitter 24 is arranged at one end of the optical fiber connector 411 . The optical fiber connector 411 is arranged at the other end of the optical fiber 41 . The fiber plug 42 is a rubber plug having a through hole and is inserted through the optical fiber 41 .
 プラグ196は、第2接続部182を有する。プラグ196は、たとえば市販のクローズド輸液システム用の体液誘導管である。発光体24の詳細および、アダプタ185の形状の詳細については、後述する。 The plug 196 has a second connection portion 182 . Plug 196 is, for example, a body fluid guide tube for a commercially available closed infusion system. Details of the light emitter 24 and details of the shape of the adapter 185 will be described later.
 図3は、測定用プローブ18の断面図である。アダプタ185に設けられた第1管路191に、光ファイバ41が挿通されている。光ファイバ41は、ファイバ栓42によりアダプタ185に液密に固定されている。 FIG. 3 is a cross-sectional view of the measurement probe 18. FIG. An optical fiber 41 is inserted through a first conduit 191 provided in the adapter 185 . The optical fiber 41 is liquid-tightly secured to the adapter 185 by a fiber plug 42 .
 プラグ196は、測定用プローブ18に固定されている。プラグ196に設けられた貫通孔は、アダプタ185に設けられた第2管路192を介して、第1管路191に連通する。プラグ196に設けられた貫通孔は、第2接続部182の内側に配置された弁体197により、液密に封止されている。弁体197は、たとえばスリットを有するゴム栓である。また、プラグ196は、あらかじめ185に接着剤または物理的な篏合により液密な状態で固定されていてもよい。 The plug 196 is fixed to the measurement probe 18. A through hole provided in the plug 196 communicates with the first conduit 191 via a second conduit 192 provided in the adapter 185 . A through-hole provided in the plug 196 is liquid-tightly sealed by a valve body 197 arranged inside the second connecting portion 182 . Valve body 197 is, for example, a rubber stopper having a slit. Alternatively, the plug 196 may be fixed in advance to the 185 in a liquid-tight manner by adhesive or physical fitting.
 図4は、図2におけるIV矢視図である。図5は、図2におけるV矢視図である。図6は、図4におけるVI-VI線による断面図である。図4から図6を使用して、アダプタ185の構成を説明する。 FIG. 4 is a view in the direction of arrow IV in FIG. 5 is a view in the direction of arrow V in FIG. 2. FIG. FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. The configuration of the adapter 185 will be described using FIGS. 4 to 6. FIG.
 アダプタ185は、板状部183と、第1接続部181と、プラグ取付部186とを備える。第1接続部181は、板状部183の一面から突出する。プラグ取付部186は、第1接続部181の側面から突出する。第1接続部181は、採血用シリンジの筒先と同様の形状であり、コネクタ163に着脱可能である。 The adapter 185 includes a plate-like portion 183 , a first connection portion 181 and a plug mounting portion 186 . The first connecting portion 181 protrudes from one surface of the plate-like portion 183 . The plug attachment portion 186 protrudes from the side surface of the first connection portion 181 . The first connecting portion 181 has the same shape as the tip of a syringe for collecting blood, and can be attached to and detached from the connector 163 .
 第1接続部181の内部に、第1管路191が設けられている。第1管路191は、アダプタ185の内部で第2管路192とセンサ管路194とに分岐している。第2管路192は、プラグ取付部186の端面に開口している。第2管路192の開口部には、開口側が太くなった段付部が設けられている。 A first pipeline 191 is provided inside the first connecting portion 181 . The first pipeline 191 branches into a second pipeline 192 and a sensor pipeline 194 inside the adapter 185 . The second conduit 192 opens at the end face of the plug attachment portion 186 . The opening of the second pipeline 192 is provided with a stepped portion that is thicker on the opening side.
 センサ管路194は、板状部183の表面に開口している。センサ管路194は、分岐部近傍においては第1管路191よりも細径である。センサ管路194の開口部には、開口側が太径になった段付部が設けられている。段付部の側壁は、開口側が太いテーパ状である。第1管路191、センサ管路194およびファイバ栓42は、本実施の形態のセンサ取付部の例示である。 The sensor conduit 194 opens on the surface of the plate-like portion 183 . The sensor conduit 194 has a smaller diameter than the first conduit 191 near the branch. The opening of the sensor pipe line 194 is provided with a stepped portion having a larger diameter on the opening side. A side wall of the stepped portion is tapered to be thicker on the opening side. The first conduit 191, the sensor conduit 194 and the fiber plug 42 are examples of the sensor mounting portion of the present embodiment.
 図4に示すように、板状部183には、4個のバンド穴189が設けられている。バンド穴189は、図1を使用して説明した結束バンド199を挿通可能な角孔である。図5に示すように板状部183から2個のバンド取付部188が、第1接続部181を挟んで突出している。それぞれのバンド取付部188には、バンド穴189が設けられている。バンド穴189も、結束バンド199を挿通可能な角孔である。バンド穴189は、測定用プローブ18をコネクタ163に固定する際に用いられる、本実施の形態のコネクタ固定部の例示である。 As shown in FIG. 4, the plate-like portion 183 is provided with four band holes 189 . The band hole 189 is a square hole through which the binding band 199 described using FIG. 1 can be inserted. As shown in FIG. 5, two band attachment portions 188 protrude from the plate-like portion 183 with the first connection portion 181 interposed therebetween. Each band attachment portion 188 is provided with a band hole 189 . The band hole 189 is also a square hole through which the binding band 199 can be inserted. The band hole 189 is an example of the connector fixing portion of this embodiment, which is used when fixing the measurement probe 18 to the connector 163 .
 発光体24は、たとえば蛍光体が練り込まれた透光性樹脂であり、光ファイバ41の端面に塗布されている。蛍光体は、本実施の形態の蛍光色素の例示である。本実施の形態においては、励起光を当てた際に生じる蛍光が血液中の酸素に反応して変化する蛍光体を使用する場合を例にして説明する。蛍光は、発光体24が放射する放射光の例示である。蛍光体が発する蛍光の特性を解析することにより、血液中の酸素分圧および酸素濃度をリアルタイムで測定できる。発光体24は塗布されていてもよいし、別体として成形されたのちに貼付されていてもよい。 The luminous body 24 is, for example, translucent resin in which phosphor is kneaded, and is applied to the end surface of the optical fiber 41 . A phosphor is an example of a fluorescent dye in this embodiment. In the present embodiment, an example will be described in which a fluorescent material is used in which the fluorescence generated when exposed to excitation light changes in response to oxygen in blood. Fluorescence is an example of radiation emitted by light emitter 24 . Oxygen partial pressure and oxygen concentration in blood can be measured in real time by analyzing the characteristics of the fluorescence emitted by the phosphor. The light-emitting body 24 may be applied, or may be molded as a separate body and then attached.
 蛍光体を用いた測定手法の概要について説明する。励起光が照射された場合、蛍光体はエネルギーの高い励起状態になる。励起状態である蛍光体から、蛍光が放射されて、蛍光体は基底状態に戻る。放射される蛍光の強度、位相角および減衰時間等の蛍光の特性は、蛍光体が接触した消光体の濃度に基づいて変化する。したがって、放射光の特性を解析することにより、消光体の濃度を測定できる。  The outline of the measurement method using a fluorescent material will be explained. When irradiated with excitation light, the phosphor enters a high-energy excited state. Fluorescence is emitted from the phosphor in the excited state, and the phosphor returns to the ground state. The properties of the fluorescence, such as the intensity, phase angle and decay time of the emitted fluorescence, change based on the concentration of the quencher with which the fluorophore contacts. Therefore, the concentration of the quencher can be measured by analyzing the properties of the emitted light.
 前述の通り、本実施の形態においては、酸素と接触した場合に蛍光の特性が変化する蛍光体を使用する。すなわち本実施の形態における消光体は、酸素である。蛍光の特性をリアルタイムで解析することにより、血液中の酸素分圧および酸素濃度をリアルタイムで測定できる。酸素を消光体とする蛍光体としては、ピリレン誘導体、ピレン誘導体、ポルフィリン金属錯体、などが挙げられる。 As described above, in this embodiment, a phosphor whose fluorescence characteristics change when it comes into contact with oxygen is used. That is, the quencher in this embodiment is oxygen. By analyzing the fluorescence properties in real time, it is possible to measure the oxygen partial pressure and oxygen concentration in the blood in real time. Phosphors that use oxygen as a quencher include pyrylene derivatives, pyrene derivatives, porphyrin metal complexes, and the like.
 なお蛍光体が発する放射光には、燐光も含まれる。すなわち、燐光の特性を解析することにより、測定が行われてもよい。蛍光と燐光との両方の特性が、同時に解析されてもよい。 The emitted light emitted by phosphors also includes phosphorescence. That is, measurements may be made by analyzing the properties of phosphorescence. Both fluorescence and phosphorescence properties may be analyzed simultaneously.
 血液中の二酸化炭素に反応して蛍光を発する蛍光体が使用されてもよい。蛍光の特性を解析することにより、血液中の二酸化炭素分圧および二酸化炭素濃度をリアルタイムで測定できる。血液の水素イオン指数によって発する蛍光の特性が変化する蛍光体が使用されてもよい。蛍光の特性を解析することにより、血液の水素イオン指数、すなわちpH(potential of Hydrogen)をリアルタイムで測定できる。 A phosphor that emits fluorescence in response to carbon dioxide in blood may be used. By analyzing the properties of fluorescence, it is possible to measure carbon dioxide partial pressure and carbon dioxide concentration in blood in real time. Phosphors that change the properties of their emitted fluorescence with the proton index of blood may be used. By analyzing the properties of fluorescence, it is possible to measure the hydrogen ion index, or pH (potential of Hydrogen), of blood in real time.
 蛍光体は、カリウムイオン、ナトリウムイオンまたは塩素イオン等のイオンに反応して蛍光を発してもよい。複数の消光体に対して同様に反応する蛍光体が使用されてもよい。たとえば、発光体24の表面に配置される拡散浸透膜により、蛍光体に接触する消光体、すなわち測定対象成分を選択できる。 The phosphor may react with ions such as potassium ions, sodium ions, or chloride ions to emit fluorescence. A fluorophore that responds similarly to multiple quenchers may be used. For example, a diffusion permeation film placed on the surface of the emitter 24 can select the quencher, ie the component to be measured, that contacts the phosphor.
 蛍光体は、温度、圧力によっても蛍光の特性が変化する。蛍光の特性を解析することにより、血液の温度をリアルタイムで測定できる。蛍光体は、接触する血液の圧力によっても発光状態が変化する。蛍光の特性を解析することにより、体液の圧力をIn situでリアルタイムに測定できる。すなわち、発光体24が放射する放射光の特性を解析することにより、血液の成分、血液の温度、血液の比重および血液の流量等の複数の項目を同時に測定できる。 The fluorescent properties of the phosphor also change depending on temperature and pressure. By analyzing the fluorescence properties, blood temperature can be measured in real time. The phosphor also changes its luminescence state depending on the pressure of the blood in contact with it. By analyzing the properties of fluorescence, the pressure of body fluids can be measured in situ in real time. That is, by analyzing the characteristics of the radiated light emitted by the light emitter 24, it is possible to simultaneously measure a plurality of items such as blood components, blood temperature, blood specific gravity, and blood flow rate.
 また、蛍光体を用いずに、吸光度を測定することにより、体液の性状を把握するセンサを用いてもよい。たとえば、クレアチニン量、尿素窒素量、乳酸量、グルコース量、HbA1c値、CRP(C-reactive protein)量、尿酸量、ヘモグロビン量、遊離ヘモグロビン量、ヘマトクリット値、アルブミン量、グロブミン量、またはビリルビン量、等、血液の状態を示す任意のパラメータに応じて特定の波長域の吸光度を測定されてもよい。 Alternatively, a sensor that grasps the properties of body fluid by measuring absorbance without using a fluorescent substance may be used. For example, creatinine amount, urea nitrogen amount, lactic acid amount, glucose amount, HbA1c value, CRP (C-reactive protein) amount, uric acid amount, hemoglobin amount, free hemoglobin amount, hematocrit value, albumin amount, globmin amount, or bilirubin amount, For example, absorbance in a specific wavelength range may be measured according to any parameter that indicates the state of blood.
 なお、光ファイバ41の側面は、図示を省略する被覆で覆われていることが望ましい。被覆は、外部からの光が光ファイバ41の側面から入射することを防ぐ遮光体であることが望ましい。外乱光によるノイズの影響を防止したセンサプローブ40を提供できる。 The side surface of the optical fiber 41 is desirably covered with a coating (not shown). The coating is desirably a light shield that prevents external light from entering from the side surface of the optical fiber 41 . It is possible to provide the sensor probe 40 that prevents the influence of noise due to ambient light.
 図7は、測定装置30の構成を説明する説明図である。測定装置30は、表示部35および入力コネクタ371に加えて、制御部31、主記憶装置32、補助記憶装置33、通信部34、入力部36、光源51、光解析器52、導光路55、ビームスプリッタ56およびバスを備える。制御部31は、本実施の形態のプログラムを実行する演算制御装置である。制御部31には、一または複数のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)またはマルチコアCPU等が使用される。制御部31は、バスを介して測定装置30を構成するハードウェア各部と接続されている。 FIG. 7 is an explanatory diagram illustrating the configuration of the measuring device 30. FIG. In addition to the display unit 35 and the input connector 371, the measurement device 30 includes a control unit 31, a main storage device 32, an auxiliary storage device 33, a communication unit 34, an input unit 36, a light source 51, an optical analyzer 52, a light guide path 55, It has a beam splitter 56 and a bus. The control unit 31 is an arithmetic control device that executes the program of this embodiment. One or a plurality of CPUs (Central Processing Units), GPUs (Graphics Processing Units), multi-core CPUs, or the like is used for the control unit 31 . The control unit 31 is connected to each hardware unit constituting the measuring device 30 via a bus.
 主記憶装置32は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の記憶装置である。主記憶装置32には、制御部31が行なう処理の途中で必要な情報および制御部31で実行中のプログラムが一時的に保存される。 The main storage device 32 is a storage device such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), flash memory, or the like. The main storage device 32 temporarily stores information necessary during the process performed by the control unit 31 and the program being executed by the control unit 31 .
 補助記憶装置33は、SRAM、フラッシュメモリ、ハードディスクまたは磁気テープ等の記憶装置である。補助記憶装置33には、制御部31に実行させるプログラムおよびプログラムの実行に必要な各種データが保存される。通信部34は、測定装置30とネットワークまたは他の機器との間の通信を行なうインターフェイスである。 The auxiliary storage device 33 is a storage device such as SRAM, flash memory, hard disk, or magnetic tape. The auxiliary storage device 33 stores programs to be executed by the control unit 31 and various data necessary for executing the programs. The communication unit 34 is an interface that performs communication between the measuring device 30 and a network or other equipment.
 表示部35は、たとえば液晶表示パネルまたは有機EL(electro-luminescence)パネル等である。表示部35は、図1に示すように測定装置30の筐体に取り付けられている。表示部35は、測定装置30とは別体の表示装置であってもよい。たとえば生体情報モニタ等の他の機器の画面が、表示部35を兼ねてもよい。 The display unit 35 is, for example, a liquid crystal display panel or an organic EL (electro-luminescence) panel. The display unit 35 is attached to the housing of the measuring device 30 as shown in FIG. The display unit 35 may be a separate display device from the measuring device 30 . For example, a screen of another device such as a biological information monitor may also serve as the display unit 35 .
 入力部36は、測定装置30の筐体に設けられたボタン等である。表示部35と入力部36とは、一体になったパネルであってもよい。入力コネクタ371は、光ファイバ41が接続される光コネクタである。測定装置30は、複数の入力コネクタ371を備えてもよい。 The input unit 36 is a button or the like provided on the housing of the measuring device 30 . The display unit 35 and the input unit 36 may be an integrated panel. The input connector 371 is an optical connector to which the optical fiber 41 is connected. The measurement device 30 may have multiple input connectors 371 .
 光源51は、たとえばLED(light emitting diode)またはレーザダイオードである。光源51は、発光体24に励起光を照射して、発光体24に含まれる蛍光体を励起させる。光源51が放射する光には、蛍光体が放射する蛍光の波長は殆ど含まれない。または、光源51から出た光を所望の波長域に絞るための励起光フィルタを設置してもよい。 The light source 51 is, for example, an LED (light emitting diode) or a laser diode. The light source 51 irradiates the light emitter 24 with excitation light to excite the phosphor contained in the light emitter 24 . The light emitted by the light source 51 hardly contains the wavelength of fluorescence emitted by the phosphor. Alternatively, an excitation light filter may be installed to narrow down the light emitted from the light source 51 to a desired wavelength range.
 光解析器52は、受光した光をたとえばフォトダイオードにより電気信号に変換した後に解析を行なう。光源51とビームスプリッタ56との間、光解析器52とビームスプリッタ56との間、およびビームスプリッタ56と入力コネクタ371との間は、それぞれ導光路55により接続されている。 The optical analyzer 52 analyzes the received light after converting it into an electrical signal using, for example, a photodiode. A light guide path 55 connects between the light source 51 and the beam splitter 56, between the light analyzer 52 and the beam splitter 56, and between the beam splitter 56 and the input connector 371, respectively.
 光源51とビームスプリッタ56との間に配置された導光路55の途中または導光路55の端部に、蛍光体を励起させるために必要な波長域のみを透過させる光学フィルタが設けられていてもよい。波長域が広い光源51を使用した場合であっても、発光体24に照射する励起光の波長域を精密に選択できる。励起光以外の波長によるノイズが生じないため、測定精度の高い測定装置30を提供できる。 Even if an optical filter that transmits only the wavelength band necessary to excite the phosphor is provided in the middle of the light guide path 55 arranged between the light source 51 and the beam splitter 56 or at the end of the light guide path 55. good. Even when the light source 51 with a wide wavelength range is used, the wavelength range of the excitation light with which the light-emitting body 24 is irradiated can be precisely selected. Since noise due to wavelengths other than the excitation light does not occur, the measurement device 30 with high measurement accuracy can be provided.
 導光路55の途中または導光路55の端部に、光学レンズが配置されていてもよい。励起光および蛍光を有効に利用することにより、測定感度の高い測定装置30を提供できる。光学レンズは、ガラス、石英、プラスチックの他、シリコンゴムなどの弾性体であってもよい。 An optical lens may be arranged in the middle of the light guide path 55 or at the end of the light guide path 55 . By effectively using the excitation light and the fluorescence, it is possible to provide the measurement device 30 with high measurement sensitivity. The optical lens may be made of glass, quartz, plastic, or an elastic material such as silicon rubber.
 測定装置30は、励起光用の光を放射する光源51に加えて、光解析器52に参照光を供給する第2光源を有しても良い。参照光を用いた解析を行なう測定装置30を提供できる。第2光源から照射された参照光は、光解析器52に直接入射する。第2光源と光解析器52との間は、たとえば専用の導光路により接続される。第2光源と光解析器52との間は、第2光源から照射された光が光解析器52に入射するように構成された空洞であってもよい。 The measurement device 30 may have a second light source that supplies reference light to the optical analyzer 52 in addition to the light source 51 that emits excitation light. It is possible to provide the measurement device 30 that performs analysis using reference light. The reference light emitted from the second light source directly enters the light analyzer 52 . The second light source and the optical analyzer 52 are connected, for example, by a dedicated light guide path. Between the second light source and the light analyzer 52 may be a cavity configured such that the light emitted from the second light source is incident on the light analyzer 52 .
 図1を使用して、測定システム10の使用方法の概要を説明する。患者の静脈に、輸液ラインが接続されている。ユーザは、光ファイバ41を第1接続部181から突出しない程度の位置までアダプタ185に挿入する。ユーザは、ファイバ栓42を緩めにアダプタ185に挿入し、光ファイバ41およびファイバ栓42を指で押さえる。 Using FIG. 1, an outline of how to use the measurement system 10 will be described. An infusion line is connected to the patient's vein. The user inserts the optical fiber 41 into the adapter 185 to a position where it does not protrude from the first connecting portion 181 . The user loosely inserts the fiber plug 42 into the adapter 185 and presses the optical fiber 41 and fiber plug 42 with a finger.
 ユーザは、コネクタ163を消毒用アルコール等で拭いて消毒する。ユーザは、第1接続部181をコネクタ163に差し込む。コネクタ163に設けられた栓が開いた状態になる。ユーザは、アダプタ185およびファイバ栓42を押さえたまま、光ファイバ41を発光体24が血管169に入るまで挿入する。その後、ユーザはファイバ栓42をアダプタ185に強く押し込むことにより、光ファイバ41とアダプタ185とを液密に固定する。 The user disinfects the connector 163 by wiping it with alcohol for disinfection or the like. The user inserts the first connection portion 181 into the connector 163 . A plug provided on the connector 163 is opened. While holding down adapter 185 and fiber plug 42 , the user inserts optical fiber 41 until light emitter 24 enters blood vessel 169 . After that, the user firmly pushes the fiber plug 42 into the adapter 185 to fix the optical fiber 41 and the adapter 185 in a liquid-tight manner.
 ユーザは、2本の結束バンド199を用いて、コネクタ163とアダプタ185とを固定する。ユーザは、光ファイバコネクタ411を入力コネクタ371に接続する。またこれに限らず、嵌めるだけで固定される公知の治具を用いてもよいし、接続部がルアーロック式シリンジのようにねじのオスメス形状で構成され、結束バンドなしで固定されてもよい。なおユーザは、医療用テープ等を用いてカテーテル161、点滴台、ベッドの柵または患者の腕等に、コネクタ163を固定してもよい。 The user uses two binding bands 199 to fix the connector 163 and the adapter 185 . The user connects the fiber optic connector 411 to the input connector 371 . In addition, it is not limited to this, and a known jig that is fixed by just fitting may be used, or the connection part may be configured with a male-female screw shape like a luer lock syringe and fixed without a binding band. . The user may fix the connector 163 to the catheter 161, the drip stand, the bed rail, the patient's arm, or the like using medical tape or the like.
 ユーザは、測定装置30を操作して光源51を動作させる。光源51から放射された励起光は、導光路55、ビームスプリッタ56および光ファイバ41を介して発光体24に照射される。発光体24が血液に接触した場合、血液中の酸素に応じた蛍光が発光する。すなわち、発光体24は血液中の酸素分圧および酸素濃度を検知可能なセンサの機能を果たす。 The user operates the measuring device 30 to operate the light source 51 . The excitation light emitted from the light source 51 is applied to the light emitter 24 via the light guide path 55 , the beam splitter 56 and the optical fiber 41 . When the luminous body 24 comes into contact with blood, fluorescence corresponding to oxygen in the blood is emitted. That is, the light emitter 24 functions as a sensor capable of detecting oxygen partial pressure and oxygen concentration in blood.
 蛍光は、光ファイバ41、入力コネクタ371、および導光路55を介してビームスプリッタ56に入射する。すなわち、光ファイバ41は光源51から発光体24に照射される光と、発光体24から放射された光とを伝搬する機能を有する。光ファイバ41は、発光体24から放射された蛍光を導光する、本実施の形態の導光体の例示である。入力コネクタ371は、光ファイバ41に導光された蛍光を受光する、本実施の形態の受光部の例示である。 Fluorescence enters the beam splitter 56 via the optical fiber 41 , the input connector 371 and the light guide path 55 . That is, the optical fiber 41 has a function of propagating the light emitted from the light source 51 to the light emitter 24 and the light emitted from the light emitter 24 . The optical fiber 41 is an example of the light guide of this embodiment, which guides the fluorescence emitted from the light emitter 24 . The input connector 371 is an example of the light-receiving part of the present embodiment that receives fluorescence light guided to the optical fiber 41 .
 蛍光は、入力コネクタ371から導光路55を介してビームスプリッタ56に入射する。ビームスプリッタ56により蛍光は光解析器52に繋がる導光路55に入射する。光解析器52は、入射した蛍光の特性を解析して、血液中の酸素分圧または酸素濃度をリアルタイムでバスに出力する。制御部31は、光解析器52から出力された血液中の酸素分圧を表示部35に表示する。 Fluorescence enters the beam splitter 56 from the input connector 371 via the light guide path 55 . A beam splitter 56 causes the fluorescent light to enter an optical waveguide 55 leading to an optical analyzer 52 . The optical analyzer 52 analyzes the characteristics of the incident fluorescence and outputs the oxygen partial pressure or oxygen concentration in the blood to the bus in real time. The control unit 31 displays the oxygen partial pressure in blood output from the optical analyzer 52 on the display unit 35 .
 採血が必要である場合、ユーザは、第2接続部182および弁体197を消毒用アルコール等で拭いて消毒する。ユーザは図示を省略するクレンメを操作して、輸液の投与を中止する。その後ユーザは、第2接続部182にシリンジ168を取り付ける。弁体197のスリットが開いた状態になる。ユーザは、第2接続部182のプランジャを引いて吸引を行なう。なおユーザは、シリンジ168内に血液が吸引されたことを確認した後に、シリンジ168を交換してもよい。このようにすることにより、輸液の成分が混じらない血液を採血できる。 When blood collection is necessary, the user wipes and disinfects the second connection part 182 and the valve body 197 with alcohol for disinfection or the like. The user operates a clamp (not shown) to stop administration of the infusion. The user then attaches the syringe 168 to the second connector 182 . The slit of the valve body 197 is opened. The user pulls the plunger of the second connection portion 182 to perform suction. Note that the user may replace the syringe 168 after confirming that blood has been sucked into the syringe 168 . By doing so, it is possible to collect blood that is not mixed with the components of the infusion solution.
 ユーザは、シリンジ168を第2接続部182から取り外す。弁体197が閉じる。その後、ユーザはクレンメを開いて輸液の投与を再開する。 The user removes the syringe 168 from the second connection section 182 . The valve body 197 closes. The user then opens the clamp and resumes administering the infusion.
 ユーザは、アダプタ185をコネクタ163に差し込む前に、カテーテル161を挿入した位置よりも末梢側に駆血帯を巻いて静脈の血流を止めてもよい。このようにすることにより、光ファイバ41を血管169内に挿入する際の、センサ管路194と光ファイバ41との隙間からの出血量が低減される。 Before inserting the adapter 185 into the connector 163, the user may wind a tourniquet on the peripheral side of the position where the catheter 161 is inserted to stop venous blood flow. By doing so, the amount of bleeding from the gap between the sensor conduit 194 and the optical fiber 41 when the optical fiber 41 is inserted into the blood vessel 169 is reduced.
 ユーザは、測定装置30による測定が必要なくなった場合、光ファイバコネクタ411を入力コネクタ371から取り外す。その後、ユーザはたとえば医療用テープ等を用いて光ファイバ41を点滴台に固定する。このようにすることにより、ユーザは患者の状態に応じて容易に測定を再開できる。 The user removes the optical fiber connector 411 from the input connector 371 when the measurement by the measuring device 30 is no longer required. After that, the user fixes the optical fiber 41 to the drip stand using, for example, medical tape. By doing so, the user can easily restart the measurement according to the patient's condition.
 測定を再開する可能性が低い場合、ユーザは測定用プローブ18をコネクタ163から取り外しても良い。コネクタ163に設けられた栓は閉じた状態になり、輸液ラインは測定用プローブ18を使用する前の状態に戻る。 The user may remove the measurement probe 18 from the connector 163 if the possibility of restarting the measurement is low. The plug provided on the connector 163 is closed, and the infusion line returns to the state before the measurement probe 18 was used.
 図8は、プログラムの処理の流れを説明するフローチャートである。制御部31は、ユーザが光源51を動作させる指示を行なった場合に図8のプログラムを起動する。 FIG. 8 is a flowchart explaining the flow of program processing. The control unit 31 starts the program of FIG. 8 when the user gives an instruction to operate the light source 51 .
 制御部31は、光源51をON状態にする(ステップS501)。ビームスプリッタ56および光ファイバ41を介して発光体24に励起光が照射される。発光体24の蛍光体から放射された蛍光は、光ファイバ41、およびビームスプリッタ56を介して光解析器52に入射する。 The control unit 31 turns on the light source 51 (step S501). The excitation light is applied to the light emitter 24 via the beam splitter 56 and the optical fiber 41 . Fluorescence emitted from the phosphor of the light emitter 24 enters the optical analyzer 52 via the optical fiber 41 and the beam splitter 56 .
 光解析器52は、蛍光に基づいて血液中の酸素分圧データを出力する。制御部31は、光解析器52から血液中の酸素分圧データを取得する(ステップS502)。ステップS502により、制御部31はセンサ保持部に保持されたセンサからデータを取得するデータ取得部の機能を実現する。 The optical analyzer 52 outputs oxygen partial pressure data in blood based on the fluorescence. The control unit 31 acquires oxygen partial pressure data in blood from the optical analyzer 52 (step S502). By step S502, the control unit 31 realizes the function of the data acquisition unit that acquires data from the sensor held in the sensor holding unit.
 制御部31は、図1に例示するように、表示部35に血液中の酸素分圧を表示する(ステップS503)。制御部31は、処理を終了するか否かを判定する(ステップS504)。たとえば制御部31は光源51をOFFにする操作を受け付けた場合、または、光ファイバ41が入力コネクタ371から取り外された場合に、処理を終了すると判定する。 The control unit 31 displays the oxygen partial pressure in the blood on the display unit 35 as illustrated in FIG. 1 (step S503). The control unit 31 determines whether or not to end the process (step S504). For example, when an operation to turn off the light source 51 is received, or when the optical fiber 41 is removed from the input connector 371, the control unit 31 determines to end the process.
 処理を終了しないと判定した場合(ステップS504でNO)、制御部31はステップS502に戻る。処理を終了すると判定した場合(ステップS504でYES)、制御部31は光源51をOFFにする(ステップS505)。制御部31は、処理を終了する。 If it is determined not to end the process (NO in step S504), the control unit 31 returns to step S502. If it is determined to end the process (YES in step S504), the control unit 31 turns off the light source 51 (step S505). The control unit 31 terminates the process.
 本実施の形態によると、既存の輸液ラインに設けたコネクタ163を用いて、患者の状態をリアルタイムで測定できる測定システム10を提供できる。たとえば治療開始当初は、リアルタイムでの測定は不要であると判断されていた患者の容体が変化した場合、ユーザは既に患者に留置済の輸液ラインを利用して速やかに測定を開始できる。 According to the present embodiment, it is possible to provide the measurement system 10 that can measure the patient's condition in real time using the connector 163 provided on the existing infusion line. For example, when the condition of a patient who was determined not to require real-time measurement at the beginning of treatment changes, the user can immediately start measurement using the infusion line that has already been placed in the patient.
 なお、ユーザは発光体24がカテーテル161から血管169内に突出させない状態で、光ファイバ41を固定してもよい。このようにすることによりユーザは、患者に投与されている輸液の状態をリアルタイムで測定できる。 Note that the user may fix the optical fiber 41 in a state in which the light emitter 24 does not protrude from the catheter 161 into the blood vessel 169 . By doing so, the user can measure the status of the infusion being administered to the patient in real time.
 制御部31は、たとえば血液中の酸素分圧が閾値以下になった場合に、ユーザに対して通知を行なってもよい。たとえば制御部31は、たとえば表示部35への表示、または、測定装置30からの音声出力によりユーザへの通知を行なう。制御部31は、HIS(Hospital Information System)、または、EMR(Electronic Medical Record)等のネットワークを介して、ナースステーション等に通知を送信してもよい。 The control unit 31 may notify the user, for example, when the oxygen partial pressure in the blood becomes equal to or less than the threshold. For example, the control unit 31 notifies the user through display on the display unit 35 or audio output from the measuring device 30 . The control unit 31 may transmit the notification to a nurse station or the like via a network such as HIS (Hospital Information System) or EMR (Electronic Medical Record).
 制御部31は、たとえば、血液中の酸素分圧に基づいて、患者の状態を表わす指標を算出して、表示部35に表示してもよい。患者の状態を表わす指標は、たとえば生体情報モニタ等の他の機器から取得した情報と、血液中の酸素分圧とを組み合わせて算出されてもよい。 The control unit 31 may, for example, calculate an index representing the patient's condition based on the partial pressure of oxygen in blood and display it on the display unit 35 . The index representing the patient's condition may be calculated by combining information obtained from other equipment such as a vital information monitor and the partial pressure of oxygen in the blood.
 光解析器52は、受光した蛍光の強度、位相角および減衰時間等の、蛍光の特性を示すデータをバスに出力してもよい。そのようにする場合には、制御部31が血液中の酸素分圧または血液中の酸素濃度等を算出する。 The optical analyzer 52 may output data indicating characteristics of fluorescence such as the intensity, phase angle and decay time of the received fluorescence to the bus. In such a case, the control unit 31 calculates the oxygen partial pressure in the blood, the oxygen concentration in the blood, or the like.
 光源51、光解析器52、導光路55、ビームスプリッタ56および入力コネクタ371で構成された光解析ブロックは、測定装置30と別体であってもよい。 An optical analysis block composed of the light source 51 , the optical analyzer 52 , the light guide path 55 , the beam splitter 56 and the input connector 371 may be separate from the measuring device 30 .
 光解析ブロックが別体である場合、パソコン、タブレット、スマートフォン等の汎用の情報処理装置と、光解析ブロックとを組み合わせて、本実施の形態の測定装置30を構成してもよい。そのようにする場合、光解析ブロックと、情報処理装置との間は、有線または無線により接続される。 When the optical analysis block is separate, the measurement device 30 of the present embodiment may be configured by combining a general-purpose information processing device such as a personal computer, tablet, or smartphone with the optical analysis block. In such a case, the optical analysis block and the information processing device are connected by wire or wirelessly.
 なお、図1に示す表示部35の表示は例示である。たとえば、発光体24がカリウムイオンに反応する蛍光体を有する場合、測定装置30は、血液中のカリウムイオン濃度またはカリウムイオン量を表示部35にリアルタイムで表示する。 The display of the display unit 35 shown in FIG. 1 is an example. For example, if the light emitter 24 has a phosphor that reacts with potassium ions, the measuring device 30 displays the potassium ion concentration or the amount of potassium ions in blood on the display unit 35 in real time.
 測定用プローブ18は、滅菌された状態でユーザに供給される単回使用製品であることが望ましい。測定用プローブ18を構成するアダプタ185、第2接続部182およびセンサプローブ40が個別に滅菌された状態でユーザに供給されてもよい。 The measuring probe 18 is preferably a single-use product that is supplied to the user in a sterile condition. The adapter 185, the second connection section 182 and the sensor probe 40 that constitute the measurement probe 18 may be individually sterilized and supplied to the user.
 末梢静脈留置カテーテルは、本実施の形態のカテーテル161の例示である。カテーテル161は、中心静脈カテーテルまたは栄養チューブ等の任意の医療用チューブであってもよい。 A peripheral vein indwelling catheter is an example of the catheter 161 of the present embodiment. Catheter 161 may be any medical tube such as a central venous catheter or feeding tube.
[変形例1-1]
 本変形例は、プラグ196と一体化されたアダプタ185に関する。実施の形態1と共通する部分については、説明を省略する。
[Modification 1-1]
This modification relates to an adapter 185 integrated with a plug 196. FIG. Descriptions of parts common to the first embodiment are omitted.
 図9は、変形例1-1のアダプタ185の正面図である。図10は、図9におけるX矢視図である。図11は、図9におけるXI矢視図である。図12は、図10におけるXII-XII線による断面図である。 FIG. 9 is a front view of the adapter 185 of modification 1-1. 10 is a view in the direction of arrow X in FIG. 9. FIG. 11 is a view in the direction of arrow XI in FIG. 9. FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 10. FIG.
 アダプタ185は、板状部183と、板状部183の一面から突出する第1接続部181とを備える。第1接続部181の側面から第2接続部182が突出している。本実施の形態のアダプタ185は、樹脂の射出成形等により、一体に形成されている。 The adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 . A second connection portion 182 protrudes from the side surface of the first connection portion 181 . The adapter 185 of this embodiment is integrally formed by resin injection molding or the like.
 図12に示すように、アダプタ185は、第1管路191とセンサ管路194との2本の独立した管路を有する。センサ管路194は、第1接続部181の先端面と板状部183との間を貫通している。板状部183側の開口部には、開口側が太径になった段付部が設けられている。段付部の側壁は、開口側が太いテーパ状である。 As shown in FIG. 12 , the adapter 185 has two independent pipelines, a first pipeline 191 and a sensor pipeline 194 . The sensor pipe line 194 penetrates between the tip surface of the first connection portion 181 and the plate-like portion 183 . The opening on the plate-like portion 183 side is provided with a stepped portion having a larger diameter on the opening side. A side wall of the stepped portion is tapered to be thicker on the opening side.
 第1管路191は、第1接続部181の先端面から、センサ管路194と略平行に延び、途中で第2接続部182の端面に向けて屈曲している。第1管路191は、第1接続部181よりも太径の第2管路192に接続している。第2管路192は、第2接続部182の端面に開口している。第2接続部182に、弁体197が配置されている。センサ管路194は、本変形例のセンサ取付部の例示である。 The first pipe line 191 extends from the tip surface of the first connection portion 181 substantially parallel to the sensor pipe line 194 and bends toward the end surface of the second connection portion 182 along the way. The first pipeline 191 is connected to a second pipeline 192 having a diameter larger than that of the first connecting portion 181 . The second pipe line 192 opens to the end surface of the second connecting portion 182 . A valve body 197 is arranged in the second connecting portion 182 . The sensor conduit 194 is an example of the sensor mounting portion of this modification.
 本変形例によると、軽量で低コストの測定用プローブ18を提供できる。第2接続部182から採血を行なう際に、血液が第1接続部181と光ファイバ41との間の隙間を通らないため、血球等が壊れにくい測定用プローブ18を提供できる。 According to this modified example, a lightweight and low-cost measuring probe 18 can be provided. Since the blood does not pass through the gap between the first connecting portion 181 and the optical fiber 41 when collecting blood from the second connecting portion 182, it is possible to provide the measuring probe 18 in which blood cells and the like are less likely to break.
[変形例1-2]
 本変形例は、アダプタ185とプラグ196とセンサプローブ40とが一体化された測定用プローブ18に関する。実施の形態1と共通する部分については、説明を省略する。
[Modification 1-2]
This modification relates to a measuring probe 18 in which an adapter 185, a plug 196 and a sensor probe 40 are integrated. Descriptions of parts common to the first embodiment are omitted.
 図13は、変形例1-2の測定用プローブ18の斜視図である。アダプタ185は、板状部183と、板状部183の一面から突出する第1接続部181とを備える。第1接続部181の側面から第2接続部182と、2本のバンド取付部188とが突出している。第2接続部182には、スリットを有する弁体197が配置されている。バンド取付部188は、バンド穴189を有する。 FIG. 13 is a perspective view of the measurement probe 18 of modification 1-2. The adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 . A second connection portion 182 and two band attachment portions 188 protrude from the side surface of the first connection portion 181 . A valve body 197 having a slit is arranged in the second connecting portion 182 . The band attachment portion 188 has a band hole 189 .
 光ファイバ41は、アダプタ185に固定されている。光ファイバ41の先端に固定された発光体24は、第1接続部181の先端付近に配置されている。 The optical fiber 41 is fixed to the adapter 185. The light emitter 24 fixed to the tip of the optical fiber 41 is arranged near the tip of the first connection portion 181 .
 本変形例の測定用プローブ18は、カテーテル161を流れる流体の状態をリアルタイム測定する用途に適している。たとえば、体液排出用の医療用チューブの途中に設けられたコネクタ163に本変形例の測定用プローブ18を差し込むことで、ユーザは排出される体液等の状態をリアルタイムで測定できる。体液排出用の医療用チューブは、たとえば膀胱留置カテーテル、尿道カテーテル、胸腔ドレナージチューブ、腹腔ドレナージチューブ、または、脳ドレナージチューブ等である。 The measurement probe 18 of this modified example is suitable for real-time measurement of the state of fluid flowing through the catheter 161 . For example, by inserting the measurement probe 18 of this modified example into a connector 163 provided in the middle of a medical tube for discharging bodily fluids, the user can measure the condition of discharged bodily fluids in real time. Medical tubes for draining bodily fluids are, for example, indwelling bladder catheters, urinary catheters, thoracic drainage tubes, peritoneal drainage tubes, or cerebral drainage tubes.
[変形例1-3]
 図14は、変形例1-3のセンサプローブ40の先端部拡大図である。本変形例においては、シート状に形成された発光体24が接着層249を介して光ファイバ41の端面に固定されている。
[Modification 1-3]
FIG. 14 is an enlarged view of the tip of the sensor probe 40 of Modification 1-3. In this modified example, a sheet-shaped light emitter 24 is fixed to the end surface of the optical fiber 41 via an adhesive layer 249 .
 発光体24は、たとえば蛍光体が練り込まれた透光性樹脂製の板である。発光体24は、蛍光体が塗布された透光性の板であってもよい。硬化時間の短い接着剤を接着層249に使用することにより、短時間で製造可能なセンサプローブ40を提供できる。 The luminous body 24 is, for example, a translucent resin plate into which a phosphor is kneaded. The light emitter 24 may be a translucent plate coated with phosphor. By using an adhesive with a short curing time for the adhesive layer 249, it is possible to provide the sensor probe 40 that can be manufactured in a short period of time.
[変形例1-4]
 図15は、変形例1-4のセンサプローブ40の先端部拡大断面図である。本変形例においては、光ファイバ41の端部が発光体24で覆われている。
[Modification 1-4]
FIG. 15 is an enlarged cross-sectional view of the tip portion of the sensor probe 40 of Modification 1-4. In this modified example, the end of the optical fiber 41 is covered with the light emitter 24 .
 たとえば、蛍光体が練り込まれた未硬化の透明性樹脂に光ファイバ41の先端を浸して、引き上げた後に硬化させることで、本変形例の光ファイバ41を製作できる。モールド型を用いて、蛍光体が練り込まれた透明性樹脂を光ファイバ41の先端に成形してもよい。 For example, the optical fiber 41 of this modification can be manufactured by immersing the tip of the optical fiber 41 in an uncured transparent resin in which a phosphor is kneaded, pulling it out, and then curing it. A mold may be used to mold the transparent resin into which the phosphor is kneaded at the tip of the optical fiber 41 .
[変形例1-5]
 図16は、変形例1-5のセンサプローブ40の先端部拡大断面図である。本変形例においては、光ファイバ41の端面に対して略垂直に、板状の発光体24が固定されている。
[Modification 1-5]
FIG. 16 is an enlarged cross-sectional view of the tip portion of the sensor probe 40 of Modification 1-5. In this modification, a plate-like light emitter 24 is fixed substantially perpendicular to the end face of the optical fiber 41 .
 光ファイバ41の端部と発光体24の間には、たとえば透光性樹脂を用いた導光部248が配置されている。光ファイバ41と導光部248と発光体24との間は、図示を省略する接着材により接着固定されている。導光部248が、光ファイバ41と発光体24とを接着固定する接着材を兼ねてもよい。 Between the end of the optical fiber 41 and the light emitter 24, a light guide section 248 using, for example, translucent resin is arranged. The optical fiber 41, the light guide portion 248, and the light emitter 24 are bonded and fixed with an adhesive (not shown). The light guide portion 248 may also serve as an adhesive for adhesively fixing the optical fiber 41 and the light emitter 24 .
[実施の形態2]
 本実施の形態は、採血用の管路が屈曲していない測定用プローブ18に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 2]
The present embodiment relates to a measurement probe 18 in which the blood sampling conduit is not bent. Descriptions of parts common to the first embodiment are omitted.
 図17は、実施の形態2の測定用プローブ18の正面図である。図18は、図17におけるXVIII矢視図である。図19は、図17におけるXIX矢視図である。図20は、図18におけるXX-XX線による断面図である。 FIG. 17 is a front view of the measurement probe 18 of Embodiment 2. FIG. 18 is a view in the direction of arrow XVIII in FIG. 17. FIG. 19 is a view in the direction of arrow XIX in FIG. 17. FIG. 20 is a cross-sectional view taken along line XX-XX in FIG. 18. FIG.
 測定用プローブ18は、アダプタ185と、プラグ196と、センサプローブ40とを備える。アダプタ185は、板状部183と、板状部183の一面から突出する第1接続部181とを備える。図18に示すように、板状部183には、4個のバンド穴189が設けられている。図19に示すように板状部183から2個のバンド取付部188が、第1接続部181を挟んで突出している。それぞれのバンド取付部188には、バンド穴189が設けられている。 The measurement probe 18 includes an adapter 185, a plug 196, and a sensor probe 40. The adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 . As shown in FIG. 18, the plate-like portion 183 is provided with four band holes 189 . As shown in FIG. 19, two band attachment portions 188 protrude from the plate-like portion 183 with the first connection portion 181 interposed therebetween. Each band attachment portion 188 is provided with a band hole 189 .
 図20に示すように、アダプタ185は、第1管路191とセンサ管路194との2本の独立した管路を有する。第1管路191は、第1接続部181の先端面と板状部183との間を貫通している。板状部183側の開口部には、開口側が太径になった段付部が設けられており、プラグ196が取り付けられている。図18に示すように、第1管路191は半円形断面を有する。 As shown in FIG. 20 , the adapter 185 has two independent pipelines, a first pipeline 191 and a sensor pipeline 194 . The first conduit 191 penetrates between the tip surface of the first connecting portion 181 and the plate-like portion 183 . The opening on the plate-like portion 183 side is provided with a stepped portion having a larger diameter on the opening side, and a plug 196 is attached thereto. As shown in FIG. 18, first conduit 191 has a semi-circular cross-section.
 センサ管路194は、第1接続部181の先端面から、第1管路191と略平行に延び、途中で屈曲して第1接続部181の側面に開口している。センサ管路194に光ファイバ41が挿入され、液密に固定されている。光ファイバ41の先端に固定された発光体24は、第1接続部181の端面近傍に配置されている。 The sensor pipe line 194 extends from the tip end surface of the first connection portion 181 substantially parallel to the first pipe line 191 and bends in the middle to open on the side surface of the first connection portion 181 . An optical fiber 41 is inserted into the sensor conduit 194 and fixed in a liquid-tight manner. The light emitter 24 fixed to the tip of the optical fiber 41 is arranged near the end surface of the first connection portion 181 .
 本実施の形態の測定用プローブ18は、変形例1-2の測定用プローブ18と同様に、カテーテル161を流れる輸液の状態のリアルタイム測定に適している。 The measurement probe 18 of the present embodiment is suitable for real-time measurement of the state of the infusion flowing through the catheter 161, like the measurement probe 18 of Modification 1-2.
 本実施の形態によると、第1管路191が屈曲していないため、カテーテル161を流れる流体のサンプルを採取する際に、血球等の固形成分が壊れにくい測定用プローブ18を提供できる。 According to this embodiment, since the first conduit 191 is not bent, it is possible to provide the measurement probe 18 in which solid components such as blood cells are less likely to break when a sample of fluid flowing through the catheter 161 is collected.
[実施の形態3]
 本実施の形態は、ルアーロック式の測定用プローブ18に関する。実施の形態2と共通する部分については、説明を省略する。
[Embodiment 3]
This embodiment relates to a luer lock type measuring probe 18 . The description of the parts common to the second embodiment is omitted.
 図21は、実施の形態3の測定用プローブ18の正面図である。図22は、図21におけるXXII矢視図である。図23は、図21におけるXXIII-XXIII線による断面図である。 FIG. 21 is a front view of the measurement probe 18 of Embodiment 3. FIG. 22 is a view in the direction of arrow XXII in FIG. 21. FIG. FIG. 23 is a cross-sectional view taken along line XXIII--XXIII in FIG.
 測定用プローブ18は、アダプタ185と、プラグ196と、センサプローブ40とを備える。アダプタ185は略円錐台形状の第1接続部181を備える。第1接続部181の側面に、ルアーロック構造を有するロック部184が設けられている。ルアーロック構造は、従来から広く使用されているため、詳細については説明を省略する。ロック部184は、測定用プローブ18をコネクタ163に固定する際に用いられる、本実施の形態のコネクタ固定部の例示である。 The measurement probe 18 includes an adapter 185, a plug 196, and a sensor probe 40. The adapter 185 includes a first connecting portion 181 having a substantially frusto-conical shape. A lock portion 184 having a luer lock structure is provided on the side surface of the first connection portion 181 . Since the luer lock structure has been widely used in the past, a detailed description thereof will be omitted. The locking portion 184 is an example of the connector fixing portion of this embodiment, which is used when fixing the measurement probe 18 to the connector 163 .
 図23に示すように、アダプタ185は、第1管路191とセンサ管路194との2本の独立した管路を有する。第1管路191は、第1接続部181の中心軸に沿って延びる貫通孔である。第1接続部181の太径側の開口部には、開口側が太径になった段付部が設けられており、プラグ196が取り付けられている。図22に示すように、第1管路191は半円形断面を有する。 As shown in FIG. 23 , the adapter 185 has two independent pipelines, a first pipeline 191 and a sensor pipeline 194 . The first conduit 191 is a through hole extending along the central axis of the first connecting portion 181 . A stepped portion having a larger diameter on the opening side is provided in the opening on the larger diameter side of the first connecting portion 181, and a plug 196 is attached thereto. As shown in FIG. 22, first conduit 191 has a semi-circular cross-section.
 センサ管路194は、第1接続部181の細径側の端面から、第1管路191と略平行に延び、途中で屈曲して第1接続部181の側面に開口している。センサ管路194に光ファイバ41が挿入され、液密に固定されている。光ファイバ41の先端に固定された発光体24は、第1接続部181の端面近傍に配置されている。 The sensor conduit 194 extends substantially parallel to the first conduit 191 from the end face of the first connecting part 181 on the small diameter side, and bends in the middle to open on the side surface of the first connecting part 181 . An optical fiber 41 is inserted into the sensor conduit 194 and fixed in a liquid-tight manner. The light emitter 24 fixed to the tip of the optical fiber 41 is arranged near the end surface of the first connection portion 181 .
 本実施の形態の測定用プローブ18は、変形例1-2の測定用プローブ18と同様に、カテーテル161を流れる輸液の状態のリアルタイム測定に適している。 The measurement probe 18 of the present embodiment is suitable for real-time measurement of the state of the infusion flowing through the catheter 161, like the measurement probe 18 of Modification 1-2.
 本実施の形態によると、ルアーロック構造によりコネクタ163に容易に固定できる測定用プローブ18を提供できる。本実施の形態によると、カテーテル161の内圧が高い場合であっても、外れにくい測定用プローブ18を提供できる。 According to this embodiment, it is possible to provide the measuring probe 18 that can be easily fixed to the connector 163 by the luer lock structure. According to this embodiment, it is possible to provide the measurement probe 18 that is difficult to come off even when the internal pressure of the catheter 161 is high.
[実施の形態4]
 本実施の形態は、カテーテル161に固定する管路固定部198を備える測定用プローブ18に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 4]
This embodiment relates to a measurement probe 18 having a conduit fixing portion 198 fixed to a catheter 161. FIG. Descriptions of parts common to the first embodiment are omitted.
 図24は、実施の形態4の測定用プローブ18の正面図である。図25は、図24におけるXXV矢視図である。 FIG. 24 is a front view of the measurement probe 18 of Embodiment 4. FIG. 25 is a XXV arrow view in FIG. 24. FIG.
 測定用プローブ18は、アダプタ185と、プラグ196と、センサプローブ40とを備える。アダプタ185は、板状部183と、板状部183の一面から突出する第1接続部181とを備える。第1接続部181の側面に、板状部183側から順に、プラグ196および突当部195が取り付けられている。プラグ196は、第2接続部182を有する。本実施の形態においては図示を省略するが、第2接続部182の内側に、弁体197が取り付けられている。 The measurement probe 18 includes an adapter 185, a plug 196, and a sensor probe 40. The adapter 185 includes a plate-like portion 183 and a first connecting portion 181 protruding from one surface of the plate-like portion 183 . A plug 196 and an abutting portion 195 are attached to the side surface of the first connecting portion 181 in order from the plate-like portion 183 side. The plug 196 has a second connection portion 182 . Although not shown in the present embodiment, a valve body 197 is attached inside the second connecting portion 182 .
 突当部195は平板状であり、板状部183と反対の側に突出する2枚の管路固定部198を有する。管路固定部198は略C字板形状である。管路固定部198は、測定用プローブ18をカテーテル161に固定する際に用いられる、本実施の形態の医療用管路固定部の例示である。 The abutting portion 195 has a flat plate shape, and has two pipeline fixing portions 198 projecting to the side opposite to the plate-like portion 183 . The conduit fixing portion 198 has a substantially C-shaped plate shape. The pipeline fixing part 198 is an example of the medical pipeline fixing part of this embodiment, which is used when fixing the measurement probe 18 to the catheter 161 .
 図26は、実施の形態4の測定用プローブ18の使用方法を説明する説明図である。図27は、図26におけるXXVII矢視断面図である。突当部195がコネクタ163の上面に突き当てられており、第1接続部181はコネクタ163に差し込まれている。図26に破線で示すように、光ファイバ41は第1接続部181の先端から突出し、カテーテル161の内側に挿入されている。 FIG. 26 is an explanatory diagram explaining how to use the measurement probe 18 of the fourth embodiment. 27 is a cross-sectional view taken along line XXVII in FIG. 26. FIG. The abutting portion 195 abuts against the upper surface of the connector 163 , and the first connecting portion 181 is inserted into the connector 163 . As indicated by the dashed line in FIG. 26, the optical fiber 41 protrudes from the tip of the first connecting portion 181 and is inserted inside the catheter 161 .
 図27に示すように、管路固定部198がカテーテル161の外周に嵌め込まれている。管路固定部198は、センサプローブ40をカテーテル161に留め付ける、本実施の形態の留具の例示である。なお、図24および図25に示す管路固定部198の形状は一例である。管路固定部198は、たとえばC字板形状の両端同士を連結して、カテーテル161から測定用プローブ18が外れないように強固に固定する固定金具等を有してもよい。 As shown in FIG. 27, the conduit fixing portion 198 is fitted around the outer circumference of the catheter 161. As shown in FIG. The conduit fixing portion 198 is an example of a fastener of the present embodiment that fastens the sensor probe 40 to the catheter 161 . Note that the shape of the pipeline fixing portion 198 shown in FIGS. 24 and 25 is an example. The channel fixing portion 198 may have a fixing metal fitting or the like that connects both ends of the C-shaped plate and firmly fixes the measurement probe 18 from the catheter 161 so that it does not come off.
 なお、突当部195に結束バンド199を挿通可能なバンド穴189が設けられていてもよい。管路固定部198と結束バンド199とを併用することにより、コネクタ163と測定用プローブ18とを強固に固定できる。 A band hole 189 through which the binding band 199 can be inserted may be provided in the abutting portion 195 . By using the conduit fixing portion 198 and the binding band 199 together, the connector 163 and the measurement probe 18 can be firmly fixed.
 管路固定部198に、図示を省略する第2センサが埋め込まれていてもよい。第2センサは、カテーテル161内の流体に接触せずに、流体の状態を測定可能な非接液センサである。第2センサは、たとえば熱電対またはサーミスタである。 A second sensor (not shown) may be embedded in the conduit fixing portion 198 . The second sensor is a non-wetted sensor that can measure the state of the fluid without contacting the fluid in the catheter 161 . The second sensor is for example a thermocouple or a thermistor.
 第2センサは、レーザ流量計、熱式流量計または超音波流量計のセンサであってもよい。たとえば、一方の管路固定部198に、レーザまたは超音波等の送信用センサが配置され、他方の管路固定部198に受信用センサが配置されてもよい。すなわち管路固定部198は、本実施の形態のセンサ取付部の機能を実現する。 The second sensor may be a sensor of a laser flowmeter, a thermal flowmeter, or an ultrasonic flowmeter. For example, a transmitting sensor such as a laser or an ultrasonic wave may be arranged on one pipeline fixing portion 198 , and a receiving sensor may be arranged on the other pipeline fixing portion 198 . That is, the pipeline fixing portion 198 realizes the function of the sensor attachment portion of the present embodiment.
 本実施の形態によると、カテーテル161に強固に固定できる測定用プローブ18を提供できる。 According to this embodiment, it is possible to provide the measurement probe 18 that can be firmly fixed to the catheter 161 .
[実施の形態5]
 本実施の形態は、励起光と蛍光とを分離するフィルタ57を備える測定装置30に関する。実施の形態1と共通する部分については、説明を省略する。
[Embodiment 5]
This embodiment relates to a measurement device 30 that includes a filter 57 that separates excitation light and fluorescence. Descriptions of parts common to the first embodiment are omitted.
 図28は、実施の形態5の測定装置30の構成を説明する説明図である。ビームスプリッタ56と入力コネクタ371との間に、導光路55を介してフィルタ57が配置されている。制御部31は、フィルタ57が透過させる光の波長域を調節可能である。本実施の形態の光源51は、励起光の波長に加えて蛍光の波長を含む、広帯域の光を放射する。光源51は、たとえば白色LEDである。 FIG. 28 is an explanatory diagram for explaining the configuration of the measuring device 30 of Embodiment 5. FIG. A filter 57 is arranged between the beam splitter 56 and the input connector 371 via the light guide path 55 . The control unit 31 can adjust the wavelength range of light transmitted by the filter 57 . The light source 51 of the present embodiment emits broadband light that includes fluorescence wavelengths in addition to excitation light wavelengths. Light source 51 is, for example, a white LED.
 図29は、実施の形態5の測定装置30の動作を説明するタイムチャートである。図29Aは、光源51のONおよびOFFのタイミングを示す。図29Bは、フィルタ57の動作のタイミングを示す。b1は、フィルタ57が励起光を透過させることを示す。b2はフィルタ57が蛍光を透過させることを示す。図29Cは、光解析器52が動作するタイミングを示す。ONは、蛍光の特性を解析する動作を示す。OFFは蛍光の特性を解析しない動作を示す。図29Aから図29Cまでの横軸は、いずれも時間を示す。 FIG. 29 is a time chart explaining the operation of the measuring device 30 of Embodiment 5. FIG. FIG. 29A shows ON and OFF timings of the light source 51 . 29B shows the timing of the operation of filter 57. FIG. b1 indicates that the filter 57 transmits the excitation light. b2 indicates that the filter 57 transmits fluorescence. FIG. 29C shows the timing at which the optical analyzer 52 operates. ON indicates the operation of analyzing the properties of fluorescence. OFF indicates an operation in which fluorescence characteristics are not analyzed. The horizontal axes in FIGS. 29A to 29C all indicate time.
 時刻t1から時刻t2までの期間、光源51がON状態になる。この期間、フィルタ57は励起光を透過させる。光解析器52は動作しない。励起光により、発光体24が照射される。発光体24が血液または輸液等の流体に触れている場合には、流体の状態に応じた蛍光が放射される。 The light source 51 is in the ON state during the period from time t1 to time t2. During this period, the filter 57 transmits the excitation light. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the luminous body 24 is in contact with fluid such as blood or infusion, fluorescence corresponding to the state of the fluid is emitted.
 時刻t2からt3までの期間、光源51はOFF状態になる。この期間、フィルタ57は蛍光を透過させる。光解析器52は、蛍光の特性を解析して、流体中の酸素分圧をバスに出力する。時刻t3以降も、同じ動作が繰り返される。 The light source 51 is turned off during the period from time t2 to t3. During this period, filter 57 is transparent to fluorescence. The optical analyzer 52 analyzes the fluorescence properties and outputs the partial pressure of oxygen in the fluid to the bus. After time t3, the same operation is repeated.
 本実施の形態によると、光源51が放射する光に蛍光の波長が含まれている場合であっても、正確な測定が行なえる測定システム10を提供できる。 According to the present embodiment, it is possible to provide the measurement system 10 that can perform accurate measurements even when the light emitted by the light source 51 contains the wavelength of fluorescence.
[実施の形態6]
 本実施の形態は、一つの光源51を使用して複数の項目を同時に測定できる測定システム10に関する。実施の形態5と共通する部分については、説明を省略する。
[Embodiment 6]
This embodiment relates to a measurement system 10 that can simultaneously measure a plurality of items using a single light source 51. FIG. Descriptions of the portions common to the fifth embodiment are omitted.
 本実施の形態の発光体24には、2種類の蛍光体が混入されている。すなわち、本実施の形態においては一束の光ファイバ41の先端部に2種類のセンサが固定されている。以下の説明では2種類の蛍光体を蛍光体Jおよび蛍光体Kと記載する。蛍光体Jと蛍光体Kとが発する蛍光の波長は、十分に離れている。 Two types of phosphors are mixed in the luminous body 24 of the present embodiment. That is, in this embodiment, two types of sensors are fixed to the tip of the bundle of optical fibers 41 . The two types of phosphors are referred to as phosphor J and phosphor K in the following description. The wavelengths of the fluorescence emitted by the phosphor J and the phosphor K are sufficiently separated.
 図30は、実施の形態6の測定装置30の動作を説明するタイムチャートである。図30Aは、光源51のONおよびOFFのタイミングを示す。図30Bは、フィルタ57の動作のタイミングを示す。b1jは、フィルタ57が蛍光体Jの励起光を透過させることを示す。b2jはフィルタ57が蛍光体Jにより放射された蛍光を透過させることを示す。b1kは、フィルタ57が蛍光体Kの励起光を透過させることを示す。b2kはフィルタ57が蛍光体Kにより放射された蛍光を透過させることを示す。 FIG. 30 is a time chart explaining the operation of the measuring device 30 of Embodiment 6. FIG. FIG. 30A shows ON and OFF timings of the light source 51 . 30B shows the timing of the operation of filter 57. FIG. b1j indicates that the filter 57 allows the excitation light of the phosphor J to pass therethrough. b2j indicates that the filter 57 allows the fluorescence emitted by the phosphor J to pass through. b1k indicates that the filter 57 allows the excitation light of the phosphor K to pass therethrough. b2k indicates that the filter 57 allows the fluorescence emitted by the phosphor K to pass through.
 図30Cは、光解析器52が動作するタイミングを示す。cjは、蛍光体Jにより放射された蛍光の特性を解析する動作を示す。ckは、蛍光体Kにより放射された蛍光の特性を解析する動作を示す。OFFは蛍光の特性を解析しない動作を示す。図30Aから図30Cまでの横軸は、いずれも時間を示す。 FIG. 30C shows the timing at which the optical analyzer 52 operates. cj indicates the operation of analyzing the characteristics of the fluorescence emitted by the phosphor J; ck indicates the operation of analyzing the properties of the fluorescence emitted by the phosphor K; OFF indicates an operation in which fluorescence characteristics are not analyzed. The horizontal axes in FIGS. 30A to 30C all indicate time.
 時刻t1から時刻t2までの期間、光源51がON状態になる。この期間、フィルタ57は蛍光体Jの励起光を透過させる。光解析器52は動作しない。励起光により、発光体24が照射される。発光体24が血液または輸液等の流体に触れている場合には、蛍光体Jが流体の状態に応じた蛍光を放射する。 The light source 51 is in the ON state during the period from time t1 to time t2. During this period, the filter 57 allows the excitation light of the phosphor J to pass therethrough. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light emitter 24 is in contact with fluid such as blood or infusion, the phosphor J emits fluorescence corresponding to the state of the fluid.
 時刻t2から時刻t3までの期間、光源51はOFF状態になる。この期間、フィルタ57は蛍光体Jが放射する蛍光を透過させる。光解析器52は、蛍光の特性を解析して、蛍光体Jに関連する項目をバスに出力する。 The light source 51 is turned off during the period from time t2 to time t3. During this period, the filter 57 allows the fluorescence emitted by the phosphor J to pass therethrough. The light analyzer 52 analyzes the properties of the fluorescence and outputs items related to the phosphor J on the bus.
 時刻t3から時刻t4までの期間、光源51がON状態になる。この期間、フィルタ57は蛍光体Kの励起光を透過させる。光解析器52は動作しない。励起光により、発光体24が照射される。発光体24が血液または輸液等の流体に触れている場合には、蛍光体Kが流体の状態に応じた蛍光を放射する。 The light source 51 is in the ON state during the period from time t3 to time t4. During this period, the filter 57 allows the excitation light of the phosphor K to pass therethrough. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light-emitting body 24 is in contact with fluid such as blood or infusion, the phosphor K emits fluorescence corresponding to the state of the fluid.
 時刻t4から時刻t5までの期間、光源51はOFF状態になる。この期間、フィルタ57は蛍光体Kが放射する蛍光を透過させる。光解析器52は、蛍光の特性を解析して、蛍光体Kに関連する項目をバスに出力する。時刻t6以降も、同じ動作が繰り返される。 The light source 51 is turned off during the period from time t4 to time t5. During this period, the filter 57 allows the fluorescence emitted by the phosphor K to pass therethrough. The light analyzer 52 analyzes the properties of the fluorescence and outputs items related to the phosphor K on the bus. After time t6, the same operation is repeated.
 本実施の形態によると、一つの光源51を使用して複数の項目を測定できる測定システム10を提供できる。なお、発光体24は3種類以上の蛍光体を有してもよい。フィルタ57は、それぞれの蛍光体の励起光と蛍光とを順次透過させる。 According to the present embodiment, it is possible to provide the measurement system 10 that can measure a plurality of items using one light source 51. Note that the light emitter 24 may have three or more types of phosphors. The filter 57 sequentially transmits excitation light and fluorescence of each phosphor.
[変形例6-1]
 図31は、変形例6-1のセンサプローブ40先端部の斜視図である。本変形例においては、蛍光体Kが混入された第1発光体241と、蛍光体Jが混入された第2発光体242とが、光ファイバ41の端面に配置されている。
[Modification 6-1]
FIG. 31 is a perspective view of the distal end portion of the sensor probe 40 of modification 6-1. In this modification, a first light emitter 241 mixed with phosphor K and a second light emitter 242 mixed with phosphor J are arranged on the end face of optical fiber 41 .
 なお、図31においては、第1発光体241および第2発光体242がいずれも半円形状である例を示すが、第1発光体241と第2発光体242とは同心円状に配置されていてもよい。第1発光体241のサイズと第2発光体242のサイズとは、異なっていてもよい。 Although FIG. 31 shows an example in which both the first light emitter 241 and the second light emitter 242 are semicircular, the first light emitter 241 and the second light emitter 242 are arranged concentrically. may The size of the first light emitter 241 and the size of the second light emitter 242 may be different.
 図31に示すセンサプローブ40は、第1発光体241から放射された光を導光するファイバ束が接続された光ファイバコネクタ411と、第2発光体242から放射された光を導光するファイバ束が接続された光ファイバコネクタ411とを有してもよい。2つの光ファイバコネクタ411を、それぞれ別々の測定装置30に接続して使用できる。 The sensor probe 40 shown in FIG. 31 includes an optical fiber connector 411 to which a fiber bundle that guides the light emitted from the first light emitter 241 is connected, and a fiber that guides the light emitted from the second light emitter 242. and a fiber optic connector 411 to which the bundle is connected. Two optical fiber connectors 411 can be used to connect to separate measurement devices 30, respectively.
[変形例6-2]
 本変形例は、時系列的なデータを表示部35に表示する測定装置30に関する。実施の形態6と共通する部分については、説明を省略する。
[Modification 6-2]
This modification relates to a measuring device 30 that displays time-series data on a display unit 35. FIG. Descriptions of the parts common to the sixth embodiment are omitted.
 図32は、変形例6-2の画面例である。本変形例においては、測定装置30は酸素分圧と温度とをリアルタイムで測定する。本変形例の測定装置30は、比較的大きな表示部35を有する。 FIG. 32 is a screen example of modification 6-2. In this modification, the measuring device 30 measures oxygen partial pressure and temperature in real time. The measuring device 30 of this modified example has a relatively large display section 35 .
 画面には、指標欄67、日時欄61、酸素分圧欄62、温度欄63およびグラフ欄68が表示されている。指標欄67には、腎臓の状態を表わす指標が表示されている。アルファベットと「+」または「-」の記号の組み合わせにより、ユーザは患者の腎臓の状態を容易に把握できる。 An index field 67, a date and time field 61, an oxygen partial pressure field 62, a temperature field 63 and a graph field 68 are displayed on the screen. The index column 67 displays indices representing the state of the kidney. The user can easily grasp the patient's kidney condition by combining the alphabet and the symbol "+" or "-".
 日時欄61には、日付、曜日および時刻が表示されている。酸素分圧欄62には、流体中の酸素分圧が表示されている。温度欄63には、温度が表示されている。グラフ欄68には、流体中の酸素分圧および温度の時系列データが、それぞれ折れ線グラフにより表示されている。グラフ欄68においては、破線は流体中の酸素分圧の時系列データを示し、実線は温度の時系列データを示す。酸素分圧欄62の「pO2」の文字の下に表示された破線、および「温度」の文字の下に表示された実線が、いわゆる凡例欄の機能を果たす。ユーザは、どのグラフが何を意味しているかを、容易に把握できる。 The date and time column 61 displays the date, day of the week and time. The oxygen partial pressure column 62 displays the oxygen partial pressure in the fluid. Temperature is displayed in the temperature column 63 . Time-series data of the oxygen partial pressure in the fluid and the temperature are displayed in the graph field 68 by line graphs. In graph column 68, the dashed line indicates time series data of oxygen partial pressure in the fluid, and the solid line indicates time series data of temperature. A dashed line displayed under the word "pO2" and a solid line displayed under the word "temperature" in the oxygen partial pressure column 62 function as a so-called legend column. The user can easily grasp which graph means what.
 グラフ欄68に示す折れ線グラフは、グラフの形式の例示である。ユーザが臨床現場で使用しやすい任意の形式のグラフをグラフ欄68に使用できる。たとえば、単位時間あたりの値が重要視される場合には、グラフ欄68の表示に棒グラフを使用する。ユーザが、グラフの形式を適宜指定できてもよい。 The line graph shown in the graph column 68 is an example of the graph format. Any type of graph that is convenient for a user to use in a clinical setting can be used in graph field 68 . For example, when the value per unit time is emphasized, a bar graph is used for displaying the graph field 68 . The user may be able to specify the format of the graph as appropriate.
 時系列データは、グラフ形式の代わりに表形式で表示されてもよい。なお制御部31は、ユーザによる表示部35に表示する項目およびレイアウトの設定変更を適宜受け付けてもよい。ユーザは、状況に応じて使いやすい設定で測定システム10を使用できる。
[実施の形態7]
 本実施の形態は、狭帯域の励起光を複数切り替えて放射する光源51を使用した測定システム10に関する。実施の形態5と共通する部分については、説明を省略する。図33は、実施の形態7の測定装置30の構成を説明する説明図である。本実施の形態においては、フィルタ57はビームスプリッタ56と光解析器52との間に配置されている。
Time series data may be displayed in tabular format instead of graphical format. Note that the control unit 31 may appropriately receive a setting change of the items and layout to be displayed on the display unit 35 by the user. The user can use the measurement system 10 with settings that are easy to use depending on the situation.
[Embodiment 7]
The present embodiment relates to a measurement system 10 using a light source 51 that radiates a plurality of narrowband excitation lights by switching. Descriptions of the portions common to the fifth embodiment are omitted. FIG. 33 is an explanatory diagram illustrating the configuration of the measuring device 30 according to the seventh embodiment. In this embodiment, filter 57 is placed between beam splitter 56 and optical analyzer 52 .
 図34は、実施の形態7の測定装置30の動作を説明するタイムチャートである。図34Aは、光源51が動作するタイミングを示す。ajは、光源51が蛍光体Jの励起光を放射することを示す。akは、光源51が蛍光体Kの励起光を放射することを示す。 FIG. 34 is a time chart explaining the operation of the measuring device 30 of the seventh embodiment. FIG. 34A shows timing when the light source 51 operates. aj indicates that the light source 51 emits excitation light for the phosphor J; ak indicates that the light source 51 emits excitation light for the phosphor K;
 図34Bは、フィルタ57の動作のタイミングを示す。ALLは、フィルタ57がすべての光を透過させることを示す。bjは、フィルタ57が蛍光体Jにより放射された蛍光を透過させることを示す。bkは、フィルタ57が蛍光体Kにより放射された蛍光を透過させることを示す。 34B shows the timing of the operation of the filter 57. FIG. ALL indicates that filter 57 transmits all light. bj indicates that the filter 57 allows the fluorescence emitted by the phosphor J to pass through. bk indicates that the filter 57 allows the fluorescence emitted by the phosphor K to pass through.
 図34Cは、光解析器52が動作するタイミングを示す。cjは、蛍光体Jにより放射された蛍光の特性を解析する動作を示す。ckは、蛍光体Jにより放射された蛍光の特性を解析する動作を示す。OFFは蛍光の特性を解析しない動作を示す。図34Aから図34Cまでの横軸は、いずれも時間を示す。 FIG. 34C shows the timing at which the optical analyzer 52 operates. cj indicates the operation of analyzing the characteristics of the fluorescence emitted by the phosphor J; ck indicates the operation of analyzing the properties of the fluorescence emitted by the phosphor J; OFF indicates an operation in which fluorescence characteristics are not analyzed. The horizontal axes in FIGS. 34A to 34C all indicate time.
 時刻t1から時刻t2までの期間、光源51は蛍光体Jを励起させる励起光を放射する。この期間、フィルタ57はすべての光を透過させる。光解析器52は動作しない。励起光により、発光体24が照射される。発光体24が血液または輸液等の流体に触れている場合には、流体の状態に応じて蛍光体Jが発光する。 The light source 51 emits excitation light that excites the phosphor J during the period from time t1 to time t2. During this period, filter 57 transmits all light. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light emitter 24 is in contact with fluid such as blood or infusion, the phosphor J emits light according to the state of the fluid.
 時刻t2から時刻t3までの期間、光源51はOFF状態になる。この期間、フィルタ57は蛍光体Jが放射した蛍光を透過させる。光解析器52は、蛍光体Jにより放射された蛍光の特性を解析して、結果をバスに出力する。 The light source 51 is turned off during the period from time t2 to time t3. During this period, the filter 57 allows the fluorescence emitted by the phosphor J to pass therethrough. Optical analyzer 52 analyzes the properties of the fluorescence emitted by phosphor J and outputs the results on a bus.
時刻t3から時刻t4までの期間、光源51は蛍光体Kを励起させる励起光を放射する。この期間、フィルタ57はすべての光を透過させる。光解析器52は動作しない。励起光により、発光体24が照射される。発光体24が血液または輸液等の流体に触れている場合には、流体の状態に応じて蛍光体Kが発光する。 The light source 51 emits excitation light that excites the phosphor K during the period from time t3 to time t4. During this period, filter 57 transmits all light. Optical analyzer 52 does not operate. The excitation light irradiates the light emitter 24 . When the light emitter 24 is in contact with fluid such as blood or infusion, the phosphor K emits light according to the state of the fluid.
 時刻t4から時刻t5までの期間、光源51はOFF状態になる。この期間、フィルタ57は蛍光体Kが放射した蛍光を透過させる。光解析器52は、蛍光体Kにより放射された蛍光の特性を解析して、結果をバスに出力する。時刻t5以降も、同じ動作が繰り返される。 The light source 51 is turned off during the period from time t4 to time t5. During this period, the filter 57 allows the fluorescence emitted by the phosphor K to pass therethrough. Optical analyzer 52 analyzes the properties of the fluorescence emitted by phosphor K and outputs the results on a bus. After time t5, the same operation is repeated.
 本実施の形態によると、1つの光源51および1つの発光体24を用いて、複数の項目を測定できる測定システム10を提供できる。なお、発光体24は3種類以上の蛍光体を有してもよい。フィルタ57は、それぞれの蛍光体に応じて透過させる光の波長を順次切り替える。 According to this embodiment, one light source 51 and one light emitter 24 can be used to provide the measurement system 10 capable of measuring a plurality of items. Note that the light emitter 24 may have three or more types of phosphors. The filter 57 sequentially switches the wavelength of light to be transmitted according to each phosphor.
 光源51は蛍光体Jの励起光と、蛍光体Kの励起光との両方を含む広帯域の光を放射してもよい。たとえば、光源51は白色光を放射してもよい。そのようにする場合には、図34Aのajとakとは、いずれも光源51がON状態であることを示す。 The light source 51 may emit broadband light including both the excitation light for the phosphor J and the excitation light for the phosphor K. For example, light source 51 may emit white light. In that case, both aj and ak in FIG. 34A indicate that the light source 51 is in the ON state.
[実施の形態8]
 本実施の形態は複数の光解析器52を備える測定装置30に関する。実施の形態7と共通する部分については、説明を省略する。
[Embodiment 8]
This embodiment relates to a measuring device 30 having a plurality of optical analyzers 52. FIG. The description of the parts common to the seventh embodiment is omitted.
 図35は、実施の形態8の測定装置30の構成を説明する説明図である。測定装置30は、第1光解析器521および第2光解析器522の2つの光解析器52と、第1ビームスプリッタ561および第2ビームスプリッタ562の2つのビームスプリッタ56とを備える。 FIG. 35 is an explanatory diagram for explaining the configuration of the measuring device 30 according to the eighth embodiment. The measurement device 30 includes two optical analyzers 52 , a first optical analyzer 521 and a second optical analyzer 522 , and two beam splitters 56 , a first beam splitter 561 and a second beam splitter 562 .
 光源51と入力コネクタ371との間に第1ビームスプリッタ561が接続されている。第1ビームスプリッタ561と、第1光解析器521および第2光解析器522との間に、第2ビームスプリッタ562が接続されている。第2ビームスプリッタ562は、入射した光を波長に基づいて分離する、ダイクロイックビームスプリッタである。第2ビームスプリッタ562は、複数の蛍光体が放射した蛍光を分光する分光部の機能を実現する。 A first beam splitter 561 is connected between the light source 51 and the input connector 371 . A second beam splitter 562 is connected between the first beam splitter 561 and the first optical analyzer 521 and the second optical analyzer 522 . The second beam splitter 562 is a dichroic beam splitter that separates incident light based on wavelength. The second beam splitter 562 realizes the function of a spectroscopic section that spectroscopically separates fluorescence emitted by a plurality of phosphors.
 以下の説明では、第1光解析器521は蛍光体Jから放射された蛍光の特性を解析し、第2光解析器522は蛍光体Kから放射された蛍光の特性を解析する場合を例にして説明する。光源51から、蛍光体Jと蛍光体Kとの両方を励起可能な励起光が放射される。 In the following description, it is assumed that the first optical analyzer 521 analyzes the characteristics of the fluorescence emitted from the phosphor J, and the second optical analyzer 522 analyzes the characteristics of the fluorescence emitted from the phosphor K. to explain. The light source 51 emits excitation light capable of exciting both the phosphor J and the phosphor K. FIG.
 なお、蛍光体Jと蛍光体Kとは、たとえば一つの発光体24に混合されている。図31で説明したようにセンサプローブ40が第1発光体241と第2発光体242との複数の発光体24を有する場合には、一方の発光体24に蛍光体Jが混合されており、他方の発光体24に蛍光体Kが混合されていてもよい。 Note that the phosphor J and the phosphor K are mixed in one light emitter 24, for example. 31, when the sensor probe 40 has a plurality of light emitters 24 of the first light emitter 241 and the second light emitter 242, one of the light emitters 24 is mixed with the phosphor J, The phosphor K may be mixed with the other light emitter 24 .
 励起光は、導光路55、ビームスプリッタ56および光ファイバ41を介して発光体24を照射する。発光体24が血液または輸液等の流体に接触した場合、蛍光体Jおよび蛍光体Kがそれぞれ蛍光を放射する。 The excitation light irradiates the light emitter 24 through the light guide 55 , beam splitter 56 and optical fiber 41 . When the light-emitting body 24 contacts fluid such as blood or infusion, phosphor J and phosphor K respectively emit fluorescence.
 蛍光体Jおよび蛍光体Kがそれぞれ放射した蛍光は混合された状態で光ファイバ41に入射する。光ファイバ41により導光された蛍光は、入力コネクタ371および導光路55を介して第1ビームスプリッタ561に入射する。第1ビームスプリッタ561により、蛍光は第2ビームスプリッタ562に繋がる導光路55に入射する。第2ビームスプリッタ562により、蛍光は蛍光体Jにより放射された蛍光とそれ以外の光とに分離される。蛍光体Jにより放射された蛍光は第1光解析器521に入射し、それ以外の光は第2光解析器522に入射する。 The fluorescence emitted by phosphor J and phosphor K enters the optical fiber 41 in a mixed state. Fluorescence light guided by the optical fiber 41 enters the first beam splitter 561 via the input connector 371 and the light guide path 55 . The first beam splitter 561 causes the fluorescence to enter the light guide path 55 leading to the second beam splitter 562 . The second beam splitter 562 separates the fluorescence into the fluorescence emitted by the phosphor J and the other light. The fluorescence emitted by the phosphor J enters the first optical analyzer 521 and the other light enters the second optical analyzer 522 .
 第1光解析器521は、蛍光体Jにより放射された蛍光の特性を解析して、結果をバスに出力する。第2光解析器522は、蛍光体Kにより放射された蛍光の特性を解析して、結果をバスに出力する。なお、第2ビームスプリッタ562と第2光解析器522との間に、蛍光体Kにより放射された蛍光のみを透過させる光学フィルタが配置されていてもよい。 The first optical analyzer 521 analyzes the characteristics of the fluorescence emitted by the phosphor J and outputs the results to the bus. A second optical analyzer 522 analyzes the properties of the fluorescence emitted by the phosphor K and outputs the results on a bus. An optical filter that transmits only the fluorescence emitted by the phosphor K may be arranged between the second beam splitter 562 and the second optical analyzer 522 .
 本実施の形態によると、2種類の蛍光体により放射された蛍光を同時に解析する測定システム10を提供できる。なお、発光体24は3種類以上の蛍光体を含み、測定装置30は蛍光体の数に対応する光解析器52およびビームスプリッタ56を備えていてもよい。導光路55を通過する光の波長を任意の波長に調節するために、導光路55の途中に特定の波長のみを通す光学フィルタが配置されていてもよい。 According to this embodiment, it is possible to provide the measurement system 10 that simultaneously analyzes the fluorescence emitted by two types of phosphors. The light emitter 24 may include three or more types of phosphors, and the measurement device 30 may include the light analyzers 52 and beam splitters 56 corresponding to the number of phosphors. In order to adjust the wavelength of the light passing through the light guide 55 to an arbitrary wavelength, an optical filter that passes only a specific wavelength may be arranged in the middle of the light guide 55 .
[実施の形態9]
 図36は、実施の形態9の測定システム10の機能ブロック図である。測定システム10は、測定用プローブ18と測定装置30とを備える。測定用プローブ18は、第1接続部181と、第2接続部182と、弁体197と、センサ24とを備える。
[Embodiment 9]
FIG. 36 is a functional block diagram of the measurement system 10 of the ninth embodiment. Measurement system 10 includes measurement probe 18 and measurement device 30 . The measurement probe 18 includes a first connection portion 181 , a second connection portion 182 , a valve body 197 and a sensor 24 .
 第1接続部181は、医療用管路161の途中に配置されるコネクタ163に着脱可能であり、コネクタ163に取り付けた場合に医療用管路161に連通する第1管路191を有する。第2接続部182は、シリンジ168を着脱可能であり、第1管路191と連通する第2管路192を有する。弁体197は、第2接続部182にシリンジ168が取り付けられていない場合に、第2管路192を液密に保つ。センサ24は、医療用管路161を流れる流体の状態を測定する。 The first connecting part 181 is attachable to and detachable from a connector 163 arranged in the middle of the medical conduit 161 and has a first conduit 191 that communicates with the medical conduit 161 when attached to the connector 163 . The second connecting portion 182 has a second pipeline 192 to which the syringe 168 can be attached and detached and communicates with the first pipeline 191 . The valve body 197 keeps the second pipeline 192 liquid-tight when the syringe 168 is not attached to the second connecting portion 182 . Sensor 24 measures the state of the fluid flowing through medical conduit 161 .
 測定装置30は、データ取得部85と、表示部86とを備える。データ取得部85は、センサ24からデータを取得する。表示部86は、取得したデータに基づいて医療用管路161が接続された患者に関する情報を表示する。 The measurement device 30 includes a data acquisition section 85 and a display section 86. The data acquisition unit 85 acquires data from the sensor 24 . The display unit 86 displays information about the patient to whom the medical pipeline 161 is connected based on the acquired data.
 各実施例で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The technical features (constituent elements) described in each embodiment can be combined with each other, and new technical features can be formed by combining them.
The embodiments disclosed this time are illustrative in all respects and should be considered not restrictive. The scope of the present invention is not defined by the above-described meaning, but is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 10  測定システム
 161 カテーテル(医療用管路)
 162 輸液バッグ
 163 コネクタ
 168 シリンジ
 169 血管
 18  測定用プローブ
 181 第1接続部
 182 第2接続部
 183 板状部
 184 ロック部
 185 アダプタ
 186 プラグ取付部
 188 バンド取付部
 189 バンド穴
 191 第1管路
 192 第2管路
 194 センサ管路
 195 突当部
 196 プラグ
 197 弁体
 198 管路固定部
 199 結束バンド
 24  発光体(センサ)
 241 第1発光体
 242 第2発光体
 248 導光部
 249 接着層
 30  測定装置
 31  制御部
 32  主記憶装置
 33  補助記憶装置
 34  通信部
 35  表示部
 36  入力部
 371 入力コネクタ
 40  センサプローブ
 41  光ファイバ
 42  ファイバ栓
 411 光ファイバコネクタ
 51  光源
 52  光解析器
 521 第1光解析器
 522 第2光解析器
 55  導光路
 56  ビームスプリッタ
 561 第1ビームスプリッタ
 562 第2ビームスプリッタ
 57  フィルタ
 61  日時欄
 62  酸素分圧欄
 63  温度欄
 67  指標欄
 68  グラフ欄
 85  データ取得部
 86  表示部
10 measurement system 161 catheter (medical conduit)
162 infusion bag 163 connector 168 syringe 169 blood vessel 18 measurement probe 181 first connecting portion 182 second connecting portion 183 plate-like portion 184 locking portion 185 adapter 186 plug attaching portion 188 band attaching portion 189 band hole 191 first conduit 192 second 2 pipes 194 sensor pipe 195 abutting part 196 plug 197 valve body 198 pipe fixing part 199 binding band 24 luminous body (sensor)
241 first light emitter 242 second light emitter 248 light guide section 249 adhesive layer 30 measuring device 31 control section 32 main storage device 33 auxiliary storage device 34 communication section 35 display section 36 input section 371 input connector 40 sensor probe 41 optical fiber 42 Fiber plug 411 Optical fiber connector 51 Light source 52 Optical analyzer 521 First optical analyzer 522 Second optical analyzer 55 Light guiding path 56 Beam splitter 561 First beam splitter 562 Second beam splitter 57 Filter 61 Date and time field 62 Oxygen partial pressure field 63 temperature column 67 index column 68 graph column 85 data acquisition unit 86 display unit

Claims (43)

  1.  医療用管路の途中に配置されるコネクタに着脱可能であり、前記コネクタに取り付けた場合に前記医療用管路に連通する第1管路を有する第1接続部と、
     シリンジを着脱可能であり、前記第1管路と連通する第2管路を有する第2接続部と、
     前記第2接続部にシリンジが取り付けられていない場合に、前記第2管路を液密に保つ弁体と、
     前記医療用管路を流れる流体の状態を測定するセンサと
     を備える測定用プローブ。
    a first connecting part that is attachable to and detachable from a connector arranged in the middle of a medical duct and has a first duct that communicates with the medical duct when attached to the connector;
    A second connection part having a second conduit that allows a syringe to be attached and detached and that communicates with the first conduit;
    a valve body that keeps the second pipeline liquid-tight when the syringe is not attached to the second connection;
    and a sensor that measures the state of the fluid flowing through the medical pipeline.
  2.  前記センサは、前記第1管路内に配置されている
     請求項1に記載の測定用プローブ。
    2. The measuring probe according to claim 1, wherein said sensor is arranged within said first conduit.
  3.  一端が前記第1管路と平行に配置されたセンサ管路を有し、
     前記センサは、前記センサ管路内に配置されている
     請求項1に記載の測定用プローブ。
    a sensor conduit having one end arranged parallel to the first conduit;
    2. The measuring probe of claim 1, wherein the sensor is positioned within the sensor conduit.
  4.  前記センサは、測定対象成分に接触した場合に発光する発光体を含み、
     前記発光体から放射された放射光を導光する導光体を備える
     請求項1から請求項3のいずれか一つに記載の測定用プローブ。
    The sensor includes a luminous body that emits light when in contact with the component to be measured,
    The measurement probe according to any one of claims 1 to 3, further comprising a light guide body that guides the radiation light emitted from the light emitter.
  5.  前記放射光は蛍光である
     請求項4に記載の測定用プローブ。
    The measuring probe according to claim 4, wherein the emitted light is fluorescence.
  6.  前記発光体は、蛍光色素を含む
     請求項4または請求項5に記載の測定用プローブ。
    The measurement probe according to claim 4 or 5, wherein the luminous body contains a fluorescent dye.
  7.  前記発光体は、複数の測定項目のそれぞれに応じて発光の状態が変化する
     請求項4から請求項6のいずれか一つに記載の測定用プローブ。
    The measuring probe according to any one of claims 4 to 6, wherein the luminous body changes its luminous state according to each of a plurality of measurement items.
  8.  前記導光体に接続された光コネクタを備える
     請求項4から請求項7のいずれか一つに記載の測定用プローブ。
    The measuring probe according to any one of claims 4 to 7, comprising an optical connector connected to the light guide.
  9.  前記導光体は一端に前記光コネクタが接続された光ファイバである
     請求項8に記載の測定用プローブ。
    The measurement probe according to claim 8, wherein the light guide is an optical fiber having one end connected to the optical connector.
  10.  前記センサは、前記導光体に固定されている
     請求項4から請求項9のいずれか一つに記載の測定用プローブ。
    The measuring probe according to any one of claims 4 to 9, wherein the sensor is fixed to the light guide.
  11.  前記センサは、一つの前記導光体に複数個固定されており、
     前記導光体は、複数の前記センサからそれぞれ放射された前記放射光を一つの前記光コネクタに導光する
     請求項8または請求項9に記載の測定用プローブ。
    A plurality of the sensors are fixed to one light guide,
    10. The measurement probe according to claim 8, wherein the light guide body guides the emitted light emitted from each of the plurality of sensors to one of the optical connectors.
  12.  前記放射光を除く光が前記導光体に入射することを防止する遮光体を備える
     請求項4から請求項11のいずれか一つに記載の測定用プローブ。
    12. The measuring probe according to any one of claims 4 to 11, further comprising a light blocking body that prevents light other than the emitted light from entering the light guide.
  13.  第2センサをさらに備える
     請求項4から請求項12のいずれか一つに記載の測定用プローブ。
    13. A measuring probe according to any one of claims 4 to 12, further comprising a second sensor.
  14.  前記第2センサは、前記医療用管路を流れる流体に接触しないように配置されている
     請求項13に記載の測定用プローブ。
    14. The measuring probe of claim 13, wherein the second sensor is positioned so as not to contact fluid flowing through the medical line.
  15.  前記第2センサは、超音波流量計または熱式流量計のセンサである
     請求項13または請求項14に記載の測定用プローブ。
    The measuring probe according to claim 13 or 14, wherein the second sensor is a sensor of an ultrasonic flowmeter or a thermal flowmeter.
  16.  前記発光体は、流体中の酸素分圧、流体中の二酸化炭素分圧、流体の水素イオン指数、流体中のカリウムイオン量、流体中のナトリウムイオン量、流体の温度、または、流体の圧力に応じて前記放射光が変化する
     請求項4から請求項14のいずれか一つに記載の測定用プローブ。
    The luminous body depends on the partial pressure of oxygen in the fluid, the partial pressure of carbon dioxide in the fluid, the hydrogen ion exponent of the fluid, the amount of potassium ions in the fluid, the amount of sodium ions in the fluid, the temperature of the fluid, or the pressure of the fluid. 15. A measuring probe according to any one of claims 4 to 14, wherein the emitted light changes accordingly.
  17.  前記センサは、流体中の酸素分圧、流体中の二酸化炭素分圧、流体の水素イオン指数、流体中のカリウムイオン量、流体中のナトリウムイオン量、流体中のクレアチニン量、流体中の塩素イオン量、流体の比重、流体中の尿素窒素量、流体中の乳酸量、流体中のグルコース量、流体中のHbA1c値、流体中のCRP(C-reactive protein)量、流体中の尿酸量、流体中のヘモグロビン量、流体のヘマトクリット値、流体中のアルブミン量、流体中のグロブミン量、流体中のビリルビン量、流体の温度、または、流体の圧力に応じて出力が変化する
     請求項1から請求項16のいずれか一つに記載の測定用プローブ。
    The sensor detects the partial pressure of oxygen in the fluid, the partial pressure of carbon dioxide in the fluid, the hydrogen ion exponent of the fluid, the amount of potassium ions in the fluid, the amount of sodium ions in the fluid, the amount of creatinine in the fluid, and the amount of chloride ions in the fluid. amount, specific gravity of fluid, amount of urea nitrogen in fluid, amount of lactic acid in fluid, amount of glucose in fluid, HbA1c value in fluid, amount of CRP (C-reactive protein) in fluid, amount of uric acid in fluid, fluid The output changes according to the amount of hemoglobin in the fluid, the hematocrit value of the fluid, the amount of albumin in the fluid, the amount of globmin in the fluid, the amount of bilirubin in the fluid, the temperature of the fluid, or the pressure of the fluid. 17. The measuring probe according to any one of 16.
  18.  前記医療用管路は患者の血管と体外の器具とを接続する管路であり、
     前記センサは、流体中の酸素分圧、流体中の二酸化炭素分圧、流体の水素イオン指数、流体中のカリウムイオン量、流体中のナトリウムイオン量、流体中のクレアチニン量、流体中の塩素イオン量、流体の比重、流体中の尿素窒素量、流体中の乳酸量、流体中のグルコース量、流体中のHbA1c値、流体中のCRP量、流体中の尿酸量、流体中のヘモグロビン量、流体のヘマトクリット値、流体中のアルブミン量、流体中のグロブミン量、流体中のビリルビン量、流体の温度、または、流体の圧力に応じて出力が変化する
     請求項1から請求項16のいずれか一つに記載の測定用プローブ。
    The medical conduit is a conduit that connects a patient's blood vessel and an extracorporeal instrument,
    The sensor detects the partial pressure of oxygen in the fluid, the partial pressure of carbon dioxide in the fluid, the hydrogen ion exponent of the fluid, the amount of potassium ions in the fluid, the amount of sodium ions in the fluid, the amount of creatinine in the fluid, and the amount of chloride ions in the fluid. amount, specific gravity of fluid, amount of urea nitrogen in fluid, amount of lactic acid in fluid, amount of glucose in fluid, HbA1c value in fluid, amount of CRP in fluid, amount of uric acid in fluid, amount of hemoglobin in fluid, fluid The output changes according to the hematocrit value of the fluid, the amount of albumin in the fluid, the amount of globmin in the fluid, the amount of bilirubin in the fluid, the temperature of the fluid, or the pressure of the fluid. The measurement probe described in .
  19.  前記医療用管路は、患者の膀胱から尿を排出するカテーテルであり、
     前記センサは、流体中の酸素分圧、流体中の二酸化炭素分圧、流体の水素イオン指数、流体中のカリウムイオン量、流体中のナトリウムイオン量、流体中のクレアチニン量、流体中の塩素イオン量、流体の比重、流体中のグルコース量、流体中の乳酸量、流体中の遊離ヘモグロビン量、流体の温度、または、流体の圧力に応じて出力が変化する
     請求項1から請求項16のいずれか一つに記載の測定用プローブ。
    wherein the medical line is a catheter that drains urine from the patient's bladder;
    The sensor detects the partial pressure of oxygen in the fluid, the partial pressure of carbon dioxide in the fluid, the hydrogen ion exponent of the fluid, the amount of potassium ions in the fluid, the amount of sodium ions in the fluid, the amount of creatinine in the fluid, and the amount of chloride ions in the fluid. 17. The output changes according to the amount, the specific gravity of the fluid, the amount of glucose in the fluid, the amount of lactic acid in the fluid, the amount of free hemoglobin in the fluid, the temperature of the fluid, or the pressure of the fluid. 1. A measuring probe according to claim 1.
  20.  前記第2接続部は、シリンジが取り付けられる前に消毒可能な構造である
     請求項1から請求項19のいずれか一つに記載の測定用プローブ。
    The measuring probe according to any one of claims 1 to 19, wherein the second connecting part has a structure that can be sterilized before the syringe is attached.
  21.  前記コネクタは、前記医療用管路への流体注入用、または、前記医療用管路からのサンプル採取用である
     請求項1から請求項20のいずれか一つに記載の測定用プローブ。
    21. The measuring probe according to any one of claims 1 to 20, wherein the connector is for injecting fluid into the medical line or taking a sample from the medical line.
  22.  前記コネクタへの固定に用いられるコネクタ固定部を備える
     請求項1から請求項21のいずれか一つに記載の測定用プローブ。
    The measuring probe according to any one of claims 1 to 21, further comprising a connector fixing portion used for fixing to the connector.
  23.  前記医療用管路に固定される医療用管路固定部を備える
     請求項1から請求項22のいずれか一つに記載の測定用プローブ。
    23. The measuring probe according to any one of claims 1 to 22, further comprising a medical conduit fixing portion fixed to the medical conduit.
  24.  医療用管路の途中に配置されるコネクタに着脱可能であり、前記コネクタに取り付けた場合に前記医療用管路に連通する第1管路を有する第1接続部と、
     シリンジを着脱可能であり、前記第1管路と連通する第2管路を有する第2接続部と、
     前記第2接続部にシリンジが取り付けられていない場合に、前記第2管路を液密に保つ弁体と、
     前記医療用管路を流れる流体の状態を測定するセンサを取り付け可能なセンサ取付部と
     を備えるアダプタ。
    a first connecting part that is attachable to and detachable from a connector arranged in the middle of a medical duct and has a first duct that communicates with the medical duct when attached to the connector;
    A second connection part having a second conduit that allows a syringe to be attached and detached and that communicates with the first conduit;
    a valve body that keeps the second pipeline liquid-tight when the syringe is not attached to the second connection;
    and a sensor mounting portion to which a sensor that measures the state of the fluid flowing through the medical pipeline can be mounted.
  25.  一端が前記第1管路と平行に配置されたセンサ管路を有する
     請求項24に記載のアダプタ。
    25. The adapter of Claim 24, having a sensor conduit arranged parallel to said first conduit at one end.
  26.  測定用プローブと測定装置とを備える測定システムであって、
     前記測定用プローブは、
      医療用管路の途中に配置されるコネクタに着脱可能であり、前記コネクタに取り付けた場合に前記医療用管路に連通する第1管路を有する第1接続部と、
      シリンジを着脱可能であり、前記第1管路と連通する第2管路を有する第2接続部と、
      前記第2接続部にシリンジが取り付けられていない場合に、前記第2管路を液密に保つ弁体と、
      前記医療用管路を流れる流体の状態を測定するセンサとを有し、
     前記測定装置は、
      前記センサからデータを取得するデータ取得部と、
      取得したデータに基づいて前記医療用管路が接続された患者に関する情報を表示する表示部とを備える
     測定システム。
    A measuring system comprising a measuring probe and a measuring device,
    The measurement probe is
    a first connection part that is attachable to and detachable from a connector arranged in the middle of a medical duct and has a first duct that communicates with the medical duct when attached to the connector;
    A second connection part having a second conduit that allows a syringe to be attached and detached and that communicates with the first conduit;
    a valve body that keeps the second pipeline liquid-tight when the syringe is not attached to the second connection;
    a sensor that measures the state of the fluid flowing through the medical pipeline;
    The measuring device is
    a data acquisition unit that acquires data from the sensor;
    a display that displays information about a patient to whom the medical pipeline is connected based on the acquired data.
  27.  前記センサは、前記第1管路内に配置されている
     請求項26に記載の測定システム。
    27. The measurement system of claim 26, wherein said sensor is positioned within said first conduit.
  28.  前記測定用プローブは一端が前記第1管路と平行に配置されたセンサ管路を有し、
     前記センサは、前記センサ管路内に配置されている
     請求項26に記載の測定システム。
    The measuring probe has a sensor conduit with one end arranged parallel to the first conduit,
    27. The measurement system of Claim 26, wherein the sensor is disposed within the sensor conduit.
  29.  前記センサは、測定対象成分に接触した場合に発光する発光体を有し、
     前記測定用プローブは、前記発光体から放射された放射光を導光する導光体を有し、
     前記測定装置は、
      前記導光体を介して前記発光体に励起光を照射する光源と、
      前記導光体により導光された前記放射光を受光する受光部と、
      前記放射光を解析する光解析器とを備え、
     前記データ取得部は、前記光解析器から前記発光体の発光状態に関連するデータを取得する
     請求項26から請求項28のいずれか一つに記載の測定システム。
    The sensor has a luminous body that emits light when it comes into contact with the component to be measured,
    The measurement probe has a light guide that guides the emitted light emitted from the light emitter,
    The measuring device is
    a light source that irradiates the light emitter with excitation light through the light guide;
    a light receiving unit that receives the emitted light guided by the light guide;
    and an optical analyzer that analyzes the radiated light,
    29. The measurement system according to any one of claims 26 to 28, wherein the data acquisition unit acquires data related to the light emitting state of the light emitter from the light analyzer.
  30.  前記測定用プローブは、前記放射光を除く光が前記導光体に入射することを防止する遮光体を備える
     請求項29に記載の測定システム。
    30. The measurement system according to claim 29, wherein the measurement probe includes a light block that prevents light other than the emitted light from entering the light guide.
  31.  前記発光体は、流体中の酸素分圧、流体中の二酸化炭素分圧、流体の水素イオン指数、流体中のカリウムイオン量、流体中のナトリウムイオン量、流体の温度、または、流体の圧力に応じて前記放射光が変化する
     請求項29または請求項30に記載の測定システム。
    The luminous body depends on the partial pressure of oxygen in the fluid, the partial pressure of carbon dioxide in the fluid, the hydrogen ion exponent of the fluid, the amount of potassium ions in the fluid, the amount of sodium ions in the fluid, the temperature of the fluid, or the pressure of the fluid. 31. A measurement system according to claim 29 or claim 30, wherein the emitted light changes accordingly.
  32.  前記放射光は蛍光である
     請求項29から請求項31のいずれか一つに記載の測定システム。
    32. The measurement system of any one of claims 29-31, wherein the emitted light is fluorescence.
  33.  前記センサは、複数の測定項目のそれぞれに対応する複数の前記発光体を有し、
     前記導光体は、複数の前記発光体からそれぞれ放射された前記放射光を混合された状態で導光する
     請求項29から請求項32のいずれか一つに記載の測定システム。
    The sensor has a plurality of light emitters corresponding to each of a plurality of measurement items,
    33. The measurement system according to any one of claims 29 to 32, wherein the light guide guides the emitted light emitted from each of the plurality of light emitters in a mixed state.
  34.  前記センサは複数であり、
     前記導光体は、複数の前記センサの前記発光体からそれぞれ放射された前記放射光を混合された状態で導光する
     請求項29から請求項33のいずれか一つに記載の測定システム。
    the sensor is a plurality,
    34. The measurement system according to any one of claims 29 to 33, wherein the light guide guides the emitted light emitted from the light emitters of the plurality of sensors in a mixed state.
  35.  前記測定装置は、
      前記放射光を分光する分光部と、
      前記分光部により分光されたそれぞれの光を解析する複数の前記光解析器とを備える
     請求項33または請求項34に記載の測定システム。
    The measuring device is
    a spectroscopic unit that spectroscopically disperses the emitted light;
    35. The measurement system according to claim 33 or 34, further comprising a plurality of said light analyzers for analyzing respective lights separated by said spectroscopic section.
  36.  前記測定装置は、
      前記放射光のうち特定の帯域を透過させるフィルタを備え、
      前記光解析器は前記フィルタを透過した光を解析する
     請求項33から請求項35のいずれか一つに記載の測定システム。
    The measuring device is
    A filter that transmits a specific band of the emitted light,
    36. The measurement system of any one of claims 33-35, wherein the light analyzer analyzes light transmitted through the filter.
  37.  前記導光体は一端に前記発光体が配置され、他端に前記受光部に接続される光コネクタが接続された光ファイバである
     請求項29から請求項36のいずれか一つに記載の測定システム。
    The measurement according to any one of claims 29 to 36, wherein the light guide is an optical fiber having one end where the light emitter is arranged and the other end which is connected to an optical connector connected to the light receiving section. system.
  38.  前記光ファイバを前記医療用管路に留め付ける留具を備える
     請求項37に記載の測定システム。
    38. The measurement system of claim 37, comprising fasteners for fastening the optical fiber to the medical line.
  39.  第2センサをさらに備える
     請求項26から請求項38のいずれか一つに記載の測定システム。
    39. The measurement system of any one of claims 26-38, further comprising a second sensor.
  40.  前記第2センサは、超音波流量計、熱式流量計、またはレーザ流量計のセンサである
     請求項39に記載の測定システム。
    40. The measurement system of claim 39, wherein the second sensor is an ultrasonic flow meter, thermal flow meter, or laser flow meter sensor.
  41.  前記第2センサは、前記医療用管路を流れる流体に接触しない非接液センサである
     請求項39または請求項40に記載の測定システム。
    41. The measurement system according to claim 39 or 40, wherein the second sensor is a non-wetted sensor that does not come into contact with the fluid flowing through the medical pipeline.
  42.  前記表示部は、患者に関する情報を時系列で表示する
     請求項26から請求項41のいずれか一つに記載の測定システム。
    42. The measurement system according to any one of claims 26 to 41, wherein the display unit displays information about the patient in chronological order.
  43.  前記表示部は、患者に関する指標を表示する
     請求項26から請求項42のいずれか一つに記載の測定システム。
    43. The measurement system according to any one of claims 26 to 42, wherein the display displays patient-related indicators.
PCT/JP2022/010592 2021-07-30 2022-03-10 Measurement probe, adaptor, and measurement system WO2023007813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021126086 2021-07-30
JP2021-126086 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023007813A1 true WO2023007813A1 (en) 2023-02-02

Family

ID=85087778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010592 WO2023007813A1 (en) 2021-07-30 2022-03-10 Measurement probe, adaptor, and measurement system

Country Status (1)

Country Link
WO (1) WO2023007813A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906232A (en) * 1988-03-01 1990-03-06 Abbott Laboratories Intravascular delivery device
JPH04218140A (en) * 1990-02-16 1992-08-07 Boc Group Inc:The Optical fiber probe for biophysics
JP2008542694A (en) * 2005-05-25 2008-11-27 ラウメディック アーゲー Probe for measuring oxygen content in biological tissue and catheter having this type of probe
JP2011521899A (en) * 2008-04-18 2011-07-28 ファーマコフォトニクス,インコーポレイティド Method and apparatus for analyzing renal function
JP2013006123A (en) * 2007-06-20 2013-01-10 Terumo Corp Multiway cock and liquid dose circuit
WO2014162339A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Connector
WO2017038575A1 (en) * 2015-08-28 2017-03-09 株式会社根本杏林堂 Medicinal liquid injecting circuit, medicinal liquid injecting system provided with said medicinal liquid injecting circuit, and medical imaging system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906232A (en) * 1988-03-01 1990-03-06 Abbott Laboratories Intravascular delivery device
JPH04218140A (en) * 1990-02-16 1992-08-07 Boc Group Inc:The Optical fiber probe for biophysics
JP2008542694A (en) * 2005-05-25 2008-11-27 ラウメディック アーゲー Probe for measuring oxygen content in biological tissue and catheter having this type of probe
JP2013006123A (en) * 2007-06-20 2013-01-10 Terumo Corp Multiway cock and liquid dose circuit
JP2011521899A (en) * 2008-04-18 2011-07-28 ファーマコフォトニクス,インコーポレイティド Method and apparatus for analyzing renal function
WO2014162339A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Connector
WO2017038575A1 (en) * 2015-08-28 2017-03-09 株式会社根本杏林堂 Medicinal liquid injecting circuit, medicinal liquid injecting system provided with said medicinal liquid injecting circuit, and medical imaging system

Similar Documents

Publication Publication Date Title
MIller et al. Performance of an in-vivo, continuous blood-gas monitor with disposable probe.
US8287739B2 (en) Measuring hematocrit and estimating hemoglobin values with a non-invasive, optical blood monitoring system
EP2197350A2 (en) Infusion therapy sensor system
Mahutte On-line arterial blood gas analysis with optodes: current status
US20180000394A1 (en) Method and system for creating a diagnostic vascular window
Baldini Microdialysis-based sensing in clinical applications
US9808187B2 (en) Measuring chamber for an optical sensor for determining a concentration of a substance in the tissue fluid of a mammal
CN102160777B (en) Body fluid bioinformation fiber dynamic testing system
Martin et al. Performance and use of paracorporeal fiber optic blood gas sensors
WO2023007813A1 (en) Measurement probe, adaptor, and measurement system
US20090018483A1 (en) Infrared Sample Chamber
Mahutte et al. Development of a patient-dedicated, on-demand, blood gas monitor.
WO2007034396A2 (en) Extracorporeal glucose sensor
US9037209B2 (en) Bio-diagnostic testing system and methods
JP2007159659A (en) Hollow needle for blood sampling
AU2010205740B2 (en) Device for measuring at least one parameter of an arterial blood sample
US20070156035A1 (en) Catheter operable to deliver IV fluids and provide blood testing capabilities
Ferrari et al. Continuous haematic pH monitoring in extracorporeal circulation using a disposable florescence sensing element
WO2023007810A1 (en) Measurement probe, catheter set, and measurement system
US20230293018A1 (en) Whole blood sampling and monitoring device, method and software
WO2022209703A1 (en) Measurement adapter, measurement system and measurement method
Shapiro Intra‐arterial and extra‐arterial pH, PCO2 and PO2 monitors
Bartnik et al. Bedside arterial blood gas monitoring system using fluorescent optical sensors
JP2006158611A (en) Indocyanine green quantitative catheter system
Schlain et al. Continuous arterial blood gas monitoring with transmitted light sensors and light emitting diode light sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE