WO2023007753A1 - 可視光変調素子及びそれを備える光学エンジン - Google Patents

可視光変調素子及びそれを備える光学エンジン Download PDF

Info

Publication number
WO2023007753A1
WO2023007753A1 PCT/JP2021/028521 JP2021028521W WO2023007753A1 WO 2023007753 A1 WO2023007753 A1 WO 2023007753A1 JP 2021028521 W JP2021028521 W JP 2021028521W WO 2023007753 A1 WO2023007753 A1 WO 2023007753A1
Authority
WO
WIPO (PCT)
Prior art keywords
mach
light
visible light
optical
optical waveguide
Prior art date
Application number
PCT/JP2021/028521
Other languages
English (en)
French (fr)
Inventor
隆 菊川
壮 小巻
英明 福澤
裕貴 原
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2021/028521 priority Critical patent/WO2023007753A1/ja
Priority to CN202180058357.3A priority patent/CN116134373A/zh
Priority to US18/018,387 priority patent/US20240255828A1/en
Publication of WO2023007753A1 publication Critical patent/WO2023007753A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Definitions

  • the present invention relates to a visible light modulation element and an optical engine including the same.
  • AR (Augmented Reality) glasses and VR (Virtual Reality) glasses are expected as small wearable devices.
  • a light-emitting element that emits full-color visible light is one of the central elements for drawing high-quality images.
  • a light-emitting element independently modulates the intensity of each of the three colors of RGB representing visible light at high speed to represent a moving image in a desired color.
  • Patent Document 1 discloses a light-emitting element that emits a color moving image by injecting a visible light laser into a waveguide and controlling the emission intensity of each color laser chip by a current.
  • Cited Document 2 a laser beam is incident on an external modulator having a waveguide formed on a substrate having an electro-optical effect via an optical fiber, and the intensity of each of the three colors of RGB is detected by the external modulator.
  • a modulator is disclosed that independently modulates the .
  • miniaturization of the light-emitting module so that each function fits within the size of a normal pair of glasses is the key to popularization.
  • JP 2021-86976 A Japanese Patent No. 6728596
  • the emission intensity of the laser is directly controlled by the electric current.
  • the current value is set to a value higher than the threshold current by a certain value in order to ensure the stability of the emission intensity. It is necessary to control the current to Therefore, there is a problem that the power consumption is large and it is difficult to reduce it.
  • Cited Document 2 substrates made of lithium niobate, lithium tantalate, lead lanthanum zirconate titanate, potassium phosphate titanate, polythiophene, liquid crystal materials, and various induced polymers having an electro-optical effect are used, An optical modulator having an optical waveguide provided on this substrate is disclosed.
  • a lithium niobate single crystal or solid solution crystal is used and a portion thereof is modified by a proton exchange method or a Ti diffusion method to form an optical waveguide.
  • it is difficult to reduce the diameter of the optical waveguide because the size of the modified waveguide portion (core) region is defined by the distance in which protons and Ti have penetrated and diffused.
  • the size of the optical waveguide itself is inevitably large, and the large diameter of the optical waveguide makes it difficult to concentrate the electric field of the modulation voltage.
  • a modulator using a portion B1-a obtained by partially modifying a bulk lithium niobate single crystal B1 as an optical waveguide as shown in FIG.
  • the refractive index difference ⁇ n since only the refractive index difference ⁇ n is created, the refractive index difference between the modified waveguide portion (core) and the unmodified portion (cladding) is small. Therefore, bending loss due to bending the optical waveguide is large, and the optical waveguide cannot be bent with a high curvature. It is difficult to reduce the size of the device.
  • a modulated light source mounted on a head-mounted display such as AR glasses is required to have a size that fits, for example, the size of a string of eyeglasses. It is difficult to fabricate a customized optical modulator.
  • an optical module which is modularized with a light source unit 311 and a modulator 30 as structural units and can emit light externally modulated by the modulator 30 without directly modulating the light source unit 311 100 are disclosed.
  • red (R), green (G), and blue (G) laser beams are output from the modulator 30 and then multiplexed to Cited Document 2.
  • the inventor of the present invention came up with the present invention as a result of giving top priority to miniaturization to the extent that it can be installed in AR glasses, VR glasses, etc.
  • the present invention has been made in view of the above problems, and aims to provide a small visible light modulation element that can be mounted on AR glasses, VR glasses, etc., and an optical engine equipped with the same.
  • the present invention provides the following means.
  • a visible light modulation element comprises a light source unit having a plurality of optical semiconductor elements that emit visible light with a wavelength of 400 nm to 700 nm, and for each of the plurality of optical semiconductor elements, an optical modulation output unit having the same number of Mach-Zehnder optical waveguides formed by convexly processing a lithium niobate film as the number of the optical semiconductor elements, into which the light emitted from the optical semiconductor elements is incident.
  • the wavelengths of light emitted by the plurality of optical semiconductor elements may all be different from each other.
  • the Mach-Zehnder optical waveguide may have a curved portion.
  • a base on which the plurality of optical semiconductor elements are mounted and a substrate on which the Mach-Zehnder optical waveguide is formed may be directly bonded via a metal layer.
  • the visible light modulation element has a gap between an emission surface from which light is emitted from the optical semiconductor element and an incidence surface of the optical modulation output section, and the light from the optical semiconductor element
  • the corresponding optical semiconductor element and the Mach-Zehnder optical waveguide may be positioned such that the light is emitted from the surface, propagates through the gap, and enters the Mach-Zehnder optical waveguide on the incident surface.
  • the visible light modulation element may have, in the light modulation output section, a combining section for combining modulated light from a plurality of Mach-Zehnder optical waveguides.
  • the multiplexer may be any one selected from the group consisting of an MMI multiplexer, a Y-type multiplexer, and a directional coupler.
  • injection into each of the plurality of optical semiconductor elements is performed so that the peak output of each wavelength in the light emitted to the outside through the plurality of Mach-Zehnder optical waveguides has a predetermined ratio. It may have a controller for controlling the current value to be applied.
  • the current value injected into each of the plurality of optical semiconductor devices is set to a constant value, and the peak output of each wavelength in the light emitted to the outside through the plurality of Mach-Zehnder optical waveguides is
  • the plurality of Mach-Zehnder optical waveguides may be configured to have a predetermined ratio.
  • the length of the optical waveguides from the incident end to the exit end of the plurality of Mach-Zehnder optical waveguides may be shorter for the Mach-Zehnder optical waveguides in which light with shorter wavelengths propagates.
  • each of the plurality of Mach-Zehnder optical waveguides is provided with a light-absorbing material that absorbs the wavelength of propagating light in each of the optical waveguides from the incident end to the exit end.
  • a portion may be provided, and the length of the light absorbing portion in the length direction of the optical waveguide may be as short as a Mach-Zehnder optical waveguide through which light having a short wavelength propagates.
  • each of the plurality of Mach-Zehnder optical waveguides has a bend portion having a curvature in the optical waveguide from the incident end to the exit end, and Mach-Zehnder light with a short wavelength propagates.
  • the curvature of the optical waveguide may be larger, or the length of the bent portion may be shorter.
  • the peak output of each wavelength in the light emitted to the outside through the plurality of Mach-Zehnder optical waveguides may have the same intensity.
  • the visible light modulation element has a groove extending from the surface of the element to the substrate on which the Mach-Zehnder optical waveguide is formed, in a portion other than the Mach-Zehnder optical waveguide in the optical modulation output section,
  • a light absorption layer may be provided at least on the bottom and side surfaces of the groove.
  • the light absorption layer may be formed so as to fill the entire groove.
  • a plurality of grooves may be formed along one surface of the substrate while being spaced apart from each other.
  • the optical waveguide may have a curved portion curved from a straight portion, and the groove portion may be arranged so as to intersect an imaginary extension line of the straight portion.
  • the optical waveguide may have a curved portion curved from a straight portion, and the groove portion may be formed so as to curve and extend along the curved portion.
  • a visible light modulation element includes a light source unit having a plurality of optical semiconductor elements that emit visible light with a wavelength of 400 nm to 700 nm, and for each of the plurality of optical semiconductor elements, a multiplexing section having the same number of Mach-Zehnder optical waveguides into which the light emitted from the optical semiconductor device is incident as the number of the optical semiconductor devices, and multiplexing the modulated light from the plurality of Mach-Zehnder optical waveguides; and an optical modulation output section.
  • the wavelengths of light emitted by the plurality of optical semiconductor elements may all be different from each other.
  • the Mach-Zehnder optical waveguide may have a curved portion.
  • a base on which the plurality of optical semiconductor elements are mounted and a substrate on which the Mach-Zehnder optical waveguide is formed may be directly bonded via a metal layer.
  • the visible light modulation element has a gap between an emission surface from which light is emitted from the optical semiconductor element and an incidence surface of the optical modulation output section, and the light from the optical semiconductor element
  • the corresponding optical semiconductor element and the Mach-Zehnder optical waveguide may be positioned such that the light is emitted from the surface, propagates through the gap, and enters the Mach-Zehnder optical waveguide on the incident surface.
  • the multiplexer may be any one selected from the group consisting of an MMI multiplexer, a Y-type multiplexer, and a directional coupler.
  • injection into each of the plurality of optical semiconductor elements is performed so that the peak output of each wavelength in the light emitted to the outside through the plurality of Mach-Zehnder optical waveguides has a predetermined ratio. It may have a controller for controlling the current value to be applied.
  • the current value injected into each of the plurality of optical semiconductor devices is set to a constant value, and the peak output of each wavelength in the light emitted to the outside through the plurality of Mach-Zehnder optical waveguides is
  • the plurality of Mach-Zehnder optical waveguides may be configured to have a predetermined ratio.
  • the length of the optical waveguides from the incident end to the exit end of the plurality of Mach-Zehnder optical waveguides may be shorter for the Mach-Zehnder optical waveguides in which light with shorter wavelengths propagates.
  • each of the plurality of Mach-Zehnder optical waveguides is provided with a light-absorbing material that absorbs the wavelength of propagating light in each of the optical waveguides from the incident end to the exit end.
  • a portion may be provided, and the length of the light absorbing portion in the length direction of the optical waveguide may be as short as a Mach-Zehnder optical waveguide through which light having a short wavelength propagates.
  • each of the plurality of Mach-Zehnder optical waveguides has a bend portion having a curvature in the optical waveguide from the incident end to the exit end, and Mach-Zehnder light with a short wavelength propagates.
  • the curvature of the optical waveguide may be larger, or the length of the bent portion may be shorter.
  • the peak output of each wavelength in the light emitted to the outside through the plurality of Mach-Zehnder optical waveguides may have the same intensity.
  • the visible light modulation element has a groove extending from the surface of the element to the substrate on which the Mach-Zehnder optical waveguide is formed, in a portion other than the Mach-Zehnder optical waveguide in the optical modulation output section,
  • a light absorption layer may be provided at least on the bottom and side surfaces of the groove.
  • the light absorption layer may be formed so as to fill the entire groove.
  • a plurality of grooves may be formed along one surface of the substrate while being spaced apart from each other.
  • the optical waveguide may have a curved portion curved from a straight portion, and the groove portion may be arranged so as to intersect an imaginary extension line of the straight portion.
  • the optical waveguide may have a curved portion curved from a straight portion, and the groove portion may be formed so as to curve and extend along the curved portion.
  • An optical engine includes: a visible light modulation element according to the above aspect; an optical scanning mirror that reflects light emitted from the visible light modulation element by changing an angle so as to display an image; Prepare.
  • the visible light modulation element of the present invention it is possible to provide a small visible light modulation element that can be mounted on AR glasses, VR glasses, and the like.
  • FIG. 1 is a plan view schematically showing a visible light modulation element according to a first embodiment
  • FIG. FIG. 2 is a schematic cross-sectional view taken along line XX in FIG. 1
  • FIG. 2 is a schematic cross-sectional view taken along line YY in FIG. 1
  • 2 is a block diagram of an optical modulation output unit 200
  • FIG. FIG. 4 is a diagram showing optical modulation curves in respective Mach-Zehnder optical waveguides
  • FIG. 4 is a plan view schematically showing a visible light modulation element having a multiplexing section
  • FIG. 4 is a diagram schematically showing (a) an MMI multiplexer, (b) a Y-shaped multiplexer, and (c) a directional coupler.
  • FIG. 4 is a plan view schematically showing a Mach-Zehnder optical waveguide having curved portions; It is a plane schematic diagram for demonstrating a stray light removal part.
  • FIG. 13 is a cross-sectional view taken along line A-A' in FIG. 12;
  • FIG. 13 is a cross-sectional view taken along line B-B' of FIG. 12;
  • FIG. 10 is a cross-sectional view showing another shape example of the groove;
  • FIG. 10 is a cross-sectional view showing another example of forming a light absorption layer
  • FIG. 11 is a plan view of an optical modulation output section according to another embodiment when viewed from above
  • FIG. 11 is a plan view of an optical circuit element according to still another embodiment as viewed from above
  • FIG. 11 is a plan view of an optical circuit element according to still another embodiment as viewed from above
  • FIG. 20 is a cross-sectional view taken along line C-C' of FIG. 19
  • FIG. 11 is a plan view of an optical circuit element according to still another embodiment as viewed from above
  • FIG. 6 is a plan view schematically showing a visible light modulation element according to a second embodiment
  • FIG. 23 is a schematic cross-sectional view taken along line YY in FIG. 22;
  • FIG. 23 is a schematic cross-sectional view taken along line YY in FIG. 22;
  • FIG. 23 is a schematic cross-sectional view taken along line YY in FIG. 22;
  • FIG. 23
  • FIG. 11 is a conceptual diagram for explaining an optical engine according to a third embodiment; (a) is a diagram schematically showing an optical engine having no multiplexer in the modulation element, and (b) is a diagram schematically showing the optical engine according to the present embodiment having a multiplexer in the visible light modulation element. It is a schematic diagram.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the Mach-Zehnder type optical waveguide of an Example, (a) is sectional drawing, (b) is a top view. It is the result of performing an optical modulation experiment at each wavelength of RGB using the fabricated Mach-Zehnder optical waveguide.
  • FIG. 4 is a conceptual diagram for explaining a modulator that uses a convex portion as an optical waveguide
  • FIG. 1 is a plan view schematically showing a visible light modulation element according to one embodiment. In FIG. 1, only a part of the electrodes for imparting a phase difference to the Mach-Zehnder optical waveguide is shown.
  • FIG. 2 is a schematic cross-sectional view taken along line XX in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line YY in FIG.
  • the visible light modulation device 1000 shown in FIG. 1 includes three optical semiconductor devices 30-1, 30-2, and 30-3 (hereinafter collectively referred to as “optical semiconductor device 30"), and for each of the three optical semiconductor elements 30-1, 30-2, and 30-3, the optical semiconductor elements 30-1, 30-2, and 30- Mach-Zehnder optical waveguides 10-1, 10-2, and 10-3 (hereinafter collectively referred to as "Mach-Zehnder optical waveguide 10 ), and an optical modulation output section 200 having three.
  • the optical semiconductor elements 30-1, 30-2, and 30-3 are mounted on a subcarrier (base) 120, and the Mach-Zehnder optical waveguides 10-1, 10-2, and 10-3 are mounted on a substrate 140. formed on top.
  • the size of the optical waveguide can be reduced to 1 mm or less, and the size of the visible light modulation element can be reduced. became possible.
  • the external modulator with extremely high insulation is controlled by voltage, almost no current is required for intensity modulation, and the minimum required current is required for laser emission, resulting in low power consumption.
  • the advantages of using a lithium niobate film for fabricating an optical waveguide compared to using a bulk lithium niobate single crystal when fabricating an optical waveguide will be described.
  • the Ti-diffusion waveguide diffuses Ti into the bulk lithium niobate single crystal so that the surrounding portion with a higher refractive index than the original single crystal becomes making.
  • the lithium niobate film is processed to form a convex portion that will become the optical waveguide.
  • This convex portion is smaller in size than the Ti diffused waveguide. Furthermore, when a bulk lithium niobate single crystal is used, the refractive index difference ⁇ n between the Ti diffusion waveguide (core) and the surrounding single crystal portion (cladding) is small. This is because a small amount of Ti is added to the bulk lithium niobate single crystal to create the refractive index difference ⁇ n. On the other hand, when the lithium niobate film is used, the area around the convex portion (core) corresponds to the cladding, so the surrounding materials (materials for the sapphire substrate and the side and top surfaces of the waveguide) should be selected appropriately. Then, the refractive index difference ⁇ n can be increased. As a result of this, it is also possible to bend the optical waveguide with a high curvature, which further reduces the longitudinal size. Furthermore, since the interaction length can be lengthened while keeping the size of the outer shape small, the driving voltage can be lowered.
  • Optical semiconductor element 30 Various laser elements can be used as the optical semiconductor element 30 .
  • commercially available red light, green light, blue light, and other laser diodes (LD) can be used.
  • Red light can be used with a peak wavelength of 610 nm or more and 750 nm or less
  • green light can be used with a peak wavelength of 500 nm or more and 560 nm or less
  • blue light can be used with a peak wavelength of 435 nm or more and 480 nm.
  • the following lights are available.
  • optical semiconductor devices 30-1, 30-2, and 30-3 are assumed to be an LD emitting blue light, an LD emitting green light, and an LD emitting red light, respectively.
  • the LDs 30-1, 30-2, and 30-3 are spaced apart from each other in a direction substantially orthogonal to the direction of light emitted from each LD, and provided on the upper surface 121 of the subcarrier 120.
  • FIG. . . , ZK may be collectively referred to as code Z in the following description.
  • the aforementioned K is a natural number of 2 or more.
  • the number of optical semiconductor elements is three, but the number is not limited to three, and may be two or four or more.
  • the plurality of optical semiconductor elements may all emit light with different wavelengths, or there may be optical semiconductor elements that emit light with the same wavelength.
  • light other than red (R), green (G), and blue (B) can be used as the emitted light.
  • the mounting order does not need to be in this order and can be changed as appropriate.
  • the LD 30 can be mounted on the subcarrier 120 as a bare chip.
  • the subcarrier 120 is made of, for example, aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon (Si), or the like.
  • AlN aluminum nitride
  • Al 2 O 3 aluminum oxide
  • Si silicon
  • metal layers 75 and 76 are provided between the subcarrier 120 and the LD 30 .
  • Subcarrier 120 and LD 30 are connected via metal layers 75 and 76 .
  • any known method can be used, and known methods such as sputtering, vapor deposition, and application of metal paste can be used.
  • the metal layers 75 and 76 are, for example, gold (Au), platinum (Pt), silver (Ag), lead (Pb), indium (In), nickel (Ni), titanium (Ti) and tantalum (Ta), tungsten ( W), an alloy of gold (Au) and tin (Sn), tin (Sn)-silver (Ag)-copper (Cu) solder alloy (SAC), SnCu, InBi, SnPdAg, SnBiIn and PbBiIn. may be composed of one or more metals selected from this group.
  • the substrate 140 is not particularly limited as long as it has a lower refractive index than the lithium niobate film that constitutes the Mach-Zehnder optical waveguide.
  • a sapphire single crystal substrate or a silicon single crystal substrate is preferred.
  • the crystal orientation of the single crystal substrate is not particularly limited, for example, since the c-axis-oriented lithium niobate film has 3-fold symmetry, the underlying single crystal substrate also has the same symmetry.
  • the c-plane is preferred, and in the case of a silicon single crystal substrate, a (111) plane substrate is preferred.
  • each Mach-Zehnder optical waveguide 10 faces the exit 31-1 of each LD 30, and the light emitted from the exit surface 31 of the LD 30 enters the entrance path 13. Positioned to be incident.
  • the axis JX-1 of the incident path 13 substantially overlaps with the optical axis AXR of the laser beam LR emitted from the emission port 31-1 of the LD30.
  • the subcarrier 120 can be directly bonded to the substrate 140 via the metal layers 93 (first metal layer 71, second metal layer 72, third metal layer 73). .
  • This configuration enables further miniaturization by eliminating spatial coupling and fiber coupling.
  • the side surface (first side surface) 122 of the subcarrier 120 facing the substrate 140 and the side surface (second side surface) 42 of the substrate 140 facing the subcarrier 120 are formed by the first metal layer 71 and the second metal layer 71 . They are connected through the layer 72 , the third metal layer 73 and the antireflection film 81 .
  • the melting point of the metal layer 75 is higher than the melting point of the third metal layer 73 .
  • the first metal layer 71 is provided in contact with the side surface 122 by sputtering, vapor deposition, or the like.
  • (Ni), titanium (Ti) and tantalum (Ta) may be composed of one or more metals selected from this group.
  • the first metal layer 71 is at least one metal selected from the group consisting of gold (Au), platinum (Pt), silver (Ag), lead (Pb), indium (In), and nickel (Ni). including.
  • the second metal layer 72 is provided in contact with the side surface 42 by sputtering, vapor deposition, or the like, and includes one or more metals selected from the group consisting of titanium (Ti), tantalum (Ta), and tungsten (W), for example.
  • a third metal layer 73 is interposed between the first metal layer 71 and the second metal layer 72 and is made of, for example, aluminum (Al), copper (Cu), AuSn, SnCu, InBi, SnAgCu, SnPdAg, SnBiIn and PbBiIn. It may comprise one or more metals selected from the group consisting of one or more metals selected from this group. AuSn, SnAgCu, and SnBiIn are preferably used for the third metal layer 73 .
  • the thickness of the first metal layer 71 that is, the size of the first metal layer 71 in the y direction is, for example, 0.01 ⁇ m or more and 5.00 ⁇ m or less.
  • the thickness of the second metal layer 72 that is, the size of the second metal layer 72 in the y direction is, for example, 0.01 ⁇ m or more and 1.00 ⁇ m or less.
  • the thickness of the third metal layer 73 that is, the size in the y direction is, for example, 0.01 ⁇ m or more and 5.00 ⁇ m or less.
  • the thickness of the third metal layer 73 is preferably greater than the thicknesses of the first metal layer 71 and the second metal layer 72 .
  • the above-described respective roles of the first metal layer 71, the second metal layer 72, and the third metal layer 73 are satisfactorily exhibited, and the material of the first metal layer 71 enters the substrate 40 and each metal layer A decrease in adhesive strength between them can be suppressed.
  • the thicknesses of the first metal layer 71, the second metal layer 72 and the third metal layer 73 are measured by spectroscopic ellipsometry, for example.
  • the first metal layer 71 is provided on the side surface facing the substrate 140 or the light modulation structure layer 150 over substantially the entire side surface 122 without contacting the metal layer 75 .
  • the first metal layer 71 is formed larger than the subcarrier 20 in the x direction.
  • the area of the first metal layer 71 that is, the size in the plane including the x-direction and the z-direction, is substantially the same as the areas of the second metal layer 72 and the third metal layer 73, and It is preferable that its lower end reaches the same position as the lower end of subcarrier 120 .
  • Such a configuration ensures the maximum connection strength of the subcarrier 120 to the substrate 140 . That is, for example, even when each of the LD 30 and the subcarrier 120 and the internal electrode pad corresponding to each LD 30 of the plurality of internal electrodes are connected by wire using wire bonding, the subcarrier 120 and the substrate 140 can be suppressed from being disconnected.
  • the first metal layer 71, the second metal layer 72, the third metal layer 73, and the substrate 140 reach the same position, heat radiation paths from the subcarrier 120 can be increased.
  • the area of the first metal layer 71 may be smaller than the areas of the second metal layer 72 and the third metal layer 73 .
  • the visible light modulation element 1000 has an antireflection film 81 between the LD 30 and the light modulation structure layer 150 .
  • the antireflection film 81 is integrally formed on the side surface 42 of the substrate 140 and the entrance surface 151 of the light modulation structure layer 150 .
  • the antireflection film 81 may be formed only on the incident surface 151 of the light modulation structure layer 150 .
  • the anti-reflection film 81 is a film for preventing the incident light to the light modulation structure layer 150 from being reflected in the direction opposite to the incident direction from the incident surface 151 and for increasing the transmittance of the incident light.
  • the antireflection film 81 is, for example, a multilayer film formed by alternately laminating a plurality of types of dielectrics with a predetermined thickness according to the wavelengths of red light, green light, and blue light that are incident light. .
  • Examples of the aforementioned dielectrics include titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), silicon oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ).
  • the exit surface 31 of the LD 30 and the entrance surface 151 of the light modulation structure layer 150 are arranged at a predetermined interval.
  • the entrance surface 151 faces the exit surface 31, and there is a gap 70 between the exit surface 31 and the entrance surface 151 in the y direction. Since visible light modulation element 1000 is exposed to the air, gap 70 is filled with air. Since the gap 70 is filled with the same gas (air), it is easy to make each color light emitted from the LD 30 enter the incident path while satisfying a predetermined coupling efficiency.
  • the size of the gap (spacing) 70 in the y direction is, for example, greater than 0 ⁇ m and 5 ⁇ m or less, considering the amount of light required for AR glass and VR glass. is.
  • the optical modulation output section 200 has three Mach-Zehnder optical waveguides 10-1, 10-2 and 10-3, which are the same in number as the optical semiconductor elements 30-1, 30-2 and 30-3.
  • the optical semiconductor devices 30-1, 30-2, 30-3 and the Mach-Zehnder optical waveguides 10-1, 10-2, 10-3 are Mach-Zehnder optical waveguides to which the light emitted from the optical semiconductor devices corresponds. is positioned to be incident on the
  • the lengths of the first optical waveguide 11 and the second optical waveguide 12 shown in FIG. 1 are substantially the same.
  • the branching portion 15 is between the input path 13 and the first optical waveguide 11 and the second optical waveguide 12 .
  • the input path 13 is connected to the first optical waveguide 11 and the second optical waveguide 12 via the branch portion 15 .
  • the coupling part 16 is between the first optical waveguide 11 and the second optical waveguide 12 and the output path 14 .
  • the first optical waveguide 11 and the second optical waveguide 12 are connected to the output path 14 via the coupling portion 16 .
  • the Mach-Zehnder optical waveguide 10 includes a first optical waveguide 11 and a second optical waveguide 12, which are ridges (convex) projecting from a first surface 40a of a slab layer 40 made of lithium niobate.
  • the slab layer 40 made of lithium niobate and the ridges 11 and 12 made of lithium niobate may be collectively referred to as a lithium niobate film.
  • the first surface 40a is the upper surface of the portion of the lithium niobate film other than the ridge portion.
  • Two ridges protrude from the first surface 40 a in the z-direction and extend along the Mach-Zehnder optical waveguide 10 .
  • the first ridge functions as the first optical waveguide 11 and the second ridge functions as the second optical waveguide 12 .
  • the shape of the ridge portion is not limited as long as it can guide light. For example, it may be dome-shaped or triangular.
  • the slab layer 40 made of lithium niobate is, for example, a c-axis oriented lithium niobate film.
  • the slab layer 40 made of lithium niobate is, for example, an epitaxial film epitaxially grown on the substrate 140 .
  • An epitaxial film is a single-crystal film whose crystal orientation is aligned by the underlying substrate.
  • An epitaxial film is a film having a single crystal orientation in the z direction and the xy in-plane direction, and the crystals are aligned in the x-axis, y-axis and z-axis directions.
  • the lithium niobate film 40 made of lithium niobate may be a lithium niobate film provided on a Si substrate via SiO 2 .
  • Lithium niobate is a compound represented by LixNbAyOz.
  • A is an element other than Li, Nb, and O; Elements represented by A include K, Na, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Cr, Mo, W, Fe, Co, Ni, Zn, Sc , Ce and the like. These elements may be used individually by 1 type, and may be used in combination of 2 or more type.
  • x represents a number of 0.5 or more and 1.2 or less. x is preferably a number between 0.9 and 1.05.
  • y represents a number of 0 or more and 0.5 or less.
  • z represents a number of 1.5 or more and 4.0 or less. z is preferably a number between 2.5 and 3.5.
  • the electrodes 21 and 22 are electrodes for applying a modulation voltage Vm to the Mach-Zehnder optical waveguides 10-1, 10-2, and 10-3 (hereinafter sometimes simply referred to as "each Mach-Zehnder optical waveguide 10"). is.
  • the electrode 21 is an example of a first electrode
  • the electrode 22 is an example of a second electrode.
  • a first end 21 a of the electrode 21 is connected to a power source 131 and a second end 21 b is connected to a terminating resistor 132 .
  • a first end 22a of the electrode 22 is connected to a power supply 131 and a second end 22b is connected to a terminating resistor 132.
  • the power supply 131 is part of the drive circuit 210 that applies the modulation voltage Vm to each Mach-Zehnder optical waveguide 10 .
  • Electrodes 23 and 24 are electrodes for applying a DC bias voltage Vdc to each Mach-Zehnder optical waveguide 10 .
  • a first end 23 a of the electrode 23 and a first end 24 a of the electrode 24 are connected to the power source 133 .
  • the power supply 133 is part of a DC bias application circuit 220 that applies a DC bias voltage Vdc to each Mach-Zehnder optical waveguide 10 .
  • the line widths and line spacings of the electrodes 21 and 22 arranged in parallel are made wider than they actually are in order to make it easier to see. Therefore, the length (interaction length) of the portion where the electrode 21 and the first optical waveguide 11 overlap and the length of the portion where the electrode 22 and the second optical waveguide 12 overlap seem to be different. are approximately the same length (interaction length). Similarly, the length of the portion where the electrode 23 and the first optical waveguide 11 overlap (interaction length) and the length of the portion where the electrode 24 and the second optical waveguide 12 overlap (interaction length) are They are almost identical.
  • the electrodes 21, 22, 23, and 24 are on the slab layer 40 made of lithium niobate and the ridges 11 and 12 made of lithium niobate, with the buffer layer 32 interposed therebetween.
  • Each of the electrodes 21 and 23 can apply an electric field to the first optical waveguide 11 .
  • the electrodes 21 and 23 are positioned to overlap with the first optical waveguide 11 in a plan view from the z direction.
  • the electrodes 21 and 23 are above the first optical waveguide 11 respectively.
  • Each of the electrodes 22 , 24 can apply an electric field to the second optical waveguide 12 .
  • the electrodes 22 and 24 are positioned, for example, to overlap the second optical waveguide 12 in a plan view from the z direction. Electrodes 22 , 24 are respectively above the second optical waveguide 12 .
  • a buffer layer 32 is between each Mach-Zehnder optical waveguide 10 and the electrodes 21 , 22 , 23 , 24 .
  • a protective layer 31 and a buffer layer 32 cover and protect the ridge.
  • the buffer layer 32 also prevents light propagating through each Mach-Zehnder optical waveguide 10 from being absorbed by the electrodes 21 , 22 , 23 and 24 .
  • the buffer layer 32 has a lower refractive index than the lithium niobate film 40 .
  • the protective layer 31 and the buffer layer 32 are made of, for example, SiInO, SiO 2 , Al 2 O 3 , MgF 2 , La 2 O 3 , ZnO, HfO 2 , MgO, Y 2 O 3 , CaF 2 , In 2 O 3 or the like or A mixture of these.
  • the protective layer 31 and the buffer layer 32 may be of the same material or different materials. When different materials are used, they can be appropriately selected from the viewpoint of DC drift improvement, V ⁇ reduction, propagation loss reduction, and the like.
  • the size of the optical modulation output section 200 including the Mach-Zehnder optical waveguide 10 is, for example, 100 mm 2 or less. If the size of the light modulation output unit 200 is 100 mm 2 or less, it is suitable for AR glasses and VR glasses.
  • the optical modulation output section 200 including the Mach-Zehnder optical waveguide 10 can be produced by a known method.
  • the light modulation output section 200 is manufactured using semiconductor processes such as epitaxial growth, photolithography, etching, vapor deposition and metallization.
  • FIG. 4 is a block diagram of the optical modulation output section 200.
  • the control section 240 of the optical modulation output section 200 has a drive circuit 210 , a DC bias application circuit 220 and a DC bias control circuit 230 .
  • the drive circuit 210 applies a modulation voltage Vm corresponding to the modulation signal Sm to the Mach-Zehnder optical waveguide 10 .
  • a DC bias application circuit 220 applies a DC bias voltage Vdc to the Mach-Zehnder optical waveguide 10 .
  • the DC bias control circuit 230 monitors the output light Lout and controls the DC bias voltage Vdc output from the DC bias applying circuit 220 . By adjusting the DC bias voltage Vdc, an operating point Vd, which will be described later, is controlled.
  • the optical modulation output section 200 converts an electrical signal into an optical signal.
  • the optical modulation output unit 200 modulates the input light L in emitted from the optical semiconductor element 30 and input from the input path 13 of the Mach-Zehnder optical waveguide 10 into an output light L out .
  • a modulation operation of the optical modulation output section 200 will be described.
  • the input light L in emitted from the optical semiconductor element 30 and input from the input path 13 branches to the first optical waveguide 11 and the second optical waveguide 12 and propagates.
  • the phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 is zero at the time of branching.
  • a voltage is then applied between the electrodes 21 and 22 .
  • differential signals having the same absolute value, opposite polarities, and not out of phase with each other may be applied.
  • the refractive indices of the first optical waveguide 11 and the second optical waveguide 12 change due to the electro-optic effect.
  • the refractive index of the first optical waveguide 11 changes by + ⁇ n from the reference refractive index n
  • the refractive index of the second optical waveguide 12 changes by ⁇ n from the reference refractive index n.
  • the difference in refractive index between the first optical waveguide 11 and the second optical waveguide 12 produces a phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 .
  • the light that has propagated through the first optical waveguide 11 and the second optical waveguide 12 joins in the output path 14 and is output as output light Lout .
  • the output light L out is obtained by superimposing the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 .
  • the intensity of the output light L out changes according to the odd multiple phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 .
  • the Mach-Zehnder optical waveguide 10 modulates the input light L in to the output light L out according to the electrical signal.
  • a modulation voltage Vm corresponding to the modulation signal is applied to the electrodes 21 and 22 for applying the modulation voltage of the optical modulation output section 200 .
  • a DC bias control circuit 230 controls the voltage applied to the electrodes 23 and 24 for DC bias voltage application, that is, the DC bias voltage Vdc output from the DC bias application circuit 220 .
  • the DC bias control circuit 230 adjusts the operating point Vd of the optical modulation output section 200 by controlling the DC bias voltage Vdc.
  • the operating point Vd is a voltage at the center of modulation voltage amplitude.
  • FIG. 5 shows a Mach-Zehnder optical waveguide that does not have a configuration that causes a phase difference between two optical waveguides (the first optical waveguide 11 and the second optical waveguide 12), and a phase difference between the two optical waveguides.
  • FIG. 4 is a diagram showing the relationship between the DC bias voltage and the output with respect to a Mach-Zehnder optical waveguide having a configuration that produces .
  • the horizontal axis of FIG. 5 is the DC bias voltage applied to the electrodes 23 and 24, and the vertical axis is the normalized output from the Mach-Zehnder optical waveguide 10.
  • FIG. 5 shows a Mach-Zehnder optical waveguide that does not have a configuration that causes a phase difference between two optical waveguides (the first optical waveguide 11 and the second optical waveguide 12), and a phase difference between the two optical waveguides.
  • FIG. 4 is a diagram showing the relationship between the DC bias voltage and the output with respect to a Mach-Zehnder optical waveguide
  • the output is standardized as "1" when the phase difference between the light propagating through the first optical waveguide 11 and the light propagating through the second optical waveguide 12 is zero.
  • a solid line indicates the characteristics of a Mach-Zehnder optical waveguide that does not have a configuration that produces a phase difference
  • a dashed line indicates the characteristics of a Mach-Zehnder optical waveguide that has a configuration that produces a phase difference.
  • the visible light modulation element 1000 may have, in the optical modulation output section 200, a combining section 50 for combining the modulated lights from the three Mach-Zehnder optical waveguides.
  • the combining unit 50 multiplexes the light propagating through the output path 14E-2 of the Mach-Zehnder optical waveguide 10-2 and the light propagating through the output path 14E-3 of the Mach-Zehnder optical waveguide 10-3, The light is emitted from the emission port 150a through the output waveguide 51.
  • the combining unit 50 includes an MMI (Multi-Mode Interferometer) type multiplexer (see FIGS. 7A and 7B), a Y-shaped multiplexer (see FIG. 7C), and directional coupler (see FIG. 7(d)).
  • MMI Multi-Mode Interferometer
  • the multiplexer 50 shown in FIG. 7(a) propagates light through the output path 14E-1 of the Mach-Zehnder optical waveguide 10-1 and through the output path 14E-2 of the Mach-Zehnder optical waveguide 10-2.
  • the multiplexer 50 shown in FIG. 7(c) first combines the light propagating through the output path 14E-1 of the Mach-Zehnder optical waveguide 10-1 with the output path 14E-2 of the Mach-Zehnder optical waveguide 10-2. , and then the combined light is output from the multiplexing unit 50C-1 and propagated, and the output path of the Mach-Zehnder optical waveguide 10-3. It is composed of a multiplexing section 50C-2 for multiplexing the light propagating through 14E-3, and the multiplexed light from the multiplexing section 50C-2 is output to the output waveguide 51.
  • the light propagating through the output path 14E-1 of the Mach-Zehnder optical waveguide 10-1 is transferred to the output path 14E-2 of the Mach-Zehnder optical waveguide 10-2.
  • a directional coupling portion 50D-1 coupled to the light propagating through the directional coupling portion 50D-1, and then to the combined light, the directional coupling portion 50D-1 coupled to the light propagating through the output path 14E-3 of the Mach-Zehnder optical waveguide 10-3.
  • the light coupled and multiplexed from the directional coupling portion 50C-2 is output to the output waveguide 51.
  • the visible light modulation element 1000 injects into each of the three optical semiconductor elements 30 so that the peak output of each wavelength in the light emitted to the outside through the three Mach-Zehnder optical waveguides 10 has a predetermined ratio. It may have a controller (not shown) that controls the current value. Since it depends on the user, application, and human color perception sensitivity (most sensitive to green), it is possible to appropriately select the peak output of each wavelength to have a predetermined ratio.
  • the visible light modulation device 1000 sets the current value to be injected into each of the three optical semiconductor devices 30 as a constant value, and the three Mach-Zehnder optical waveguides 10 (10-1, 10-2, 10-3).
  • the three Mach-Zehnder optical waveguides 10 may be configured so that the peak output of each wavelength has a predetermined ratio in the light emitted to the outside through them.
  • the configuration of the wave path can be determined.
  • the optical waveguide length from the incident end 13a to the output end 14a of the three Mach-Zehnder optical waveguides 10 (10-1, 10-2, 10-3) is short wavelength light.
  • the shorter the wavelength the greater the propagation loss.
  • the propagation loss at each wavelength can be uniformed.
  • the output paths 14 have different lengths, but the input paths 13 may have different lengths, and the input paths 13 and output paths 14 may have different lengths. good too.
  • each of the three Mach-Zehnder type optical waveguides 10 (10-1, 10-2, 10-3) has an optical waveguide from the incident end 13a to the exit end 14a, and the light propagating therefrom is A light absorbing portion 14A (14Aa, 14Ab, 14Ac) made of a material that absorbs wavelengths is provided, and the length of the light absorbing portion 14A in the length direction of the optical waveguide is a Mach-Zehnder that propagates light with a short wavelength.
  • the length of the optical waveguide is shorter than that of the optical waveguide.
  • the output path 14 has the light absorbing portion 14A, but the input path 13 may have the light absorbing portion 14A.
  • a configuration including the portion 14A may be employed.
  • each of the three Mach-Zehnder optical waveguides 10 (10-1, 10-2, 10-3) has a curved optical waveguide from the incident end 13a to the outgoing end 14a.
  • a Mach-Zehnder optical waveguide having portions 13B (13Ba, 13Bb, and 13Bc) in which light with a shorter wavelength propagates has a larger curvature and a shorter length of the curved portion 13B.
  • the curvature of the bending portion 13B is larger and the length of the bending portion 13B is shorter in the Mach-Zehnder optical waveguide through which light with a shorter wavelength propagates.
  • Either a configuration in which the curvature of the bending portion 13B is greater than that of the Mach-Zehnder optical waveguide or a configuration in which the length of the bending portion 13B is short may be employed.
  • the input path 13 has the bent portion 13B, but the output path 14 may have the bent portion 13B. It is good also as a structure which has.
  • the maximum value of each light output emitted through the three Mach-Zehnder optical waveguides 10 (10-1, 10-2, 10-3) may have the same intensity.
  • each Mach-Zehnder optical waveguide 10' may have curved portions 10A, 10B, 10C.
  • the curved portion is provided for any of the two-mode waveguides 11 and 12 (reference numerals 10B and 10C), the incident path (reference numeral 10A), and the output path. good too.
  • the structure of an optical waveguide formed by processing a single-crystal lithium niobate thin film formed on a substrate into a convex shape consists of a core portion (single-crystal lithium niobate thin film) and a clad portion (substrate and side/top material of the optical waveguide). It is possible to provide a high refractive index difference between and, so that the optical waveguide can be curved with a high curvature. Curving can further reduce the longitudinal size. In addition, since the interaction length can be lengthened while keeping the external size small, the driving voltage can be lowered.
  • the portion other than the Mach-Zehnder optical waveguide has a groove extending from the element surface to the substrate on which the Mach-Zehnder optical waveguide is formed, and at least the bottom and side surfaces of the groove are provided with a light absorption layer.
  • the optical modulation output unit 200 can be miniaturized, the miniaturization tends to generate light components that are not coupled to the optical waveguide in the alignment process for aligning the optical axes. Such light components propagate through portions other than the optical waveguide in the optical modulation output section 200, and after multiple reflections at the end face, a portion of the light is input to the photodetector, so-called stray light is likely to occur.
  • the stray light propagating in the optical modulation output section 200 may hinder alignment of the photodetector and cause an increase in connection loss or connection failure.
  • the optical waveguide is small, so the influence of stray light is great. Therefore, it is preferable to provide the groove and the light absorption layer formed on the surface thereof as the stray light removing portion.
  • FIG. 12 is a plan view schematically showing such a configuration.
  • FIG. 13 is a cross-sectional view taken along line A-A' in FIG. 14 is a cross-sectional view taken along line B-B' of FIG. 12.
  • FIG. 13 is a cross-sectional view taken along line A-A' in FIG. 14 is a cross-sectional view taken along line B-B' of FIG. 12.
  • a groove 115 is formed near the optical waveguide 111 in the optical modulation output section 201 .
  • the grooves 115 are formed in part on both sides of the optical waveguide 111 .
  • the groove portion 115 is formed in a rectangular shape, for example, a rectangular shape when one surface of the substrate is viewed from above. Further, the groove portion 115 is formed to have an inverted trapezoid as a cross-sectional shape in the thickness direction (stacking direction) t of the visible light modulation element 1000, and the side surface 115a of the groove portion 115 is an inclined surface inclined with respect to the thickness direction t. is formed to be
  • the groove 115 is formed from the surface 32 a of the buffer layer 32 toward the substrate 140 to reach a position deeper than the one surface 140 a of the substrate 140 . That is, the bottom surface 115b of the groove portion 115 is formed at a position inside the substrate from the one surface 140a of the substrate 140, and the substrate 140 is recessed in the thickness direction t at the portion where the groove portion 115 is formed. .
  • the side surface 115a of the groove 115 is an inclined surface inclined at a predetermined inclination angle ⁇ with respect to the thickness direction t.
  • the cross-sectional shape of the light modulation element 1000 in the thickness direction t can be formed to be rectangular, and the side surface 115a of the groove 115 can be formed to be a vertical surface along the thickness direction t.
  • the depth of the substrate 140 portion of the groove 115 dug along the thickness direction t from the one surface 140 a of the substrate 140 determines the light propagating through the optical waveguide 111 .
  • the groove 115 may be formed so that the gap d is 260 nm or more.
  • the substrate 140, the lithium niobate layer in which the optical waveguide 111 is formed in a ridge shape, and the buffer layer 32 extend like a dam with a narrow width from the bottom surface 115b of the groove 115. formed.
  • a light absorption layer 116 is formed in the groove 115 so as to cover the bottom surface 115b and side surfaces 115a of the groove 115 .
  • the light absorption layer 116 is formed so as to cover not only the bottom surface 115b and side surfaces 115a of the groove 115 but also the surface 32a of the buffer layer 32 .
  • the light absorption layer 116 may have a structure in which the surface 32a of the buffer layer 32 is not covered.
  • the light absorption layer 116 is made of a material that absorbs light propagating through the optical waveguide 111 .
  • the constituent material of the light absorption layer 116 is selected according to the wavelength of light propagating through the optical waveguide 111 .
  • a material capable of absorbing or blocking light in the visible light wavelength range such as a resin material containing a visible light absorbing dye, In, Ga, etc. can be used.
  • a material capable of absorbing or blocking light in the infrared wavelength range for example, a resin material containing an infrared absorbing dye such as a cyanine compound. etc. can be used.
  • the light absorption layer 116 may be formed so as to have a thickness capable of absorbing, for example, 50% or more of the stray light P incident on the light absorption layer 116 . It is absorbed while passing through the light absorbing layer 116 formed on the other side surface 115a.
  • the light absorption layer 116 can be formed, for example, as shown in FIG. In FIG. 16, light absorption layer 116 is formed to fill the entire groove 115 including bottom surface 115b and side surface 115a. With such a configuration, the stray light P can be absorbed more reliably.
  • the optical modulation output unit 201 of the embodiment having the configuration as described above, for example, between the light source (light emitter) S that introduces light into the optical waveguide 111 and the input end IN of the optical waveguide 111, During the alignment process, there may be a component of light that is not coupled into the optical waveguide 111 .
  • the light component that is not coupled to the optical waveguide 111 becomes stray light P that propagates through portions other than the optical waveguide 111 in the visible light modulator 1000 , such as the vicinity of the one surface 140 a side of the substrate 140 and the buffer layer 32 .
  • the stray light P when the stray light P reaches the formation position of the groove 115 , the stray light P is absorbed by the light absorption layer 116 .
  • the stray light P propagating near the one surface 140a side of the substrate 140 is formed to a position deeper than the one surface 140a of the substrate 140 along the thickness direction t. reliably absorbed by
  • the stray light P is absorbed and blocked by the groove 115 and the light absorption layer 116 formed in the groove 115, so that the photodetector (not shown) arranged at the output end OUT of the optical waveguide 111 Stray light P is not input.
  • the photodetector (not shown) arranged at the output end OUT of the optical waveguide 111 Stray light P is not input.
  • the stray light P can also be blocked by appropriately setting the inclination angle ⁇ of the side surface 115 a of the groove 115 .
  • this refractive index difference causes When the incident angle of the stray light P at the interface between the buffer layer 32 and the air is about 15° or more, total reflection occurs at the interface.
  • the incident angle of the stray light P to the side surface 115a of the groove 115 is 15° or more when the inclination angle ⁇ of the side surface 115a is ⁇ 15° or more.
  • the stray light P is completely radiated to the upper side or lower side of the visible light modulation element 1000 and removed.
  • FIG. 17 is a plan view of an optical modulation output section according to another embodiment when viewed from above.
  • the optical modulation output section of this embodiment has a plurality of grooves (five in this embodiment) 125A, 125B, 125C, 125D, and 125E on both sides of the optical waveguide 111 along the extension direction of the optical waveguide 111. formed apart.
  • Each of the grooves 125A to 125E is formed in the same rectangular shape (rectangular shape) when one surface 140a (see FIG. 14) of the substrate 140 is viewed from above.
  • the distance G1 between the grooves 125A and 125B, the distance G2 between the grooves 125B and 125C, the distance G3 between the grooves 125C and 125D, and the distance G4 between the grooves 125D and 125E are all different.
  • Grooves 125A to 125E are formed.
  • the sum of the intervals between arbitrary grooves 125A to 125E is formed so as to be different from the sum of the intervals between other arbitrary grooves 125A to 125E.
  • interval G1+interval G3 has a different sum value than interval G2+interval G4.
  • the sum of the interval G2+the interval G3+the interval G4 is different from the sum of the interval G1+the interval G3+the interval G4.
  • the plurality of grooves 125A to 125E are regularly arranged at equal intervals, there is a concern that the regularly reflected stray light will be intensified.
  • stray light is prevented from being regularly reflected and strengthened, and the stray light P can be reliably absorbed and blocked by the plurality of grooves 125A to 125E and the light absorption layer 116 covering them. .
  • FIG. 18 is a plan view of an optical modulation output section of still another embodiment as viewed from above.
  • the optical circuit element 30 of this embodiment has a plurality of grooves (five in this embodiment) 135A, 135B, 135C, 135D, and 135E on both sides of the optical waveguide 111 along the extension direction of the optical waveguide 111. They are formed at regular intervals.
  • Each of the grooves 135A to 135E is formed in a rectangular shape when one surface 140a (see FIG. 14) of the substrate 140 is viewed from above.
  • the grooves 135A to 135E are formed such that the widths W1 to W5 of the grooves 135A to 135E along the extension direction of the optical waveguide 111 are all different.
  • width W1 to W5 of any grooves 135A to 135E is formed so as to be different from the sum of the widths W1 to W5 of any other grooves 135A to 135E.
  • width W1+width W3 has a different sum from width W2+width W4.
  • the sum of width W1+width W3+width W5 is different from width W1+width W2+width W4.
  • stray light may be regularly reflected and strengthened.
  • the stray light P can be prevented from being regularly reflected and strengthened, and the stray light P can be reliably absorbed and blocked by the plurality of grooves 135A to 135E and the light absorption layer 116 covering them.
  • FIG. 19 is a plan view of an optical modulation output section viewed from above according to still another embodiment.
  • FIG. 20 is a cross-sectional view taken along line CC' of FIG.
  • the optical waveguide 111 is composed of a linear portion 111L extending linearly and a curved portion 111R curved from the linear portion 111L.
  • a plurality of grooves 145 , 145 are formed in the optical modulation output section 204 of this embodiment.
  • a plurality of grooves 145, 145, . . . The inner surface (side surface, bottom surface) of this groove portion 145 is covered with the light absorption layer 116 .
  • the optical modulation output section 204 having such a configuration, when the light propagating through the optical waveguide 111 enters the curved portion 111R from the straight portion 111L, the light is curved along the curved portion 111R.
  • the stray light P propagating through the buffer layer 32 travels straight without bending at the position where the curved portion 111R is formed.
  • the stray light P traveling straight is absorbed by the plurality of grooves 145, 145, . . . Therefore, according to the optical modulation output section 204 of the present embodiment, the stray light P traveling straight at the position where the curved portion 11R of the optical waveguide 111 is formed is not emitted to the outside of the optical modulation output section 204. In the process, alignment of the photodetector can be inhibited, and an increase in connection loss and connection failure can be prevented.
  • FIG. 21 is a plan view of the optical modulation output section 205 viewed from above.
  • the optical waveguide 111 is composed of a linear portion 111L extending linearly and a curved portion 111R curved from the linear portion 111L.
  • the optical modulation output section 205 having such a configuration, when the light propagating through the optical waveguide 111 enters the curved portion 111R from the straight portion 111L, the light is curved along the curved portion 111R.
  • the stray light P propagating through the buffer layer 32 travels straight without bending at the position where the curved portion 111R is formed.
  • the stray light P traveling straight is absorbed by a plurality of curved grooves 155, 155, .
  • the light absorption coefficient of Si is 1.35 ⁇ 10 5 cm ⁇ 1, even if the thickness of the light absorption layer 116 is 100 nm, by arranging the five grooves 155, the stray light passes through all the light absorption layers 116 formed in the five grooves 155. Furthermore, the stray light can be attenuated to about 26% of the intensity before incidence.
  • the stray light P traveling straight at the position where the curved portion 111R of the optical waveguide 111 is formed is not emitted to the outside of the optical modulation output section 204.
  • alignment of the photodetector can be inhibited, and an increase in connection loss and connection failure can be prevented.
  • the visible light modulation element according to the second embodiment is obtained by giving top priority to miniaturization that can be mounted on AR glasses, VR glasses, etc. This is common with the visible light modulation element according to the first embodiment.
  • the visible light modulation element according to the second embodiment is similar to the visible light modulation element according to the first embodiment in that the optical engine can be made smaller when incorporated into the optical engine. The difference is that the invention was conceived with the highest priority on miniaturizing the provided optical system.
  • the visible light modulation element according to the second embodiment essentially includes a combining section for combining light of a plurality of wavelengths propagating through the optical modulation output section.
  • a configuration having a Mach-Zehnder optical waveguide formed by processing a lithium niobate film into a convex shape may be used as the light modulation output section. It is also possible to use a configuration in which a part obtained by modifying a part of the bulk lithium niobate single crystal substrate shown in FIG. 28A is used as an optical waveguide.
  • a visible light modulation element 2000 according to the second embodiment shown in FIGS. 22 and 23 is an example in which a portion obtained by partially modifying a bulk lithium niobate single crystal substrate is used as an optical waveguide.
  • FIG. 22 is a schematic plan view corresponding to FIG. 6 of the visible light modulation element according to the first embodiment.
  • FIG. 23 is a schematic cross-sectional view corresponding to FIG. 3 of the visible light modulation element according to the first embodiment.
  • the same reference numerals may be assigned to components common to the visible light modulation device according to the first embodiment, and description thereof may be omitted. Further, in FIGS. 22 and 23, the components with the same reference numerals as those in the above figures are the same components.
  • a light source section 100 having three optical semiconductor elements 30-1, 30-2, and 30-3 that emit visible light wavelengths of 400 nm to 700 nm, and three three Mach-Zehnder optical waveguides, into which the light emitted from the optical semiconductor elements 30-1, 30-2, and 30-3 is incident on each of the optical semiconductor elements 30-1, 30-2, and 30-3. It has waveguides 10A-1, 10A-2, and 10A-3, and has a combining section 50A in which the modulated lights from the three Mach-Zehnder optical waveguides 10A-1, 10A-2, and 10A-3 are combined. and an optical modulation output unit 300 .
  • the optical modulation output unit 300 includes a lithium niobate single crystal substrate 140A, three Mach-Zehnder optical waveguides 10A-1, 10A-2, and 10A-3 formed on the lithium niobate single crystal substrate 140A, It has electrodes 21 and 22 provided on the lithium single crystal substrate 140A and a buffer layer (not shown) interposed between the lithium niobate single crystal substrate 140A and the electrodes 21 and 22.
  • subcarrier 120 is directly bonded to substrate 140A via metal layer 93 (first metal layer 71, second metal layer 72, third metal layer 73).
  • the side surface (first side surface) 122 of the subcarrier 20 facing the substrate 140A and the side surface (second side surface) 42A of the substrate 140A facing the subcarrier 120 are formed by the first metal layer 71 and the second metal layer 71. They are connected through the layer 72 , the third metal layer 73 and the antireflection film 81 .
  • the melting point of the metal layer 75 is higher than the melting point of the third metal layer 73 .
  • the subcarrier 120 is connected to the substrate 140A through the third metal layer 93 and the antireflection film 81. As shown in FIG.
  • the manufacturing method of the visible light modulation element 2000 described below can be appropriately applied to the manufacturing method of the visible light modulation element 1000 .
  • the bare chip LD 30 is mounted on the upper surface 121 of the subcarrier 120 using a known method.
  • the metal layer 75 is formed on the upper surface 121 of the subcarrier 120 by sputtering or vapor deposition
  • the metal layer 76 is formed on the lower surface 33 of the LD 30 by sputtering or vapor deposition.
  • the metal layer 75 may be formed on the metal layer by sputtering or vapor deposition.
  • the subcarrier 120 is irradiated with laser light. Only the subcarrier 120 is heated to such an extent that it is not melted or deformed by laser light irradiation, and the metal layers 75 and 76 are softened or melted by heat transfer from the subcarrier 120, forming the first metal layer 91, and then cooled. do.
  • the LD 30 is bonded to the upper surface 121 of the subcarrier 120 via the metal layers 75 and 76.
  • a metal layer 71 is formed on the side surface 22 of the subcarrier 120 using sputtering, vapor deposition, or the like.
  • An optical modulation output section 300 such as a Mach-Zehnder optical waveguide and a multiplexing section is formed on the substrate 140A by a known process.
  • the emission surface 31-1 of the LD 30-1 and the incidence surfaces 61 of the optical waveguides (cores) 10A-1, 10A-2, and 10A-3 corresponding to each other are overlapped in the x and z directions, and Oppose each other with a predetermined interval.
  • the optical axis of each color light emitted from the LD 30 and the axis of the incident surface 61 of the corresponding core are substantially overlapped.
  • the subcarrier 120 is irradiated with a laser beam, and heat transfer from the subcarrier 120 softens or melts the metal layers 71, 72, and 73 to form a third metal layer 93.
  • the subcarrier 120 on which the LD 30 is mounted is joined to the substrate 140A on which the optical modulation output section 300 is formed while adjusting the relative position of the .
  • lasers for laser light irradiation are arranged on both sides of the subcarrier 120 in the x direction.
  • the light emitted from the lasers on both sides is applied to the subcarrier 120 to heat it, and only the subcarrier 120 is heated to such an extent that it is not melted or deformed.
  • each color light is emitted from the LD 30 and the emission intensity is detected, and the emission intensity of the three color lights emitted from the core 10A of the light modulation output section 300 is detected.
  • the spacing S and the LD30 can be adjusted using a known device having an active alignment function.
  • the metal layers 71, 72, 73 between the exit surface 31 and the entrance surface 61 of the LD 30 arranged at the optimum position are alloyed with the metal layer 73. And due to slight thermal shrinkage, it becomes thinner than each metal layer not sandwiched between the exit surface 31 of the LD 30 and the entrance surface 61 of the core 10A.
  • the subcarrier 120 is cooled and the position of the LD 30 is fixed.
  • the visible light modulation element 2000 includes a subcarrier 120, an LD 30 provided on the upper surface 121 of the subcarrier 120, and an optical modulation output section arranged so that light emitted from the LD 30 can be incident. 300;
  • the emission surface 31 of the LD 30 and the side surface 122 of the subcarrier 120 are located at substantially the same position in the y direction, so the LD 30 does not protrude forward in the y direction from the subcarrier 120. A decrease in the bonding strength of the LD 30 to the subcarrier 120 can be prevented. Since the output surface 31 of the LD 30 and the side surface 22 of the subcarrier 120 are at substantially the same position in the y direction, the size of the third metal layer 93 in the y direction is set to the light modulation corresponding to the output surface 31 of the LD 30 and the LD 30 . The distance in the y-direction between the output section 300 and the incident surface 61 of the core 10A can be substantially the same.
  • the metal layers 71, 72, and 73 are softened or melted by heat transfer from the subcarrier 120, and the subcarrier 120 is bonded to the substrate 140A while adjusting the relative positions of the LD 30 and the optical modulation output section 300.
  • the subcarrier 120 and the LD 30 are connected via the first metal layer 91 having the metal layers 75,76.
  • the metal layers 71, 72 and 73 are melted or softened and the subcarrier
  • the metal layer 75 can be prevented from being melted again and causing a relative displacement between the LD 30 and the subcarrier 120.
  • the positional accuracy between the LD 30 and the optical modulation output section 300, which are connected via the subcarrier 120, is increased, and a highly reliable visible light modulation element 2000 is provided.
  • the bonding between the subcarrier 120 and the LD 30 by the alloyed metal layers 75 and 76 is heat-resistant, and is difficult to be released even if the surrounding environment temperature rises in a process such as wire bonding.
  • a process such as wire bonding.
  • the LD 30 and the power supply (not shown) are connected to each other on the upper surface 121 of the subcarrier 120 by wire using a method such as wire bonding
  • the state in which the subcarrier 120 and the LD 30 are well bonded is maintained. be.
  • the LD 30 and the subcarrier 120 are not separated from each other during wire bonding, and the LD 30 is maintained at the optimum position on the subcarrier 120 .
  • the visible light modulation element 2000 can exhibit desired light utilization efficiency and optical characteristics, and the reliability of the visible light modulation element 2000 can be enhanced.
  • a gap 70 is formed between the emission surface 31 of the LD 30 and the incidence surface 61 of the light modulation output section 300 on which each color light is incident.
  • the visible light modulation element 2000 is configured such that each color light emitted from the emission surface 31 of the LD 30 propagates along the y-direction through the gap 70 and enters the incidence surface 61 of the core 10A of the optical modulation output section 300. ing. With the above-described configuration, each color light emitted from the emission surface 31 of the LD 30 can be easily made incident on the core 10A of the optical modulation output unit 300 in a state of satisfying a predetermined coupling efficiency, and highly reliable visible light modulation Device 2000 can be provided.
  • the wavelengths of light emitted from the plurality of optical semiconductor elements can all be different from each other.
  • the Mach-Zehnder optical waveguides 10A (10A-1, 10A-2, 10A-3) can be configured to have curved portions.
  • the combining section 50A is any selected from the group consisting of an MMI multiplexer, a Y-shaped multiplexer, and a directional coupler. It can be configured as follows.
  • the configuration may include a controller for controlling a current value to be injected into each of the plurality of optical semiconductor elements so that the output has a predetermined ratio.
  • a plurality of Mach-Zehnder type The plurality of Mach-Zehnder optical waveguides 10A (10A-1 , 10A-2, 10A-3) can be configured.
  • a Mach-Zehnder optical waveguide in which light with a shorter wavelength propagates can have a shorter length.
  • each of the plurality of Mach-Zehnder optical waveguides 10A (10A-1, 10A-2, 10A-3) has a light guide from the incident end to the exit end.
  • the waveguide is provided with a light absorbing portion made of a material that absorbs the wavelength of the propagating light. The shorter the wave path, the shorter the configuration.
  • each of the plurality of Mach-Zehnder optical waveguides 10A (10A-1, 10A-2, 10A-3) has a light guide from the incident end to the exit end.
  • a wave path may be provided with a bent portion having a curvature, and a Mach-Zehnder optical waveguide in which light with a shorter wavelength propagates may have a larger curvature or a shorter length of the bent portion.
  • the outputs can be configured to have the same intensity.
  • the portions other than the plurality of Mach-Zehnder optical waveguides 10A (10A-1, 10A-2, 10A-3) are: A groove extending from the device surface to the substrate 140A on which the Mach-Zehnder optical waveguide 10A is formed can be provided, and at least the bottom and side surfaces of the groove can be provided with light absorption layers.
  • the visible light modulation element 2000 may also have a configuration in which the light absorption layer is formed so as to fill the entire groove.
  • the visible light modulation element 2000 may also have a configuration in which a plurality of grooves are formed along one surface of the substrate while being spaced apart from each other.
  • the plurality of Mach-Zehnder optical waveguides 10A (10A-1, 10A-2, 10A-3) have curved portions curved from straight portions,
  • the groove may be arranged so as to intersect the imaginary extension of the straight portion.
  • the optical waveguide has a curved portion that curves from the straight portion, and the groove portion is formed so as to curve and extend along the curved portion. can do.
  • an optical engine means an optical system including a plurality of light sources, a multiplexing unit that combines a plurality of lights emitted from the plurality of light sources into one light, and an image of the light emitted from the optical system. and a light scanning mirror that reflects at different angles to display.
  • FIG. 24 is a conceptual diagram for explaining the optical engine 5001 according to this embodiment.
  • the illustration shows a state in which the optical engine 5001 is installed in the glasses 10000 .
  • Symbol L is image display light.
  • the optical engine 5001 has a visible light modulation element 1001 and an optical scanning mirror 3001 .
  • the visible light modulation element 1001 included in the optical engine 5001 either the visible light modulation element according to the first embodiment or the visible light modulation element according to the second embodiment can be used.
  • the visible light modulation element 1001 incorporates an RGB light source and a multiplexing unit that combines the RGB light emitted from the RGB light source into one.
  • the optical scanning mirror 3001 is, for example, a MEMS mirror.
  • a biaxial MEMS mirror that vibrates so as to reflect the laser light at different angles in the horizontal direction (X direction) and vertical direction (Y direction).
  • the optical engine 5001 has a collimator lens 2001a, a slit 2001b, and an ND filter 2001c as an optical system for optically processing the laser light emitted from the visible light modulation element 1001.
  • This optical system is an example, and may have other configurations.
  • the optical engine 5001 has a laser driver 1100, an optical scanning mirror driver 1200, and a video controller 1300 that controls these drivers.
  • FIG. 25(a) schematically shows an optical engine A5001 (see Cited Document 2) that does not have a multiplexer or multiplexer in the modulation element A1001.
  • FIG. 25B is a diagram schematically showing an optical engine 5001 according to this embodiment having a multiplexing section within the visible light modulation element 1001. As shown in FIG.
  • the optical engine 5001 shown in FIG. 25(b) since three wavelengths are multiplexed from the visible light modulation element 1001, it is possible to reduce the size by using only one optical component. Since it is made with one beam spot, it becomes easier to increase the resolution.
  • the optical engine A5001 shown in FIG. 25A does not have a multiplexer or multiplexer in the modulation element A1001, three color beam spots are required to emit white light.
  • the beam spot becomes large, making it difficult to increase the resolution.
  • beam spots for three colors are required,
  • the collimator lens A2001a, the slit (or aperture) A2001b, the ND filter A2001c, and the two-axis MEMS mirror A3001 are large in design and require a large number, which is not suitable for miniaturization.
  • a Mach-Zehnder optical waveguide having the configuration shown in FIGS. 26(a) and 26(b) was produced.
  • the material of the substrate 140 was sapphire.
  • a lithium niobate film having a film thickness T LN of 0.7 ⁇ m was formed on the surface 140a of the substrate 140 by sputtering.
  • ridge portions (optical waveguides) 11 and 12 were formed by mask formation with a resist and dry etching processing using Ar plasma.
  • the branching section 15 and the multiplexing section 16 are of the MMI type.
  • the cross-sectional shape of the ridge portion was rectangular, the ridge width W ridge was 0.8 ⁇ m, and the ridge height T ridge was 0.5 ⁇ m.
  • a SiO 2 film was formed to sufficiently fill the ridges 11 and 12, and then polishing and planarization were performed by CMP up to the upper surface of the ridges.
  • a SiInO buffer layer 32 having a film thickness T buffer of 0.6 ⁇ m was formed by vapor deposition. Then, planarization by CMP was performed. Electrodes 21, 21 having a width W of 3.5 ⁇ m and a height T of 2 ⁇ m were formed by a photolithography process and a gold plating process. Other parameters are as follows.
  • FIG. 27 shows the results of an optical modulation experiment at each wavelength of RGB using the fabricated Mach-Zehnder optical waveguide.
  • 27(a), (b), and (c) show the light intensities obtained from the output waveguide when continuous light beams with wavelengths of 473 nm, 520 nm, and 638 nm are introduced from the entrance of the input waveguide 13, respectively. .
  • optical modulation was confirmed for light of any wavelength.
  • the voltage differences V ⁇ when the phase difference was zero and when the phase difference was ⁇ were 2.4 V, 2.8 V, and 3.8 V, respectively.
  • the dimension (length) L1 of the Mach-Zehnder optical waveguide used in the experiment was 9.15 mm as described above. It was confirmed that such a Mach-Zehnder optical waveguide composed of a lithium niobate film having a small size of 1 cm or less can provide a visible light modulation element that can be driven with low power consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

この可視光変調素子(1000)は、波長400nmから700nmの可視光波長の光を出射する複数の光半導体素子(30-1、30-2、30-3)を有する光源部(100)と、3個の光半導体素子(30-1、30-2、30-3)の各々に対して、光半導体素子(30-1、30-2、30-3)から出射された光が入射する、ニオブ酸リチウム膜が凸型に加工されてなるマッハツェンダー型光導波路(10-1、10-2、10-3)を3本有する光変調出力部(200)と、を備える。

Description

可視光変調素子及びそれを備える光学エンジン
 本発明は、可視光変調素子及びそれを備える光学エンジンに関するものである。
 AR(Augmented Reality:拡張現実)グラス、VR(Virtual Reality:仮想現実)グラスは小型のウェアラブルデバイスとして期待されている。このようなデバイスにおいて、フルカラーの可視光を発光する発光素子は、高品質な画像を描画するための中心的な素子の1つである。かかるデバイスにおいては、発光素子が例えば可視光を表現するRGBの3色の各々の強度を独立に高速に変調し、所望の色で動画を表現している。
 このような発光素子として、特許文献1には可視光のレーザーを導波路に入射して、各色のレーザーチップの出射強度を電流により制御することによりカラーの動画を出射する発光素子が開示されている。また、引用文献2には、光ファイバを介して電気光学効果を有する基板に形成された導波路を有する外部変調器にレーザー光を入射して、外部変調器によりRGBの3色の各々の強度を独立に変調する変調器が開示されている。
 ARグラス、VRグラスのようなウェアラブルデバイスにおいては、発光モジュールは通常の眼鏡型のサイズに各機能が収まるように小型化されることが普及に対するカギとなっている。
特開2021-86976号公報 特許第6728596号公報
 引用文献1に開示された発光素子では、レーザーの出射強度を電流により直接する制御するが、電流制御では出射強度の安定性を確保するために閾値電流よりもある一定以上の高い電流値を中心に電流制御する必要がある。そのため、消費電力が大きく、その低減が困難であるという問題がある。
 また、引用文献2には、電気光学効果を有するニオブ酸リチウム・タンタル酸リチウム・ジルコン酸チタン酸鉛ランタン・リン酸チタン酸カリウム・ポリチオフェン・液晶材料・各種誘起ポリマーを材料とした基板を用い、この基板に光導波路を設けた光変調器が開示されている。この中で特にニオブ酸リチウムの単結晶または固溶体結晶を用いて,その一部をプロトン交換法やTi拡散法により改質した部分を光導波路とした様態が好ましい様態として開示されている。しかしながら,改質した導波部分(コア)領域のサイズがプロトンやTiが侵入・拡散した距離により規定されるため、光導波路の径を小さくすることが困難である。そのため光導波路自体の大きさが大きくならざるを得ず、また、光導波路の径が大きいことにより変調電圧の電界が集中しづらく、変調のためには大きな電圧をかける必要があるか、小さな電圧で動作させるためには電圧を付与する電極を長くする必要があるため、素子のサイズが大きくなってしまう。
 また、図28(a)に示すような、バルクニオブ酸リチウムの単結晶B1の一部を改質した部分B1-aを光導波路とした変調器においては、バルクニオブ酸リチウム単結晶中にTiを少し加えて屈折率差Δnを作っているだけなので改質した導波部分(コア)と改質していない部分(クラッド)の屈折率差が小さい。そのため、光導波路を湾曲することによる曲げ損が大きく、曲率高く光導波路を湾曲することができないため。素子のサイズを小さくすることは困難である。また、ARグラス等のヘッドマウントディスプレイに搭載される変調光源には、例えば眼鏡の弦のサイズに収まるサイズが求められるが、引用文献2のようなバルク結晶型の光変調器ではかかるサイズまで小型化された光変調器を作製することは困難である。
 ニオブ酸リチウム単結晶B1の一部を改質した部分B1-aを光導波路とした変調器に対して、図28(b)に示すような、サファイア等の基板上にエピタキシャル成長させた単結晶ニオブ酸リチウム膜Fを加工した凸部Fridgeを光導波路とした変調器の場合には、そもそもこの凸型部分がTi拡散光導波路に比べてサイズが小さいこと、凸部の周りがすべてクラッドに相当するので周りの材料を適切に選択すると屈折率差Δnを大きくすることができること、光導波路を曲線状に曲げた場合の光損失がバルクニオブ酸リチウム単結晶に比べて小さいこと等の理由から、小型化に適している。
 また、引用文献2の図7には、光源部311と変調器30とを構成単位としてモジュール化され、光源部311を直接変調せず、変調器30によって外部変調した光を出射可能な光学モジュール100が開示されている。引用文献2に開示された光学モジュール100のように、赤(R)、緑(G)、青(G)のレーザー光が変調器30から出力された後引用文献2に合波される構成の光学モジュールを光学エンジンの構成要素として用いる場合には、後述するように光学系が大きくなるために、光学エンジンとしてのサイズを小型化することが困難である。
 本発明者は、以上のような状況に鑑みて、ARグラス、VRグラスなどに搭載可能なほどの小型化を図ること最優先にして検討した結果、本発明に想到した。
 本発明は、上記課題に鑑みてなされたものであり、ARグラス、VRグラスなどに搭載可能な小型の可視光変調素子及びそれを備えた光学エンジンを提供することを目的とする。
 本発明は、上記課題を解決するために、以下の手段を提供する。
 本発明の第1態様に係る可視光変調素子は、波長400nmから700nmの可視光波長の光を出射する複数の光半導体素子を有する光源部と、前記複数の光半導体素子の各々に対して、前記光半導体素子から出射された光が入射する、ニオブ酸リチウム膜が凸型に加工されてなるマッハツェンダー型光導波路を前記光半導体素子の数と同数有する光変調出力部と、を備える。
 上記態様に係る可視光変調素子は、前記複数の光半導体素子が出射する光の波長は互いにすべて異なっていてもよい。
  上記態様に係る可視光変調素子は、前記マッハツェンダー型光導波路が湾曲部を有してもよい。
  上記態様に係る可視光変調素子は、前記複数の光半導体素子が搭載されている基台と前記マッハツェンダー型光導波路が形成されている基板とが金属層を介して直接接合されていてもよい。
  上記態様に係る可視光変調素子は、前記光半導体素子から光が出射される出射面と前記光変調出力部の入射面との間に隙間を有し、前記光半導体素子からの光は前記出射面から出射され、前記隙間を伝搬し、前記入射面の前記マッハツェンダー型光導波路に入射するように、対応する前記光半導体素子と前記マッハツェンダー型光導波路とが位置決めされていてもよい。
  上記態様に係る可視光変調素子は、前記光変調出力部に、複数のマッハツェンダー型光導波路からの変調光が合波される合波部を有してもよい。
  上記態様に係る可視光変調素子は、前記合波部が、MMI型合波器、Y字型合波器、及び、方向性結合器からなる群から選択されたいずれかであってもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数の光半導体素子の各々に注入する電流値を制御する制御器を有してもよい。
  上記態様に係る可視光変調素子は、前記複数の光半導体素子の各々に注入する電流値を一定値として、前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数のマッハツェンダー型光導波路が構成されていてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路の入射端から出射端までの光導波路の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短くてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、伝搬する光の波長に対して吸収性のある材料からなる光吸収部を備え、前記光吸収部の光導波路の長さ方向の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短くてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、曲率を有する曲がり部を備え、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲率が大きいか、前記曲がり部の長さが短くてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が同一の強度であってもよい。
  上記態様に係る可視光変調素子は、前記光変調出力部において、前記マッハツェンダー型光導波路以外の部分に、素子表面から前記マッハツェンダー型光導波路が形成されている基板まで達する溝部を有し、少なくとも前記溝部の底面及び側面に光吸収層を備えてもよい。
 上記態様に係る可視光変調素子は、前記光吸収層は前記溝部全体を埋めるように形成されていてもよい。
 上記態様に係る可視光変調素子は、前記溝部は、前記基板の一面に沿って、互いに離間して複数形成されていてもよい。
 上記態様に係る可視光変調素子は、前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記直線部の仮想延長線と交差するように配置されていてもよい。
 上記態様に係る可視光変調素子は、前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記湾曲部に沿うように湾曲して延びるように形成されていてもよい。
  本発明の第2態様に係る可視光変調素子は、波長400nmから700nmの可視光波長の光を出射する複数の光半導体素子を有する光源部と、前記複数の光半導体素子の各々に対して、前記光半導体素子から出射された光が入射するマッハツェンダー型光導波路を前記光半導体素子の数と同数有すると共に、前記複数のマッハツェンダー型光導波路からの変調光が合波される合波部を有する光変調出力部と、を備える。
 上記態様に係る可視光変調素子は、前記複数の光半導体素子が出射する光の波長は互いにすべて異なっていてもよい。
  上記態様に係る可視光変調素子は、前記マッハツェンダー型光導波路が湾曲部を有してもよい。
  上記態様に係る可視光変調素子は、前記複数の光半導体素子が搭載されている基台と前記マッハツェンダー型光導波路が形成されている基板とが金属層を介して直接接合されていてもよい。
  上記態様に係る可視光変調素子は、前記光半導体素子から光が出射される出射面と前記光変調出力部の入射面との間に隙間を有し、前記光半導体素子からの光は前記出射面から出射され、前記隙間を伝搬し、前記入射面の前記マッハツェンダー型光導波路に入射するように、対応する前記光半導体素子と前記マッハツェンダー型光導波路とが位置決めされていてもよい。
  上記態様に係る可視光変調素子は、前記合波部が、MMI型合波器、Y字型合波器、及び、方向性結合器からなる群から選択されたいずれかであってもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数の光半導体素子の各々に注入する電流値を制御する制御器を有してもよい。
  上記態様に係る可視光変調素子は、前記複数の光半導体素子の各々に注入する電流値を一定値として、前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数のマッハツェンダー型光導波路が構成されていてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路の入射端から出射端までの光導波路の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短くてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、伝搬する光の波長に対して吸収性のある材料からなる光吸収部を備え、前記光吸収部の光導波路の長さ方向の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短くてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、曲率を有する曲がり部を備え、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲率が大きいか、前記曲がり部の長さが短くてもよい。
  上記態様に係る可視光変調素子は、前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が同一の強度であってもよい。
  上記態様に係る可視光変調素子は、前記光変調出力部において、前記マッハツェンダー型光導波路以外の部分に、素子表面から前記マッハツェンダー型光導波路が形成されている基板まで達する溝部を有し、少なくとも前記溝部の底面及び側面に光吸収層を備えてもよい。
 上記態様に係る可視光変調素子は、前記光吸収層は前記溝部全体を埋めるように形成されていてもよい。
 上記態様に係る可視光変調素子は、前記溝部は、前記基板の一面に沿って、互いに離間して複数形成されていてもよい。
 上記態様に係る可視光変調素子は、前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記直線部の仮想延長線と交差するように配置されていてもよい。
 上記態様に係る可視光変調素子は、前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記湾曲部に沿うように湾曲して延びるように形成されていてもよい。
  本発明の第3態様に係る光学エンジンは、上記態様に係る可視光変調素子と、前記可視光変調素子から出射された光を、画像表示するように角度を変えて反射する光走査ミラーと、を備える。
 本発明に係る可視光変調素子によれば、ARグラス、VRグラスなどに搭載可能な小型の可視光変調素子を提供できる。
第1実施形態に係る可視光変調素子を模式的に示す平面図である。 図1においてX-X線で切断した断面模式図である。 図1においてY-Y線で切断した断面模式図である。 光変調出力部200のブロック図である。 各マッハツェンダー型光導波路における光変調曲線を示す図である。 合波部を有する可視光変調素子を模式的に示す平面図である。 (a)MMI型合波器、(b)Y字型合波器、(c)方向性結合器を模式的に示す図である。 各色の光出力の割合を1:1:1に近づけるための第1構成例である。 各色の光出力の割合を1:1:1に近づけるための第2構成例である。 各色の光出力の割合を1:1:1に近づけるための第3構成例である。 湾曲部を有するマッハツェンダー型光導波路を模式的に示す平面図である。 迷光除去部を説明するための平面模式図である。 図12のA-A’線に沿って破断した断面図である。 図12のB-B’線に沿って破断した断面図である。 溝部の他の形状例を示す断面図である。 光吸収層の他の形成例を示す断面図である。 他の実施形態に係る光変調出力部を上から見た時の平面図である。 さらに他の実施形態に係る光回路素子を上から見た時の平面図である。 さらに他の実施形態に係る光回路素子を上から見た時の平面図である。 図19のC-C’線に沿って破断した断面図である。 さらに他の実施形態に係る光回路素子を上から見た時の平面図である。 第2実施形態に係る可視光変調素子を模式的に示す平面図である。 図22においてY-Y線で切断した断面模式図である。 第3実施形態に係る光学エンジンを説明するための概念図である。 (a)は変調素子内に合波器を有さない光学エンジンを模式的に示す図であり、(b)は可視光変調素子内に合波部を有する本実施形態に係る光学エンジンを模式的に示す図である。 実施例のマッハツェンダー型光導波路を模式的に示す図であり、(a)は断面図であり、(b)は平面図である。 作製したマッハツェンダー型光導波路を用いてRGBの各波長で光変調実験を行った結果である。 (a)はバルクニオブ酸リチウムの単結晶の一部を改質した部分を光導波路とした変調器を説明するための概念図であり、(b)は単結晶ニオブ酸リチウム膜を加工してなる凸部を光導波路とした変調器を説明するための概念図である。
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
 図1は、一実施形態に係る可視光変調素子を模式的に示す平面図である。図1において、マッハツェンダー型光導波路に位相差を付与するための電極は一部しか描いていない。図2は、図1においてX-X線で切断した断面模式図である。図3は、図1においてY-Y線で切断した断面模式図である。
〔可視光変調素子(第1実施形態)〕
 図1に示す可視光変調素子1000は、波長400nmから700nmの可視光波長の光を出射する3個の光半導体素子30-1、30-2、30-3(以下、まとめて「光半導体素子30」ということがある)を有する光源部100と、3個の光半導体素子30-1、30-2、30-3の各々に対して、光半導体素子30-1、30-2、30-3から出射された光が入射する、ニオブ酸リチウム膜が凸型に加工されてなるマッハツェンダー型光導波路10-1、10-2、10-3(以下、まとめて「マッハツェンダー型光導波路10」ということがある)を3本有する光変調出力部200と、を備える。
 また、光半導体素子30-1、30-2、30-3はサブキャリア(基台)120上に搭載されており、マッハツェンダー型光導波路10-1、10-2、10-3は基板140上に形成されている。
 可視光変調素子1000では、単結晶ニオブ酸リチウム薄膜を凸型に加工されてなる光導波路を用いることにより、光導波路のサイズを1mm以下と小さくすることができ、可視光変調素子のサイズを小型化することが可能となった。また極めて絶縁性の高い外部変調器を電圧で制御するため、強度変調のための電流はほとんど必要とせず、レーザー発光のため必要最低限の電流で作動するため低消費電力である。
 小型化の観点でさらに、光導波路を作製する際にバルクのニオブ酸リチウム単結晶を使った場合に比べて、光導波路を作製する際にニオブ酸リチウム膜を使った場合の利点について述べる。
 光導波路を作製する際にバルクのニオブ酸リチウム単結晶を使った場合、Ti拡散導波路はバルクニオブ酸リチウム単結晶にTiを拡散させて、その周囲の元々の単結晶の屈折率より高い部分を作っている。これに対して、光導波路を作製する際にニオブ酸リチウム膜を使った場合、ニオブ酸リチウム膜を加工して光導波路となる凸型部分を作る。この凸型部分はTi拡散導波路に比べてサイズが小さい。
 さらにバルクのニオブ酸リチウム単結晶を使った場合、Ti拡散導波路(コア)とその周囲の単結晶部分(クラッド)との屈折率差Δnが小さい。これは、バルクニオブ酸リチウム単結晶中にTiを少し加えて屈折率差Δnを作っているだけだからである。これに対して、ニオブ酸リチウム膜を使った場合では、凸型部分(コア)の周りがすべてクラッドに対応するので、周りの材料(サファイア基板及び導波路の側面・上面材料)を適切に選択すると屈折率差Δnを大きくすることができる。この結果として、曲率高く光導波路を湾曲することもでき、この湾曲によって長手方向のサイズをさらに縮小できる。さらに、外形のサイズを小さくしたまま相互作用長を長くできるため、駆動電圧を下げることができる。
(光半導体素子)
 光半導体素子30としては、各種レーザー素子が使用可能である。例えば、市販の赤色光、緑色光、青色光等のレーザーダイオード(LD)が使用可能である。赤色光は、ピーク波長が610nm以上750nm以下である光が使用可能であり、緑色光は、ピーク波長が500nm以上560nm以下である光が使用可能であり、青色光は、ピーク波長が435nm以上480nm以下である光が使用可能である。
 図1に示す可視光変調素子1000において、光半導体素子30-1、30-2、30-3をそれぞれ、青色光を発するLD、緑色光を発するLD、及び赤色光を発するLDとする。LD30-1、30-2、30-3は、それぞれのLDから発せられる光の出射方向に略直交する方向において互いに間隔をあけて配置され、サブキャリア120の上面121に設けられている。以下では、任意の構成要素の符号Zについて、符号Z-1、Z-2、…、Z-Kの構成要素に共通する内容については、これらをまとめて符号Zと記載する場合がある。前述のKは2以上の自然数である。
 図1に示す可視光変調素子1000では、光半導体素子の個数が3個の場合を例示したが、3個に限定されず、2個あるいは4個以上の複数であればよい。複数の光半導体素子は発光する光の波長がすべて異なるものでもよいし、また、発光する光の波長が同じ光半導体素子があっても構わない。また、発光する光は赤(R)、緑(G)、青(B)以外の光も使用可能であり、図面を用いて説明した赤(R)、緑(G)、青(B)の搭載順についても、この順である必要性はなく適宜変更可能である。
 LD30は、ベアチップでサブキャリア120に実装可能である。サブキャリア120は、例えば窒化アルミニウム(AlN)や、酸化アルミニウム(Al)、シリコン(Si)等で構成されている。図3に示すように、サブキャリア120とLD30との間には、金属層75,76が設けられている。サブキャリア120とLD30とは、金属層75,76を介して接続されている。金属層75,76を形成する方法としては、公知の方法が利用可能で特に問わないが、スパッタ、蒸着、ペースト化した金属の塗布等の公知手法が利用可能である。金属層75,76は、例えば金(Au)、白金(Pt)、銀(Ag)、鉛(Pb)、インジウム(In)、ニッケル(Ni)、チタン(Ti)及びタンタル(Ta)、タングステン(W)、金(Au)とスズ(Sn)の合金、スズ(Sn)-銀(Ag)-銅(Cu)系はんだ合金(SAC)、SnCu、InBi、SnPdAg、SnBiIn及びPbBiInからなる群から選択される1又は複数の金属を含み、この群から選択される1又は複数の金属で構成されていてもよい。
 基板140としては、マッハツェンダー型光導波路を構成するニオブ酸リチウム膜より屈折率が低いものであれば特に限定されないが、単結晶ニオブ酸リチウム膜をエピタキシャル膜として形成させることができる基板が好ましく、サファイア単結晶基板もしくはシリコン単結晶基板が好ましい。単結晶基板の結晶方位は特に限定されないが、例えば、c軸配向のニオブ酸リチウム膜は3回対称の対称性を有しているので、下地の単結晶基板も同じ対称性を有していることが望ましく、サファイア単結晶基板の場合はc面、シリコン単結晶基板の場合は(111)面の基板が好ましい。
 図3に示すように、各マッハツェンダー型光導波路10の入射路13の入射口61が各LD30の出射口31-1と対向し、LD30の出射面31から出射される光が入射路13に入射可能に位置決めされている。入射路13の軸線JX-1は、LD30の出射口31-1から出射されるレーザ光LRの光軸AXRと略重なっている。このような構成及び配置によって、LD30-1,30-2,30-3から発せられる青色光、緑色光、赤色光は、各マッハツェンダー型光導波路10の入射路13に入射可能である。
 図3に示すように、サブキャリア120は、金属層93(第1金属層71,第2金属層72,第3金属層73)を介して基板140と直接接合された構成とすることができる。この構成によって、空間結合やファイバ結合をしないことによりさらに小型化が可能となる。
 本実施形態では、サブキャリア120において基板140に対向する側面(第1側面)122と基板140においてサブキャリア120に対向する側面(第2側面)42とは、第1金属層71、第2金属層72、第3金属層73、反射防止膜81を介して接続されている。金属層75の融点は、第3金属層73の融点よりも高い。
 第1金属層71は、スパッタ又は蒸着等によって側面122に当接した状態で設けられ、例えば金(Au)、白金(Pt)、銀(Ag)、鉛(Pb)、インジウム(In)、ニッケル(Ni)、チタン(Ti)及びタンタル(Ta)からなる群から選択される1又は複数の金属を含み、この群から選択される1又は複数の金属で構成されていてもよい。好ましくは、第1金属層71が、金(Au)、白金(Pt)、銀(Ag)、鉛(Pb)、インジウム(In)、ニッケル(Ni)からなる群から選択される少なくとも1つの金属を含む。第2金属層72は、スパッタ又は蒸着等によって側面42に当接した状態で設けられ、例えばチタン(Ti)、タンタル(Ta)及びタングステン(W)からなる群から選択される1又は複数の金属を含み、この群から選択される1又は複数の金属で構成されていてもよい。好ましくは、第2金属層72に、タンタル(Ta)が用いられる。第3金属層73は、第1金属層71と第2金属層72との間に介在し、例えばアルミニウム(Al)、銅(Cu)、AuSn、SnCu、InBi、SnAgCu、SnPdAg、SnBiIn及びPbBiInからなる群から選択される1又は複数の金属を含み、この群から選択される1又は複数の金属で構成されていてもよい。好ましくは、第3金属層73に、AuSn、SnAgCu、SnBiInが用いられる。
 第1金属層71の厚み、即ち第1金属層71のy方向の大きさは、例えば0.01μm以上5.00μm以下である。第2金属層72の厚み、即ち第2金属層72のy方向の大きさは、例えば0.01μm以上1.00μm以下である。第3金属層73の厚み、即ちy方向の大きさは、例えば0.01μm以上5.00μm以下である。また、第3金属層73の厚みは、第1金属層71及び第2金属層72の各厚みより大きいことが好ましい。このような構成では、第1金属層71、第2金属層72、第3金属層73の前述の各役割が良好に発現され、基板40に対する第1金属層71の材料の進入及び各金属層同士の接着強度の低下が抑えられる。第1金属層71、第2金属層72および第3金属層73の厚みは、例えば分光エリプソメトリにより測定される。
 第1金属層71は、金属層75に接触しない状態で、側面122の略全域において基板140又は光変調構造層150に対向する側面に設けられている。第2金属層72及び第3金属層73のz方向の前端、即ち上端は、例えばz方向の前側では第1金属層71の上端と同じ位置に達している。第2金属層72及び第3金属層73のz方向の後端、即ち下端は、例えばサブキャリア20,第1金属層71及び基板140の下端と同じ位置に達している。y方向に沿って見たとき、x方向において第1金属層71はサブキャリア20より大きく形成されている。
 前述の構成のように、第1金属層71の面積、即ちx方向及びz方向を含む面内の大きさは、第2金属層72及び第3金属層73の面積と略同じであり、かつその下端がサブキャリア120の下端と同じ位置に達していることが好ましい。このような構成では、基板140に対するサブキャリア120の接続強度が最大限に確保される。すなわち、例えばLD30及びサブキャリア120の各々と複数の内部電極のうち各LD30に対応する内部電極パッドとを、ワイヤーボンディングを用いてワイヤーによって接続する場合であっても、サブキャリア120と基板140との接続が解除されることを抑制できる。またサブキャリア20、第1金属層71、第2金属層72、第3金属層73及び基板140の下端が同じ位置に達していることで、サブキャリア120からの放熱パスを増やすことができる。尚、第1金属層71の面積は第2金属層72及び第3金属層73の面積より小さくてもよい。
 可視光変調素子1000では、LD30と光変調構造層150との間に反射防止膜81が設けられている。例えば、反射防止膜81は、基板140の側面42と光変調構造層150の入射面151とに、一体的に形成されている。但し、反射防止膜81は、光変調構造層150の入射面151のみに形成されていてもよい。
 反射防止膜81は、光変調構造層150への入射光が入射面151から進入する方向とは逆向きに反射することを防止し、入射光の透過率を高めるための膜である。反射防止膜81は、例えば複数の種類の誘電体が、入射光である赤色光、緑色光、青色光の波長に応じた所定の厚みで交互に積層されることによって形成される多層膜である。前述の誘電体としては、例えば酸化チタン(TiO)、酸化タンタル(Ta)、酸化シリコン(SiO)、酸化アルミニウム(Al)等が挙げられる。
 LD30の出射面31と光変調構造層150の入射面151とは、所定の間隔で配置されている。入射面151は出射面31と対向しており、y方向において出射面31と入射面151との間には隙間70がある。可視光変調素子1000は空気中に露出されているので、隙間70には空気が満ちている。隙間70が同じガス(空気)で充填された状態となるため、LD30から出射された各色光を所定の結合効率を満たした状態で入射路に入射させることが容易である。可視光変調素子1000がARグラス、VRグラスに用いられる場合、ARグラス、VRグラスで求められる光量等をふまえると、隙間(間隔)70のy方向の大きさは、例えば0μmより大きく、5μm以下である。
(マッハツェンダー型光導波路)
 マッハツェンダー型光導波路では、波長と位相のそろった光ビームを2本の対(ペア)となるビームに分割(分波)し、それぞれに異なる位相を与えてから合流(合波)する。位相差の違いによって、合波した光ビームの強度が変わる。
 光変調出力部200には、光半導体素子30-1、30-2、30-3の数と同数の3個のマッハツェンダー型光導波路10-1、10-2、10-3を有する。光半導体素子30-1、30-2、30-3とマッハツェンダー型光導波路10-1、10-2、10-3とは、光半導体素子から出射された光が対応するマッハツェンダー型光導波路に入射するように位置決めされている。
 図1に示すマッハツェンダー型光導波路10(10-1、10-2、10-3)は、第1光導波路11と第2光導波路12と入力路13と出力路14と分岐部15と結合部16とを有する。図1に示す第1光導波路11及び第2光導波路12は分岐部15の近傍及び結合部16の近傍以外は、x方向に直線状に延びる構成であるが、このような構成に限定されない。図1に示す第1光導波路11と第2光導波路12の長さは、略同一である。分岐部15は、入力路13と第1光導波路11及び第2光導波路12との間にある。入力路13は、分岐部15を介して、第1光導波路11及び第2光導波路12と繋がる。結合部16は、第1光導波路11及び第2光導波路12と出力路14との間にある。第1光導波路11と第2光導波路12とは、結合部16を介して、出力路14と繋がる。
 マッハツェンダー型光導波路10は、ニオブ酸リチウムからなるスラブ層40の第1面40aから突出するリッジ部(凸型)である第1光導波路11及び第2光導波路12を含む。以下では、ニオブ酸リチウムからなるスラブ層40とニオブ酸リチウムからなるリッジ部11、12とを合わせて、ニオブ酸リチウム膜ということがある。第1面40aは、ニオブ酸リチウム膜のリッジ部以外の部分における上面である。二つのリッジ部(第1リッジ部、第2リッジ部)は、第1面40aからz方向に突出し、マッハツェンダー型光導波路10に沿って延在する。本実施形態では、第1リッジ部を第1光導波路11とし、第2リッジ部を第2光導波路12として機能させる。
 図2に示すリッジ部(第1光導波路11及び第2光導波路12)のX-X断面(光の進行方向に垂直な断面)の形状は矩形であり、y方向の幅(Wridge)は、例えば、0.3μm以上5.0μm以下であり、リッジ部の高さ(第1面40aからの突出高さH(=Tslab-TLN))は、例えば、0.1μm以上1.0μm以下である。
 リッジ部(第1光導波路11及び第2光導波路12)の形状は光を導波できる形状であればその形状は問わず、例えばドーム状、三角形状でもよい。
 ニオブ酸リチウムからなるスラブ層40は、例えば、c軸配向したニオブ酸リチウム膜である。ニオブ酸リチウムからなるスラブ層40は、例えば、基板140上にエピタキシャル成長したエピタキシャル膜である。エピタキシャル膜は、下地の基板によって結晶方位が揃えられた単結晶の膜のことである。エピタキシャル膜は、z方向およびxy面内方向に単一の結晶方位をもった膜であり、結晶がx軸、y軸及びz軸方向にともに揃って配向しているものである。エピタキシャル膜かどうかは、例えば、2θ-θX線回折における配向位置でのピーク強度と極点の確認を行うことで証明することができる。また、ニオブ酸リチウムからなるニオブ酸リチウム膜40は、Si基板上にSiOを介して設けられたニオブ酸リチウム膜であってもよい。
 ニオブ酸リチウムは、LixNbAyOzで表される化合物である。Aは、Li、Nb、O以外の元素である。Aで表される元素としては、K、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、Ceなどを挙げることできる。これらの元素は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。xは、0.5以上1.2以下の数を表す。xは、好ましくは、0.9以上1.05以下の数である。yは、0以上0.5以下の数を表す。zは、1.5以上4.0以下の数を表す。zは、好ましくは2.5以上3.5以下の数である。
(電極)
 電極21、22は、各マッハツェンダー型光導波路10-1、10-2、10-3(以下、単に「各マッハツェンダー型光導波路10」ということがある。)に変調電圧Vmを印加する電極である。電極21は、第1電極の一例であり、電極22は、第2電極の一例である。電極21の第1端21aは電源131に接続され、第2端21bは終端抵抗132に接続されている。電極22の第1端22aは電源131に接続され、第2端22bは終端抵抗132に接続されている。電源131は、変調電圧Vmを各マッハツェンダー型光導波路10に印加する駆動回路210の一部である。
 電極23、24は、各マッハツェンダー型光導波路10に直流バイアス電圧Vdcを印加する電極である。電極23の第1端23a及び電極24の第1端24aは電源133に接続されている。電源133は、直流バイアス電圧Vdcを各マッハツェンダー型光導波路10に印加する直流バイアス印加回路220の一部である。
 図1では、見易くするために並行して配置した電極21及び電極22の線幅、線間を実際よりも広くしている。そのため、電極21と第1光導波路11とが重畳する部分の長さ(相互作用長)と、電極22と第2光導波路12とが重畳する部分の長さとが、異なるように見えるが、これらの長さ(相互作用長)は略同一である。同様に、電極23と第1光導波路11とが重畳する部分の長さ(相互作用長)と、電極24と第2光導波路12とが重畳する部分の長さ(相互作用長)とは、略同一である。
 また電極21、22に直流バイアス電圧Vdcを重畳する場合は、電極23、24を設けなくてもよい。また電極21、22、23、24の周囲に接地電極を設けてもよい。
 電極21、22、23、24はバッファ層32を挟んで、ニオブ酸リチウムからなるスラブ層40及びニオブ酸リチウムからなるリッジ部11、12の上にある。電極21、23は、それぞれ、第1光導波路11に電界を印加できる。電極21、23は、それぞれ、例えば、第1光導波路11とz方向からの平面視で重なる位置にある。電極21、23は、それぞれ、第1光導波路11の上方にある。電極22、24はそれぞれ、第2光導波路12に電界を印加できる。電極22、24は、それぞれ、例えば、第2光導波路12とz方向からの平面視で重なる位置にある。電極22、24は、それぞれ、第2光導波路12の上方にある。
 バッファ層32は、各マッハツェンダー型光導波路10と電極21、22、23、24との間にある。保護層31及びバッファ層32は、リッジ部を被覆し、保護する。またバッファ層32は、各マッハツェンダー型光導波路10を伝搬する光が電極21、22、23、24に吸収されることを防ぐ。バッファ層32は、ニオブ酸リチウム膜40より屈折率が低い。保護層31及びバッファ層32は、例えば、SiInO、SiO、Al、MgF、La、ZnO、HfO、MgO、Y、CaF、In等又はこれらの混合物である。保護層31及びバッファ層32は同じ材料でも異なる材料でもよい。異なる材料である場合には、DCドリフト向上、Vπ低減、伝搬損失低減等の観点から適宜選択することができる。
 マッハツェンダー型光導波路10を備える光変調出力部200のサイズは、例えば、100mm以下である。光変調出力部200のサイズが100mm以下であれば、ARグラスやVRグラス用として適している。
 マッハツェンダー型光導波路10を備える光変調出力部200は、公知の方法で作製できる。例えばエピタキシャル成長、フォトリソグラフィ、エッチング、気相成長及びメタライズなどの半導体プロセスを用いて、光変調出力部200は製造される。
 図4は、光変調出力部200のブロック図である。
 光変調出力部200の制御部240は、駆動回路210と直流バイアス印加回路220と直流バイアス制御回路230と、を有する。
 駆動回路210は、変調信号Smに応じた変調電圧Vmをマッハツェンダー型光導波路10に印加する。直流バイアス印加回路220は、直流バイアス電圧Vdcをマッハツェンダー型光導波路10に印加する。直流バイアス制御回路230は、出力光Loutをモニターし、直流バイアス印加回路220から出力される直流バイアス電圧Vdcを制御する。この直流バイアス電圧Vdcを調整することより、後述する動作点Vdが制御される。
 光変調出力部200は、電気信号を光信号に変換する。光変調出力部200は、光半導体素子30から出射され、マッハツェンダー型光導波路10の入力路13から入力された入力光Linを出力光Loutに変調する。光変調出力部200の変調動作について説明する。
 光半導体素子30から出射され、入力路13から入力された入力光Linは、第1光導波路11と第2光導波路12に分岐して伝搬する。第1光導波路11を伝搬する光と第2光導波路12を伝搬する光との位相差は、分岐した時点ではゼロである。
 次いで、電極21と電極22との間に電圧を印加する。例えば、電極21と電極22のそれぞれに、絶対値が同じで、正負が反対であり、位相が互いにずれていない差動信号を印加してもよい。第1光導波路11及び第2光導波路12の屈折率は、電気光学効果によって変化する。例えば、第1光導波路11の屈折率は、基準の屈折率nから+Δn変化し、第2光導波路12の屈折率は、基準の屈折率nから-Δn変化する。
 第1光導波路11と第2光導波路12との屈折率の違いは、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光との間に位相差を生み出す。第1光導波路11及び第2光導波路12を伝搬した光は、出力路14で合流し、出力光Loutとして出力される。出力光Loutは、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光とを重ね合わせたものである。出力光Loutの強度は、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光の奇数倍の位相差に応じて変化する。このような手順で、マッハツェンダー型光導波路10は、電気信号に応じて、入力光Linを出力光Loutに変調する。
 光変調出力部200の変調電圧印加用の電極21、22には、変調信号に応じた変調電圧Vmが印加される。直流バイアス電圧印加用の電極23、24に印加される電圧、つまり、直流バイアス印加回路220から出力される直流バイアス電圧Vdcは、直流バイアス制御回路230により制御される。直流バイアス制御回路230は、直流バイアス電圧Vdcを制御することにより、光変調出力部200の動作点Vdを調整する。動作点Vdとは変調電圧振幅の中心となる電圧である。
 各マッハツェンダー型光導波路10による光変調曲線について図5を用いて説明する。図5は、二つの光導波路(第1光導波路11及び第2光導波路12)の間に位相差を生じさせる構成を有さないマッハツェンダー型光導波路と、二つの光導波路の間に位相差を生じさせる構成を有するマッハツェンダー型光導波路とについて、直流バイアス電圧と出力との関係を示す図である。図5の横軸は電極23、24に印加した直流バイアス電圧であり、縦軸はマッハツェンダー型光導波路10からの出力を規格化したものである。出力は、第1光導波路11を伝搬する光と第2光導波路12を伝搬する光の位相差がゼロの場合を「1」として規格化している。実線が位相差を生じさせる構成を有さないマッハツェンダー型光導波路の特性を示し、破線が位相差を生じさせる構成を有するマッハツェンダー型光導波路の特性を示している。
 位相差を生じさせる構成を有さないマッハツェンダー型光導波路においては、電圧を印加しない状態(Vdc=0)では、二つの光導波路を経由した同じ位相の光同士が結合部16で干渉して強め合い、マッハツェンダー型光導波路としての出力が最大値となる。
(合波部)
 可視光変調素子1000は、図6に示すように、光変調出力部200に、3個のマッハツェンダー型光導波路からの変調光が合波される合波部50を有してもよい。合波部50は、マッハツェンダー型光導波路10-2の出力路14E-2を伝搬する光と、マッハツェンダー型光導波路10-3の出力路14E-3を伝搬する光とを合波し、出力導波路51を介して出射口150aから光を出射する。特許文献2のように、合波器が変調器から離間している構成でないため、分解能や色味などが改善する。
 合波部50は、MMI(Multi-Mode Interferometer:マルチモード干渉)型合波器(図7(a)(b)参照)、Y字型合波器(図7(c)参照)、及び、方向性結合器(図7(d)参照)、からなる群から選択されたいずれかであってもよい。
 図7(a)に示す合波部50は、マッハツェンダー型光導波路10-1の出力路14E-1を伝搬する光と、マッハツェンダー型光導波路10-2の出力路14E-2を伝搬する光と、マッハツェンダー型光導波路10-3の出力路14E-3を伝搬する光とを合波する合波部50Aであり、合波部50Aから合波された光が出力導波路51へ出力される。
 また、図7(b)に示す合波部50は、まずマッハツェンダー型光導波路10-1の出力路14E-1を伝搬する光と、マッハツェンダー型光導波路10-2の出力路14E-2を伝搬する光とを合波する合波部50B-1と、次いでその合波された光が合波部50B-1から出力され伝搬する光と、マッハツェンダー型光導波路10-3の出力路14E-3を伝搬する光とを合波する合波部50B-2とからなり、合波部50B-2から合波された光が出力導波路51へ出力される。
 また、図7(c)に示す合波部50は、まずマッハツェンダー型光導波路10-1の出力路14E-1を伝搬する光と、マッハツェンダー型光導波路10-2の出力路14E-2を伝搬する光とを合波する合波部50C-1と、次いでその合波された光が合波部50C-1から出力され伝搬する光と、マッハツェンダー型光導波路10-3の出力路14E-3を伝搬する光とを合波する合波部50C-2とからなり、合波部50C-2から合波された光が出力導波路51へ出力される。
 また、図7(d)に示す合波部50は、まずマッハツェンダー型光導波路10-1の出力路14E-1を伝搬する光が、マッハツェンダー型光導波路10-2の出力路14E-2を伝搬する光に結合される方向性結合部50D-1と、次いでその合波された光に、マッハツェンダー型光導波路10-3の出力路14E-3を伝搬する光が結合される方向性結合部50D-2とからなり、方向性結合部50C-2から結合合波された光が出力導波路51へ出力される。
 可視光変調素子1000は、3個のマッハツェンダー型光導波路10を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、3個の光半導体素子30の各々に注入する電流値を制御する制御器(不図示)を有してもよい。ユーザーや用途、また人の色覚を感知する感度(緑に対して最も敏感)にも依存するため、各波長のピーク出力が所定の割合になるように、適宜選択することが可能となる。
 光導波路では、エッチング工程における側面粗さが光損失の主な原因であることが知られている。また、この側面粗さによる光損失は波長が短いほど大きいことが知られている。
 すなわち、光導波路を伝搬する光がそれぞれ青(B)、緑(G)、赤(R)である場合、光損失の大きさはB>G>Rが知られている。
 そこで、可視光変調素子1000は、3個の光半導体素子30の各々に注入する電流値を一定値として、3個のマッハツェンダー型光導波路10(10-1、10-2、10-3)を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、3個のマッハツェンダー型光導波路10が構成されていてもよい。レーザーを駆動する電流を各波長で同じ値とすることで、簡易なドライバを用いることが可能となり、その結果、簡易な回路が実現でき、さらなる小型化が可能になる。
 仮に、3個のマッハツェンダー型光導波路の構成が同じであって、かつ、側面粗さによる光損失が光導波路を伝搬する光の色に依存しない場合、出力される各色の光出力の割合(あるいは、合波部を有する場合には、合波される各色の光出力の割合)は、R:G:B=1:1:1になるが、側面粗さによる光損失が光導波路を伝搬する光の色に依存するために、3個のマッハツェンダー型光導波路の構成を互いに異なるものとすることによって、側面粗さによる光損失の差を補うことが可能になる。
 また、用途によっては、R:G:B=1:1:1ではなく、所望の割合にしたい場合もあるが、その場合にも、所定の割合となるように、3個のマッハツェンダー型光導波路の構成を決めることができる。
 図8~図10に、出力される各色の光出力の割合(あるいは、合波部を有する場合には、合波される各色の光出力の割合)をR:G:B=1:1:1に近づけるための構成例を示す。
 図8に示す構成は、3個のマッハツェンダー型光導波路10(10-1、10-2、10-3)の入射端13aから出射端14aまでの光導波路の長さが、波長が短い光を伝搬するマッハツェンダー型光導波路ほど短い構成である。リッジ部の側面粗さが同一であっても、伝搬損は波長が短いほど大きくなるというリッジ型の導波路構造に特有の課題に対して、波長が短い方の構造の光導波路の長さを短くすることにより、各波長での伝搬損を揃えることができる。
 かかる構成によって、出力される各色の光出力の割合(あるいは、合波部を有する場合には、合波される各色の光出力の割合)をR:G:B=1:1:1に近づけることができる。
 図8に示す構成では、出力路14を互いに異なる長さにしているが、入力路13を互いに異なる長さにしてもよいし、また、入力路13及び出力路14を互いに異なる長さにしてもよい。
 図9に示す構成は、3個のマッハツェンダー型光導波路10(10-1、10-2、10-3)の各々に、入射端13aから出射端14aまでの光導波路に、伝搬する光の波長に対して吸収性のある材料からなる光吸収部14A(14Aa、14Ab、14Ac)を備え、光吸収部14Aの光導波路の長さ方向の長さが、波長が短い光を伝搬するマッハツェンダー型光導波路ほど短い構成である。かかる構成によっても、各波長での伝搬損を揃えることができる。
 かかる構成によって、出力される各色の光出力の割合(あるいは、合波部を有する場合には、合波される各色の光出力の割合)をR:G:B=1:1:1に近づけることができる。
 図9に示す構成では、出力路14に光吸収部14Aを有する構成であるが、入力路13に光吸収部14Aを有する構成としてもよいし、また、入力路13及び出力路14に光吸収部14Aを有する構成としてもよい。
 図10に示す構成は、3個のマッハツェンダー型光導波路10(10-1、10-2、10-3)の各々に、入射端13aから出射端14aまでの光導波路に、曲率を有する曲がり部13B(13Ba、13Bb、13Bc)を備え、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲がり部13Bの曲率が大きく、かつ、曲がり部13Bの長さが短い構成である。かかる構成によっても、各波長での伝搬損を揃えることができる。
 かかる構成によって、出力される各色の光出力の割合(あるいは、合波部を有する場合には、合波される各色の光出力の割合)をR:G:B=1:1:1に近づけることができる。
 図10に示す構成では、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲がり部13Bの曲率が大きく、かつ、曲がり部13Bの長さが短い構成であるが、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲がり部13Bの曲率が大きい構成か、又は、曲がり部13Bの長さが短い構成のいずれかであってもよい。
 図10に示す構成では、入力路13に曲がり部13Bを有する構成であるが、出力路14に曲がり部13Bを有する構成としてもよいし、また、入力路13及び出力路14に曲がり部13Bを有する構成としてもよい。
 3個のマッハツェンダー型光導波路10(10-1、10-2、10-3)を通して出射する各光出力の最大値が同一の強度であってもよい。
 図11に示すように、各マッハツェンダー型光導波路10’(10-1’、10-2’、10-3’)は湾曲部10A、10B、10Cを有してもよい。湾曲部はマッハツェンダー型光導波路において、2モード導波路11,12の部分(符号10B、符号10Cで示した部分)や、入射路(符号10Aで示した部分)、出射路のいずれに備えてもよい。
 基板上に形成された単結晶ニオブ酸リチウム薄膜を凸型に加工されてなる光導波路の構成は、コア部(単結晶ニオブ酸リチウム薄膜)とクラッド部(基板及び光導波路の側面・上面材料)との間に高い屈折率差を付与することが可能になり、曲率高く光導波路を湾曲できる。湾曲することによって長手方向のサイズをさらに縮小することができる。また外形のサイズを小さくしたまま相互作用長を長くできるため,駆動電圧を下げることができる。
(迷光除去部)
 光変調出力部200において、マッハツェンダー型光導波路以外の部分に、素子表面からマッハツェンダー型光導波路が形成されている基板まで達する溝部を有し、少なくとも溝部の底面及び側面に光吸収層を備えてもよい。クラッド部に光が伝搬することを防ぐことで、迷光を除去でき、色味などが改善できる。
 光変調出力部200の基板を含む部分を伝搬する迷光の外部への出射を防止するためである。光変調出力部200は小型化が可能であるものの、小型化によって、光軸を合わせる調芯工程において、光導波路に結合されない光の成分が生じやすくなる。こうした光の成分は、光変調出力部200内の光導波路以外の部分で伝搬し、端面で多重反射後、一部は光検出器に入力される、いわゆる、迷光が生じやすい。光変調出力部200内を伝搬する迷光は、光検出器の調芯を阻害し、接続損失増大や接続不良の原因となりうる。特に光源として可視光を用いる場合、光導波路が小さくなるため、迷光による影響が大きい。そのため、迷光除去部として溝部及びその表面に形成された光吸収層を備えることが好ましい。
 光導波路11の近傍に溝部115を備えた構成を例にとって迷光除去部を説明する。図12は、かかる構成を模式的に示した平面図である。図13は、図12のA-A’線に沿って破断した断面図である。図14は、図12のB-B’線に沿って破断した断面図である。
 図12に示すように、光変調出力部201において光導波路111の近傍に溝部115が形成されている。溝部115は、光導波路111の両側の一部に形成されている。溝部115は、基板の一面を平面視した時に矩形、例えば長方形に形成されている。また、溝部115は、可視光変調素子1000の厚み方向(積層方向)tの断面形状として、逆台形となるように形成され、溝部115の側面115aは、厚み方向tに対して傾斜した傾斜面となるように形成されている。
 溝部115は、バッファ層32の表面32aから基板140に向かって、基板140の一面140aよりも深い位置まで達するように形成されている。即ち、溝部115の底面115bは、基板140の一面140aから基板の内部に入った位置に形成され、基板140は、この溝部115の形成部分においては、厚み方向tに窪んだ形状となっている。
 なお、本実施形態では、溝部115の側面115aは、厚み方向tに対して所定の傾斜角度θで傾斜した傾斜面となっているが、例えば、図15に示すように、溝部115を、可視光変調素子1000の厚み方向tの断面形状として、矩形となるように形成して、溝部115の側面115aは、厚み方向tに沿った垂直面となるように形成することもできる。
 基板140の一面140aから厚み方向tに沿って掘り込まれる溝部115の基板140部分の深さ、即ち、基板140の一面140aと溝部115の底面とのギャップdは、光導波路111を伝搬する光の波長に応じて設定されればよい。すなわち、ギャップdは、光導波路111を伝搬する光の波長の半分以上に設定されればよい。例えば、光導波路11を伝搬する光の波長が520nmである場合、ギャップdが260nm以上になるように溝部115を形成すればよい。
 こうした2つの溝部115どうしの間には、溝部115の底面115bから基板140、リッジ形状に光導波路111が形成されたニオブ酸リチウム層、およびバッファ層32が、狭い幅で堰堤状に延びるように形成されている。
 溝部115には、この溝部115の底面115bおよび側面115aを覆う光吸収層116が形成されている。本実施形態では、光吸収層116は、溝部115の底面115bおよび側面115aに加えて、更にバッファ層32の表面32aも覆うように形成されている。なお、光吸収層116は、バッファ層32の表面32aを覆わない構造であってもよい。
 光吸収層116は、光導波路111を伝搬する光を吸収する材料から構成されている。光吸収層116の構成材料は、光導波路111を伝搬する光の波長に応じて選択される。例えば、光導波路111を伝搬する光が可視光線である場合には、可視光波長域の光を吸収、遮断することが可能な材料、例えば、可視光吸収色素を含む樹脂材料、In、Ga等の半導体膜などを用いることができる。また、例えば、光導波路111を伝搬する光が赤外線である場合には、赤外光波長域の光を吸収、遮断することが可能な材料、例えば、シアニン化合物などの赤外線吸収色素を含む樹脂材料などを用いることができる。
 光吸収層116は、光吸収層116に入射する迷光Pの例えば50%以上を吸収できる厚みになるように形成されていればよく、これにより、迷光Pが溝部115の一方の側面115aに形成された光吸収層116と他方の側面115aに形成された光吸収層116とを通過する間に、吸収される。
 光吸収層116は、本実施形態のように、溝部115の底面115bおよび側面115aに所定の厚みで形成する以外にも、例えば、図16に示すように形成することもできる。図16においては、底面115bおよび側面115aを含む溝部115全体を埋めるように光吸収層116が形成されている。こうした構成にすることで、より一層確実に迷光Pを吸収することができる。
 以上の様な構成の実施形態の光変調出力部201によれば、例えば、光導波路111に光を導入する光源(光出射器)Sと、光導波路111の入力端部INとの間で光軸を合わせる調芯工程において、光導波路111に結合されない光の成分が生じることがある。こうした光導波路111に結合されない光の成分は、可視光変調素子1000内の光導波路111以外の部分、例えば、基板140の一面140a側付近、およびバッファ層32を伝搬する迷光Pとなる。本実施形態の光変調出力部201では、こうした迷光Pが溝部115の形成位置に達すると、光吸収層116によってこの迷光Pが吸収される。
 特に、基板140の一面140a側付近を伝搬する迷光Pは、溝部115が基板140の一面140aよりも厚み方向tに沿って深い位置まで形成されているため、ここに形成された光吸収層116によって確実に吸収される。
 こうした溝部115と、この溝部115に形成された光吸収層116によって、迷光Pが吸収、遮断されることにより、光導波路111の出力端部OUTに配された光検出器(図示略)に、迷光Pが入力されることがない。これにより、調芯工程において、光検出器の調芯を阻害し、接続損失増大や接続不良の発生を防止することができる。
 なお、迷光Pを遮断することは、溝部115の側面115aの傾斜角度θを適切に設定することによっても行うことができる。例えば、迷光Pがバッファ層32から溝部115の空間(空気層)に向かって入射する場合、空気の屈折率は1、バッファ層32の屈折率を約3.5とすると、この屈折率差により、バッファ層32と空気界面での迷光Pの入射角が15°程度以上の時には、界面で全反射が生じる。溝部115の側面115aへの迷光Pの入射角が15°以上になるのは、側面115aの傾斜角度θが±15°以上の場合であり、この時、迷光Pの反射率は100%となり、迷光Pは完全に可視光変調素子1000の上側あるいは下側に放射され除去される。
 次に、他の実施形態の光変調出力部202について説明する。なお、以下の実施形態では、上述した実施形態と同様の構成には、同一の番号を付し、重複する説明を省略する。
 図17は、他の実施形態に係る光変調出力部を上から見た時の平面図である。
 本実施形態の光変調出力部は、光導波路111の延長方向に沿って、光導波路111の両側に、それぞれ複数の溝部(本実施形態では5つ)125A,125B,125C,125D,125Eが互いに離間して形成されている。それぞれの溝部125A~125Eは、基板140の一面140a(図14を参照)を平面視した時に、互いに同一形状の矩形(長方形)に形成されている。
 この実施形態では、溝部125Aと溝部125Bとの間隔G1、溝部125Bと溝部125Cとの間隔G2、溝部125Cと溝部125Dとの間隔G3、溝部125Dと溝部125Eとの間隔G4が全て異なるように、溝部125A~125Eが形成されている。
 加えて、任意の溝部125A~125Eどうしの間隔の和が、他の任意の溝部125A~125Eどうしの間隔の和と異なるように形成される。例えば、間隔G1+間隔G3は、間隔G2+間隔G4と和の値が異なっている。また、例えば、間隔G2+間隔G3+間隔G4は、間隔G1+間隔G3+間隔G4と和の値が異なっている。
 複数の溝部125A~125Eが互いに等間隔で規則的に配列されていると、規則的に反射された迷光が強められる懸念があるが、本実施形態のように互いに隣接する溝部125A~125Eどうしの間隔を異ならせることによって、迷光が規則的に反射されて強め合うことを防止し、複数の溝部125A~125Eとこれを覆う光吸収層116によって、迷光Pを確実に吸収、遮断することができる。
 次に、さらに他の実施形態の光変調出力部203について説明する。なお、以下の実施形態では、上述した実施形態と同様の構成には、同一の番号を付し、重複する説明を省略する。
 図18は、さらに他の実施形態の光変調出力部を上から見た時の平面図である。
 本実施形態の光回路素子30は、光導波路111の延長方向に沿って、光導波路111の両側に、それぞれ複数の溝部(本実施形態では5つ)135A,135B,135C,135D,135Eが互いに等間隔で離間して形成されている。それぞれの溝部135A~135Eは、基板140の一面140a(図14を参照)を平面視した時に、矩形(長方形)に形成されている。
 この実施形態では、溝部135A~溝部135Eの光導波路111の延長方向に沿ったそれぞれの幅W1~W5が全て異なるように、溝部135A~135Eが形成されている。
 加えて、任意の溝部135A~135Eの幅W1~W5どうしの和が、他の任意の溝部135A~135Eの幅W1~W5どうしの和と異なるように形成される。例えば、幅W1+幅W3は、幅W2+幅W4と和の値が異なっている。また、例えば、幅W1+幅W3+幅W5は、幅W1+幅W2+幅W4と和の値が異なっている。
 複数の溝部135A~135Eの幅が互いに等しいと、迷光が規則的に反射されて強められる懸念があるが、本実施形態のように、互いに隣接する溝部135A~135Eの幅を異ならせることによって、迷光が規則的に反射されて強め合うことを防止し、複数の溝部135A~135Eとこれを覆う光吸収層116によって、迷光Pを確実に吸収、遮断することができる。
 次に、さらに他の実施形態の光変調出力部204について説明する。なお、以下の実施形態では、上記実施形態と同様の構成には、同一の番号を付し、重複する説明を省略する。
 図19は、さらに他の実施形態に係る光変調出力部を上から見た時の平面図である。図20は、図19のC-C’線に沿って破断した断面図である。
 本実施形態の光変調出力部204では、光導波路111は、直線状に延びる直線部111Lと、この直線部111Lから湾曲する湾曲部111Rとから構成されている。
 そして、2か所の直線部111Lにおいて、直線部111Lの両側にそれぞれ複数の溝部145,145…が形成され、この溝部145の内面(側面、底面)が光吸収層116によって覆われている。
 更に、光導波路111の直線部111Lと湾曲部111Rとの接続部分で湾曲部111Rの湾曲方向と分かれる方向に延びる、直線部111Lの仮想延長線Q1上にも、複数の溝部145,145…が形成され、この溝部145の内面(側面、底面)が光吸収層116によって覆われている。
 このような構成の光変調出力部204によれば、光導波路111を伝搬する光が直線部111Lから湾曲部111Rに入ると、この湾曲部111Rに沿って湾曲するのに対して、基板140やバッファ層32を伝搬する迷光Pは、湾曲部111Rの形成位置で湾曲することなくそのまま直進する。そして、この直進した迷光Pは、直線部111Lの仮想延長線Q1上に形成された複数の溝部145,145…とこれを覆う光吸収層116によって吸収される。従って、本実施形態の光変調出力部204によれば、光導波路111の湾曲部11Rの形成位置で直進する迷光Pが光変調出力部204の外部に出射されることが無く、例えば、調芯工程において、光検出器の調芯を阻害し、接続損失増大や接続不良の発生を防止することができる。
 次に、さらに他の実施形態の光変調出力部205について説明する。なお、以下の実施形態では、上述した光変調出力部204と同様の構成には、同一の番号を付し、重複する説明を省略する。
 図21は、光変調出力部205を上から見た時の平面図である。
 本実施形態の光変調出力部205では、光導波路111は、直線状に延びる直線部111Lと、この直線部111Lから湾曲する湾曲部111Rとから構成されている。
 そして、2か所の直線部111Lにおいて、直線部111Lの両側にそれぞれ複数の溝部155,155…が形成され、この溝部155の内面(側面、底面)が光吸収層116によって覆われている。
 更に、光導波路111の湾曲部111Rの湾曲外周に沿って、湾曲した複数の溝部155,155…が形成され、この溝部155の内面(側面、底面)が光吸収層116によって覆われている。
 このような構成の光変調出力部205によれば、光導波路111を伝搬する光が直線部111Lから湾曲部111Rに入ると、この湾曲部111Rに沿って湾曲するのに対して、基板110やバッファ層32を伝搬する迷光Pは、湾曲部111Rの形成位置で湾曲することなくそのまま直進する。そして、この直進した迷光Pは、湾曲部111Rの湾曲外周に沿って形成された、湾曲した複数の溝部155,155…とこれを覆う光吸収層116によって吸収される。
 一例として、本実施形態の構成によれば、例えば、光導波路111に入射させる光の波長を520nm、光吸収層116をSi膜によって形成した場合、Siの光吸収係数は1.35×105cm-1であるので、光吸収層116の厚みが100nmであっても、溝部155を5つ配列することにより、この5つの溝部155にそれぞれ形成された光吸収層116の全てを迷光が透過する間に、迷光を入射前の強度の約26%程度まで減衰させることができる。
 従って、本実施形態の光変調出力部205によれば、光導波路111の湾曲部111Rの形成位置で直進する迷光Pが光変調出力部204の外部に出射されることが無く、例えば、調芯工程において、光検出器の調芯を阻害し、接続損失増大や接続不良の発生を防止することができる。
 〔可視光変調素子(第2実施形態)〕
 第2実施形態に係る可視光変調素子は、第1実施形態に係る可視光変調素子に比べると、ARグラス、VRグラスなどに搭載可能な小型化を図ることを最優先に検討した結果、得られた点で、第1実施形態に係る可視光変調素子と共通する。
 一方、第2実施形態に係る可視光変調素子は、第1実施形態に係る可視光変調素子に比べると、光学エンジンに組み込んだ場合に光学エンジンを小型化できる点では共通するものの、光学エンジンが備える光学系を小型化することを最優先にして想到した発明である点で異なる。
 具体的には、第2実施形態に係る可視光変調素子は、光変調出力部を伝搬する複数の波長の光を合波する合波部を有することを必須の構成とするものである。
 第2実施形態に係る可視光変調素子では、光変調出力部としては第1実施形態と同様に、ニオブ酸リチウム膜が凸型に加工されてなるマッハツェンダー型光導波路を有する構成を用いることもでき、また、図28(a)で示したバルクのニオブ酸リチウムの単結晶基板の一部を改質した部分を光導波路とした構成を用いることもできる。図22及び図23で示す第2実施形態に係る可視光変調素子2000は、バルクのニオブ酸リチウムの単結晶基板の一部を改質した部分を光導波路とした構成を採用した例である。
 図22は、第1実施形態に係る可視光変調素子の図6に対応する平面模式図である。図23は、第1実施形態に係る可視光変調素子の図3に対応する断面模式図である。以下、第1実施形態に係る可視光変調素子に共通する構成要素については同じ符号を付して説明を省略する場合がある。また、図22、図23において上述の図と同じ符号の構成要素は同様の構成要素である。
 図22に示す可視光変調素子2000は、波長400nmから700nmの可視光波長の光を出射する3個の光半導体素子30-1、30-2、30-3を有する光源部100と、3個の光半導体素子30-1、30-2、30-3の各々に対して、光半導体素子30-1、30-2、30-3から出射された光が入射する3個のマッハツェンダー型光導波路10A-1、10A-2、10A-3を有すると共に、3個のマッハツェンダー型光導波路10A-1、10A-2、10A-3からの変調光が合波される合波部50Aを有する光変調出力部300と、を備える。
 光変調出力部300は、ニオブ酸リチウム単結晶基板140Aと、ニオブ酸リチウム単結晶基板140Aに形成された3個のマッハツェンダー型光導波路10A-1、10A-2、10A-3と、ニオブ酸リチウム単結晶基板140A上に設けられた電極21、22と、ニオブ酸リチウム単結晶基板140Aと電極21、22との間に介在するバッファー層(不図示)と、を有する。
 図23に示すように、サブキャリア120は、金属層93(第1金属層71,第2金属層72,第3金属層73)を介して基板140Aと直接接合されている。本実施形態では、サブキャリア20において基板140Aに対向する側面(第1側面)122と基板140Aにおいてサブキャリア120に対向する側面(第2側面)42Aとは、第1金属層71、第2金属層72、第3金属層73、反射防止膜81を介して接続されている。金属層75の融点は、第3金属層73の融点よりも高い。
 図23に示すように、サブキャリア120は、第3金属層93及び反射防止膜81を介して基板140Aと接続されている。
 次いで、可視光変調素子2000の製造方法を簡単に説明する。以下に説明する可視光変調素子2000の製造方法は適宜、可視光変調素子1000の製造方法に適用できる。
 先ず、サブキャリア120の上面121に、ベアチップのLD30を公知の手法を用いて実装する。例えば、サブキャリア120の上面121に金属層75をスパッタ又は蒸着等を用いて形成した後、LD30の下面33に金属層76をスパッタ又は蒸着等を用いて形成する。サブキャリア120の上面121に金属層をスパッタ又は蒸着等を用いて形成した後に、上記金属層の上に金属層75をスパッタ又は蒸着等を用いて形成してもよい。
 次に、例えば、レーザー光をサブキャリア120に照射する。レーザー光の照射によって、サブキャリア120のみを溶融及び変形しない程度に加熱し、サブキャリア120からの伝熱によって金属層75,76を軟化あるいは溶融し、第1金属層91を形成し、その後冷却する。これらの作業により、サブキャリア120の上面121に、金属層75,76を介してLD30を接合する。その後、サブキャリア120の側面22に金属層71をスパッタ又は蒸着等を用いて形成する。
 基板140Aに、公知のプロセスによってマッハツェンダー型光導波路、合波部等の光変調出力部300を形成する。
 次に、互いに対応するLD30-1の出射面31-1と光導波路(コア)10A-1,10A-2,10A-3の入射面61とをx方向及びz方向において互いに重ね、y方向に所定の間隔をあけて対向させる。LD30から発せられる各色光の光軸と対応するコアの入射面61の軸線とを略重ねる。
 次に、レーザー光をサブキャリア120に照射し、サブキャリア120からの伝熱によって金属層71,72,73を軟化あるいは溶融させ、第3金属層93を形成し、LD30と光変調出力部300との相対位置を調整しつつ、光変調出力部300が形成された基板140Aに、LD30が実装されたサブキャリア120を接合する。
 上述したLD30とサブキャリア120との接合時には、x方向におけるサブキャリア120の両側にレーザー光照射用のレーザーを配置する。両側のレーザーから出射された光をサブキャリア120に当てて加熱し、サブキャリア120のみを溶融及び変形しない程度に加熱する。同時に、LD30から各色光を発し、発光強度を検出すると共に、光変調出力部300のコア10Aから出射される3色光の出射強度を検出する。
 図23に示すように、y方向における出射面31と入射面61との間隔をミクロンオーダーの値で変化させ、発光強度に対する出射強度を光利用効率[%]とすると、間隔が大きくなる程、光利用効率が低下する。間隔S及びLD30の調整は、アクティブアライメントの機能を有する公知の装置を用いて行うことができる。
 アクティブアライメント及びギャップコントロールとサブキャリア120の加熱を行うと、最適な位置に配置されたLD30の出射面31と入射面61との間の金属層71,72,73は、金属層73の合金化及び僅かな熱収縮によって、LD30の出射面31とコア10Aの入射面61との間に挟まれていない各金属層よりも薄くなる。レーザーによるサブキャリア120の加熱を止めることによって冷却され、LD30の位置が固定される。
 以上説明した本実施形態に係る可視光変調素子2000は、サブキャリア120と、サブキャリア120の上面121に設けられたLD30と、LD30から出射される光を入射可能に配置された光変調出力部300と、を備える。
 上述の構成によれば、LD30の出射面31とサブキャリア120の側面122とがy方向で略同一の位置にあるので、LD30をサブキャリア120よりもy方向の前方に突出させることがなく、LD30のサブキャリア120への接合強度の低下を防止できる。LD30の出射面31とサブキャリア120の側面22とがy方向で略同一の位置にあるので、第3金属層93のy方向の大きさを、LD30の出射面31とLD30に対応する光変調出力部300のコア10Aの入射面61とのy方向での間隔と略同一にすることができる。このことによって、サブキャリア120からの伝熱によって金属層71,72,73を軟化あるいは溶融させ、LD30と光変調出力部300との相対位置を調整しつつ、基板140Aにサブキャリア120を接合する作業時において、光変調出力部300のコア10Aの入射面61とのy方向での間隔の制御(即ち、ギャップ制御)を容易且つ高精度に行うことができる。LD30の出射面31とサブキャリア120の側面22とがy方向で略同一の位置にあるので、出射面31から出射された光がサブキャリア120に当たって光変調出力部300のコア10Aへの光の結合効率が低下することを防止できる。したがって、信頼性の高い可視光変調素子2000を提供できる。
 可視光変調素子2000では、サブキャリア120とLD30とは、金属層75,76を有する第1金属層91を介して接続されている。このことによって、可視光変調素子2000の製造において、金属層75,76を溶融あるいは軟化してLD30とサブキャリア120とを接合した後、金属層71,72,73を溶融あるいは軟化してサブキャリア120と基板140Aとを接合する際に、金属層75が再溶融してLD30とサブキャリア120との相対的な位置ずれが生じるのを防止できる。LD30とサブキャリア120との相対的な位置ずれを防止することによって、サブキャリア120を介して接続されたLD30と光変調出力部300との位置精度を高め、信頼性の高い可視光変調素子2000を提供できる。
 合金化による金属層75,76によるサブキャリア120とLD30との接合は、熱に強く、例えばワイヤーボンディング等の工程で周囲の環境温度が高くなっても解除されにくい。例えばワイヤーボンディング等の方法を用いてLD30と不図示の電源とをワイヤーによってサブキャリア120の上面121で接続する際に、サブキャリア120とLD30との接合状態が良好に維持された状態が維持される。つまり、ワイヤーボンディングする際に、LD30とサブキャリア120が離れず、LD30がサブキャリア120の最適な位置に維持される。このことによって、可視光変調素子2000に所望の光利用効率及び光学特性を発揮させ、可視光変調素子2000の信頼性を高めることができる。
 可視光変調素子2000では、LD30の出射面31と光変調出力部300において各色光が入射する入射面61との間に隙間70が形成されている。可視光変調素子2000は、LD30の出射面31から出射された各色光は、隙間70をy方向に沿って伝搬し、光変調出力部300のコア10Aの入射面61に入射するように構成されている。前述の構成によって、LD30の出射面31から出射された各色光を所定の結合効率を満たした状態で光変調出力部300のコア10Aに入射させることが容易であり、信頼性の高い可視光変調素子2000を提供できる。
 可視光変調素子2000においても、可視光変調素子1000と同様に、複数の光半導体素子が出射する光の波長は互いにすべて異なった構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、マッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)が湾曲部を有する構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、合波部50Aが、MMI型合波器、Y字型合波器、及び、方向性結合器からなる群から選択されたいずれかである構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数の光半導体素子の各々に注入する電流値を制御する制御器を有する構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、複数の光半導体素子30-1、30-2、30-3の各々に注入する電流値を一定値として、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)が構成されたものとすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)の入射端から出射端までの光導波路の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短い構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)の各々に、入射端から出射端までの光導波路に、伝搬する光の波長に対して吸収性のある材料からなる光吸収部を備え、光吸収部の光導波路の長さ方向の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短い構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)の各々に、入射端から出射端までの光導波路に、曲率を有する曲がり部を備え、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲率が大きいか、前記曲がり部の長さが短い構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)を通して外部へ出射される光において各波長のピーク出力が同一の強度である構成とすることができる。
  可視光変調素子2000においても、可視光変調素子1000と同様に、光変調出力部300において、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)以外の部分に、素子表面からマッハツェンダー型光導波路10Aが形成されている基板140Aまで達する溝部を有し、少なくとも溝部の底面及び側面に光吸収層を備える構成とすることができる。
 可視光変調素子2000においても、可視光変調素子1000と同様に、光吸収層が溝部全体を埋めるように形成された構成とすることができる。
 可視光変調素子2000においても、可視光変調素子1000と同様に、溝部が基板の一面に沿って、互いに離間して複数形成された構成とすることができる。
 可視光変調素子2000においても、可視光変調素子1000と同様に、複数のマッハツェンダー型光導波路10A(10A-1、10A-2、10A-3)は直線部から湾曲する湾曲部を有し、溝部は、直線部の仮想延長線と交差するように配置された構成とすることができる。
 可視光変調素子2000においても、可視光変調素子1000と同様に、光導波路が直線部から湾曲する湾曲部を有し、溝部が湾曲部に沿うように湾曲して延びるように形成された構成とすることができる。
(光学エンジン)
 本明細書において、光学エンジンとは、複数の光源と、複数の光源から出射された複数の光を1本の光にする合波部を含む光学系と、光学系から出射された光を画像表示するように角度を変えて反射する光走査ミラーとを含む装置である。
 図24に、本実施形態に係る光学エンジン5001を説明するための概念図に示す。図示したのは、光学エンジン5001がメガネ10000に装備された状態を示すものである。符号Lは画像表示光である。
 光学エンジン5001は、可視光変調素子1001と、光走査ミラー3001とを有する。光学エンジン5001が備える可視光変調素子1001としては、第1実施形態に係る可視光変調素子、第2実施形態に係る可視光変調素子のいずれを用いることもできる。
 可視光変調素子1001は、RGBの光源と、RGBの光源から出射されたRGBの光を1本にする合波部とを内蔵する。
 光走査ミラー3001は例えば、MEMSミラーである。2D画像を投影するためには、水平方向(X方向)および垂直方向(Y方向)に角度を変えてレーザ光を反射するように振動する2軸MEMSミラーであることが好ましい。
 光学エンジン5001は、可視光変調素子1001から出射したレーザ光を光学的に処理する光学系として、コリメータレンズ2001aと、スリット2001bと、NDフィルタ2001cとを有する。この光学系は一例であって、他の構成であってもよい。
 光学エンジン5001は、レーザードライバ1100、光走査ミラードライバ1200、及び、これらのドライバを制御するビデオコントローラ1300を有する。
 図25(a)に、変調素子A1001内に合波部あるいは合波器を有さない光学エンジンA5001(引用文献2参照)を模式的に示す図である。図25(b)に、可視光変調素子1001内に合波部を有する本実施形態に係る光学エンジン5001を模式的に示す図である。
 図25(b)に示す光学エンジン5001では、可視光変調素子1001から3波長が合波されて出てくることから、各光学部品が一つでかつ小型化が可能であり、また、白色が1つのビームスポットで作られるため、解像度を上げやすくなる。
 これに対して、図25(a)に示す光学エンジンA5001では変調素子A1001内に合波部あるいは合波器を有さないため、白色を発光させるのに3色のビームスポットが必要であり、ビームスポットが大きくなり、解像度を上げにくくなる。また、3色分のビームスポットが必要であることから、
 コリメートレンズA2001a、スリット(あるいはアパーチャー)A2001b、NDフィルターA2001c、2軸MEMSミラーA3001の設計が大きくなり、また個数が必要となって、小型化に適していない。
 以下、本開示の実施例を例示するが、本開示は以下の実施例には限定されない。
 図26(a)及び(b)に示す構成のマッハツェンダー型光導波路を作製した。
 基板140の材料はサファイアとした。基板140の表面140aに膜厚TLNが0.7μmのニオブ酸リチウム膜をスパッタ法により成膜した。次に、レジストによるマスク形成とArプラズマを用いたドライエッチング加工により、リッジ部(光導波路)11,12の形成を行った。分岐部15及び合波部16はMMI型とした。リッジ部の断面形状は矩形とし、リッジ幅Wridgeは0.8μm、リッジ高さTridgeは0.5μmとした。次に、リッジ部11,12を十分に埋める程度のSiO膜を成膜し、次いでリッジ部の上面までCMPによる研磨、平坦化を行った。膜厚Tbuffuerが0.6μmのSiInOのバッファ層32を蒸着法により成膜した。次いでCMPによる平坦化を行った。幅Wが3.5μm、高さTが2μmの電極21、21をフォト工程と金めっき工程により形成した。
 その他のパラメータは以下の通りである。
 リッジ部間距離S: 12μm
 スラブ高さ(厚さ)Tslab: 0.2μm
 マッハツェンダー型光導波路の入射路から出射路までの長さL1: 9.15mm
 電極と光導波路とが重畳する部分の長さ(相互作用長)L2: 5mm
 図27に、作製したマッハツェンダー型光導波路を用いてRGBの各波長で光変調実験を行った結果を示す。
 図27(a)、(b)、(c)はそれぞれ、波長473nm、波長520nm、波長638nmの連続光を入射導波路13の入射口から導入して出射導波路から得られた光強度である。
 図27(a)、(b)、(c)に示した通り、いずれの波長の光についても光変調を確認できた。位相差ゼロのときと位相差πのときの電圧差Vπはそれぞれ、2.4V、2.8V、3.8Vであった。
 実験に用いたマッハツェンダー型光導波路の寸法(長さ)L1は上記の通りの9.15mmであった。このような1cm以下の小型のニオブ酸リチウム膜からなるマッハツェンダー型光導波路によって、低消費電力で駆動可能な可視光変調素子が得られることが確認できた。
 10-1、10-2、10-3 マッハツェンダー型光導波路 
 11、12 光導波路
 30-1、30-2、30-3 光半導体素子
 50 合波部 
 100 光源部
 115 溝部
 200、300 光変調出力部
 1000、2000 可視光変調素子
 2001 光学系
 3001 光走査ミラー
 5001 光学エンジン

Claims (37)

  1.  波長400nmから700nmの可視光波長の光を出射する複数の光半導体素子を有する光源部と、
     前記複数の光半導体素子の各々に対して、前記光半導体素子から出射された光が入射する、ニオブ酸リチウム膜が凸型に加工されてなるマッハツェンダー型光導波路を前記光半導体素子の数と同数有する光変調出力部と、を備える、可視光変調素子。
  2.  前記複数の光半導体素子が出射する光の波長は互いにすべて異なる、請求項1に記載の可視光変調素子。
  3.  前記マッハツェンダー型光導波路が湾曲部を有する、請求項1又は2のいずれかに記載の可視光変調素子。
  4.  前記複数の光半導体素子が搭載されている基台と前記マッハツェンダー型光導波路が形成されている基板とが金属層を介して直接接合されている、請求項1~3のいずれか一項に記載の可視光変調素子。
  5.  前記光半導体素子から光が出射される出射面と前記光変調出力部の入射面との間に隙間を有し、前記光半導体素子からの光は前記出射面から出射され、前記隙間を伝搬し、前記入射面の前記マッハツェンダー型光導波路に入射するように、対応する前記光半導体素子と前記マッハツェンダー型光導波路とが位置決めされている、請求項5に記載の可視光変調素子。
  6.  前記光変調出力部に、複数のマッハツェンダー型光導波路からの変調光が合波される合波部を有する、請求項1~5のいずれか一項に記載の可視光変調素子。
  7.  前記合波部は、MMI型合波器、Y字型合波器、及び、方向性結合器からなる群から選択されたいずれかである、請求項6に記載の可視光変調素子。
  8.  前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数の光半導体素子の各々に注入する電流値を制御する制御器を有する、請求項1~7のいずれか一項に記載の可視光変調素子。
  9.  前記複数の光半導体素子の各々に注入する電流値を一定値として、
     前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数のマッハツェンダー型光導波路が構成されている、請求項1~8のいずれか一項に記載の可視光変調素子。
  10.  前記複数の光半導体素子の各々に注入する電流値を一定値として、
     前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数のマッハツェンダー型光導波路に印加する電圧を制御する制御器を有する、請求項1~8のいずれか一項に記載の可視光変調素子。
  11.  前記複数のマッハツェンダー型光導波路の入射端から出射端までの光導波路の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短い、請求項9に記載の可視光変調素子。
  12.  前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、伝搬する光の波長に対して吸収性のある材料からなる光吸収部を備え、前記光吸収部の光導波路の長さ方向の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短い、請求項9に記載の可視光変調素子。
  13.  前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、曲率を有する曲がり部を備え、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲率が大きいか、前記曲がり部の長さが短い、請求項9に記載の可視光変調素子。
  14.  前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が同一の強度である、請求項8~13のいずれか一項に記載の可視光変調素子。
  15.  前記光変調出力部において、前記マッハツェンダー型光導波路以外の部分に、素子表面から前記マッハツェンダー型光導波路が形成されている基板まで達する溝部を有し、少なくとも前記溝部の底面及び側面に光吸収層を備える、請求項1~14のいずれか一項に記載の可視光変調素子。
  16.  前記光吸収層は前記溝部全体を埋めるように形成されている、請求項15に記載の可視光変調素子。
  17.  前記溝部は、前記基板の一面に沿って、互いに離間して複数形成される、請求項15又は16のいずれかに記載の可視光変調素子。
  18.  前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記直線部の仮想延長線と交差するように配置される、請求項15~17のいずれか一項に記載の可視光変調素子。
  19.  前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記湾曲部に沿うように湾曲して延びるように形成される、請求項15~17のいずれか一項に記載の可視光変調素子。
  20.  波長400nmから700nmの可視光波長の光を出射する複数の光半導体素子を有する光源部と、
     前記複数の光半導体素子の各々に対して、前記光半導体素子から出射された光が入射するマッハツェンダー型光導波路を前記光半導体素子の数と同数有すると共に、前記複数のマッハツェンダー型光導波路からの変調光が合波される合波部を有する光変調出力部と、
     を備える、可視光変調素子。
  21.  前記複数の光半導体素子が出射する光の波長は互いにすべて異なる、請求項20に記載の可視光変調素子。
  22.  前記マッハツェンダー型光導波路が湾曲部を有する、請求項20又は21のいずれかに記載の可視光変調素子。
  23.  前記複数の光半導体素子が搭載されている基台と前記マッハツェンダー型光導波路が形成されている基板とが金属層を介して直接接合されている、請求項20~22のいずれか一項に記載の可視光変調素子。
  24.  前記光半導体素子から光が出射される出射面と前記光変調出力部の入射面との間に隙間を有し、前記光半導体素子からの光は前記出射面から出射され、前記隙間を伝搬し、前記入射面の前記マッハツェンダー型光導波路に入射するように、対応する前記光半導体素子と前記マッハツェンダー型光導波路とが位置決めされている、請求項23に記載の可視光変調素子。
  25.  前記合波部は、MMI型合波器、Y字型合波器、及び、方向性結合器からなる群から選択されたいずれかである、請求項24に記載の可視光変調素子。
  26.  前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、前記複数の光半導体素子の各々に注入する電流値を制御する制御器を有する、請求項20~25のいずれか一項に記載の可視光変調素子。
  27.  前記複数の光半導体素子の各々に注入する電流値を一定値として、
     前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が所定の割合となるように、複数のマッハツェンダー型光導波路が構成されている、請求項20~26のいずれか一項に記載の可視光変調素子。
  28.  前記複数のマッハツェンダー型光導波路の入射端から出射端までの光導波路の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短い、請求項27に記載の可視光変調素子。
  29.  前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、伝搬する光の波長に対して吸収性のある材料からなる光吸収部を備え、前記光吸収部の光導波路の長さ方向の長さが、波長が短い光が伝搬するマッハツェンダー型光導波路ほど短い、請求項27に記載の可視光変調素子。
  30.  前記複数のマッハツェンダー型光導波路の各々に、入射端から出射端までの光導波路に、曲率を有する曲がり部を備え、波長の短い光が伝搬するマッハツェンダー型光導波路ほど曲率が大きいか、前記曲がり部の長さが短い、請求項27に記載の可視光変調素子。
  31.  前記複数のマッハツェンダー型光導波路を通して外部へ出射される光において各波長のピーク出力が同一の強度である、請求項26~30のいずれか一項に記載の可視光変調素子。
  32.  前記光変調出力部において、前記マッハツェンダー型光導波路以外の部分に、素子表面から前記マッハツェンダー型光導波路が形成されている基板まで達する溝部を有し、少なくとも前記溝部の底面及び側面に光吸収層を備える、請求項20~31のいずれか一項に記載の可視光変調素子。
  33.  前記光吸収層は前記溝部全体を埋めるように形成されている、請求項32に記載の可視光変調素子。
  34.  前記溝部は、前記基板の一面に沿って、互いに離間して複数形成される、請求項32又は33のいずれかに記載の可視光変調素子。
  35.  前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記直線部の仮想延長線と交差するように配置される、請求項32~34のいずれか一項に記載の可視光変調素子。
  36.  前記光導波路は直線部から湾曲する湾曲部を有し、前記溝部は、前記湾曲部に沿うように湾曲して延びるように形成される、請求項32~34のいずれか一項に記載の可視光変調素子。
  37.  請求項1~36のいずれか一項に記載の可視光変調素子と、
     前記可視光変調素子から出射された光を、画像表示するように角度を変えて反射する光走査ミラーと、を備える光学エンジン。
PCT/JP2021/028521 2021-07-30 2021-07-30 可視光変調素子及びそれを備える光学エンジン WO2023007753A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/028521 WO2023007753A1 (ja) 2021-07-30 2021-07-30 可視光変調素子及びそれを備える光学エンジン
CN202180058357.3A CN116134373A (zh) 2021-07-30 2021-07-30 可见光调制元件及具备其的光学引擎
US18/018,387 US20240255828A1 (en) 2021-07-30 2021-07-30 Visible light modulation device and optical engine including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028521 WO2023007753A1 (ja) 2021-07-30 2021-07-30 可視光変調素子及びそれを備える光学エンジン

Publications (1)

Publication Number Publication Date
WO2023007753A1 true WO2023007753A1 (ja) 2023-02-02

Family

ID=85086523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028521 WO2023007753A1 (ja) 2021-07-30 2021-07-30 可視光変調素子及びそれを備える光学エンジン

Country Status (3)

Country Link
US (1) US20240255828A1 (ja)
CN (1) CN116134373A (ja)
WO (1) WO2023007753A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764034A (ja) * 1993-08-23 1995-03-10 Ibiden Co Ltd 進行波型光変調器
JPH09512353A (ja) * 1995-02-07 1997-12-09 エルディティ ゲーエムベーハー ウント シーオー.レーザー−ディスプレー−テクノロギー カーゲー カラー画像形成システム及びその使用方法
JP2004093905A (ja) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd 光変調器
US20040120633A1 (en) * 2002-11-12 2004-06-24 Zhan Gao Planar optical circuit
JP2005189385A (ja) * 2003-12-25 2005-07-14 Sony Corp 分岐型光導波路、光源モジュール、並びに光情報処理装置
JP2015011141A (ja) * 2013-06-28 2015-01-19 日本精機株式会社 混色装置及び表示装置
JP2015138847A (ja) * 2014-01-21 2015-07-30 日本電信電話株式会社 波長多重送信器
JP2016071261A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 光変調器および画像表示装置
JP6728596B2 (ja) * 2015-08-21 2020-07-22 セイコーエプソン株式会社 光変調器、光学モジュールおよび画像表示装置
JP2020134875A (ja) * 2019-02-25 2020-08-31 富士通オプティカルコンポーネンツ株式会社 光変調器
WO2021140752A1 (ja) * 2020-01-10 2021-07-15 ソニーグループ株式会社 映像投影装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764034A (ja) * 1993-08-23 1995-03-10 Ibiden Co Ltd 進行波型光変調器
JPH09512353A (ja) * 1995-02-07 1997-12-09 エルディティ ゲーエムベーハー ウント シーオー.レーザー−ディスプレー−テクノロギー カーゲー カラー画像形成システム及びその使用方法
JP2004093905A (ja) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd 光変調器
US20040120633A1 (en) * 2002-11-12 2004-06-24 Zhan Gao Planar optical circuit
JP2005189385A (ja) * 2003-12-25 2005-07-14 Sony Corp 分岐型光導波路、光源モジュール、並びに光情報処理装置
JP2015011141A (ja) * 2013-06-28 2015-01-19 日本精機株式会社 混色装置及び表示装置
JP2015138847A (ja) * 2014-01-21 2015-07-30 日本電信電話株式会社 波長多重送信器
JP2016071261A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 光変調器および画像表示装置
JP6728596B2 (ja) * 2015-08-21 2020-07-22 セイコーエプソン株式会社 光変調器、光学モジュールおよび画像表示装置
JP2020134875A (ja) * 2019-02-25 2020-08-31 富士通オプティカルコンポーネンツ株式会社 光変調器
WO2021140752A1 (ja) * 2020-01-10 2021-07-15 ソニーグループ株式会社 映像投影装置

Also Published As

Publication number Publication date
US20240255828A1 (en) 2024-08-01
CN116134373A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
JP6728596B2 (ja) 光変調器、光学モジュールおよび画像表示装置
US20160091772A1 (en) Optical modulator and image display apparauts
WO2020196489A1 (ja) 集積光学装置
CN115605790A (zh) 光电路元件
US20230229056A1 (en) Light source unit, optical engine including the same, smart glass, optical communication transmission device, and optical communication system
US12085721B2 (en) Optical waveguide detection element, video laser module, and XR glasses
WO2023007753A1 (ja) 可視光変調素子及びそれを備える光学エンジン
US20240329315A1 (en) Optical coupler, visible light source module and optical engine
US8509576B2 (en) Optical switch, image display device, image forming device, and method for manufacturing optical switch
US20240332912A1 (en) Laser assembly, laser module, and xr glasses
US20240295701A1 (en) Optical coupler, visible light source module and optical engine
WO2023187872A1 (ja) プロジェクターモジュール及びそれを備えた網膜投影表示装置
US20240142787A1 (en) Laser module, optical engine module, and xr glasses
US20240329437A1 (en) Optical modulator, light source module, optical engine, and xr glasses
US20240219642A1 (en) Optical coupler and visible light source module
US20240329337A1 (en) Optical coupler, optical coupling member, light source module and optical engine
US20240126015A1 (en) Optical coupler and visible light source module
JPH0373905A (ja) 光機能素子
TWI793023B (zh) 波導以及包含其的顯示裝置
JP2024117577A (ja) サブキャリア、レーザーモジュール、光学エンジンモジュール及びxrグラス
JPH07146413A (ja) 半導体光導波路およびその製造方法並びに光導波路型素子
WO2009147921A1 (ja) 光スイッチ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18018387

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21951948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP