WO2017038575A1 - Medicinal liquid injecting circuit, medicinal liquid injecting system provided with said medicinal liquid injecting circuit, and medical imaging system - Google Patents

Medicinal liquid injecting circuit, medicinal liquid injecting system provided with said medicinal liquid injecting circuit, and medical imaging system Download PDF

Info

Publication number
WO2017038575A1
WO2017038575A1 PCT/JP2016/074637 JP2016074637W WO2017038575A1 WO 2017038575 A1 WO2017038575 A1 WO 2017038575A1 JP 2016074637 W JP2016074637 W JP 2016074637W WO 2017038575 A1 WO2017038575 A1 WO 2017038575A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
chemical
tube
circuit
flow sensor
Prior art date
Application number
PCT/JP2016/074637
Other languages
French (fr)
Japanese (ja)
Inventor
増田 和正
根本 茂
宇田川 誠
敦久 田野
Original Assignee
株式会社根本杏林堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根本杏林堂 filed Critical 株式会社根本杏林堂
Priority to JP2017537780A priority Critical patent/JP6839853B2/en
Publication of WO2017038575A1 publication Critical patent/WO2017038575A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic

Definitions

  • the present invention relates to a chemical solution injection circuit used for injecting a chemical solution such as a contrast medium when taking a medical image, a chemical solution injection system including the chemical solution injection circuit, and the like.
  • Medical image diagnostic apparatuses include CT apparatus, MRI apparatus, angio apparatus, PET apparatus, MRA apparatus, and ultrasonic image diagnostic apparatus.
  • a medical solution such as a contrast medium or physiological saline is often injected into the subject.
  • the liquid medicine to be injected is filled in a syringe, and the liquid medicine filled in the syringe is automatically injected according to injection conditions set in advance using a liquid medicine injection device.
  • an injection circuit is constituted by a catheter, an indwelling needle, various tubes, and the like in order to connect a syringe mounted on the chemical solution injection device and a subject.
  • the blood pressure of the subject is monitored, whether the injection circuit is normally connected, the leakage of the chemical solution in the subject's body is monitored, etc.
  • Various sensors are often used to monitor whether a chemical solution is being injected according to the injection conditions.
  • treatment is performed by inserting a catheter into a subject while confirming the affected area under fluoroscopy.
  • the catheter is advanced to the occluded site of the coronary artery, and the thrombolytic agent is ejected from the tip.
  • a contrast medium is used to confirm the occlusion site or guide the catheter to the coronary artery.
  • a catheter is inserted while monitoring the blood pressure of the subject for safety confirmation.
  • Patent Document 1 Japanese Patent No. 4338446
  • the injection circuit disclosed in Patent Document 1 includes a drug solution injection tube whose end is connected to a syringe filled with a contrast agent, and a drug solution that restricts movement of the drug solution in the drug solution injection tube from the end side to the tip side. It has a one-way valve provided on the injection tube, and a blood pressure detection tube having a pressure transducer connected to the end and having a tip connected to the tip side of the one-side valve of the drug solution injection tube.
  • the pressure transducer when the contrast agent is not injected, the pressure of blood flowing in the blood vessel is transmitted to the pressure transducer, and the blood pressure is directly detected by the pressure transducer.
  • pressure transducers used in this type of injection circuit generally have a lower withstand pressure value than the injection pressure of the contrast agent. Therefore, when a high pressure due to the contrast medium is transmitted to the pressure transducer through the blood pressure detection tube during the injection of the contrast medium, the pressure transducer may be destroyed.
  • the injection circuit disclosed in Patent Document 1 is provided with a switching valve in the blood pressure detection tube that shuts off the blood pressure detection tube when the chemical liquid is injected at a pressure higher than a predetermined pressure, and the pressure generated by the chemical liquid injection is applied to the pressure transducer. It is not transmitted.
  • a contrast medium is injected through an indwelling needle punctured into a subject's blood vessel. At this time, it may be performed to check whether the tip of the indwelling needle is located in the blood vessel, or to detect whether the injected drug solution has leaked out of the blood vessel. Confirmation of the tip position of the indwelling needle is also referred to as “route confirmation”, and can be performed by confirming whether blood has flowed into the injection circuit when the piston of the syringe is retracted.
  • route confirmation can be performed by confirming whether blood has flowed into the injection circuit when the piston of the syringe is retracted.
  • a leakage detection unit including a light emitting element and a light receiving element is placed near the tip of the indwelling needle.
  • the light emitted from the light-emitting element toward the body surface toward the body of the subject can be detected by the light-receiving element and detected by a change in intensity.
  • the injection pressure can be obtained by detecting the force acting on the piston drive mechanism that operates the piston of the syringe by a force sensor such as a load cell, or by measuring the motor current flowing through the motor that drives the piston drive mechanism. .
  • the injection amount can be obtained from the movement amount of the piston drive mechanism.
  • a linear encoder or a rotary encoder that counts the rotation amount of the motor is used.
  • the injection speed can be calculated from the amount of movement of the piston drive mechanism per unit time.
  • An object of the present invention is to provide a chemical solution injection circuit that can detect various items related to chemical solution injection with a simpler configuration, a chemical solution injection system including the chemical solution injection circuit, and the like.
  • a chemical liquid injection circuit used when injecting a chemical liquid filled in a container,
  • a tube unit having at least one tube and having one tip and at least one end;
  • At least one thermal flow sensor disposed between the distal end and the distal end of the tube unit, comprising a conduit through which the chemical solution flowing in the tube flows, and responding to the movement of the chemical solution in the conduit
  • a thermal flow sensor configured to output an electrical signal as a detection result; and
  • a chemical injection circuit is provided.
  • a chemical liquid injection system for injecting a chemical liquid filled in a container
  • An injection head comprising at least one drive mechanism, wherein at least one container is detachably mounted and configured to inject a chemical solution from the container;
  • a chemical injection circuit connected to the container;
  • An injection control unit for controlling the operation of the drive mechanism;
  • the chemical injection circuit is A tube unit having at least one tube and having one tip and at least one end;
  • At least one thermal flow sensor disposed between the distal end and the distal end of the tube unit, comprising a conduit through which the chemical solution flowing in the tube flows, and responding to the movement of the chemical solution in the conduit
  • a thermal flow sensor configured to output an electrical signal as a detection result to the injection control unit;
  • a medicinal solution injection system is provided.
  • the chemical solution injection system of the present invention A medical image capturing apparatus for acquiring a medical image from a subject into which a chemical liquid is injected by the chemical liquid injection system; A medical imaging system is provided.
  • At least one container is detachably mounted, and an injection head having at least one drive mechanism configured to inject a chemical from the container, and connected to the container
  • a chemical liquid injection circuit, and an injection control unit for controlling the operation of the drive mechanism, and the chemical liquid injection circuit has at least one tube, and has a tip and at least one end.
  • An operation method of a chemical injection system comprising: at least one thermal flow sensor that is disposed between the distal end and the distal end of the tube unit and includes a conduit through which the chemical flowing in the tube flows.
  • the thermal flow sensor outputs an electrical signal corresponding to the movement of the chemical in the conduit as a detection result to the injection control unit;
  • the injection control unit performs a predetermined function using the detection result output from the thermal flow sensor;
  • the “injection circuit” means a path for circulating a drug solution connected to a container for injecting the drug solution into a blood vessel of a subject, and is attached to at least one tube through which the drug solution is circulated. Including parts.
  • the “infusion circuit” may include a catheter inserted into the subject's blood vessel or an indwelling needle pierced into the subject's blood vessel. When a plurality of medicinal liquids can be injected, the injection circuit may be configured such that the distal end side opposite to the distal end side connected to the catheter or the indwelling needle is branched into a plurality by combining a plurality of tubes. .
  • the injection circuit can be divided into an “external circuit portion” that is located in the body of the subject and an “internal circuit portion” that is at least partially located in the body, depending on the arrangement during use. According to this division, the catheter or the indwelling needle belongs to the in-vivo circuit portion, and the other members belong to the extracorporeal circuit portion. Therefore, it can be said that the “injection circuit” includes at least the extracorporeal circuit portion of the in-vivo circuit portion and the extracorporeal circuit portion.
  • the “tip” of the injection circuit, tube unit, and tube means the end closest to the subject when the injection circuit is connected to the subject to inject the drug solution.
  • the “end” of the injection circuit, tube unit and tube means the end opposite to the “tip” in their longitudinal direction. Depending on the form of the injection circuit, there may be only one “terminal” or multiple “terminals”.
  • the injection circuit includes a thermal flow sensor, so that pressure is obtained, occurrence of an abnormality is determined, or the thermal flow sensor Various functions can be given to the system by using the detection result from.
  • FIG. 1 is a schematic block diagram of a medical imaging system according to an embodiment of the present invention. It is a figure which shows one form of the injection
  • FIG. 5 is a diagram showing an example of an injection condition setting screen displayed when setting injection conditions in the chemical injection device shown in FIG. 4.
  • FIG. 5 is a diagram showing an example of an injection condition setting screen displayed when setting injection conditions in the chemical injection device shown in FIG. 4.
  • FIG. 7 is a diagram showing an example of a screen displayed when the dilution ratio is changed when the injection mode is the dilution injection mode on the injection condition setting screen shown in FIG. 6. It is a perspective view which shows the external appearance of the medical imaging system by other embodiment of this invention. It is a schematic block diagram of the medical imaging system shown in FIG. It is a perspective view of the injection head shown in FIG. It is a figure explaining the mounting procedure of the syringe to the injection
  • FIG. 4 is a diagram of an injection circuit according to another embodiment of the present invention. It is a figure which shows the example of a change of arrangement
  • FIG. 16B is a perspective view of the mixing device shown in FIG. 16A. It is sectional drawing of the mixing device shown to FIG. 16A.
  • FIG. 6 is a diagram of an injection circuit according to yet another aspect of the present invention. It is a figure which shows the example of a change of the injection circuit shown in FIG. It is a figure which shows an example of the support arm unit for injection heads which can be used by this invention.
  • FIG. 1 there is shown a block diagram of a medical image imaging system according to an embodiment of the present invention that includes a chemical liquid injection device 100, an injection circuit 200, and a medical image imaging device 500.
  • the chemical injection device 100 and the injection circuit 200 constitute a chemical injection system.
  • the liquid injector 100 and the medical imaging device 500 can be connected to each other so that data can be transmitted and received between them.
  • the connection between the two can be a wired connection or a wireless connection.
  • the medical imaging apparatus 500 includes an imaging operation unit 520 that executes an imaging operation, and an imaging control unit 510 that controls the operation of the imaging operation unit 520, and a subject into which a drug solution is injected by the drug solution injection device 100.
  • a medical image including a tomographic image and / or a three-dimensional image can be acquired.
  • the imaging operation unit 520 usually includes a subject bed, an electromagnetic wave irradiation unit that irradiates electromagnetic waves to a predetermined space on the bed, and the like.
  • the imaging control unit 510 controls the operation of the entire medical imaging apparatus, such as determining the imaging conditions and controlling the operation of the imaging operation unit 520 according to the determined imaging conditions.
  • the imaging control unit 510 can include a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices.
  • a computer program for controlling the medical image capturing apparatus 500 is installed in the ROM.
  • the CPU controls the operation of each unit of the medical image capturing apparatus 500 by executing various functions corresponding to the computer program.
  • the medical imaging apparatus 500 further includes a display unit 504 such as a liquid crystal display capable of displaying imaging conditions and acquired medical images, and an input unit 503 such as a keyboard and / or mouse for inputting imaging conditions. Can do. At least a part of data used to determine the imaging condition is input from the input unit 503 and transmitted to the imaging control unit 510. Data displayed on the display unit 504 is transmitted from the imaging control unit 510.
  • a touch panel in which a touch screen is arranged as an input unit on the display unit display can also be used as the input unit 503 and the display unit 504.
  • a part of the input unit 503, the display unit 504, and the imaging control unit 510 can be incorporated in one housing as a console for a medical imaging apparatus.
  • the drug solution injection device 100 is a device used to inject a drug solution filled in a syringe as a container into a blood vessel of a subject via an injection circuit, and includes a plurality of piston drive mechanisms 130a and 130b, and an input unit. 103, a display unit 104, and an injection control unit 101.
  • the piston drive mechanisms 130a and 130b are mechanisms for operating the pistons of the syringes so as to inject chemicals from the syringes. In this embodiment, the two syringes can be injected separately or simultaneously.
  • Two piston drive mechanisms 130a and 130b for independently operating the pistons are provided. However, there may be a plurality of at least one of the piston driving mechanism 130a for injecting one chemical liquid and the piston driving mechanism 130b for injecting the other chemical liquid.
  • the injection control unit 101 uses at least a part of the data input from the input unit 103 to determine the injection conditions such as the injection amount and the injection speed of the chemical liquid, or the chemical liquid is injected from the syringe according to the determined injection conditions.
  • This chemical solution controls the operation of the piston drive mechanisms 130a and 130b, controls the display of the display unit 104, and executes a predetermined process according to the output from the flow sensor 210, which will be described in detail later. Control the operation of the entire infusion device.
  • the injection control unit 101 can be configured to include a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices.
  • a computer program for controlling the chemical injection device 100 is mounted in the ROM.
  • the CPU can control the operation of each part of the chemical solution injector 100 by executing various functions in response to the computer program.
  • the input unit 103 is a unit used to input data used for determining the injection condition of the chemical solution by the injection control unit 101.
  • the input unit 103 may be a known input device such as a keyboard and / or a mouse.
  • Data input from the input unit 103 is transmitted to the injection control unit 101, and data displayed on the display unit 104 is transmitted from the injection control unit 101.
  • the display unit 104 is controlled by the injection control unit 101 to display data and the like necessary for determining the injection condition of the chemical solution, display the injection protocol, display the injection operation, display various warnings, and the like.
  • the injection protocol indicates what kind of chemical solution is to be injected, how much and at what speed.
  • the injection rate may be constant or may change with time.
  • information on the order of injection of these drug solutions is also included in the injection protocol.
  • any known injection protocol can be used.
  • a known procedure can be used as a procedure for creating the injection protocol.
  • the injection protocol may also include an allowable maximum value (pressure limit) for the injection pressure. When the pressure limit is set, the injection pressure is monitored during the injection operation, and the operations of the piston drive mechanisms 130a and 130b are controlled so that the injection pressure does not exceed the set pressure limit.
  • the display unit 104 may be a known display device such as a liquid crystal display device.
  • a touch panel in which a touch screen is arranged as an input unit on the display unit display can also be used as the input unit 103 and the display unit 104.
  • a part of the input unit 103, the display unit 104, and the injection control unit 101 can be incorporated in one housing as a console for a chemical solution injection device.
  • the injection circuit 200 constitutes a flow path for liquid that communicates between the syringe and the subject, and includes a tube unit having at least one tube and having one tip and at least one end, at least one connector, and A flow sensor 210 can be included.
  • the flow sensor 210 is disposed between the distal end and the distal end of the tube unit.
  • the tube unit may further include at least one connector for connection with a container or the like.
  • the injection circuit 200 shown in FIG. 2 has a first tube 201, a plurality of second tubes 202 and 203, and a T-shaped connector 204 connecting them, and as a whole takes the form of a branch tube branched at the end side. ing.
  • the first tube 201 has a connector 207 for connection with an in-vivo circuit unit such as a catheter at its distal end.
  • the second tubes 202 and 203 have connectors 205 and 206 at their ends for connection with syringes, respectively.
  • Infusion circuit 200 may further include an in-vivo circuit portion, such as a catheter or indwelling needle, connected by a connector 207.
  • At least one of the connectors 205 and 206 connected to the second tubes 202 and 203 may include a one-way valve.
  • the valve has a valve body that is actuated by the back pressure of the liquid and closes the flow path. It works to prevent back flow of liquid into the.
  • at least one of the valves may have a release function that can arbitrarily hold the valve body in the open position of the flow path by a predetermined operation. By using a one-way valve with a release function, it is possible to prevent blood from flowing back to the syringe side normally.
  • the syringe piston It is possible to perform so-called route check or the like that confirms the presence or absence of blood inflow into the injection circuit 200.
  • the injection circuit 200 further includes a flow rate sensor 210.
  • the flow sensor 210 has a conduit that forms part of a liquid flow path together with the first tube 201 and the second tubes 202 and 203.
  • the flow sensor 210 is electrically connected to the injection control unit 101 (see FIG. 1), and an electric signal corresponding to the movement of the liquid (chemical solution) in the conduit is output to the injection control unit 101 as a detection result.
  • the flow sensor 210 can perform a detection operation at regular time intervals, and can transmit a detection result to the injection control unit 101 each time the detection is performed.
  • the injection control unit 101 can obtain various items related to the chemical solution and the chemical solution injection device 100 using the transmitted detection result.
  • the electrical connection between the injection control unit and the flow sensor 210 may be a wired connection or a wireless connection. Further, power for driving the flow sensor 210 can be supplied from an external power supply unit. Alternatively, the flow sensor 210 can be configured as a unit with a built-in battery, and the flow sensor 210 can be driven by electric power driven from the battery.
  • the position of the flow sensor 210 in the injection circuit 200 may be an arbitrary position between the front end and the end of the injection circuit 200.
  • the injection circuit 200 is often composed of a flexible tube, if the flow sensor 210 is attached to a position where the tube is not sufficiently fixed, the tube shakes. There is a possibility that the unintended movement caused by the above causes movement of the chemical solution in the flow path of the flow sensor 210 and an accurate detection result cannot be obtained.
  • the flow sensor 210 is also preferable to arrange the flow sensor 210 at a position close to the detection target.
  • the flow sensor 210 is connected between the tip of the first tube 201 and the connector 207.
  • the flow sensor 210 may be arrange
  • any flow sensor can be used as the flow sensor 210.
  • a thermal flow sensor 210 having a structure as shown in FIG. 3 can be preferably used in the present invention.
  • the 3 has a pipe 211 and a semiconductor module 212 joined to the outer surface of the pipe 211.
  • the pipe 211 is open at both ends so that the liquid can flow therethrough, and constitutes a part of the liquid flow path together with the tube of the injection circuit.
  • the semiconductor module 212 is provided with a heater 213 at positions in contact with the outer surface of the pipe 211, and two temperature sensors 214 arranged symmetrically with respect to the heater 213 on both sides of the heater 213 in the longitudinal direction of the pipe 211. It has been.
  • the temperature sensor 214 forms part of a bridge circuit, and can be configured as a thermopile, for example.
  • the semiconductor module 212 may include a processing circuit (not shown).
  • the processing circuit drives the heater 213, processes the signal from the temperature sensor 214, compares the outputs from the two temperature sensors 214, and measures the temperature difference between these temperature sensors 214.
  • the semiconductor module 212 can have a plurality of electrode pads (not shown) in order to supply power for driving the heater 213 from the outside and to output the measurement result to the outside.
  • the semiconductor module 212 may be sealed with at least a joint with the pipe 211 with a sealant (not shown).
  • the flow rate sensor 210 configured as described above, when the liquid does not move in the pipe 211, the temperature distribution of the liquid in the pipe 211 becomes a symmetric temperature distribution around the heater 213. However, when the liquid moves along the longitudinal direction of the pipe 211, a temperature difference corresponding to the mass flow rate of the moved liquid is generated between the two temperature sensors 214. Since the temperature difference measured by the temperature sensor 214 changes the balance of the bridge circuit, an electrical signal corresponding to the flow rate is obtained.
  • the flow sensor 210 having the configuration shown in FIG. 3 does not expose the members constituting the electric circuit, such as electrodes, on the inner surface of the pipe 211 in contact with the liquid. There is no electrical effect.
  • the distance between the inner surface of the member pipe 211 constituting the electric circuit (for example, the pipe at the portion where the member constituting the electric circuit is arranged)
  • the thickness of the tube wall 211 is preferably 0.4 mm or more.
  • the entire configuration shown in FIG. 3 except for both ends of the pipe 211 that is the inlet and outlet of the liquid may be packaged with resin or the like.
  • the contrast agent which is a chemical solution injected by the chemical injection device of this embodiment
  • the contrast agent is generally a high-viscosity liquid, and a high pressure is required to inject at a predetermined injection rate, and the injection rate itself Is also relatively slow.
  • the flow sensor 210 of the type used in this embodiment has no structure inside the pipe 211 which is a conduit through which a fluid flows, and can detect even a slight liquid movement. can do. Therefore, it can be said that this type of flow sensor 210 is suitable for detecting the movement of liquid injected at a high pressure and a low speed, like the injection circuit 200 for contrast medium.
  • This type of flow sensor 210 can be obtained from, for example, Sensirion Co., Ltd.
  • FIG. 4 there is shown an external perspective view of one form of a chemical liquid injector used in angiography.
  • This chemical injection device 100 has a configuration suitable for injecting a chemical into a subject through a catheter.
  • the chemical injection device 100 is linked to the angio device that is the medical image imaging device 500 shown in FIG.
  • a chemical solution injection device 100 suitable for injecting a chemical solution for angiography has an injection head 110, a console 112, and a main unit 114.
  • the injection head 110 and the console 112 are electrically connected via the main unit 114.
  • the injection head 110 is supported by the upper part of the stand 116 so as to be able to turn, but may be supported by a turning arm fixed to the ceiling.
  • the console can include the input unit 103 and the display unit 104 described above.
  • the console 112 includes a touch panel, which corresponds to the input unit 103 and the display unit 104 described above.
  • the main unit 114 can include a power supply (not shown) and can supply power to the injection head 110 and the console 112 from this power supply.
  • the injection control unit 101 illustrated in FIG. 1 may be disposed in the main unit 114 or may be disposed in the console 112.
  • the injection head 110 is configured so that two syringes 320 can be detachably attached (in FIG. 5, only one syringe 320 is shown for the sake of simplicity).
  • the syringe 320 is attached to the injection head 110 while being inserted into the protective cover 370, but the syringe 320 may be configured to be directly attached to the injection head 110.
  • the syringe 320 is generally called a rodless syringe, and includes a cylinder 321 having a flange 321a formed at the end and a nozzle portion 321b formed at the tip, and a piston 322 inserted into the cylinder 321 so as to be capable of moving forward and backward. have.
  • the injection circuit 200 shown in FIG. 2 can be connected to the tip of each syringe 320.
  • FIG. 2 shows an extracorporeal circuit portion of the injection circuit 200.
  • an in-vivo circuit portion such as a catheter is connected via a connector 207 at the distal end of the first tube 201.
  • the syringe 320 connected to the one second tube 202 is filled with the contrast agent
  • the syringe 320 connected to the other second tube 203 is filled.
  • a syringe 320 filled with contrast agents having different concentrations may be connected to each of the second tubes 202 and 203.
  • Contrast agents used for medical imaging are relatively high in viscosity, and in particular, contrast agents used for angiography are higher in viscosity than other types of contrast agents.
  • the catheter is generally very thin with an inner diameter of less than 1 mm. Therefore, when the contrast medium is filled in the syringe 320 as a chemical solution and the piston 322 is advanced to inject the contrast medium, a very high internal pressure is generated in the cylinder 321. This high internal pressure may cause the cylinder 321 to expand and cause various troubles in the injection of contrast medium.
  • the protective cover 370 suppresses expansion due to an increase in the internal pressure of the cylinder 321 at the time of injecting a chemical solution.
  • the cylinder is sized so that there is almost no gap between the cylinder 321 and its outer peripheral surface. Shaped member.
  • the protective cover 370 is preferably formed with a thickness having mechanical strength that can sufficiently withstand the internal pressure acting on the cylinder 321 during the injection of the chemical liquid.
  • An opening through which the nozzle part 321b of the syringe 320 passes is formed at the tip of the protective cover 370, and the syringe 320 is held in a state in which the nozzle part 321b protrudes from the opening.
  • a cover flange 371 is formed at the end of the protective cover 370 in which a ring-shaped recess for receiving the flange 321a of the cylinder 321 is formed on the end surface.
  • the injection head 110 is provided with two piston drive mechanisms 130a and 130b (see FIG. 1) that are driven independently of each other in order to advance and retract the pistons 322 of the two syringes 320 attached thereto. It is arranged corresponding to the position.
  • Each of the piston drive mechanisms 130a and 130b includes a presser 131 that holds a convex portion formed at the end of the piston 322, a drive source such as a motor that moves the presser 131 forward and backward, and a power transmission mechanism that connects them.
  • the syringe 320 attached to the injection head 110 can inject the drug solution filled in the syringe 320 into the subject separately or simultaneously by the piston 322 being advanced by the piston drive mechanisms 130a and 130b.
  • the piston drive mechanisms 130a and 130b known mechanisms generally used in this type of injection apparatus can be employed.
  • a syringe receiver 120 and a clamper 140 that constitute a syringe mounting portion on which a syringe 320 with a protective cover 370 is mounted.
  • the syringe receiver 120 is located on the tip side of the clamper 140 and has two concave portions 121 so as to receive the outer peripheral surface of the protective cover 370 individually.
  • the clamper 140 is supported so as to be openable and closable with respect to the syringe receiver 120, and is configured to individually hold the cover flange 271 of each protective cover 270.
  • Each syringe 320 is positioned in the recess 121 with the nozzle portion 321b facing the distal end side, and is fixed to the injection head 110 by closing the clamper 140.
  • the protective cover 370 is not an essential component, and the syringe 320 may be directly attached to the injection head 110.
  • the injection head 110 can have an exterior cover 125 that covers the entire mechanism except for the portion having the syringe receiver 120 and the clamper 140.
  • the exterior cover 125 can have a mark 125 a for distinguishing the corresponding presser 131 at a position corresponding to each presser 131.
  • the sign 125a may be any character or symbol, and in this embodiment, the characters “A” and “B” are used. This marker can also be used to distinguish the syringe 320 (chemical solution) on the injection condition setting screen 400 (see FIG. 5) described later.
  • the chemical solutions filled in the syringes 320 attached to the syringe receiver 120 corresponding to the label 125a may be referred to as “medical solution A” and “chemical solution B”.
  • the chemical injection device 100 may further include a hand switch 118 and / or a foot switch 119 as an option.
  • the hand switch 118 has an operation button, and is used to control the start and stop of the injection operation so that the injection operation of the chemical solution by the injection head 110 is performed only while the operation button is pressed. it can.
  • the foot switch 119 is used to control the start and stop of the injection operation so that the injection operation of the chemical solution by the injection head 110 is performed only while the foot switch 119 is stepped on, for example, when performing test injection. Can do.
  • Test injection is performed as necessary prior to imaging for acquiring a medical image, for example, to grasp individual differences in contrast effects and / or to confirm the tip position of an injection circuit. It is the injection of chemicals.
  • the injection of a medical solution for acquiring a medical image may be referred to as “main injection” for the purpose of distinction from the test injection.
  • main injection a smaller amount of chemical solution is usually injected than in the main injection.
  • the injection rate of the chemical solution in the test injection is usually set in advance or set to be the same as the injection rate of the chemical solution in the main injection. This test injection can also be performed by operating the hand switch 118.
  • the hand switch 118 is operated at the stage where the setting of the injection protocol for the chemical solution is completed and the preparation for injection is completed (standby state), the main injection is executed, but the hand switch 118 is operated at the previous stage. If so, a test injection can be performed.
  • the power of the chemical injection device 100 is turned on by the operator. Thereafter, the syringe assembly 300 filled with the chemical to be injected into the subject is attached to the injection head 110.
  • a chemical solution container (not shown) is connected to the nozzle portion 221b via an appropriate tube, and in this state, a piston drive mechanism is used.
  • the syringe assembly 300 filled with the chemical solution may be attached to the injection head 110 by retracting the piston 322 and filling the syringe assembly 300 with the chemical solution.
  • the one filled with the chemical solution by the manufacturer like the former is called a prefilled type, and the chemical solution is filled in the medical field like the latter. This is also called a post-filling type.
  • the mounting of the syringe assembly 300 to the injection head 110 can be performed, for example, by the following procedure.
  • the operator closes the clamper 140, whereby the syringe assembly 300 is held by the injection head 110.
  • the injection head 110 preferably has a lock mechanism (not shown) that locks the clamper 140 so that it can be opened in the closed position.
  • the lock mechanism may be any mechanism as long as it can lock and release the clamper 140 in the closed position. By having the locking mechanism, it is possible to prevent the syringe assembly 300 attached to the injection head 110 from being detached from the injection head 110.
  • the injection head 110 preferably includes at least one detector that detects that the syringe assembly 300 is attached to the injection head 110.
  • a first detector that detects that the syringe assembly 300 is placed on the syringe receiving recess 121 and that the clamper 140 is in the closed position are detected.
  • the first detector for example, a detector that is arranged in the syringe receiving recess 121 and can detect the syringe assembly 300 in the syringe receiving recess 121 can be used.
  • the second detector for example, a detector that is built in the injection head 110 and can detect the tip of the clamper 140 when the clamper 140 is in the closed position can be used.
  • any of these detectors can detect an object to be detected when the distance between the object to be detected such as the syringe assembly 300 or the clamper 140 and the detector becomes a predetermined distance or less (including contact).
  • an optical sensor that optically detects the presence or absence of an object in a detection region
  • a proximity sensor that detects the presence or absence and position of an object using magnetism as a detection medium
  • a contact with an object to be detected A mechanical switch that is switched on / off by non-contact can be used.
  • the mechanical switch any switch including, for example, a tact switch and a limit switch can be used as long as it is switched on / off by contact / non-contact of the object to be detected.
  • the injection head 110 does not need to include both the first detector and the second detector in order to detect that the syringe assembly 300 is attached to the injection head 110, but only one of them. It may be.
  • the injection control unit 101 displays information indicating that the mounting of the syringe assembly 300 is completed on the display unit 104. It is possible to display it and visually notify the operator, or to move the operation of the chemical injection device 100 to the next step.
  • the information displayed on the display unit 104 may be a message by text or information represented by a symbol.
  • a light emitting lamp (not shown) is provided separately from the display unit 104, and the injection control unit 101 turns on the light emitting lamp to visually notify the operator that the mounting of the syringe assembly 300 is completed. it can.
  • the light emitting lamp can be provided in the injection head 110.
  • the position of the light-emitting lamp provided in the injection head 110 may be arbitrary, but is preferably in the vicinity of the part that is last operated by the operator when the syringe assembly 300 is mounted, for example, in the vicinity of the clamper 140. In particular, as shown in FIG.
  • the injection head 110 is provided with a mark 125a (specifically, letters “A” and “B”) for identifying the two piston drive mechanisms 130a and 130b. It is preferable to arrange two light-emitting lamps so that these label portions each emit light as a light-emitting portion.
  • the color visually recognized by the lighting of the light-emitting lamp may be arbitrary, and may be a different color for each corresponding chemical solution, for example, blue and green.
  • the injection head 110 can also include a light emitting unit 126 that emits light by turning on another light emitting lamp that emits light in the standby state described above. In the form shown in FIG. 4, the plurality of light emitting units 126 are arranged at positions distant from each other. By doing so, it is possible to visually recognize that they are in the standby state from any direction.
  • the injection control unit 101 executes an operation for injecting the chemical solution.
  • This operation can include, for example, the following series of steps. (1) Reception of data input and setting of injection conditions (2) Preparation for injection (3) Execution of injection operation according to the set injection conditions (4) End operation of injection operation
  • Reception of data input and setting of injection conditions (2) Preparation for injection
  • Execution of injection operation according to the set injection conditions (4) End operation of injection operation
  • these processes will be described in order. .
  • the injection control unit 101 causes the display unit 104 to display a screen for setting injection conditions, and inputs to the input unit 103 for setting injection conditions. Make the operation possible.
  • FIG. 6 shows an example of the injection condition setting screen 400.
  • the injection condition setting screen 400 shown in FIG. 6 includes an injection mode icon 401, a quick memory icon 402, a confirmation icon 403, a speed setting icon 404, an injection amount setting icon 405, an injection time setting icon 406, a dilution degree setting icon 407, and a syringe.
  • An information icon 408, a purge icon 409, and the like are included.
  • the syringe information icon 408 graphically displays information about the syringe 320 attached to the injection head 110 (see FIG. 4).
  • the information displayed on the syringe icon 408 can include the amount of the chemical solution filled in the attached syringe 320.
  • the operator can visually recognize the chemical liquid injection operation by displaying an arbitrary animation.
  • the injection mode icon 401 is an icon that indicates in which injection mode the injection operation is to be executed among a plurality of injection modes preset in the injection control unit 101.
  • the injection mode for example, “normal injection mode” in which injection is performed only with the chemical liquid A, “flash mode” in which the chemical liquid B is injected after the injection of the chemical liquid A is completed, and “dilution” in which the chemical liquid A and the chemical liquid B are injected simultaneously “Mode”, “multi-mode” in which only the chemical solution A is injected in a plurality of phases, and the like.
  • FIG. 6 shows a state where the “dilution mode” is selected.
  • the injection control unit 101 switches the display of the injection mode icon 401, thereby switching the injection mode.
  • the quick memory icon 402 is operated when an injection condition registered in the memory of the injection control unit 101 is called.
  • the confirmation icon 403 is operated when the operator approves the injection condition displayed on the injection condition setting screen 400.
  • the injection control unit 101 moves the chemical injection device 100. It is possible to shift to the next step of the chemical solution injection procedure by setting the standby state.
  • the speed setting icon 404, the injection amount setting icon 405, and the injection time setting icon 406 are used for setting the injection speed, the injection amount, and the injection time of the chemical solution, respectively.
  • the injection control unit 101 displays a ten-key icon (not shown) for inputting the injection speed on the injection condition setting screen 400 in an overlapping manner.
  • the operator can set the injection rate by inputting and confirming a numerical value through the numeric keypad screen.
  • the injection amount and the injection time can also be set in the same manner as the setting of the injection rate.
  • what is set by the speed setting icon 404 and the injection amount setting icon 405 is the total injection speed and injection amount of the chemical liquid A and the chemical liquid B.
  • the dilution degree setting icon 407 is an icon operated when setting the ratio of the target chemical solution to the reference chemical solution injected in the dilution injection mode.
  • the degree of dilution There are several ways of expressing the degree of dilution.
  • the amount of the chemical solution A with respect to the total amount of the chemical solution A and the chemical solution B, that is, the chemical solution A is based on the idea that the chemical solution A is diluted with the chemical solution B. It is represented by a dilution ratio calculated by / (chemical solution A + chemical solution B).
  • the dilution ratio may be set to 50% as a default value, for example.
  • the dilution ratio can be set as follows, for example.
  • the injection control unit 101 pops up a dilution ratio input screen 430 as shown in FIG. 7 on the injection condition setting screen 400 or an injection condition setting screen.
  • the display is switched from 400 to the dilution ratio input screen 430.
  • the dilution ratio input screen 430 can include a numeric keypad icon 431 and a ratio setting bar 432. With the numeric keypad icon 431, the ratio of the amount of the chemical solution A to the total amount of the chemical solution A and the chemical solution B can be set numerically.
  • the injection control unit 101 determines the input numerical value as a dilution ratio.
  • the ratio setting bar 432 may have a ratio display part 432a and a slider icon 432b.
  • the ratio display unit 432a indicates the ratio between the chemical solution A and the chemical solution B as a band graph, and the slider icon 432b is displayed at a display position so that the slider icon 432b can be moved along the ratio display unit 432a while being touched by the operator. Is controlled.
  • the injection control unit 101 sets the dilution ratio to a ratio corresponding to the position of the slider icon 432b.
  • the ratio display unit 432a may display the drug solution A side and the drug solution B side in different colors with respect to the position of the slider icon 432b.
  • the dilution ratio can be set from either the numeric keypad icon 431 or the ratio bar 432.
  • the dilution ratio input screen 430 may have only one of the numeric keypad icon 431 and the ratio bar 432.
  • the input of the dilution ratio is not limited to the above method, and any method can be used.
  • the injection control unit 101 deletes the pop-up display of the dilution ratio input screen 430 from the injection condition setting screen 400 or the injection condition setting screen according to the display form of the dilution ratio input screen 430.
  • the display is switched to 400, and the set dilution ratio is displayed on the dilution ratio icon 407 of the injection condition setting screen 400.
  • the operator performs a data input operation as necessary according to the display of the injection condition setting screen 400.
  • the display is switched to “start OK”, and the chemical injection device 100 is in a standby state in which chemical injection is possible. Become.
  • the injection preparation can include “purge operation” and “in-place placement of injection circuit”.
  • (2a) Purge operation The purge operation is performed after the extracorporeal circuit portion of the injection circuit 200 is connected to the syringe assembly 300 and before the injection operation of the chemical solution is started.
  • the fluid containing the air and the chemical liquid in the extracorporeal circuit unit is discharged from the injection circuit by the chemical liquid inside.
  • the purge operation is performed in a state where the distal end of the extracorporeal circuit unit is not connected to the end of the intracorporeal circuit unit or between the extracorporeal circuit unit and the intracorporeal circuit unit. And the three-way cock is switched so that the chemical solution is discharged from the side pipe connected to the remaining port of the three-way cock.
  • the purge operation is basically performed when the extracorporeal circuit unit is not filled with the chemical solution, so as to fill the extracorporeal circuit unit with the chemical solution, and needs to be performed when the extracorporeal circuit unit is filled with the chemical solution. There is no. However, if the dilution ratio is changed, such as when the second injection is performed at a different dilution ratio from the first injection following the first injection, even if the extracorporeal circuit unit is filled with the chemical solution, the purge is performed. It is preferable to perform the operation.
  • the trigger for executing the purge operation is given by the operator.
  • the injection head 110 can have a purge button 123 (see FIG. 5).
  • a purge icon 409 can be displayed on the injection condition setting screen 400.
  • both the purge button 123 and the purge icon 409 can be provided.
  • the injection control unit 101 executes the purge operation.
  • the purge operation can be performed by discharging a chemical solution from each syringe 320 at an equal discharge amount and discharge speed.
  • the dilution ratio is 50%.
  • the injection control unit 101 sets a discharge ratio that is a ratio of the discharge amount of the chemical liquid A to the total discharge amount of the chemical liquid A and the discharge amount of the chemical liquid B, and discharges the chemical liquid according to the set discharge ratio.
  • the operations of the piston drive mechanisms 130a and 130b may be controlled.
  • the discharge ratio in the purge operation preferably follows a dilution ratio that is one of the injection conditions of the chemical solution.
  • the discharge ratio is set to a value equal to the input dilution ratio.
  • the chemical solution A and the chemical solution B are discharged from each syringe 320 in the amount of the chemical solution A and the amount of the chemical solution B according to the dilution ratio, respectively.
  • the injection circuit 200 shown in FIG. 2 is used, the chemical solution A and the chemical solution B discharged from each syringe 320 pass through the second tubes 202 and 203, respectively, and merge in the first tube 201.
  • a mixed solution with the chemical B is used.
  • the concentration of the chemical solution A in this mixed solution is equal to the concentration of the chemical solution A diluted at the set dilution ratio.
  • the discharge speed that is, the control based on the moving speed of the presser 131 of the piston drive mechanisms 130a and 130b
  • the discharge amount That is, control based on the movement amount of the piston drive mechanisms 130a and 130b
  • the purge amount which is the total amount of the chemical solution discharged in the purge operation, may be an amount that can fill the extracorporeal circuit portion with a desired chemical solution, and the amount is an injection set as one of the injection conditions of the chemical solution The amount is small compared to the amount. Therefore, the purge amount is preferably set in the injection control unit 101 separately from the injection amount at the time of injection of the chemical solution.
  • a preferable value of the purge amount depends on the volume of the extracorporeal circuit unit to be used, but can generally be 5 to 10 mL.
  • the discharge rate of the chemical solution in the purge operation is arbitrary as long as the final discharge amount becomes a desired amount, and is the same as the injection rate set as the chemical solution injection condition. It may be different or different. Further, the discharge speed may be constant during at least a part of time from the start to the end of the purge operation or may be changed with time.
  • the injection control unit 101 discharges both chemical solutions at the same discharge speed at the start of the purge operation, and then sets the discharge rate of at least one of the chemical solutions as time passes until the purge operation ends. It is possible to set the discharge condition of the chemical solution in the purge operation so that the final dilution degree becomes the target dilution degree.
  • the purge operation is performed in a state where the extracorporeal circuit unit is not connected to the extracorporeal circuit unit, and the extracorporeal circuit unit is operated by the operator after the purge operation is completed. Connected to the circuit section.
  • the fixed-position arrangement of the injection circuit is a treatment for sending the injection circuit, in particular, the in-vivo circuit portion (catheter) so that the tip thereof is located at a desired site in the blood vessel.
  • the injection circuit can be placed at a fixed position independently of the purge operation, in this embodiment, the purge operation is completed and the internal circuit portion and the external circuit portion are connected.
  • the flow sensor 210 After the blood vessel of the subject and the syringe are connected by the injection circuit, the flow sensor 210 is driven, and the detection operation by the flow sensor 210 is continuously performed regardless of whether or not the chemical solution is injected.
  • the flow sensor 210 transmits a detection signal corresponding to the movement (movement amount and movement direction) of the liquid in the conduit (in this embodiment, the pipe 211 shown in FIG. 3) to the injection control unit 101 of the chemical injection device 100.
  • the infusion circuit including the in-vivo circuit portion is connected to the blood vessel of the subject, even in the case where no medicinal solution is infused, the infusion circuit is slightly caused by blood pulsation in the blood vessel.
  • the chemical solution moves.
  • the pressure of the moving liquid is proportional to the flow rate or the square of the flow rate, so that there is a correlation between the flow rate and the pressure (proportional to the flow rate or 2 of the flow rate). Whether it is proportional to the power depends on the viscosity of the liquid). Therefore, the pressure of the liquid can also be obtained from the detection result by the flow sensor 210. Since this pressure corresponds to the blood pressure of the subject in a state where no medicinal solution is injected, the blood pressure of the subject can be obtained by the flow sensor 210.
  • the injection control unit 101 can have a pressure calculation function for calculating the pressure using the detection result transmitted from the flow sensor 210.
  • parameters such as the cross-sectional area of the pipe line of the flow sensor 210, the length of the pipe line, and the density of the liquid filling the pipe line are required. These parameters may be preset in the injection control unit 101, may be input by an operator via the input unit 103, and may be transmitted to the injection control unit 101.
  • the semiconductor module 212 includes a memory that stores at least one of these parameters as data, and the data in this memory may be transmitted to the injection control unit 101 together with the detection result. Or two or more of these may be combined.
  • the tip of the catheter can be placed at a desired position while monitoring the blood pressure of the subject.
  • the pressure transducer used to measure the subject's blood pressure with a conventional injection circuit is not required. Eliminating the need for a pressure transducer simplifies the configuration of the injection circuit, and also eliminates the need for operations such as channel switching that are necessary when measuring blood pressure using a pressure transducer. Etc. does not occur.
  • the injection operation of the chemical liquid is performed by the injection control unit 101 so that the chemical liquid is injected under the set injection conditions (including at least one of the injection speed, the injection amount, the injection time, and the injection pressure). This is done by controlling the operation.
  • the injection mode is the dilution injection mode
  • both piston drive mechanisms 130a and 130b are operated simultaneously so that the chemical liquid A and the chemical liquid B are injected at the set dilution ratio.
  • a purge operation is performed prior to the injection operation, and at the distal end side from the junction portion of the extracorporeal circuit portion (for example, the T-shaped connector 204 of the injection circuit 200 shown in FIG. 2), the desired dilution ratio has already been obtained.
  • the drug solution is filled in a diluted state, immediately after the injection operation is started, the drug solution diluted at a desired dilution ratio is injected. This minimizes the time lag until injection of waste chemicals and the dilution ratio of the injected chemicals reaches the desired ratio. As a result, a good image can be obtained in a smaller amount of chemicals and in a shorter time. Can be obtained.
  • a catheter used for injecting a contrast medium as an in-vivo circuit portion usually has an inner diameter of 2 mm or less and an effective length of about 1 m. Therefore, the volume of the catheter is extremely small compared to the amount of the chemical solution injected in one examination.
  • the medical image capturing apparatus 500 starts an imaging operation in response to the chemical liquid injection operation by the chemical liquid injection apparatus 100.
  • the imaging operation by the medical imaging apparatus 500 may be executed with an operation by the operator as a trigger, or may be automatically executed in conjunction with the injection operation by the chemical injection apparatus 100.
  • the injection operation and the imaging operation are linked, for example, after the injection operation is started, the imaging operation is started after a predetermined time required for the injected drug solution to reach the target site.
  • the injection control unit 101 of the chemical solution injection device 100 transmits an injection start signal to the imaging control unit 510 of the medical imaging device 500, and the imaging control unit 510 that has received the injection start signal receives the imaging operation unit after the predetermined time has elapsed.
  • the injection control unit 101 transmits an injection start signal to the imaging control unit 510 after the predetermined time has elapsed since the injection operation is started by controlling the 520, and the imaging control unit 510 transmits the injection start signal. Immediately after receiving, the imaging operation unit 520 can be controlled to start the imaging operation.
  • the imaging control unit 510 can reconstruct the data obtained by the imaging operation of the imaging operation unit 520 to acquire a medical image, and display the acquired medical image on the display unit 504 in real time.
  • the injection condition data such as the injection speed, the injection amount, the injection time, and the injection pressure of the chemical solution is transmitted from the injection control unit 101 to the image pickup control unit 510
  • the image pickup control unit 510 displays the data in the display unit 504.
  • Some or all of the injection conditions can be displayed in real time together with or separately from medical images and imaging conditions.
  • the cumulative up to the imaging stage The injection amount and the X-ray irradiation amount can be displayed. As a result, it is judged on the spot whether the cumulative X-ray irradiation dose does not exceed the reference value, and whether the injection amount of the contrast medium does not exceed the reference value for subjects with poor liver function, When the X-ray irradiation amount and / or the injection amount is likely to exceed the reference value, the X-ray irradiation amount and the contrast agent injection amount can be adjusted as necessary.
  • the flow rate sensor 210 can detect the injection amount of the chemical liquid during the chemical liquid injection operation.
  • the injection amount data measured by the flow sensor 210 is transmitted to the injection control unit 101.
  • the injection control unit 101 uses the data transmitted from the flow sensor 210 to display the injection amount of the chemical solution on the display unit 104 in real time, or to drive the piston drive mechanism 130a so that the chemical solution is injected with the set injection amount.
  • the operation of 130b can be controlled.
  • the amount of chemicals injected has been indirectly determined from the amount of movement of the piston drive mechanisms 130a, 130b or the amount of rotation of the motor that drives the piston drive mechanisms 130a, 130b.
  • the injection amount of the chemical solution can be obtained more accurately.
  • the injection control unit 101 has a pressure calculation function. By using this function, the injection pressure can also be calculated. Using the calculated injection pressure, the injection control unit 101 can control the operations of the piston drive mechanisms 130a and 130b so that the obtained injection pressure does not exceed the set injection pressure.
  • a load sensor is built in the presser 131 of the piston drive mechanisms 130a and 130b, and the injection pressure is obtained by the load sensor, or the injection pressure is obtained from the motor current flowing in the motor driving the piston drive mechanisms 130a and 130b. It was.
  • the load sensor is not required, so that the configuration of the chemical injection system can be simplified, or the injection pressure can be determined from the state of the chemical flow. Therefore, the effect that the injection pressure can be obtained more accurately than the case where the injection pressure is obtained from the motor current is achieved.
  • the injection control unit 101 can display the injection result on the display unit 104 as one of the injection operation end processes. Examples of displayed results include injection end date and time, injection mode, set imaging location, injection speed, injection volume, dilution ratio (in dilution injection mode), time required for injection, maximum pressure during injection, etc. And at least one of these items may be displayed. Moreover, the injection control unit 101 records these injection results in an appropriate memory device inside or outside the chemical solution injection device 100 or transmits them to the medical image imaging device 500 as one of the injection operation end processes. be able to.
  • the injection control unit 101 can display the injection condition setting screen 400 on the display unit 104 again by a predetermined operation by the operator.
  • the injection conditions are set on the injection condition setting screen 400, and the chemical solution may be injected under the set injection conditions. it can.
  • the purge operation is performed. Thereby, even in the next injection, a good image can be obtained in a smaller amount of chemical solution and in a shorter time.
  • the contrast medium is injected using an elongate catheter in angiography, the contrast medium is injected at a higher injection pressure than injection of contrast medium in CT imaging using an indwelling needle.
  • the internal pressure of the syringe becomes very high during the injection operation, and the contrast agent is injected in a state where the syringe (cylinder) is expanded by the pressure. Therefore, when the injection operation is finished and the operation of the piston drive mechanism is stopped, the expanded syringe tries to return to the original state. At this time, since the piston is held by the piston drive mechanism, the expanded volume of the contrast medium flows out from the tip of the injection circuit.
  • the injection control unit 101 causes the flow rate sensor 210 in the injection circuit 200 after the injection operation is completed (after the operation of the piston drive mechanism is stopped).
  • the piston drive mechanism moves in the backward direction that is the direction in which the liquid in the injection circuit 200 is sucked into the syringe.
  • the retraction amount of the piston drive mechanism may be a predetermined amount or an amount corresponding to the movement amount of the chemical liquid detected by the flow sensor 210.
  • the piston drive mechanism can be moved backward until the amount of movement of the chemical by the flow sensor 210 is not detected without particularly defining the amount of backward movement of the piston.
  • FIG. 8 the appearance of a medical imaging system according to another embodiment of the present invention is shown.
  • a block diagram showing the functional configuration is shown in FIG.
  • a CT apparatus is used as the medical image imaging apparatus 500
  • an injection apparatus suitable for injecting a chemical liquid used when a CT image is taken by the CT apparatus is used as the chemical liquid injection apparatus 100.
  • the medical image imaging system includes the chemical liquid injection device 100, the medical image imaging device 500, and the injection circuit 200.
  • the chemical liquid injection device 100 includes the RFID module 166, and the syringe 350 includes the syringe 350. Except for the point that the RFID tag 352 is included, the functional configuration can be the same as that described above.
  • the chemical injection device 100 has an injection head 110 supported by a stand 116 with casters, and a console 112 having various functions for controlling the operation of the chemical injection device 100.
  • the injection head 110 is usually disposed in the examination room together with the imaging operation unit of the medical imaging apparatus 500
  • the console 112 is a medical imaging apparatus. It is arranged in the operation room together with 500 imaging control units.
  • the injection head 110 can detachably mount two syringes 350 as shown in FIGS.
  • one of the syringes 350 can be a contrast medium syringe, and the other can be a physiological saline syringe.
  • the syringe 350 has a cylinder and a piston.
  • the injection head 110 includes a cylinder holding portion 151 that holds the cylinder of the syringe 350, and a piston drive mechanism 130a for operating the piston of the syringe 350 that holds the cylinder in the cylinder holding portion 151 (moving forward and backward with respect to the cylinder). , 130b.
  • the piston drive mechanisms 130a and 130b are moved forward and backward by a motion conversion mechanism such as a lead screw mechanism or a rack and pinion mechanism that converts the rotational motion of the motor that is the drive source into a straight motion, and the tip of the rod 153. And a fixed presser 152.
  • a motion conversion mechanism such as a lead screw mechanism or a rack and pinion mechanism that converts the rotational motion of the motor that is the drive source into a straight motion, and the tip of the rod 153.
  • a fixed presser 152 a fixed presser 152.
  • the injection head 110 is entirely covered with a synthetic resin casing 155 except for part of the piston drive mechanisms 130a and 130b (for example, the presser 152).
  • a button group 156 including a plurality of operation buttons corresponding to various operations is provided so that the piston drive mechanisms 130a and 130b can be operated by a user operation.
  • the operation buttons include, for example, a check button for making the chemical injection device ready for injection, a start button operated when starting injection, a forward button for moving the presser 152 forward by an arbitrary distance, and a presser.
  • a backward button for moving the presser 152 by an arbitrary distance an acceleration button for accelerating the speed of the presser 152 while the presser 152 is moving, an auto return button for moving the presser 152 back to the initializing position, and the like can be included.
  • each of the piston drive mechanisms 130a and 130b has two forward buttons, two backward buttons, two acceleration buttons, and two auto return buttons so that each piston driving mechanism 130a and 130b can be operated independently.
  • the cylinder holding part 151 is configured such that the syringe 350 is attached via the adapter 600.
  • the syringe 350 has various sizes depending on the volume of the chemical solution that can be filled.
  • the adapter 600 is prepared for each size of the syringe 350. As shown in FIG. 11, the adapter 600 has a structure capable of receiving a cylinder flange 351 formed at the end of the cylinder of the compatible syringe 350, and an injection head. 110 is detachably attached to the cylinder holder 151.
  • the syringe 350 can be attached to the injection head 110 by, for example, attaching the adapter 600 to the cylinder holding portion 151 of the injection head 110 and then inserting the cylinder flange 351 of the syringe 350 into the adapter 600.
  • the adapter 600 has a groove for receiving the cylinder flange 351, and the syringe 350 is held by the adapter 600 by inserting the cylinder flange 351 into the groove. Further, after the cylinder flange 351 is inserted into the groove of the adapter 600, there is a lock mechanism for locking the cylinder by rotating the syringe 350 by a predetermined angle (for example, 90 degrees) around its axis as shown in FIG. It may be.
  • a predetermined angle for example, 90 degrees
  • the injection head 110 shows an example having two piston drive mechanisms 130a and 130b so that two syringes 350 can be attached, but is configured so that only one syringe 350 can be attached. Alternatively, three or more syringes 350 may be attached. The number of cylinder holders 151 and piston drive mechanisms 130a and 130b is changed according to the number of syringes 350 that can be mounted.
  • the syringe 350 may be a prefilled type syringe provided from a pharmaceutical manufacturer in a state of being filled with a chemical solution, or an on-site filling type syringe filled with a chemical solution at a medical site.
  • the syringe 350 may further include an RFID tag 352 that is a data carrier.
  • the mounting position of the RFID tag 352 may be arbitrary, and may be, for example, the outer peripheral surface of the cylinder.
  • the injection head 110 may have an RFID module 166.
  • the RFID module 166 has an RFID control circuit 164 and an antenna 165, reads data recorded in the RFID tag 352 by the antenna 165, transmits the read data to the injection control unit 101, and / or the injection control unit.
  • the data transmitted from the terminal 101 can be recorded on the RFID tag 352.
  • the RFID control circuit 164 controls data transmission / reception operations in the RFID module 166. That is, the RFID module 166 functions as a reader that reads data from the RFID tag 352 or a reader / writer that records data in the RFID tag 352.
  • the data recorded in the RFID tag 352 includes various data relating to the chemical liquid filled in the syringe 350, such as the manufacturer, the type of chemical liquid, the product number, and the contained components (particularly, the iodine-containing concentration when the chemical liquid is a contrast agent). Etc.), filling amount, lot number, expiry date, etc., as well as various data related to the syringe, for example, a unique identification number such as manufacturer, product number, allowable pressure value, syringe volume, piston stroke, dimensions of each required part, lot Numbers can be included. At least a part of these data can be transmitted to the medical image capturing apparatus 500.
  • the RFID control circuit 164 can be installed at an arbitrary position, but the antenna 165 is preferably installed at a position facing the RFID tag 352 in a state where the syringe 350 is normally held by the cylinder holding unit 151. .
  • the RFID tag 352 has a shape having a longitudinal direction, and is attached to the outer peripheral surface of the cylinder so that the longitudinal direction coincides with the circumferential direction of the syringe 350.
  • the syringe 350 is normally held by rotating the syringe 350 in a specific direction, and the RFID tag 352 is designed to face downward in the held state. Has been.
  • the antenna 165 of the RFID module 166 has an FPC (flexible printed circuit board) on which a predetermined pattern (for example, one or a plurality of loop patterns) made of a conductor is formed, and as shown in FIG.
  • a predetermined pattern for example, one or a plurality of loop patterns
  • the syringe 350 is arranged so as to be concentric with the syringe 350 and bent in an arc shape. Thereby, the detection range of the RFID tag 352 attached on the curved surface is expanded.
  • the antenna 165 has a larger area than the RFID tag 352 so that the RFID tag 352 can reliably face the antenna 165 even if the application position of the RFID tag 352 varies. ing. Therefore, the size of the antenna 165 is preferably designed in consideration of variations in the position where the RFID tag 352 is attached to the syringe 350.
  • the antenna 165 preferably includes a ferrite sheet 165a on the surface opposite to the surface facing the RFID tag 352 of the FPC.
  • the output of the RFID module 166 can be set to 200 mW, for example. Thereby, the detection range (detection distance) of the RFID tag 352 can be further widened, and the RFID module 166 reads information from the RFID tag 352 through the chemical solution filled in the syringe 350, or stores the information in the RFID tag 352. It is also possible to write information. For example, even if the syringe 350 is rotated 180 degrees from the state shown in FIG. 13 and is opposed to the antenna 165 via the chemical solution filled in the syringe 350, the RFID module 166 is connected to the RFID tag 802. This means that information can be read out between.
  • the RFID module 166 can be placed at any position. In the case of the arrangement shown in FIG. 13, the RFID module 166 can be configured such that at least the antenna 165 is built in the injection head 110.
  • the RFID module 166 may be a handy type. In this case, at least the antenna 165 is disposed in a handy unit separate from the injection head 110.
  • information from the RFID tag 352 can be obtained by bringing the handy unit closer to the RFID tag 352 attached to the syringe before or after the syringe is attached to the injection head 110. Can be read out. Transmission / reception of information between the RFID module 166 and the injection control unit 101 may be performed by wired communication or wireless communication.
  • the injection control unit 101 Based on the data read from the RFID tag 352, the injection control unit 101 causes the display unit 104 to display the type of the chemical solution filled in the syringe 350 on the display unit 104 as necessary, or the presser 152 to the standby position. Move it.
  • the standby position is an arbitrary position between the position where the presser 152 abuts the end of the piston of the syringe 350 and the end position.
  • the injection control unit 101 obtains the end position of the piston based on the data regarding the syringe 350 read from the RFID tag 352, and the end position of the piston from the initial position which is the end position of the movable range of the presser 152. This can be done by calculating the distance to the position and operating the piston drive mechanisms 130a and 130b so that the presser 152 moves forward by the distance and an arbitrary offset value determined in advance. Thereby, the presser 152 is moved to the standby position.
  • the injection control unit 101 creates an injection protocol using the injection speed, the injection amount, the injection time, and the like as parameters based on the data acquired from the RFID tag 352, the data input from the input unit 103, and the like.
  • the created injection protocol can be displayed on the display unit 104 graphically or in the form of numerical data.
  • the operator can arbitrarily change the displayed injection protocol by inputting data or the like from the input unit 103.
  • the check button of the injection head 110 an injection operation according to the created or changed injection protocol is enabled.
  • the operator connects the syringe 350 and the subject with the injection circuit 200.
  • an indwelling needle is used as an in-vivo circuit portion of the injection circuit 200.
  • the injection control unit 101 When the operator presses the start button of the injection head 110 while the injection operation by the injection head 110 is enabled and the syringe 350 and the subject are connected by the injection circuit 200, the injection control unit 101 is created.
  • the operation of the piston drive mechanisms 130a and 130b is controlled so that the piston drive mechanisms 130a and 130b operate according to the injection protocol.
  • medical solution with which the inside of the syringe 350 is filled can be inject
  • the injection circuit 200 including the flow sensor 210 is used, and the movement of the chemical solution in the injection circuit 200, particularly the flow sensor 210, can be monitored from the time when the injection circuit 200 is connected to the subject.
  • route confirmation Before the injection of the chemical solution, it is often checked whether the tip of the indwelling needle is positioned in the blood vessel, which is called “route confirmation”. This is because if a medical solution is injected with the tip of the indwelling needle positioned outside the blood vessel, a desired image cannot be acquired and various side effects may be caused. Conventionally, this “route confirmation” is performed after the syringe and the subject are in fluid communication with each other by the injection circuit, and then, for example, the piston of the syringe filled with physiological saline is retracted, and blood flows into the injection circuit. It was done by checking whether or not.
  • the behavior of the drug solution in the injection circuit 200 differs depending on whether the tip of the indwelling needle is located inside the blood vessel or outside the blood vessel.
  • the difference in the behavior of the chemical solution in the injection circuit 200 appears as a difference in the detection result from the flow sensor 210. Therefore, from the detection result of the flow sensor 210, whether the tip of the indwelling needle is located inside the blood vessel or outside the blood vessel. It can be determined whether it is located.
  • the situation where the tip of the indwelling needle is located outside the blood vessel may occur at the stage when the indwelling needle is punctured or when the subject moves after the indwelling needle has been punctured normally, for example, during the injection of a drug solution Sometimes.
  • the indwelling needle and the blood vessel communicate with each other. Therefore, in the injection circuit based on blood pulsation in the blood vessel. The movement of the chemical solution is detected by the flow sensor 210.
  • the indwelling needle is in a state where the distal end side is closed or opened, and movement of the drug solution based on blood pulsation is not detected.
  • the injection control unit 101 uses the detection result transmitted from the flow sensor 210 to determine whether or not the movement of the chemical solution based on blood pulsation is detected by the flow sensor 210 before the injection of the chemical solution.
  • An injection circuit tip position determination function for determining the tip position of the injection circuit 200 can be provided. As a result, the route can be confirmed only by monitoring the detection result from the flow sensor 210 without operating the syringe as described above.
  • the leak detection device has a sensor head that includes a light emitting element that emits detection light and a light receiving element that detects the intensity of light emitted from the light emitting element, and the sensor head is indwelled by an adhesive sheet or the like. Detection of extravasation during the injection of a drug solution was performed in a state of being fixed to the body surface of the subject near the puncture position.
  • the injection control unit 101 uses the injection rate set as one of the injection conditions of the chemical solution or the injection rate determined from the injection amount and the injection time set as part of the injection condition of the chemical solution, and the flow rate sensor 210. Leakage that compares with the flow rate per unit time of the drug solution in the injection circuit calculated from the detection results transmitted at regular time intervals from, and determines that extravasation has occurred if both values are different It can have a judgment function. Thus, since the injection control unit 101 has a leakage determination function, extravasation can be detected without using a leakage detection device as in the conventional case.
  • kinks may occur due to twisting of the tube constituting the injection circuit.
  • the drug solution may not be injected normally or may not be injected at all.
  • the occurrence of kinks can cause damage to the injection circuit.
  • the occurrence of kink also appears as a change in the behavior of the chemical solution in the injection circuit, such as the flow rate of the chemical solution per unit time being reduced from the intended flow rate. Therefore, the injection control unit 101 is obtained from the injection rate set as one of the chemical solution injection conditions or the injection amount and the injection time set as part of the chemical solution injection conditions during the chemical injection operation.
  • the injection rate is compared with the flow rate per unit time of the chemical solution in the injection circuit calculated from the detection results transmitted from the flow rate sensor 210 at regular time intervals, and from the value of the injection rate obtained from the injection conditions
  • the flow rate value per unit time obtained from the detection result by the flow sensor 210 is smaller, it is possible to have a kink determination function for determining that a kink has occurred in the injection circuit.
  • the injection control unit 101 since the injection control unit 101 has the kink determination function, it is possible to detect the occurrence of kinks during the injection of the chemical solution.
  • the injection control unit 101 has a determination function for determining that an abnormality has occurred in the injection circuit 200 when a detection result different from the specific detection result is obtained from the flow sensor 210, the route confirmation, The presence or absence of an abnormality can be detected by the flow sensor 210 such as extravasation detection and kink detection.
  • the injection control unit 101 displays a message or a mark corresponding to the type of abnormality on the display unit 104 and / or the operation of the piston drive mechanisms 130a and 130b when the flow sensor 210 detects the occurrence of the abnormality. Can be switched to abnormal operation. Examples of the abnormal operation include stopping the operation of the piston driving mechanisms 130a and 130b (stopping the injection of the chemical liquid), reducing the moving speed of the piston driving mechanisms 130a and 130b (decreasing the injection speed of the chemical liquid), and the like.
  • FIG. 14 shows another form of the injection circuit 200 having the flow sensor 210.
  • the injection circuit 200 of this embodiment also includes a first tube 201, a plurality of second tubes 202 and 203, a T-shaped connector 204, connectors 205 to 207, and a flow sensor 210. These may be configured similarly to the injection circuit 200 shown in FIG.
  • the injection circuit 200 includes a three-way stopcock 208 disposed in the middle of each of the second tubes 202 and 203, and a first one connected to each of the three-way stopcocks 208 so as to branch from the second tubes 202 and 203. 3 tubes 202a and 203a.
  • the chemical bottles 700a and 700b are connected to the ends of the third tubes 202a and 203a, respectively.
  • the chemical liquid bottle 700 a connected to the third tube 202 a branched from the second tube 202 contains the same chemical liquid as the chemical liquid filled in the syringe connected to the second tube 202.
  • the chemical solution 700b connected to the third tube 203a branched from the other second tube 203 contains the same chemical solution as the chemical solution filled in the syringe connected to the second tube 203.
  • the three-way cock 208 is appropriately switched to move the presser backward while the syringe is mounted on the injection head, so that the chemical solution bottle
  • the liquid medicine in 700a and 700b can be filled into the syringe.
  • the three-way cock 208 is switched so that the third tubes 202a and 203a are blocked from the other tubes, so that the chemical solution in the syringe can be injected.
  • the injection control unit 101 is provided with a flow path switching determination function for determining the switching state of the three-way cock 208 from the detection result of the flow sensor 210 when the three-way cock 208 is switched, and the determination result is displayed, for example, in a graphic form By displaying on the unit 104, the state of the flow path at that time can be visually recognized by the operator. For accurate determination, a plurality of flow sensors 210 can be arranged at appropriate locations in the injection circuit 200.
  • the chemical bottle When a chemical bottle is connected to the injection circuit 200, the chemical bottle is usually placed at a higher position than the injection circuit 200, and the injection circuit is connected to the lower end of the chemical bottle, thereby accommodating the chemical bottle. Almost all of the applied chemical solution can be used. Moreover, when inject
  • the flow sensor 210 is arranged at the end of the third tube connected to the chemical liquid bottle 700 so that the flow sensor 210 is positioned below the chemical liquid bottle 700 when the injection circuit is used.
  • the detection result by the flow sensor 210 is calculated as a consumption amount of the chemical solution in the injection control unit 101 and can be displayed on the display unit 104 in real time.
  • the consumption amount can be subtracted from the amount of the chemical solution, and the result can be displayed on the display unit 104 as the remaining amount.
  • the operator can grasp the consumption amount or the remaining amount of the chemical solution in the chemical solution bottle 700.
  • Appropriate treatment is possible, such as replacing with a new one.
  • the T-shaped connector 204 is disposed in the mixing portion of the chemical solution. In order to allow the chemical solution to be mixed better, this T-shaped connector 204 is provided. Instead, it is preferable to arrange a mixing device 241 as shown in FIG. 16A.
  • the mixing device 241 will be described with reference to FIGS. 16A to 16C by taking as an example a case where a contrast medium and physiological saline are mixed as a chemical solution.
  • the mixing device 241 includes a main body 242 having a first chamber that is a swirl flow generation chamber 242a that generates a swirl flow and a second chamber that is a constriction chamber 242b that concentrates the swirl flow in the axial direction.
  • the swirl flow generation chamber 242a has a cylindrical inner space
  • the constriction chamber 242b has a conical inner space coaxial with the swirl flow generation chamber 242a.
  • the cross-sectional shape in the short direction of the swirl flow generating chamber may be various shapes formed from a circle, an ellipse, or other curves.
  • the swirl flow generation chamber can be configured to have a narrowed shape that narrows as it approaches the narrowed chamber.
  • a conduit portion 243a to which one second tube 202 (see FIG. 2 and the like) is connected is provided on the upstream side of the flow of the main body portion 242 of the mixing device 241, and the first tube 201 (see FIG. 2 and the like) is provided on the downstream side. Is provided with a conduit portion 243c.
  • the conduit portion 243b to which the other second tube 203 (see FIG. 2 and the like) is connected is disposed at a position upstream from the center of the swirl flow generation chamber 242a.
  • the contrast agent flows from the conduit portion 243a and the physiological saline flows from the conduit portion 243b, and both drug solutions are mixed in the mixing device. Thereafter, the mixed drug solution of the contrast medium and physiological saline flows out from the conduit portion 243c as a liquid outlet.
  • the conduit portion 243a into which a high specific gravity chemical solution flows is provided in the central portion of the upstream side wall surface of the swirl flow generation chamber 242a on the upstream side in the flow direction.
  • the conduit portion 243c serving as the liquid outlet is provided so that the center line of the conduit portion 243c and the center line of the conduit portion 243a coincide, that is, both are coaxial.
  • the conduit portion 243b into which the chemical liquid having a small specific gravity flows is disposed on the side surface of the swirl flow generation chamber 242a and extends in the tangential direction of the circumference of the swirl flow generation chamber 242a having a circular cross section.
  • the conduit portion 243b is provided at a position shifted to the peripheral side from the central axis of the cylindrical space included in the swirl flow generation chamber 242a, and thereby, the chemical liquid having a small specific gravity flowing from the conduit portion 243b.
  • the swirl flow is generated. More specifically, as shown in FIG.
  • the flow path 241fb is configured to extend in the circumferential tangential direction of the curved inner surface of the swirl flow generation chamber 242a, and thus flows from this flow path.
  • the chemical becomes a swirl flow.
  • the constriction chamber 242b has an inclined inner surface that swells toward the downstream side in the flow direction, so that the generated swirling flow is concentrated in the direction of the central axis of the vortex. Become.
  • the conduit portion 243a into which the contrast agent flows is in communication with the swirling flow generation chamber 242a through the flow path 241fa.
  • the chemical liquid having a large specific gravity can be introduced into the swirling flow generating chamber in a direction parallel to the central axis of the swirling flow of the chemical liquid having a small specific gravity. That is, the chemical liquid having a large specific gravity is introduced in a direction parallel to the central axis of the cylindrical space included in the swirl flow generation chamber.
  • the conduit part into which the physiological saline flows is in communication with the swirl flow generation chamber via the flow path 241fb.
  • the inner diameter of the flow path 241fb may be smaller than the inner diameter of the flow path 241fa into which the contrast agent flows.
  • the mixing device 241 configured as described above, for example, when a contrast medium and physiological saline are flowed into the device, the contrast medium that has flowed into the swirl flow generation chamber from the flow path 241fa flows toward the downstream side in the axial direction. Become.
  • the physiological saline flowing into the swirl flow generation chamber from the flow path 241fb becomes a swirl flow swirling along the curved inner surface of the same chamber, and the swirl flow of the physiological saline is guided to the stenosis chamber and swirls. Concentrate in the direction of the central axis of the flow.
  • a vortex is known as a Rankine vortex, and the inertial force of the swirling flow can be concentrated in the vicinity of the rotation axis of the vortex.
  • medical solutions will be mixed favorably. That is, in this example, it is possible to obtain a diluted contrast agent in which the contrast agent and physiological saline are well mixed, and as a result, there is no unevenness in the concentration of the contrast agent. An excellent contrast effect can be expected as compared with the case of a general injection circuit having the above.
  • injection circuit 200 shown in FIGS. 2 and 14 is configured such that two syringes can be connected.
  • the injection circuit particularly the extracorporeal circuit unit, may be configured so that the number of syringes to be connected is only one, or configured to be three or more. Also good.
  • FIG. 17 shows still another embodiment of the injection circuit 200 having the flow sensor 210.
  • the injection circuit 200 of this embodiment also includes a first tube 201, a plurality of second tubes 202 and 203, a T-shaped connector 204, connectors 205 to 207, and a flow sensor 210. These may be configured in the same manner as the injection circuit 200 shown in FIG. 2 except for the position of the flow sensor 210.
  • the injection circuit 200 further includes a fourth tube 221 that is branched and connected from an intermediate portion of one second tube 203, and a flow rate sensor 210 that is connected to the end of the fourth tube 221. ing. Therefore, in this embodiment, the injection circuit 200 has three terminals in total, that is, the two connectors 205 and 206 to which the syringe is connected and the flow sensor 210.
  • a T-shaped connector 225 can be used to branch the second tube 203.
  • another cock 223 may be provided on the fourth tube 221 in order to prevent the chemical liquid from flowing into the fourth tube 221 at the time of injection of the chemical liquid.
  • the cock 223 may be provided between the end of the fourth tube 221 and the flow rate sensor 210, or may be provided in an intermediate portion of the fourth tube 221.
  • the injection circuit 200 configured as described above includes an injection circuit 200 in which the end connectors 205 and 206 are connected to the syringe and the distal connector 207 is connected to the extracorporeal circuit unit. It can be used in a connected state, that is, in a state where the injection circuit 200 is disposed at a fixed position. In use, the cock 223 provided in the fourth tube 221 is opened.
  • pressure fluctuations due to the pulsation of blood flowing through the blood vessels of the subject are transmitted to the injection circuit 200 via the in-vivo circuit section in a state where the medical solution such as a contrast medium filled in the syringe is not injected.
  • the liquid in the injection circuit 200 moves in response to the pressure fluctuation.
  • the movement of the liquid is detected by the flow sensor 210, and from the detection result, the pressure of the liquid, and thus the blood pressure of the subject can be obtained, and the pulse of the subject can also be obtained.
  • the flow sensor 210 can be used as an alternative to a conventional pressure transducer.
  • the flow sensor 210 is not damaged even if a high pressure due to the contrast medium is transmitted to the fourth tube 221 at the time of contrast medium injection. .
  • the injection circuit 200 preferably further includes a chamber connected to the end of the flow sensor 210.
  • one end of the injection circuit 200 is a chamber.
  • the chamber facilitates the movement of the chemical solution in the flow sensor 210 due to the pressure fluctuation when the pressure fluctuation occurs in the injection circuit 200 on the first tube 201 side. By providing this, the detection sensitivity of the flow sensor 210 can be improved.
  • the chamber is composed of a fifth tube 222 having a distal end connected to the flow sensor 210 and a cock 224 provided on the distal end. In use, the cock 224 provided at the end of the fifth tube 222 is closed.
  • the chamber constituted by the fifth tube 222 and the cock 224 functions as a liquid reservoir on the terminal side of the flow rate sensor 210, and affects the ease of movement of the liquid in the flow rate sensor 210.
  • the longer the length of the fifth tube 222 in other words, the greater the capacity of the chamber on the end side of the flow sensor 210, the easier the liquid moves within the flow sensor 210.
  • the signal intensity that is the output from the flow sensor 210 increases. Therefore, it is possible to adjust the detection sensitivity of the flow sensor 210 by appropriately setting the volume of the chamber according to the physical quantity obtained using the detection result of the flow sensor 210.
  • the branch of the fourth tube 221 may be from either of the two second tubes 202 and 203.
  • the specific gravity of the chemical solution filled in the syringe connected to the ends of the second tubes 202 and 203 is different, it is preferable to branch from the second tube to which the syringe filled with the chemical solution having a small specific gravity is connected. .
  • a chemical solution having a small specific gravity is more likely to move in the tube, and as a result, a large detection result can be obtained. Therefore, in the form shown in FIG. 17, when the contrast medium and the physiological saline are respectively injected into the syringe connected to the injection circuit 200, the syringe connected to the second tube 203 branched from the fourth tube 221.
  • Is a syringe filled with physiological saline, and the sputum syringe connected to the other second tube 202 is preferably a syringe filled with a contrast medium.
  • the fourth tube 221 is branched from the second tube 203, and the flow sensor 210 is provided in the branched fourth tube 221.
  • the flow sensor 210 may be provided in the two tubes 203.
  • the position where the flow sensor 201 is provided may be arbitrary.
  • the above-described concept can be applied as it is as to which of the second tubes 202 and 203 is provided with the flow sensor 210.
  • injection head posture / up-down movement detection For example, as shown in FIGS. 4 and 8, when the injection head 110 is supported by the stand 116, the stand 116 moves the injection head 110 so that the distal end side of the syringe can face upward or downward. It is preferable to support. The reason is that, for example, in the purge operation described above, the tip of the syringe is directed upward to facilitate the discharge of air bubbles existing in the syringe from the syringe. This is because the tip of the syringe can be directed downward in order to prevent the bubbles from being injected even if bubbles remain in the tube. From the viewpoint of preventing medical accidents, it is desirable that the posture of the injection head can be detected in the chemical injection device.
  • the posture of the injection head 110 is changed to change the position of the tip of the syringe in the vertical direction.
  • the height difference between the tip and end of 200 changes.
  • the liquid in the injection circuit 200 moves due to a change in the height difference between the tip and the end of the injection circuit 200, and the movement of the liquid is detected by the flow sensor 210. Using this detection result, it is possible to determine whether the injection head 110 is in a posture in which the tip of the syringe is directed upward or downward.
  • the injection control unit 101 can be provided with a head attitude determination function for appropriately calculating the detection result transmitted from the flow sensor 210 and determining the attitude of the injection head 110.
  • the flow sensor 210 is preferably disposed at or near the tip of the syringe.
  • the injection control unit 101 When the injection control unit 101 has a head posture determination function, when it is determined that the posture is not suitable for the purge operation or the posture suitable for the injection operation, the injection control unit 101 informs the display unit 104 to that effect. It is possible to display a warning or to control the operation of the piston drive mechanisms 130a and 130b so that the piston drive mechanisms 130a and 130b do not operate.
  • the injection head 110 can also be supported in a state of being suspended from the ceiling.
  • FIG. the injection head 110 is supported by an articulated ceiling arm unit 180.
  • the ceiling arm unit 180 includes a base portion 181 that is fixed to the ceiling with bolts and the like, and an articulated arm portion 183 that extends from the base portion 181.
  • An attachment arm 183a extending in the vertical direction is attached to the distal end portion of the arm portion 183 so as to be rotatable around its axis.
  • the injection head 110 is attached to the lower end portion of the attachment arm 183a so as to be rotatable around an axis extending in the horizontal direction.
  • the injection head 110 when the injection head 110 is supported by the ceiling arm unit 180, the injection head 110 can be moved to an arbitrary position in the vertical direction within the movable range of the arm portion 183.
  • the injection head 110 moves upward or downward with the syringe attached to the injection head 110 and the injection circuit 200 described above connected to the syringe, the height difference from the tip of the injection circuit 200 changes. It is possible to determine how much the injection head 110 has moved in the vertical direction by using the flow sensor 210 to detect the movement of the liquid in the injection circuit 200 caused by the change in the height difference.
  • the injection control unit 101 can have a head vertical movement determination function that appropriately performs a calculation process on the detection result transmitted from the flow sensor 210 to determine the movement distance of the injection head 110 in the vertical direction.
  • the second display unit 104b is attached to the attachment arm 183a together with the injection head 110.
  • the chemical solution injection system may further include a second display unit 104b different from the display unit 104 described above.
  • the second display unit 104b can display various types of information related to chemical injection, such as the type of chemical, the injection rate, the injection amount, and the injection time. Thereby, the operator can check the injection condition of the chemical solution in the vicinity of the injection head 110. Further, the second display unit 104b may be a touch panel that can perform an input operation by touching the screen. By using the second display unit 104b as a touch panel, the operator can appropriately change the injection conditions according to the state of the subject using the second display unit 104b.
  • FIG. 18 shows an example in which the second display unit 104b is attached to the ceiling arm unit 180.
  • the second display unit 104b is at a position that can be visually recognized by an operator who operates the injection head 110, for example, FIG. 8 may be attached to the stand 116 shown in FIG. 8, or may be attached to the injection head 110 via a mounting bracket or the like.
  • the injection control unit 101 performs appropriate arithmetic processing according to the items to be detected. Can be.
  • the injection control unit 101 may be configured to detect all of these items, or may be configured to detect one or more items combining one or more of these items. Good.
  • the container filled with the chemical solution is a syringe
  • the container is not limited to a syringe, and may be a chemical solution bottle or a chemical solution bag.
  • a drive mechanism corresponding to the form of the container such as a tube pump type drive mechanism can be used.
  • the injection control unit 101 is included in the chemical injection device 100, and the imaging control unit 510 is described as included in the medical image imaging device 500.
  • both the injection control unit 101 and the imaging control unit 510 may be included in the chemical solution injection device 100, or both the injection control unit 101 and the imaging control unit 510 may be included in the medical image imaging device 500.
  • both the injection control unit 101 and the imaging control unit 510 may be included in a programmable computer device (not shown) that is different from the chemical injection device 100 and the medical image imaging device 500.
  • the injection control unit 101 can be incorporated in a unit different from the remaining other functions.
  • the injection condition determination (calculation) function can be incorporated into the imaging control unit 510 and the remaining other functions can be incorporated into the injection control unit 101.
  • the injection condition determination (calculation) function can be incorporated into the imaging control unit 510 and the remaining other functions can be incorporated into the injection control unit 101.
  • the function of the injection control unit 101 and the function of the imaging control unit 510 can be realized by using various hardware as required, but the main body is realized by the function of the CPU corresponding to the computer program.
  • the computer program is At least one container is detachably mounted, and an injection head having at least one drive mechanism configured to inject a chemical liquid from the container, a chemical liquid injection circuit connected to the container, and the drive mechanism
  • a computer program for a system having at least one thermal flow sensor with a conduit through which the drug solution flowing in the tube flows At least some of the procedures described above, eg, The thermal flow sensor outputs an electrical signal corresponding to the movement of the chemical in the conduit as a detection result from the thermal flow sensor to the injection control unit; Causing the injection control unit to perform a predetermined function using the detection result output from the thermal flow sensor; Is a computer program for executing
  • At least one of the function of calculating various physical quantities using the detection result from the flow sensor 210 and the function of performing various determinations described as functions of the injection control unit 101 can be configured as a flow rate sensor control unit different from the injection control unit 101.
  • the flow rate sensor control unit can be configured to control the operation of the flow rate sensor 210 and supply power necessary for operating the flow rate sensor 210.
  • the flow rate sensor control unit is used in connection with the flow rate sensor 210, and the flow rate sensor 210 and the flow rate sensor control unit are incorporated in other devices or units such as the chemical solution injection device 100, the medical image imaging device 500, and the injection circuit 200. It can also be configured as an independent unit.
  • the flow sensor control unit can be connected to the injection control unit 101, for example, and transmits the result (for example, pressure) obtained from the flow sensor 210 to the injection control unit 101 as data.
  • the injection control unit 101 can display data (for example, pressure) transmitted from the flow sensor control unit on the display unit 104.
  • the injection head 110 and the console 112 shown in FIGS. 4 and 8 can be configured integrally.
  • the console 112 is also arranged in the examination room. Since the hand switch 118 can be used to start and stop the injection operation, the operator can control the start and stop of the injection operation in the operation chamber by the hand switch 118.
  • two piston drive mechanisms 130a and 130b are mounted on one injection head 110.
  • the chemical liquid injector has two injection heads each equipped with one piston drive mechanism, and at the time of purge operation and injection, the injection control unit 101 interlocks each injection head to dilute a plurality of chemical liquids. It can also be done.
  • At least the drug solution injection device 100 and the medical image imaging device 500 may be connected to a medical network.
  • the injection speed, injection time, and injection volume of the drug solution injected by the drug solution injection device 100 (when multiple injections are performed in one examination and / or treatment, the injection amount for each injection) And the total injection amount of a series of injections), the injection graph, the type of the injected medicinal solution, the injection result including the dilution ratio when the dilution injection is performed, and the imaging conditions by the medical imaging device 500 are medical network
  • RIS Radiology Information System
  • PACS Medical Image Storage Management System
  • HIS Hospital Information System
  • the stored injection data is used for management of injection history.
  • the injection amount or the like can be recorded in the chart information as a used chemical solution or used for accounting.
  • physical information such as the body weight of the subject, ID, name, examination site, and examination method can be acquired from RIS, PACS, HIS, etc., and displayed on the drug solution injector, and injection can be performed accordingly.
  • Such information and data acquired from the RFID tag 802 by the RFID module 166 may be transmitted from the chemical solution injector 100 to the RIS, PACKS, HIS, or the like via the medical imaging device 500, or the chemical solution injector 100. May be transmitted directly from RIS, PACKS, HIS, etc.
  • an injection protocol is set in advance, and the chemical solution is automatically injected according to the set injection protocol.
  • a hand controller operated by an operator is used and the operation of the piston drive mechanism is controlled in real time according to the operation of the hand controller.
  • a chemical liquid injector that injects a contrast medium for angiography may be controlled in this manner.
  • This type of hand controller usually has a controller body formed in a size and shape that can be held by the operator.
  • the controller main body has an operation member provided to move by the operation of the operator, and a detector for detecting the movement of the operation member, and the detection result by the detector is transmitted to the injection control unit of the chemical liquid injector.
  • the injection control unit is configured to control the operation of the piston drive mechanism based on the detection result transmitted from the detector.
  • a flow sensor can be used as a detector.
  • An embodiment of a hand controller using a flow sensor as a detector will be described below.
  • a hand controller using a flow sensor as a detector further includes a flexible and airtight bag member in addition to the controller main body, the operation member, and the flow sensor as the detector.
  • the bag member is connected to one flow path portion serving as a fluid inlet / outlet, and a flow rate sensor is connected to the flow path portion so that the flow rate of the fluid passing through the flow path portion can be detected.
  • any flow sensor can be used.
  • the flow sensor has a conduit constituting a part of the flow path section as shown in FIG.
  • a flow rate sensor configured to output an electric signal corresponding to the movement of the sensor as a detection result can be preferably used.
  • the flow path portion of the bag member and the conduit of the flow rate sensor are connected in an airtight state.
  • the flow path portion preferably has a tubular portion integrally extending from the bag member, and a conduit of the flow sensor is preferably connected to the tubular portion.
  • the fluid to be detected may be a gas or a liquid.
  • air can be used as the gas
  • water can be used as the liquid.
  • the flow path portion of the bag member may be opened.
  • the present invention can be applied to both cases of using a gas as a fluid and a case of using a liquid, but the detector further includes a second bag member connected to the flow path portion, and the bag member, the flow path portion In addition, one closed space may be formed by the second bag member. Similar to the bag member, the second bag member is configured to have flexibility and airtightness.
  • the bag member is held in the controller body in an expanded state in the initial state before the operation member is operated, and the operation member is operated to respond to its operation amount (movement amount).
  • the bag member is contracted.
  • any of a lever type that is slid with respect to the controller main body and a button type that is pushed into the controller main body can be applied, similarly to an operation member used in a general hand controller.
  • the hand controller configured as described above, when the operation member is operated in a state where the bag member is filled with fluid, the fluid in the bag member is discharged through the flow path portion according to the operation amount. Is done. At this time, the movement of the fluid in the flow path portion is detected by the flow sensor, and an electrical signal corresponding to the movement of the fluid is transmitted to the injection control unit of the chemical liquid injector as a detection result.
  • the injection control unit controls the operation of the piston drive mechanism so that the piston drive mechanism moves forward according to the detection result transmitted from the flow sensor.
  • the flow rate sensor detects the amount of movement of the fluid during a certain time interval, so that the chemical solution can be injected at a speed and amount corresponding to the operation of the operation member.
  • the injection control unit moves the piston drive mechanism back to the original position, for example, the standby position, for the next injection. Further, the bag member is also returned to the original inflated initial state.
  • the backward movement of the piston drive mechanism can be automatically performed under the control of the injection control unit after the chemical liquid injection operation is completed.
  • the piston drive mechanism is controlled by the injection control unit by an amount corresponding to the detected flow rate. Can be made to retreat.
  • the bag member is made of an elastic material, it can be returned to the initial state by the elastic force of the bag member itself after the injection operation is completed.
  • the bag member may be configured such that the bag member returns to the initial state by returning the operation member to the original position.
  • a controller device for controlling the operation of a drive mechanism for injecting a chemical solution filled in a container, An operation member provided to be movable by an operator's operation; A bag member provided to contract according to the amount of movement of the operation member; A flow path connected to the bag member; A flow rate sensor that has a conduit that forms part of the flow path section, and outputs an electrical signal corresponding to the movement of the fluid in the conduit as a detection result; A controller device.
  • controller device A drive mechanism configured to inject the chemical solution from a container filled with the chemical solution;
  • An injection control unit for controlling the operation of the drive mechanism in response to the detection result output from the flow sensor of the controller device;
  • a chemical injection device having:

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

According to the present invention, various items relating to injection of a medicinal liquid can be detected using a more simpler configuration. A medicinal liquid injecting circuit 200 includes: one or more tubes 201 to 203 each connected to a syringe; and a thermal flow-rate sensor 210 provided with a conduit which, together with the tubes 201 to 203, forms part of a liquid flow path. The flow-rate sensor 210 outputs, as a detection result to an injection control unit which controls the operation of pistons in the syringes, an electrical signal corresponding to the movement of a medicinal liquid in the conduit.

Description

薬液注入回路、該薬液注入回路を備えた薬液注入システムおよび医用画像撮像システムChemical injection circuit, chemical injection system equipped with the chemical injection circuit, and medical imaging system
 本発明は、医用画像を撮像する際に造影剤などの薬液を注入するのに用いられる薬液注入回路および該薬液注入回路を備えた薬液注入システム等に関する。 The present invention relates to a chemical solution injection circuit used for injecting a chemical solution such as a contrast medium when taking a medical image, a chemical solution injection system including the chemical solution injection circuit, and the like.
 医療用の画像診断装置としては、CT装置、MRI装置、アンギオ装置、PET装置、MRA装置および超音波画像診断装置などがある。これらの装置を使用して医用画像を撮像する際は、造影効果を高めるために、造影剤や生理食塩水などの薬液を被験者に注入することが多い。注入される薬液はシリンジに充填されていることが多く、また、シリンジに充填されている薬液は、薬液注入装置を用いて予め設定された注入条件に従って自動的に注入される。薬液注入装置を用いた薬液の注入では、薬液注入装置に搭載されたシリンジと被験者とを接続するために、カテーテル、留置針および各種チューブなどで注入回路が構成される。 Medical image diagnostic apparatuses include CT apparatus, MRI apparatus, angio apparatus, PET apparatus, MRA apparatus, and ultrasonic image diagnostic apparatus. When taking a medical image using these apparatuses, in order to enhance the contrast effect, a medical solution such as a contrast medium or physiological saline is often injected into the subject. In many cases, the liquid medicine to be injected is filled in a syringe, and the liquid medicine filled in the syringe is automatically injected according to injection conditions set in advance using a liquid medicine injection device. In the injection of a chemical solution using a chemical solution injection device, an injection circuit is constituted by a catheter, an indwelling needle, various tubes, and the like in order to connect a syringe mounted on the chemical solution injection device and a subject.
 薬液注入装置を用いた薬液の注入では、例えば、被験者の血圧をモニターしたり、注入回路が正常に接続されているかを確認したり、被験者の体内での薬液の漏出をモニターしたり、設定された注入条件に従って薬液が注入されているかどうかをモニターしたりするために、様々なセンサが用いられることが多い。 In the injection of a chemical solution using a chemical solution injection device, for example, the blood pressure of the subject is monitored, whether the injection circuit is normally connected, the leakage of the chemical solution in the subject's body is monitored, etc. Various sensors are often used to monitor whether a chemical solution is being injected according to the injection conditions.
 例えば、アンギオ装置を用いた血管造影では、X線透視下で患部を確認しながら被験者にカテーテルを挿入し、治療を行うことが行われるようになっている。アンギオ装置を用いた患部を確認しながらの治療において、例えば、冠動脈に生じた血栓を溶解する治療では、カテーテルを冠動脈の閉塞部位まで進めて、その先端から血栓溶解剤を噴出させる。X線透視下であっても、造影剤なしでは血管を像として認識することができないので、閉塞部位の確認、あるいは冠動脈までカテーテルを導くために造影剤が用いられる。また同時に、安全確認のために、被験者の血圧をモニターしながらカテーテルを挿入する。 For example, in angiography using an angio device, treatment is performed by inserting a catheter into a subject while confirming the affected area under fluoroscopy. In the treatment using the angio device while confirming the affected area, for example, in the treatment of dissolving a thrombus generated in the coronary artery, the catheter is advanced to the occluded site of the coronary artery, and the thrombolytic agent is ejected from the tip. Even under X-ray fluoroscopy, blood vessels cannot be recognized as an image without a contrast medium, so a contrast medium is used to confirm the occlusion site or guide the catheter to the coronary artery. At the same time, a catheter is inserted while monitoring the blood pressure of the subject for safety confirmation.
 被験者の血圧をモニターできる注入回路として、特許文献1(特許第4338446号公報)に開示されたような注入回路が知られている。特許文献1に開示された注入回路は、造影剤が充填されたシリンジに末端が連結される薬液注入チューブと、薬液注入チューブ内での薬液の移動を末端側から先端側へ制限するように薬液注入チューブに設けられた一方弁と、末端に圧力トランスデューサが連結され、先端が薬液注入チューブの一方弁よりも先端側に接続された血圧検出チューブと、を有している。 As an injection circuit that can monitor the blood pressure of a subject, an injection circuit as disclosed in Patent Document 1 (Japanese Patent No. 4338446) is known. The injection circuit disclosed in Patent Document 1 includes a drug solution injection tube whose end is connected to a syringe filled with a contrast agent, and a drug solution that restricts movement of the drug solution in the drug solution injection tube from the end side to the tip side. It has a one-way valve provided on the injection tube, and a blood pressure detection tube having a pressure transducer connected to the end and having a tip connected to the tip side of the one-side valve of the drug solution injection tube.
 このように構成された注入回路によれば、造影剤を注入していないときには血管を流動する血液の圧力が、圧力トランスデューサまで伝達され、この圧力トランスデューサにより血圧が直接的に検出される。ただし、この種の注入回路に用いられる圧力トランスデューサは、一般に、造影剤の注入圧力に比較して耐圧値が低い。そのため、造影剤の注入時に、造影剤による高い圧力が血圧検出チューブを通じて圧力トランスデューサに伝達されると、圧力トランスデューサが破壊されるおそれがある。そこで特許文献1に開示された注入回路は、所定の圧力よりも高い圧力で薬液が注入されると血圧検出チューブを遮断するスイッチングバルブを血圧検出チューブに設け、薬液注入によって生じる圧力が圧力トランスデューサに伝達されないようにしている。 According to the injection circuit configured as described above, when the contrast agent is not injected, the pressure of blood flowing in the blood vessel is transmitted to the pressure transducer, and the blood pressure is directly detected by the pressure transducer. However, pressure transducers used in this type of injection circuit generally have a lower withstand pressure value than the injection pressure of the contrast agent. Therefore, when a high pressure due to the contrast medium is transmitted to the pressure transducer through the blood pressure detection tube during the injection of the contrast medium, the pressure transducer may be destroyed. Therefore, the injection circuit disclosed in Patent Document 1 is provided with a switching valve in the blood pressure detection tube that shuts off the blood pressure detection tube when the chemical liquid is injected at a pressure higher than a predetermined pressure, and the pressure generated by the chemical liquid injection is applied to the pressure transducer. It is not transmitted.
 また、CT装置などを用いた断層画像の撮像では、被験者の血管に穿刺された留置針を介して造影剤が注入される。この際、留置針の先端が血管内に位置しているかどうかを確認したり、注入された薬液が血管外へ漏出していないかどうかを検出したりすることが行われる場合がある。留置針の先端位置の確認は「ルート確認」とも呼ばれ、シリンジのピストンを後退させたときに注入回路内への血液の流入の有無を確認することによって行うことができる。また、薬液の血管外漏出は、例えば、特許文献2(国際公開第2006/030764号)に記載のように、発光素子および受光素子を内蔵した漏出検出ユニットを留置針の先端位置近傍で被験者の体表面に密着させ、被験者の体内に向けて発光素子から出射した光を受光素子で検出し、その強度の変化によって検出することができる。 Also, in tomographic imaging using a CT apparatus or the like, a contrast medium is injected through an indwelling needle punctured into a subject's blood vessel. At this time, it may be performed to check whether the tip of the indwelling needle is located in the blood vessel, or to detect whether the injected drug solution has leaked out of the blood vessel. Confirmation of the tip position of the indwelling needle is also referred to as “route confirmation”, and can be performed by confirming whether blood has flowed into the injection circuit when the piston of the syringe is retracted. In addition, as described in Patent Document 2 (International Publication No. 2006/030764), for example, a leakage detection unit including a light emitting element and a light receiving element is placed near the tip of the indwelling needle. The light emitted from the light-emitting element toward the body surface toward the body of the subject can be detected by the light-receiving element and detected by a change in intensity.
 さらには、何れの種類の薬液注入システムであるかにかかわらず、注入動作中の注入圧力、注入量および注入速度がモニターされる。注入圧力は、シリンジのピストンを動作させるピストン駆動機構に作用する力をロードセル等の力センサによって検出したり、ピストン駆動機構を駆動するモータに流れるモータ電流を測定したりすることによって求めることができる。注入量は、ピストン駆動機構の移動量から求めることができ、そのためにリニアエンコーダあるいはモータの回転量をカウントするロータリーエンコーダ等が用いられる。注入速度は、単位時間当たりのピストン駆動機構の移動量から算出することができる。 Furthermore, the injection pressure, injection volume, and injection speed during the injection operation are monitored regardless of the type of chemical injection system. The injection pressure can be obtained by detecting the force acting on the piston drive mechanism that operates the piston of the syringe by a force sensor such as a load cell, or by measuring the motor current flowing through the motor that drives the piston drive mechanism. . The injection amount can be obtained from the movement amount of the piston drive mechanism. For this purpose, a linear encoder or a rotary encoder that counts the rotation amount of the motor is used. The injection speed can be calculated from the amount of movement of the piston drive mechanism per unit time.
特許第4338446号公報Japanese Patent No. 4338446 国際公開第2006/030764号International Publication No. 2006/030764
 上述のように、薬液注入装置を用いた薬液の注入に際しては、検出あるいはモニターする事項に応じて専用のセンサを用いたり、特定の動作を実行したりしていた。そのため、検出あるいはモニターする事項が多くなればなるほど、システムの構成が複雑になり、また、検出あるいはモニターのための様々な処理が必要となっていた。 As described above, when injecting a chemical solution using a chemical solution injection device, a dedicated sensor is used or a specific operation is performed depending on the matter to be detected or monitored. Therefore, the more items to be detected or monitored, the more complicated the system configuration is, and various processes for detection or monitoring are required.
 本発明は、薬液の注入に関する様々な事項をより簡易な構成で検出できる薬液注入回路および該薬液注入回路を備えた薬液注入システム等を提供することを目的とする。 An object of the present invention is to provide a chemical solution injection circuit that can detect various items related to chemical solution injection with a simpler configuration, a chemical solution injection system including the chemical solution injection circuit, and the like.
 本発明の一態様によれば、容器に充填された薬液を注入する際に用いられる薬液注入回路であって、
 少なくとも1つのチューブを有し、1つの先端および少なくとも1つの末端を有するチューブユニットと、
 前記チューブユニットの前記先端から前記末端までの間に配置された少なくとも1つの熱式流量センサであって、前記チューブ内を流れる薬液が流れる導管を備え、前記導管内での薬液の移動に応じた電気信号を検出結果として出力するように構成された熱式流量センサと、
 を有する薬液注入回路が提供される。
According to one aspect of the present invention, there is provided a chemical liquid injection circuit used when injecting a chemical liquid filled in a container,
A tube unit having at least one tube and having one tip and at least one end;
At least one thermal flow sensor disposed between the distal end and the distal end of the tube unit, comprising a conduit through which the chemical solution flowing in the tube flows, and responding to the movement of the chemical solution in the conduit A thermal flow sensor configured to output an electrical signal as a detection result; and
A chemical injection circuit is provided.
 本発明の他の態様によれば、容器に充填された薬液を注入する薬液注入システムであって、
 少なくとも1つの容器が着脱自在に装着され、前記容器から薬液を注入させるように構成された少なくとも1つの駆動機構を備えた注入ヘッドと、
 前記容器と接続される薬液注入回路と、
 前記駆動機構の動作を制御する注入制御ユニットと、
 を有し、
 前記薬液注入回路は、
 少なくとも1つのチューブを有し、1つの先端および少なくとも1つの末端を有するチューブユニットと、
 前記チューブユニットの前記先端から前記末端までの間に配置された少なくとも1つの熱式流量センサであって、前記チューブ内を流れる薬液が流れる導管を備え、前記導管内での薬液の移動に応じた電気信号を検出結果として前記注入制御ユニットに出力するように構成された熱式流量センサと、
 を有する薬液注入システムが提供される。
According to another aspect of the present invention, there is provided a chemical liquid injection system for injecting a chemical liquid filled in a container,
An injection head comprising at least one drive mechanism, wherein at least one container is detachably mounted and configured to inject a chemical solution from the container;
A chemical injection circuit connected to the container;
An injection control unit for controlling the operation of the drive mechanism;
Have
The chemical injection circuit is
A tube unit having at least one tube and having one tip and at least one end;
At least one thermal flow sensor disposed between the distal end and the distal end of the tube unit, comprising a conduit through which the chemical solution flowing in the tube flows, and responding to the movement of the chemical solution in the conduit A thermal flow sensor configured to output an electrical signal as a detection result to the injection control unit;
A medicinal solution injection system is provided.
 本発明のさらに他の態様によれば、上記本発明の薬液注入システムと、
 前記薬液注入システムによって薬液が注入された被験者から医用画像を取得する医用画像撮像装置と、
 を有する医用画像撮像システムが提供される。
According to still another aspect of the present invention, the chemical solution injection system of the present invention,
A medical image capturing apparatus for acquiring a medical image from a subject into which a chemical liquid is injected by the chemical liquid injection system;
A medical imaging system is provided.
 本発明のさらに他の態様によれば、少なくとも1つの容器が着脱自在に搭載され、前記容器から薬液を注入させるように構成された少なくとも1つの駆動機構を備えた注入ヘッドと、前記容器と接続される薬液注入回路と、前記駆動機構の動作を制御する注入制御ユニットと、を有し、前記薬液注入回路が、少なくとも1つのチューブを有する、1つの先端および少なくとも1つの末端を有するチューブユニットと、前記チューブユニットの前記先端から前記末端までの間に配置され、前記チューブ内を流れる薬液が流れる導管を備えた少なくとも1つの熱式流量センサと、を有する薬液注入システムの作動方法であって、
 前記熱式流量センサが、前記導管内での薬液の移動に応じた電気信号を検出結果として前記注入制御ユニットに出力するステップと、
 前記注入制御ユニットが、前記熱式流量センサから出力された検出結果を用いて所定の機能を実行するステップと、
 を有する薬液注入システムの作動方法が提供される。
According to still another aspect of the present invention, at least one container is detachably mounted, and an injection head having at least one drive mechanism configured to inject a chemical from the container, and connected to the container A chemical liquid injection circuit, and an injection control unit for controlling the operation of the drive mechanism, and the chemical liquid injection circuit has at least one tube, and has a tip and at least one end. An operation method of a chemical injection system comprising: at least one thermal flow sensor that is disposed between the distal end and the distal end of the tube unit and includes a conduit through which the chemical flowing in the tube flows.
The thermal flow sensor outputs an electrical signal corresponding to the movement of the chemical in the conduit as a detection result to the injection control unit;
The injection control unit performs a predetermined function using the detection result output from the thermal flow sensor;
There is provided a method of operating a chemical injection system having:
 (本発明で用いる用語の定義)
 「注入回路」とは、被験者の血管内への薬液の注入のために容器に接続される、薬液を流通させるための経路を意味し、薬液が流通する少なくとも1つのチューブ、チューブに取り付けられる種々の部品を含む。さらに、「注入回路」は、被験者の血管内に挿入されるカテーテルまたは被験者の血管に穿刺される留置針を含んでいてもよい。複数の薬液を注入可能とする場合、注入回路は、複数のチューブの組み合わせにより、上記カテーテルまたは留置針と接続される先端側と反対側である末端側が複数に分岐した形態とされていてもよい。注入回路は、使用時の配置によって、すべてが被験者の体内に位置する「体外回路部」と、少なくとも一部が体内に位置する「体内回路部」とに区分することができる。この区分に従えば、上記カテーテルまたは留置針は体内回路部に属し、それ以外の部材は体外回路部に属する。したがって、「注入回路」は、体内回路部および体外回路部のうち少なくとも体外回路部を含む、ということができる。
(Definition of terms used in the present invention)
The “injection circuit” means a path for circulating a drug solution connected to a container for injecting the drug solution into a blood vessel of a subject, and is attached to at least one tube through which the drug solution is circulated. Including parts. Further, the “infusion circuit” may include a catheter inserted into the subject's blood vessel or an indwelling needle pierced into the subject's blood vessel. When a plurality of medicinal liquids can be injected, the injection circuit may be configured such that the distal end side opposite to the distal end side connected to the catheter or the indwelling needle is branched into a plurality by combining a plurality of tubes. . The injection circuit can be divided into an “external circuit portion” that is located in the body of the subject and an “internal circuit portion” that is at least partially located in the body, depending on the arrangement during use. According to this division, the catheter or the indwelling needle belongs to the in-vivo circuit portion, and the other members belong to the extracorporeal circuit portion. Therefore, it can be said that the “injection circuit” includes at least the extracorporeal circuit portion of the in-vivo circuit portion and the extracorporeal circuit portion.
 注入回路、チューブユニットおよびチューブの「先端」とは、薬液を注入するために注入回路が被験者に接続されたときに、被験者に最も近い端を意味する。注入回路、チューブユニットおよびチューブの「末端」とは、それらの長手方向において「先端」と反対側の端を意味する。注入回路の形態によっては、「末端」が1つだけの場合もあるし、複数の「末端」を有することもある。 The “tip” of the injection circuit, tube unit, and tube means the end closest to the subject when the injection circuit is connected to the subject to inject the drug solution. The “end” of the injection circuit, tube unit and tube means the end opposite to the “tip” in their longitudinal direction. Depending on the form of the injection circuit, there may be only one “terminal” or multiple “terminals”.
 本発明によれば、注入回路を介して容器内の薬液を注入するシステムにおいて、注入回路が熱式流量センサを備えることで、圧力を求めたり、異常の発生を判断したり、熱式流量センサからの検出結果を利用してシステムに様々な機能を与えることができる。 According to the present invention, in a system for injecting a chemical solution in a container via an injection circuit, the injection circuit includes a thermal flow sensor, so that pressure is obtained, occurrence of an abnormality is determined, or the thermal flow sensor Various functions can be given to the system by using the detection result from.
本発明の一実施形態による医用画像撮像システムの概略ブロック図である。1 is a schematic block diagram of a medical imaging system according to an embodiment of the present invention. 図1に示す注入回路の一形態を示す図である。It is a figure which shows one form of the injection | pouring circuit shown in FIG. 図2に示す注入回路に設けられた流量センサの一形態の断面図である。It is sectional drawing of one form of the flow sensor provided in the injection circuit shown in FIG. 本発明の一実施形態による薬液注入装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the chemical injection device by one Embodiment of this invention. 図4に示す注入ヘッドを、それに装着されるシリンジとともに示す斜視図である。It is a perspective view which shows the injection | pouring head shown in FIG. 4 with the syringe with which it is mounted | worn. 図4に示す薬液注入装置において、注入条件を設定する際に表示される注入条件設定用画面の一例を示す図である。FIG. 5 is a diagram showing an example of an injection condition setting screen displayed when setting injection conditions in the chemical injection device shown in FIG. 4. 図6に示す注入条件設定用画面において、注入モードが希釈注入モードであるとき、希釈比率を変更する場合に表示される画面の一例を示す図である。FIG. 7 is a diagram showing an example of a screen displayed when the dilution ratio is changed when the injection mode is the dilution injection mode on the injection condition setting screen shown in FIG. 6. 本発明の他の実施形態による医用画像撮像システムの外観を示す斜視図である。It is a perspective view which shows the external appearance of the medical imaging system by other embodiment of this invention. 図8に示す医用画像撮像システムの概略ブロック図である。It is a schematic block diagram of the medical imaging system shown in FIG. 図8に示す注入ヘッドの斜視図である。It is a perspective view of the injection head shown in FIG. 図8に示す注入ヘッドへのシリンジの装着手順を説明する図である。It is a figure explaining the mounting procedure of the syringe to the injection | pouring head shown in FIG. 図8に示す注入ヘッドへのシリンジの装着手順を説明する図であり、図11に示した手順の次のステップを示す。It is a figure explaining the mounting procedure of the syringe to the injection head shown in FIG. 8, and shows the next step of the procedure shown in FIG. 図8に示す注入ヘッドにシリンジが正常に保持された状態での、RFIDタグとRFIDモジュールとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of a RFID tag and a RFID module in the state in which the syringe was normally hold | maintained at the injection head shown in FIG. 本発明の他の形態による注入回路の図である。FIG. 4 is a diagram of an injection circuit according to another embodiment of the present invention. 図14に示す注入回路における、流量センサの配置の変更例を示す図である。It is a figure which shows the example of a change of arrangement | positioning of a flow sensor in the injection | pouring circuit shown in FIG. 本発明の注入回路が備えることができるミキシングデバイスの一例の模式図である。It is a schematic diagram of an example of a mixing device that can be provided in the injection circuit of the present invention. 図16Aに示すミキシングデバイスの斜視図である。FIG. 16B is a perspective view of the mixing device shown in FIG. 16A. 図16Aに示すミキシングデバイスの断面図である。It is sectional drawing of the mixing device shown to FIG. 16A. 本発明のさらに他の形態による注入回路の図である。FIG. 6 is a diagram of an injection circuit according to yet another aspect of the present invention. 図17に示す注入回路の一変更例を示す図である。It is a figure which shows the example of a change of the injection circuit shown in FIG. 本発明で使用可能な、注入ヘッド用の支持アームユニットの一例を示す図である。It is a figure which shows an example of the support arm unit for injection heads which can be used by this invention.
 図1を参照すると、薬液注入装置100と、注入回路200と、医用画像撮像装置500と、を有する、本発明の一実施形態による医用画像撮像システムのブロック図が示されている。薬液注入装置100と注入回路200とは薬液注入システムを構成する。また、薬液注入装置100と医用画像撮像装置500とは、相互間でデータの送受信を行うことができるように互いに接続されることができる。両者の接続は、有線接続とすることもできるし、無線接続とすることもできる。 Referring to FIG. 1, there is shown a block diagram of a medical image imaging system according to an embodiment of the present invention that includes a chemical liquid injection device 100, an injection circuit 200, and a medical image imaging device 500. The chemical injection device 100 and the injection circuit 200 constitute a chemical injection system. In addition, the liquid injector 100 and the medical imaging device 500 can be connected to each other so that data can be transmitted and received between them. The connection between the two can be a wired connection or a wireless connection.
 医用画像撮像装置500は、撮像動作を実行する撮像動作ユニット520と、撮像動作ユニット520の動作を制御する撮像制御ユニット510と、を有しており、薬液注入装置100によって薬液が注入された被験者の断層画像および/または三次元画像を含む医用画像を取得することができる。撮像動作ユニット520は、通常、被験者用の寝台、寝台上の所定の空間に電磁波を照射する電磁波照射ユニット等を有する。撮像制御ユニット510は、撮像条件を決定したり、決定した撮像条件に従って撮像動作ユニット520の動作を制御したりする等、医用画像撮像装置全体の動作を制御する。撮像制御ユニット510は、いわゆるマイクロコンピュータを含んで構成することができ、CPU、ROM、RAM、他の機器とのインターフェースを有することができる。ROMには、医用画像撮像装置500の制御用のコンピュータプログラムが実装されている。CPUは、このコンピュータプログラムに対応して各種機能を実行することで、医用画像撮像装置500の各部の動作を制御する。 The medical imaging apparatus 500 includes an imaging operation unit 520 that executes an imaging operation, and an imaging control unit 510 that controls the operation of the imaging operation unit 520, and a subject into which a drug solution is injected by the drug solution injection device 100. A medical image including a tomographic image and / or a three-dimensional image can be acquired. The imaging operation unit 520 usually includes a subject bed, an electromagnetic wave irradiation unit that irradiates electromagnetic waves to a predetermined space on the bed, and the like. The imaging control unit 510 controls the operation of the entire medical imaging apparatus, such as determining the imaging conditions and controlling the operation of the imaging operation unit 520 according to the determined imaging conditions. The imaging control unit 510 can include a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices. A computer program for controlling the medical image capturing apparatus 500 is installed in the ROM. The CPU controls the operation of each unit of the medical image capturing apparatus 500 by executing various functions corresponding to the computer program.
 医用画像撮像装置500は、撮像条件や取得した医用画像などを表示できる液晶ディスプレイなどの表示ユニット504、および撮像条件などを入力するための、キーボードおよび/またはマウスなどの入力ユニット503をさらに含むことができる。撮像条件を決定するのに用いられるデータの少なくとも一部は入力ユニット503から入力され、撮像制御ユニット510に送信される。表示ユニット504に表示されるデータは撮像制御ユニット510から送信される。また、表示ユニットのディスプレイ上に入力ユニットとしてタッチスクリーンを配置したタッチパネルを入力ユニット503および表示ユニット504として用いることもできる。入力ユニット503の一部、表示ユニット504および撮像制御ユニット510は、医用画像撮像装置用のコンソールとして一つの筐体に組み込むことができる。 The medical imaging apparatus 500 further includes a display unit 504 such as a liquid crystal display capable of displaying imaging conditions and acquired medical images, and an input unit 503 such as a keyboard and / or mouse for inputting imaging conditions. Can do. At least a part of data used to determine the imaging condition is input from the input unit 503 and transmitted to the imaging control unit 510. Data displayed on the display unit 504 is transmitted from the imaging control unit 510. A touch panel in which a touch screen is arranged as an input unit on the display unit display can also be used as the input unit 503 and the display unit 504. A part of the input unit 503, the display unit 504, and the imaging control unit 510 can be incorporated in one housing as a console for a medical imaging apparatus.
 薬液注入装置100は、容器であるシリンジに充填された薬液を、注入回路を介して被験者の血管内に注入するのに使用される装置であり、複数のピストン駆動機構130a、130bと、入力ユニット103と、表示ユニット104と、注入制御ユニット101と、を有する。ピストン駆動機構130a、130bは、シリンジから薬液を注入させるようにシリンジのピストンを操作する機構であり、本形態では、2種類の薬液を別々にまたは同時に注入できるように、2つのシリンジについてそれぞれのピストンを独立して操作する2つのピストン駆動機構130a、130bを有している。しかし、一方の薬液注入のためのピストン駆動機構130aおよび他方の薬液注入のためのピストン駆動機構130bの少なくとも一方が複数であってもよい。 The drug solution injection device 100 is a device used to inject a drug solution filled in a syringe as a container into a blood vessel of a subject via an injection circuit, and includes a plurality of piston drive mechanisms 130a and 130b, and an input unit. 103, a display unit 104, and an injection control unit 101. The piston drive mechanisms 130a and 130b are mechanisms for operating the pistons of the syringes so as to inject chemicals from the syringes. In this embodiment, the two syringes can be injected separately or simultaneously. Two piston drive mechanisms 130a and 130b for independently operating the pistons are provided. However, there may be a plurality of at least one of the piston driving mechanism 130a for injecting one chemical liquid and the piston driving mechanism 130b for injecting the other chemical liquid.
 注入制御ユニット101は、入力ユニット103から入力されたデータの少なくとも一部を用いて薬液の注入量および注入速度等の注入条件を決定したり、決定した注入条件に従ってシリンジから薬液が注入されるようにピストン駆動機構130a、130bの動作を制御したり、表示ユニット104の表示の制御をしたり、詳しくは後述する流量センサ210からの出力に応じた所定の処理を実行したりする等、この薬液注入装置全体の動作を制御する。注入制御ユニット101は、いわゆるマイクロコンピュータを含んで構成することができ、CPU、ROM、RAM、他の機器とのインターフェースを有することができる。ROMには、薬液注入装置100の制御用のコンピュータプログラムが実装されている。CPUは、このコンピュータプログラムに対応して各種機能を実行することで、薬液注入装置100の各部の動作を制御することができる。 The injection control unit 101 uses at least a part of the data input from the input unit 103 to determine the injection conditions such as the injection amount and the injection speed of the chemical liquid, or the chemical liquid is injected from the syringe according to the determined injection conditions. This chemical solution controls the operation of the piston drive mechanisms 130a and 130b, controls the display of the display unit 104, and executes a predetermined process according to the output from the flow sensor 210, which will be described in detail later. Control the operation of the entire infusion device. The injection control unit 101 can be configured to include a so-called microcomputer, and can have an interface with a CPU, ROM, RAM, and other devices. A computer program for controlling the chemical injection device 100 is mounted in the ROM. The CPU can control the operation of each part of the chemical solution injector 100 by executing various functions in response to the computer program.
 入力ユニット103は、注入制御ユニット101で薬液の注入条件を決定するのに用いられるデータなどを入力するのに用いられるユニットである。入力ユニット103としては、例えば、キーボードおよび/またはマウスなどの公知の入力デバイスであってよい。入力ユニット103から入力されたデータは注入制御ユニット101に送信され、表示ユニット104に表示されるデータは注入制御ユニット101から送信される。表示ユニット104は、注入制御ユニット101によって制御されて、薬液の注入条件の決定に必要なデータ等の表示、注入プロトコルの表示、注入動作の表示、各種警告の表示等を行う。 The input unit 103 is a unit used to input data used for determining the injection condition of the chemical solution by the injection control unit 101. The input unit 103 may be a known input device such as a keyboard and / or a mouse. Data input from the input unit 103 is transmitted to the injection control unit 101, and data displayed on the display unit 104 is transmitted from the injection control unit 101. The display unit 104 is controlled by the injection control unit 101 to display data and the like necessary for determining the injection condition of the chemical solution, display the injection protocol, display the injection operation, display various warnings, and the like.
 注入プロトコルとは、どのような薬液を、どれだけの量、どれくらいの速度で注入するかを示すものである。注入速度は、一定であってもよいし、時間とともに変化するものであってもよい。また、複数種の薬液、例えば造影剤と生理食塩水とを注入する場合、それらの薬液をどのような順序で注入するかといった情報も注入プロトコルに含まれる。注入プロトコルは、公知の任意の注入プロトコルを用いることができる。また、注入プロトコルの作成手順についても、公知の手順を用いることができる。また、注入プロトコルは、注入圧力の許容最大値(圧力リミット)を含むこともある。圧力リミットが設定された場合は、注入動作中、注入圧力が監視され、注入圧力が、設定された圧力リミットを超えないようにピストン駆動機構130a、130bの動作が制御される。 The injection protocol indicates what kind of chemical solution is to be injected, how much and at what speed. The injection rate may be constant or may change with time. In addition, when injecting a plurality of types of drug solutions, for example, a contrast medium and physiological saline, information on the order of injection of these drug solutions is also included in the injection protocol. As the injection protocol, any known injection protocol can be used. Also, a known procedure can be used as a procedure for creating the injection protocol. The injection protocol may also include an allowable maximum value (pressure limit) for the injection pressure. When the pressure limit is set, the injection pressure is monitored during the injection operation, and the operations of the piston drive mechanisms 130a and 130b are controlled so that the injection pressure does not exceed the set pressure limit.
 表示ユニット104としては、例えば液晶ディスプレイ装置等、公知の表示装置であってよい。また、表示ユニットのディスプレイ上に入力ユニットとしてタッチスクリーンを配置したタッチパネルを入力ユニット103および表示ユニット104として用いることもできる。入力ユニット103の一部、表示ユニット104および注入制御ユニット101は、薬液注入装置用のコンソールとして一つの筐体に組み込むことができる。 The display unit 104 may be a known display device such as a liquid crystal display device. A touch panel in which a touch screen is arranged as an input unit on the display unit display can also be used as the input unit 103 and the display unit 104. A part of the input unit 103, the display unit 104, and the injection control unit 101 can be incorporated in one housing as a console for a chemical solution injection device.
 注入回路200は、シリンジと被験者とを連絡する液体の流路を構成するものであり、少なくとも1本のチューブを備える、1つの先端および少なくとも1つの末端を有するチューブユニットと、少なくとも1つのコネクタおよび流量センサ210を有することができる。流量センサ210は、チューブユニットの先端から末端までの間に配置される。また、チューブユニットは、容器などとの接続のために少なくとも1つのコネクタをさらに有することができる。本発明で好適に用いることのできる注入回路200の一形態を図2に示す。 The injection circuit 200 constitutes a flow path for liquid that communicates between the syringe and the subject, and includes a tube unit having at least one tube and having one tip and at least one end, at least one connector, and A flow sensor 210 can be included. The flow sensor 210 is disposed between the distal end and the distal end of the tube unit. The tube unit may further include at least one connector for connection with a container or the like. One mode of an injection circuit 200 that can be suitably used in the present invention is shown in FIG.
 図2に示す注入回路200は、第1チューブ201、複数の第2チューブ202、203およびこれらを接続するT字コネクタ204を有しており、全体として、末端側が分岐した分岐チューブの形態をとっている。第1チューブ201は、カテーテル等の体内回路部との接続のためのコネクタ207をその先端に有している。第2チューブ202、203は、それぞれシリンジとの接続のためのコネクタ205、206をそれらの末端に有している。注入回路200は、コネクタ207によって接続される、カテーテルあるいは留置針といった体内回路部をさらに含むこともできる。 The injection circuit 200 shown in FIG. 2 has a first tube 201, a plurality of second tubes 202 and 203, and a T-shaped connector 204 connecting them, and as a whole takes the form of a branch tube branched at the end side. ing. The first tube 201 has a connector 207 for connection with an in-vivo circuit unit such as a catheter at its distal end. The second tubes 202 and 203 have connectors 205 and 206 at their ends for connection with syringes, respectively. Infusion circuit 200 may further include an in-vivo circuit portion, such as a catheter or indwelling needle, connected by a connector 207.
 第2チューブ202、203のそれぞれに連結されたコネクタ205、206のうち少なくとも一つは、一方弁を備えていてもよい。一方弁は、液体の背圧によって作動して流路を閉鎖する弁体を有しており、注入回路200の先端側から末端側、すなわちカテーテル等が接続される側からシリンジが接続される側への液体の逆流を防止する働きをする。一方弁の少なくとも一つは、所定の操作により任意に弁体を流路の開放位置に保持することのできるリリース機能を有していてもよい。リリース機能を有する一方弁を用いることによって、通常は血液がシリンジ側へ逆流することを防止できるが、カテーテル等の先端が正常に被験者の血管内に位置しているかどうか確認するためにシリンジのピストンを後退させ、注入回路200への血液の流入の有無を確認する、いわゆるルートチェック等が可能となる。 At least one of the connectors 205 and 206 connected to the second tubes 202 and 203 may include a one-way valve. On the other hand, the valve has a valve body that is actuated by the back pressure of the liquid and closes the flow path. It works to prevent back flow of liquid into the. On the other hand, at least one of the valves may have a release function that can arbitrarily hold the valve body in the open position of the flow path by a predetermined operation. By using a one-way valve with a release function, it is possible to prevent blood from flowing back to the syringe side normally. However, in order to check whether the tip of the catheter or the like is normally located in the blood vessel of the subject, the syringe piston It is possible to perform so-called route check or the like that confirms the presence or absence of blood inflow into the injection circuit 200.
 注入回路200は、流量センサ210をさらに備えている。流量センサ210は、第1チューブ201、第2チューブ202、203とともに液体の流路の一部を構成する導管を有する。流量センサ210は、注入制御ユニット101(図1参照)と電気的に接続されており、この導管内での液体(薬液)の移動に応じた電気信号を検出結果として、注入制御ユニット101に出力(送信)する。流量センサ210は、一定の時間間隔で検出動作を行い、その検出の都度、検出結果を注入制御ユニット101に送信するようにすることができる。注入制御ユニット101は、送信された検出結果を利用して、薬液および薬液注入装置100に関する様々な項目を求めることができる。 The injection circuit 200 further includes a flow rate sensor 210. The flow sensor 210 has a conduit that forms part of a liquid flow path together with the first tube 201 and the second tubes 202 and 203. The flow sensor 210 is electrically connected to the injection control unit 101 (see FIG. 1), and an electric signal corresponding to the movement of the liquid (chemical solution) in the conduit is output to the injection control unit 101 as a detection result. (Send. The flow sensor 210 can perform a detection operation at regular time intervals, and can transmit a detection result to the injection control unit 101 each time the detection is performed. The injection control unit 101 can obtain various items related to the chemical solution and the chemical solution injection device 100 using the transmitted detection result.
 注入制御ユニットと流量センサ210との電気的接続は、有線接続であってもよいし、無線接続であってもよい。また、流量センサ210の駆動用の電力は、外部の電源ユニットから供給することができる。あるいは、流量センサ210をバッテリが内蔵されたユニットとして構成し、そのバッテリから駆動される電力で流量センサ210が駆動されるようにすることもできる。 The electrical connection between the injection control unit and the flow sensor 210 may be a wired connection or a wireless connection. Further, power for driving the flow sensor 210 can be supplied from an external power supply unit. Alternatively, the flow sensor 210 can be configured as a unit with a built-in battery, and the flow sensor 210 can be driven by electric power driven from the battery.
 注入回路200での流量センサ210の位置は、注入回路200の先端から末端までの間の任意の位置であってよい。ただし、注入回路200は、可撓性を有するチューブが大きな割合を占めて構成されることが多いことから、チューブの固定が不十分な位置に流量センサ210が取り付けられていると、チューブの揺れなどに起因する意図しない動きによって流量センサ210の流路内で薬液の移動が生じ、正確な検出結果が得られなくなるおそれがある。この影響をできるだけ少なくするために、流量センサ210は、チューブの意図しない動きが生じにくい位置、例えば、注入回路200の先端側、すなわち被験者に固定される部位に近い位置に配置することが好ましい。また、流量センサ210を検出対象に近い位置に配置することも好ましい。図2に示す形態では、流量センサ210は、第1チューブ201の先端とコネクタ207との間に接続されている。また、図2には示していないが、体外回路部の被験者から露出する部位、例えば留置針の末端部あるいはカテーテルの末端部に流量センサ210が配置されていてもよい。 The position of the flow sensor 210 in the injection circuit 200 may be an arbitrary position between the front end and the end of the injection circuit 200. However, since the injection circuit 200 is often composed of a flexible tube, if the flow sensor 210 is attached to a position where the tube is not sufficiently fixed, the tube shakes. There is a possibility that the unintended movement caused by the above causes movement of the chemical solution in the flow path of the flow sensor 210 and an accurate detection result cannot be obtained. In order to reduce this influence as much as possible, it is preferable to arrange the flow sensor 210 at a position where the unintended movement of the tube is difficult to occur, for example, a position close to the distal end side of the injection circuit 200, that is, a portion fixed to the subject. It is also preferable to arrange the flow sensor 210 at a position close to the detection target. In the form shown in FIG. 2, the flow sensor 210 is connected between the tip of the first tube 201 and the connector 207. Moreover, although not shown in FIG. 2, the flow sensor 210 may be arrange | positioned in the site | part exposed from the test subject of an extracorporeal circuit part, for example, the terminal part of an indwelling needle, or the terminal part of a catheter.
 流量センサ210としては、任意の流量センサを用いることができる。様々な流量センサの中でも本発明において好適に用いることができるのは、図3に示すような構造を有する、熱式の流量センサ210である。 Any flow sensor can be used as the flow sensor 210. Among various flow sensors, a thermal flow sensor 210 having a structure as shown in FIG. 3 can be preferably used in the present invention.
 図3に示す流量センサ210は、パイプ211と、パイプ211の外面に接合された半導体モジュール212と、を有する。パイプ211は、その内部を液体が流通できるように両端が開放されており、注入回路のチューブととともに液体の流路の一部を構成する。半導体モジュール212には、パイプ211の外面と接触する位置に、ヒータ213と、パイプ211の長手方向においてヒータ213の両側に、ヒータ213に対して対称に配置された2つの温度センサ214とが設けられている。温度センサ214は、ブリッジ回路の一部を構成しており、例えばサーモパイルとして構成されることができる。 3 has a pipe 211 and a semiconductor module 212 joined to the outer surface of the pipe 211. The flow sensor 210 shown in FIG. The pipe 211 is open at both ends so that the liquid can flow therethrough, and constitutes a part of the liquid flow path together with the tube of the injection circuit. The semiconductor module 212 is provided with a heater 213 at positions in contact with the outer surface of the pipe 211, and two temperature sensors 214 arranged symmetrically with respect to the heater 213 on both sides of the heater 213 in the longitudinal direction of the pipe 211. It has been. The temperature sensor 214 forms part of a bridge circuit, and can be configured as a thermopile, for example.
 半導体モジュール212は、処理回路(不図示)を含んでいてもよい。処理回路は、ヒータ213を駆動し、また、温度センサ214からの信号を処理し、2つの温度センサ214からの出力を比較してこれらの温度センサ214間の温度差を測定する。さらに、半導体モジュール212は、ヒータ213を駆動する電力を外部から供給するため、および測定結果を外部へ出力するために、複数の電極パッド(不図示)を有することができる。半導体モジュール212は、少なくともパイプ211との接合部が封止剤(不図示)により封止されていてもよい。 The semiconductor module 212 may include a processing circuit (not shown). The processing circuit drives the heater 213, processes the signal from the temperature sensor 214, compares the outputs from the two temperature sensors 214, and measures the temperature difference between these temperature sensors 214. Further, the semiconductor module 212 can have a plurality of electrode pads (not shown) in order to supply power for driving the heater 213 from the outside and to output the measurement result to the outside. The semiconductor module 212 may be sealed with at least a joint with the pipe 211 with a sealant (not shown).
 上記のように構成された流量センサ210によれば、パイプ211内で液体の移動が生じていない場合は、パイプ211内の液体の温度分布は、ヒータ213を中心に対称な温度分布となる。ところが、パイプ211の長手方向に沿って液体が移動すると、2つの温度センサ214の間には、移動した液体の質量流量に対応した温度差が生じる。温度センサ214によって測定された温度差はブリッジ回路の平衡を変化させるため、流量に対応した電気信号が得られる。 According to the flow rate sensor 210 configured as described above, when the liquid does not move in the pipe 211, the temperature distribution of the liquid in the pipe 211 becomes a symmetric temperature distribution around the heater 213. However, when the liquid moves along the longitudinal direction of the pipe 211, a temperature difference corresponding to the mass flow rate of the moved liquid is generated between the two temperature sensors 214. Since the temperature difference measured by the temperature sensor 214 changes the balance of the bridge circuit, an electrical signal corresponding to the flow rate is obtained.
 構造的な観点で見れば、図3に示した構成を有する流量センサ210は、液体が接触するパイプ211の内面には電極等、電気回路を構成する部材が露出していないので、被験者への電気的な影響は生じない。被験者への電気的な影響をより抑制できるようにするためには、電気回路を構成する部材パイプ211の内面との間の距離(例えば、電気回路を構成する部材が配置された部位でのパイプ211の管壁の厚さ)は、0.4mm以上であることが好ましい。また、液体の入口及び出口であるパイプ211の両端を除いて図3に示した構成全体が樹脂等でパッケージ化されていてもよく、こうすることにより防滴化がなされる。 From a structural point of view, the flow sensor 210 having the configuration shown in FIG. 3 does not expose the members constituting the electric circuit, such as electrodes, on the inner surface of the pipe 211 in contact with the liquid. There is no electrical effect. In order to further suppress the electrical influence on the subject, the distance between the inner surface of the member pipe 211 constituting the electric circuit (for example, the pipe at the portion where the member constituting the electric circuit is arranged) The thickness of the tube wall 211 is preferably 0.4 mm or more. Further, the entire configuration shown in FIG. 3 except for both ends of the pipe 211 that is the inlet and outlet of the liquid may be packaged with resin or the like.
 ここで、本形態の薬液注入装置で注入される薬液である造影剤は、一般に高粘度の液体であり、所定の注入速度で注入するためには高い圧力が必要となり、また、その注入速度自身も比較的低速である。一方、本形態で用いているタイプの流量センサ210は、流体が流れる導管であるパイプ211の内部には何の構造物も存在しておらず、また、わずかな液体の移動であっても検出することができる。よって、このタイプの流量センサ210は、造影剤の注入回路200のように、高圧かつ低速で注入される液体の移動を検出するのに適しているといえる。 Here, the contrast agent, which is a chemical solution injected by the chemical injection device of this embodiment, is generally a high-viscosity liquid, and a high pressure is required to inject at a predetermined injection rate, and the injection rate itself Is also relatively slow. On the other hand, the flow sensor 210 of the type used in this embodiment has no structure inside the pipe 211 which is a conduit through which a fluid flows, and can detect even a slight liquid movement. can do. Therefore, it can be said that this type of flow sensor 210 is suitable for detecting the movement of liquid injected at a high pressure and a low speed, like the injection circuit 200 for contrast medium.
 このタイプの流量センサ210は、例えば、センシリオン株式会社から入手することができる。 This type of flow sensor 210 can be obtained from, for example, Sensirion Co., Ltd.
 上述したように、注入回路200に流量センサ210を組み込むことで、薬液注入装置100を用いて被験者に薬液を注入する際に利用できる様々な項目を検出することができる。以下に、その幾つかの適用例を説明する。 As described above, by incorporating the flow sensor 210 into the injection circuit 200, various items that can be used when injecting a chemical into a subject using the chemical injection device 100 can be detected. Below, some application examples will be described.
 (血管造影での適用)
 図4を参照すると、血管造影において用いられる薬液注入装置の一形態の外観斜視図が示される。この薬液注入装置100は、カテーテルを通して被験者に薬液を注入するのに適した構成を有している。医用画像撮像システムとして構成される場合は、薬液注入装置100は、図1に示した医用画像撮像装置500であるアンギオ装置と連携される。
(Application in angiography)
Referring to FIG. 4, there is shown an external perspective view of one form of a chemical liquid injector used in angiography. This chemical injection device 100 has a configuration suitable for injecting a chemical into a subject through a catheter. When configured as a medical image imaging system, the chemical injection device 100 is linked to the angio device that is the medical image imaging device 500 shown in FIG.
 血管造影用の薬液を注入するのに適した薬液注入装置100は、注入ヘッド110と、コンソール112と、メインユニット114と、を有する。注入ヘッド110とコンソール112とは、メインユニット114を介して電気的に接続される。注入ヘッド110は、図示した形態では、スタンド116の上部に旋回可能に支持されているが、天井に固定された旋回アームに支持されていてもよい。コンソールは、上述した入力ユニット103および表示ユニット104を含むことができる。図示した形態では、コンソール112はタッチパネルを備えており、このタッチパネルが、上述した入力ユニット103および表示ユニット104に相当する。メインユニット114は、電源装置(不図示)を備えることができ、この電源装置から注入ヘッド110およびコンソール112に電力を供給することができる。図1に示した注入制御ユニット101は、メインユニット114内に配置されてもよいし、コンソール112内に配置されてもよい。 A chemical solution injection device 100 suitable for injecting a chemical solution for angiography has an injection head 110, a console 112, and a main unit 114. The injection head 110 and the console 112 are electrically connected via the main unit 114. In the illustrated form, the injection head 110 is supported by the upper part of the stand 116 so as to be able to turn, but may be supported by a turning arm fixed to the ceiling. The console can include the input unit 103 and the display unit 104 described above. In the illustrated form, the console 112 includes a touch panel, which corresponds to the input unit 103 and the display unit 104 described above. The main unit 114 can include a power supply (not shown) and can supply power to the injection head 110 and the console 112 from this power supply. The injection control unit 101 illustrated in FIG. 1 may be disposed in the main unit 114 or may be disposed in the console 112.
 注入ヘッド110は、図5に示すように、2つのシリンジ320を着脱自在に装着できるように構成されている(図5では、簡略化のために1つのシリンジ320のみを示している)。 As shown in FIG. 5, the injection head 110 is configured so that two syringes 320 can be detachably attached (in FIG. 5, only one syringe 320 is shown for the sake of simplicity).
 図示した形態では、シリンジ320は、保護カバー370に挿入された状態で注入ヘッド110に装着されているが、シリンジ320が注入ヘッド110に直接装着されるように構成されていてもよい。シリンジ320は、一般にロッドレスシリンジと呼ばれるものであり、末端にフランジ321aが形成されるとともに先端にノズル部321bが形成されたシリンダ321と、シリンダ321内に進退移動可能に挿入されたピストン322とを有している。 In the illustrated form, the syringe 320 is attached to the injection head 110 while being inserted into the protective cover 370, but the syringe 320 may be configured to be directly attached to the injection head 110. The syringe 320 is generally called a rodless syringe, and includes a cylinder 321 having a flange 321a formed at the end and a nozzle portion 321b formed at the tip, and a piston 322 inserted into the cylinder 321 so as to be capable of moving forward and backward. have.
 ピストン322がシリンダ321の先端へ向けて移動することで、充填されている薬液が、ノズル部321bを通ってシリンジ320から押し出される。各シリンジ320の先端には、例えば図2に示した注入回路200が接続されることができる。図2には注入回路200の体外回路部が示されているが、血管造影においては、第1チューブ201の先端のコネクタ207を介してカテーテル等の体内回路部が接続される。 When the piston 322 moves toward the tip of the cylinder 321, the filled chemical solution is pushed out from the syringe 320 through the nozzle portion 321b. For example, the injection circuit 200 shown in FIG. 2 can be connected to the tip of each syringe 320. FIG. 2 shows an extracorporeal circuit portion of the injection circuit 200. In angiography, an in-vivo circuit portion such as a catheter is connected via a connector 207 at the distal end of the first tube 201.
 シリンジ320に充填される薬液としては、例えば、一方の第2チューブ202と接続されるシリンジ320に充填されるのが造影剤、他方の第2チューブ203と接続されるシリンジ320に充填されるのが生理食塩水とすることができる。あるいは、第2チューブ202、203のそれぞれに濃度の異なる造影剤が充填されたシリンジ320が接続されてもよい。 As the chemical solution to be filled in the syringe 320, for example, the syringe 320 connected to the one second tube 202 is filled with the contrast agent, and the syringe 320 connected to the other second tube 203 is filled. Can be saline. Alternatively, a syringe 320 filled with contrast agents having different concentrations may be connected to each of the second tubes 202 and 203.
 医用画像の撮像に利用される造影剤は比較的粘度が高く、特に血管造影に用いる造影剤は他の種類の造影剤と比べて粘度が高い。しかも、一般的にカテーテルは内径が1mm未満と極めて細い。よって、薬液として造影剤がシリンジ320に充填され、その造影剤を注入するためにピストン322を前進させると、シリンダ321には非常に高い内圧が発生する。この高い内圧は、シリンダ321を膨張させ、造影剤の注入に種々の不具合を生じさせることがある。 Contrast agents used for medical imaging are relatively high in viscosity, and in particular, contrast agents used for angiography are higher in viscosity than other types of contrast agents. Moreover, the catheter is generally very thin with an inner diameter of less than 1 mm. Therefore, when the contrast medium is filled in the syringe 320 as a chemical solution and the piston 322 is advanced to inject the contrast medium, a very high internal pressure is generated in the cylinder 321. This high internal pressure may cause the cylinder 321 to expand and cause various troubles in the injection of contrast medium.
 保護カバー370は、薬液注入時のシリンダ321の内圧上昇による膨張を抑制するものであり、シリンダ321が挿入されたとき、その外周面との間ですき間が殆ど生じないような寸法とされた円筒状の部材である。保護カバー370がこの役割を果たすために、保護カバー370は、薬液の注入中にシリンダ321に作用する内圧に十分に耐え得る機械的強度を有する肉厚で形成されることが好ましい。 The protective cover 370 suppresses expansion due to an increase in the internal pressure of the cylinder 321 at the time of injecting a chemical solution. When the cylinder 321 is inserted, the cylinder is sized so that there is almost no gap between the cylinder 321 and its outer peripheral surface. Shaped member. In order for the protective cover 370 to fulfill this role, the protective cover 370 is preferably formed with a thickness having mechanical strength that can sufficiently withstand the internal pressure acting on the cylinder 321 during the injection of the chemical liquid.
 保護カバー370の先端には、シリンジ320のノズル部321bが通過する開口部が形成されており、シリンジ320は、この開口部からノズル部321bを突出させた状態で保持される。保護カバー370の末端には、シリンダ321のフランジ321aを受け入れるリング状の凹部が末端面に形成されたカバーフランジ371が形成されている。 An opening through which the nozzle part 321b of the syringe 320 passes is formed at the tip of the protective cover 370, and the syringe 320 is held in a state in which the nozzle part 321b protrudes from the opening. At the end of the protective cover 370, a cover flange 371 is formed in which a ring-shaped recess for receiving the flange 321a of the cylinder 321 is formed on the end surface.
 注入ヘッド110には、装着された2つのシリンジ320のピストン322を前進および後退させるために互いに独立して駆動される2つのピストン駆動機構130a、130b(図1参照)が、各シリンジ320が装着される位置に対応して配置されている。各ピストン駆動機構130a、130bはそれぞれ、ピストン322の末端に形成された凸部を保持するプレッサ131と、プレッサ131を前進および後退移動させるモータ等の駆動源と、これらを連結する動力伝達機構とを有する。 The injection head 110 is provided with two piston drive mechanisms 130a and 130b (see FIG. 1) that are driven independently of each other in order to advance and retract the pistons 322 of the two syringes 320 attached thereto. It is arranged corresponding to the position. Each of the piston drive mechanisms 130a and 130b includes a presser 131 that holds a convex portion formed at the end of the piston 322, a drive source such as a motor that moves the presser 131 forward and backward, and a power transmission mechanism that connects them. Have
 注入ヘッド110に装着されたシリンジ320は、ピストン駆動機構130a、130bによってピストン322が前進させられることによって、シリンジ320内に充填されている薬液を、別々に、または同時に被験者に注入することができる。ピストン駆動機構130a、130bについては、この種の注入装置に一般に用いられている公知の機構を採用することができる。 The syringe 320 attached to the injection head 110 can inject the drug solution filled in the syringe 320 into the subject separately or simultaneously by the piston 322 being advanced by the piston drive mechanisms 130a and 130b. . As the piston drive mechanisms 130a and 130b, known mechanisms generally used in this type of injection apparatus can be employed.
 注入ヘッド110の先端部には、保護カバー370が装着されたシリンジ320が載せられるシリンジ載置部を構成するシリンジ受け120およびクランパ140が備えられている。シリンジ受け120は、クランパ140よりも先端側に位置しており、保護カバー370の外周面を個々に受け入れるように2つの凹部121を有している。クランパ140は、シリンジ受け120に対して開閉可能に支持されており、各保護カバー270のカバーフランジ271を個別に保持するように構成されている。各シリンジ320は、ノズル部321bを先端側に向けた状態で凹部121内に位置され、クランパ140を閉じることによって、注入ヘッド110に固定される。なお、保護カバー370は必須の構成ではなく、シリンジ320が直接、注入ヘッド110に装着されるようなものであってもよい。 At the distal end of the injection head 110, there are provided a syringe receiver 120 and a clamper 140 that constitute a syringe mounting portion on which a syringe 320 with a protective cover 370 is mounted. The syringe receiver 120 is located on the tip side of the clamper 140 and has two concave portions 121 so as to receive the outer peripheral surface of the protective cover 370 individually. The clamper 140 is supported so as to be openable and closable with respect to the syringe receiver 120, and is configured to individually hold the cover flange 271 of each protective cover 270. Each syringe 320 is positioned in the recess 121 with the nozzle portion 321b facing the distal end side, and is fixed to the injection head 110 by closing the clamper 140. Note that the protective cover 370 is not an essential component, and the syringe 320 may be directly attached to the injection head 110.
 注入ヘッド110は、シリンジ受け120およびクランパ140を有する部分を除いて全体の機構を覆う外装カバー125を有することができる。この場合、外装カバー125は、各プレッサ131に対応する位置に、対応するプレッサ131を区別するための標識125aを有することができる。標識125aは、文字や記号など任意であってよく、本形態では、「A」および「B」の文字を用いている。この標識は、後述する注入条件設定用画面400(図5参照)においてシリンジ320(薬液)を区別するのにも用いることができる。以下の説明では、この標識125aに対応して、それぞれシリンジ受け120に装着されたシリンジ320に充填されている薬液を、「薬液A」および「薬液B」と称することもある。 The injection head 110 can have an exterior cover 125 that covers the entire mechanism except for the portion having the syringe receiver 120 and the clamper 140. In this case, the exterior cover 125 can have a mark 125 a for distinguishing the corresponding presser 131 at a position corresponding to each presser 131. The sign 125a may be any character or symbol, and in this embodiment, the characters “A” and “B” are used. This marker can also be used to distinguish the syringe 320 (chemical solution) on the injection condition setting screen 400 (see FIG. 5) described later. In the following description, the chemical solutions filled in the syringes 320 attached to the syringe receiver 120 corresponding to the label 125a may be referred to as “medical solution A” and “chemical solution B”.
 再び図4を参照すると、薬液注入装置100は、ハンドスイッチ118および/またはフットスイッチ119をオプションとしてさらに有していてもよい。ハンドスイッチ118は操作ボタンを有しており、この操作ボタンが押されている間だけ注入ヘッド110による薬液の注入動作が行われるように、注入動作の開始および停止を制御するのに用いることができる。フットスイッチ119は、例えばテスト注入を行う場合に、フットスイッチ119が踏まれている間だけ注入ヘッド110による薬液の注入動作が行われるように、注入動作の開始および停止を制御するのに用いることができる。 Referring to FIG. 4 again, the chemical injection device 100 may further include a hand switch 118 and / or a foot switch 119 as an option. The hand switch 118 has an operation button, and is used to control the start and stop of the injection operation so that the injection operation of the chemical solution by the injection head 110 is performed only while the operation button is pressed. it can. The foot switch 119 is used to control the start and stop of the injection operation so that the injection operation of the chemical solution by the injection head 110 is performed only while the foot switch 119 is stepped on, for example, when performing test injection. Can do.
 「テスト注入」とは、造影効果の個人差を把握するため、かつ/または注入回路の先端位置を確認するためなどに、医用画像の取得のための撮像に先立って必要に応じて実行される薬液の注入である。医用画像の取得のための薬液の注入は、このテスト注入との区別のために「本注入」と呼ぶことがある。テスト注入では、通常、本注入よりも少ない量の薬液が注入される。また、テスト注入での薬液の注入速度は、通常、予め設定されているか、または本注入での薬液の注入速度と同じに設定される。このテスト注入は、ハンドスイッチ118の操作によって行うこともできる。この場合、薬液の注入プロトコルの設定が完了して注入準備が整った段階(スタンバイ状態)でハンドスイッチ118が操作されれば本注入が実行されるが、それ以前の段階でハンドスイッチ118が操作されればテスト注入が実行されるようにすることができる。 “Test injection” is performed as necessary prior to imaging for acquiring a medical image, for example, to grasp individual differences in contrast effects and / or to confirm the tip position of an injection circuit. It is the injection of chemicals. The injection of a medical solution for acquiring a medical image may be referred to as “main injection” for the purpose of distinction from the test injection. In the test injection, a smaller amount of chemical solution is usually injected than in the main injection. In addition, the injection rate of the chemical solution in the test injection is usually set in advance or set to be the same as the injection rate of the chemical solution in the main injection. This test injection can also be performed by operating the hand switch 118. In this case, if the hand switch 118 is operated at the stage where the setting of the injection protocol for the chemical solution is completed and the preparation for injection is completed (standby state), the main injection is executed, but the hand switch 118 is operated at the previous stage. If so, a test injection can be performed.
 次に、上述した医用画像撮像システムを用いた薬液の注入手順の一例を説明する。 Next, an example of a procedure for injecting a chemical solution using the above-described medical imaging system will be described.
 まず、操作者によって薬液注入装置100の電源が投入される。その後、被験者に注入すべき薬液が充填されたシリンジアセンブリ300を注入ヘッド110に装着する。または、薬液が充填されていない空のシリンジアセンブリ300を注入ヘッド110に装着した後、そのノズル部221bに適宜のチューブを介して薬液容器(不図示)を接続し、その状態でピストン駆動機構によりピストン322を後退させてシリンジアセンブリ300に薬液を充填することで、薬液が充填されたシリンジアセンブリ300が注入ヘッド110に装着された状態としてもよい。シリンジアセンブリ300の一部を構成するシリンジ320について、本明細書では、前者のように製造業者にて薬液が充填されたものをプレフィルドタイプといい、後者のように医療現場にて薬液が充填されるものを後充填タイプともいう。 First, the power of the chemical injection device 100 is turned on by the operator. Thereafter, the syringe assembly 300 filled with the chemical to be injected into the subject is attached to the injection head 110. Alternatively, after an empty syringe assembly 300 that is not filled with a chemical solution is attached to the injection head 110, a chemical solution container (not shown) is connected to the nozzle portion 221b via an appropriate tube, and in this state, a piston drive mechanism is used. The syringe assembly 300 filled with the chemical solution may be attached to the injection head 110 by retracting the piston 322 and filling the syringe assembly 300 with the chemical solution. As for the syringe 320 constituting a part of the syringe assembly 300, in this specification, the one filled with the chemical solution by the manufacturer like the former is called a prefilled type, and the chemical solution is filled in the medical field like the latter. This is also called a post-filling type.
 注入ヘッド110へのシリンジアセンブリ300の装着は、例えば、次に示す手順で行うことができる。まず、クランパ140を開放位置にした状態で、操作者は、シリンジアセンブリ300をシリンジ受け120の凹部121上に載せる。このとき、後端位置にあるピストン322の凸部がプレッサ131に保持されるようにする。シリンジアセンブリ300が凹部121上に載せられたら、操作者はクランパ140を閉じ、これによってシリンジアセンブリ300が注入ヘッド110に保持される。 The mounting of the syringe assembly 300 to the injection head 110 can be performed, for example, by the following procedure. First, with the clamper 140 in the open position, the operator places the syringe assembly 300 on the recess 121 of the syringe receiver 120. At this time, the convex portion of the piston 322 at the rear end position is held by the presser 131. When the syringe assembly 300 is placed on the recess 121, the operator closes the clamper 140, whereby the syringe assembly 300 is held by the injection head 110.
 注入ヘッド110は、クランパ140を閉止位置において開放可能にロックするロック機構(不図示)を有することが好ましい。ロック機構は、閉止位置でクランパ140をロックおよび開放することが可能であれば任意の機構であってよい。ロック機構を有することにより、注入ヘッド110に装着したシリンジアセンブリ300が注入ヘッド110から外れることを防止できる。 The injection head 110 preferably has a lock mechanism (not shown) that locks the clamper 140 so that it can be opened in the closed position. The lock mechanism may be any mechanism as long as it can lock and release the clamper 140 in the closed position. By having the locking mechanism, it is possible to prevent the syringe assembly 300 attached to the injection head 110 from being detached from the injection head 110.
 ここで、注入ヘッド110は、シリンジアセンブリ300が注入ヘッド110に装着されたことを検出する少なくとも1つの検出器を備えることが好ましい。注入ヘッド110にシリンジアセンブリ300が装着されたことは、例えば、シリンジアセンブリ300がシリンジ受け凹部121上に載せられたことを検出する第1の検出器、およびクランパ140が閉止位置にあることを検出する第2の検出器によって検出することができる。第1の検出器は、例えば、シリンジ受け凹部121に配置され、シリンジ受け凹部121内でのシリンジアセンブリ300を検出することができる検出器を用いることができる。第2の検出器は、例えば、注入ヘッド110に内蔵され、クランパ140が閉止位置にあるときにクランパ140の先端部を検出することができる検出器を用いることができる。 Here, the injection head 110 preferably includes at least one detector that detects that the syringe assembly 300 is attached to the injection head 110. When the syringe assembly 300 is mounted on the injection head 110, for example, a first detector that detects that the syringe assembly 300 is placed on the syringe receiving recess 121 and that the clamper 140 is in the closed position are detected. Can be detected by a second detector. As the first detector, for example, a detector that is arranged in the syringe receiving recess 121 and can detect the syringe assembly 300 in the syringe receiving recess 121 can be used. As the second detector, for example, a detector that is built in the injection head 110 and can detect the tip of the clamper 140 when the clamper 140 is in the closed position can be used.
 これらの検出器はいずれも、シリンジアセンブリ300やクランパ140といった被検出物と検出器との距離が所定の距離以下になったとき(接触も含む)に被検出物を検出することができる検出器であってよく、具体的には、検出領域内での物体の有無を光学的に検出する光学センサや、磁気を検出媒体として物体の有無や位置を検出する近接センサや、被検出物の接触/非接触によってオン/オフが切り替わる機械的スイッチなどを用いることができる。機械的スイッチとしては、被検出物の接触/非接触によってオン/オフが切り替わるものであれば、例えばタクトスイッチおよびリミットスイッチなどを含む任意のスイッチが利用可能である。なお、注入ヘッド110は、シリンジアセンブリ300が注入ヘッド110に装着されたことを検出するために、第1の検出器および第2の検出器の両方を備えている必要はなく、いずれか一方のみであってもよい。 Any of these detectors can detect an object to be detected when the distance between the object to be detected such as the syringe assembly 300 or the clamper 140 and the detector becomes a predetermined distance or less (including contact). Specifically, an optical sensor that optically detects the presence or absence of an object in a detection region, a proximity sensor that detects the presence or absence and position of an object using magnetism as a detection medium, and a contact with an object to be detected A mechanical switch that is switched on / off by non-contact can be used. As the mechanical switch, any switch including, for example, a tact switch and a limit switch can be used as long as it is switched on / off by contact / non-contact of the object to be detected. Note that the injection head 110 does not need to include both the first detector and the second detector in order to detect that the syringe assembly 300 is attached to the injection head 110, but only one of them. It may be.
 このように、シリンジアセンブリ300が注入ヘッド110に装着されたことを検出できるようにすることで、例えば、注入制御ユニット101は、シリンジアセンブリ300の装着が完了したことを表す情報を表示ユニット104に表示させて操作者に視覚的に知らせたり、さらには、薬液注入装置100の動作を次のステップへ移行したりすることができる。 As described above, by enabling detection that the syringe assembly 300 is mounted on the injection head 110, for example, the injection control unit 101 displays information indicating that the mounting of the syringe assembly 300 is completed on the display unit 104. It is possible to display it and visually notify the operator, or to move the operation of the chemical injection device 100 to the next step.
 このとき表示ユニット104に表示される情報は、文字によるメッセージでもよいし、記号により表される情報であってもよい。また、表示ユニット104とは別に発光ランプ(不図示)を設け、注入制御ユニット101がこの発光ランプを点灯させることによって、シリンジアセンブリ300の装着が完了したことを操作者に視覚的に知らせることもできる。この場合、発光ランプは注入ヘッド110に設けることができる。注入ヘッド110に設けられる発光ランプの位置は任意であって良いが、シリンジアセンブリ300を装着する際に操作者が最後に操作する部位の近傍、例えばクランパ140の近傍とすることが好ましい。特に、図5に示した形態のように、2つのピストン駆動機構130a、130bを特定できるようにするための標識125a(具体的には、「A」および「B」の文字)を注入ヘッド110が有する場合、これら標識の部分がそれぞれ発光部として発光するように2つの発光ランプを配置することが好ましい。発光ランプの点灯によって視認される色は任意であってよく、また、例えば青色と緑色など、対応する薬液ごとに異なる色であってもよい。注入ヘッド110は、前述したスタンバイ状態で発光するさらに別の発光ランプの点灯により発光する発光部126を有することもできる。図4に示した形態では互いに離れた位置に配置された複数の発光部126を有しているが、こうすることにより、何れの方向からでもスタンバイ状態であることを視認することができる。 At this time, the information displayed on the display unit 104 may be a message by text or information represented by a symbol. Further, a light emitting lamp (not shown) is provided separately from the display unit 104, and the injection control unit 101 turns on the light emitting lamp to visually notify the operator that the mounting of the syringe assembly 300 is completed. it can. In this case, the light emitting lamp can be provided in the injection head 110. The position of the light-emitting lamp provided in the injection head 110 may be arbitrary, but is preferably in the vicinity of the part that is last operated by the operator when the syringe assembly 300 is mounted, for example, in the vicinity of the clamper 140. In particular, as shown in FIG. 5, the injection head 110 is provided with a mark 125a (specifically, letters “A” and “B”) for identifying the two piston drive mechanisms 130a and 130b. It is preferable to arrange two light-emitting lamps so that these label portions each emit light as a light-emitting portion. The color visually recognized by the lighting of the light-emitting lamp may be arbitrary, and may be a different color for each corresponding chemical solution, for example, blue and green. The injection head 110 can also include a light emitting unit 126 that emits light by turning on another light emitting lamp that emits light in the standby state described above. In the form shown in FIG. 4, the plurality of light emitting units 126 are arranged at positions distant from each other. By doing so, it is possible to visually recognize that they are in the standby state from any direction.
 以上のようにして注入ヘッド110へのシリンジアセンブリ300の装着が完了したら、注入制御ユニット101は、薬液の注入のための動作を実行する。この動作は、例えば、次に示す一連のステップを含むことができる。
(1)データ入力の受け付けおよび注入条件の設定
(2)注入準備
(3)設定された注入条件に従った注入動作の実行
(4)注入動作終了処理
 以下に、これらの処理を順番に説明する。
When the mounting of the syringe assembly 300 to the injection head 110 is completed as described above, the injection control unit 101 executes an operation for injecting the chemical solution. This operation can include, for example, the following series of steps.
(1) Reception of data input and setting of injection conditions (2) Preparation for injection (3) Execution of injection operation according to the set injection conditions (4) End operation of injection operation Hereinafter, these processes will be described in order. .
 (1)データ入力の受け付けおよび注入条件の設定
 このステップでは、注入制御ユニット101は、表示ユニット104に注入条件設定用の画面を表示させるとともに、入力ユニット103に対して注入条件設定のための入力操作を可能にさせる。
(1) Accepting data input and setting injection conditions In this step, the injection control unit 101 causes the display unit 104 to display a screen for setting injection conditions, and inputs to the input unit 103 for setting injection conditions. Make the operation possible.
 図6に、注入条件設定用画面400の一例を示す。図6に示す注入条件設定用画面400は、注入モードアイコン401、クイックメモリーアイコン402、確認アイコン403、速度設定アイコン404、注入量設定アイコン405、注入時間設定アイコン406、希釈度合設定アイコン407、シリンジ情報アイコン408およびパージアイコン409等を含む。 FIG. 6 shows an example of the injection condition setting screen 400. The injection condition setting screen 400 shown in FIG. 6 includes an injection mode icon 401, a quick memory icon 402, a confirmation icon 403, a speed setting icon 404, an injection amount setting icon 405, an injection time setting icon 406, a dilution degree setting icon 407, and a syringe. An information icon 408, a purge icon 409, and the like are included.
 シリンジ情報アイコン408は、注入ヘッド110(図4参照)に装着されているシリンジ320についての情報がグラフィック表示される。シリンジアイコン408に表示される情報としては、装着されているシリンジ320に充填されている薬液の量を含むことができる。また、薬液の注入動作中は、任意のアニメーション表示によって、薬液の注入動作を操作者が視覚的に認識できるようにすることもできる。 The syringe information icon 408 graphically displays information about the syringe 320 attached to the injection head 110 (see FIG. 4). The information displayed on the syringe icon 408 can include the amount of the chemical solution filled in the attached syringe 320. In addition, during the chemical liquid injection operation, the operator can visually recognize the chemical liquid injection operation by displaying an arbitrary animation.
 注入モードアイコン401は、注入制御ユニット101にプリセットされている複数の注入モードのうち、どの注入モードで注入動作を実行するかを表すアイコンである。注入モードとしては、例えば、薬液Aのみで注入を行う「通常注入モード」、薬液Aの注入終了後、薬液Bの注入を行う「フラッシュモード」、薬液Aと薬液Bの注入を同時に行う「希釈モード」、薬液Aのみを複数のフェーズで注入する「マルチモード」などが挙げられる。図6では、「希釈モード」が選択されている状態を示している。注入モードアイコン401を操作者がタップすると、注入制御ユニット101は注入モードアイコン401の表示を切り換え、これによって注入モードの切り換えを行うことができる。 The injection mode icon 401 is an icon that indicates in which injection mode the injection operation is to be executed among a plurality of injection modes preset in the injection control unit 101. As the injection mode, for example, “normal injection mode” in which injection is performed only with the chemical liquid A, “flash mode” in which the chemical liquid B is injected after the injection of the chemical liquid A is completed, and “dilution” in which the chemical liquid A and the chemical liquid B are injected simultaneously “Mode”, “multi-mode” in which only the chemical solution A is injected in a plurality of phases, and the like. FIG. 6 shows a state where the “dilution mode” is selected. When the operator taps the injection mode icon 401, the injection control unit 101 switches the display of the injection mode icon 401, thereby switching the injection mode.
 クイックメモリーアイコン402は、注入制御ユニット101のメモリに登録されている注入条件を呼び出す場合に操作される。確認アイコン403は、この注入条件設定用画面400に表示された注入条件を操作者が承認する場合に操作され、この確認アイコン403がタップされると、注入制御ユニット101は、薬液注入装置100をスタンバイ状態とし、薬液注入手順の次のステップへの移行が可能となる。 The quick memory icon 402 is operated when an injection condition registered in the memory of the injection control unit 101 is called. The confirmation icon 403 is operated when the operator approves the injection condition displayed on the injection condition setting screen 400. When the confirmation icon 403 is tapped, the injection control unit 101 moves the chemical injection device 100. It is possible to shift to the next step of the chemical solution injection procedure by setting the standby state.
 速度設定アイコン404、注入量設定アイコン405および注入時間設定アイコン406は、それぞれ薬液の注入速度、注入量および注入時間を設定に用いられる。例えば、注入速度を設定する場合、操作者が速度設定アイコン404をタップすると、注入制御ユニット101は、注入条件設定用画面400上に、注入速度入力用のテンキーアイコン(不図示)をオーバーラップ表示させる。操作者がこのテンキー画面を通じて数値を入力し、確定することによって、注入速度を設定することができる。注入量および注入時間についても、注入速度の設定と同様のやり方で設定することができる。また、「希釈注入モード」においては、速度設定アイコン404および注入量設定アイコン405で設定されるのは、薬液Aと薬液Bの合計の注入速度および注入量である。 The speed setting icon 404, the injection amount setting icon 405, and the injection time setting icon 406 are used for setting the injection speed, the injection amount, and the injection time of the chemical solution, respectively. For example, when setting the injection speed, when the operator taps the speed setting icon 404, the injection control unit 101 displays a ten-key icon (not shown) for inputting the injection speed on the injection condition setting screen 400 in an overlapping manner. Let The operator can set the injection rate by inputting and confirming a numerical value through the numeric keypad screen. The injection amount and the injection time can also be set in the same manner as the setting of the injection rate. In the “dilution injection mode”, what is set by the speed setting icon 404 and the injection amount setting icon 405 is the total injection speed and injection amount of the chemical liquid A and the chemical liquid B.
 希釈度合設定アイコン407は、希釈注入モードにおいて注入される、基準の薬液に対する対象の薬液の割合を設定する際に操作されるアイコンである。希釈度合には幾つかの表し方があるが、本形態では、薬液Aを薬液Bで希釈するという考えのもと、薬液Aと薬液Bの合計の量に対する薬液Aの量、すなわち、薬液A/(薬液A+薬液B)で計算される希釈比率で表している。このことは、例えば、薬液Aが造影剤、薬液Bが生理食塩水である場合、造影剤を生理食塩水で希釈したとき、全体の量に対して造影剤がどれくらいの割合で含まれているかを意味する。希釈比率は、例えば、デフォルト値として50%に設定されていてもよい。 The dilution degree setting icon 407 is an icon operated when setting the ratio of the target chemical solution to the reference chemical solution injected in the dilution injection mode. There are several ways of expressing the degree of dilution. In this embodiment, the amount of the chemical solution A with respect to the total amount of the chemical solution A and the chemical solution B, that is, the chemical solution A is based on the idea that the chemical solution A is diluted with the chemical solution B. It is represented by a dilution ratio calculated by / (chemical solution A + chemical solution B). This is because, for example, when the drug solution A is a contrast medium and the drug solution B is a physiological saline solution, when the contrast agent is diluted with a physiological saline solution, how much the contrast agent is contained in the total amount. Means. The dilution ratio may be set to 50% as a default value, for example.
 希釈比率の設定は、例えば、以下のようにして行うことができる。 The dilution ratio can be set as follows, for example.
 操作者が希釈度合設定アイコン407をタップすると、注入制御ユニット101は、注入条件設定用画面400上に、図7に示すような希釈比率入力画面430をポップアップ表示させるか、または注入条件設定用画面400から希釈比率入力画面430に表示を切り替える。希釈比率入力画面430は、テンキーアイコン431および比率設定バー432を有することができる。テンキーアイコン431では、薬液Aおよび薬液Bの合計の量に対する薬液Aの量の比率を数値で設定することができる。操作者がテンキーアイコン431を操作して数値を入力すると、注入制御ユニット101は、入力された数値を希釈比率として確定する。 When the operator taps the dilution degree setting icon 407, the injection control unit 101 pops up a dilution ratio input screen 430 as shown in FIG. 7 on the injection condition setting screen 400 or an injection condition setting screen. The display is switched from 400 to the dilution ratio input screen 430. The dilution ratio input screen 430 can include a numeric keypad icon 431 and a ratio setting bar 432. With the numeric keypad icon 431, the ratio of the amount of the chemical solution A to the total amount of the chemical solution A and the chemical solution B can be set numerically. When the operator operates the numeric keypad 431 to input a numerical value, the injection control unit 101 determines the input numerical value as a dilution ratio.
 一方、比率設定バー432は、比率表示部432aとスライダアイコン432bとを有することができる。比率表示部432aは、薬液Aと薬液Bとの比率を帯グラフで示すものであり、スライダアイコン432bは、操作者がタッチしたまま比率表示部432aに沿って移動させることができるように表示位置が制御される。操作者によってスライダアイコン432bの位置が移動されると、注入制御ユニット101は、希釈比率をスライダアイコン432bの位置に応じた比率に設定する。希釈比率を視覚的に認識しやすくするために、比率表示部432aは、スライダアイコン432bの位置を境に薬液A側と薬液B側とが互いに異なる色で色分け表示されるようにしてもよい。 On the other hand, the ratio setting bar 432 may have a ratio display part 432a and a slider icon 432b. The ratio display unit 432a indicates the ratio between the chemical solution A and the chemical solution B as a band graph, and the slider icon 432b is displayed at a display position so that the slider icon 432b can be moved along the ratio display unit 432a while being touched by the operator. Is controlled. When the position of the slider icon 432b is moved by the operator, the injection control unit 101 sets the dilution ratio to a ratio corresponding to the position of the slider icon 432b. In order to make it easy to visually recognize the dilution ratio, the ratio display unit 432a may display the drug solution A side and the drug solution B side in different colors with respect to the position of the slider icon 432b.
 希釈比率は、これらテンキーアイコン431および比率バー432の何れからでも設定することができる。また、希釈比率入力画面430は、テンキーアイコン431および比率バー432の何れか一方のみを有していてもよい。さらに、希釈比率の入力は上記の方法に限定されるものではなく、任意の方法を用いることができる。希釈比率が設定されると、注入制御ユニット101は、希釈比率入力画面430の表示形態に応じて、注入条件設定用画面400から希釈比率入力画面430のポップアップ表示を消すか、注入条件設定用画面400に表示を切り替え、注入条件設定用画面400の希釈比率アイコン407に、設定された希釈比率を表示させる。 The dilution ratio can be set from either the numeric keypad icon 431 or the ratio bar 432. The dilution ratio input screen 430 may have only one of the numeric keypad icon 431 and the ratio bar 432. Furthermore, the input of the dilution ratio is not limited to the above method, and any method can be used. When the dilution ratio is set, the injection control unit 101 deletes the pop-up display of the dilution ratio input screen 430 from the injection condition setting screen 400 or the injection condition setting screen according to the display form of the dilution ratio input screen 430. The display is switched to 400, and the set dilution ratio is displayed on the dilution ratio icon 407 of the injection condition setting screen 400.
 操作者は、注入条件設定用画面400の表示に従って、必要に応じてデータの入力操作を行う。注入条件設定用のすべてのデータの入力が終了し、操作者が確認アイコン403をタップすると、その表示が「スタートOK」に切り換えられ、薬液注入装置100は、薬液の注入が可能なスタンバイ状態となる。 The operator performs a data input operation as necessary according to the display of the injection condition setting screen 400. When the input of all data for setting injection conditions is completed and the operator taps the confirmation icon 403, the display is switched to “start OK”, and the chemical injection device 100 is in a standby state in which chemical injection is possible. Become.
 (2)注入準備
 注入準備は、「パージ動作」および「注入回路の定位置配置」を含むことができる。
(2) Injection Preparation The injection preparation can include “purge operation” and “in-place placement of injection circuit”.
 (2a)パージ動作
 パージ動作は、シリンジアセンブリ300に注入回路200の体外回路部が連結された後であって、かつ、薬液の注入動作が開始される前に行われ、パージ動作では、シリンジ320内の薬液によって体外回路部内のエアおよび薬液を含む流体が注入回路から排出される。体外回路部内の流体を注入回路から排出するため、パージ動作は、体外回路部の先端が体内回路部の末端と連結されていない状態、または、体外回路部と体内回路部との間に三方活栓を介在させ、この三方活栓の残りのポートに接続された側管から薬液が排出されるように三方活栓を切り替えた状態で実行される。また、パージ動作は、基本的には体外回路部が薬液で満たされていない場合に体外回路部内を薬液で満たすために行うものであり、体外回路部が薬液で満たされている場合は行う必要はない。ただし、例えば、1回目の注入に続いて2回目の注入を、1回目と異なる希釈比率で行う場合など、希釈比率が変更された場合は、体外回路部が薬液で満たされていたとしてもパージ動作を行うことが好ましい。
(2a) Purge operation The purge operation is performed after the extracorporeal circuit portion of the injection circuit 200 is connected to the syringe assembly 300 and before the injection operation of the chemical solution is started. The fluid containing the air and the chemical liquid in the extracorporeal circuit unit is discharged from the injection circuit by the chemical liquid inside. In order to discharge the fluid in the extracorporeal circuit unit from the injection circuit, the purge operation is performed in a state where the distal end of the extracorporeal circuit unit is not connected to the end of the intracorporeal circuit unit or between the extracorporeal circuit unit and the intracorporeal circuit unit. And the three-way cock is switched so that the chemical solution is discharged from the side pipe connected to the remaining port of the three-way cock. The purge operation is basically performed when the extracorporeal circuit unit is not filled with the chemical solution, so as to fill the extracorporeal circuit unit with the chemical solution, and needs to be performed when the extracorporeal circuit unit is filled with the chemical solution. There is no. However, if the dilution ratio is changed, such as when the second injection is performed at a different dilution ratio from the first injection following the first injection, even if the extracorporeal circuit unit is filled with the chemical solution, the purge is performed. It is preferable to perform the operation.
 パージ動作を実行するためのトリガーは、操作者によって与えられる。そのために、例えば注入ヘッド110にパージボタン123(図5参照)を有することができる。または、図6に示すように、注入条件設定用画面400にパージアイコン409を表示させることもできる。さらには、これらパージボタン123およびパージアイコン409の両方を有することもできる。 The trigger for executing the purge operation is given by the operator. For this purpose, for example, the injection head 110 can have a purge button 123 (see FIG. 5). Alternatively, as shown in FIG. 6, a purge icon 409 can be displayed on the injection condition setting screen 400. Furthermore, both the purge button 123 and the purge icon 409 can be provided.
 操作者が、パージボタン123を押下するか、またはパージアイコン409をタップすることにより、注入制御ユニット101はパージ動作を実行する。パージ動作は、2つのシリンジ320が注入ヘッド110に装着される場合、各シリンジ320から等しい吐出量および吐出速度で薬液を吐出させることによって行うことができる。この場合、希釈比率は50%である。あるいは、注入制御ユニット101によって、薬液Aの吐出量と薬液Bの吐出量との合計に対する薬液Aの吐出量の割合である吐出比率が設定され、設定された吐出比率に従って薬液が吐出するようにピストン駆動機構130a、130bの動作が制御されるようにしてもよい。 When the operator depresses the purge button 123 or taps the purge icon 409, the injection control unit 101 executes the purge operation. When the two syringes 320 are attached to the injection head 110, the purge operation can be performed by discharging a chemical solution from each syringe 320 at an equal discharge amount and discharge speed. In this case, the dilution ratio is 50%. Alternatively, the injection control unit 101 sets a discharge ratio that is a ratio of the discharge amount of the chemical liquid A to the total discharge amount of the chemical liquid A and the discharge amount of the chemical liquid B, and discharges the chemical liquid according to the set discharge ratio. The operations of the piston drive mechanisms 130a and 130b may be controlled.
 この場合のパージ動作における吐出比率は、薬液の注入条件の一つである希釈比率に従うことが好ましい。前述したように、注入制御ユニット101によって、注入条件設定用画面400を介して希釈比率の入力が受け付けられている場合、ここで入力された希釈比率と等しい値に吐出比率が設定される。これによって、希釈比率に従った薬液Aの量および薬液Bの量で各シリンジ320からそれぞれ薬液Aおよび薬液Bが吐出される。図2に示した注入回路200を用いる場合、各シリンジ320から吐出した薬液Aおよび薬液Bは、それぞれ第2チューブ202、203を通過し、第1チューブ201内で合流し、ここで薬液Aと薬液Bとの混合液とされる。この混合液における薬液Aの濃度は、設定された希釈比率で希釈された薬液Aの濃度と等しい。 In this case, the discharge ratio in the purge operation preferably follows a dilution ratio that is one of the injection conditions of the chemical solution. As described above, when an input of the dilution ratio is accepted by the injection control unit 101 via the injection condition setting screen 400, the discharge ratio is set to a value equal to the input dilution ratio. Thereby, the chemical solution A and the chemical solution B are discharged from each syringe 320 in the amount of the chemical solution A and the amount of the chemical solution B according to the dilution ratio, respectively. When the injection circuit 200 shown in FIG. 2 is used, the chemical solution A and the chemical solution B discharged from each syringe 320 pass through the second tubes 202 and 203, respectively, and merge in the first tube 201. A mixed solution with the chemical B is used. The concentration of the chemical solution A in this mixed solution is equal to the concentration of the chemical solution A diluted at the set dilution ratio.
 設定された吐出比率で薬液を吐出させるためのピストン駆動機構130a、130bの動作の制御方法としては、吐出速度、すなわちピストン駆動機構130a、130bのプレッサ131の移動速度に基づく制御、および吐出量、すなわちピストン駆動機構130a、130bの移動量に基づく制御が挙げられる。 As a control method of the operation of the piston drive mechanisms 130a and 130b for discharging the chemical liquid at the set discharge ratio, the discharge speed, that is, the control based on the moving speed of the presser 131 of the piston drive mechanisms 130a and 130b, and the discharge amount, That is, control based on the movement amount of the piston drive mechanisms 130a and 130b can be given.
 パージ動作において吐出される薬液の合計量であるパージ量は、体外回路部を所望の薬液で満たすことができる量であればよく、その量は、薬液の注入条件の1つとして設定される注入量と比べて少ない量である。よって、パージ量は、薬液の注入時の注入量とは別に、注入制御ユニット101に設定されることが好ましい。パージ量の好ましい値は、使用する体外回路部の容積にもよるが、一般的には5mL~10mLとすることができる。 The purge amount, which is the total amount of the chemical solution discharged in the purge operation, may be an amount that can fill the extracorporeal circuit portion with a desired chemical solution, and the amount is an injection set as one of the injection conditions of the chemical solution The amount is small compared to the amount. Therefore, the purge amount is preferably set in the injection control unit 101 separately from the injection amount at the time of injection of the chemical solution. A preferable value of the purge amount depends on the volume of the extracorporeal circuit unit to be used, but can generally be 5 to 10 mL.
 パージ量が予め決められている場合、パージ動作での薬液の吐出速度は、最終的に吐出される量が所望の量となる限り任意であり、薬液注入条件として設定された注入速度と同じであってもよいし異なっていてもよい。また、吐出速度は、パージ動作の開始から終了までの少なくとも一部の時間において一定であってもよいし経時的に変化させてもよい。 When the purge amount is determined in advance, the discharge rate of the chemical solution in the purge operation is arbitrary as long as the final discharge amount becomes a desired amount, and is the same as the injection rate set as the chemical solution injection condition. It may be different or different. Further, the discharge speed may be constant during at least a part of time from the start to the end of the purge operation or may be changed with time.
 例えば、注入制御ユニット101は、パージ動作の開始時には共に等しい吐出速度で両薬液を吐出させ、その後、パージ動作の終了までの間に、何れか少なくとも一方の薬液の吐出速度を時間の経過とともに段階的または連続的に変化させ、最終的な希釈度合が目的とする希釈度合になるように、パージ動作での薬液の吐出条件を設定することができる。 For example, the injection control unit 101 discharges both chemical solutions at the same discharge speed at the start of the purge operation, and then sets the discharge rate of at least one of the chemical solutions as time passes until the purge operation ends. It is possible to set the discharge condition of the chemical solution in the purge operation so that the final dilution degree becomes the target dilution degree.
 なお、体外回路部が薬液で満たされていない場合、パージ動作は、体外回路部に体外回路部が接続されていない状態で行われ、体外回路部は、パージ動作の終了後、操作者によって体内回路部に接続される。 When the extracorporeal circuit unit is not filled with the chemical solution, the purge operation is performed in a state where the extracorporeal circuit unit is not connected to the extracorporeal circuit unit, and the extracorporeal circuit unit is operated by the operator after the purge operation is completed. Connected to the circuit section.
 (2b)注入回路の定位置配置
 注入回路の定位置配置は、注入回路、特に体内回路部(カテーテル)をその先端が血管内の所望の部位に位置するように送る処置である。注入回路の定位置配置は、パージ動作とは独立して行うことも可能であるが、本形態では、パージ動作が終了し、かつ体内回路部と体外回路部とが接続された後に行う。
(2b) Fixed-position arrangement of injection circuit The fixed-position arrangement of the injection circuit is a treatment for sending the injection circuit, in particular, the in-vivo circuit portion (catheter) so that the tip thereof is located at a desired site in the blood vessel. Although the injection circuit can be placed at a fixed position independently of the purge operation, in this embodiment, the purge operation is completed and the internal circuit portion and the external circuit portion are connected.
 被験者の血管とシリンジとが注入回路で接続された後、流量センサ210が駆動され、薬液の注入の有無にかかわらず、流量センサ210による検出動作が継続して行われる。流量センサ210は導管(本形態では図3に示すパイプ211)内での液体の移動(移動量および移動方向)に応じた検出信号を薬液注入装置100の注入制御ユニット101に送信する。 After the blood vessel of the subject and the syringe are connected by the injection circuit, the flow sensor 210 is driven, and the detection operation by the flow sensor 210 is continuously performed regardless of whether or not the chemical solution is injected. The flow sensor 210 transmits a detection signal corresponding to the movement (movement amount and movement direction) of the liquid in the conduit (in this embodiment, the pipe 211 shown in FIG. 3) to the injection control unit 101 of the chemical injection device 100.
 体内回路部を含んだ注入回路が被験者の血管と接続された状態では、薬液の注入が行われていない場合であっても、血管内での血液の脈動に起因して注入回路内でも僅かに薬液の移動が生じる。一般に、直管内を液体が移動するとき、移動する液体の圧力は流量または流量の2乗に比例するというように、流量と圧力との間に相関関係がある(流量に比例するか流量の2乗に比例するかは、液体の粘性による)。よって、流量センサ210による検出結果から、液体の圧力を求めることもできる。薬液が注入されていない状態では、この圧力は被験者の血圧に対応するので、流量センサ210によって被験者の血圧を求めることができる。 In the state where the infusion circuit including the in-vivo circuit portion is connected to the blood vessel of the subject, even in the case where no medicinal solution is infused, the infusion circuit is slightly caused by blood pulsation in the blood vessel. The chemical solution moves. Generally, when a liquid moves in a straight pipe, the pressure of the moving liquid is proportional to the flow rate or the square of the flow rate, so that there is a correlation between the flow rate and the pressure (proportional to the flow rate or 2 of the flow rate). Whether it is proportional to the power depends on the viscosity of the liquid). Therefore, the pressure of the liquid can also be obtained from the detection result by the flow sensor 210. Since this pressure corresponds to the blood pressure of the subject in a state where no medicinal solution is injected, the blood pressure of the subject can be obtained by the flow sensor 210.
 被験者の血圧を求めるために、注入制御ユニット101は、流量センサ210から送信された検出結果を用いて圧力を算出する圧力算出機能を有することができる。流量から圧力を算出するためには、パラメータとして、流量センサ210の管路の断面積、管路の長さ、管路を満たしている液体の密度などが必要となる。これらのパラメータは、注入制御ユニット101に予め設定されていてもよいし、入力ユニット103を介して操作者によって入力され、注入制御ユニット101に送信されるようにしてもよいし、流量センサ210が図3に示す構成を有する場合は、その半導体モジュール212がこれらのパラメータの少なくとも1つをデータとして格納するメモリを含み、このメモリ内のデータを、検出結果とともに注入制御ユニット101に送信してもよいし、あるいはこれらの2つ以上を組み合わせてもよい。 In order to obtain the blood pressure of the subject, the injection control unit 101 can have a pressure calculation function for calculating the pressure using the detection result transmitted from the flow sensor 210. In order to calculate the pressure from the flow rate, parameters such as the cross-sectional area of the pipe line of the flow sensor 210, the length of the pipe line, and the density of the liquid filling the pipe line are required. These parameters may be preset in the injection control unit 101, may be input by an operator via the input unit 103, and may be transmitted to the injection control unit 101. In the case of having the configuration shown in FIG. 3, the semiconductor module 212 includes a memory that stores at least one of these parameters as data, and the data in this memory may be transmitted to the injection control unit 101 together with the detection result. Or two or more of these may be combined.
 上記のように注入制御ユニット101が圧力算出機能を有することで、被験者の血圧をモニターしながらカテーテルの先端を所望の位置に配置することができるようになる。その結果、従来の注入回路で被験者の血圧を測定するために使用していた圧力トランスデューサが不要となる。圧力トランスデューサが不要となることにより、注入回路の構成が簡単になり、また、圧力トランスデューサを用いて血圧を測定する場合に必要な、流路の切り替えといった操作も不要であるため、操作ミスによるトラブル等も発生しない。 As described above, since the injection control unit 101 has the pressure calculation function, the tip of the catheter can be placed at a desired position while monitoring the blood pressure of the subject. As a result, the pressure transducer used to measure the subject's blood pressure with a conventional injection circuit is not required. Eliminating the need for a pressure transducer simplifies the configuration of the injection circuit, and also eliminates the need for operations such as channel switching that are necessary when measuring blood pressure using a pressure transducer. Etc. does not occur.
 (3)設定された注入条件に従った注入動作の実行
 前述したように、確認アイコン403のタップにより表示が「スタートOK」に切り換えられた後、ハンドスイッチ118が操作され、これによって注入制御ユニット101はピストン駆動機構130a、130bを動作させ、薬液の注入動作が開始される。ハンドスイッチ118は、モーメンタリ動作型のスイッチであってよく、この場合、ハンドスイッチ118のボタンが押されている間だけピストン駆動機構130a、130bが動作する。薬液の注入動作は、連動されている医用画像撮像装置500からの指令によって開始させることもできる。
(3) Execution of injection operation in accordance with set injection conditions As described above, after the display is switched to “start OK” by tapping the confirmation icon 403, the hand switch 118 is operated, whereby the injection control unit is operated. 101 operates the piston drive mechanisms 130a and 130b, and the injection operation of the chemical solution is started. The hand switch 118 may be a momentary operation type switch. In this case, the piston drive mechanisms 130a and 130b operate only while the button of the hand switch 118 is pressed. The injection operation of the chemical solution can also be started by a command from the medical image capturing apparatus 500 that is linked.
 薬液の注入動作は、設定された注入条件(注入速度、注入量、注入時間および注入圧力の少なくとも1つを含む)で薬液が注入されるように、注入制御ユニット101がピストン駆動機構130a、130bの動作を制御することで行われる。また、注入モードが希釈注入モードである場合は、設定された希釈比率で薬液Aおよび薬液Bが注入されるように、両方のピストン駆動機構130a、130bが同時に動作される。ここで、注入動作に先立ってパージ動作が実行されており、体外回路部の合流部(例えば、図2に示す注入回路200のT字コネクタ204)より先端側には、既に所望の希釈比率で希釈された状態で薬液が充填されているので、注入動作が開始されると、直ちに所望の希釈比率で希釈された薬液が注入される。これにより、無駄な薬液の注入、および注入された薬液の希釈比率が所望の比率になるまでのタイムラグが最小限に抑えられ、結果的に、より少ない薬液量、かつより短い時間で良好な画像を得ることができる。 The injection operation of the chemical liquid is performed by the injection control unit 101 so that the chemical liquid is injected under the set injection conditions (including at least one of the injection speed, the injection amount, the injection time, and the injection pressure). This is done by controlling the operation. When the injection mode is the dilution injection mode, both piston drive mechanisms 130a and 130b are operated simultaneously so that the chemical liquid A and the chemical liquid B are injected at the set dilution ratio. Here, a purge operation is performed prior to the injection operation, and at the distal end side from the junction portion of the extracorporeal circuit portion (for example, the T-shaped connector 204 of the injection circuit 200 shown in FIG. 2), the desired dilution ratio has already been obtained. Since the drug solution is filled in a diluted state, immediately after the injection operation is started, the drug solution diluted at a desired dilution ratio is injected. This minimizes the time lag until injection of waste chemicals and the dilution ratio of the injected chemicals reaches the desired ratio. As a result, a good image can be obtained in a smaller amount of chemicals and in a shorter time. Can be obtained.
 なお、実際には、注入動作が開始されると、体内回路部に残留していた薬液が注入された後、体外回路部内の薬液が注入される。従って、使用される体外回路部が新規なものでありその内部に生理食塩水が充填されている場合、あるいは前回の注入時における希釈比率が今回の希釈比率と異なる場合など、所望の希釈比率と異なる薬液が最初に注入されることがある。しかし、通常、体内回路部として造影剤の注入に用いられるカテーテルは、2mm以下の内径および1m前後の有効長さのものが多く用いられる。よって、カテーテルの容積は、1回の検査で注入される薬液量に比較して極めて微量である。 Actually, when the injection operation is started, the chemical solution remaining in the in-vivo circuit portion is injected, and then the in-vivo circuit portion is injected. Therefore, if the extracorporeal circuit part used is new and filled with physiological saline, or if the dilution ratio at the previous injection is different from the current dilution ratio, the desired dilution ratio and Different chemicals may be injected first. However, a catheter used for injecting a contrast medium as an in-vivo circuit portion usually has an inner diameter of 2 mm or less and an effective length of about 1 m. Therefore, the volume of the catheter is extremely small compared to the amount of the chemical solution injected in one examination.
 一方、医用画像撮像装置500は、薬液注入装置100による薬液注入動作に対応して撮像動作を開始する。医用画像撮像装置500による撮像動作は、操作者による操作をトリガーとして実行されてもよいし、薬液注入装置100による注入動作に連動して自動的に実行されてもよい。注入動作と撮像動作を連動させる場合は、注入動作を開始した後、注入された薬液が目的の部位へ到達するのに要する所定時間経過後に撮像動作が開始されるように、例えば、注入動作の開始と同時に薬液注入装置100の注入制御ユニット101が注入開始信号を医用画像撮像装置500の撮像制御ユニット510に送信し、注入開始信号を受信した撮像制御ユニット510が上記所定時間経過後に撮像動作ユニット520を制御して撮像動作を開始させたり、注入動作を開始してから上記所定時間経過後に注入制御ユニット101が注入開始信号を撮像制御ユニット510に送信し、撮像制御ユニット510が、注入開始信号の受信後、直ちに撮像動作ユニット520を制御して撮像動作を開始させたりすることができる。 On the other hand, the medical image capturing apparatus 500 starts an imaging operation in response to the chemical liquid injection operation by the chemical liquid injection apparatus 100. The imaging operation by the medical imaging apparatus 500 may be executed with an operation by the operator as a trigger, or may be automatically executed in conjunction with the injection operation by the chemical injection apparatus 100. When the injection operation and the imaging operation are linked, for example, after the injection operation is started, the imaging operation is started after a predetermined time required for the injected drug solution to reach the target site. Simultaneously with the start, the injection control unit 101 of the chemical solution injection device 100 transmits an injection start signal to the imaging control unit 510 of the medical imaging device 500, and the imaging control unit 510 that has received the injection start signal receives the imaging operation unit after the predetermined time has elapsed. The injection control unit 101 transmits an injection start signal to the imaging control unit 510 after the predetermined time has elapsed since the injection operation is started by controlling the 520, and the imaging control unit 510 transmits the injection start signal. Immediately after receiving, the imaging operation unit 520 can be controlled to start the imaging operation.
 撮像制御ユニット510は、撮像動作ユニット520の撮像動作により得られたデータを再構成して医用画像を取得し、取得した医用画像をリアルタイムで表示ユニット504に表示させることができる。また、薬液の注入速度、注入量、注入時間、注入圧力等の注入条件のデータが注入制御ユニット101から撮像制御ユニット510へ送信されるようにすれば、撮像制御ユニット510は、表示ユニット504に注入条件の一部または全部を、医用画像や撮像条件などと一緒にまたは別個にリアルタイムに表示させることもできる。 The imaging control unit 510 can reconstruct the data obtained by the imaging operation of the imaging operation unit 520 to acquire a medical image, and display the acquired medical image on the display unit 504 in real time. In addition, if the injection condition data such as the injection speed, the injection amount, the injection time, and the injection pressure of the chemical solution is transmitted from the injection control unit 101 to the image pickup control unit 510, the image pickup control unit 510 displays the data in the display unit 504. Some or all of the injection conditions can be displayed in real time together with or separately from medical images and imaging conditions.
 注入条件の一部または全部をリアルタイムに表示させることで、例えば、肝臓の検査および治療において部位を変えながら画像の撮像と薬液の注入を複数回繰り返すような場合に、その撮像段階までの累積の注入量およびX線照射量などを表示させることができる。そのことにより、累積のX線照射量が基準値を超えていないかどうか、および肝機能が悪い被験者に対して造影剤の注入量が基準値を超えていないかどうかをその場で判断し、X線照射量および/または注入量が基準値を超えそうな場合に、X線照射量や造影剤の注入量を必要に応じて調整することが可能となる。 By displaying part or all of the injection conditions in real time, for example, when the imaging and the injection of the drug solution are repeated multiple times while changing the site in the examination and treatment of the liver, the cumulative up to the imaging stage The injection amount and the X-ray irradiation amount can be displayed. As a result, it is judged on the spot whether the cumulative X-ray irradiation dose does not exceed the reference value, and whether the injection amount of the contrast medium does not exceed the reference value for subjects with poor liver function, When the X-ray irradiation amount and / or the injection amount is likely to exceed the reference value, the X-ray irradiation amount and the contrast agent injection amount can be adjusted as necessary.
 なお、本形態では、注入回路200は流量センサ210を有しているので、薬液の注入動作中は、この流量センサ210によって、薬液の注入量を検出することができる。流量センサ210によって測定された注入量のデータは注入制御ユニット101に送信される。注入制御ユニット101は、流量センサ210から送信されたデータを用い、薬液の注入量を表示ユニット104にリアルタイムに表示させたり、設定された注入量で薬液が注入されるようにピストン駆動機構130a、130bの動作を制御したりすることができる。従来は、薬液の注入量は、ピストン駆動機構130a、130bの移動量、あるいはピストン駆動機構130a、130bを駆動するモータの回転量などから間接的に求めていた。しかし、本形態のように流量センサ210によって直接測定できるようにすることによって、薬液の注入量をより正確に求めることができる。 In this embodiment, since the injection circuit 200 has the flow sensor 210, the flow rate sensor 210 can detect the injection amount of the chemical liquid during the chemical liquid injection operation. The injection amount data measured by the flow sensor 210 is transmitted to the injection control unit 101. The injection control unit 101 uses the data transmitted from the flow sensor 210 to display the injection amount of the chemical solution on the display unit 104 in real time, or to drive the piston drive mechanism 130a so that the chemical solution is injected with the set injection amount. The operation of 130b can be controlled. Conventionally, the amount of chemicals injected has been indirectly determined from the amount of movement of the piston drive mechanisms 130a, 130b or the amount of rotation of the motor that drives the piston drive mechanisms 130a, 130b. However, by allowing direct measurement by the flow sensor 210 as in the present embodiment, the injection amount of the chemical solution can be obtained more accurately.
 さらに、本形態では、注入制御ユニット101は圧力算出機能を有している。この機能を利用することにより、注入圧力を算出することもできる。算出された注入圧力を利用して、注入制御ユニット101は、求められた注入圧力が、設定された注入圧力を超えないようにピストン駆動機構130a、130bの動作を制御することができる。従来は、ピストン駆動機構130a、130bのプレッサ131に荷重センサを内蔵し、その荷重センサで注入圧力を求めたり、ピストン駆動機構130a、130bを駆動するモータに流れるモータ電流から注入圧力を求めたりしていた。本形態のように流量センサ210での検出結果から注入圧力を求めることで、荷重センサが不要となるため薬液注入システムの構成を簡略化することができ、あるいは、薬液の流れの状態から注入圧力が求められることからモータ電流から注入圧力を求める場合と比較して注入圧力をより正確に求めることができる、といった効果が達成される。 Furthermore, in this embodiment, the injection control unit 101 has a pressure calculation function. By using this function, the injection pressure can also be calculated. Using the calculated injection pressure, the injection control unit 101 can control the operations of the piston drive mechanisms 130a and 130b so that the obtained injection pressure does not exceed the set injection pressure. Conventionally, a load sensor is built in the presser 131 of the piston drive mechanisms 130a and 130b, and the injection pressure is obtained by the load sensor, or the injection pressure is obtained from the motor current flowing in the motor driving the piston drive mechanisms 130a and 130b. It was. By obtaining the injection pressure from the detection result of the flow sensor 210 as in the present embodiment, the load sensor is not required, so that the configuration of the chemical injection system can be simplified, or the injection pressure can be determined from the state of the chemical flow. Therefore, the effect that the injection pressure can be obtained more accurately than the case where the injection pressure is obtained from the motor current is achieved.
 (4)注入動作終了処理
 注入動作の終了後、注入制御ユニット101は、注入動作終了処理の一つとして、注入結果を表示ユニット104に表示させることができる。表示される結果の一例としては、注入終了日時、注入モード、設定された撮像部位、注入速度、注入量、希釈比率(希釈注入モードの場合)、注入に要した時間、注入時の最大圧力などが挙げられ、表示されるのは、これらの項目のうち少なくとも1つであってよい。また、注入制御ユニット101は、注入動作終了処理の一つとして、これらの注入結果を、薬液注入装置100の内部または外部の適宜メモリ装置に記録したり、医用画像撮像装置500へ送信したりすることができる。
(4) Injection Operation End Process After the injection operation is completed, the injection control unit 101 can display the injection result on the display unit 104 as one of the injection operation end processes. Examples of displayed results include injection end date and time, injection mode, set imaging location, injection speed, injection volume, dilution ratio (in dilution injection mode), time required for injection, maximum pressure during injection, etc. And at least one of these items may be displayed. Moreover, the injection control unit 101 records these injection results in an appropriate memory device inside or outside the chemical solution injection device 100 or transmits them to the medical image imaging device 500 as one of the injection operation end processes. be able to.
 注入動作終了処理が終了すると、操作者による所定の操作により、注入制御ユニット101は、再び、注入条件設定用画面400を表示ユニット104に表示させることができる。次の検査または治療のために、異なる条件または同じ条件で再度薬液の注入を繰り返し行う場合は、この注入条件設定用画面400で注入条件を設定し、設定した注入条件で薬液を注入することができる。特に、注入モードが希釈注入モードであり、希釈比率が前回と変更された場合は、パージ動作を行うようにする。これにより、次回の注入においても、より少ない薬液量、かつより短い時間で良好な画像を得ることができる。 When the injection operation end process is completed, the injection control unit 101 can display the injection condition setting screen 400 on the display unit 104 again by a predetermined operation by the operator. When the injection of the chemical solution is repeated again under different conditions or the same conditions for the next examination or treatment, the injection conditions are set on the injection condition setting screen 400, and the chemical solution may be injected under the set injection conditions. it can. In particular, when the injection mode is the dilution injection mode and the dilution ratio is changed from the previous time, the purge operation is performed. Thereby, even in the next injection, a good image can be obtained in a smaller amount of chemical solution and in a shorter time.
 ところで、血管造影では細長いカテーテルを用いて造影剤を注入するため、留置針を用いたCT画像撮影での造影剤の注入と比べて高い注入圧力で造影剤が注入されることになる。場合によっては、注入動作中にシリンジの内圧が非常に高くなり、その圧力によってシリンジ(シリンダ)が膨張した状態で造影剤が注入される。そのため、注入動作が終了してピストン駆動機構の動作が停止されると、膨張したシリンジは元に戻ろうとする。このとき、ピストンはピストン駆動機構によって保持されているため、膨張した分の容量の造影剤が注入回路の先端から流出する。 By the way, since contrast medium is injected using an elongate catheter in angiography, the contrast medium is injected at a higher injection pressure than injection of contrast medium in CT imaging using an indwelling needle. In some cases, the internal pressure of the syringe becomes very high during the injection operation, and the contrast agent is injected in a state where the syringe (cylinder) is expanded by the pressure. Therefore, when the injection operation is finished and the operation of the piston drive mechanism is stopped, the expanded syringe tries to return to the original state. At this time, since the piston is held by the piston drive mechanism, the expanded volume of the contrast medium flows out from the tip of the injection circuit.
 そこで、この注入動作終了後の余分な造影剤の消費を抑制するために、注入制御ユニット101は、注入動作の終了後(ピストン駆動機構の動作停止後)、流量センサ210により注入回路200内での薬液の移動が検出された場合に、注入回路200内の液体をシリンジ内に吸引する方向である後退方向へピストン駆動機構が移動するようにピストン駆動機構の動作を制御することが好ましい。ピストン駆動機構の後退量は、予め決められた量であってもよいし、流量センサ210で検出された薬液の移動量に相当する量であってもよい。あるいは、ピストンの後退量を特に定めず、流量センサ210による薬液の移動が検出されなくなるまでピストン駆動機構を後退させるようにすることもできる。 Therefore, in order to suppress the consumption of extra contrast agent after the completion of the injection operation, the injection control unit 101 causes the flow rate sensor 210 in the injection circuit 200 after the injection operation is completed (after the operation of the piston drive mechanism is stopped). When the movement of the chemical solution is detected, it is preferable to control the operation of the piston drive mechanism so that the piston drive mechanism moves in the backward direction that is the direction in which the liquid in the injection circuit 200 is sucked into the syringe. The retraction amount of the piston drive mechanism may be a predetermined amount or an amount corresponding to the movement amount of the chemical liquid detected by the flow sensor 210. Alternatively, the piston drive mechanism can be moved backward until the amount of movement of the chemical by the flow sensor 210 is not detected without particularly defining the amount of backward movement of the piston.
(CT画像撮影での適用)
 図8を参照すると、本発明の他の実施形態による医用画像撮像システムの外観が示されている。また、その機能的な構成を表すブロック図を図9に示す。本形態では、医用画像撮像装置500としてCT装置が用いられ、薬液注入装置100としては、CT装置によりCT画像を撮影する際に用いる薬液を注入するのに適した注入装置が用いられる。本形態においても、医用画像撮像システムは、薬液注入装置100、医用画像撮像装置500および注入回路200を有しており、薬液注入装置100が、RFIDモジュール166を含んでおり、かつ、シリンジ350がRFIDタグ352を含んでいる点を除いて、機能的な構成のうえでは前述した形態と同様に構成することができる。
(Application in CT imaging)
Referring to FIG. 8, the appearance of a medical imaging system according to another embodiment of the present invention is shown. A block diagram showing the functional configuration is shown in FIG. In this embodiment, a CT apparatus is used as the medical image imaging apparatus 500, and an injection apparatus suitable for injecting a chemical liquid used when a CT image is taken by the CT apparatus is used as the chemical liquid injection apparatus 100. Also in this embodiment, the medical image imaging system includes the chemical liquid injection device 100, the medical image imaging device 500, and the injection circuit 200. The chemical liquid injection device 100 includes the RFID module 166, and the syringe 350 includes the syringe 350. Except for the point that the RFID tag 352 is included, the functional configuration can be the same as that described above.
 薬液注入装置100は、キャスター付きのスタンド116に支持された注入ヘッド110と、薬液注入装置100の動作を制御するための各種機能を備えたコンソール112と、を有している。なお、前述した血管造影用の医用画像撮像システムにおいても同様であるが、通常、注入ヘッド110は、医用画像撮像装置500の撮像動作ユニットとともに検査室内に配置され、コンソール112は、医用画像撮像装置500の撮像制御ユニットとともに操作室内に配置される。 The chemical injection device 100 has an injection head 110 supported by a stand 116 with casters, and a console 112 having various functions for controlling the operation of the chemical injection device 100. The same applies to the above-described angiographic medical imaging system, but the injection head 110 is usually disposed in the examination room together with the imaging operation unit of the medical imaging apparatus 500, and the console 112 is a medical imaging apparatus. It is arranged in the operation room together with 500 imaging control units.
 注入ヘッド110は、図10~図12に示すように、2本のシリンジ350を着脱自在に装着することができる。シリンジ350は、例えば、一方を造影剤用のシリンジとし、他方を生理食塩水用のシリンジとすることができる。シリンジ350は、シリンダとピストンとを有している。注入ヘッド110は、シリンジ350のシリンダを保持するシリンダ保持部151と、シリンダ保持部151にシリンダが保持されたシリンジ350のピストンを操作する(シリンダに対して進退移動させる)ためのピストン駆動機構130a、130bとを有している。 The injection head 110 can detachably mount two syringes 350 as shown in FIGS. For example, one of the syringes 350 can be a contrast medium syringe, and the other can be a physiological saline syringe. The syringe 350 has a cylinder and a piston. The injection head 110 includes a cylinder holding portion 151 that holds the cylinder of the syringe 350, and a piston drive mechanism 130a for operating the piston of the syringe 350 that holds the cylinder in the cylinder holding portion 151 (moving forward and backward with respect to the cylinder). , 130b.
 ピストン駆動機構130a、130bは、その駆動源であるモータの回転運動を直進運動に変換するリードスクリュー機構やラックピニオン機構等の運動変換機構によって進退移動させられるロッド153と、ロッド153の先端部に固定されたプレッサ152と、を有することができる。 The piston drive mechanisms 130a and 130b are moved forward and backward by a motion conversion mechanism such as a lead screw mechanism or a rack and pinion mechanism that converts the rotational motion of the motor that is the drive source into a straight motion, and the tip of the rod 153. And a fixed presser 152.
 注入ヘッド110は、ピストン駆動機構130a、130bの一部(例えばプレッサ152)を除き、全体が合成樹脂製の筐体155で覆われている。筐体155の上面には、ユーザの操作によってピストン駆動機構130a、130bを動作させることができるように、各種動作に対応した複数の操作ボタンを含むボタン群156を有している。 The injection head 110 is entirely covered with a synthetic resin casing 155 except for part of the piston drive mechanisms 130a and 130b (for example, the presser 152). On the upper surface of the housing 155, a button group 156 including a plurality of operation buttons corresponding to various operations is provided so that the piston drive mechanisms 130a and 130b can be operated by a user operation.
 操作ボタンとしては、例えば、薬液注入装置を注入動作可能な状態とするためのチェックボタン、注入を開始する際に操作されるスタートボタン、プレッサ152を任意の距離だけ前進させるための前進ボタン、プレッサ152を任意の距離だけ後退させるための後退ボタン、プレッサ152の移動中にその速度を加速するための加速ボタン、プレッサ152をイニシャライズ位置まで後退させるオートリターンボタンなどを含むことができる。本形態では、各ピストン駆動機構130a、130bを独立して動作させることができるように、前進ボタン、後退ボタン、加速ボタンおよびオートリターンボタンをそれぞれ2つずつ有している。 The operation buttons include, for example, a check button for making the chemical injection device ready for injection, a start button operated when starting injection, a forward button for moving the presser 152 forward by an arbitrary distance, and a presser. A backward button for moving the presser 152 by an arbitrary distance, an acceleration button for accelerating the speed of the presser 152 while the presser 152 is moving, an auto return button for moving the presser 152 back to the initializing position, and the like can be included. In this embodiment, each of the piston drive mechanisms 130a and 130b has two forward buttons, two backward buttons, two acceleration buttons, and two auto return buttons so that each piston driving mechanism 130a and 130b can be operated independently.
 シリンダ保持部151は、アダプタ600を介してシリンジ350が装着されるように構成されている。シリンジ350には、充填可能な薬液の容量似応じて様々なサイズのものが存在している。アダプタ600は、シリンジ350のサイズごとに用意されており、図11に示すように、適合するシリンジ350のシリンダの末端に形成されているシリンダフランジ351を受け入れることができる構造を有し、注入ヘッド110のシリンダ保持部151に着脱自在に装着される。 The cylinder holding part 151 is configured such that the syringe 350 is attached via the adapter 600. The syringe 350 has various sizes depending on the volume of the chemical solution that can be filled. The adapter 600 is prepared for each size of the syringe 350. As shown in FIG. 11, the adapter 600 has a structure capable of receiving a cylinder flange 351 formed at the end of the cylinder of the compatible syringe 350, and an injection head. 110 is detachably attached to the cylinder holder 151.
 注入ヘッド110へのシリンジ350の装着は、例えば、注入ヘッド110のシリンダ保持部151にアダプタ600を装着し、次いで、シリンジ350のシリンダフランジ351をアダプタ600に挿入することで行うことができる。アダプタ600は、シリンダフランジ351を受け入れる溝を有しており、この溝にシリンダフランジ351が挿入されることによってシリンジ350がアダプタ600に保持される。また、シリンダフランジ351がアダプタ600の溝に挿入された後、図11に示すようにシリンジ350をその軸周りに所定の角度(例えば90度)回転させることによってシリンダをロックするロック機構を有していてもよい。このようにアダプタ600を用いることによって、種々のサイズのシリンジ350を注入ヘッド110に装着することができる。 The syringe 350 can be attached to the injection head 110 by, for example, attaching the adapter 600 to the cylinder holding portion 151 of the injection head 110 and then inserting the cylinder flange 351 of the syringe 350 into the adapter 600. The adapter 600 has a groove for receiving the cylinder flange 351, and the syringe 350 is held by the adapter 600 by inserting the cylinder flange 351 into the groove. Further, after the cylinder flange 351 is inserted into the groove of the adapter 600, there is a lock mechanism for locking the cylinder by rotating the syringe 350 by a predetermined angle (for example, 90 degrees) around its axis as shown in FIG. It may be. By using the adapter 600 as described above, syringes 350 of various sizes can be attached to the injection head 110.
 本形態では、注入ヘッド110は、2つのシリンジ350を装着できるように、2つのピストン駆動機構130a、130bを有している例を示すが、1つのシリンジ350のみを装着できるように構成されていてもよいし、3つ以上のシリンジ350を装着できるように構成されていてもよい。装着可能なシリンジ350の数に応じて、シリンダ保持部151およびピストン駆動機構130a、130bの数が変更される。 In this embodiment, the injection head 110 shows an example having two piston drive mechanisms 130a and 130b so that two syringes 350 can be attached, but is configured so that only one syringe 350 can be attached. Alternatively, three or more syringes 350 may be attached. The number of cylinder holders 151 and piston drive mechanisms 130a and 130b is changed according to the number of syringes 350 that can be mounted.
 シリンジ350は、薬液が充填された状態で製剤メーカーから提供されるプレフィルドタイプのシリンジであってもよいし、医療現場で薬液を充填した現場充填タイプのシリンジであってもよい。 The syringe 350 may be a prefilled type syringe provided from a pharmaceutical manufacturer in a state of being filled with a chemical solution, or an on-site filling type syringe filled with a chemical solution at a medical site.
 シリンジ350は、データキャリアであるRFIDタグ352をさらに有していてもよい。RFIDタグ352の装着位置は任意であってよく、例えば、シリンダの外周面とすることができる。このRFIDタグ352からデータを読み出すためおよび/またはRFIDタグ352にデータを記録するために、注入ヘッド110は、RFIDモジュール166を有することができる。RFIDモジュール166は、RFID制御回路164およびアンテナ165を有しており、RFIDタグ352に記録されたデータをアンテナ165によって読み出し、読み出したデータを注入制御ユニット101に伝送し、かつ/または注入制御ユニット101から伝送されたデータをRFIDタグ352に記録することができるように構成される。RFID制御回路164は、このRFIDモジュール166におけるデータの送受信動作を制御する。すなわち、RFIDモジュール166は、RFIDタグ352からデータを読み出すリーダ、または、さらにRFIDタグ352にデータを記録するリーダ/ライタとして機能する。 The syringe 350 may further include an RFID tag 352 that is a data carrier. The mounting position of the RFID tag 352 may be arbitrary, and may be, for example, the outer peripheral surface of the cylinder. In order to read data from the RFID tag 352 and / or record data in the RFID tag 352, the injection head 110 may have an RFID module 166. The RFID module 166 has an RFID control circuit 164 and an antenna 165, reads data recorded in the RFID tag 352 by the antenna 165, transmits the read data to the injection control unit 101, and / or the injection control unit. The data transmitted from the terminal 101 can be recorded on the RFID tag 352. The RFID control circuit 164 controls data transmission / reception operations in the RFID module 166. That is, the RFID module 166 functions as a reader that reads data from the RFID tag 352 or a reader / writer that records data in the RFID tag 352.
 RFIDタグ352に記録されているデータとしては、シリンジ350に充填されている薬液に関する各種データ、例えば、製造メーカー、薬液の種類、品番、含有成分(特に、薬液が造影剤の場合はヨード含有濃度など)、充填量、ロット番号、消費期限などの他に、シリンジに関する各種データ、例えば、製造メーカー、品番といった固有識別番号、許容圧力値、シリンジの容量、ピストンストローク、必要な各部の寸法、ロット番号などを含むことができる。これらのデータの少なくとも一部は、医用画像撮像装置500へ伝送することができる。 The data recorded in the RFID tag 352 includes various data relating to the chemical liquid filled in the syringe 350, such as the manufacturer, the type of chemical liquid, the product number, and the contained components (particularly, the iodine-containing concentration when the chemical liquid is a contrast agent). Etc.), filling amount, lot number, expiry date, etc., as well as various data related to the syringe, for example, a unique identification number such as manufacturer, product number, allowable pressure value, syringe volume, piston stroke, dimensions of each required part, lot Numbers can be included. At least a part of these data can be transmitted to the medical image capturing apparatus 500.
 RFID制御回路164は、任意の位置に設置することができるが、アンテナ165は、シリンジ350がシリンダ保持部151に正常に保持された状態においてRFIDタグ352と対向する位置に設置されることが望ましい。 The RFID control circuit 164 can be installed at an arbitrary position, but the antenna 165 is preferably installed at a position facing the RFID tag 352 in a state where the syringe 350 is normally held by the cylinder holding unit 151. .
 特に本形態では、図11に示すように、RFIDタグ352は長手方向を有する形状とされ、その長手方向をシリンジ350の周方向と一致させて、シリンダの外周面に貼付されている。シリンジ350は、シリンダ保持部151に受け入れられた後、シリンジ350を特定の向きとなるように回転させることによって正常に保持され、その保持された状態では、RFIDタグ352が下向きとなるように設計されている。 In particular, in this embodiment, as shown in FIG. 11, the RFID tag 352 has a shape having a longitudinal direction, and is attached to the outer peripheral surface of the cylinder so that the longitudinal direction coincides with the circumferential direction of the syringe 350. After the syringe 350 is received by the cylinder holding part 151, the syringe 350 is normally held by rotating the syringe 350 in a specific direction, and the RFID tag 352 is designed to face downward in the held state. Has been.
 そして、RFIDモジュール166のアンテナ165は、導体からなる所定のパターン(例えば、1つまたは複数のループ状パターン)を形成したFPC(フレキシブルプリント基板)を有し、図13に示すように、シリンジ保持部に正常に保持されたシリンジ350のRFIDタグ352と対向する位置に、シリンジ350と同心状となるように円弧状に曲げられて配置されている。これにより、曲面上に貼付されたRFIDタグ352の検出範囲の拡大を図っている。 The antenna 165 of the RFID module 166 has an FPC (flexible printed circuit board) on which a predetermined pattern (for example, one or a plurality of loop patterns) made of a conductor is formed, and as shown in FIG. In a position facing the RFID tag 352 of the syringe 350 that is normally held in the part, the syringe 350 is arranged so as to be concentric with the syringe 350 and bent in an arc shape. Thereby, the detection range of the RFID tag 352 attached on the curved surface is expanded.
 また本形態では、RFIDタグ352の貼付位置にばらつきがあったとしても、RFIDタグ352が確実にアンテナ165と対向することができるように、アンテナ165は、RFIDタグ352よりも大きな面積を有している。したがって、アンテナ165のサイズは、シリンジ350へのRFIDタグ352の貼付位置のばらつきを考慮して設計することが好ましい。 Further, in this embodiment, the antenna 165 has a larger area than the RFID tag 352 so that the RFID tag 352 can reliably face the antenna 165 even if the application position of the RFID tag 352 varies. ing. Therefore, the size of the antenna 165 is preferably designed in consideration of variations in the position where the RFID tag 352 is attached to the syringe 350.
 一方、アンテナ165を円弧状に曲げることにより、アンテナ165の曲率半径が小さくなるほど、また、アンテナ165の周方向での長さが長くなるほど、通信用の電波が干渉しやすくなり、通信感度が低下する傾向がある。そこで、電波の干渉を抑制するため、アンテナ165は、FPCのRFIDタグ352と対向する面と反対側の面に、フェライトシート165aを有することが好ましい。 On the other hand, by bending the antenna 165 in a circular arc shape, as the radius of curvature of the antenna 165 becomes smaller and the length in the circumferential direction of the antenna 165 becomes longer, radio waves for communication are more likely to interfere and communication sensitivity is lowered. Tend to. Therefore, in order to suppress radio wave interference, the antenna 165 preferably includes a ferrite sheet 165a on the surface opposite to the surface facing the RFID tag 352 of the FPC.
 RFIDモジュール166の出力は、例えば200mWとすることができる。これにより、RFIDタグ352の検出範囲(検出距離)をより広くすることができ、RFIDモジュール166は、シリンジ350内に充填されている薬液を通して、RFIDタグ352から情報を読み出したり、RFIDタグ352に情報を書き込んだりすることも可能となる。これは、例えば、シリンジ350が、図13に示した状態から180度回転した、シリンジ350に充填された薬液を介してアンテナ165と対向した状態であっても、RFIDモジュール166がRFIDタグ802との間で情報の読み出し等を行えることを意味する。 The output of the RFID module 166 can be set to 200 mW, for example. Thereby, the detection range (detection distance) of the RFID tag 352 can be further widened, and the RFID module 166 reads information from the RFID tag 352 through the chemical solution filled in the syringe 350, or stores the information in the RFID tag 352. It is also possible to write information. For example, even if the syringe 350 is rotated 180 degrees from the state shown in FIG. 13 and is opposed to the antenna 165 via the chemical solution filled in the syringe 350, the RFID module 166 is connected to the RFID tag 802. This means that information can be read out between.
 RFIDモジュール166は任意の位置に配置することができる。図13に示した配置の場合は、RFIDモジュール166は、少なくともアンテナ165が注入ヘッド110に内蔵された構成とすることができる。また、RFIDモジュール166は、ハンディタイプであってもよく、この場合、少なくともアンテナ165が注入ヘッド110とは別体のハンディユニット内に配置される。RFIDモジュール166がハンディユニットとして構成される場合、シリンジが注入ヘッド110に装着される前、または装着された後に、シリンジに装着されたRFIDタグ352にハンディユニットを近づけることによって、RFIDタグ352から情報を読み出すことができる。RFIDモジュール166と注入制御ユニット101との間での情報の送受信は、有線通信によるものであってもよいし無線通信によるものであってもよい。 RFID module 166 can be placed at any position. In the case of the arrangement shown in FIG. 13, the RFID module 166 can be configured such that at least the antenna 165 is built in the injection head 110. The RFID module 166 may be a handy type. In this case, at least the antenna 165 is disposed in a handy unit separate from the injection head 110. When the RFID module 166 is configured as a handy unit, information from the RFID tag 352 can be obtained by bringing the handy unit closer to the RFID tag 352 attached to the syringe before or after the syringe is attached to the injection head 110. Can be read out. Transmission / reception of information between the RFID module 166 and the injection control unit 101 may be performed by wired communication or wireless communication.
 次に、上述した薬液注入装置100による薬液の注入動作の一例を、図9~図13を参照して説明する。 Next, an example of the chemical solution injection operation by the chemical solution injection device 100 described above will be described with reference to FIGS.
 薬液注入装置100の電源が投入された状態で、薬液が充填されているシリンジ350が所定の手順で注入ヘッド110に装着されると、RFIDモジュール166によってRFIDタグ352から各種データが読み出される。 When the syringe 350 filled with the chemical solution is attached to the injection head 110 in a predetermined procedure with the power of the chemical solution injection device 100 turned on, various data are read from the RFID tag 352 by the RFID module 166.
 注入制御ユニット101は、RFIDタグ352から読み出したデータに基づいて、シリンジ350に充填されている薬液の種類は充填量などを必要に応じて表示ユニット104に表示させたり、プレッサ152を待機位置へ移動させたりする。待機位置とは、プレッサ152がシリンジ350のピストンの末端に当接する位置から最後端位置までの間の任意の位置である。待機位置への移動は、注入制御ユニット101が、RFIDタグ352から読み出したシリンジ350に関するデータに基づいてピストンの末端位置を求め、プレッサ152の可動範囲の最後端位置である初期位置からピストンの末端位置までの距離を求め、その距離と予め決められていた任意のオフセット値分だけプレッサ152が前進するようにピストン駆動機構130a、130bを動作させることによって行うことができる。これにより、プレッサ152は待機位置へ移動される。 Based on the data read from the RFID tag 352, the injection control unit 101 causes the display unit 104 to display the type of the chemical solution filled in the syringe 350 on the display unit 104 as necessary, or the presser 152 to the standby position. Move it. The standby position is an arbitrary position between the position where the presser 152 abuts the end of the piston of the syringe 350 and the end position. In the movement to the standby position, the injection control unit 101 obtains the end position of the piston based on the data regarding the syringe 350 read from the RFID tag 352, and the end position of the piston from the initial position which is the end position of the movable range of the presser 152. This can be done by calculating the distance to the position and operating the piston drive mechanisms 130a and 130b so that the presser 152 moves forward by the distance and an arbitrary offset value determined in advance. Thereby, the presser 152 is moved to the standby position.
 また、注入制御ユニット101は、RFIDタグ352から取得したデータおよび入力ユニット103から入力されたデータ等に基づいて、注入速度、注入量および注入時間などをパラメータとした注入プロトコルを作成する。作成された注入プロトコルは、表示ユニット104上に、グラフィック的、あるいは数値データの形式で表示することができる。操作者は、入力ユニット103からデータ等を入力することによって、表示された注入プロトコルを任意に変更することができる。操作者が注入ヘッド110のチェックボタンを押下することによって、作成された、または変更された注入プロトコルに従った注入動作が可能な状態となる。 In addition, the injection control unit 101 creates an injection protocol using the injection speed, the injection amount, the injection time, and the like as parameters based on the data acquired from the RFID tag 352, the data input from the input unit 103, and the like. The created injection protocol can be displayed on the display unit 104 graphically or in the form of numerical data. The operator can arbitrarily change the displayed injection protocol by inputting data or the like from the input unit 103. When the operator presses the check button of the injection head 110, an injection operation according to the created or changed injection protocol is enabled.
 一方、操作者は、シリンジ350と被験者とを注入回路200で接続する。CT画像を撮影する際は、注入回路200の体内回路部として留置針が用いられる。 On the other hand, the operator connects the syringe 350 and the subject with the injection circuit 200. When taking a CT image, an indwelling needle is used as an in-vivo circuit portion of the injection circuit 200.
 注入ヘッド110による注入動作が可能とされ、かつシリンジ350と被験者とが注入回路200で接続された状態で、操作者が注入ヘッド110のスタートボタンを押下すると、注入制御ユニット101は、作成されている注入プロトコルにしたがってピストン駆動機構130a、130bが動作するようにピストン駆動機構130a、130bの動作を制御する。これによって、シリンジ350内に充填されている薬液を被験者に注入することができる。 When the operator presses the start button of the injection head 110 while the injection operation by the injection head 110 is enabled and the syringe 350 and the subject are connected by the injection circuit 200, the injection control unit 101 is created. The operation of the piston drive mechanisms 130a and 130b is controlled so that the piston drive mechanisms 130a and 130b operate according to the injection protocol. Thereby, the chemical | medical solution with which the inside of the syringe 350 is filled can be inject | poured into a test subject.
 本形態でも流量センサ210を備えた注入回路200を用いており、注入回路200が被験者と接続された時点から、注入回路200、特に流量センサ210内での薬液の移動を監視することができる。 In this embodiment, the injection circuit 200 including the flow sensor 210 is used, and the movement of the chemical solution in the injection circuit 200, particularly the flow sensor 210, can be monitored from the time when the injection circuit 200 is connected to the subject.
 薬液の注入前には、「ルート確認」と呼ばれる、留置針の先端が血管内に位置しているか否かの確認が行われることが多い。留置針の先端が血管外に位置している状態で薬液の注入が行われると、所望の画像が取得できないばかりか、様々な副作用を引き起こす可能性があるからである。従来は、この「ルート確認」は、注入回路によってシリンジと被験者とが流体的に連通された後、例えば生理食塩水が充填されているシリンジのピストンを後退させ、血液が注入回路内に流入するか否かを確認することによって行っていた。 Before the injection of the chemical solution, it is often checked whether the tip of the indwelling needle is positioned in the blood vessel, which is called “route confirmation”. This is because if a medical solution is injected with the tip of the indwelling needle positioned outside the blood vessel, a desired image cannot be acquired and various side effects may be caused. Conventionally, this “route confirmation” is performed after the syringe and the subject are in fluid communication with each other by the injection circuit, and then, for example, the piston of the syringe filled with physiological saline is retracted, and blood flows into the injection circuit. It was done by checking whether or not.
 ここで、留置針の先端が血管内に位置しているときと血管外に位置しているときとでは、注入回路200内での薬液の挙動が異なる。注入回路200内での薬液の挙動の違いは、流量センサ210からの検出結果の違いとして表れ、したがって、流量センサ210の検出結果から、留置針の先端が血管内に位置しているか血管外に位置しているかを判断することができる。留置針の先端が血管外に位置する状況は、留置針が穿刺された段階で起こることもあるし、留置針が正常に穿刺された後、例えば薬液の注入中などに被験者が動くことによって起こることもある。 Here, the behavior of the drug solution in the injection circuit 200 differs depending on whether the tip of the indwelling needle is located inside the blood vessel or outside the blood vessel. The difference in the behavior of the chemical solution in the injection circuit 200 appears as a difference in the detection result from the flow sensor 210. Therefore, from the detection result of the flow sensor 210, whether the tip of the indwelling needle is located inside the blood vessel or outside the blood vessel. It can be determined whether it is located. The situation where the tip of the indwelling needle is located outside the blood vessel may occur at the stage when the indwelling needle is punctured or when the subject moves after the indwelling needle has been punctured normally, for example, during the injection of a drug solution Sometimes.
 例えば、薬液が注入されていない状態では、留置針の先端が血管内に位置していると、留置針と血管とが連通していることから、血管内の血液の脈動に基づく注入回路内での薬液の移動が流量センサ210によって検出される。一方、留置針の先端が血管外に位置していると、留置針は先端側が閉塞または開放された状態となり、血液の脈動に基づく薬液の移動は検出されない。そこで、注入制御ユニット101は、流量センサ210から送信された検出結果を用いて、薬液の注入前において血液の脈動に基づく薬液の移動が流量センサ210によって検出されたか否かを判断することによって、注入回路200の先端位置を判断する注入回路先端位置判断機能を有することができる。これにより、上記のようなシリンジの操作を行うことなく、流量センサ210からの検出結果を監視するだけで、ルート確認を行うことができる。 For example, in a state where no medicinal solution is injected, if the tip of the indwelling needle is located in the blood vessel, the indwelling needle and the blood vessel communicate with each other. Therefore, in the injection circuit based on blood pulsation in the blood vessel. The movement of the chemical solution is detected by the flow sensor 210. On the other hand, when the distal end of the indwelling needle is located outside the blood vessel, the indwelling needle is in a state where the distal end side is closed or opened, and movement of the drug solution based on blood pulsation is not detected. Therefore, the injection control unit 101 uses the detection result transmitted from the flow sensor 210 to determine whether or not the movement of the chemical solution based on blood pulsation is detected by the flow sensor 210 before the injection of the chemical solution. An injection circuit tip position determination function for determining the tip position of the injection circuit 200 can be provided. As a result, the route can be confirmed only by monitoring the detection result from the flow sensor 210 without operating the syringe as described above.
 一方、薬液の注入中などに留置針の先端が血管から外れると、薬液の血管外漏出と呼ばれる現象が生じる。また、被験者の血管壁が弱い場合にも血管外漏出が生じることもある。血管外漏出が生じると、その程度によっては薬液の注入を停止する必要があることから、血管外漏出の状況はできるだけ迅速かつ正確に把握できることが望ましい。 On the other hand, when the tip of the indwelling needle is detached from the blood vessel during the injection of the chemical solution, a phenomenon called chemical extravasation occurs. Extravascular leakage may also occur when the blood vessel wall of the subject is weak. When extravasation occurs, it is necessary to stop the injection of the chemical solution depending on the degree of the extravasation, and therefore it is desirable that the extravasation situation can be grasped as quickly and accurately as possible.
 従来、血管外漏出の検出は、被験者の体表面近傍での薬液の漏出を光学的に検出する漏出検出装置を用いていた。漏出検出装置は、検出用の光を出射する発光素子および発光素子から出射した光の強度を検出する受光素子を内蔵したセンサヘッドを有しており、このセンサヘッドが、粘着シート等によって留置針の穿刺位置近傍で被験者の体表面に固定された状態で薬液の注入中の血管外漏出の検出が行われていた。 Conventionally, detection of extravasation has used a leak detection device that optically detects leaking of a chemical solution near the body surface of a subject. The leak detection device has a sensor head that includes a light emitting element that emits detection light and a light receiving element that detects the intensity of light emitted from the light emitting element, and the sensor head is indwelled by an adhesive sheet or the like. Detection of extravasation during the injection of a drug solution was performed in a state of being fixed to the body surface of the subject near the puncture position.
 ここで、薬液の血管外漏出が発生すると、単位時間当たりの薬液の流量が、意図した流量よりも増加または減少するなど、薬液の血管外漏出の発生は、注入回路内での薬液の挙動の変化として表れる。そこで、注入制御ユニット101は、薬液の注入条件の一つとして設定された注入速度、あるいは薬液の注入条件の一部として設定された注入量および注入時間から求められた注入速度と、流量センサ210から一定の時間間隔で送信された検出結果から計算される注入回路内での薬液の単位時間当たりの流量とを比較し、両者の値が異なる場合は、血管外漏出が発生したと判断する漏出判断機能を有することができる。このように、注入制御ユニット101が漏出判断機能を有することで、従来のように漏出検出装置を用いることなく、血管外漏出を検出することができる。 Here, when an extravasation of the medicinal solution occurs, the flow rate of the medicinal solution per unit time increases or decreases from the intended flow rate, and the occurrence of the extravasation of the medicinal solution is caused by the behavior of the medicinal solution in the injection circuit. Appears as a change. Therefore, the injection control unit 101 uses the injection rate set as one of the injection conditions of the chemical solution or the injection rate determined from the injection amount and the injection time set as part of the injection condition of the chemical solution, and the flow rate sensor 210. Leakage that compares with the flow rate per unit time of the drug solution in the injection circuit calculated from the detection results transmitted at regular time intervals from, and determines that extravasation has occurred if both values are different It can have a judgment function. Thus, since the injection control unit 101 has a leakage determination function, extravasation can be detected without using a leakage detection device as in the conventional case.
 さらに、血管外漏出とは逆に、注入回路を構成するチューブが途中で捻れるなどしてキンクが発生することもある。キンクが発生すると、薬液が正常に注入されなくなったり、全く注入されなくなったりする。場合によっては、キンクの発生は、注入回路の損傷を引き起こすこともある。キンクの発生もまた、単位時間当たりの薬液の流量が、意図した流量よりも減少するなど、注入回路内での薬液の挙動の変化として表れる。そこで、注入制御ユニット101は、薬液の注入動作中に、薬液の注入条件の一つとして設定された注入速度、あるいは薬液の注入条件の一部として設定された注入量および注入時間から求められた注入速度と、流量センサ210から一定の時間間隔で送信された検出結果から計算される注入回路内での薬液の単位時間当たりの流量とを比較し、注入条件から求められた注入速度の値よりも、流量センサ210による検出結果から得られた単位時間当たりの流量の値のほうが小さい場合は、注入回路にキンクが発生したと判断するキンク判断機能を有することができる。このように、注入制御ユニット101がキンク判断機能を有することで、薬液の注入動作中のキンクの発生を検出することができる。 Furthermore, contrary to extravasation, kinks may occur due to twisting of the tube constituting the injection circuit. When a kink occurs, the drug solution may not be injected normally or may not be injected at all. In some cases, the occurrence of kinks can cause damage to the injection circuit. The occurrence of kink also appears as a change in the behavior of the chemical solution in the injection circuit, such as the flow rate of the chemical solution per unit time being reduced from the intended flow rate. Therefore, the injection control unit 101 is obtained from the injection rate set as one of the chemical solution injection conditions or the injection amount and the injection time set as part of the chemical solution injection conditions during the chemical injection operation. The injection rate is compared with the flow rate per unit time of the chemical solution in the injection circuit calculated from the detection results transmitted from the flow rate sensor 210 at regular time intervals, and from the value of the injection rate obtained from the injection conditions However, when the flow rate value per unit time obtained from the detection result by the flow sensor 210 is smaller, it is possible to have a kink determination function for determining that a kink has occurred in the injection circuit. Thus, since the injection control unit 101 has the kink determination function, it is possible to detect the occurrence of kinks during the injection of the chemical solution.
 以上説明したとおり、特定の検出結果と異なる検出結果が流量センサ210から得られた場合に注入回路200に異常が発生したことを判断する判断機能を注入制御ユニット101が有することにより、ルート確認、血管外漏出検出およびキンク検出といった、流量センサ210によって異常発生の有無を検出することができる。 As described above, when the injection control unit 101 has a determination function for determining that an abnormality has occurred in the injection circuit 200 when a detection result different from the specific detection result is obtained from the flow sensor 210, the route confirmation, The presence or absence of an abnormality can be detected by the flow sensor 210 such as extravasation detection and kink detection.
 注入制御ユニット101は、流量センサ210によって異常の発生を検出した場合に、その異常の種類に応じたメッセージまたはマーク等を表示ユニット104に表示させること、および/またはピストン駆動機構130a、130bの動作を異常発生動作に切り替えることができる。異常発生動作としては、例えば、ピストン駆動機構130a、130bの動作の停止(薬液の注入停止)、ピストン駆動機構130a、130bの移動速度の減速(薬液の注入速度の低下)などが挙げられる。 The injection control unit 101 displays a message or a mark corresponding to the type of abnormality on the display unit 104 and / or the operation of the piston drive mechanisms 130a and 130b when the flow sensor 210 detects the occurrence of the abnormality. Can be switched to abnormal operation. Examples of the abnormal operation include stopping the operation of the piston driving mechanisms 130a and 130b (stopping the injection of the chemical liquid), reducing the moving speed of the piston driving mechanisms 130a and 130b (decreasing the injection speed of the chemical liquid), and the like.
 (注入回路の他の形態)
 図14に、流量センサ210を有する注入回路200の他の形態を示す。本形態の注入回路200も、図2に示した注入回路200と同様、第1チューブ201、複数の第2チューブ202、203、T字コネクタ204、コネクタ205~207および流量センサ210を有しており、これらについては図2に示した注入回路200と同様に構成されていてよい。本形態では、注入回路200は、第2チューブ202、203のそれぞれの中間部に配置された三方活栓208と、各第2チューブ202、203から分岐するように各三方活栓208に接続された第3チューブ202a、203aと、をさらに有している。
(Other forms of injection circuit)
FIG. 14 shows another form of the injection circuit 200 having the flow sensor 210. Similarly to the injection circuit 200 shown in FIG. 2, the injection circuit 200 of this embodiment also includes a first tube 201, a plurality of second tubes 202 and 203, a T-shaped connector 204, connectors 205 to 207, and a flow sensor 210. These may be configured similarly to the injection circuit 200 shown in FIG. In this embodiment, the injection circuit 200 includes a three-way stopcock 208 disposed in the middle of each of the second tubes 202 and 203, and a first one connected to each of the three-way stopcocks 208 so as to branch from the second tubes 202 and 203. 3 tubes 202a and 203a.
 各第3チューブ202a、203aの末端にはそれぞれ薬液ボトル700a、700bが接続される。一方の第2チューブ202から分岐した第3チューブ202aに接続された薬液ボトル700aには、その第2チューブ202に接続されるシリンジに充填されている薬液と同じ薬液が収容されている。他方の第2チューブ203から分岐した第3チューブ203aに接続された薬液ボトル700bには、その第2チューブ203に接続されるシリンジに充填されている薬液と同じ薬液が収容されている。 The chemical bottles 700a and 700b are connected to the ends of the third tubes 202a and 203a, respectively. The chemical liquid bottle 700 a connected to the third tube 202 a branched from the second tube 202 contains the same chemical liquid as the chemical liquid filled in the syringe connected to the second tube 202. The chemical solution 700b connected to the third tube 203a branched from the other second tube 203 contains the same chemical solution as the chemical solution filled in the syringe connected to the second tube 203.
 本形態の注入回路200によれば、接続されるシリンジが後充填タイプのシリンジである場合に、三方活栓208を適宜切り替えることによって、シリンジを注入ヘッドに装着したまま、プレッサを後退させて薬液ボトル700a、700b内の薬液をシリンジに充填することができる。薬液を充填した後は、第3チューブ202a、203aが他のチューブと遮断されるように三方活栓208を切り替えることによって、シリンジ内の薬液を注入し得る状態とされる。 According to the injection circuit 200 of the present embodiment, when the syringe to be connected is a post-filling type syringe, the three-way cock 208 is appropriately switched to move the presser backward while the syringe is mounted on the injection head, so that the chemical solution bottle The liquid medicine in 700a and 700b can be filled into the syringe. After filling the chemical solution, the three-way cock 208 is switched so that the third tubes 202a and 203a are blocked from the other tubes, so that the chemical solution in the syringe can be injected.
 ここで、三方活栓208が切り替えられると、薬液の連通状態が変更されることから、注入回路200内で薬液の移動が生じる。この薬液の移動は、流量センサ210によって検出され、しかも、どの三方活栓208が切り替えられたか、およびどのように切り替えられたかによって、薬液の移動量および移動方向が異なる。したがって、注入制御ユニット101に、三方活栓208を切り替えたときの流量センサ210の検出結果から三方活栓208の切り替え状態を判断する流路切り替え判断機能を持たせ、その判断結果を、例えばグラフィックによって表示ユニット104に表示させるようにすることで、その時点での流路の状態を操作者に対して視覚的に認識させることができる。正確な判断のために、複数の流量センサ210を注入回路200の適宜箇所に配置することもできる。 Here, when the three-way stopcock 208 is switched, the chemical solution is changed in communication state, so that the chemical solution moves in the injection circuit 200. This movement of the chemical solution is detected by the flow sensor 210, and the amount and direction of movement of the chemical solution differ depending on which three-way cock 208 is switched and how it is switched. Accordingly, the injection control unit 101 is provided with a flow path switching determination function for determining the switching state of the three-way cock 208 from the detection result of the flow sensor 210 when the three-way cock 208 is switched, and the determination result is displayed, for example, in a graphic form By displaying on the unit 104, the state of the flow path at that time can be visually recognized by the operator. For accurate determination, a plurality of flow sensors 210 can be arranged at appropriate locations in the injection circuit 200.
 また、注入回路200に薬液ボトルが接続される場合、通常、薬液ボトルは注入回路200よりも高い位置に配置されるとともに、薬液ボトルの下端に注入回路が接続され、これによって薬液ボトル内に収容された薬液のほぼ全量を使用することができる。また、点滴などのように極めて低い速度で薬液を注入する場合は、重力を利用して薬液を滴下させ、長時間にわたって薬液の注入が実施される。いずれの場合も、薬液ボトル内の薬液が消費される前に、吸引動作あるいは注入動作を停止しないと、注入回路200内にエアが混入してしまう。 When a chemical bottle is connected to the injection circuit 200, the chemical bottle is usually placed at a higher position than the injection circuit 200, and the injection circuit is connected to the lower end of the chemical bottle, thereby accommodating the chemical bottle. Almost all of the applied chemical solution can be used. Moreover, when inject | pouring a chemical | medical solution at a very low speed like infusion etc., a chemical | medical solution is dripped using gravity, and injection | pouring of a chemical | medical solution is implemented over a long time. In any case, if the suction operation or the injection operation is not stopped before the chemical solution in the chemical solution bottle is consumed, air will be mixed into the injection circuit 200.
 よって、例えば図15に示すように、薬液ボトル700に接続される第3チューブの末端部に流量センサ210を配置し、注入回路の使用時において薬液ボトル700の下方に流量センサ210が位置するようにすることで、流量センサ210によって薬液ボトル700からの薬液の流量を検出することもできる。流量センサ210による検出結果は、注入制御ユニット101において薬液の消費量として演算され、表示ユニット104にリアルタイムに表示させることができる。あるいは、薬液ボトル700内に収容されている薬液量が予め与えられていれば、この薬液量から消費量を減算し、その結果を残量として表示ユニット104に表示させることもできる。こうすることで、操作者は、薬液ボトル700内の薬液の消費量あるいは残量を把握することができ、その結果、薬液ボトル700内の薬液が全て消費される前に、薬液ボトル700を新規なものと交換するなど、適切な処置が可能となる。 Therefore, for example, as shown in FIG. 15, the flow sensor 210 is arranged at the end of the third tube connected to the chemical liquid bottle 700 so that the flow sensor 210 is positioned below the chemical liquid bottle 700 when the injection circuit is used. By doing so, the flow rate of the chemical solution from the chemical solution bottle 700 can also be detected by the flow rate sensor 210. The detection result by the flow sensor 210 is calculated as a consumption amount of the chemical solution in the injection control unit 101 and can be displayed on the display unit 104 in real time. Alternatively, if the amount of the chemical solution stored in the chemical solution bottle 700 is given in advance, the consumption amount can be subtracted from the amount of the chemical solution, and the result can be displayed on the display unit 104 as the remaining amount. By doing so, the operator can grasp the consumption amount or the remaining amount of the chemical solution in the chemical solution bottle 700. As a result, before the chemical solution in the chemical solution bottle 700 is completely consumed, Appropriate treatment is possible, such as replacing with a new one.
 また、図2および図14に示した注入回路200においては、薬液の混合部にT字コネクタ204が配置されているが、薬液をより良好に混合できるようにするために、このT字コネクタ204に替えて、図16Aに示すようなミキシングデバイス241を配置することが好ましい。以下、このミキシングデバイス241について、薬液として造影剤と生理食塩水とを混合する場合を例に挙げて図16A~図16Cを参照して説明する。 In addition, in the injection circuit 200 shown in FIG. 2 and FIG. 14, the T-shaped connector 204 is disposed in the mixing portion of the chemical solution. In order to allow the chemical solution to be mixed better, this T-shaped connector 204 is provided. Instead, it is preferable to arrange a mixing device 241 as shown in FIG. 16A. Hereinafter, the mixing device 241 will be described with reference to FIGS. 16A to 16C by taking as an example a case where a contrast medium and physiological saline are mixed as a chemical solution.
 ミキシングデバイス241は、旋回流を生成する旋回流生成室242aである第1室と、旋回流を軸方向に集中させる狭窄室242bである第2室と有する本体部242を備えている。この例では、旋回流生成室242aは円柱状の内部空間を有し、狭窄室242bは旋回流生成室242aと共軸の円錐状の内部空間を有する。なお、旋回流生成室の短手方向の断面形状は、円、楕円、その他の曲線から形成される種々の形状が考えられる。また、旋回流生成室は、狭窄室に近づくにつれて先が狭まる狭窄形状を有するように構成することもできる。 The mixing device 241 includes a main body 242 having a first chamber that is a swirl flow generation chamber 242a that generates a swirl flow and a second chamber that is a constriction chamber 242b that concentrates the swirl flow in the axial direction. In this example, the swirl flow generation chamber 242a has a cylindrical inner space, and the constriction chamber 242b has a conical inner space coaxial with the swirl flow generation chamber 242a. The cross-sectional shape in the short direction of the swirl flow generating chamber may be various shapes formed from a circle, an ellipse, or other curves. In addition, the swirl flow generation chamber can be configured to have a narrowed shape that narrows as it approaches the narrowed chamber.
 ミキシングデバイス241の本体部242の流れ上流側には一方の第2チューブ202(図2等参照)が接続される導管部243aが設けられ、下流側には第1チューブ201(図2等参照)が接続される導管部243cが設けられている。他方の第2チューブ203(図2等参照)が接続される導管部243bは、旋回流生成室242aの中央から上流側の位置に配置されている。 A conduit portion 243a to which one second tube 202 (see FIG. 2 and the like) is connected is provided on the upstream side of the flow of the main body portion 242 of the mixing device 241, and the first tube 201 (see FIG. 2 and the like) is provided on the downstream side. Is provided with a conduit portion 243c. The conduit portion 243b to which the other second tube 203 (see FIG. 2 and the like) is connected is disposed at a position upstream from the center of the swirl flow generation chamber 242a.
 この例では、導管部243aから造影剤が流入するとともに導管部243bから生理食塩水が流入し、ミキシングデバイス内で両薬液が混合される。その後、造影剤及び生理食塩水の混合薬液は、液体出口としての導管部243cから流出する。 In this example, the contrast agent flows from the conduit portion 243a and the physiological saline flows from the conduit portion 243b, and both drug solutions are mixed in the mixing device. Thereafter, the mixed drug solution of the contrast medium and physiological saline flows out from the conduit portion 243c as a liquid outlet.
 比重の大きい薬液が流入する導管部243aは、流れ方向の上流側において、旋回流生成室242a上流側壁面の中央部に設けられている。液体出口である導管部243cは、この導管部243cの中心線と導管部243aの中心線とが一致するように、すなわち両者が共軸となるように設けられている。各部が共軸を有するように配置することにより、ミキシングデバイス内において発生する渦の等方性を高めることができる。つまり、渦を空間内で淀みなく均一に発生させ,混合効率を向上させることができる。 The conduit portion 243a into which a high specific gravity chemical solution flows is provided in the central portion of the upstream side wall surface of the swirl flow generation chamber 242a on the upstream side in the flow direction. The conduit portion 243c serving as the liquid outlet is provided so that the center line of the conduit portion 243c and the center line of the conduit portion 243a coincide, that is, both are coaxial. By arranging each part so as to have a coaxial axis, it is possible to increase the isotropic property of the vortex generated in the mixing device. That is, vortices can be generated uniformly in the space without stagnation, and the mixing efficiency can be improved.
 他方、比重の小さい薬液が流入する導管部243bは、旋回流生成室242aの側面に配置され、断面円形である旋回流生成室242aの円周の接線方向に延在する。別の言い方をすれば、導管部243bは、旋回流生成室242aが有する円柱状空間の中心軸線からの周縁側にずれた位置に設けられ、これにより、導管部243bから流入した比重の小さい薬液の旋回流が生成されるようになっている。より詳しくは、図16Cに示すように、流路241fbが、旋回流生成室242aの湾曲した内面の円周接線方向に延在するように構成されており、これにより、この流路から流入した薬液が旋回流となる。さらに狭窄室242bは、図面からも明らかなように、流れ方向下流側に向かってすぼまる傾斜した内面を有しているので、発生した旋回流は、渦の中心軸方向に集中することになる。 On the other hand, the conduit portion 243b into which the chemical liquid having a small specific gravity flows is disposed on the side surface of the swirl flow generation chamber 242a and extends in the tangential direction of the circumference of the swirl flow generation chamber 242a having a circular cross section. In other words, the conduit portion 243b is provided at a position shifted to the peripheral side from the central axis of the cylindrical space included in the swirl flow generation chamber 242a, and thereby, the chemical liquid having a small specific gravity flowing from the conduit portion 243b. The swirl flow is generated. More specifically, as shown in FIG. 16C, the flow path 241fb is configured to extend in the circumferential tangential direction of the curved inner surface of the swirl flow generation chamber 242a, and thus flows from this flow path. The chemical becomes a swirl flow. Further, as is clear from the drawing, the constriction chamber 242b has an inclined inner surface that swells toward the downstream side in the flow direction, so that the generated swirling flow is concentrated in the direction of the central axis of the vortex. Become.
 また、造影剤が流入する導管部243aは、流路241faを介して旋回流生成室242aと連通している。これにより、比重の大きい薬液を、比重の小さい薬液の旋回流の中心軸と平行な方向で旋回流生成室に導入することができる。つまり、比重の大きい薬液は、旋回流生成室が有する円柱状空間の中心軸線と平行な方向に導入される。また、生理食塩水が流入する導管部は、流路241fbを介して旋回流生成室と連通している。一例で、流路241fbの内径は、造影剤が流入する流路241faの内径よりも小さく形成されていてもよい。こうした構成によれば、所定の圧力で薬液を注入する場合、断面積が相対的に小さい流路241fbから流入する比重の小さい薬液の流速が、比重の大きい薬液の流速よりも速くなる。したがって、比重の小さい薬液の流速が遅い場合に生じうる、旋回流の慣性力の減衰やそれに伴う旋回強度の不足に起因する、薬液どうしの混合効率の低下を回避することができる。 Also, the conduit portion 243a into which the contrast agent flows is in communication with the swirling flow generation chamber 242a through the flow path 241fa. Thereby, the chemical liquid having a large specific gravity can be introduced into the swirling flow generating chamber in a direction parallel to the central axis of the swirling flow of the chemical liquid having a small specific gravity. That is, the chemical liquid having a large specific gravity is introduced in a direction parallel to the central axis of the cylindrical space included in the swirl flow generation chamber. Further, the conduit part into which the physiological saline flows is in communication with the swirl flow generation chamber via the flow path 241fb. For example, the inner diameter of the flow path 241fb may be smaller than the inner diameter of the flow path 241fa into which the contrast agent flows. According to such a configuration, when a chemical solution is injected at a predetermined pressure, the flow rate of the chemical solution having a small specific gravity flowing from the flow path 241fb having a relatively small cross-sectional area becomes faster than the flow rate of the chemical solution having a large specific gravity. Therefore, it is possible to avoid a decrease in the mixing efficiency between the chemical solutions due to the attenuation of the inertial force of the swirling flow and the accompanying lack of swirling strength, which can occur when the flow rate of the chemical solution having a small specific gravity is low.
 上記のように構成されたミキシングデバイス241では、例えば造影剤および生理食塩水を同デバイス内に流入させると、流路241faから旋回流生成室に流入した造影剤は軸方向下流側に向かう流れとなる。一方、流路241fbから旋回流生成室に流入した生理食塩水は、同室内の湾曲した内面に沿って旋回する旋回流となり、そして、生理食塩水の旋回流は、狭窄室に導かれて旋回流の中心軸方向に集中する。このような渦はランキン渦として知られ、旋回流のもつ慣性力を渦の回転軸の近傍に集中させることができる。 In the mixing device 241 configured as described above, for example, when a contrast medium and physiological saline are flowed into the device, the contrast medium that has flowed into the swirl flow generation chamber from the flow path 241fa flows toward the downstream side in the axial direction. Become. On the other hand, the physiological saline flowing into the swirl flow generation chamber from the flow path 241fb becomes a swirl flow swirling along the curved inner surface of the same chamber, and the swirl flow of the physiological saline is guided to the stenosis chamber and swirls. Concentrate in the direction of the central axis of the flow. Such a vortex is known as a Rankine vortex, and the inertial force of the swirling flow can be concentrated in the vicinity of the rotation axis of the vortex.
 そしてこのようなミキシングデバイス241を有する注入回路で2つの薬液の同時注入を行う場合、両薬液が良好に混合されることとなる。すなわち、この例では、造影剤と生理食塩水とが良好に混合された希釈造影剤を得ることができ、その結果、造影剤の濃度のムラ等が無くなるので、薬液の混合部にT字コネクタを有する一般的な注入回路の場合と比較して優れた造影効果が期待できる。 And when performing two chemical | medical solution simultaneous injection | pouring with the injection circuit which has such a mixing device 241, both chemical | medical solutions will be mixed favorably. That is, in this example, it is possible to obtain a diluted contrast agent in which the contrast agent and physiological saline are well mixed, and as a result, there is no unevenness in the concentration of the contrast agent. An excellent contrast effect can be expected as compared with the case of a general injection circuit having the above.
 なお、図2および図14に示した注入回路200は、いずれも2本のシリンジが接続可能な構成とされている。しかし、注入回路、特に体外回路部は、接続されるシリンジの数が1本のみであるように構成されたものであってもよいし、3本以上であるように構成されたものであってもよい。 Note that the injection circuit 200 shown in FIGS. 2 and 14 is configured such that two syringes can be connected. However, the injection circuit, particularly the extracorporeal circuit unit, may be configured so that the number of syringes to be connected is only one, or configured to be three or more. Also good.
 図17に、流量センサ210を有する注入回路200のさらに他の形態を示す。本形態の注入回路200も、図2に示した注入回路200と同様、第1チューブ201、複数の第2チューブ202、203、T字コネクタ204、コネクタ205~207および流量センサ210を有しており、これらについては、流量センサ210の位置を除いて図2に示した注入回路200と同様に構成されていてよい。本形態では、注入回路200は、一方の第2チューブ203の中間部から分岐して接続された第4チューブ221と、第4チューブ221の末端に接続された流量センサ210と、をさらに有している。したがって、本形態では、注入回路200は、シリンジが接続される2つのコネクタ205、206および流量センサ210の、合わせて3つの末端を有している。 FIG. 17 shows still another embodiment of the injection circuit 200 having the flow sensor 210. Similarly to the injection circuit 200 shown in FIG. 2, the injection circuit 200 of this embodiment also includes a first tube 201, a plurality of second tubes 202 and 203, a T-shaped connector 204, connectors 205 to 207, and a flow sensor 210. These may be configured in the same manner as the injection circuit 200 shown in FIG. 2 except for the position of the flow sensor 210. In the present embodiment, the injection circuit 200 further includes a fourth tube 221 that is branched and connected from an intermediate portion of one second tube 203, and a flow rate sensor 210 that is connected to the end of the fourth tube 221. ing. Therefore, in this embodiment, the injection circuit 200 has three terminals in total, that is, the two connectors 205 and 206 to which the syringe is connected and the flow sensor 210.
 第2チューブ203の分岐には、例えばT字コネクタ225を用いることができる。また、例えば薬液の注入時などに第4チューブ221内に薬液が流入しないようにするために、第4チューブ221にもう1つ別のコック223が設けられてもよい。コック223は、第4チューブ221の末端と流量センサ210との間に設けられていてもよいし、第4チューブ221の中間部に設けられていてもよい。 For example, a T-shaped connector 225 can be used to branch the second tube 203. For example, another cock 223 may be provided on the fourth tube 221 in order to prevent the chemical liquid from flowing into the fourth tube 221 at the time of injection of the chemical liquid. The cock 223 may be provided between the end of the fourth tube 221 and the flow rate sensor 210, or may be provided in an intermediate portion of the fourth tube 221.
 上記のとおり構成された注入回路200は、末端のコネクタ205、206がシリンジに接続され、かつ、先端のコネクタ207が体外回路部に接続された注入回路200が、体外回路部を介して被験者と接続された状態、すなわち注入回路200が定位置配置された状態で使用することができる。使用に際しては、第4チューブ221に設けられたコック223を開く。 The injection circuit 200 configured as described above includes an injection circuit 200 in which the end connectors 205 and 206 are connected to the syringe and the distal connector 207 is connected to the extracorporeal circuit unit. It can be used in a connected state, that is, in a state where the injection circuit 200 is disposed at a fixed position. In use, the cock 223 provided in the fourth tube 221 is opened.
 こうすることで、シリンジ内に充填された、造影剤などの薬液が注入されていない状態では、被験者の血管を流動する血液の脈動による圧力変動が、体内回路部を介して注入回路200に伝達する。注入回路200では、圧力変動に対応して、注入回路200内の液体の移動が生じる。液体の移動は流量センサ210によって検出され、その検出結果から、液体の圧力、ひいては被験者の血圧を求めることができ、また、被験者の脈拍を求めることもできる。 By doing so, pressure fluctuations due to the pulsation of blood flowing through the blood vessels of the subject are transmitted to the injection circuit 200 via the in-vivo circuit section in a state where the medical solution such as a contrast medium filled in the syringe is not injected. To do. In the injection circuit 200, the liquid in the injection circuit 200 moves in response to the pressure fluctuation. The movement of the liquid is detected by the flow sensor 210, and from the detection result, the pressure of the liquid, and thus the blood pressure of the subject can be obtained, and the pulse of the subject can also be obtained.
 すなわち、本形態では、流量センサ210は、従来の圧力トランスデューサの代替として用いることができる。流量センサ210を圧力トランスデューサの代替として用いることで、仮に造影剤注入時に造影剤による高い圧力が第4チューブ221に伝達されたとしても、圧力トランスデューサとは異なり、流量センサ210が破損することはない。 That is, in this embodiment, the flow sensor 210 can be used as an alternative to a conventional pressure transducer. By using the flow sensor 210 as an alternative to the pressure transducer, unlike the pressure transducer, the flow sensor 210 is not damaged even if a high pressure due to the contrast medium is transmitted to the fourth tube 221 at the time of contrast medium injection. .
 注入回路200は、流量センサ210の末端に接続されたチャンバをさらに有していることが好ましい。この場合、注入回路200の末端の一つがチャンバとなる。チャンバは、第1チューブ201側で注入回路200内に圧力変動が生じたときに、その圧力変動に起因する流量センサ210内での薬液の移動を生じさせやくするものであり、このようなチャンバを設けることで、流量センサ210による検出感度を向上させることができる。図17に示した形態では、チャンバは、先端側が流量センサ210に接続され、末端側にコック224が設けられた第5チューブ222で構成されている。使用に際しては、第5チューブ222の末端に設けられたコック224を閉じる。 The injection circuit 200 preferably further includes a chamber connected to the end of the flow sensor 210. In this case, one end of the injection circuit 200 is a chamber. The chamber facilitates the movement of the chemical solution in the flow sensor 210 due to the pressure fluctuation when the pressure fluctuation occurs in the injection circuit 200 on the first tube 201 side. By providing this, the detection sensitivity of the flow sensor 210 can be improved. In the form shown in FIG. 17, the chamber is composed of a fifth tube 222 having a distal end connected to the flow sensor 210 and a cock 224 provided on the distal end. In use, the cock 224 provided at the end of the fifth tube 222 is closed.
 ここで、第5チューブ222およびコック224で構成されるチャンバは、流量センサ210よりも末端側の液溜めとして機能し、流量センサ210内での液体の移動のしやすさに影響を与える。一般に、第5チューブ222の長さが長いほど、言い換えると流量センサ210よりも末端側のチャンバの容量が大きいほど、流量センサ210内を液体が移動しやすくなる。流量センサ210内を液体が移動しやすくなると、流量センサ210からの出力である信号強度が高くなる。したがって、流量センサ210の検出結果を利用して求める物理量に応じてチャンバの容量を適宜設定して、流量センサ210による検出感度を調整することが可能となる。 Here, the chamber constituted by the fifth tube 222 and the cock 224 functions as a liquid reservoir on the terminal side of the flow rate sensor 210, and affects the ease of movement of the liquid in the flow rate sensor 210. In general, the longer the length of the fifth tube 222, in other words, the greater the capacity of the chamber on the end side of the flow sensor 210, the easier the liquid moves within the flow sensor 210. When the liquid easily moves in the flow sensor 210, the signal intensity that is the output from the flow sensor 210 increases. Therefore, it is possible to adjust the detection sensitivity of the flow sensor 210 by appropriately setting the volume of the chamber according to the physical quantity obtained using the detection result of the flow sensor 210.
 第4チューブ221を分岐させるのは、2つの第2チューブ202、203のどちらからでもよい。ただし、第2チューブ202、203の末端に接続されるシリンジに充填されている薬液の比重が異なる場合、比重の小さい薬液が充填されているシリンジが接続される第2チューブから分岐させることが好ましい。比重の小さい薬液のほうがチューブ内での移動が生じやすく、結果的に大きな検出結果を得ることができるからである。したがって、図17に示す形態において、注入回路200に接続されるシリンジにそれぞれ造影剤および生理食塩水が注入されている場合、第4チューブ221が分岐している第2チューブ203に接続されるシリンジは、生理食塩水が充填されているシリンジであり、もう一方の第2チューブ202に接続され鵜シリンジは、造影剤が充填されているシリンジであることが好ましい。 The branch of the fourth tube 221 may be from either of the two second tubes 202 and 203. However, when the specific gravity of the chemical solution filled in the syringe connected to the ends of the second tubes 202 and 203 is different, it is preferable to branch from the second tube to which the syringe filled with the chemical solution having a small specific gravity is connected. . This is because a chemical solution having a small specific gravity is more likely to move in the tube, and as a result, a large detection result can be obtained. Therefore, in the form shown in FIG. 17, when the contrast medium and the physiological saline are respectively injected into the syringe connected to the injection circuit 200, the syringe connected to the second tube 203 branched from the fourth tube 221. Is a syringe filled with physiological saline, and the sputum syringe connected to the other second tube 202 is preferably a syringe filled with a contrast medium.
 また、図17に示した形態では、第4チューブ221を第2チューブ203から分岐させ、その分岐した第4チューブ221に流量センサ210が設けられているが、例えば図17Aに示すように、第2チューブ203に流量センサ210を設けてもよい。流量センサ201が設けられる位置は任意であってよい。その他、どちらの第2チューブ202、203に流量センサ210を設けるかについての考え方は、上述した考え方をそのまま適用することができる。 In the form shown in FIG. 17, the fourth tube 221 is branched from the second tube 203, and the flow sensor 210 is provided in the branched fourth tube 221. For example, as shown in FIG. The flow sensor 210 may be provided in the two tubes 203. The position where the flow sensor 201 is provided may be arbitrary. In addition, the above-described concept can be applied as it is as to which of the second tubes 202 and 203 is provided with the flow sensor 210.
 (注入ヘッドの姿勢/上下移動の検出)
 例えば図4および図8に示したように、注入ヘッド110がスタンド116に支持される場合、スタンド116は、シリンジの先端側が上方を向いたり下方を向いたりすることができるように注入ヘッド110を支持することが好ましい。その理由は、例えば前述したパージ動作の際には、シリンジ内に存在する気泡をシリンジから排出しやすくするためにシリンジの先端を上方に向け、一方、薬液を注入する際には、たとえシリンジ内に気泡が残留していたとしてもその気泡が注入されないようにするためにシリンジの先端を下方に向けることができるようにするためである。医療事故防止の観点から、薬液注入装置においては注入ヘッドの姿勢を検出できることは、望ましいことである。
(Injection head posture / up-down movement detection)
For example, as shown in FIGS. 4 and 8, when the injection head 110 is supported by the stand 116, the stand 116 moves the injection head 110 so that the distal end side of the syringe can face upward or downward. It is preferable to support. The reason is that, for example, in the purge operation described above, the tip of the syringe is directed upward to facilitate the discharge of air bubbles existing in the syringe from the syringe. This is because the tip of the syringe can be directed downward in order to prevent the bubbles from being injected even if bubbles remain in the tube. From the viewpoint of preventing medical accidents, it is desirable that the posture of the injection head can be detected in the chemical injection device.
 ここで、注入ヘッド110にシリンジが装着され、かつ、そのシリンジに注入回路200が接続された状態で、注入ヘッド110の姿勢を変えてシリンジの先端の位置を上下方向に変化させると、注入回路200の先端と末端との高低差が変化する。注入回路200の先端と末端との高低差の変化によって注入回路200内の液体が移動し、この液体の移動は流量センサ210で検出される。この検出結果を用いれば、注入ヘッド110が、シリンジの先端を上に向けた姿勢であるか下に向けた姿勢であるかを判断することができる。このような、流量センサ210から送信された検出結果に適宜演算処理を行って注入ヘッド110の姿勢を判断するヘッド姿勢判断機能を、注入制御ユニット101に持たせることができる。注入ヘッド110の姿勢をより良好に判断できるようにするためには、流量センサ210は、シリンジの先端またはその直近に配置されることが好ましい。 Here, when the syringe is attached to the injection head 110 and the injection circuit 200 is connected to the syringe, the posture of the injection head 110 is changed to change the position of the tip of the syringe in the vertical direction. The height difference between the tip and end of 200 changes. The liquid in the injection circuit 200 moves due to a change in the height difference between the tip and the end of the injection circuit 200, and the movement of the liquid is detected by the flow sensor 210. Using this detection result, it is possible to determine whether the injection head 110 is in a posture in which the tip of the syringe is directed upward or downward. The injection control unit 101 can be provided with a head attitude determination function for appropriately calculating the detection result transmitted from the flow sensor 210 and determining the attitude of the injection head 110. In order to better determine the posture of the injection head 110, the flow sensor 210 is preferably disposed at or near the tip of the syringe.
 注入制御ユニット101がヘッド姿勢判断機能を有する場合、パージ動作に適した姿勢ではない、あるいは注入動作に適した姿勢ではないと判断されたとき、注入制御ユニット101は、表示ユニット104にその旨を警告として表示させたり、ピストン駆動機構130a、130bが動作しないようにピストン駆動機構130a、130bの動作を制御したりすることができる。 When the injection control unit 101 has a head posture determination function, when it is determined that the posture is not suitable for the purge operation or the posture suitable for the injection operation, the injection control unit 101 informs the display unit 104 to that effect. It is possible to display a warning or to control the operation of the piston drive mechanisms 130a and 130b so that the piston drive mechanisms 130a and 130b do not operate.
 注入ヘッド110は、天井から吊り下げられた状態で支持されることもできる。その一形態を図18に示す。図18に示す形態では、注入ヘッド110は、多関節の天井アームユニット180に支持されている。天井アームユニット180は、ボルト等によって天井に固定されるベース部181と、ベース部181から延びる多関節のアーム部183とを有している。アーム部183の先端部には、鉛直方向に延びる取り付けアーム183aが、その軸周りに回転自在に取り付けられている。注入ヘッド110は、取り付けアーム183aの下端部に、水平方向に延びる軸周りに回転自在に取り付けられている。 The injection head 110 can also be supported in a state of being suspended from the ceiling. One form thereof is shown in FIG. In the form shown in FIG. 18, the injection head 110 is supported by an articulated ceiling arm unit 180. The ceiling arm unit 180 includes a base portion 181 that is fixed to the ceiling with bolts and the like, and an articulated arm portion 183 that extends from the base portion 181. An attachment arm 183a extending in the vertical direction is attached to the distal end portion of the arm portion 183 so as to be rotatable around its axis. The injection head 110 is attached to the lower end portion of the attachment arm 183a so as to be rotatable around an axis extending in the horizontal direction.
 このように、注入ヘッド110が天井アームユニット180に支持される場合、注入ヘッド110をアーム部183の可動範囲内で上下方向にも任意の位置に動かすことができる。注入ヘッド110にシリンジが装着され、かつ、そのシリンジに前述した注入回路200が接続された状態で注入ヘッド110が上方または下方に移動すると、注入回路200の先端との高低差が変化する。この高低差の変化により生ずる注入回路200内での液体の移動が流量センサ210で検出されることを利用して、注入ヘッド110が上下方向にどれだけ移動したかを判断することができる。そのために、注入制御ユニット101は、流量センサ210から送信された検出結果に適宜演算処理を行って注入ヘッド110の上下方向での移動距離を判断するヘッド上下移動判断機能を有することができる。 Thus, when the injection head 110 is supported by the ceiling arm unit 180, the injection head 110 can be moved to an arbitrary position in the vertical direction within the movable range of the arm portion 183. When the injection head 110 moves upward or downward with the syringe attached to the injection head 110 and the injection circuit 200 described above connected to the syringe, the height difference from the tip of the injection circuit 200 changes. It is possible to determine how much the injection head 110 has moved in the vertical direction by using the flow sensor 210 to detect the movement of the liquid in the injection circuit 200 caused by the change in the height difference. For this purpose, the injection control unit 101 can have a head vertical movement determination function that appropriately performs a calculation process on the detection result transmitted from the flow sensor 210 to determine the movement distance of the injection head 110 in the vertical direction.
 なお、図18に示す形態において、注入ヘッド110とともの取り付けアーム183aに取り付けられているのは、第2の表示ユニット104bである。薬液注入システムは、前述した表示ユニット104とは別の第2の表示ユニット104bをさらに有することができる。 In the form shown in FIG. 18, the second display unit 104b is attached to the attachment arm 183a together with the injection head 110. The chemical solution injection system may further include a second display unit 104b different from the display unit 104 described above.
 第2の表示ユニット104bには、薬液の種類、注入速度、注入量、注入時間など、薬液の注入に関する各種情報を表示させることができる。これによって、操作者は、注入ヘッド110の近傍で薬液の注入条件を確認することができる。また、第2の表示ユニット104bは、画面上をタッチすることで入力操作も可能なタッチパネルであってもよい。第2の表示ユニット104bをタッチパネルとすることで、操作者は、第2の表示ユニット104bを用いて、被験者の状態等に応じて注入条件を適宜変更することができる。 The second display unit 104b can display various types of information related to chemical injection, such as the type of chemical, the injection rate, the injection amount, and the injection time. Thereby, the operator can check the injection condition of the chemical solution in the vicinity of the injection head 110. Further, the second display unit 104b may be a touch panel that can perform an input operation by touching the screen. By using the second display unit 104b as a touch panel, the operator can appropriately change the injection conditions according to the state of the subject using the second display unit 104b.
 図18では第2の表示ユニット104bを天井アームユニット180に取り付けた例を示したが、第2の表示ユニット104bは、注入ヘッド110を操作する操作者が視認できる位置であれば、例えば図4、図8に示したスタンド116に取り付けられてもよいし、注入ヘッド110に、取り付け用ブラケットなどを介して取り付けられるようにしてもよい。 FIG. 18 shows an example in which the second display unit 104b is attached to the ceiling arm unit 180. However, the second display unit 104b is at a position that can be visually recognized by an operator who operates the injection head 110, for example, FIG. 8 may be attached to the stand 116 shown in FIG. 8, or may be attached to the injection head 110 via a mounting bracket or the like.
 以上流量センサ210を備えた注入回路200を用いて検出することのできる様々な項目について説明したが、上述した項目の検出は、検出する項目に応じた適宜の演算処理を注入制御ユニット101が行うようにすることができる。注入制御ユニット101は、これらのすべての項目を検出できるように構成されていてもよいし、これらの項目のうち1つ以上を組み合わせた1つまたは複数の項目を検出できるようにされていてもよい。 Although various items that can be detected using the injection circuit 200 including the flow sensor 210 have been described above, the injection control unit 101 performs appropriate arithmetic processing according to the items to be detected. Can be. The injection control unit 101 may be configured to detect all of these items, or may be configured to detect one or more items combining one or more of these items. Good.
 (容器および駆動機構)
 上述した形態では、薬液が充填される容器がシリンジである場合を例に挙げて説明した。しかし、本発明においては、容器はシリンジに限定されるものではなく、薬液ボトルや薬液バッグなどであってもよい。その場合、容器から薬液を注入させる駆動機構としては、チューブポンプ式の駆動機構など、容器の形態に応じた駆動機構を用いることができる。
(Container and drive mechanism)
In the embodiment described above, the case where the container filled with the chemical solution is a syringe has been described as an example. However, in the present invention, the container is not limited to a syringe, and may be a chemical solution bottle or a chemical solution bag. In that case, as the drive mechanism for injecting the chemical solution from the container, a drive mechanism corresponding to the form of the container such as a tube pump type drive mechanism can be used.
 (ユニット等の配置)
 上述した形態では、注入制御ユニット101が薬液注入装置100に含まれ、撮像制御ユニット510が医用画像撮像装置500に含まれるものとして説明した。しかし、注入制御ユニット101および撮像制御ユニット510がともに薬液注入装置100に含まれていてもよいし、注入制御ユニット101および撮像制御ユニット510がともに医用画像撮像装置500に含まれていてもよい。あるいは、注入制御ユニット101および撮像制御ユニット510がともに、薬液注入装置100および医用画像撮像装置500とは別の、プログラム可能なコンピュータ装置(不図示)に含まれていてもよい。こうすることにより、薬液注入装置100および医用画像撮像装置500がそれぞれ個別にコンソールを持つ必要がなくなり、また、各制御ユニットの入力ユニットおよび表示ユニットを共通化することもできる。その結果、システム全体の構成を簡略化することができる。
(Arrangement of units etc.)
In the embodiment described above, the injection control unit 101 is included in the chemical injection device 100, and the imaging control unit 510 is described as included in the medical image imaging device 500. However, both the injection control unit 101 and the imaging control unit 510 may be included in the chemical solution injection device 100, or both the injection control unit 101 and the imaging control unit 510 may be included in the medical image imaging device 500. Alternatively, both the injection control unit 101 and the imaging control unit 510 may be included in a programmable computer device (not shown) that is different from the chemical injection device 100 and the medical image imaging device 500. By doing so, it is not necessary for the chemical injection device 100 and the medical imaging device 500 to have separate consoles, and the input unit and the display unit of each control unit can be shared. As a result, the configuration of the entire system can be simplified.
 さらには、注入制御ユニット101の特定の機能を残りの他の機能とは別のユニットに組み込むこともできる。例えば、注入条件の決定(演算)機能を撮像制御ユニット510に組み込み、残りの他の機能を注入制御ユニット101に組み込むことができる。この場合は、撮像条件の決定および注入条件の決定に共通するデータ等を、薬液注入装置100および医用画像撮像装置500に重複して入力する必要がなくなる。注入条件の決定に際して不足するデータは、撮像制御ユニット510から入力できるようにしてもよいし、注入制御ユニット101から撮像制御ユニット510に送信するようにしてもよい。 Furthermore, a specific function of the injection control unit 101 can be incorporated in a unit different from the remaining other functions. For example, the injection condition determination (calculation) function can be incorporated into the imaging control unit 510 and the remaining other functions can be incorporated into the injection control unit 101. In this case, it is not necessary to input data common to the determination of the imaging condition and the determination of the injection condition to the chemical injection device 100 and the medical image imaging device 500 in duplicate. Data that is insufficient when determining the injection conditions may be input from the imaging control unit 510, or may be transmitted from the injection control unit 101 to the imaging control unit 510.
 注入制御ユニット101の持つ機能および撮像制御ユニット510の持つ機能は、必要により各種ハードウェアを利用して実現し得るが、その主体はコンピュータプログラムに対応してCPUが機能することにより実現される。 The function of the injection control unit 101 and the function of the imaging control unit 510 can be realized by using various hardware as required, but the main body is realized by the function of the CPU corresponding to the computer program.
 そのコンピュータプログラムは、
 少なくとも1つの容器が着脱自在に搭載され、前記容器から薬液を注入させるように構成された少なくとも1つの駆動機構を備えた注入ヘッドと、前記容器と接続される薬液注入回路と、前記駆動機構の動作を制御する注入制御ユニットと、を有し、前記薬液注入回路が、少なくとも1つのチューブを有する、1つの先端および少なくとも1つの末端を有するチューブユニットと、前記チューブユニットの前記先端と前記末端との間に配置され、前記チューブ内を流れる薬液が流れる導管を備えた少なくとも1つの熱式流量センサとを有するシステムのためのコンピュータプログラムであって、
 上述した手順の少なくとも一部、例えば、
 前記熱式流量センサが、前記導管内での薬液の移動に応じた電気信号を検出結果として前記熱式流量センサから前記注入制御ユニットへ出力させることと、
 前記熱式流量センサから出力された検出結果を用いて前記注入制御ユニットに所定の機能を実行させることと、
 を実行させるためのコンピュータプログラムである。
The computer program is
At least one container is detachably mounted, and an injection head having at least one drive mechanism configured to inject a chemical liquid from the container, a chemical liquid injection circuit connected to the container, and the drive mechanism An injection control unit for controlling the operation, wherein the chemical injection circuit has at least one tube, a tube unit having one tip and at least one end, and the tip and the end of the tube unit. And a computer program for a system having at least one thermal flow sensor with a conduit through which the drug solution flowing in the tube flows,
At least some of the procedures described above, eg,
The thermal flow sensor outputs an electrical signal corresponding to the movement of the chemical in the conduit as a detection result from the thermal flow sensor to the injection control unit;
Causing the injection control unit to perform a predetermined function using the detection result output from the thermal flow sensor;
Is a computer program for executing
 また、上述した形態では注入制御ユニット101が有する機能として述べた、流量センサ210からの検出結果を利用して各種物理量を演算する機能および各種判断を行う機能の少なくとも1つ(例えば、流量センサ210により検出された流量から圧力を算出する機能)を注入制御ユニット101とは別の、流量センサ制御ユニットとして構成することもできる。この場合、流量センサ制御ユニットは、流量センサ210の動作を制御するとともに、流量センサ210を動作させるために必要な電力の供給を行うように構成することができる。流量センサ制御ユニットは流量センサ210と接続されて使用され、流量センサ210および流量センサ制御ユニットは、薬液注入装置100、医用画像撮像装置500および注入回路200など、他の装置やユニットなどに組み込まれていない独立したユニットとして構成することもできる。流量センサ制御ユニットは、例えば注入制御ユニット101と接続されることができ、流量センサ210から得られた結果(例えば圧力)をデータとして注入制御ユニット101に送信する。注入制御ユニット101は、流量センサ制御ユニットから送信されたデータ(例えば圧力)を表示ユニット104に表示させることができる。 In the above-described embodiment, at least one of the function of calculating various physical quantities using the detection result from the flow sensor 210 and the function of performing various determinations described as functions of the injection control unit 101 (for example, the flow sensor 210). The function of calculating the pressure from the flow rate detected by the flow rate control unit) can be configured as a flow rate sensor control unit different from the injection control unit 101. In this case, the flow rate sensor control unit can be configured to control the operation of the flow rate sensor 210 and supply power necessary for operating the flow rate sensor 210. The flow rate sensor control unit is used in connection with the flow rate sensor 210, and the flow rate sensor 210 and the flow rate sensor control unit are incorporated in other devices or units such as the chemical solution injection device 100, the medical image imaging device 500, and the injection circuit 200. It can also be configured as an independent unit. The flow sensor control unit can be connected to the injection control unit 101, for example, and transmits the result (for example, pressure) obtained from the flow sensor 210 to the injection control unit 101 as data. The injection control unit 101 can display data (for example, pressure) transmitted from the flow sensor control unit on the display unit 104.
 構造的な点では、図4および図8に示す注入ヘッド110とコンソール112とを一体に構成することもできる。注入ヘッド110とコンソール112とが一体に構成された場合、コンソール112も検査室に配置されることになる。注入動作の開始および停止には、ハンドスイッチ118を用いることができるので、操作者は、このハンドスイッチ118により、操作室内での注入操作の開始および停止を制御することができる。 From a structural point of view, the injection head 110 and the console 112 shown in FIGS. 4 and 8 can be configured integrally. When the injection head 110 and the console 112 are integrally formed, the console 112 is also arranged in the examination room. Since the hand switch 118 can be used to start and stop the injection operation, the operator can control the start and stop of the injection operation in the operation chamber by the hand switch 118.
 また、上述した形態では、2つのピストン駆動機構130a、130bが1つの注入ヘッド110に搭載されていた。しかし、薬液注入装置は、それぞれ1つのピストン駆動機構を搭載する2つの注入ヘッドを有し、パージ動作時および注入時には、注入制御ユニット101が各注入ヘッドを互いに連動させて複数の薬液を希釈するようにすることもできる。 In the above-described embodiment, two piston drive mechanisms 130a and 130b are mounted on one injection head 110. However, the chemical liquid injector has two injection heads each equipped with one piston drive mechanism, and at the time of purge operation and injection, the injection control unit 101 interlocks each injection head to dilute a plurality of chemical liquids. It can also be done.
 (医療ネットワークとの連携)
 少なくとも薬液注入装置100および医用画像撮像装置500が医療ネットワークに接続されていてもよい。これによって、薬液注入装置100により注入された薬液の注入速度、注入時間、注入量(1回の検査および/または治療において複数回の注入が実施された場合は、1回の注入ごとの注入量および一連の注入の総注入量)、注入グラフ、注入した薬液の種類、および、希釈注入を実施した場合の希釈割合等を含む注入結果、さらに、医用画像撮像装置500による撮像条件は、医療ネットワークを通じて医用画像撮像装置、RIS(放射線科情報システム)、PACS(医用画像保管管理システム)、HIS(病院情報システム)などに注入データとして保存できる。これにより、保存した注入データは、注入履歴の管理に利用される。特に注入量などは、使用済薬液としてカルテ情報に記録したり、会計処理に利用したりすることができる。また、被験者の体重等の身体的情報、ID、氏名、検査部位、検査手法を、RIS、PACS、HISなどから取得して薬液注入装置に表示し、それにあった注入を実施することもできる。これらの情報、およびRFIDモジュール166によってRFIDタグ802から取得したデータは、薬液注入装置100から医用画像撮像装置500を経由してRIS、PACKS、HISなどに送信されてもよいし、薬液注入装置100から直接、RIS、PACKS、HISなどに送信されてもよい。
(Cooperation with medical network)
At least the drug solution injection device 100 and the medical image imaging device 500 may be connected to a medical network. As a result, the injection speed, injection time, and injection volume of the drug solution injected by the drug solution injection device 100 (when multiple injections are performed in one examination and / or treatment, the injection amount for each injection) And the total injection amount of a series of injections), the injection graph, the type of the injected medicinal solution, the injection result including the dilution ratio when the dilution injection is performed, and the imaging conditions by the medical imaging device 500 are medical network Can be stored as injection data in a medical imaging apparatus, RIS (Radiology Information System), PACS (Medical Image Storage Management System), HIS (Hospital Information System), and the like. Thereby, the stored injection data is used for management of injection history. In particular, the injection amount or the like can be recorded in the chart information as a used chemical solution or used for accounting. In addition, physical information such as the body weight of the subject, ID, name, examination site, and examination method can be acquired from RIS, PACS, HIS, etc., and displayed on the drug solution injector, and injection can be performed accordingly. Such information and data acquired from the RFID tag 802 by the RFID module 166 may be transmitted from the chemical solution injector 100 to the RIS, PACKS, HIS, or the like via the medical imaging device 500, or the chemical solution injector 100. May be transmitted directly from RIS, PACKS, HIS, etc.
 (流量センサの他の機器への利用)
 薬液注入装置を用いた薬液の注入では、前述したように、注入プロトコルを予め設定し、設定された注入プロトコルにしたがって薬液を自動的に注入するのが一般的である。しかし、薬液注入の他の方式として、操作者によって操作されるハンドコントローラを用い、ハンドコントローラの操作に従って、ピストン駆動機構の動作がリアルタイムに制御される方式もある。例えば、血管造影用の造影剤を注入する薬液注入装置は、この方式で制御されることがある。
(Use of flow sensors for other equipment)
In the injection of a chemical solution using a chemical solution injection device, as described above, generally, an injection protocol is set in advance, and the chemical solution is automatically injected according to the set injection protocol. However, as another method of injecting a chemical solution, there is a method in which a hand controller operated by an operator is used and the operation of the piston drive mechanism is controlled in real time according to the operation of the hand controller. For example, a chemical liquid injector that injects a contrast medium for angiography may be controlled in this manner.
 この種のハンドコントローラは、通常、操作者が手に持つことができるサイズおよび形状に形成されたコントローラ本体を有する。コントローラ本体は、操作者の操作によって移動するように設けられた操作部材と、操作部材の移動を検出する検出器と、を有し、検出器による検出結果が薬液注入装置の注入制御ユニットに送信され、注入制御ユニットは、検出器から送信された検出結果に基づいてピストン駆動機構の動作を制御するように構成される。 This type of hand controller usually has a controller body formed in a size and shape that can be held by the operator. The controller main body has an operation member provided to move by the operation of the operator, and a detector for detecting the movement of the operation member, and the detection result by the detector is transmitted to the injection control unit of the chemical liquid injector. The injection control unit is configured to control the operation of the piston drive mechanism based on the detection result transmitted from the detector.
 上記のとおり構成されるハンドコントローラにおいて、本発明では、検出器として流量センサを用いることができる。検出器として流量センサを用いたハンドコントローラの一形態について以下に説明する。 In the hand controller configured as described above, in the present invention, a flow sensor can be used as a detector. An embodiment of a hand controller using a flow sensor as a detector will be described below.
 検出器として流量センサを用いたハンドコントローラは、上記コントローラ本体、操作部材、および検出器である流量センサの他に、可撓性および気密性を有する袋部材をさらに有する。袋部材には、流体の出入り口となる1つの流路部が接続されており、この流路部を通る流体の流量を検出できるように、流路部に流量センサが接続される。流量センサとしては任意の流量センサを用いることができるが、各種流量センサの中でも特に、図3に示したような、流路部の一部を構成する導管を有し、該導管内での流体の移動に応じた電気信号を検出結果として出力するように構成された流量センサを好ましく用いることができる。 A hand controller using a flow sensor as a detector further includes a flexible and airtight bag member in addition to the controller main body, the operation member, and the flow sensor as the detector. The bag member is connected to one flow path portion serving as a fluid inlet / outlet, and a flow rate sensor is connected to the flow path portion so that the flow rate of the fluid passing through the flow path portion can be detected. As the flow sensor, any flow sensor can be used. Among various flow sensors, the flow sensor has a conduit constituting a part of the flow path section as shown in FIG. A flow rate sensor configured to output an electric signal corresponding to the movement of the sensor as a detection result can be preferably used.
 この場合、流路部を通る流体をより正確に検出するために、袋部材の流路部と流量センサの導管とは気密を維持した状態で接続されることが好ましい。両者の接続をより簡便かつ確実に行えるようにするために、流路部は、袋部材から一体的に延びた管状部を有し、この管状部に流量センサの導管が接続されることが好ましい。 In this case, in order to detect the fluid passing through the flow path portion more accurately, it is preferable that the flow path portion of the bag member and the conduit of the flow rate sensor are connected in an airtight state. In order to make the connection between the two simpler and more reliable, the flow path portion preferably has a tubular portion integrally extending from the bag member, and a conduit of the flow sensor is preferably connected to the tubular portion. .
 検出対象となる流体は、気体であってもよいし液体であってもよい。具体的には、取り扱いが容易であるという観点から、気体としては空気を用いることができ、液体としては水を用いることができる。流体として空気を用いる場合、袋部材の流路部は開放されていてもよい。また、流体として気体を用いる場合および液体を用いる場合のいずれの場合にも適用可能であるが、検出器は流路部と接続される第2袋部材をさらに有し、袋部材、流路部および第2袋部材で一つの閉じた空間が形成されるようにすることもできる。第2袋部材は、袋部材と同様、可撓性および気密性を有して構成される。 The fluid to be detected may be a gas or a liquid. Specifically, from the viewpoint of easy handling, air can be used as the gas, and water can be used as the liquid. When air is used as the fluid, the flow path portion of the bag member may be opened. Further, the present invention can be applied to both cases of using a gas as a fluid and a case of using a liquid, but the detector further includes a second bag member connected to the flow path portion, and the bag member, the flow path portion In addition, one closed space may be formed by the second bag member. Similar to the bag member, the second bag member is configured to have flexibility and airtightness.
 袋部材は、操作部材が操作される前の状態である初期状態では膨らんだ状態でコントローラ本体内に保持されており、操作部材は、操作されることによって、その操作量(移動量)に応じて袋部材を収縮させるものである。操作部材としては、一般的なハンドコントローラで用いられる操作部材と同様、コントローラ本体に対してスライドさせるレバータイプ、およびコントローラ本体に対して押し込まれるボタンタイプの何れも適用可能である。 The bag member is held in the controller body in an expanded state in the initial state before the operation member is operated, and the operation member is operated to respond to its operation amount (movement amount). The bag member is contracted. As the operation member, any of a lever type that is slid with respect to the controller main body and a button type that is pushed into the controller main body can be applied, similarly to an operation member used in a general hand controller.
 上記のとおり構成されたハンドコントローラによれば、袋部材が流体で満たされた状態で操作部材が操作されると、その操作量に応じて、袋部材内の流体が流路部を通って排出される。このとき、流路部内での流体の移動が流量センサによって検出され、流体の移動に応じた電気信号が、検出結果として薬液注入装置の注入制御ユニットに送信される。注入制御ユニットは、流量センサから送信された検出結果に従ってピストン駆動機構が前進するようにピストン駆動機構の動作を制御する。流量センサは、一定の時間間隔で、その期間での流体の移動量を検出しており、よって、操作部材の操作に応じた速度や量で薬液を注入することができる。 According to the hand controller configured as described above, when the operation member is operated in a state where the bag member is filled with fluid, the fluid in the bag member is discharged through the flow path portion according to the operation amount. Is done. At this time, the movement of the fluid in the flow path portion is detected by the flow sensor, and an electrical signal corresponding to the movement of the fluid is transmitted to the injection control unit of the chemical liquid injector as a detection result. The injection control unit controls the operation of the piston drive mechanism so that the piston drive mechanism moves forward according to the detection result transmitted from the flow sensor. The flow rate sensor detects the amount of movement of the fluid during a certain time interval, so that the chemical solution can be injected at a speed and amount corresponding to the operation of the operation member.
 薬液の注入動作が終了した後、注入制御ユニットは、次の注入のためにピストン駆動機構を元の位置、例えば待機位置まで後退させる。また、袋部材も元の膨らんだ初期状態に戻される。ピストン駆動機構の後退は、薬液の注入動作の終了後、注入制御ユニットの制御により自動的に行われるようにすることができる。あるいは、袋部材が初期状態に戻る際に、袋部材の内部へ向かう流体の流れが流量センサによって検出されるため、その検出された流量に相当する分だけ、注入制御ユニットによる制御によりピストン駆動機構を後退させるようにすることもできる。 After the chemical liquid injection operation is completed, the injection control unit moves the piston drive mechanism back to the original position, for example, the standby position, for the next injection. Further, the bag member is also returned to the original inflated initial state. The backward movement of the piston drive mechanism can be automatically performed under the control of the injection control unit after the chemical liquid injection operation is completed. Alternatively, when the bag member returns to the initial state, the flow of fluid toward the inside of the bag member is detected by the flow rate sensor, and therefore the piston drive mechanism is controlled by the injection control unit by an amount corresponding to the detected flow rate. Can be made to retreat.
 袋部材は、例えば、弾力性のある材料で構成されていれば、注入動作の終了後、袋部材自身の弾性力で初期状態へ復帰させることができる。あるいは、操作部材を元の位置に戻すことによって袋部材が初期状態へ復帰するように袋部材が構成されていてもよい。 For example, if the bag member is made of an elastic material, it can be returned to the initial state by the elastic force of the bag member itself after the injection operation is completed. Alternatively, the bag member may be configured such that the bag member returns to the initial state by returning the operation member to the original position.
 以上説明したとおり、本明細書は次に述べるコントローラ装置をも開示する。すなわち、
 容器に充填された薬液を注入する駆動機構の動作を制御するコントローラ装置であって、
 操作者の操作によって移動可能に設けられた操作部材と、
 前記操作部材の移動量に応じて収縮するように設けられた袋部材と、
 前記袋部材に接続された流路部と、
 前記流路部の一部を構成する導管を有し、該導管内での流体の移動に応じた電気信号を検出結果として出力する流量センサと、
 を有するコントローラ装置。
As described above, the present specification also discloses the controller device described below. That is,
A controller device for controlling the operation of a drive mechanism for injecting a chemical solution filled in a container,
An operation member provided to be movable by an operator's operation;
A bag member provided to contract according to the amount of movement of the operation member;
A flow path connected to the bag member;
A flow rate sensor that has a conduit that forms part of the flow path section, and outputs an electrical signal corresponding to the movement of the fluid in the conduit as a detection result;
A controller device.
 また、本明細書は、
 上記コントローラ装置と、
 薬液が充填されている容器から前記薬液を注入させるように構成された駆動機構と、
 前記コントローラ装置の流量センサから出力された検出結果に対応して前記駆動機構の動作を制御する注入制御ユニットと、
 を有する薬液注入装置をも開示する。
In addition, this specification
The controller device;
A drive mechanism configured to inject the chemical solution from a container filled with the chemical solution;
An injection control unit for controlling the operation of the drive mechanism in response to the detection result output from the flow sensor of the controller device;
Also disclosed is a chemical injection device having:
 100  薬液注入装置
 101  注入制御ユニット
 103  入力ユニット
 104  表示ユニット
 104b  第2の表示ユニット
 110  注入ヘッド
 112  コンソール
 114  メインユニット
 130a、130b  ピストン駆動機構
 131、152  プレッサ
 140  クランパ
 153  ロッド
 164  RFID制御回路
 165  アンテナ
 166  RFIDモジュール
 180  天井アームユニット
 200  注入回路
 201  第1チューブ
 202、203  第2チューブ
 202a、203a  第3チューブ
 204  T字コネクタ
 208  三方活栓
 210  流量センサ
 211  パイプ
 212  半導体モジュール
 213  ヒータ
 214  温度センサ
 221  第4チューブ
 222  第5チューブ
 241  ミキシングデバイス
 300  シリンジアセンブリ
 320、350  シリンジ
 321  シリンダ
 322  ピストン
 352  RFIDタグ
 370  保護カバー
 400  注入条件設定用画面
 500  医用画像撮像装置
 503  入力ユニット
 504  表示ユニット
 510  撮像制御ユニット
 520  撮像動作ユニット
 600  アダプタ
 700(700a、700b)  薬液ボトル
 
DESCRIPTION OF SYMBOLS 100 Chemical injection device 101 Injection control unit 103 Input unit 104 Display unit 104b 2nd display unit 110 Injection head 112 Console 114 Main unit 130a, 130b Piston drive mechanism 131, 152 Presser 140 Clamper 153 Rod 164 RFID control circuit 165 Antenna 166 RFID Module 180 Ceiling arm unit 200 Injection circuit 201 1st tube 202, 203 2nd tube 202a, 203a 3rd tube 204 T-shaped connector 208 Three-way stopcock 210 Flow rate sensor 211 Pipe 212 Semiconductor module 213 Heater 214 Temperature sensor 221 4th tube 222 2nd 5 tube 241 mixing device 300 syringe assembly 3 0, 350 syringes 321 cylinder 322 piston 352 RFID tag 370 protective cover 400 injection condition setting screen 500 medical imaging apparatus 503 input unit 504 display unit 510 an imaging control unit 520 imaging operation unit 600 adapter 700 (700a, 700b) the bottles

Claims (32)

  1.  容器に充填された薬液を注入する際に用いられる薬液注入回路であって、
     少なくとも1つのチューブを有し、1つの先端および少なくとも1つの末端を有するチューブユニットと、
     前記チューブユニットの前記先端から前記末端までの間に配置された少なくとも1つの熱式流量センサであって、前記チューブ内を流れる薬液が流れる導管を備え、前記導管内での薬液の移動に応じた電気信号を検出結果として出力するように構成された熱式流量センサと、
     を有する薬液注入回路。
    A chemical solution injection circuit used for injecting a chemical solution filled in a container,
    A tube unit having at least one tube and having one tip and at least one end;
    At least one thermal flow sensor disposed between the distal end and the distal end of the tube unit, comprising a conduit through which the chemical solution flowing in the tube flows, and responding to the movement of the chemical solution in the conduit A thermal flow sensor configured to output an electrical signal as a detection result; and
    A chemical injection circuit.
  2.  体内回路部と、体外回路部と、を有し、
     前記体外回路部は、前記チューブユニットとして、先端が前記体内回路部と接続される第1チューブと、前記第1チューブの末端から分岐するように前記第1チューブに接続されてそれぞれ末端が前記容器と接続される複数の第2チューブとを有し、前記熱式流量センサは、前記第1チューブおよび第2チューブの何れかに接続される請求項1に記載の薬液注入回路。
    An internal circuit part and an external circuit part,
    The extracorporeal circuit unit is connected to the first tube so that the distal end of the tube unit is branched from the end of the first tube, and the end of the first tube is connected to the container. 2. The chemical injection circuit according to claim 1, wherein the thermal flow sensor is connected to either the first tube or the second tube.
  3.  前記複数の第2チューブの中間部に三方活栓を介して接続された複数の第3チューブをさらに有する請求項2に記載の薬液注入回路。 The chemical injection circuit according to claim 2, further comprising a plurality of third tubes connected to intermediate portions of the plurality of second tubes via a three-way stopcock.
  4.  前記熱式流量センサは、前記第1チューブの先端部に接続される請求項2または3に記載の薬液注入回路。 The chemical liquid injection circuit according to claim 2 or 3, wherein the thermal flow sensor is connected to a distal end portion of the first tube.
  5.  前記複数の第2チューブのいずれか1つの中間部から分岐して前記第2チューブに接続された第4チューブをさらに有し、前記熱式流量センサは前記第4チューブの末端に接続されている請求項2に記載の薬液注入回路。 The apparatus further includes a fourth tube branched from any one of the plurality of second tubes and connected to the second tube, and the thermal flow sensor is connected to an end of the fourth tube. The chemical injection circuit according to claim 2.
  6.  前記熱式流量センサの末端に接続されたチャンバをさらに有する請求項5に記載の薬液注入回路。 The chemical injection circuit according to claim 5, further comprising a chamber connected to an end of the thermal flow sensor.
  7.  容器に充填された薬液を注入する薬液注入システムであって、
     少なくとも1つの容器が着脱自在に装着され、前記容器から薬液を注入させるように構成された少なくとも1つの駆動機構を備えた注入ヘッドと、
     前記容器と接続される薬液注入回路と、
     前記駆動機構の動作を制御する注入制御ユニットと、
     を有し、
     前記薬液注入回路は、
     少なくとも1つのチューブを有し、1つの先端および少なくとも1つの末端を有するチューブユニットと、
     前記チューブユニットの前記先端から前記末端までの間に配置された少なくとも1つの熱式流量センサであって、前記チューブ内を流れる薬液が流れる導管を備え、前記導管内での薬液の移動に応じた電気信号を検出結果として前記注入制御ユニットに出力するように構成された熱式流量センサと、
     を有する薬液注入システム。
    A chemical solution injection system for injecting a chemical solution filled in a container,
    An injection head comprising at least one drive mechanism, wherein at least one container is detachably mounted and configured to inject a chemical solution from the container;
    A chemical injection circuit connected to the container;
    An injection control unit for controlling the operation of the drive mechanism;
    Have
    The chemical injection circuit is
    A tube unit having at least one tube and having one tip and at least one end;
    At least one thermal flow sensor disposed between the distal end and the distal end of the tube unit, comprising a conduit through which the chemical solution flowing in the tube flows, and responding to the movement of the chemical solution in the conduit A thermal flow sensor configured to output an electrical signal as a detection result to the injection control unit;
    Having a chemical injection system.
  8.  前記注入制御ユニットは、前記熱式流量センサから出力された検出結果を用いて圧力を算出する圧力算出機能を有する請求項7に記載の薬液注入システム。 The chemical injection system according to claim 7, wherein the injection control unit has a pressure calculation function for calculating a pressure using a detection result output from the thermal flow sensor.
  9.  前記注入制御ユニットは、前記熱式流量センサから出力された検出結果を用いて前記薬液注入回路に異常が発生したことを判断する判断機能を有する請求項7に記載の薬液注入システム。 The chemical injection system according to claim 7, wherein the injection control unit has a determination function of determining that an abnormality has occurred in the chemical injection circuit using a detection result output from the thermal flow sensor.
  10.  前記判断機能は、前記熱式流量センサから出力された検出結果を用いて前記薬液注入回路の先端位置を判断する注入回路先端位置判断機能を含む請求項9に記載の薬液注入システム。 10. The chemical injection system according to claim 9, wherein the determination function includes an injection circuit tip position determination function for determining a tip position of the chemical injection circuit using a detection result output from the thermal flow sensor.
  11.  前記判断機能は、前記熱式流量センサから出力された検出結果を用いて薬剤の血管外漏出が発生したことを判断する漏出判断機能を含む請求項9に記載の薬液注入システム。 10. The drug solution injection system according to claim 9, wherein the determination function includes a leak determination function for determining that an extravasation of a drug has occurred using a detection result output from the thermal flow sensor.
  12.  前記判断機能は、前記熱式流量センサから出力された検出結果を用いて前記薬液注入回路にキンクが発生したことを判断するキンク判断機能を含む請求項9に記載の薬液注入システム。 10. The chemical injection system according to claim 9, wherein the determination function includes a kink determination function for determining that a kink has occurred in the chemical injection circuit using a detection result output from the thermal flow sensor.
  13.  前記薬液注入回路は、体内回路部と体外回路部とを有し、
     前記体外回路部は、前記チューブユニットとして、先端が前記体内回路部と接続される第1チューブと、前記第1チューブの末端から分岐するように前記第1チューブに接続されてそれぞれ末端が前記容器と接続される複数の第2チューブとを有し、前記熱式流量センサは、前記第1チューブおよび第2チューブの何れかに接続される請求項7から12の何れか一項に記載の薬液注入システム。
    The medicinal solution injection circuit has an internal circuit part and an external circuit part,
    The extracorporeal circuit unit is connected to the first tube so that the distal end of the tube unit is branched from the end of the first tube, and the end of the first tube is connected to the container. The chemical solution according to any one of claims 7 to 12, wherein the thermal flow sensor is connected to either the first tube or the second tube. Injection system.
  14.  前記薬液注入回路は、前記複数の第2チューブの中間部に三方活栓を介して接続された複数の第3チューブをさらに有する請求項13に記載の薬液注入システム。 The chemical injection system according to claim 13, wherein the chemical injection circuit further includes a plurality of third tubes connected to intermediate portions of the plurality of second tubes via three-way stopcocks.
  15.  前記注入制御ユニットは、前記熱式流量センサから出力された検出結果を用いて前記三方活栓の切り替え状態を判断する流路切り替え判断機能を有する請求項14に記載の薬液注入システム。 The chemical injection system according to claim 14, wherein the injection control unit has a flow path switching determination function for determining a switching state of the three-way stopcock using a detection result output from the thermal flow sensor.
  16.  前記薬液注入回路は、前記複数の第2チューブのいずれか1つの中間部から分岐して前記第2チューブに接続された第4チューブをさらに有し、前記熱式流量センサは前記第4チューブの末端に接続されている請求項14に記載の薬液注入システム。 The chemical solution injection circuit further includes a fourth tube that is branched from any one of the plurality of second tubes and connected to the second tube, and the thermal flow sensor is connected to the fourth tube. The chemical | medical solution injection system of Claim 14 connected to the terminal.
  17.  前記熱式流量センサの末端に接続されたチャンバをさらに有する請求項16に記載の薬液注入システム。 The chemical injection system according to claim 16, further comprising a chamber connected to an end of the thermal flow sensor.
  18.  前記注入制御ユニットは、前記熱式流量センサから出力された検出結果を用いて、前記注入ヘッドが前記容器の先端を上に向けた姿勢であるか下に向けた姿勢であるかを判断するヘッド姿勢判断機能を有する請求項7に記載の薬液注入システム。 The injection control unit uses the detection result output from the thermal flow sensor to determine whether the injection head is in a posture with the tip of the container facing upward or downward. The medicinal-solution injection system according to claim 7, which has a posture determination function.
  19.  前記注入制御ユニットは、前記熱式流量センサから出力された検出結果を用いて前記注入ヘッドの上下方向への移動を判断するヘッド上下移動判断機能を有する請求項7に記載の薬液注入システム。 The chemical injection system according to claim 7, wherein the injection control unit has a head up / down movement determination function for determining movement of the injection head in the vertical direction using a detection result output from the thermal flow sensor.
  20.  前記注入制御ユニットは、前記駆動機構の動作の停止後、前記熱式流量センサにより前記薬液の移動が検出された場合、前記注入回路内の薬液を前記容器内に吸引する方向に前記駆動機構を動作させる請求項8に記載の薬液注入システム。 When the movement of the chemical solution is detected by the thermal flow sensor after the operation of the drive mechanism is stopped, the injection control unit moves the drive mechanism in a direction to suck the chemical solution in the injection circuit into the container. The chemical injection system according to claim 8 to be operated.
  21.  少なくとも1つの前記容器をさらに含む請求項7から20の何れか一項に記載の薬液注入システム。 The chemical injection system according to any one of claims 7 to 20, further including at least one of the containers.
  22.  請求項7から21のいずれか一項に記載の薬液注入システムと、
     前記薬液注入システムによって薬液が注入された被験者から医用画像を取得する医用画像撮像装置と、
     を有する医用画像撮像システム。
    The chemical injection system according to any one of claims 7 to 21,
    A medical image capturing apparatus for acquiring a medical image from a subject into which a chemical liquid is injected by the chemical liquid injection system;
    A medical imaging system having
  23.  少なくとも1つの容器が着脱自在に搭載され、前記容器から薬液を注入させるように構成された少なくとも1つの駆動機構を備えた注入ヘッドと、前記容器と接続される薬液注入回路と、前記駆動機構の動作を制御する注入制御ユニットと、を有し、前記薬液注入回路が、少なくとも1つのチューブを有する、1つの先端および少なくとも1つの末端を有するチューブユニットと、前記チューブユニットの前記先端から前記末端までの間に配置され、前記チューブ内を流れる薬液が流れる導管を備えた少なくとも1つの熱式流量センサと、を有する薬液注入システムの作動方法であって、
     前記熱式流量センサが、前記導管内での薬液の移動に応じた電気信号を検出結果として前記注入制御ユニットに出力するステップと、
     前記注入制御ユニットが、前記熱式流量センサから出力された検出結果を用いて所定の機能を実行するステップと、
     を有する薬液注入システムの作動方法。
    At least one container is detachably mounted, and an injection head having at least one drive mechanism configured to inject a chemical liquid from the container, a chemical liquid injection circuit connected to the container, and the drive mechanism An injection control unit for controlling the operation, wherein the chemical injection circuit has at least one tube, a tube unit having one tip and at least one end, and from the tip to the end of the tube unit And at least one thermal flow sensor with a conduit through which the chemical flowing through the tube flows, the method of operating a chemical injection system comprising:
    The thermal flow sensor outputs an electrical signal corresponding to the movement of the chemical in the conduit as a detection result to the injection control unit;
    The injection control unit performs a predetermined function using the detection result output from the thermal flow sensor;
    Method of operating a chemical injection system having
  24.  前記注入制御ユニットが所定の機能を実行するステップは、前記検出結果を用いて圧力を算出するステップを含む請求項23に記載の薬液注入システムの作動方法。 The method for operating a chemical injection system according to claim 23, wherein the step of the injection control unit executing a predetermined function includes a step of calculating a pressure using the detection result.
  25.  前記注入制御ユニットが所定の機能を実行するステップは、前記検出結果を用いて前記薬液注入回路に異常が発生したことを判断するステップを含む請求項23に記載の薬液注入システムの作動方法。 24. The method of operating a chemical solution injection system according to claim 23, wherein the step of the injection control unit performing a predetermined function includes a step of determining that an abnormality has occurred in the chemical solution injection circuit using the detection result.
  26.  前記異常が発生したことを判断するステップは、前記検出結果を用いて前記薬液注入回路の先端位置を判断するステップを含む請求項25に記載の薬液注入システムの作動方法。 26. The method of operating a chemical liquid injection system according to claim 25, wherein the step of determining that the abnormality has occurred includes a step of determining a tip position of the chemical liquid injection circuit using the detection result.
  27.  前記異常が発生したことを判断するステップは、前記検出結果を用いて薬剤の血管外漏出の発生を判断することを含む請求項25に記載の薬液注入システムの作動方法。 26. The method of operating a drug solution injection system according to claim 25, wherein the step of determining that the abnormality has occurred includes determining the occurrence of extravasation of the drug using the detection result.
  28.  前記異常が発生したことを判断するステップは、前記検出結果を用いて前記薬液注入回路でのキンクの発生を判断することを含む請求項25に記載の薬液注入システムの作動方法。 26. The method for operating a chemical injection system according to claim 25, wherein the step of determining that the abnormality has occurred includes determining the occurrence of a kink in the chemical injection circuit using the detection result.
  29.  前記薬液注入回路は、体内回路部と体外回路部とを有し、
     前記体外回路部は、前記チューブとして、先端が前記体内回路部と接続される第1チューブと、前記第1チューブの末端から分岐するように前記第1チューブに接続されてそれぞれ末端が前記シリンジと接続される複数の第2チューブと、前記複数の第2チューブの中間部に三方活栓を介して接続された複数の第3チューブと、を有し、前記熱式流量センサは、前記第1チューブおよび第2チューブの何れかに接続され、
     前記注入制御ユニットが所定の機能を実行するステップは、前記検出結果を用いて前記三方活栓の切り替え状態を判断するステップを含む請求項23から28の何れか一項に記載の薬液注入システムの作動方法。
    The medicinal solution injection circuit has an internal circuit part and an external circuit part,
    The extracorporeal circuit unit is connected to the first tube so that a distal end of the tube is connected to the in-vivo circuit unit, and the first tube so as to branch from an end of the first tube, and each end is connected to the syringe. A plurality of second tubes connected to each other, and a plurality of third tubes connected to intermediate portions of the plurality of second tubes via three-way stopcocks, wherein the thermal flow sensor is the first tube And connected to one of the second tubes,
    The operation of the medicinal solution injection system according to any one of claims 23 to 28, wherein the step of the injection control unit performing a predetermined function includes a step of determining a switching state of the three-way cock using the detection result. Method.
  30.  前記注入制御ユニットが所定の機能を実行するステップは、前記検出結果を用いて、前記注入ヘッドが前記容器の先端を上に向けた姿勢であるか下に向けた姿勢であるかを判断するステップを含む請求項23に記載の薬液注入システムの作動方法。 The step of the injection control unit performing a predetermined function is a step of determining whether the injection head is in a posture in which the tip of the container is directed upward or downward using the detection result. The operation | movement method of the chemical injection system of Claim 23 containing these.
  31.  前記注入制御ユニットが所定の機能を実行するステップは、前記検出結果を用いて前記注入ヘッドの上下方向への移動を判断するステップを含む請求項23に記載の薬液注入システムの作動方法。 24. The method of operating a chemical liquid injection system according to claim 23, wherein the step of the injection control unit performing a predetermined function includes a step of determining the movement of the injection head in the vertical direction using the detection result.
  32.  前記注入制御ユニットが所定の機能を実行するステップは、前記駆動機構の動作の停止後、前記熱式流量センサにより前記薬液の移動が検出された場合、前記注入回路内の液体を前記容器内に吸引する方向に前記駆動機構を動作させるステップを含む請求項23に記載の薬液注入システムの作動方法。 The step in which the injection control unit executes a predetermined function is that the movement of the chemical solution is detected by the thermal flow sensor after the operation of the drive mechanism is stopped, and the liquid in the injection circuit is put into the container. The method for operating a chemical injection system according to claim 23, further comprising the step of operating the drive mechanism in a suction direction.
PCT/JP2016/074637 2015-08-28 2016-08-24 Medicinal liquid injecting circuit, medicinal liquid injecting system provided with said medicinal liquid injecting circuit, and medical imaging system WO2017038575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537780A JP6839853B2 (en) 2015-08-28 2016-08-24 Chemical injection circuit, chemical injection system equipped with the chemical injection circuit, and medical imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169094 2015-08-28
JP2015-169094 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038575A1 true WO2017038575A1 (en) 2017-03-09

Family

ID=58187830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074637 WO2017038575A1 (en) 2015-08-28 2016-08-24 Medicinal liquid injecting circuit, medicinal liquid injecting system provided with said medicinal liquid injecting circuit, and medical imaging system

Country Status (2)

Country Link
JP (1) JP6839853B2 (en)
WO (1) WO2017038575A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964022A (en) * 2017-03-13 2017-07-21 西南交通大学 transfusion monitoring device
CN113855936A (en) * 2021-11-03 2021-12-31 徐州深丰精密机械有限公司 Sliding block for medical precision injector
CN114618054A (en) * 2022-02-17 2022-06-14 杭州承前医数科技有限公司 Micro-injection pump and injection control method
US11478581B2 (en) 2017-08-31 2022-10-25 Bayer Healthcare Llc Fluid injector system volume compensation system and method
WO2023007813A1 (en) * 2021-07-30 2023-02-02 テルモ株式会社 Measurement probe, adaptor, and measurement system
US11598664B2 (en) 2017-08-31 2023-03-07 Bayer Healthcare Llc Injector pressure calibration system and method
US11635148B2 (en) 2019-12-27 2023-04-25 Horizon Healthcare LLC Tube clamp
US11674617B2 (en) 2019-12-27 2023-06-13 Horizon Healthcare LLC Tube lock
US11779702B2 (en) 2017-08-31 2023-10-10 Bayer Healthcare Llc Method for dynamic pressure control in a fluid injector system
US11786652B2 (en) 2017-08-31 2023-10-17 Bayer Healthcare Llc System and method for drive member position and fluid injector system mechanical calibration
US11826553B2 (en) 2017-08-31 2023-11-28 Bayer Healthcare Llc Fluid path impedance assessment for improving fluid delivery performance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023514704A (en) 2020-02-21 2023-04-07 バイエル・ヘルスケア・エルエルシー Fluid path connectors for medical fluid delivery
WO2021222771A1 (en) 2020-04-30 2021-11-04 Bayer Healthcare Llc System, device, and method for safeguarding wellbeing of patients for fluid injection
BR112022023295A2 (en) 2020-06-18 2023-01-17 Bayer Healthcare Llc IN-LINE AIR BUBBLE SUSPENSION APPARATUS FOR INJECTOR FLUID PATHWAY ANGIOGRAPHY

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139533A (en) * 2012-03-21 2012-07-26 Nemoto Kyorindo:Kk Medical solution infusion device and system
WO2012105577A1 (en) * 2011-02-01 2012-08-09 株式会社根本杏林堂 Drug solution injection device
JP2013500060A (en) * 2009-07-24 2013-01-07 メドラッド インコーポレーテッド Multi-fluid medical injector system and method of operation
JP2013514839A (en) * 2009-12-18 2013-05-02 ケーアンドワイ コーポレイション Circulating pressure monitoring using infusion pump
JP2013094473A (en) * 2011-11-02 2013-05-20 Panasonic Corp Drug administration monitoring device and drug administration device using the same
WO2014168210A1 (en) * 2013-04-11 2014-10-16 株式会社根本杏林堂 Chemical injection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100114027A1 (en) * 2008-11-05 2010-05-06 Hospira, Inc. Fluid medication delivery systems for delivery monitoring of secondary medications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500060A (en) * 2009-07-24 2013-01-07 メドラッド インコーポレーテッド Multi-fluid medical injector system and method of operation
JP2013514839A (en) * 2009-12-18 2013-05-02 ケーアンドワイ コーポレイション Circulating pressure monitoring using infusion pump
WO2012105577A1 (en) * 2011-02-01 2012-08-09 株式会社根本杏林堂 Drug solution injection device
JP2013094473A (en) * 2011-11-02 2013-05-20 Panasonic Corp Drug administration monitoring device and drug administration device using the same
JP2012139533A (en) * 2012-03-21 2012-07-26 Nemoto Kyorindo:Kk Medical solution infusion device and system
WO2014168210A1 (en) * 2013-04-11 2014-10-16 株式会社根本杏林堂 Chemical injection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106964022B (en) * 2017-03-13 2023-05-26 西南交通大学 Infusion monitoring device
CN106964022A (en) * 2017-03-13 2017-07-21 西南交通大学 transfusion monitoring device
US11779702B2 (en) 2017-08-31 2023-10-10 Bayer Healthcare Llc Method for dynamic pressure control in a fluid injector system
US11478581B2 (en) 2017-08-31 2022-10-25 Bayer Healthcare Llc Fluid injector system volume compensation system and method
US11598664B2 (en) 2017-08-31 2023-03-07 Bayer Healthcare Llc Injector pressure calibration system and method
US11786652B2 (en) 2017-08-31 2023-10-17 Bayer Healthcare Llc System and method for drive member position and fluid injector system mechanical calibration
US11826553B2 (en) 2017-08-31 2023-11-28 Bayer Healthcare Llc Fluid path impedance assessment for improving fluid delivery performance
US11635148B2 (en) 2019-12-27 2023-04-25 Horizon Healthcare LLC Tube clamp
US11674617B2 (en) 2019-12-27 2023-06-13 Horizon Healthcare LLC Tube lock
WO2023007813A1 (en) * 2021-07-30 2023-02-02 テルモ株式会社 Measurement probe, adaptor, and measurement system
CN113855936A (en) * 2021-11-03 2021-12-31 徐州深丰精密机械有限公司 Sliding block for medical precision injector
CN114618054A (en) * 2022-02-17 2022-06-14 杭州承前医数科技有限公司 Micro-injection pump and injection control method
CN114618054B (en) * 2022-02-17 2023-12-22 杭州承前医数科技有限公司 Microinjection pump and injection control method

Also Published As

Publication number Publication date
JP6839853B2 (en) 2021-03-10
JPWO2017038575A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6839853B2 (en) Chemical injection circuit, chemical injection system equipped with the chemical injection circuit, and medical imaging system
JP7239223B2 (en) Chemical injection device and chemical injection system
US20200030524A1 (en) Chemical liquid injector
JP6002039B2 (en) System and method for assessing the function of a double check valve arrangement in a medical tubing set
US9895488B2 (en) Conductive coding of syringe information
JP6338190B2 (en) Chemical injection device
JP6792104B2 (en) Chemical injection device
JPWO2004016314A1 (en) Fluid control device
EP3654007A1 (en) Pressure detection device and extracorporeal circulation device
JPWO2016084940A1 (en) Chemical injection device
JP2017136411A (en) Medical liquid injection device
JP5511409B2 (en) Chemical injection system
CN113713202A (en) High pressure contrast media injection system
US20220054736A1 (en) Opening/closing unit drive mechanism for chemical-liquid circuit, and chemical-liquid injector
JP6552258B6 (en) Leak detection device
JP2018033953A (en) Medical liquid injection device
CN109498903A (en) A kind of transfusion state monitoring system and its monitoring method
WO2024111675A1 (en) Drug solution injection system
WO2023199993A1 (en) Medical liquid injection device
WO2024111676A1 (en) Chemical solution injection system
JP7387158B2 (en) Chemical injection device
JP2014176710A (en) Chemical injection system
KR20210073925A (en) Combination injector apparatus for medical imaging equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841607

Country of ref document: EP

Kind code of ref document: A1