WO2023006070A1 - 介入导航系统 - Google Patents

介入导航系统 Download PDF

Info

Publication number
WO2023006070A1
WO2023006070A1 PCT/CN2022/108985 CN2022108985W WO2023006070A1 WO 2023006070 A1 WO2023006070 A1 WO 2023006070A1 CN 2022108985 W CN2022108985 W CN 2022108985W WO 2023006070 A1 WO2023006070 A1 WO 2023006070A1
Authority
WO
WIPO (PCT)
Prior art keywords
interventional
display
navigation
instrument
path
Prior art date
Application number
PCT/CN2022/108985
Other languages
English (en)
French (fr)
Inventor
胡猛
郭栋
Original Assignee
北京迈迪斯医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京迈迪斯医疗技术有限公司 filed Critical 北京迈迪斯医疗技术有限公司
Publication of WO2023006070A1 publication Critical patent/WO2023006070A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition

Definitions

  • the present invention relates to the technical field of medical devices, in particular to an interventional navigation system.
  • Interventional Radiology is a marginal subject that developed rapidly in the late 1970s. Under the guidance of medical imaging equipment, it is based on imaging diagnostics and clinical diagnostics, combined with the principles of clinical therapeutics, and uses catheters, guide wires and other equipment to diagnose and treat various diseases. That is: under the guidance of imaging medicine (X-ray, ultrasound, CT, MRI), through the percutaneous puncture or through the original orifice of the human body, a special catheter or instrument is inserted into the lesion for diagnostic imaging and treatment. Or tissue collection, cytology, bacteriology and biochemical examination.
  • imaging medicine X-ray, ultrasound, CT, MRI
  • Interventional radiology provides new drug delivery routes and surgical methods for modern medical diagnosis and treatment. Compared with traditional routes of drug administration and surgical methods, it is more direct, effective, simpler and minimally invasive. Interventional radiology has opened up a new way of treatment, and it is simple, safe, less traumatic, less complications, quick effect, minimally invasive; strong repeatability; accurate positioning; high curative effect, quick effect; low incidence of complications; The connection and application of multiple technologies is simple and easy.
  • interventional radiology can be divided into interventional diagnostics and interventional therapy; according to technology, it can be divided into: vascular interventional radiology (drug infusion; embolization technology; formed stent; filter technology, etc.) and non-vascular interventional radiology (puncture biopsy ; drainage technology; foreign body removal; cavity stent, etc.); according to the scope of clinical application, it can be divided into tumor interventional radiology, non-tumor interventional radiology, neurological interventional radiology, etc.
  • vascular interventional radiology drug infusion; embolization technology; formed stent; filter technology, etc.
  • non-vascular interventional radiology puncture biopsy ; drainage technology; foreign body removal; cavity stent, etc.
  • the medical imaging equipment used in interventional radiology mainly includes X-ray, ultrasound, CT, MRI guidance, etc.
  • X-ray and CT are radioactive, while MRI needs to cooperate with non-ferromagnetic equipment and environmental applications.
  • MRI needs to cooperate with non-ferromagnetic equipment and environmental applications.
  • intraoperative interventional guidance multiple, long-term imaging is required.
  • the radioactivity of X-rays and CT is harmful to patients and medical staff. Inconvenience and difficulties have hindered the clinical application of interventional radiology.
  • Ultrasound has the characteristics of real-time imaging and no radiation, and has been widely used in interventional radiology.
  • the non-intuitive two-dimensionality of ultrasound imaging, the coplanarity of the ultrasound imaging plane and the interventional tool, etc. easily lead to difficulties and mistakes in the positioning and guidance of the interventional tool, which in turn causes puncture errors, trauma, complications, etc.
  • Medical personnel who are required to perform interventional diagnosis and treatment need to have a lot of training, skilled technology and rich experience.
  • Ultrasonic interventional navigation can display the movement of interventional tools in the tissue in real time, providing a basis for interventional path selection, and is an important means of interventional radiology.
  • conventional ultrasound-guided interventions rely heavily on the operator's skills, experience, and performance of ultrasound equipment, and there may be problems such as more intervention times and longer operation times, which will lead to an increase in the incidence of complications.
  • an embodiment of the present invention provides an interventional navigation system to solve one or more of the problems of difficult operation and poor accuracy of the above-mentioned existing interventional navigation technology, and to achieve easier operation, more accurate and effective interventional navigation.
  • the present invention provides an interventional navigation system, including: an electromagnetic positioning module, the electromagnetic positioning module is connected with an ultrasonic imaging device and an interventional instrument, and acquires the position of an ultrasonic image generated by the ultrasonic imaging device and direction, the position and direction of the interventional instrument; the navigation processing module, the navigation processing module is connected with the ultrasonic imaging device and the electromagnetic positioning module, forms an intervention path according to the position and direction of the interventional instrument, and according to The position and direction of the ultrasonic image, the position and direction of the interventional instrument, and the interventional path are orthogonally projected on the ultrasonic image to form a fusion of the interventional instrument and the interventional path The projected navigation image of the intervention path; a navigation output module, the navigation output module is connected to the navigation processing module, and outputs the navigation image according to a set display mode.
  • an electromagnetic positioning module the electromagnetic positioning module is connected with an ultrasonic imaging device and an interventional instrument, and acquires the position of an ultrasonic image generated by the ultrasonic imaging device and direction, the position
  • the display manner of the navigation image may be different.
  • the navigation image may be displayed in a three-dimensional perspective.
  • the display mode of the projection of the interventional instrument may be different, and/or the display mode of the projection of the interventional path may be different .
  • the display methods of the projection of the interventional instrument and/or the projection of the interventional path may include but not limited to wireframe display, surface display, solid line display, dotted line display, various color display, dynamic display, and static display one or a combination of more.
  • the display manner of the intersection point of the intervention path and the ultrasound image may be different from the display manner of other points on the projection of the intervention path.
  • the display manner of the intersection point may include, but not limited to, one or a combination of cross line display, star display, circular display, various color display, and dynamic display.
  • the projections of the two parts of the interventional path on both sides of the ultrasonic image can be displayed in different ways, and/or, in the The projections of the two parts of the interventional instrument on either side of the ultrasound image can be displayed in different ways, respectively.
  • the display modes of the projections of the two parts of the interventional instrument and/or the projections of the two parts of the interventional path may include but not limited to wireframe display, surface display, solid line display, dotted line display, various color display, One or more combinations of dynamic display and static display.
  • intervention path may be extended along the direction of the intervention instrument to form a straight line.
  • the electromagnetic positioning module may include a first sensor and a second sensor, the first sensor is connected to the probe of the ultrasonic imaging device, and the second sensor is connected to the interventional instrument.
  • interventional instruments may include but not limited to one or more of puncture instruments, radio frequency instruments, microwave instruments, particle instruments, implant instruments, sheath instruments, tube instruments, and biopsy instruments .
  • the interventional navigation system according to the present invention is easier to operate, more accurate and effective, thereby solving the technical problems existing in the prior art.
  • FIG. 1 is a schematic diagram of an interventional navigation system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an electromagnetic positioning module according to an embodiment of the present invention.
  • Fig. 3 is the schematic diagram of the sensor of the embodiment of the present invention.
  • Fig. 4 is the schematic diagram of the sensor of the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an ultrasonic probe provided with a sensor according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a puncture needle provided with a sensor according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of fusion forming a navigation image according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of navigation image display when the interventional instrument and the ultrasonic image are coplanar according to the embodiment of the present invention.
  • Fig. 9 is a schematic diagram of navigation image display when the interventional instrument and the ultrasonic image are not coplanar according to the embodiment of the present invention.
  • Fig. 10 is a schematic diagram of navigation image display when the interventional instrument and the ultrasonic image are not coplanar according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an interventional navigation system according to an embodiment of the present invention.
  • an interventional navigation system 1 according to an embodiment of the present invention includes an electromagnetic positioning module 2 , a navigation processing module 3 and a navigation output module 4 .
  • the electromagnetic positioning module 2 is connected with the ultrasonic imaging device 5 and the interventional instrument 6 to obtain the position and direction of the ultrasonic image generated by the ultrasonic imaging device 5 and the position and direction of the interventional instrument 6 .
  • the electromagnetic positioning module 2 of the embodiment of the present invention uses electromagnetic induction to measure the position and direction of the object, wherein the magnetic field signal transmitter generates a signal field by emitting a magnetic field signal, and the magnetic field
  • the signal receiving sensor receives the magnetic field signal, transmits the signal to the magnetic field signal controller, and obtains the space vector information (space coordinates and direction) of the object.
  • the accuracy of electromagnetic positioning technology can effectively solve the problem of inaccurate interventional navigation caused by the volume effect of ultrasonic imaging equipment.
  • Fig. 2 is a schematic diagram of an electromagnetic positioning module according to an embodiment of the present invention.
  • the electromagnetic positioning module 2 of the embodiment of the present invention includes a transmitter 21 , a sensor 22 and a magnetic field signal processor 23 .
  • the widely used products include the POLARIS system of Canadian NDI company, the VISLAN system of British RMR company, the Stealthstation system of American Medtronic company, etc.
  • the measurement accuracy of POLARIS system is 0.35mm RMS, which is considered as the international standard of navigation and positioning system , can track 9 passive and 3 active targets at the same time.
  • the transmitter 21 includes an electromagnetic transmitting coil to emit electromagnetic waves and generate an electromagnetic field.
  • the effective positioning range of the electromagnetic field in the embodiment of the present invention may be 300mm ⁇ 300mm ⁇ 300mm, 400mm ⁇ 400mm ⁇ 400mm, etc.
  • the sensor 22 receives the electromagnetic signal emitted by the transmitter 21 through the electromagnetic receiving coil, converts the electromagnetic signal into an electrical signal, and tracks and locates the position and direction of the sensor 22 in the electromagnetic field through the magnetic field signal processor 23 .
  • the positioning accuracy of interventional navigation is usually required to reach 5mm, and the positioning speed reaches 30ms.
  • the precision of electromagnetic positioning can be as low as 1.5 mm, and the positioning speed can be as fast as 12.5 ms.
  • the electromagnetic positioning module 2 can adjust the positioning accuracy and speed as required.
  • the senor 22 can be designed in various structures and sizes, and the size of the sensor 22 in the embodiment of the present invention can be a minimum outer diameter of 0.56 mm. As shown in FIG. 3 , the sensor 22 can be designed as a column with a larger diameter, which is suitable for being installed on an ultrasonic probe. As shown in FIG. 4 , the sensor 22 can also be designed as a wire with a smaller diameter, which is suitable for installation on interventional instruments, such as puncture instruments.
  • the sensor 22 can be wired or wireless. Therefore, the connection between the electromagnetic positioning module 2 and the ultrasonic imaging device 5 and the interventional instrument 6 can be wired or wireless, such as Bluetooth, WIFI, Zigbee and other ways to connect.
  • Fig. 5 is a schematic diagram of an ultrasonic probe provided with a sensor according to an embodiment of the present invention.
  • the sensor 221 is detachably installed on the ultrasonic probe 51 , so that the electromagnetic positioning module 2 can track and position the position and direction of the ultrasonic probe 51 .
  • the electromagnetic positioning module 2 can track and position the position and direction of the ultrasonic image generated by the ultrasonic imaging device 5 .
  • Interventional devices are devices used to implement interventional diagnosis and treatment, for example, vascular stent kits, percutaneous biopsy kits, radiofrequency ablation kits, tumor embolization kits, etc.
  • interventional instruments may include but not limited to one of puncture instruments, radio frequency instruments, microwave instruments, particle instruments, implant instruments, sheath instruments, tube instruments, biopsy instruments, etc. or more.
  • An interventional device may include one or more interventional tools, which may be catheters, guide wires, puncture needles, vascular sheaths, balloons, biopsy needles, and the like.
  • the interventional tool of the interventional device 6 may be a puncture needle 61 .
  • Fig. 6 is a schematic diagram of a puncture needle provided with a sensor according to an embodiment of the present invention. As shown in FIG. 6 , the sensor 222 is detachably disposed in the needle chamber of the puncture needle 61 .
  • auxiliary connectors of different lengths can be provided to connect the sensor to the interventional instrument 6 .
  • the electromagnetic positioning module 2 can track and position the position and direction of the interventional tool 61 .
  • the magnetic field signal processor 23 collects the electrical signal of the tracking positioning data in real time, calculates the real-time position and direction of the sensor, and transmits the calculation result information to the navigation processing module 3 in real time.
  • the navigation processing module 3 is connected with an ultrasound imaging device 5 to obtain ultrasound images. As shown in FIG. 1 , the navigation processing module 3 is connected with the electromagnetic positioning module 2 to obtain the ultrasound image and the position and direction of the interventional instrument 6 .
  • the navigation processing module 3 forms the interventional path 62 according to the position and direction of the interventional instrument 6, and according to the position and direction of the ultrasonic image, the position and direction of the interventional instrument 6, and the interventional path 62, the interventional instrument 6 and the interventional path
  • the path 62 is orthogonally projected onto the ultrasound image, forming a navigation image that fuses the projections of the interventional instrument 6 and the interventional path 62 .
  • the navigation processing module 3 can be connected with the ultrasonic imaging device 5 through a video image acquisition device to obtain ultrasonic image data.
  • a video image acquisition device to obtain ultrasonic image data.
  • the connection method can also be PCI or PCIE.
  • the video acquisition device can use a high-definition shielded video line or a wireless mode to interface with a full digital color Doppler ultrasonic diagnostic system DVI or HDMI to collect real-time ultrasonic video and convert it into a digital signal for transmission.
  • a full digital color Doppler ultrasonic diagnostic system DVI or HDMI to collect real-time ultrasonic video and convert it into a digital signal for transmission.
  • the video acquisition device in the embodiment of the present invention has a standard video interface, such as HDMI or DVI, and can be connected to the standard video interface of the existing ultrasonic imaging device through a standard video signal line. Therefore, the interventional navigation system of the embodiment of the present invention is compatible with various ultrasonic imaging equipment, on the one hand, the existing ultrasonic imaging equipment can be fully utilized, on the other hand, the volume and weight of the interventional navigation system can be smaller, more flexible, and easy to use.
  • a standard video interface such as HDMI or DVI
  • the ultrasound imaging device 5 may be a black and white ultrasound system, a full digital color Doppler ultrasound diagnostic system, and the like.
  • the navigation processing module 3 and the electromagnetic positioning module 2 can be connected through the USB interface and adopt the USB2.0 protocol, so as to obtain the ultrasonic image and the position and direction data of the interventional instrument 6 from the electromagnetic positioning module 2 .
  • the navigation processing module 3 can form the interventional path 62 according to the shape, position and direction of the interventional instrument 6 and the needs of interventional diagnosis and treatment.
  • the interventional path 62 is a straight line extending along the direction of the interventional instrument 6 .
  • Fig. 7 is a schematic diagram of forming a navigation image through fusion according to an embodiment of the present invention.
  • the navigation processing module 3 can align the interventional instrument 6 and the interventional path 62 Cross-projected onto the ultrasound image and fused with the ultrasound image to form a navigation image that combines the information of the ultrasound image, the interventional device and the intervention path.
  • the navigation output module 4 is connected with the navigation processing module 3, to obtain the navigation image data from the navigation processing module, and output to the display in a clearer and intuitive display mode according to the set display mode.
  • the device provides interventional navigation for the medical staff who perform the intervention.
  • the navigation image can be displayed in a two-dimensional or three-dimensional perspective display.
  • the display mode of the navigation image may be different, so as to provide interventional navigation more clearly and intuitively.
  • FIG. 8 is a schematic diagram of displaying a navigation image when the interventional instrument and the ultrasonic image are in a coplanar state according to an embodiment of the present invention.
  • the projection of the interventional instrument 6 and the projection of the interventional path 62 can be displayed in a solid line.
  • Fig. 9 is a schematic diagram of navigation image display when the interventional instrument and the ultrasonic image are not coplanar according to the embodiment of the present invention. As shown in FIG. 9 , in the embodiment of the present invention, when the interventional instrument 6 and the ultrasonic image are not coplanar, the projection of the interventional instrument 6 and the projection of the interventional path 62 can be displayed in a dotted line.
  • the display methods of the projection of the interventional instrument 6 and/or the projection of the interventional path 62 may include but not limited to wireframe display, plane display, solid line display, dotted line display, various color display, dynamic display, static display, etc. Show one or a combination of etc.
  • the display mode of the interventional path 62 or the intersection of the interventional device 6 and the ultrasonic image may be different from that of other points on the projection of the interventional path 62 .
  • the intersections of the interventional path 62 and the ultrasound image are displayed in the form of crossed lines.
  • the display manner of the intersection of the intervention path 62 and the ultrasound image includes but is not limited to one or more combinations of cross-line display, star display, various color display, dynamic display, and the like.
  • the projections of the two parts of the intervention path 62 on both sides of the ultrasound image can be displayed in different ways, and/or, on both sides of the ultrasound image
  • the projections of the two parts of the interventional instrument 6 can be displayed in different ways respectively.
  • Fig. 10 is a schematic diagram of navigation image display when the interventional instrument and the ultrasonic image are not coplanar according to another embodiment of the present invention.
  • the projections of the two parts of the intervention path 62 on both sides of the ultrasound image can be displayed in solid and dashed lines, respectively.
  • the display methods of the projections of the two parts of the interventional instrument 6 and/or the projections of the two parts of the interventional path 62 may include but not limited to wireframe display, surface display, solid line display, dotted line display, various colors One or more combinations of display, dynamic display, static display, etc.
  • the position and direction of the interventional instrument 6 can be adjusted by navigating through the intersection point of the interventional path 62 and the ultrasonic image.
  • the interventional path 62 intersects the target point, so that the interventional navigation when the interventional instrument 6 and the ultrasonic image are not in a coplanar state can be realized.
  • the appearance of the interventional tool 61 can be drawn and displayed, especially the real-time position and direction of the working part of the interventional tool 61.
  • the embodiment of the present invention can guide and locate in real time, feedback the intervention path and the position and direction of the working part of the intervention tool, without being limited by the angle, has high safety, and is convenient and reliable to use.
  • the navigation processing module 3 and the navigation output module 4 can be implemented by a computer system.
  • the interventional ultrasonic navigation system may further include a carrier, and the carrier may include an operating console, an electromagnetic positioning module installation, a display installation, a power control module, a mobile device, and the like.
  • the operating table can be used for temporary placement of medical consumables or tools, as well as installation and lifting of the display and electromagnetic positioning module, and can have a lifting function.
  • the electromagnetic positioning module mounting part can be used to install and carry the electromagnetic positioning module 2, which can be a hovering arm or an independent bracket.
  • the display mounting part can be used for mounting and carrying the display, and can be a hovering arm or an independent stand.
  • the power control module may be a power control module complying with the safety regulations of GB9706.1-2007, which includes a battery whose specification is not lower than 14.8V/15.6Ah.
  • the moving device may be a caster with a locking function.
  • the interventional navigation system of the embodiment of the present invention obtains the ultrasonic image and the position and direction of the interventional device through the electromagnetic positioning module, uses the navigation processing module to form the interventional path, and forms a navigation image fused with the projection of the interventional device and the interventional path, providing easier access for intervention Operation, more accurate and efficient navigation.
  • the above-mentioned embodiments describe the interventional navigation system in detail.
  • the present invention includes but is not limited to the above-mentioned implementations, and any content that is transformed on the basis of the above-mentioned embodiments falls within the protection scope of the present invention.
  • Those skilled in the art can draw inferences based on the content of the foregoing embodiments.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明涉及一种介入导航系统,通过电磁定位模块获取超声图像和介入器械的位置和方向,利用导航处理模块形成介入路径,并形成融合介入器械和介入路径的投影的导航图像,为介入提供导航。

Description

介入导航系统 技术领域
本发明涉及医疗器械技术领域,具体而言,涉及一种介入导航系统。
背景技术
以下对本发明的相关背景技术进行说明,但这些说明并不一定构成本发明的现有技术。
介入放射学(Interventional Radiology)是二十世纪七十年代后期迅速发展起来的一门边缘性学科。它是在医学影像设备的引导下,以影像诊断学和临床诊断学为基础,结合临床治疗学原理,利用导管、导丝等器材对各种疾病进行诊断及治疗的一系列技术。即:在影像医学(X线、超声、CT、MRI)的引导下,通过经皮穿刺途径或通过人体原有孔道,将特制的导管或器械插至病变部位进行诊断性造影和治疗的学科,或组织采集,进行细胞学细菌学及生化检查。
介入放射学为现代医学诊疗提供了新的给药途径和手术方法。与传统的给药途径和手术方法相比较,具有更直接有效、更简便微创。介入放射学开拓了新的治疗途径,且简便、安全、创伤小、合并症少、见效快,具有微创性;可重复性强;定位准确;疗效高、见效快;并发症发生率低;多种技术的联系应用简便易行。
介入放射学按目的可分为介入诊断学和介入治疗学;按技术可分为:血管性介入放射学(药物灌注;栓塞技术;成形支架;滤器技术等)和非血管放射介入学(穿刺活检;引流技术;异物取除;腔道支架等);按临床应用范围可分为肿瘤介入放射学、非肿瘤介入放射学、神经介入放射学等等。
介入放射学所应用的医学影像设备主要包括X线、超声、CT、MRI引导等,其中,X线和CT具有放放射性,而MRI则需要配合非铁磁性设备和环境 应用。对于术中介入引导而言,需要多次,长时间的成像,X线和CT所具有的放射性对于患者和医护人员的危害,MRI对于配套设备和环境的非铁磁性要求,都对介入诊治造成了不便和困难,妨碍了介入放射学的临床应用。
超声具有实时成像、无放射性等特点,在介入放射学中得到了较广泛的应用。但是,超声成像的非直观二维性、超声成像平面与介入工具的共面等问题,易造成对介入工具的定位、引导的困难与失误,进而引起穿刺误差、创伤、并发症等状况发生,要求执行介入诊治的医护人员需要具备大量的训练、熟练的技术和丰富的经验。
超声介入导航可以实时显示介入工具在组织内的运动情况,为介入路径选择提供依据,是介入放射学的重要手段。但是,常规超声引导介入严重依赖操作者的技术、经验和超声仪器性能,可能存在介入次数较多和操作用时较长等问题,进而导致并发症发生率增加。
由于超声成像的特点,在介入过程中为了对介入器械进行实时成像导航,需要保持靶点、介入器械和超声成像平面处于同一平面。由于组织密度小,在受压的情况下容易发生位移/变形,需要随时根据情况重新调整超声探头的角度和按压的力度,往往相应的介入器械的位置也会发生变化,就需要同时调整超声探头和介入器械重新成像导航,难度非常大,对于医生的要求非常高。
由于超声的容积效应,超声设备对于介入器械的成像并不能反映其真实位置及大小,从而影响导航的准确性。
发明内容
有鉴于此,本发明实施例提供一种介入导航系统,以解决上述现有介入导航技术的操作难度大、准确性差等问题中的一个或多个,实现更易操作、更准确有效的介入导航。
根据本发明的一个方面,本发明提供了一种介入导航系统,包括:电磁定位模块,所述电磁定位模块与超声成像设备和介入器械相连,获取所述超声成 像设备所产生的超声图像的位置和方向、所述介入器械的位置和方向;导航处理模块,所述导航处理模块与所述超声成像设备和所述电磁定位模块相连,根据所述介入器械的位置和方向形成介入路径,并根据所述超声图像的位置和方向、所述介入器械的位置和方向、所述介入路径,将所述介入器械和所述介入路径正交投影至所述超声图像,形成融合所述介入器械和所述介入路径的投影的导航图像;导航输出模块,所述导航输出模块与所述导航处理模块相连,根据设定的显示方式输出所述导航图像。
进一步,所述介入器械和所述超声图像处于共面状态时和不共面状态时,所述导航图像的显示方式可不同。
进一步,可以以三维透视的方式显示所述导航图像。
进一步,所述介入器械和所述超声图像处于共面状态时和不共面状态时,所述介入器械的投影的显示方式可不同,和/或,所述介入路径的投影的显示方式可不同。
进一步,所述介入器械的投影和/或所述介入路径的投影的显示方式可包括但不限于线框显示、面显示、实线显示、虚线显示、各种颜色显示、动态显示、静态显示中的一种或多种的组合。
进一步,所述介入器械和所述超声图像处于不共面状态时,所述介入路径与所述超声图像的交点的显示方式,与所述介入路径的投影上其他点的显示方式可不同。
进一步,所述交点的显示方式可包括但不限于交叉线显示、星形显示、圆形显示、各种颜色显示、动态显示中的一种或多种的组合。
进一步,所述介入器械和所述超声图像处于不共面状态时,处于所述超声图像两侧的所述介入路径的两部分的投影可分别以不同的方式显示,和/或,处于所述超声图像两侧的所述介入器械的两部分的投影可分别以不同的方式显示。
进一步,所述介入器械的两部分的投影和/或所述介入路径的两部分的投影 的显示方式可包括但不限于线框显示、面显示、实线显示、虚线显示、各种颜色显示、动态显示、静态显示中的一种或多种的组合。
进一步,可沿所述介入器械的方向延伸形成直线状的所述介入路径。
进一步,所述电磁定位模块可包括第一传感器和第二传感器,所述第一传感器连接至所述超声成像设备的探头,所述第二传感器连接至所述介入器械。
进一步,所述介入器械可包括但不限于穿刺类器械、射频类器械、微波类器械、粒子类器械、植入类器械、鞘类器械、管类器械、活检类器械中的一种或多种。
综上,根据本发明的介入导航系统,更加易于操作,更加准确有效,从而解决了现有技术中存在的技术问题。
附图说明
通过以下参照附图提供的具体实施方式部分,本发明的特征和优点将变得更加容易理解,在附图中:
图1是本发明实施例的介入导航系统的示意图;
图2是本发明实施例的电磁定位模块的示意图;
图3是本发明实施例的传感器的示意图;
图4是本发明实施例的传感器的示意图;
图5是本发明实施例的设置有传感器的超声探头的示意图;
图6是本发明实施例的设置有传感器的穿刺针的示意图;
图7是本发明实施例的融合形成导航图像的示意图;
图8是本发明实施例的介入器械与超声图像处于共面状态时导航图像显示的示意图;
图9是本发明实施例的介入器械与超声图像处于不共面状态时导航图像显示的示意图;
图10是本发明另一实施例介入器械与超声图像处于不共面状态时导航图像显示的示意图;
具体实施方式
下面参照附图对本发明的示例性实施方式进行详细描述。对示例性实施方式的描述仅仅是出于示范目的,而绝不是对本发明及其应用或用法的限制。
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本发明中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。在本发明中所述的“远端”、“远侧”是指远离操作者的一侧;相应的,“近端”、“近侧”是与“远端”、“远侧”相对的一侧。
图1是本发明实施例的介入导航系统的示意图。如图1所示,本发明实施例的介入导航系统1包括电磁定位模块2、导航处理模块3和导航输出模块4。
其中,电磁定位模块2与超声成像设备5和介入器械6相连,获取超声成像设备5所产生的超声图像的位置和方向、介入器械6的位置和方向。
本发明实施例的电磁定位模块2根据比奥-萨伐戈尔定律(Biot-Savart),利用电磁感应对物体的位置和方向进行测量,其中磁场信号发射器通过发射磁场信号产生信号场,磁信号接收传感器接收磁场信号,将信号传输到磁场信号控制器,获得物体空间矢量信息(空间坐标及方向)。
电磁定位技术的精度,可以有效解决由于超声成像设备的容积效应所造成的介入导航不准确的问题。
图2是本发明实施例的电磁定位模块的示意图。如图2所示,本发明实施 例的电磁定位模块2包括发射器21、传感器22和磁场信号处理器23。目前,应用较广泛的产品有加拿大NDI公司的POLARIS系统,英国RMR公司的VISLAN系统,美国Medtronic公司Stealthstation系统等;其中,POLARIS系统的测量精度为0.35mm RMS,被认为是导航定位系统的国际标准,能同时跟踪9个被动和3个主动的目标。
其中,发射器21包括电磁发射线圈,以发射电磁波,产生电磁场,本发明实施例中的电磁场的有效定位范围可以是300mm×300mm×300mm、400mm×400mm×400mm等。
传感器22通过电磁接收线圈接收发射器21所发射的电磁信号,并将电磁信号并转化成电信号,通过磁场信号处理器23,跟踪定位处于电磁场中的传感器22的位置和方向。
根据临床要求,通常需要介入导航的定位精度达到5mm,定位速度达到30ms。本发明实施例中,通常电磁定位的精度可为最小1.5mm,定位速度可为最快12.5ms。进一步,本发明实施中,电磁定位模块2可根据需要调节定位精度和速度。
图3和图4是本发明实施例的传感器的示意图。根据应用需要,传感器22可设计成各种结构和尺寸,本发明实施例中传感器22的尺寸可为最小外径0.56mm。如图3所示,传感器22可设计为直径较大的柱状,适用于安装于超声探头。如图4所示,传感器22也可设计为直径较小的线状,适用于安装于介入器械,如穿刺器械等。
传感器22可以是有线的,也可以是无线的,因而,电磁定位模块2与超声成像设备5和介入器械6之间的连接可以是有线方式,也可以是无线方式,例如可以是蓝牙、WIFI、Zigbee等方式连接。
图5是本发明实施例的设置有传感器的超声探头的示意图。如图5所示,传感器221可拆卸地安装于超声探头51,从而电磁定位模块2可跟踪定位超声 探头51的位置和方向。根据超声探头51和超声成像设备5所产生的超声图像的关系,进而,电磁定位模块2可跟踪定位超声成像设备5所产生的超声图像的位置和方向。
介入器械是用于实施执行介入诊疗的装置,例如,血管支架套件、经皮穿刺活检套件、射频消融套件、肿瘤栓塞套件等。本发明实施例中,介入器械可包括但不限于穿刺类器械、射频类器械、微波类器械、粒子类器械、植入类器械、鞘类器械、管类器械、活检类器械等中的一种或多种。介入器械可包括一个或多个介入工具,介入工具可以是导管、导丝、穿刺针、血管鞘、球囊、活检针等等。
本发明实施例中,介入器械6的介入工具可以是穿刺针61。图6是本发明实施例的设置有传感器的穿刺针的示意图。如图6所示,传感器222可拆卸地设置于穿刺针61的针腔内。
为了适配不同长度的介入器械6,可设置不同长度的辅助连接件,以将传感器连接至介入器械6。
通过设置于介入器械6的传感器222,电磁定位模块2可跟踪定位介入工具61的位置和方向。
磁场信号处理器23实时采集追踪定位数据的电信号,计算传感器的实时位置和方向,并将计算结果信息即时传输给导航处理模块3。
如图1所示,导航处理模块3与超声成像设备5相连,以获得超声图像。如图1所示,导航处理模块3与电磁定位模块2相连,以获得超声图和介入器械6的位置和方向。
本发明实施例中,导航处理模块3根据介入器械6的位置和方向形成介入路径62,并根据超声图像的位置和方向、介入器械6的位置和方向、介入路径62,将介入器械6和介入路径62正交投影至超声图像,形成融合介入器械6和介入路径62的投影的导航图像。
本发明实施例中,导航处理模块3可通过视频图像采集设备与超声成像设 备5连接,以获取超声图像数据。在一实施例中是通过USB3.0连接方式,该连接方式也可以是PCI或者PCIE。
本发明实施例中,优选地,视频采集设备可通过高清带屏蔽的视频线或无线方式与全数字彩色多普勒超声诊断系统DVI或HDMI接口,进行实时超声视频的采集,转化成数字信号传输给导航处理模块3。
本发明实施例的视频采集设备具有标准的视频接口,例如HDMI或者DVI,可与现有超声成像设备的标准视频接口通过标准的视频信号线相连接。因而,本发明实施例的介入导航系统可与各种超声成像设备相兼容,一方面可充分利用现有超声成像设备,另一方面介入导航系统的体积重量可以更小、更灵活,方便使用。
在本发明实施例中,超声成像设备5可以是黑白超系统、全数字彩色多普勒超声诊断系统等。
本发明实施例中,导航处理模块3与电磁定位模块2可通过USB接口、采用USB2.0协议相连,以从电磁定位模块2得到超声图像与介入器械6的位置和方向数据。
本发明实施例中,导航处理模块3可根据介入器械6的形状、位置和方向以及介入诊治的需要,形成介入路径62,通常介入路径62是沿介入器械6的方向延伸的直线。
图7是本发明实施例融合形成导航图像的示意图。如图7所示,本发明实施例中,根据超声图像的位置和方向、介入器械6的位置和方向、介入路径62的位置和方向,导航处理模块3可将介入器械6和介入路径62正交投影到超声图像上,与超声图像相融合,形成融合了超声图像、介入器械和介入路径的信息的导航图像。
如图1所示,本发明实施例中,导航输出模块4与导航处理模块3相连,以从导航处理模块得到导航图像数据,根据设定的显示方式,以更清楚直观的显示方式输出至显示设备,为实施介入的医护人员提供介入导航。
可以以二维的或者三维透视的显示方式来显示导航图像。
本发明实施例中,当介入器械6和超声图像处于共面状态时和不共面状态时,导航图像的显示方式可不同,以更清楚直观地提供介入导航。
例如,图8是本发明实施例介入器械与超声图像处于共面状态时导航图像显示的示意图。如图8所示,本发明实施例中,当介入器械6和超声图像处于共面状态时,介入器械6的投影和介入路径62的投影的可以以实线的方式显示。
图9是本发明实施例介入器械与超声图像处于不共面状态时导航图像显示的示意图。如图9所示,本发明实施例中,当介入器械6和超声图像处于不共面状态时,介入器械6的投影和介入路径62的投影的可以以虚线的方式显示。
本发明实施例中,介入器械6的投影和/或介入路径62的投影的显示方式可包括但不限于线框显示、面显示、实线显示、虚线显示、各种颜色显示、动态显示、静态显示等中的一种或多种的组合。
本发明实施例中,介入器械6和超声图像处于不共面状态时,介入路径62或介入器械6与超声图像的交点的显示方式,与介入路径62的投影上其他点的显示方式可不同。如图9所示,介入路径62与超声图像的交点以交叉线的方式显示。
本发明实施例中,介入路径62与超声图像的交点的显示方式包括但不限于交叉线显示、星形显示、各种颜色显示、动态显示等中的一种或多种组合。
本发明实施例中,介入器械6和超声图像处于不共面状态时,处于超声图像两侧的介入路径62的两部分的投影可分别以不同的方式显示,和/或,处于超声图像两侧的介入器械6的两部分的投影可分别以不同的方式显示。
图10是本发明另一实施例介入器械与超声图像处于不共面状态时导航图像显示的示意图。如图10所示,本发明实施例中,处于超声图像两侧的介入路径62的两部分的投影可以分别以实线和虚线的方式显示。
本发明实施例中,介入器械6的两部分的投影和/或介入路径62的两部分 的投影的显示方式可包括但不限于线框显示、面显示、实线显示、虚线显示、各种颜色显示、动态显示、静态显示等中的一种或多种组合。
本发明实施例中,介入器械6和超声图像处于不共面状态时,可通过介入路径62与超声图像的交点进行导航,调整介入器械6的位置和方向,当该交点与靶点重合时,介入路径62即与靶点相交,从而可实现介入器械6和超声图像处于不共面状态时的介入导航。
在本发明实施例中,根据传感器222在介入工具61的设置位置布局和介入工具61的结构,可绘制显示介入工具61的外形,特别是介入工具61的工作部位的实时位置和方向。
本发明实施例,能实时导向定位,反馈介入路径及介入工具的工作部位的位置方向,不受角度限制,安全性高,使用方便可靠。
本发明实施例中,导航处理模块3和导航输出模块4可以由计算机系统实现。
本发明实施例中,介入超声导航系统还可包括载体,载体可包括操作台、电磁定位模块安装件、显示器安装件、电源控制模块、移动装置等。
在本发明实施例中,操作台可用于临时放置医疗耗材或者工具以及显示器和电磁定位模块的安装承载和举升,可具有升降功能。
在本发明实施例中,电磁定位模块安装件可用于安装承载电磁定位模块2,可以是能够悬停的支臂或独立支架。
本发明实施例中,显示器安装件可用于安装承载显示器,可以是能够悬停的支臂或独立支架。
本发明实施例中,电源控制模块可以是符合GB9706.1-2007安全规定的电源控制模块,其包括电池,该电池规格不低于14.8V/15.6Ah。
本发明实施例中,移动装置可以是带锁定功能的脚轮。
本发明实施例的介入导航系统通过电磁定位模块获取超声图像和介入器械的位置和方向,利用导航处理模块形成介入路径,并形成融合介入器械和介 入路径的投影的导航图像,为介入提供更加易于操作、更加准确有效的导航。
综上,上述实施例对介入导航系统进行了详细说明,当然,本发明包括但不同限于上述实施,任何在上述实施例的基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。
虽然参照示例性实施方式对本发明进行了描述,但是应当理解,本发明并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对所述示例性实施方式做出各种改变,所有的这种改变均落入本发明的保护范围。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个 流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种介入导航系统,其特征在于,包括:
    电磁定位模块,所述电磁定位模块与超声成像设备和介入器械相连,获取所述超声成像设备所产生的超声图像的位置和方向、所述介入器械的位置和方向;
    导航处理模块,所述导航处理模块与所述超声成像设备和所述电磁定位模块相连,根据所述介入器械的位置和方向形成介入路径,并根据所述超声图像的位置和方向、所述介入器械的位置和方向、所述介入路径,将所述介入器械和所述介入路径正交投影至所述超声图像,形成融合所述介入器械和所述介入路径的投影的导航图像;
    导航输出模块,所述导航输出模块与所述导航处理模块相连,根据设定的显示方式输出所述导航图像。
  2. 根据权利要求1所述的介入导航系统,其特征在于,所述介入器械和所述超声图像处于共面状态时和不共面状态时,所述导航图像的显示方式不同。
  3. 根据权利要求1-2中任一项所述的介入导航系统,其特征在于,以三维透视的方式显示所述导航图像。
  4. 根据权利要求1-3中任一项所述的介入导航系统,其特征在于,所述介入器械和所述超声图像处于共面状态时和不共面状态时,所述介入器械的投影的显示方式不同,和/或,所述介入路径的投影的显示方式不同。
  5. 根据权利要求4所述的介入导航系统,其特征在于,所述介入器械的投影和/或所述介入路径的投影的显示方式包括但不限于线框显 示、面显示、实线显示、虚线显示、各种颜色显示、动态显示、静态显示中的一种或多种的组合。
  6. 根据权利要求1-5中任一项所述的介入导航系统,其特征在于,所述介入器械和所述超声图像处于不共面状态时,所述介入路径与所述超声图像的交点的显示方式,与所述介入路径的投影上其他点的显示方式不同。
  7. 根据权利要求6所述的介入导航系统,其特征在于,所述交点的显示方式包括但不限于交叉线显示、星形显示、圆形显示、各种颜色显示、动态显示中的一种或多种的组合。
  8. 根据权利要求1-7中任一项所述的介入导航系统,其特征在于,所述介入器械和所述超声图像处于不共面状态时,处于所述超声图像两侧的所述介入路径的两部分的投影分别以不同的方式显示,和/或,处于所述超声图像两侧的所述介入器械的两部分的投影分别以不同的方式显示。
  9. 根据权利要求8所述的介入导航系统,其特征在于,所述介入器械的两部分的投影和/或所述介入路径的两部分的投影的显示方式包括但不限于线框显示、面显示、实线显示、虚线显示、各种颜色显示、动态显示、静态显示中的一种或多种的组合。
  10. 根据权利要求1-9中任一项所述的介入导航系统,其特征在于,沿所述介入器械的方向延伸形成直线状的所述介入路径。
  11. 根据权利要求1-10中任一项所述的介入导航系统,其特征在于,所述电磁定位模块包括第一传感器和第二传感器,所述第一传感器连接至所述超声成像设备的探头,所述第二传感器连接至所述介入器械。
  12. 根据权利要求1-11中任一项所述的介入导航系统,其特征在于,所述介入器械包括但不限于穿刺类器械、射频类器械、微波类器械、粒子类器械、植入类器械、鞘类器械、管类器械、活检类器械中的一种或多种。
PCT/CN2022/108985 2021-07-30 2022-07-29 介入导航系统 WO2023006070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110869250.9A CN113456226A (zh) 2021-07-30 2021-07-30 介入导航系统
CN202110869250.9 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023006070A1 true WO2023006070A1 (zh) 2023-02-02

Family

ID=77883408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108985 WO2023006070A1 (zh) 2021-07-30 2022-07-29 介入导航系统

Country Status (2)

Country Link
CN (1) CN113456226A (zh)
WO (1) WO2023006070A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113456226A (zh) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 介入导航系统
CN116269767B (zh) * 2023-05-22 2023-08-08 北京迈迪斯医疗技术有限公司 一种基于电磁定位的活检系统及导航方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
CN106691580A (zh) * 2015-11-17 2017-05-24 柯惠有限合伙公司 用于超声图像引导的消融天线放置的系统和方法
CN112040875A (zh) * 2018-04-06 2020-12-04 美敦力公司 基于图像的导航系统和使用相同的导航系统的方法
CN113456189A (zh) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 穿刺系统
CN113456226A (zh) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 介入导航系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
CN106691580A (zh) * 2015-11-17 2017-05-24 柯惠有限合伙公司 用于超声图像引导的消融天线放置的系统和方法
CN112040875A (zh) * 2018-04-06 2020-12-04 美敦力公司 基于图像的导航系统和使用相同的导航系统的方法
CN113456189A (zh) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 穿刺系统
CN113456226A (zh) * 2021-07-30 2021-10-01 北京迈迪斯医疗技术有限公司 介入导航系统

Also Published As

Publication number Publication date
CN113456226A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023006070A1 (zh) 介入导航系统
US10405827B2 (en) Medical treatment system
US10251579B2 (en) Magnetic resonance guidance of a shaft to a target zone
US7671887B2 (en) System and method of navigating a medical instrument
US20130035590A1 (en) Systems and methods to assist with internal positioning of instruments
US8275445B2 (en) System and method for determining the position of an instrument
Appelbaum et al. Electromagnetic navigation system for CT-guided biopsy of small lesions
KR101758741B1 (ko) 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템
WO2023006072A1 (zh) 穿刺系统
JP2010057910A (ja) 超音波およびx線の画像化の組み合わせを使用した、カテーテルをガイドするための方法および装置
JP2023533449A (ja) 患者処置において使用されるプローブの可動域を画定および修正するためのシステムおよび方法
JP2014510609A (ja) 3d可視化を伴った心臓置換弁の超音波誘導による位置決め
KR101758740B1 (ko) 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템
US20180325602A1 (en) System and workflow for grid-less transperineal prostate interventions
CN104771232A (zh) 一种电磁定位系统及其三维影像视角的选取方法
JP2016531713A (ja) ユーザが規定可能な関心領域を含む画像ガイダンスシステム
CN104783903A (zh) 一种可调节的双平面电磁定位系统
CN116019486A (zh) 使用脉管检测进行相对定向的高保真多普勒超声
US20200197099A1 (en) Systems, method and devices for assisting or performing guiding interventional procedures using inertial measurement units and magnetometer sensors
CN204671279U (zh) 一种电磁定位装置
CN216060722U (zh) 介入导航系统
WO2020081725A1 (en) Biopsy navigation system and method
CN114259272B (zh) 一种体外可视的介入止血装置和方法
JP6078134B1 (ja) 医療システム
KR20190040914A (ko) 데브라이더 경고 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE