WO2023006039A1 - 客户端的通信方法、客户端和通信系统 - Google Patents

客户端的通信方法、客户端和通信系统 Download PDF

Info

Publication number
WO2023006039A1
WO2023006039A1 PCT/CN2022/108645 CN2022108645W WO2023006039A1 WO 2023006039 A1 WO2023006039 A1 WO 2023006039A1 CN 2022108645 W CN2022108645 W CN 2022108645W WO 2023006039 A1 WO2023006039 A1 WO 2023006039A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
frequency
communication device
configuration information
client
Prior art date
Application number
PCT/CN2022/108645
Other languages
English (en)
French (fr)
Inventor
牛雪峰
Original Assignee
联洲集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联洲集团有限公司 filed Critical 联洲集团有限公司
Priority to EP22848644.5A priority Critical patent/EP4380206A1/en
Publication of WO2023006039A1 publication Critical patent/WO2023006039A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communication technologies, and in particular to a communication method and device for a multi-frequency bridging client, a multi-frequency bridging client and a communication system.
  • the client bridges with the communication device for wireless communication.
  • multi-frequency clients and multi-frequency communication devices such as access points (APs)
  • APs access points
  • Multi-frequency clients and multi-frequency APs can support the 2.4GHz frequency band, 5GHz frequency band, and 6GHz frequency band, as well as frequency bands that may be supported by subsequent WiFi. Bridge up for wireless communication.
  • client “communication device” and “AP” all refer to multi-frequency devices.
  • the support of the bridging function by the multi-frequency client and the multi-frequency AP may include the following situations.
  • the client and the AP perform standard protocol interaction, and the process of protocol message interaction can only be completed in one frequency band, and the process of protocol message interaction cannot be completed in other frequency bands, that is, at least one device (client and/or AP) can only complete the protocol message exchange process for obtaining configuration information in one frequency band, such a device may be referred to as a single-frequency bridging client in this application (that is, multiple frequency client) or single-frequency bridging AP (that is, multi-frequency AP with single-frequency bridging).
  • WPS Wireless Protected Setup
  • the client and the AP perform standard protocol interaction, and the interaction process of their corresponding protocol messages can be completed in all frequency bands, that is, both devices (client and AP) can complete in all frequency bands
  • a protocol message exchange process for bridging such a device may be referred to as a multi-frequency bridging client or a multi-frequency bridging AP in this application.
  • WPS Wireless Protected Setup
  • the multi-frequency bridging AP will declare WPS in all frequency bands, and the multi-frequency bridging client will be in all frequency bands.
  • the process of interacting with the WPS protocol message of the multi-frequency bridging AP is completed within a period of time.
  • the third case the client and the network configurator perform standard protocol interaction, and the AP is managed by the network configurator.
  • the client performs standard protocol interaction with the network configurator, and obtains AP configuration information from the network configurator. If the client can only obtain the configuration information of the AP in one frequency band, at least one of the client and the AP is a single-frequency bridging device, that is, a single-frequency bridging client or a single-frequency bridging AP; otherwise, if all frequency bands are obtained configuration information, it is a multi-frequency bridging client or a multi-frequency bridging AP.
  • the network configurator scans the QR code of the client to trigger the bridging operation, and the client can obtain the configuration information for the bridging operation from the network configurator.
  • the protocol interaction process involved in the wifi easy connect technology can be referred to as the wifi easy connect process for short.
  • the multi-frequency bridging client cooperates with the multi-frequency bridging AP, and in response to a single bridging trigger operation, the multi-frequency bridging client can bridge with the multi-frequency bridging AP on all frequency bands. If at least one of the client and the AP is a single-frequency bridging device, the client can bridge to the AP on all frequency bands only after responding to multiple bridging trigger indications (multiple triggers).
  • the client In actual use, even if the client is a multi-frequency bridge device, when cooperating with a single-frequency bridge AP, it must respond to multiple bridge trigger operations to bridge to all frequency bands of the single-frequency bridge AP.
  • the multi-frequency bridging client After the multi-frequency bridging client completes the standard protocol interaction in a frequency band, it may not know whether the AP to be bridged is a multi-frequency bridging AP or a single-frequency bridging AP, so it needs to wait longer than the specified time in the protocol (for example, WPS technology corresponds to The specified duration is 2 minutes), and the protocol interaction process in other frequency bands can only be terminated after it is determined that the standard protocol interaction cannot be completed in other frequency bands. This process takes a long time and the user experience is poor.
  • the purpose of the embodiments of the present invention is to provide a communication method, device, multi-frequency bridging client and communication system for a multi-frequency bridging client, on the basis of corresponding standard protocols, to quickly bridge to single-frequency/multi-frequency bridging in all frequency bands communication device (AP).
  • AP frequency bands communication device
  • an embodiment of the present invention provides a communication method for a client.
  • the client is used for bridging with a single-frequency bridging communication device on multiple frequency bands
  • the communication method includes: in response to a single bridging trigger operation, acquiring the information of each communication device on each frequency band of the multiple frequency bands Device information, and respectively start the protocol interaction process associated with the single-frequency bridge communication device on the multiple frequency bands; in response to determining that the protocol interaction process is completed on the first frequency band, acquire the Configuration information on the first frequency band of the communication device; based on the configuration information on the first frequency band and the device information of each communication device on each of the multiple frequency bands, determine at least one frequency band other than the first frequency band configuration information on other frequency bands; and using the configuration information on the first frequency band and the determined configuration information on the at least one other frequency band to communicate with the first frequency band and the at least one other frequency band Single frequency bridging communication equipment bridging.
  • an embodiment of the present invention provides a communication method for a client.
  • the client is used for bridging with a single-frequency bridging communication device on multiple frequency bands
  • the communication method includes: responding to a single bridging trigger operation, respectively starting a protocol interaction process on the multiple frequency bands; Complete the protocol interaction process on the first frequency band, obtain the configuration information on the first frequency band, and determine the stage of the protocol interaction process on each other frequency band except the first frequency band; according to completing the protocol on the first frequency band In the stage of the protocol interaction process on each other frequency band during the interaction process, determine the delay time corresponding to each other frequency band; for each frequency band in each other frequency band, determine the protocol interaction on the frequency band within the delay time corresponding to the frequency band Whether the process is completed, and in the case that the protocol interaction process on each of the other frequency bands is not completed within the delay time corresponding to each of the other frequency bands, terminate the protocol interaction process on each of the other frequency bands, and obtain all The device information of each communication device
  • embodiments of the present invention provide a communication method for a client.
  • the client is used for bridging with a single-frequency bridging communication device on multiple frequency bands
  • the communication method includes: responding to a single bridging trigger operation, respectively starting a protocol interaction process on the multiple frequency bands;
  • the protocol interaction process on the first frequency band among the multiple frequency bands determine whether the client and the counterparty of the protocol interaction process support the same proprietary protocol, and if it is determined to support the same proprietary protocol, then in the multiple frequency bands
  • After completing the protocol interaction process on the first frequency band obtain configuration information including the first frequency band and at least one other frequency band from the opposite party, and stop the protocol interaction process on other frequency bands except the first frequency band, and use
  • the configuration information on the first frequency band and at least one other frequency band is bridged with the communication device on the corresponding frequency band.
  • an embodiment of the present invention further provides a client, including a processor, a memory, and a computer program stored in the memory and configured to be executed by the processor, the When the processor executes the computer program, the communication method of the client according to any one of the above aspects is realized.
  • an embodiment of the present invention further provides a communication system, including at least one communication device and the client described in the above embodiments.
  • the communication method, device, multi-frequency bridging client and communication system of the multi-frequency bridging client disclosed in the embodiments of the present invention respond to a single bridging trigger operation, by communicating with the single-frequency bridging AP based on
  • the SSID retrieval method obtains the configuration information of other frequency bands except the frequency band where the interaction is completed so as to quickly bridge to the single-frequency bridging communication device AP;
  • the communication device AP can be determined based on the stage of the protocol interaction process on each frequency band Bridging type, to determine whether to use the SSID retrieval method or wait for the preset delay time to obtain configuration information of at least a part of other frequency bands, so as to complete bridging with APs on at least a part of the frequency bands, and can realize bridging communication devices with single frequency and multi-frequency Compatible with the communication of bridge communication devices, in addition, it can also obtain the configuration information of all frequency bands from the network configurator or communication AP based on supporting proprietary protocols, so as to further
  • FIG. 1 is a flowchart of a communication method for a client provided by an embodiment of the present invention
  • FIG. 2 is an example process diagram of a communication method for a client shown in FIG. 1 provided by an embodiment of the present invention
  • FIG. 3 is a flow chart of a communication method for a client provided by an embodiment of the present invention.
  • 4A-4B are example process diagrams of a client communication method shown in FIG. 3 provided by an embodiment of the present invention.
  • FIG. 5 is another flow chart of a communication method for a client provided by an embodiment of the present invention.
  • FIG. 6-7 are process diagrams of an example of a communication method for a client shown in FIG. 5 provided by an embodiment of the present invention.
  • FIG. 8 is another flow chart of a communication method for a client provided by an embodiment of the present invention.
  • 9-11 are structural block diagrams of a client provided by an embodiment of the present invention.
  • Fig. 12 is a structural block diagram of a client provided by an embodiment of the present invention.
  • Fig. 13 is a structural block diagram of a communication system provided by an embodiment of the present invention.
  • the multi-frequency bridging client can work on two frequencies, called a dual-frequency client, such as 2.4GHz and 5GHz.
  • FIG. 1 is a flowchart of a communication method for a dual-frequency client provided by an embodiment of the present invention.
  • the dual-frequency client can work in two frequency bands, and can communicate with a communication device AP on these two frequency bands. Perform bridging, and obtain configuration information on each frequency band required for bridging through WPS.
  • the communication method of the dual-frequency client may include the following steps.
  • the device information select a target communication device from the communication devices performing WPS.
  • S5. Determine the bridging type of the target communication device according to the WPS process interaction state of another frequency band of the dual-frequency client when the delay time ends, and use different configuration information acquisition methods according to the bridging type to obtain configuration information, It is used for bridging another frequency band of the dual-frequency client with the target communication device.
  • the dual-frequency client described in the embodiment of the present invention can work in the 2.4G frequency band and the 5G frequency band.
  • the dual-frequency client When the dual-frequency client is connected to the communication device, it needs to press its own WPS button to communicate with the communication device establish connection.
  • the dual-frequency client is a client such as a mobile phone, a computer, and a RE (repeater), and the communication device is an AP (wireless access point).
  • step S1 in response to the trigger operation of the WPS button, full-channel scanning is started to create a temporary device information table; wherein, the temporary device information table is used to save the device information of the scanned communication device that is performing WPS , the device information includes SSID (Service Set Identifier, service set identifier), UUID (Universally Unique Identifier, universally unique identifier) and MAC address.
  • SSID Service Set Identifier, service set identifier
  • UUID Universally Unique Identifier, universally unique identifier
  • the dual-frequency client when it is performing WPS, it will actively scan all channels in the two frequency bands, obtain information about nearby communication devices, and screen out communication devices that are performing WPS.
  • the dual-frequency client When scanning, the dual-frequency client creates two temporary device information tables, respectively storing device information of communication devices performing WPS in the two frequency bands of 2.4G and 5G.
  • the communication device After the communication device starts WPS, it simultaneously sends a message containing WPS-related information to the dual-frequency client in two frequency bands, so as to inform the dual-frequency client that it has started WPS; , the relevant information includes the device information.
  • WSC_IE is a WPS field, which contains WPS-related information and device information (SSID, UUID, MAC address), where the value of Device Password ID represents the type of WPS (PBC, PIN), and the value of Selected Registrar is 1.
  • the communication device enables WPS, and the dual-frequency client screens the communication device that enables WPS through these information.
  • the beacon is an active broadcast notification, and the probe response is the response to the probe request sent by the dual-frequency client.
  • step S2 a target communication device is screened out from the communication devices performing WPS according to the device information.
  • the dual-frequency client screens out an ongoing WPS in 2.4G and 5G according to the WPS information in the WSC_IE of the scanned communication device, and the WPS type (for example, PBC, PIN) is related to the dual-frequency
  • the WPS type for example, PBC, PIN
  • the two frequency bands screen out the same communication device.
  • step S3 after the WPS process between the dual-frequency client and the target communication device in the current frequency band is completed, query the WPS process interaction status of the dual-frequency client in another frequency band.
  • the WPS process interaction state includes a scanning phase, an authentication association phase and an EAP message interaction phase.
  • the scanning stage indicates that the dual-frequency client is in the stage of scanning communication devices in another frequency band;
  • the authentication association stage indicates that the dual-frequency client is performing authentication association with the communication device on the current frequency band;
  • the message exchange stage indicates that the multi-frequency bridging client has screened out the communication device in the current frequency band and has successfully authenticated, and is ready to perform message exchange with it.
  • step S4 since the number of channels in different frequency bands is different, the time required for scanning is different, so the WPS process on each frequency band may be asynchronous.
  • the stage of the WPS process of another frequency band is the scanning stage, but this may be caused by the slow process, that is, it may switch to the subsequent stage after a period of time. Therefore, two parts of the delay time can be introduced for the scanning stage. Determine if the WPS process can be successfully completed.
  • step S4 the delay time is set according to the WPS process interaction state, including steps S41-S43:
  • the delay time is set to a first preset time period
  • the delay time is set to a second preset time period
  • the delay time is set to a third preset time period
  • the first preset time period is less than the second preset time period
  • the second preset time period is less than the third preset time period
  • the first preset time period is 5 seconds
  • the second preset time period is 10 seconds
  • the third preset time period is 15 seconds.
  • the delay time is 10 seconds, which is enough to complete all EAP packet interactions.
  • the delay time is 15 seconds.
  • the delay time is 5 seconds.
  • the delay time is additionally set to 0;
  • the delay time is additionally set to the second preset time period
  • the scanning ends, and the WPS process interaction status is reacquired. If it is still in the scanning phase, set the delay time to 0, and immediately terminate the WPS process of another frequency band. If it is in other stages, set the delay time according to the above steps S46-S47, and then wait for the end of the delay time.
  • step S5 according to the WPS process interaction status of the dual-frequency client on another frequency band when the delay time ends, determine the bridging type of the target communication device, and use different configurations according to the bridging type
  • the information acquisition method is to acquire configuration information for bridging the dual-frequency client with the target communication device on two frequency bands.
  • the type of the target communication device includes two types, one is a dual-frequency WPS communication device, the dual-frequency WPS communication device can work in the 2.4G and 5G frequency bands at the same time, and can complete the WPS process in the 2.4G and 5G frequency bands,
  • the other is a single-frequency WPS communication device, which can work in two frequency bands of 2.4G and 5G, or only work in one of the frequency bands, but can only complete the WPS process in one of the frequency bands.
  • the WPS process of the dual-frequency client on another frequency band has been completed when the delay time ends, it is determined that the type of the target communication device is a dual-frequency WPS communication device, so different bridge types are used according to the bridge type.
  • the method for obtaining configuration information is to obtain configuration information for bridging the dual-frequency client with the target communication device in two frequency bands, including step S511:
  • the WPS process of the dual-frequency client on another frequency band is not completed when the delay time ends, it is determined that the type of the target communication device is a single-frequency WPS communication device, so different bridge types are used according to the bridge type.
  • the method for obtaining configuration information is to obtain configuration information for bridging the dual-frequency client with the target communication device in two frequency bands, including steps S521-S523:
  • the frequency band configuration information may include SSID, key and encryption method, etc.
  • the device information includes SSID, UUID and MAC address.
  • SSID retrieval when performing SSID retrieval, it may be performed based on one of the manners in which the SSIDs are the same and the manners in which the UUIDs are the same and the MAC addresses conform to the conversion rule.
  • the SSID included in the configuration information of the current frequency band can be determined, and for another frequency band, there may be multiple communication devices scanned. If there is an SSID identical to a known SSID in the device information of the communication device, the communication device corresponding to the SSID is the target communication device corresponding to the current frequency band, so the SSID on the other frequency band can be determined.
  • some contents of the messages sent by the target communication device from the 2.4G and 5G frequency bands are related.
  • the MAC address in the message sent by the same target communication device on the two ports of the 2.4G and 5G frequency bands can be converted to each other through the algorithm, and the UUID is the same.
  • the same target communication device can be filtered out according to the two information of MAC address and UUID, according to the principle that the UUID is the same and the MAC address conforms to the conversion rules message in another frequency band, so as to obtain the SSID of the target communication device in the two frequency bands.
  • the user will set the two frequency bands of the target communication device to the same encryption method and key.
  • the dual-frequency client performs WPS with the single-frequency WPS communication device, it can obtain configuration information of one frequency band, and use the encryption method and key obtained by WPS in both frequency bands.
  • Obtaining the SSID of the target communication device in another frequency band by other means has a high probability of realizing the bridging of the dual-frequency client to the two frequency bands of the target communication device.
  • the dual-band client after the dual-band client succeeds in WPS in one frequency band, it can obtain the current frequency band configuration information (SSID, key, encryption method) pushed by the target communication device, and obtain pre-saved device information. Then the dual-frequency client terminal terminates the WPS process of the unsuccessful frequency band of WPS, takes the SSID, UUID, and MAC address in the device information as an index, and according to certain rules (the same SSID and the same UUID and the MAC address conform to the conversion rule), the The dual-frequency client can obtain the device information belonging to the same target communication device in the device information table of the unsuccessful frequency band of WPS, and obtain the SSID of the target communication device in this frequency band, thereby according to the retrieved SSID, the dual-frequency client Bridge with the single-frequency WPS communication device in another frequency band.
  • SSID the current frequency band configuration information
  • key encryption method
  • the multi-frequency bridging client when it performs WPS, it will actively scan all channels in all frequency bands, obtain nearby AP information, and create a temporary device information table to save all AP information, and the multi-frequency bridging client will be in one In the frequency band, APs that are performing WPS and whose WPS type (for example, PBC-based, PIN-based) is the same as that of the client are selected to perform WPS protocol interaction, and this frequency band is used as the first frequency band.
  • WPS type for example, PBC-based, PIN-based
  • the multi-frequency bridging client can obtain the configuration information (SSID, key, encryption method) of the current frequency band pushed by the AP and the saved AP device information, and then query the WPS process interaction status on another frequency band, and Set a different delay time. If the delay time ends and the WPS process on the other frequency band is not completed interactively, it is determined that it is a single-frequency bridging AP, and the WPS process on the other frequency band is terminated, and the AP is obtained according to the SSID retrieval method described above. SSIDs in other frequency bands. The multi-frequency bridging client directly uses the obtained configuration information to bridge the AP in the frequency band where the WPS process interaction is completed.
  • SSID SSID
  • the multi-frequency bridging client uses the encryption method and key in the obtained configuration information on the frequency band, as well as the SSID included in the configuration information of another frequency band, to bridge the AP, so as to achieve Bridge to the AP; if the delay time is over and the WPS process on another frequency band is completed, then directly obtain the configuration information on the other frequency band to bridge the AP.
  • the dual-frequency client when the communication device is a single-frequency WPS communication device, can bridge to the two frequency bands of the single-frequency WPS communication device through WPS and SSID retrieval by pressing the WPS button once. short time.
  • the dual-frequency client can press the WPS button once, and the two frequency bands are bridged to the two frequency bands of the dual-frequency WPS communication device through WPS, and the bridging time is short.
  • the communication method of the dual-frequency client disclosed in the embodiment of the present invention can scan the device information of the communication device that is performing WPS by starting full channel scanning, so that according to the device information, from the ongoing A target communication device is selected from the communication devices of the WPS, so that the dual-frequency client successfully bridges with the target communication device in the current frequency band. Then, according to the interactive state of another frequency band at the end of the delay time, another frequency band of the dual-frequency client is bridged with the target communication device. In this process, there is no need to press the WPS button in the dual-frequency client again. The dual-frequency client bridges to the two frequency bands of the target communication device by pressing the WPS button once.
  • the communication method of the dual-frequency client disclosed in the embodiment of the present invention realizes that by pressing the WPS button of the dual-frequency client once, it can quickly bridge to two communication devices with single-frequency/dual-frequency WPS functions. band.
  • the client and the AP may perform bridging on multiple frequency bands, not limited to two frequency bands.
  • the WPS process is described above as an example of the protocol interaction process, but the protocol interaction process can be of other types, for example, in wifi easy connect technology, the protocol interaction associated with the AP will also be performed between the client and the network configurator process, this application is not limited to WPS interaction.
  • FIG. 3 is a flow chart of a client communication method provided by an embodiment of the present invention.
  • the client is used to bridge with single-frequency bridging communication devices on multiple frequency bands (2.4G, 5G, 6G, and frequency bands that may be supported by subsequent wifi).
  • the client may be a mobile phone, a computer, or a RE (repeater), and the communication device is an AP (wireless access point).
  • the communication method may include the following steps.
  • step S310 in response to a single bridge triggering operation, the device information of each communication device on each frequency band of the multiple frequency bands is obtained, and the bridge communication device with the single frequency bridge is respectively activated on the multiple frequency bands The associated protocol interaction process.
  • the bridge triggering operation can be any operation that can trigger the association between the client and the communication device AP, such as pressing a button, touching a button, entering a PIN code, NFC, and scanning two keys related to the initiation of the protocol interaction process. QR code and so on.
  • trigger operations related to wireless protected setup (WPS) technology may include trigger operations supported by WSC standard protocols such as pressing a WPS button, touching a WPS button, inputting a PIN code, and NFC; processes associated with wifi easy connect technology may include Get the trigger operation of the client's identification information (such as scanning the QR code).
  • the client when triggering the association between the client and the communication device AP, in response to a single bridge trigger operation, the client can select the communication device to be bridged from the communication devices claiming to be able to perform the protocol interaction process, for example, based on the WSC_IE field
  • the Device Password ID value is equal and the value of Selected Registrar is 1, etc.
  • the communication device selected for each frequency band is generally the same communication device, or, the network configurator can be realized by scanning the QR code of the client through the network configurator.
  • the communication device associated with the client is a single-frequency bridging communication device, and then the client may start a protocol interaction process associated with the single-frequency bridging communication device on multiple frequency bands.
  • the network configurator can be a trusted device used by the wifi easy connect network owner, such as a smart phone, to authorize and manage the network access of other clients, and the trusted device can be any trusted device within the Wi-Fi network.
  • the protocol interaction process may be a process for simplifying or managing the user's client access to the network based on the interaction of protocol messages, for example, it may include processes related to WPS technology and wifi easy connect technology, and based on For the protocol interaction process completed on a certain frequency band, the configuration information provider can provide the client with the configuration information on this frequency band, that is, if the protocol interaction process is completed on a certain frequency band, the client can obtain the Configuration information on a frequency band for bridging to a communication device on the frequency band.
  • the client in response to a single bridge trigger operation, can start a full channel scan, select a communication device (AP) for bridging communication, and start the protocol interaction process on multiple frequency bands with the communication device .
  • AP communication device
  • the client in response to a single bridge trigger operation, the client establishes a connection with the network configurator (managing the communication device to be bridged) (for example, scans the QR code of the client through the network configurator), thereby starting to communicate with the network
  • the configurator carries out the protocol interaction process on multiple frequency bands. After the protocol interaction process on each frequency band is completed, it can be used to obtain the configuration information for bridging to the communication device on this frequency band. Therefore, the protocol interaction process can be regarded as communication device is associated.
  • the client may respond to a single bridge trigger operation and start full channel scanning, so as to obtain device information of all communication devices scanned for each frequency band of the plurality of frequency bands.
  • the client may respond to a single bridge trigger operation and start full channel scanning, so as to obtain device information of all communication devices scanned for each frequency band of the plurality of frequency bands.
  • the communication devices that are obviously impossible to be bridged communication devices to be bridged may be pre-screened out, for example, screening rules may be preset, for example based on product information.
  • the client can start full-channel scanning in all frequency bands, and create a temporary device information table for each frequency band, and save the device information of all scanned APs, that is, for each frequency band, multiple APs can be scanned, thereby temporarily
  • the device information table may save device information of all APs for each frequency band.
  • the device information corresponding to each communication device is various types of information used to define the attributes of the device itself, such as SSID (Service Set Identifier, service set identifier) and UUID (Universally Unique Identifier, Universal Unique Identifier) and MAC address, etc.
  • SSID Service Set Identifier, service set identifier
  • UUID Universal Unique Identifier, Universal Unique Identifier
  • the configuration information on each frequency band is directly used to configure the bridging process, and may include, for example, SSID, encryption method and key, and the encryption method and key on each frequency band are the same.
  • step S320 in response to determining that the protocol interaction process is completed on the first frequency band, configuration information on the first frequency band for bridging the single-frequency bridging communication device is acquired.
  • the client may complete a protocol interaction process on the first frequency band with the network configurator managing the single-frequency bridge communication device or the single-frequency bridge communication device, so as to acquire configuration information on the first frequency band.
  • the client may complete a protocol interaction process with the single-frequency bridge communication device on the first frequency band, and acquire configuration information on the first frequency band from the single-frequency bridge communication device.
  • the client also obtains the device information of the communication devices on each frequency band in step S310, and then obtains the configuration information on other frequency bands in the following step S330.
  • a communication device can send interaction-related information to the client in multiple frequency bands, including an indication of whether protocol interaction is possible, device information, protocol interaction type, etc., and the client is based on the interaction-related information.
  • Select the same communication device from each frequency band, and complete the protocol interaction process with the communication device on the first frequency band, so as to obtain configuration information on the first frequency band from the communication device.
  • the communication device after the communication device starts the WPS process, it simultaneously sends a message containing WPS-related information to the multi-frequency bridging client in multiple frequency bands (taking two as an example) to inform the The multi-frequency bridging client has already enabled WPS.
  • the communication device after the communication device starts WPS, it simultaneously sends beacon and probe responses with WSC_IE in two frequency bands to inform the multi-frequency bridging client that it has started WPS, which also includes devices of the communication device information).
  • WSC_IE is a WPS field, which contains WPS information, wherein the value of Device Password ID represents the type of WPS (PBC, PIN), and the value of Selected Registrar is 1, which means that the communication device enables WPS.
  • the beacon is an active broadcast notification
  • the probe response is the response to the probe request sent by the multi-frequency bridging client. For example, after the client is started, it can scan and create two temporary device information tables to save the device information of APs in the two frequency bands respectively.
  • An AP that is performing WPS and has the same WPS type as the RE here, a single-frequency bridging AP
  • EAP message exchange is initiated to it, but only one frequency band (the first frequency band) can finally complete the WPS process.
  • the client performs a protocol interaction process with the network configurator, and obtains configuration information on the first frequency band from the network configurator, and obtains communication information on each frequency band.
  • the device information of the device and then obtain the configuration information on other frequency bands through the following step S330.
  • the obtaining of device information in step S310 and the obtaining of configuration information on the first frequency band in step S320 may be performed in any order or simultaneously, which is not limited in the present disclosure.
  • step S330 based on the configuration information on the first frequency band and the device information of each communication device on each of the multiple frequency bands, determine the configuration information on at least one other frequency band except the first frequency band.
  • frequency bands other than the first frequency band can be collectively referred to as the second frequency band, that is, the second frequency band can refer to frequency bands other than the first frequency band bands of different frequencies.
  • the client can determine the encryption method and key included in the configuration information on at least one other frequency band, because in the case of a single-frequency bridging AP, the configuration information on all frequency The encryption method and key can be the same. Then, the client may determine the SSID included in the configuration information on at least one other frequency band based on the configuration information on the first frequency band and/or the device information of each communication device on each frequency band. In this way, the configuration information (SSID, encryption method and key) used for bridging on at least a part of the frequency bands (the first and the at least one other frequency band) has been acquired.
  • the specific process of using these device information to determine the SSID may have the following several exemplary implementation manners.
  • the client can filter out (for example, from the temporary device information table) has device information with the same SSID, it is considered that the communication devices corresponding to these SSIDs belong to the same communication device.
  • the process of determining the SSID may include: obtaining the SSID on the first frequency band based on the configuration information on the first frequency band; other frequency bands), determine that among the communication devices on the second frequency band, the communication device that has the device information that includes the same SSID as the SSID on the first frequency band is the same device as the single-frequency bridge communication device, and send the second frequency bridge communication device to the same device,
  • the SSID on a frequency band is used as the SSID in the configuration information on the second frequency band.
  • the MAC address in the message sent by the same single-frequency bridge communication device in all frequency bands can satisfy Certain mapping rules, and the UUID is the same, so if the device information of the single-frequency bridge communication device in the first frequency band is known, according to the two information of MAC address and UUID, according to the principle that the UUID is the same and the MAC address conforms to the mapping rules, other frequency band, the client can filter out (for example, from the temporary device information table) device information with MAC addresses that meet the mapping rules and the same UUID, and consider that the communication devices corresponding to these MAC addresses belong to the same communication device.
  • the process of determining the SSID may include: determining the first MAC address and the first UUID of the single-frequency bridging communication device on the first frequency band based on the device information of the single-frequency bridging communication device on the first frequency band; The device information of each communication device on the second frequency band, determine the second MAC address and the second UUID of each communication device on each second frequency band in the at least one second frequency band; for the at least one second frequency band in the above-mentioned For each second frequency band, determine the communication device with the second MAC address that satisfies the mapping rule with the first MAC address and the second UUID that is the same as the first UUID among the communication devices on the second frequency band.
  • the single-frequency bridging communication device is the same device, and the SSID in the device information of the determined communication device is used as the SSID in the configuration information on the second frequency band.
  • the client screens out the required information on the first frequency band.
  • the device information of the single-frequency bridging communication device has been obtained from the single-frequency bridging communication device.
  • the configuration information on the first frequency band acquired by the client from the network configurator may include SSID, and for example, based on full-channel scanning of each
  • the device information of the communication device (including the single-frequency bridging communication device to be bridged) also includes SSID, so the client can filter out the first frequency of the single-frequency bridging communication device to be bridged based on the acquired configuration information on the first frequency band.
  • Device information on the frequency band is not limited to the frequency band.
  • the client can filter out (for example, from the temporary device information table) device information with the same product information for other frequency bands according to the included product information (manufacturer, AP model, product code, etc.), And it is considered that the communication devices corresponding to these product information belong to the same communication device.
  • product information such as manufacturer, AP model, product code, etc.
  • the process of determining the SSID may include: determining the first product information of the single-frequency bridging communication device based on the device information of the single-frequency bridging communication device in the first frequency band; For the device information of each communication device in each second frequency band in the second frequency band, determine the second product information of each communication device in the second frequency band; for each second frequency band in the at least one second frequency band determining that the communication device having the same second product information as the first product information among the communication devices on the second frequency band is the same device as the single-frequency bridging communication device, and using the determined communication device
  • the SSID in the device information is used as the SSID in the configuration information on the second frequency band.
  • the client filters out (for example, from the temporary device information table) that the SSID contained in the device information and the SSID of the single-frequency bridging communication device in the first frequency band have consecutive identical character strings, it is considered that these SSIDs belong to the same communication device.
  • the process of determining the SSID may include: determining the first SSID embedded in the predetermined format of the single-frequency bridging communication device based on the device information of the single-frequency bridging communication device in the first frequency band; based on at least one of the above-mentioned For the device information of each communication device on each second frequency band in the second frequency band, determine the second SSID embedded with the predetermined format of each communication device on each second frequency band; for the above-mentioned at least one second frequency band For each second frequency band in the second frequency band, it is determined that the communication device with the second SSID that satisfies the association relationship with the first SSID among the communication devices on the second frequency band is the same device as the single-frequency bridging communication device, and the The determined second SSID in the device information of the communication device is used as the SSID in the configuration information on the second frequency band.
  • an SSID-based retrieval method For ease of description, the above-mentioned method of determining an SSID is referred to as an SSID-based retrieval method.
  • step S340 use the configuration information on the first frequency band and the determined configuration information on the at least one other frequency band to communicate with each other on the first frequency band and the at least one other frequency band
  • the single frequency bridging communication device bridges.
  • the configuration information (SSID, encryption method and key) used for bridging on at least a part of the frequency bands (the first and the above-mentioned at least one other frequency band) has been obtained in step S340, so the client can use these configurations
  • the information is bridged with the single-frequency bridging communication device on a corresponding frequency band of the plurality of frequency bands.
  • Figures 4A-4B show two examples of the communication method shown in Figure 3, respectively corresponding to WPS technology and wifi easy connect technology.
  • Fig. 4A after triggering the association between the multi-frequency bridging client and the single-frequency bridging communication device (AP) in WPS mode, the AP declares that WPS is in progress in all frequency bands at the same time, but in the end it can only be used in one
  • the exchange of WPS protocol messages is completed on the frequency band (the first frequency band).
  • the multi-frequency bridging client When the multi-frequency bridging client performs WPS, it will actively scan all channels in all frequency bands, obtain nearby AP information, and create a temporary device information table to save all AP information, and the multi-frequency bridging client is in one frequency band An AP that is performing WPS and whose WPS type (eg, PBC-based, PIN-based) is the same as that of the client is screened out to perform WPS protocol interaction, and this frequency band is used as the first frequency band.
  • WPS type eg, PBC-based, PIN-based
  • the multi-frequency bridging client can obtain the configuration information (SSID, key, encryption method) of the current frequency band pushed by the AP and the saved AP device information, and use the obtained configuration information and device information to follow the above description
  • the SSID retrieval method obtains the SSID of the AP in other frequency bands.
  • the multi-frequency bridging client directly uses the obtained configuration information to bridge the AP in the first frequency band where protocol interaction is completed.
  • the multi-frequency bridging client uses the obtained encryption method and key in the configuration information on the first frequency band, and the SSID included in the configuration information of each second frequency band , to bridge the AP, so as to realize bridging to the AP on all frequency bands.
  • the multi-frequency bridging client and the network configurator of the AP perform DPP (network configuration protocol) protocol interaction.
  • the network configurator sends configuration information (SSID, key, encryption method) of a frequency band (first frequency band) of the AP to the multi-frequency bridging client.
  • the multi-frequency bridging client obtains the configuration information, it starts full-channel scanning of all frequency bands, and creates a temporary device information table for each frequency band to save the device information of all scanned APs.
  • the client can use the obtained configuration information and saved device information to obtain the SSID of the AP in other frequency bands according to the SSID retrieval method described above.
  • the multi-frequency bridging client directly uses the obtained configuration information to bridge the AP in the first frequency band where the configuration information is obtained.
  • the multi-frequency bridging client uses the obtained encryption method and key in the configuration information on the first frequency band, and the SSID included in the configuration information of each second frequency band , to bridge the AP, so as to realize bridging to the AP on all frequency bands.
  • the SSID retrieval method is used to obtain the SSIDs of other frequency bands and combined with the encryption method and key on the first frequency band to obtain configuration information on other frequency bands. This process is based on all frequency bands The configuration information of the same situation.
  • the multi-frequency bridging client cannot know the type of AP to be bridged (single-frequency bridging or multi-frequency bridging), and when the multi-frequency bridging client bridges with the multi-frequency bridging AP, the multi-frequency
  • the encryption methods and keys in the configuration information of the bridging AP on all frequency bands may be different, so the configuration information on other frequency bands cannot be obtained through a single bridging trigger operation and the above-mentioned SSID retrieval method.
  • the protocol interaction process will only be performed on one frequency band, and when the multi-frequency bridging client is bridging with the multi-frequency bridging AP, it will be in multiple frequency bands. Therefore, according to another aspect of the present application, different methods may be used to obtain configuration information on different frequency bands based on the stage of the protocol interaction process on each frequency band, so as to realize bridging with the AP.
  • Fig. 5 shows a flow chart of another communication method for a client according to an embodiment of the present application.
  • the client is used to bridge with communication devices on multiple frequency bands (2.4G, 5G, 6G, and frequency bands that may be supported by subsequent wifi).
  • the client may be a mobile phone, a computer, or a RE (repeater), and the communication device is an AP (wireless access point).
  • the communication method may include the following steps.
  • step S510 in response to a single bridge trigger operation, protocol interaction processes are respectively started on the multiple frequency bands.
  • the client in response to a single bridge trigger operation, can start a full channel scan, select a communication device (AP) for bridging communication, and start the protocol interaction process on multiple frequency bands with the communication device .
  • AP communication device
  • the client in response to a single bridge trigger operation, the client establishes a connection with the network configurator (managing the communication device to be bridged) (for example, scans the QR code of the client through the network configurator), thereby starting to communicate with the network
  • the configurator conducts the protocol interaction process on multiple frequency bands.
  • step S520 in response to determining that the protocol interaction process is completed on the first frequency band, the configuration information on the first frequency band is obtained, and the stages of the protocol interaction process on each other frequency band except the first frequency band are determined.
  • the client can acquire configuration information on the corresponding frequency band when the protocol interaction process on the frequency band is completed.
  • the phases of the protocol interaction process include a scanning phase, an authentication association phase and a message interaction phase.
  • the scanning phase indicates that the multi-frequency bridging client is in the phase of scanning communication devices in the current frequency band;
  • the authentication association phase indicates that the multi-frequency bridging client is performing authentication association with the communication device on the current frequency band;
  • the The message exchange stage indicates that the multi-frequency bridging client has screened out the communication device in the current frequency band and has successfully authenticated, and is ready to perform message exchange with it.
  • the protocol interaction process is divided into a bootstrap phase, a verification phase, a configuration phase, and a network access phase.
  • the bootstrap stage means that the client will include its information in the QR code, and the network configurator scans the QR code to establish a mutual trust relationship with the client, and the next stage of the protocol interaction process can be performed;
  • the verification stage refers to the network configuration
  • the device and the client interact with protocol packets to establish a secure wifi connection;
  • the configuration stage refers to the network configurator pushing the configuration information to the client;
  • the network access stage refers to the client using the configuration information to bridge to the communication device.
  • the communication device may provide the client with configuration information on the first frequency band.
  • step S530 according to the stage of the protocol interaction process on each other frequency band when the protocol interaction process is completed on the first frequency band, determine the delay time corresponding to each other frequency band.
  • the protocol interaction process on each frequency band may be asynchronous. Therefore, for example, even when the protocol interaction process with the communication device on the first frequency band is completed
  • the stage of the two-band protocol interaction process is the scanning stage, but this may be caused by the slow process, that is, it may switch to the subsequent stage after a period of time, so different delay times can be introduced to improve this situation.
  • the delay time is determined for each other frequency band only when the protocol interaction process of the first frequency band is completed, and the delay time is no longer determined when the protocol interaction process of other frequency bands is completed.
  • the following determination manners may be included.
  • the protocol interaction process is performed between the client and the communication device (for example, the WPS process)
  • the protocol interaction process can be divided into scanning phase, authentication association phase and message interaction according to time stage.
  • determining the delay time may include the following situations.
  • Situation 1 In the case that the phase of the protocol interaction process on the second frequency band is the scanning phase, determine a first initial delay time with a first predetermined duration (for example, 5s), and determine the first initial delay time according to when the first initial delay time ends.
  • the update phase of the protocol interaction process on the second frequency band determines the first additional delay time, and the first initial delay time and the first additional delay time are used as the delay time corresponding to the second frequency band.
  • Case 2 When the phase of the protocol interaction process on the second frequency band is the authentication association phase, a second initial delay time with a second predetermined duration (for example, 15s) is determined as the delay time corresponding to the second frequency band.
  • a second predetermined duration for example, 15s
  • Case 3 When the stage of the protocol interaction process on the second frequency band is the message interaction stage, determine a third initial delay time with a third predetermined duration (for example, 10s) as the delay time corresponding to the second frequency band.
  • a third predetermined duration for example, 10s
  • the first predetermined duration is less than the third predetermined duration, and the third predetermined duration is shorter than the second predetermined duration.
  • its duration may be determined according to the update phase of the protocol interaction process on the second frequency band when the first initial delay time ends, for example, when the first initial delay time ends.
  • the update phase is a scan phase
  • determine that the duration of the first additional delay time is 0; when the update phase is an authentication association phase at the end of the first initial delay time, determine that the first additional delay time has a second predetermined duration ; and in a case where the update phase is a message interaction phase when the first initial delay time ends, determining that the first additional delay time has a third predetermined duration.
  • the communication device can be scanned on the current second frequency band, and may be able to Complete the protocol interaction process, so set a certain delay time to wait for the protocol interaction process to complete; when the protocol interaction process on the first frequency band is completed, the current stage of the protocol interaction process on the second frequency band is the scanning phase.
  • the duration of the first initial delay time (for example, 5s) is determined according to empirical values, and is greater than or equal to the time allowed to complete the scanning phase The minimum hour length; if after the first initial delay time, it is still in the scanning stage, it means that the communication device cannot be scanned on the current second frequency band, so that the protocol interaction process with the communication device cannot be completed, so the first value is set to 0.
  • the protocol interaction process can be divided into bootstrapping according to time phase, verification phase, configuration phase, and network access phase.
  • the situation in which the delay time can be determined is similar to the above cases 1-3, only the scanning phase is replaced by the bootstrap phase, the authentication association phase is replaced by the verification phase, and the message interaction phase is replaced by the configuration phase and network access phase, so it will not be repeated here.
  • step S540 for each of the other frequency bands, it is determined whether the protocol interaction process on the frequency band is completed within the delay time corresponding to the frequency band, and if none of these protocol interaction processes is completed, Terminate the protocol interaction process on other frequency bands, and use the communication method described above with reference to FIGS. 3-4B to bridge with the communication device.
  • the protocol interaction process on other frequency bands is terminated, and the equipment information of each communication device on each frequency band of the multiple frequency bands is obtained, based on the configuration information on the first frequency band and each frequency band determine the configuration information on at least one other frequency band except the first frequency band, and use the configuration information on the first frequency band and the determined configuration on the at least one other frequency band information, bridging with the communications device on the first frequency band and on the at least one other frequency band.
  • the protocol interaction process on the frequency band is not completed within the delay time corresponding to the frequency band, it may be because the client has not scanned the communication device or communication device on the frequency band. After the device completes the interaction on the first frequency band, it rejects the connection of other frequency bands, resulting in failure in the authentication association phase or message interaction phase.
  • the protocol interaction process on all other frequency bands is not completed within its delay time, it can be determined that the type of the communication device is a single-frequency bridge, so the protocol interaction process on other frequency bands can be terminated, and the method of SSID retrieval can be used to obtain each The SSID on other frequency bands can then use the encryption method and key included in the configuration information on the first frequency band to obtain the configuration information on other frequency bands, and can quickly bridge to the AP.
  • the method may further include: when the protocol interaction process on the at least one other frequency band has been completed within the delay time corresponding to at least one of the other frequency bands, acquiring all the completed protocol interaction processes configuration information on the at least one other frequency band, and use the configuration information on each frequency band and the configuration information on the at least one other frequency band for which the protocol interaction process has been completed to bridge with the communication device on the corresponding frequency band.
  • the SSID-based retrieval method described above can also be used .
  • other frequency bands except the first frequency band include four frequency bands, and within the delay time corresponding to two frequency bands, the protocol interaction process on these two frequency bands has been completed, then the two frequency bands for completing the protocol interaction process can be obtained.
  • the configuration information on the frequency band is used, and the obtained configuration information is used to bridge to the communication device on the two frequency bands that complete the protocol interaction process.
  • the remaining two frequency bands have not yet completed the protocol interaction process when their respective delay times end, so the configuration information cannot be obtained.
  • a similar SSID-based retrieval method can be used to obtain the configuration information subsequently.
  • the configuration information on the frequency band can be obtained without even waiting for the end of the delay time; if each frequency band cannot complete the protocol interaction process within the corresponding delay time , then optionally (in the case that the encryption method and the key are the same) the configuration information can be acquired by means of retrieval based on the SSID.
  • FIG. 6-7 show a schematic diagram of a specific process of the communication method according to FIG. 5 .
  • the bridge association between the multi-frequency bridging client and the AP is first triggered, and the multi-frequency bridging client starts full-channel scanning to select an AP for interaction.
  • the behavior of the protocol interaction process of the multi-frequency bridging client on each frequency band can be divided into scanning, authentication association and message interaction stages.
  • the multi-frequency bridging client after completing the wireless protocol interaction in one frequency band, the multi-frequency bridging client will not immediately stop the protocol interaction in other frequency bands, but by querying other frequency bands The current stage of the intra-protocol interaction process.
  • different delay times are set (for determining the time margin of the scanning stage and for the completion of the protocol interaction process in the non-scanning stage). For example, when other frequency bands are in the protocol message exchange phase, setting the delay time to 10s (the third initial delay time of the aforementioned third preset duration) is enough to complete the protocol message exchange. If it is in the authentication association stage, the delay time is set to 17s (the second initial delay time of the aforementioned second preset duration). If other frequency bands are in the scanning stage, due to the different number of channels in different frequency bands, the time required for scanning is different.
  • the client has not yet completed the scanning, so set the first initial delay time to 7s (the aforementioned first preset duration) to ensure that the client The terminal can complete the scan. If it is still in the scanning stage after the 7s, that is, the client cannot scan the AP that meets the standard protocol on this frequency band, then set the first additional delay time to 0 to immediately terminate the protocol interaction on this frequency band. If the process is in another stage, set the delay time as described above. If the interaction of the protocol message is not completed within the delay time corresponding to each frequency band, or the AP that meets the protocol is not scanned, the AP is considered to be a single-frequency bridging AP, the protocol interaction process in other frequency bands is terminated, and the SSID retrieval method is used.
  • the protocol interaction process can be completed within the delay time of the second preset time length or the third preset time length, so as to obtain the configuration information.
  • the network configurator scans the QR code of the client (including information such as the logo and model of the client), the network configurator establishes a connection with the client, and performs DPP protocol (device configuration protocol) on multiple frequency bands. ) interaction.
  • DPP protocol device configuration protocol
  • the behavior of the protocol interaction process of the multi-frequency bridging client on each frequency band can be divided into bootstrapping, verification, configuration, and network access stages.
  • the multi-frequency bridging client In order to make the multi-frequency bridging client compatible with single-frequency bridging APs and multi-frequency bridging APs, after completing the wireless protocol interaction in one frequency band, the multi-frequency bridging client will not immediately stop the protocol interaction in other frequency bands, but by querying other frequency bands
  • the current stage of the intra-protocol interaction process For different stages, set different delay times. For example, when other frequency bands are in the stage of configuration or network access, setting the delay time to 10s (the third initial delay time of the aforementioned third preset duration) is enough to complete the exchange of protocol messages. If it is in the verification stage, set the delay time to 17s (the second initial delay time of the aforementioned second preset duration).
  • the first initial delay time is set to 7s (the aforementioned first preset duration), if after the 7s, it is still in the bootstrap phase, that is, the client cannot communicate with the network configurator on this frequency band
  • the first additional delay time is set to 0 to immediately terminate the protocol interaction process on the frequency band. If it is in other stages, the delay time is set according to the above description. If the protocol interaction process is not completed within the delay time corresponding to each frequency band, the AP is considered to be a single-frequency bridging AP, the protocol interaction process in other frequency bands is terminated, and the SSID of other frequency bands is obtained using the SSID retrieval method to obtain the SSID of other frequency bands. configuration information. If the AP is a multi-frequency bridging AP, the protocol interaction process can be completed within the delay time of the second preset time length or the third preset time length, so as to obtain the configuration information.
  • the SSID retrieval method described in Figure 3-4B is used to obtain configuration information or to obtain configuration information of other frequency bands by waiting for a preset delay time to complete bridging with APs on all frequency bands, so as to realize bridging communication with single frequency Compatible with communication between devices and multi-frequency bridge communication devices.
  • some private protocols can be formulated, so that information can be transferred between the client and the network configurator or communication device based on the private protocol.
  • FIG. 8 shows a flowchart of another communication method for a client according to an embodiment of the present application.
  • the client is used to bridge with communication devices on multiple frequency bands (2.4G, 5G, 6G, and frequency bands that may be supported by subsequent wifi).
  • the client may be a mobile phone, a computer, or a RE (repeater), and the communication device is an AP (wireless access point).
  • the communication method may include the following steps.
  • step S810 in response to a single bridge triggering operation, protocol interaction processes are respectively started on multiple frequency bands.
  • the client in response to a single bridge trigger operation, can start a full channel scan, select a communication device (AP) for bridging communication, and start the protocol interaction process on multiple frequency bands with the communication device .
  • AP communication device
  • the client in response to a single bridge trigger operation, the client establishes a connection with the network configurator (managing the communication device to be bridged) (for example, scans the QR code of the client through the network configurator), thereby starting to communicate with the network
  • the configurator conducts the protocol interaction process on multiple frequency bands.
  • step S820 during the protocol interaction process on the first frequency band among the plurality of frequency bands, it is determined whether the client and the counterpart of the protocol interaction process support the same proprietary protocol.
  • the counterpart of the protocol interaction process with the client may be a network configurator or a communication device.
  • a multi-frequency bridging client performs standard protocol interaction with a communication device or a network configurator.
  • the multi-frequency bridging client can declare its manufacturer, model, product code, and whether it supports the company's proprietary protocol.
  • the communication device or the network configurator can recognize the above information declared by the multi-frequency bridging client.
  • the client and the communication device can declare their support for the private protocol through the request-response mode, or they can also add relevant fields in the exchanged message during the message exchange phase during the protocol interaction process to indicate their support for the private protocol. Support for proprietary protocols.
  • the client can declare its support for the private protocol in the probe request in the scanning phase, and the communication device AP declares its support for the private protocol in the beacon or probe response; or the client and the communication device AP perform WPS standard Protocol interaction, and add private protocol-related fields in the protocol message in the message interaction phase.
  • the AP or client can judge whether the other party supports the private protocol by identifying these fields passed by the other party.
  • the network configurator can read information about its support for the private protocol from the client, or the client and the network configurator can also add relevant fields in the exchanged messages during the protocol interaction process to indicate their support for the private protocol. protocol support.
  • the client adds support information for the private protocol on the QR code, and the network configurator identifies whether the client supports the private protocol when scanning the QR code during the bootstrap phase of the client. Or, when the client interacts with the network configurator using a standard protocol, it adds fields related to the private protocol in the protocol message in the verification phase, and the client and the network configurator recognize these fields to determine whether the other party supports the private protocol.
  • step S830 if it is determined that the same proprietary protocol is supported, after the protocol interaction process is completed on the first frequency band among the plurality of frequency bands, the configuration including the first frequency band and at least one other frequency band is acquired from the opposite party information, and stop the protocol interaction process on other frequency bands except the first frequency band, and use the configuration information on the first frequency band and at least one other frequency band to bridge with the communication device on the corresponding frequency band.
  • the communication device or network configurator pushes the configuration information of all frequency bands or a part of frequency bands to the multi-frequency bridging client.
  • the frequency bridging client may terminate protocol interaction processes in other frequency bands, and directly use the configuration information to bridge to at least a part of the frequency bands of the multi-frequency AP.
  • the client and the communication device AP complete the interaction of standard protocol messages in the first frequency band, if the communication device AP and the client support the same private protocol, the AP pushes at least part of the configuration information of the frequency band to the client, and the client stops other The protocol interaction process in the frequency band, and use the obtained configuration information to bridge all the frequency bands of the AP.
  • the network configurator After the client and the network configurator complete the interaction of standard protocol messages in the first frequency band, if the network configurator and the client support the same private protocol, the network configurator pushes at least a part of the frequency bands including the first frequency band to the client configuration information, the client stops protocol interaction processes in frequency bands other than the first frequency band, and uses the obtained configuration information to bridge the at least part of the frequency bands of the AP.
  • the communication method may further include step S840.
  • step S840 if it is determined that the client and the counterpart of the protocol interaction process do not support the same proprietary protocol, use the communication method as described with reference to FIGS. 5-7 to bridge with the communication device.
  • the bridging type of the AP is determined according to the phases of the protocol interaction process on each other frequency band except the first frequency band (the frequency band where the protocol interaction process is completed) as described above, so as to determine whether it is Use the SSID retrieval method as described in Figure 3-4B to obtain configuration information or wait for a preset delay time to obtain configuration information of other frequency bands to complete bridging with APs on multiple frequency bands.
  • the communication device or the network configurator does not explicitly or proactively inform the client whether to support the private protocol, but requires an inquiry based on the client.
  • the communication method 800 in FIG. 8 also optionally includes step S850.
  • step S850 if it cannot be determined whether the client and the opposite party support the same proprietary protocol, after completing the protocol interaction process on the first frequency band among the plurality of frequency bands, obtain the protocol information on the first frequency band from the opposite party configuration information on the first frequency band, use the configuration information on the first frequency band to bridge to the communication device on the first frequency band, and query whether the communication device supports a predetermined private protocol; and if the communication device supports a predetermined private protocol In the case of , acquire configuration information on the first frequency band and at least one other frequency band from the communication device, and stop the protocol interaction process on other frequency bands except the first frequency band, and use the first frequency band and at least one The configuration information on other frequency bands is bridged with the communication device on the corresponding frequency band; in the case that the communication device does not support a predetermined private protocol, communicate with the communication device using the communication method described with reference to FIGS. 3-5 .
  • the AP pushes the configuration information of the first frequency band to the client.
  • the client uses this configuration information to bridge to the AP on the first frequency band, and then the client sends a query message to the AP to check whether the AP supports the private protocol. All the configuration information is sent to the client, and the client stops the protocol interaction process of other frequency bands other than the first frequency band, and uses the obtained configuration information to bridge to the AP on these frequency bands. If the AP does not respond to the query message sent by the client, the client cannot use the private protocol to obtain configuration information for communication, so it uses the communication method described with reference to Figure 5-7.
  • the network configurator For wifi easy connect technology, if the client and the network configurator cannot identify whether the other party supports the private protocol. After the client completes standard protocol interaction with the network configurator in a frequency band, the network configurator pushes the configuration information of the first frequency band to the client. The client uses this configuration information to bridge to the first frequency band of the communication device AP, and then the client sends a query message to the AP to check whether the AP supports the private protocol. If the AP supports the private protocol, the AP will include at least part of the first frequency band All the configuration information of the frequency band is sent to the client, and the client stops the protocol interaction process of other frequency bands other than the first frequency band, and uses the obtained configuration information to bridge to the AP on at least a part of the frequency bands. If the AP does not respond to the query message sent by the client, the client cannot use the private protocol to obtain configuration information for communication, so it uses the communication method described with reference to Figure 5-7.
  • the configuration information of all frequency bands can be obtained directly from the network configurator or the communication device AP, so that it can be quickly completed when the same proprietary protocol can be supported. Bridging on multiple frequency bands.
  • FIG. 9 is a structural block diagram of a client 900 provided by an embodiment of the present invention.
  • the client is used to bridge with communication devices on multiple frequency bands (2.4G, 5G, 6G, and frequency bands that may be supported by subsequent wifi).
  • the client may be a client such as a mobile phone, a computer, or a RE (repeater), and the communication device is an AP (wireless access point).
  • AP wireless access point
  • the client 900 may include a protocol interaction control module 910 , an information acquisition module 910 , a configuration information determination module 920 and a bridging module 930 .
  • the protocol interaction control module 910 starts the protocol interaction process associated with the single-frequency bridge communication device on the multiple frequency bands respectively in response to a single bridge trigger operation.
  • the information obtaining module 920 obtains the device information of each communication device on each frequency band of the plurality of frequency bands in response to a single bridge trigger operation, and obtains the device information used to communicate with all communication devices in response to determining that the protocol interaction process is completed on the first frequency band. Configuration information on the first frequency band for bridging by the single-frequency bridging communication device.
  • the configuration information determining module 930 determines configuration information on at least one frequency band other than the first frequency band based on the configuration information on the first frequency band and the device information of each communication device on each frequency band.
  • the bridging module 940 uses the configuration information on the first frequency band and the determined configuration information on at least one other frequency band to bridge with the single-frequency bridge communication device on a corresponding frequency band among the multiple frequency bands.
  • each module in the multi-frequency bridging client 900 described in the embodiment of the present invention can refer to the working process of the communication method of the client described in Figure 3-4B, and can include multiple sub-modules accordingly, Or it can be divided into more or less modules or sub-modules according to other methods, which will not be repeated here.
  • the client 900 disclosed in the embodiment of the present invention bridges with a single-frequency bridging communication device to realize communication, after obtaining the configuration information of a frequency band, it can use the configuration information and the saved Device information, based on the SSID retrieval method to obtain configuration information on other frequency bands, to quickly use these configuration information to realize bridging with communication devices on multiple frequency bands without waiting for a long time specified in the protocol (for example, two minutes), so The bridging time can be shortened.
  • FIG. 10 is a structural block diagram of a client 1000 provided by an embodiment of the present invention.
  • the client is used to bridge with communication devices on multiple frequency bands (2.4G, 5G, 6G, and frequency bands that may be supported by subsequent wifi).
  • the client may be a mobile phone, a computer, or a RE (repeater), and the communication device is an AP (wireless access point).
  • the client 1000 may include a protocol interaction control module 1010 , a phase determination module 1020 , a delay time acquisition module 1030 , an information acquisition module 1040 and a bridge module 1050 .
  • the client 1000 may also optionally include various modules in the client as shown in FIG. 9 or integrate their functions, for example, the protocol in FIG. 10
  • the interaction control module 1010, the information acquisition module 1040 and the bridge module 1050 may be the same as the related modules in FIG. 9 .
  • the protocol interaction control module 1010 starts protocol interaction processes on the multiple frequency bands respectively in response to a single bridge trigger operation.
  • the phase determination module 1020 determines the phases of the protocol interaction process on each other frequency band except the first frequency band, and the configuration information acquisition module 1040 acquires the protocol interaction process on the first frequency band. configuration information.
  • the delay time determination module 1030 determines the delay time corresponding to each other frequency band according to the stage of the protocol interaction process on each other frequency band when the protocol interaction process is completed on the first frequency band, and determines each frequency band in each other frequency band. Whether the protocol interaction process on the frequency band is completed within the delay time corresponding to the frequency band.
  • each module of the client in Figure 9 and its corresponding actions can be used to complete the communication with the single-frequency bridging device of bridging.
  • the information acquisition module 1040 acquires configuration information on the at least one frequency band
  • the bridging module 1050 utilizes the first The configuration information on a frequency band and the acquired configuration information on at least one frequency band are bridged with the communication device on a corresponding frequency band among the multiple frequency bands.
  • each module in the multi-frequency bridging client 1000 described in the embodiment of the present invention may refer to the working process of the communication method of the client described in FIGS. 7-9 , and may include multiple sub-modules accordingly, Or it can be divided into more or less modules or sub-modules according to other methods, which will not be repeated here.
  • the client 1000 disclosed in the embodiment of the present invention can use protocol interaction based on every second frequency band except the first frequency band for completing the protocol interaction process.
  • the stage of the process determines the bridging type of the AP, thereby determining whether to use the SSID retrieval method described in Figure 3-4B to obtain configuration information or to obtain configuration information for other frequency bands by waiting for a preset delay time to complete on all frequency bands.
  • the bridging with the AP can realize the communication compatibility with the single-frequency bridging communication device and the multi-frequency bridging communication device.
  • FIG. 11 is a structural block diagram of a client 1100 provided by an embodiment of the present invention.
  • the client is used to bridge with communication devices on multiple frequency bands (2.4G, 5G, 6G, and frequency bands that may be supported by subsequent wifi).
  • the client may be a mobile phone, a computer, or a RE (repeater), and the communication device is an AP (wireless access point).
  • the client 1100 may include a protocol interaction control module 1110 , a proprietary protocol communication module 1120 , an information acquisition module 1130 and a bridge module 1140 .
  • the client 1100 may also optionally include various modules in the client as shown in FIG. 10 or integrate their functions.
  • the protocol interaction control module 1110 starts protocol interaction processes on the multiple frequency bands respectively in response to a single bridge trigger operation.
  • the information acquisition module 1130 When the information acquisition module 1130 performs the protocol interaction process on the first frequency band among the plurality of frequency bands, if the private protocol communication module 1120 determines that the opposite party of the protocol interaction process supports the same proprietary protocol, After the protocol interaction process is completed on the first frequency band in the frequency bands, the information acquisition module 1130 acquires configuration information on the first frequency band and at least one other frequency band from the counterparty, and the protocol interaction control module 1110 stops all other frequency bands except the first frequency band The protocol interaction process on other frequency bands, and the bridging module 1140 uses the configuration information of the first frequency band and configuration information on at least one other frequency band to bridge with the communication device on the corresponding frequency band.
  • the private protocol communication module 1120 determines that the opposite party of the protocol interaction process does not support the same private protocol, use the various modules of the client in FIG. 10 and their corresponding actions to complete communication with the communication device in multiple frequency bands. communication on.
  • the information acquisition module 1130 acquires configuration information on the first frequency band from the counterparty, and the bridging module 1140 uses the configuration information on the first frequency band to bridge to the communication device on the first frequency band, and the information acquisition module 1130 queries Whether the communication device supports a predetermined private protocol, and if the communication device supports a predetermined private protocol, acquire configuration information on at least one frequency band including the first frequency band from the communication device, and the protocol interaction control module 1110 Stop the protocol interaction process on each frequency band except the first frequency band, and the bridging module 1140 uses the configuration information on the at least one frequency band to bridge with the communication device on the at least one frequency band; In the case of supporting a predetermined private protocol, each module of the client in FIG. 10 and its corresponding actions can be used to complete the bridging with the single-frequency bridging device.
  • the client 1100 disclosed in the embodiment of the present invention can determine whether it can directly obtain all frequency bands from the network configurator or the communication device AP based on the support of the proprietary protocol. Configuration information, so that bridging can be quickly completed on all frequency bands under the condition that the same proprietary protocol can be supported.
  • FIG. 12 is a structural block diagram of a client 1200 provided by an embodiment of the present invention.
  • the communication device 1200 of the client includes: a processor 1201, a memory 1202, and a A computer program running on the processor 1201.
  • the processor 1201 executes the computer program, the steps in the various embodiments of the client communication method described above with reference to FIGS. 3-8 are implemented.
  • the processor 1201 executes the computer program, it implements the functions of the modules in the device embodiments described in FIGS. 9-11 above.
  • the computer program may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 1202 and executed by the processor 1201 to complete this invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program in the client 1200 .
  • the client may be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the client 1200 may include, but not limited to, a processor 1201 and a memory 1202 .
  • a processor 1201 may include, but not limited to, a processor 1201 and a memory 1202 .
  • the schematic diagram is only an example of the communication device 1200 of the multi-frequency bridging client, and does not constitute a limitation to the client 1200, and may include more or less components than those shown in the illustration, or combine some A component, or a different component, for example, a communication device of a client may also include an input and output device, a network access device, a bus, and the like.
  • the so-called processor 1201 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the processor 1201 is the control center of the client 1200 and connects various parts of the client 1200 with various interfaces and lines.
  • the memory 1202 can be used to store the computer programs and/or modules, and the processor 1201 runs or executes the computer programs and/or modules stored in the memory 1202, and calls the data stored in the memory 1202, Various functions of the client 1200 are realized.
  • the memory 1202 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.) and the like; the storage data area can store Store data (such as audio data, phone book, etc.) created according to the use of the mobile phone.
  • the memory 1202 can include high-speed random access memory, and can also include non-volatile memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the integrated modules/units of the client 1200 are realized in the form of software function units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the present invention realizes all or part of the processes in the methods of the above embodiments, and can also be completed by instructing related hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor 1201, the steps of the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physically separated.
  • a unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between the modules indicates that they have a communication connection, which can be specifically implemented as one or more communication buses or signal lines. It can be understood and implemented by those skilled in the art without creative effort.
  • FIG. 13 is a structural block diagram of a communication system 1300 provided by an embodiment of the present invention, and the communication system 1300 includes at least one communication device 1301 and the client 1200 described in the above embodiments.
  • the client 100 in the communication system 1300 disclosed in the embodiment of the present invention responds to a single bridging trigger operation, and obtains the frequency band except the frequency band where the interaction is completed by using the SSID retrieval method when communicating with the single-frequency bridging AP.
  • configuration information of other frequency bands to quickly bridge to the single-frequency bridging AP in addition, the bridging type of the AP can be determined based on the stage of the protocol interaction process on each frequency band to determine whether to use the SSID retrieval method or wait for the preset Delay time to obtain configuration information of other frequency bands to complete bridging with APs on all frequency bands, which can achieve compatibility with single-frequency bridging communication devices and multi-frequency bridging communication devices. In addition, it can also be based on supporting private protocols from the network The configurator or the communicating AP obtains the configuration information of all frequency bands, so as to complete the bridging on all frequency bands further and quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了客户端的通信方法、客户端和通信系统,客户端用于在多个频段上与单频桥接通信设备进行桥接。通信方法包括:响应于单次桥接触发操作,获取多个频段的每个频段上的各个通信设备的设备信息,并且在多个频段上分别启动与单频桥接通信设备相关联的协议交互进程;响应于确定在第一频段上完成协议交互进程,获取用于桥接单频桥接通信设备的第一频段上的配置信息;基于第一频段上的配置信息以及多个频段的每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息;以及利用第一频段上的配置信息以及所确定的至少一个其他频段上的配置信息,在第一频段与至少一个其他频段上与单频桥接通信设备桥接。

Description

客户端的通信方法、客户端和通信系统 技术领域
本发明涉及通信技术领域,尤其涉及一种多频桥接客户端的通信方法、设备、多频桥接客户端和通信系统。
背景技术
客户端与通信设备进行桥接以实现无线通信。目前市面上存在多频客户端与多频通信设备(例如接入点(AP)),多频客户端和多频AP可以支持在2.4GHz频段、5GHz频段和6GHz频带以及后续WiFi可能支持的频段上桥接以实现无线通信。在本申请的上下文中,“客户端”、“通信设备”和“AP”均是指多频设备。
多频客户端以及多频AP对于桥接功能的支持可以包括以下情况。
第一种情况:客户端和AP进行标准协议交互。响应于单次桥接触发操作,客户端以及AP进行标准协议交互,只能在一个频段内完成协议报文交互的进程,在其他频段内无法完成协议报文交互的进程,即至少有一个设备(客户端和/或AP)仅能在一个频段内完成用于获取配置信息的协议报文交互进程,这样的设备在本申请中可以被称为单频桥接客户端(即,单频桥接的多频客户端)或者单频桥接AP(即,单频桥接的多频AP)。例如,在使用无线保护设置(WPS)方式触发多频桥接客户端与单频桥接AP的桥接操作时,单频桥接AP会在所有频段内宣称进行WPS,但是多频桥接客户端最终只会在一个频段内完成与单频桥接AP的WPS协议报文的交互进程,其余频段上无法完成WPS协议报文的交互进程。
第二种情况:客户端和AP进行标准协议交互。响应于单次桥接触发操作,客户端以及AP进行标准协议交互,可以在所有频段内完成各自对应的协议报文的交互进程,即两个设备(客户端和AP)均能在所有频段内完成用于桥接的协议报文交互进程,这样的设备在本申请中可以被称为多频桥接客户端或者多频桥接AP。例如,在使用无线保护设置(WPS)方式触发多频桥接客户端与多频桥接AP的桥接操作时,多频桥接AP会在所有频段内宣称进行WPS,并且多频桥接客户端会在所有频段内完成与多频桥接AP的WPS协议 报文的交互进程。
第三种情况:客户端和网络配置器进行标准协议交互,AP由网络配置器进行管理。响应于单次桥接触发操作,客户端与网络配置器进行标准协议交互,从网络配置器获取AP的配置信息。如果客户端只能获取AP在一个频段内的配置信息,则客户端和AP中至少一者为单频桥接设备,即单频桥接客户端或单频桥接AP;反之,如果获取到所有频段内的配置信息,则为多频桥接客户端或多频桥接AP。例如在wifi easy connect技术,网络配置器扫描客户端的QR码,触发了桥接操作,并且客户端可以从网络配置器获取用于桥接操作的配置信息。wifi easy connect技术涉及的协议交互进程可以简称为wifi easy connect进程。
综上,多频桥接客户端与多频桥接AP进行配合,响应于单次桥接触发操作,多频桥接客户端可以在所有频段上与多频桥接AP桥接。如果客户端与AP中至少一者为单频桥接设备,那么需要响应于多个桥接触发指示(多次触发),客户端才能在所有频段上桥接到AP。
在实际使用过程中,即使客户端为多频桥接设备,在与单频桥接AP配合时,必须需要响应于多次桥接触发操作才能桥接到单频桥接AP的所有频段。同时,多频桥接客户端在一个频段内完成标准协议交互之后,由于可能不知道要桥接的AP是多频桥接AP还是单频桥接AP,因此需要等待超过协议规定时长后(例如,WPS技术对应的规定时长为2min),在确定无法在其他频段内完成标准协议交互之后,才能终止其他频段内的协议交互流程,该过程耗时长,用户体验差。
发明内容
本发明实施例的目的是提供一种多频桥接客户端的通信方法、设备、多频桥接客户端和通信系统,在对应标准协议的基础上,在所有频段上快速桥接到单频/多频桥接通信设备(AP)。
为实现上述目的,在第一方面,本发明实施例提供了一种客户端的通信方法。所述客户端用于在多个频段上与单频桥接通信设备进行桥接,所述通信方法包括:响应于单次桥接触发操作,获取所述多个频段的每个频段上的各个通信设备的设备信息,并且在所述多个频段上分别启动与所述单频桥接通信设备相关联的协议交互进程;响应于确定在第一频段上完成协议交互进程,获取 用于桥接所述单频桥接通信设备的所述第一频段上的配置信息;基于第一频段上的配置信息以及所述多个频段的每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息;以及利用所述第一频段上的配置信息以及所确定的所述至少一个其他频段上的配置信息,在所述第一频段与所述至少一个其他频段上与所述单频桥接通信设备桥接。
为实现上述目的,在第二方面,本发明实施例提供了一种客户端的通信方法。所述客户端用于在多个频段上与单频桥接通信设备进行桥接,所述通信方法包括:响应于单次桥接触发操作,在所述多个频段上分别启动协议交互进程;响应于确定在第一频段上完成协议交互进程,获取所述第一频段上的配置信息,并确定在除第一频段之外的各个其他频段上的协议交互进程的阶段;根据在第一频段上完成协议交互进程时各个其他频段上的协议交互进程的阶段,确定各个其他频段各自对应的延迟时间;针对各个其他频段中的每个频段确定在所述频段对应的延迟时间内所述频段上的协议交互进程是否完成,并且在所述各个其他频段中的每个频段对应的延迟时间内所述各个其他频段上的协议交互进程均未完成的情况下,终止各个其他频段上的协议交互进程,获取所述多个频段的每个频段上的各个通信设备的设备信息,基于第一频段上的配置信息以及每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息,以及利用所述第一频段上的配置信息以及所确定的所述至少一个其他频段上的配置信息,在所述第一频段上以及所述至少一个其他频段上与所述通信设备桥接。
为实现上述目的,在第三方面,本发明实施例提供了一种客户端的通信方法。所述客户端用于在多个频段上与单频桥接通信设备进行桥接,所述通信方法包括:响应于单次桥接触发操作,分别在所述多个频段上启动协议交互进程;在所述多个频段中的第一频段上进行协议交互进程期间,确定所述客户端与协议交互进程的相对方是否支持相同的私有协议,如果确定支持相同的私有协议,则在所述多个频段中的第一频段上完成协议交互进程之后,从所述相对方获取包括第一频段以及至少一个其他频段上的配置信息,并停止除了第一频段之外的其他频段上的协议交互进程,并利用所述第一频段以及至少一个其他频段上的配置信息在对应的频段上与所述通信设备桥接。
为实现上述目的,在第四方面,本发明实施例还提供了一种客户端,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计 算机程序,所述处理器执行所述计算机程序时实现如上述任一方面所述的客户端的通信方法。
为实现上述目的,本发明实施例还提供了一种通信系统,包括至少一个通信设备和上述实施例所述的客户端。
相比于现有技术,本发明实施例公开的多频桥接客户端的通信方法、设备、多频桥接客户端和通信系统,响应于单次桥接触发操作,通过在与单频桥接AP通信时基于SSID检索方法得到除交互完成的频段之外的其他频段的配置信息从而快速桥接到该单频桥接通信设备AP;此外,可以通过基于每个频段上的协议交互进程的阶段确定该通信设备AP的桥接类型,来确定是采用SSID检索方法还是等待预设的延迟时间来获取至少一部分其他频段的配置信息,以完成在至少一部分频段上与AP的桥接,可以实现与单频桥接通信设备和多频桥接通信设备通信的兼容,此外,还可以基于支持私有协议来从网络配置器或者通信的AP获取所有频段的配置信息,从而进一步快速地完成在所有频段上的桥接。
附图说明
图1是本发明实施例提供的一种客户端的通信方法的流程图;
图2是本发明实施例提供的图1所示的一种客户端的通信方法的实例过程图;
图3是本发明实施例提供的一种客户端的通信方法的流程图;
图4A-4B是本发明实施例提供的图3所示的一种客户端的通信方法的实例过程图;
图5是本发明实施例提供的一种客户端的通信方法的另一流程图;
图6-7是本发明实施例提供的图5所示的一种客户端的通信方法的实例过程图;
图8是本发明实施例提供的一种客户端的通信方法的另一流程图;
图9-11是本发明实施例提供的一种客户端的结构框图;
图12是本发明实施例提供的一种客户端的结构框图;
图13是本发明实施例提供的一种通信系统的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在一些具体实施例中,多频桥接客户端可以工作在两种频率下,称为双频客户端,例如2.4GHz和5GHz。
参见图1,图1是本发明实施例提供的一种双频客户端的通信方法的流程图,所述双频客户端可工作在两个频段,并且可以与通信设备AP在这两个频段上进行桥接,并且可以通过WPS方式获取桥接所需要的每个频段上的配置信息。所述双频客户端的通信方法可以包括如下步骤。
S1、响应于桥接触发操作(例如WPS按钮触发操作),获取每个频段上的所有通信设备的设备信息。
S2、根据所述设备信息,从正在进行WPS的通信设备中筛选出一个目标通信设备。
S3、当所述双频客户端在当前频段内与所述目标通信设备的WPS进程(WPS技术相关的进程,可以简称为WPS进程)成功后,查询所述双频客户端在另一个频段内的WPS进程交互状态。
S4、根据所述WPS进程交互状态设置延迟时间。
S5、根据所述延迟时间结束时所述双频客户端的另一个频段的WPS进程交互状态,确定所述目标通信设备的桥接类型,并根据桥接类型使用不同的配置信息获取方法以获取配置信息,以用于将所述双频客户端的另一个频段与所述目标通信设备桥接。
值得说明的是,本发明实施例所述的双频客户端可以工作在2.4G频段和5G频段,所述双频客户端在与通信设备连接时,需要按下其自身的WPS按键与通信设备建立连接。示例性的,所述双频客户端为手机、电脑、RE(中继器)等客户端,所述通信设备为AP(无线接入点)。
具体地,在步骤S1中,响应于WPS按钮触发操作,启动全信道扫描,以创建临时设备信息表;其中,所述临时设备信息表用于保存扫描到的正在进行WPS的通信设备的设备信息,所述设备信息包括SSID(Service Set Identifier,服务集标识符)、UUID(Universally Unique Identifier,通用唯一识别码)和MAC 地址。
示例性的,所述双频客户端在进行WPS时,会在两个频段进行全信道的主动扫描,获取附近的通信设备信息,筛选出正在进行WPS的通信设备。在进行扫描时,所述双频客户端创建两个临时设备信息表,分别保存2.4G、5G两个频段内正在进行WPS的通信设备的设备信息。
具体地,所述通信设备在开始WPS后,在两个频段内同时发送包含WPS的相关信息的报文给所述双频客户端,以告知所述双频客户端其已经开启了WPS;其中,所述相关信息包括了所述设备信息。
示例性的,通信设备在开始WPS后,在两个频段内同时发送带有WSC_IE的beacon、probe response,告知所述双频客户端其已经开启了WPS,其中也包含所述通信设备的设备信息)。值得说明的是,WSC_IE为WPS字段,其包含WPS的相关信息和设备信息(SSID、UUID、MAC地址),其中Device Password ID值代表WPS的类型(PBC、PIN),Selected Registrar的值为1代表通信设备开启WPS,所述双频客户端通过这些信息筛选开启WPS的通信设备。beacon为主动广播告知,probe response为对双频客户端发出的probe request的应答。
具体地,在步骤S2中,根据所述设备信息,从正在进行WPS的通信设备中筛选出一个目标通信设备。
示例性的,所述双频客户端根据扫描到的通信设备的WSC_IE中的WPS信息,分别在2.4G、5G筛选出一个正在进行WPS,且WPS类型(例如,PBC、PIN)与所述双频客户端相同的通信设备为目标通信设备,并向其发起EAP报文交互。一般情况下两个频段筛选出的为同一通信设备。
具体地,在步骤S3中,当所述双频客户端在当前频段内与所述目标通信设备的WPS进程完成后,查询所述双频客户端在另一个频段内的WPS进程交互状态。
示例性的,所述WPS进程交互状态包括扫描阶段、认证关联阶段和EAP报文交互阶段。所述扫描阶段表示所述双频客户端在另一个频段内处于扫描通信设备的阶段;所述认证关联阶段表示所述双频客户端正在当前频段上与该通信设备进行认证关联;所述EAP报文交互阶段表明所述多频桥接客户端在当前频段上已经筛选出该通信设备并且已经认证成功,并准备与其进行报文交互。
具体地,在步骤S4中,由于不同频段的信道数目不同,扫描所需的时间不同,因此每个频段上的WPS进程可能是不同步的,因此,例如即使在当前频段上与通信设备的WPS进程完成时另一个频段的WPS进程的阶段为扫描阶段,但这可能是进程较慢导致的,即一段时间之后它可能会切换到后续阶段,因此,针对扫描阶段可以引入两部分的延迟时间来确定是否能够成功完成WPS进程。
因此,在步骤S4中,根据所述WPS进程交互状态设置延迟时间,包括步骤S41~S43:
S41、当所述WPS进程交互状态处于扫描阶段,延迟时间设置为第一预设时间段;
S42、当所述WPS进程交互状态处于EAP报文交互阶段,延迟时间设置为第二预设时间段;
S43、当所述WPS进程交互状态处于认证关联阶段,延迟时间设置为第三预设时间段;
其中,所述第一预设时间段小于所述第二预设时间段,所述第二预设时间段小于所述第三预设时间段。
示例性的,所述第一预设时间段为5秒,所述第二预设时间段为10秒,所述第三预设时间段为15秒。当所述WPS进程交互状态处于EAP报文交互阶段时,延迟时间为10秒,足以完成所有的EAP报文交互。当所述WPS进程交互状态处于认证关联阶段,延迟时间为15秒。当所述WPS进程交互状态处于扫描阶段,延迟时间为5秒。进一步地,当在步骤S4中确定另一个频段上的WPS进程交互状态处于扫描阶段时,还包括步骤S44~S47:
S44、等待所述第一预设时间段后扫描结束,重新获取所述WPS进程交互状态;
S45、若重新获取的所述WPS进程交互状态处于扫描阶段,延迟时间附加地设置为0;
S46、若重新获取的所述WPS进程交互状态处于EAP报文交互阶段,延迟时间附加地设置为所述第二预设时间段;
S47、若重新获取的所述WPS进程交互状态处于认证关联阶段,延迟时间附加地设置为所述第三预设时间段。
示例性的,等待5秒后扫描结束,重新获取WPS进程交互状态。如果依 然处于扫描阶段,则将延迟时间设为0,立即终止另一个频段的WPS进程。如果处于其他阶段,则按照上述步骤S46~S47设置延迟时间,然后等待延迟时间结束。
具体地,在步骤S5中,根据所述延迟时间结束时所述双频客户端在另一个频段上的WPS进程交互状态,确定所述目标通信设备的桥接类型,并根据桥接类型使用不同的配置信息获取方法以获取配置信息,以用于将所述双频客户端的在两个频段上与所述目标通信设备桥接。所述目标通信设备的类型包括两种,一种是双频WPS通信设备,所述双频WPS通信设备可同时工作在2.4G和5G频段,可在2.4G和5G两个频段完成WPS进程,另一种是单频WPS通信设备,所述单频WPS通信设备可在2.4G和5G两个频段工作,或者只在其中一个频段工作,但是只能在其中一个频段完成WPS进程。
可选地,如果所述延迟时间结束时所述双频客户端在另一个频段上的WPS进程已经完成,确定所述目标通信设备的类型为双频WPS通信设备,因此根据桥接类型使用不同的配置信息获取方法以获取配置信息,以用于将所述双频客户端在两个频段与所述目标通信设备桥接,包括步骤S511:
S511、基于在所述延迟时间内完成在另一个频段上的WPS进程,从所述双频WPS通信设备获取另一个频段上的配置信息,并基于两个频段上的配置信息在该两个频段上桥接到所述双频WPS通信设备。
可选地,如果所述延迟时间结束时所述双频客户端在另一个频段上的WPS进程未完成,确定所述目标通信设备的类型为单频WPS通信设备,因此根据桥接类型使用不同的配置信息获取方法以获取配置信息,以用于将所述双频客户端的在两个频段与所述目标通信设备桥接,包括步骤S521~S523:
S521、在所述延迟时间结束后,终止所述双频客户端在另一频段上的WPS进程;
S522、从所述目标通信设备获取WPS进程成功的当前频段的配置信息,并根据获取到的所述配置信息和每个频段上的所有通信设备的所述设备信息,进行SSID检索;
S523、根据检索到的SSID和WPS进程成功的当前频段的配置信息,确定所述双频客户端在另一频段上的配置信息,并利用该两个频段上的配置信息与所述单频WPS通信设备进行桥接。
其中,所述频段配置信息可以包括SSID、密钥和加密方式等等,所述设 备信息包括SSID、UUID和MAC地址。
示例性的,在进行SSID检索时,可以基于SSID相同的方式以及UUID相同且MAC地址符合转换规则的方式中的一者来进行。
例如,由于当前频段的配置信息经过WPS进程完成从而是已知的,能够确定出当前频段的配置信息中包括的SSID,并且针对另一个频段,可能存在扫描到多个通信设备,如果该多个通信设备的设备信息中存在与已知的SSID相同的SSID,那该SSID对应的通信设备为与当前频段对应的所述目标通信设备,因此可以确定该另一个频段上的SSID。
又例如,所述目标通信设备从2.4G、5G频段发出的报文中有些内容具有关联性。同一目标通信设备在2.4G、5G频段两个端口发出报文中MAC地址可以通过算法相互转换,UUID相同。如果已知一个目标通信设备在一个频段(2.4G或5G)的报文内容,根据MAC地址、UUID这两个信息,按照UUID相同、MAC地址符合转换规则的原则,可以过滤出同一目标通信设备在另一频段的报文,从而得到目标通信设备在两个频段内的SSID。一般情况下用户会设置所述目标通信设备的两个频段为相同的加密方式以及密钥。所述双频客户端与单频WPS通信设备进行WPS时,可获取一个频段的配置信息,在两个频段内都使用WPS获取的加密方式以及密钥。通过其他方式获取到所述目标通信设备在另一频段的SSID,即有很大几率实现双频客户端桥接到目标通信设备的两个频段。
示例性的,所述双频客户端在一个频段内WPS成功后,可获取到所述目标通信设备推送的当前频段配置信息(SSID、密钥、加密方式),以及获取预先保存的设备信息。然后所述双频客户端终止未WPS成功频段的WPS进程,以设备信息中的SSID、UUID、MAC地址为索引,按照一定的规则(SSID相同以及UUID相同且MAC地址符合转换规则),所述双频客户端即可在未WPS成功频段的设备信息表中获取属于同一目标通信设备的设备信息,获取目标通信设备在此频段的SSID,从而根据检索到的SSID,将所述双频客户端在另一频段内与所述单频WPS通信设备进行桥接。
进一步地,上述步骤S1~S5的过程可参考图2。
例如,多频桥接客户端在进行WPS时,会在所有频段进行全信道的主动扫描,获取附近的AP信息,并且创建临时设备信息表,保存所有AP的信息,并且多频桥接客户端在一个频段内筛选出正在进行WPS并且WPS类型(例 如,基于PBC、基于PIN)与客户端相同的AP进行WPS协议交互,该频段作为第一频段。完成WPS协议交互之后,多频桥接客户端可以获取AP推送的当前频段的配置信息(SSID、密钥、加密方式)以及保存的AP设备信息,然后查询另一个频段上的WPS进程交互状态,并设置不同的延迟时间,如果延迟时间结束,另一个频段上的WPS进程未交互完成,则确定是单频桥接AP,并终止该另一个频段上的WPS进程,按照以上描述的SSID检索方法获取AP在其他频段内的SSID。多频桥接客户端在完成WPS进程交互的频段,直接使用获取的配置信息桥接AP。在另一个频段,多频桥接客户端使用已获取的频段上的配置信息中的加密方式、密钥,以及在另一个频段的配置信息中包括的SSID,去桥接AP,从而实现在所有频段上桥接到AP;如果延迟时间结束,另一个频段上的WPS进程完成,则直接获取该另一个频段上的配置信息,去桥接AP。
在本发明实施例中,通信设备为单频WPS通信设备时,双频客户端可通过按下一次WPS按键,通过WPS以及SSID检索的方式,桥接到单频WPS通信设备的两个频段,桥接时间短。通信设备为双频WPS通信设备时,双频客户端可通过按下一次WPS按键,两个频段都通过WPS桥接到双频WPS通信设备的两个频段,桥接时间短。
相比于现有技术,本发明实施例公开的双频客户端的通信方法,通过启动全信道扫描的方式,可以扫描到正在进行WPS的通信设备的设备信息,从而根据该设备信息,从正在进行WPS的通信设备中筛选出一个目标通信设备,使得双频客户端在当前频段内与所述目标通信设备桥接成功。然后,根据所述延迟时间结束时另一个频段的交互状态,将双频客户端的另一个频段与目标通信设备桥接,在此过程中,无需再按一次双频客户端中的WPS按键,可以实现双频客户端通过按下一次WPS按键,桥接到目标通信设备的两个频段。本发明实施例公开的双频客户端的通信方法,在遵循WPS协议的基础上,实现通过按下一次双频客户端的WPS按键,快速桥接到具有单频/双频WPS功能的通信设备的两个频段。
虽然上文以两个频段为例进行了说明,但是本领域技术人员理解,客户端与AP可以在多个频段上进行桥接,而不局限于两个频段。此外,上文以WPS进程作为协议交互进程示例进行了描述,但是协议交互进程可以为其他类型,例如wifi easy connect技术中,客户端与网络配置器之间也会进行与AP相关 联的协议交互进程,本申请不局限于WPS交互。
参见图3,图3是本发明实施例提供的一种客户端的通信方法的流程图。该客户端用于在多个频段(2.4G、5G、6G,以及后续wifi可能支持的频段)上与单频桥接通信设备进行桥接。示例性的,该客户端可以为手机、电脑、RE(中继器)等客户端,所述通信设备为AP(无线接入点)。所述通信方法可以包括如下步骤。
在步骤S310中,响应于单次桥接触发操作,获取所述多个频段的每个频段上的各个通信设备的设备信息,并且在所述多个频段上分别启动与所述单频桥接通信设备相关联的协议交互进程。
可选地,桥接触发操作可以是可以触发客户端和通信设备AP之间的关联的任何操作,例如与协议交互过程的启动相关的按下按钮、触摸按钮、输入PIN码、NFC、以及扫描二维码等等操作。例如,与无线保护设置(WPS)技术相关的触发操作可以包括按下WPS按钮、触摸WPS按钮、输入PIN码、NFC等WSC标准协议支持的触发操作;与wifi easy connect技术相关联的进程可以包括获取客户端的标识信息(例如扫描二维码QR)的触发操作。
例如,在触发客户端与通信设备AP进行关联时,响应于单次桥接触发操作,客户端可以从宣称可以进行协议交互进程的通信设备中选择出要桥接的通信设备,例如,基于WSC_IE字段中的Device Password ID值相等以及Selected Registrar的值为1等等规则,每个频段选择出的通信设备一般是同一个通信设备,或者,通过网路配置器扫描客户端的QR码,可以实现网络配置器管理的通信设备与客户端的关联。本实施例客户端关联到的通信设备为单频桥接通信设备,然后客户端可以启动在多个频段上与该单频桥接通信设备相关联的协议交互进程。网络配置器可以是wifi easy connect网络拥有者使用的可信设备,例如智能手机,以授权和管理其他客户端的网络接入,该可信设备可以是Wi-Fi网络内的任何可信设备。
在本申请的上下文中,协议交互进程可以是用于基于协议报文的交互而简化或管理用户的客户端接入网络的进程,例如可以包括WPS技术和wifi easy connect技术相关的进程,并且基于在某个频段上完成的协议交互进程,配置信息提供方可以向客户端提供该频段上的而配置信息,即如果在某个频段上完成了协议交互进程,则客户端即可以获取到在该频段上的配置信息,以用于在该频段上桥接到通信设备。
例如,对于WPS技术,响应于单次桥接触发操作,客户端可以启动全信道扫描,选择出要进行桥接通信的通信设备(AP),从而启动与该通信设备进行多个频段上的协议交互进程。例如,对于wifi easy connect技术,响应于单次桥接触发操作,客户端与网络配置器(管理要桥接的通信设备)建立连接(例如通过网络配置器扫描客户端的QR码),从而启动与该网络配置器进行多个频段上的协议交互进程,每个频段上的协议交互进程完成后可以用于获取在该频段上用于桥接到通信设备的配置信息,因此该协议交互进程可以视为与通信设备相关联。
例如,在获取设备信息时,客户端可以响应于单次桥接触发操作,启动全信道扫描,从而获取针对所述多个频段的每个频段扫描到的所有通信设备的设备信息。当然,也可以仅获取扫描到的部分通信设备,例如预先筛除掉明显不可能是要桥接的单频桥接通信设备的通信设备,例如可以预设筛除规则,例如基于产品信息等。
具体地,客户端可以在所有频段启动全信道扫描,并且创建每个频段的临时设备信息表,保存所有扫描到的AP的设备信息,即针对每个频段,可以扫描到多个AP,从而临时设备信息表可以保存针对每个频段的所有AP的设备信息。
可选地,每个通信设备(AP)对应的设备信息是用于定义设备本身属性的各类信息,例如可以包括AP的SSID(Service Set Identifier,服务集标识符)、UUID(Universally Unique Identifier,通用唯一识别码)和MAC地址等等。
另外,每个频段上的配置信息是直接用于配置桥接过程的信息,可以例如包括SSID、加密方式和密钥,并且每个频段上的加密方式和密钥是相同的。
在步骤S320中,响应于确定在第一频段上完成协议交互进程,获取用于桥接所述单频桥接通信设备的所述第一频段上的配置信息。
可选地,客户端可以与管理单频桥接通信设备的网络配置器或者所述单频桥接通信设备在第一频段上完成协议交互进程,以获取第一频段上的配置信息。
例如,客户端可以与所述单频桥接通信设备在所述第一频段上完成协议交互进程,并从所述单频桥接通信设备获取所述第一频段上的配置信息。客户端还在步骤S310中获取了在各个频段上的通信设备的设备信息,然后通过以 下步骤S330中得到其他频段上的配置信息。
例如,通信设备(单频桥接AP)可以在多个频段内均向客户端发送带有是否能够进行协议交互的指示、设备信息、协议交互类型等的交互相关信息,客户端基于交互相关信息在各个频段上从中选择出同一通信设备(这里的单频桥接通信设备),并在第一频段上完成与该通信设备的协议交互进程,以从该通信设备获取第一频段上的配置信息。
具体地,例如,所述通信设备在启动WPS进程后,在多个频段(以两个为例)内同时发送包含WPS的相关信息的报文给所述多频桥接客户端,以告知所述多频桥接客户端其已经开启了WPS。示例性的,通信设备在开始WPS后,在两个频段内同时发送带有WSC_IE的beacon、probe response,告知所述多频桥接客户端其已经开启了WPS,其中也包含所述通信设备的设备信息)。值得说明的是,WSC_IE为WPS字段,其包含WPS信息,其中Device Password ID值代表WPS的类型(PBC、PIN),Selected Registrar的值为1代表通信设备开启WPS,所述多频桥接客户端通过这些信息筛选开启WPS的通信设备。beacon为主动广播告知,probe response为对多频桥接客户端发出的probe request的应答。例如,客户端在启动之后,可以进行扫描,并创建两个临时设备信息表,分别保存两个频段内AP的设备信息,同时根据扫描到AP的WSC_IE中的WPS信息,分别在2.4G、5G筛选出一个正在进行WPS,且WPS类型与RE相同的AP(这里为单频桥接AP),并向其发起EAP报文交互,但是最终只有一个频段(第一频段)能够完成WPS进程。
另外,在AP由网络配置器管理的情况下,客户端与网络配置器进行协议交互进程,并从所述网络配置器获取所述第一频段上的配置信息,并且获取在各个频段上的通信设备的设备信息,然后通过以下步骤S330得到其他频段上的配置信息。应注意,在这种情况下,步骤S310中的获取设备信息和步骤S320中获取第一频段上的配置信息可以以任何顺序执行或者同时执行,本公开对此不做限制。
在步骤S330中,基于第一频段上的配置信息以及所述多个频段的每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息。
为了便于与协议交互进程完成的第一频段进行区分,在本申请的上下文中,除第一频段之外的其他频段可以统称为第二频段,即第二频段可以指代除 了第一频段之外的不同频率的频段。
例如,客户端可以基于第一频段上的配置信息确定至少一个其他频段上的配置信息包括的加密方式和密钥,这是由于在单频桥接AP的情况下,所有频段上的配置信息中的加密方式和密钥可以是相同的。然后,客户端可以基于所述第一频段上的配置信息和/或每个频段上的各个通信设备的设备信息,确定该至少一个其他频段上的配置信息包括的SSID。这样,至少一部分频段(第一和所述至少一个其他频段)上用于桥接的配置信息(SSID、加密方式和密钥)都已经被获取。
应注意,可以根据实际需要桥接到通信设备的频段,而确定是否确定除了第一频段(协议交互进程完成的频段)之外的所有频段的配置信息,可以仅确定其中一部分频段的配置信息,本申请对此不做限制。
具体的利用这些设备信息确定SSID的过程可以具有以下几种示意实施方式。
在第一种实施方式中,考虑到一些用户会将同一个单频桥接通信设备所有频段内的配置信息包括的SSID设置为完全相同,因此如果针对其他频段,客户端可以过滤出(例如从临时设备信息表)具有相同SSID的设备信息,则认为这些SSID对应的通信设备属于同一个通信设备。
即,确定SSID的过程可以包括:基于所述第一频段上的配置信息获取所述第一频段上的SSID;以及针对上述至少一个第二频段中的每个第二频段(不同频率对应的每个其他频段),确定所述第二频段上的各个通信设备中具有包括与第一频段上的SSID相同的SSID的设备信息的通信设备与所述单频桥接通信设备为同一设备,并将第一频段上的SSID作为所述第二频段上的配置信息中的SSID。
在第二种实施方式中,考虑到同一单频桥接通信设备在所有频段内发出的设备信息具有一定的关联性,例如同一单频桥接通信设备在所有频段内发出的报文中MAC地址可以满足一定的映射规则,并且UUID相同,因此如果已知单频桥接通信设备在第一频段的设备信息,根据MAC地址、UUID这两个信息,按照UUID相同、MAC地址符合映射规则的原则,针对其他频段,客户端可以过滤出(例如从临时设备信息表)具有满足映射规则的MAC地址以及相同UUID的设备信息,并认为这些MAC地址对应的通信设备属于同一个通信设备。
即,确定SSID的过程可以包括:基于所述单频桥接通信设备在第一频段上的设备信息确定所述单频桥接通信设备在第一频段上的第一MAC地址和第一UUID;基于每个第二频段上的各个通信设备的设备信息,确定上述至少一个第二频段中的每个第二频段上的各个通信设备的第二MAC地址和第二UUID;针对上述至少一个第二频段中的每个第二频段,确定所述第二频段上的各个通信设备中具有与所述第一MAC地址满足映射规则的第二MAC地址以及与第一UUID相同的第二UUID的通信设备与所述单频桥接通信设备为同一设备,并将所确定的通信设备的设备信息中的SSID作为所述第二频段上的配置信息中的SSID。
可选地,为了获取所述单频桥接通信设备在第一频段上的设备信息,在客户端与单频桥接通信设备进行协议交互进程的情况下,在客户端筛选出在第一频段上要进行桥接的单频桥接通信设备的过程中,就已经从单频桥接通信设备获取了单频桥接通信设备的设备信息。
另外,在客户端与网络配置器进行协议交互进程的情况下,客户端从网络配置器获取的第一频段上的配置信息可以包括SSID,且例如基于全信道扫描得到的第一频段上的各个通信设备(包括要桥接的单频桥接通信设备)的设备信息也各自包括SSID,因此客户端可以基于获取到的第一频段上的配置信息而筛选出要桥接的单频桥接通信设备的第一频段上的设备信息。
在第三种实施方式中,考虑到同一个单频桥接通信设备会在其与客户端交互的报文中宣称其产品信息(例如厂商、AP型号、产品编码等),因此如果已知通信设备在第一频段内的设备信息,则客户端可以根据包括的产品信息(厂商、AP型号、产品编码等),针对其他频段过滤出(例如从临时设备信息表)具有相同产品信息的设备信息,并认为这些产品信息对应的通信设备属于同一个通信设备。
与第二种实施方式类似的,确定SSID的过程可以包括:基于所述单频桥接通信设备在第一频段上的设备信息确定所述单频桥接通信设备的第一产品信息;基于上述至少一个第二频段中的每个第二频段上的各个通信设备的设备信息,确定所述第二频段上的各个通信设备的第二产品信息;针对上述至少一个第二频段中的每个第二频段,确定所述第二频段上的各个通信设备中具有与所述第一产品信息相同的第二产品信息的通信设备与所述单频桥接通信设备为同一设备,并将所确定的通信设备的设备信息中的SSID作为所述第二 频段上的配置信息中的SSID。
在第四种实施方式中,考虑到一些用户会设置同一个单频桥接通信设备的所有频段内的配置信息包括的SSID为相同格式,例如使用固定字符串+不同后缀或者不同前缀+固定字符串。如果客户端过滤出(例如从临时设备信息表)设备信息包含的SSID与单频桥接通信设备在第一频段内的SSID具有连续相同的字符串,这认为这些SSID同属于同一个通信设备。
即,确定SSID的过程可以包括:基于所述单频桥接通信设备在第一频段上的设备信息确定所述单频桥接通信设备的被嵌入有所述预定格式的第一SSID;基于上述至少一个第二频段中的每个第二频段上的各个通信设备的设备信息,确定每个第二频段上的各个通信设备的被嵌入有所述预定格式的第二SSID;针对上述至少一个第二频段中的每个第二频段,确定所述第二频段上的各个通信设备中具有与第一SSID满足关联关系的第二SSID的通信设备与所述单频桥接通信设备为同一设备,并将所确定的通信设备的设备信息中的第二SSID作为所述第二频段上的配置信息中的SSID。
为了便于描述,上述确定SSID的方法被称为基于SSID的检索方法。
可选地,如果在某些第二频段上未检索到相应的SSID,则不在这些频段上进行桥接。
回到图3,在步骤S340中,利用所述第一频段上的配置信息以及所确定的所述至少一个其他频段上的配置信息,在所述第一频段与所述至少一个其他频段上与所述单频桥接通信设备桥接。
也就是说,在步骤S340中已经获取了至少一部分频段(第一和上述至少一个其他频段)上用于桥接的配置信息(SSID、加密方式和密钥),因此可以客户端就可以利用这些配置信息在多个频段中对应的频段上与所述单频桥接通信设备进行桥接。
图4A-4B示出了图3所示的通信方法的两个实例,分别对应于WPS技术以及wifi easy connect技术。
在图4A中,在以WPS方式触发多频桥接客户端与单频桥接通信设备(AP)两者之间的关联之后,该AP在所有频段内同时宣称正在进行WPS,但是最终只能够在一个频段(第一频段)上完成WPS协议报文的交互。多频桥接客户端在进行WPS时,会在所有频段进行全信道的主动扫描,获取附近的AP信息,并且创建临时设备信息表,保存所有AP的信息,并且多频桥接 客户端在一个频段内筛选出正在进行WPS并且WPS类型(例如,基于PBC、基于PIN)与客户端相同的AP进行WPS协议交互,该频段作为第一频段。完成WPS协议交互之后,多频桥接客户端可以获取AP推送的当前频段的配置信息(SSID、密钥、加密方式)以及保存的AP设备信息,使用获取到的配置信息以及设备信息,按照以上描述的SSID检索方法获取AP在其他频段内的SSID。多频桥接客户端在完成协议交互的第一频段,直接使用获取的配置信息桥接AP。在除第一频段之外的第二频段,多频桥接客户端使用已获取的第一频段上的配置信息中的加密方式、密钥,以及在每个第二频段的配置信息中包括的SSID,去桥接AP,从而实现在所有频段上桥接到AP。
在图4B中,在以wifi easy connect的方式触发多频桥接客户端与单频桥接通信设备(AP)两者之间的关联之后,多频桥接客户端与AP的网络配置器进行DPP(网络配置协议)协议交互。交互完成后,网络配置器将AP的一个频段(第一频段)的配置信息(SSID、密钥、加密方式)发送给多频桥接客户端。多频桥接客户端获取配置信息后,启动所有频段的全信道扫描,并且创建各个频段的临时设备信息表,保存所有扫描到的AP的设备信息。扫描结束后,客户端可以使用获取到的配置信息以及保存的设备信息,按照以上描述的SSID检索方法获取AP在其他频段内的SSID。多频桥接客户端在获得其配置信息的第一频段,直接使用获取的配置信息桥接AP。在除第一频段之外的第二频段,多频桥接客户端使用已获取的第一频段上的配置信息中的加密方式、密钥,以及在每个第二频段的配置信息中包括的SSID,去桥接AP,从而实现在所有频段上桥接到AP。
通过参考图3-4B描述的客户端的通信方法,在与单频桥接通信设备进行桥接以实现通信的情况下,在获取了一个频段的配置信息之后,可以根据该配置信息以及保存的设备信息,基于SSID检索方法得到至少一个其他频段上的配置信息,以快速的利用这些配置信息实现在多个频段上与通信设备的桥接,而无需等待协议规定的较长时间(例如两分钟),因此可以缩短桥接时间。
在上述参考图3-4B描述的实施例中,利用SSID检索方法得到其他频段的SSID并结合第一频段上的加密方式和密钥,从而得到其他频段上的配置信息,该过程是基于所有频段的配置信息相同的情况。
然而,在另一些场景中,多频桥接客户端无法知道要桥接的AP的类型(单频桥接或多频桥接),并且在多频桥接客户端与多频桥接AP进行桥接关 联时,多频桥接AP在所有频段上的配置信息中的加密方式和密钥可能是不同的,因此无法通过单次桥接触发操作并利用上述SSID检索方法来得到其他频段上的配置信息。
此外,由于在多频桥接客户端与单频桥接AP进行桥接时,会仅在一个频段上进行协议交互进程,并且在多频桥接客户端与多频桥接AP进行桥接时,会在多个频段上进行协议交互进程,因此,根据本申请的另一方面,可以基于每个频段上的协议交互进程的阶段来采用不同的方式来获取不同频段上的配置信息,以实现与AP的桥接。
图5示出了根据本申请实施例的另一种客户端的通信方法的流程图。该客户端用于在多个频段(2.4G、5G、6G,以及后续wifi可能支持的频段)上与通信设备进行桥接。示例性的,该客户端可以为手机、电脑、RE(中继器)等客户端,所述通信设备为AP(无线接入点)。所述通信方法可以包括如下步骤。
如图5所示,在步骤S510中,响应于单次桥接触发操作,在所述多个频段上分别启动协议交互进程。
可选地,桥接触发操作的各种示例方式与前文参考图1描述的类似。
例如,对于WPS技术,响应于单次桥接触发操作,客户端可以启动全信道扫描,选择出要进行桥接通信的通信设备(AP),从而启动与该通信设备进行多个频段上的协议交互进程。例如,对于wifi easy connect技术,响应于单次桥接触发操作,客户端与网络配置器(管理要桥接的通信设备)建立连接(例如通过网络配置器扫描客户端的QR码),从而启动与该网络配置器进行多个频段上的协议交互进程。
在步骤S520中,响应于确定在第一频段上完成协议交互进程,获取所述第一频段上的配置信息,并确定在除第一频段之外的各个其他频段上的协议交互进程的阶段。
对于每个频段,在该频段上的所述协议交互进程完成的情况下所述客户端能够获取对应的频段上的配置信息。
示例性的,对于WPS技术,所述协议交互进程的阶段包括扫描阶段、认证关联阶段和报文交互阶段。所述扫描阶段表示所述多频桥接客户端在当前频段内处于扫描通信设备的阶段;所述认证关联阶段表示所述多频桥接客户端正在当前频段上与该通信设备进行认证关联;所述报文交互阶段表明所述 多频桥接客户端在当前频段上已经筛选出该通信设备并且已经认证成功,并准备与其进行报文交互。
对于wifi easy connect技术,所述协议交互进程划分为自举阶段、验证阶段、配置阶段、网络接入阶段。自举阶段是指客户端会在QR码中包含其信息,网络配置器扫描QR码,与客户端之间建立相互信任的关系,可以进行协议交互进程的下一阶段;验证阶段是指网络配置器与客户端进行协议报文的交互,建立起安全的wifi连接;配置阶段是指网络配置器将配置信息推送给客户端;网络接入阶段是指客户端使用配置信息桥接到通信设备。
此外,在客户端在第一频段上与通信设备协议交互进程完成之后,通信设备可以向客户端提供第一频段上的配置信息。
在步骤S530中,根据在第一频段上完成协议交互进程时各个其他频段上的协议交互进程的阶段,确定所述各个其他频段各自对应的延迟时间。
由于不同频段的信道数目不同,扫描所需的时间不同,因此每个频段上的协议交互进程可能是不同步的,因此,例如即使在第一频段上与通信设备的协议交互进程完成时当前第二频段的协议交互进程的阶段为扫描阶段,但这可能是进程较慢导致的,即一段时间之后它可能会切换到后续阶段,因此,可以引入不同的延迟时间来对这种情况进行改进。
此外,其他频段可以有多个,因此可以针对每个频段设置对应的一个延迟时间。并且,仅在第一频段的协议交互进程完成时才针对每个其他频段确定延迟时间,其他频段的协议交互进程完成时不再确定延迟时间。
例如,针对每个其他频段(第二频段)确定对应的延迟时间时,可以包括以下确定方式。
一方面,在所述协议交互进程在所述客户端与所述通信设备之间进行(例如,WPS进程)的情况下,协议交互进程按时间可以划分为扫描阶段、认证关联阶段和报文交互阶段。
因此,确定延迟时间可以包括如下几种情况。
情况1:在第二频段上的协议交互进程的阶段为扫描阶段的情况下,确定具有第一预定时长(例如,5s)的第一初始延迟时间,并根据在第一初始延迟时间结束时每个第二频段上的协议交互进程的更新阶段确定第一附加延迟时间,第一初始延迟时间和第一附加延迟时间作为该第二频段对应的延迟时间。
情况2:在第二频段上的协议交互进程的阶段为认证关联阶段的情况下, 确定具有第二预定时长(例如15s)的第二初始延迟时间,作为该第二频段对应的延迟时间。
情况3:在第二频段上的协议交互进程的阶段为报文交互阶段的情况下,确定具有第三预定时长(例如10s)的第三初始延迟时间,作为该第二频段对应的延迟时间。
第一预定时长小于第三预定时长,并且第三预定时长小于第二预定时长。
可选地,在确定第一附加延迟时间时,可以根据在第一初始延迟时间结束时在第二频段上的协议交互进程的更新阶段来确定其时长,例如,在第一初始延迟时间结束时该更新阶段为扫描阶段的情况下,确定第一附加延迟时间的时长为0;在第一初始延迟时间结束时更新阶段为认证关联阶段的情况下,确定第一附加延迟时间具有第二预定时长;以及在第一初始延迟时间结束时更新阶段为报文交互阶段的情况下,确定第一附加延迟时间具有第三预定时长。
即,在第一频段上的协议交互进程完成时当前第二频段上的协议交互进程的阶段为非扫描阶段的情况下,则说明在当前第二频段上可以扫描到该通信设备,并可能能够完成协议交互进程,因此设置一定的延迟时间等该协议交互进程完成;在第一频段上的协议交互进程完成时当前第二频段上的协议交互进程的阶段为扫描阶段的情况下,涉及到两个判断过程,考虑到可能是进程较慢导致,因此设置了第一初始延迟时间,该第一初始延迟时间的时长(例如,5s)是根据经验值确定的,且大于等于允许完成扫描阶段的最小时长;如果在该第一初始延迟时间之后,仍然处于扫描阶段,则说明在当前第二频段上无法扫描到通信设备,从而无法与通信设备完成协议交互进程,因此设置值为0的第一附加延迟时间,并立即结束其他频段上的协议交互进程;反之,如果在该第一初始延迟时间之后,处于非扫描阶段,则说明在当前第二频段上可以扫描到该通信设备,并可能能够完成协议交互进程,因此设置具有与第二预设时长或者第三预设时长相同时长的第一附加延迟时间来完成协议交互进程。
另一方面,在所述协议交互进程在所述客户端与管理所述通信设备的网络配置器之间进行(例如,wifi easy connect进程)的情况下,协议交互进程按时间可以划分为自举阶段、验证阶段、配置阶段、网络接入阶段。
因此,确定延迟时间可以的方式的情况与上述情况1-3类似,仅仅是将扫描阶段替换为自举阶段,将认证关联阶段替换为验证阶段,以及将报文交互阶段替换为配置阶段和网络接入阶段,因此这里不再重复。
在步骤S540中,针对所述各个其他频段中的每个频段确定在所述频段对应的延迟时间内所述频段上的协议交互进程是否完成,并且在这些协议交互进程均未完成的情况下,终止其他频段上的协议交互进程,利用如前述参考图3-4B描述的通信方法与所述通信设备桥接。
例如,在均未完成的情况下,终止其他频段上的协议交互进程,获取所述多个频段的每个频段上的各个通信设备的设备信息,基于第一频段上的配置信息以及每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息,以及利用所述第一频段上的配置信息以及所确定的所述至少一个其他频段上的配置信息,在所述第一频段上以及所述至少一个其他频段上与所述通信设备桥接。
例如,对于各个其他频段中的每个频段,在该频段对应的延迟时间内该频段上的协议交互进程未完成的情况下,可能是由于客户端在该频段上未扫描到该通信设备或者通信设备在第一频段上交互完成之后则拒绝其他频段的连接导致在认证关联阶段或者报文交互阶段失败。如果所有其他频段上的协议交互进程在其延迟时间内均未完成,因此可以确定该通信设备的类型为单频桥接,因此可以终止其他频段上的协议交互进程,并利用SSID检索的方法得到各个其他频段上的SSID,然后利用从第一频段上的配置信息包括的加密方式和密钥,可以得到其他频段上的配置信息,可以快速的桥接到AP。
可选地,该方法还可以包括:所述各个其他频段中的至少一个频段对应的延迟时间内所述至少一个其他频段上的协议交互进程已完成的情况下,获取协议交互进程已完成的所述至少一个其他频段上的配置信息,并且利用各个频段上的配置信息以及协议交互进程已完成的所述至少一个其他频段上的配置信息,在对应的频段上与所述通信设备桥接。可选地,对于其他无法基于协议交互进程获取配置信息的频段,在已知每个频段的配置信息中的加密方式和密钥相同的情况下,也可以利用前文所述的基于SSID检索的方法。
例如,除了第一频段之外的其他频段包括四个频段,其中的两个频段各自对应的延迟时间内,这两个频段上的协议交互进程已经完成,则可以获取完成协议交互进程的两个频段上的配置信息,并利用获取的配置信息在完成协议交互进程的两个频段上桥接到通信设备。其余两个频段在各自对应的延迟时间结束时也未完成协议交互进程,因此无法获取到配置信息,后续可选地也可以类似的利用基于SSID检索的方法来获取配置信息。
即,每个频段只要在对应的延迟时间内完成了协议交互进程,就可以获取该频段上的配置信息,甚至不用等待延迟时间结束;如果每个频段在对应的延迟时间内无法完成协议交互进程,则可选地(在加密方式和密钥相同的情况下)可以利用基于SSID检索的方法来获取配置信息。
图6-7示出了根据图5所述的通信方法的具体过程示意图。
如图6所示,对于WPS进程,先触发多频桥接客户端与AP的桥接关联,并且多频桥接客户端启动全信道扫描以选择AP进行交互。多频桥接客户端在每个频段上的协议交互进程的行为可以划分为扫描、认证关联和报文交互阶段。为了使多频桥接客户端可以兼容单频桥接AP与多频桥接AP,在一个频段完成无线协议交互后,多频桥接客户端不会立刻停止其他频段内的协议交互,而是通过查询其他频段内协议交互进程目前所处的阶段。对于不同的阶段,设置不同延迟时间(用于确定扫描阶段的时间裕量以及用于非扫描阶段的协议交互进程的完成)。例如当其他频段处于协议报文交互阶段,设置延迟时间为10s(前述第三预设时长的第三初始延迟时间),足以完成协议报文交互。如果处于认证关联阶段,则设置延迟时间为17s(前述的第二预设时长的第二初始延迟时间)。如果其他频段处于扫描阶段,由于不同频段信道数目不同,扫描所需的时间不同,可能客户端还没有完成扫描,则设置第一初始延迟时间为7s(前述第一预设时长),以确保客户端可以完成扫描,如果在该7s之后,依然处于扫描阶段,即客户端在该频段上无法扫描到满足标准协议的AP,则设置第一附加延迟时间为0以立即终止该频段上的协议交互进程,如果处于其他阶段,则按照以上描述设置延迟时间。如果在各个频段对应的延迟时间内没有完成协议报文的交互,或者没有扫描到满足协议的AP,则认为AP为单频桥接的AP,终止其他频段内的协议交互进程,并且使用SSID检索方法获取其他频段的SSID以得到其他频段的配置信息。如果AP为多频桥接AP,则在上述第二预设时长或第三预设时长的延迟时间内可完成协议交互进程,从而获得配置信息。
例如,对于wifi easy connect技术,网络配置器扫描客户端的QR码(包括客户端的例如标识、型号等信息),网络配置器与客户端建立连接,并在多个频段上进行DPP协议(设备配置协议)的交互。多频桥接客户端在每个频段上的协议交互进程的行为可以划分为自举、验证、配置、网络接入阶段。为了使多频桥接客户端可以兼容单频桥接AP与多频桥接AP,在一个频段完成 无线协议交互后,多频桥接客户端不会立刻停止其他频段内的协议交互,而是通过查询其他频段内协议交互进程目前所处的阶段。对于不同的阶段,设置不同延迟时间。例如当其他频段处于配置或者网络接入阶段,设置延迟时间为10s(前述第三预设时长的第三初始延迟时间),足以完成协议报文交互。如果处于验证阶段,则设置延迟时间为17s(前述的第二预设时长的第二初始延迟时间)。如果其他频段处于自举阶段,则设置第一初始延迟时间为7s(前述第一预设时长),如果在该7s之后,依然处于自举阶段,即客户端在该频段上无法与网络配置器完成协议交互进程,则设置第一附加延迟时间为0以立即终止该频段上的协议交互进程,如果处于其他阶段,则按照以上描述设置延迟时间。如果在各个频段对应的延迟时间内没有完成协议交互进程,则认为AP为单频桥接的AP,终止其他频段内的协议交互进程,并且使用SSID检索方法获取其他频段的SSID,以得到其他频段的配置信息。如果AP为多频桥接AP,则在上述第二预设时长或第三预设时长的延迟时间内可完成协议交互进程,从而获得配置信息。
通过参考图5-7描述的客户端的通信方法,可以通过基于除完成协议交互进程的第一频段之外的每个第二频段上的协议交互进程的阶段确定AP的桥接类型,从而确定是采用如图3-4B中描述的SSID检索方法来获取配置信息还是通过等待预设的延迟时间来获取其他频段的配置信息,以完成在所有频段上与AP的桥接,从而可以实现与单频桥接通信设备和多频桥接通信设备通信的兼容。
在另一些实施例中,在标准协议之上,可以制定一些私有协议,使得客户端与网络配置器或者通信设备之间可以基于该私有协议来进行信息传递。
图8示出了根据本申请实施例的另一种客户端的通信方法的流程图。该客户端用于在多个频段(2.4G、5G、6G,以及后续wifi可能支持的频段)上与通信设备进行桥接。示例性的,该客户端可以为手机、电脑、RE(中继器)等客户端,所述通信设备为AP(无线接入点)。所述通信方法可以包括如下步骤。
在步骤S810中,响应于单次桥接触发操作,分别在多个频段上启动协议交互进程。
可选地,桥接触发操作的各种示例方式与前文参考图1描述的类似。
例如,对于WPS技术,响应于单次桥接触发操作,客户端可以启动全信 道扫描,选择出要进行桥接通信的通信设备(AP),从而启动与该通信设备进行多个频段上的协议交互进程。例如,对于wifi easy connect技术,响应于单次桥接触发操作,客户端与网络配置器(管理要桥接的通信设备)建立连接(例如通过网络配置器扫描客户端的QR码),从而启动与该网络配置器进行多个频段上的协议交互进程。
在步骤S820中,在所述多个频段中的第一频段上进行协议交互进程期间,确定所述客户端与协议交互进程的相对方是否支持相同的私有协议。
可选地,客户端与其进行协议交互进程的相对方可以为网络配置器也可以为通信设备。
例如,多频桥接客户端与通信设备或者网络配置器进行标准协议交互。在协议交互进程期间,多频桥接客户端可以宣称其厂商、型号、产品编码、以及是否支持公司私有协议。通信设备或者网络配置器可以识别多频桥接客户端宣称的以上信息。
可选地,客户端与通信设备可以通过请求-响应模式来宣称其对私有协议的支持,或者也可以在协议交互进程期间的报文交互阶段在交互的报文中增加相关字段来指示其对私有协议的支持。
例如,对于WPS技术,客户端可以在扫描阶段的probe request中宣称其对私有协议的支持,通信设备AP在beacon或者probe response宣称其对私有协议的支持;或者客户端与通信设备AP进行WPS标准协议的交互,并且在报文交互阶段的协议报文中增加私有协议相关的字段,AP或者客户端通过识别对方传递来的这些字段,判断对方是否支持私有协议。
可选地,网络配置器可以从客户端读取其对私有协议的支持的信息,或者客户端和网络配置器也可以在协议交互进程中在交互的报文中增加相关字段来指示其对私有协议的支持。
例如,对于easy connect技术,客户端在QR码上添加对于私有协议的支持信息,网络配置器在客户端的自举阶段扫描QR码时识别客户端是否支持私有协议。或者,客户端在与网络配置器进行标准协议交互时,在验证阶段的协议报文中增加私有协议相关的字段,客户端与网络配置器识别这些字段,判断对方是否支持私有协议。
在步骤S830中,如果确定支持相同的私有协议,则在所述多个频段中的第一频段上完成协议交互进程之后,从所述相对方获取包括第一频段以及至 少一个其他频段上的配置信息,并停止除了第一频段之外的其他频段上的协议交互进程,并利用所述第一频段以及至少一个其他频段上的配置信息在对应的频段上与所述通信设备桥接。
例如,在多频桥接客户端与通信设备或者网络配置器支持相同的私有协议时,标准协议交互后,通信设备或者网络配置器向多频桥接客户端推送所有频段或一部分频段的配置信息,多频桥接客户端可以终止其他频段内的协议交互进程,直接使用这些配置信息,桥接到多频AP的至少一部分频段。
当客户端与通信设备AP在第一频段完成标准协议报文的交互之后,如果通信设备AP与客户端支持同一种私有协议,则AP向客户端推送至少一部分频段的配置信息,客户端停止其他频段内的协议交互进程,并使用获得的配置信息桥接AP所有频段。
当客户端与网络配置器在第一频段完成标准协议报文的交互之后,如果网络配置器与客户端支持同一种私有协议,则网络配置器向客户端推送包括该第一频段的至少一部分频段的配置信息,客户端停止第一频段之外的其他频段内的协议交互进程,并使用获得的配置信息桥接AP的该至少一部分频段。
此外,可选地,该通信方法还可选地包括步骤S840。
在步骤S840中,如果确定客户端与协议交互进程的相对方不支持相同的私有协议的情况下,利用如参考图5-7所述的通信方法与所述通信设备进行桥接。
即,如果私有协议不适用,那么就利用前文描述的根据除了第一频段(完成协议交互进程的频段)之外的各个其他频段上的协议交互进程的阶段来确定AP的桥接类型,从而确定是采用如图3-4B中描述的SSID检索方法来获取配置信息还是通过等待预设的延迟时间来获取其他频段的配置信息,以完成在多个频段上与AP的桥接。
可选地,有时候通信设备或者网络配置器并未显式地或主动地告知客户端是否支持私有协议,而是需要基于客户端的询问。
因此,图8的通信方法800还可选地包括步骤S850。
在步骤S850中,如果无法确定客户端与相对方是否支持相同私有协议,则在所述多个频段中的第一频段上完成协议交互进程之后,从所述相对方获取所述第一频段上的配置信息,利用所述第一频段上的配置信息在所述第一 频段上桥接到所述通信设备,并查询所述通信设备是否支持预定私有协议;并且在所述通信设备支持预定私有协议的情况下,从所述通信设备获取第一频段以及至少一个其他频段上的配置信息,并停止除了第一频段之外的其他频段上的协议交互进程,并利用所述第一频段以及至少一个其他频段上的配置信息在对应的频段上与所述通信设备桥接;在所述通信设备不支持预定私有协议的情况下,利用如参考图3-5描述的通信方法与通信设备进行通信。
例如,对于WPS技术,如果客户端与AP无法识别对方是否支持私有协议,当客户端与AP在第一频段内完成标准协议交互之后,AP向客户端推送第一频段的配置信息。客户端使用这个配置信息在第一频段上桥接到AP,然后客户端向AP发送查询报文,查询AP是否支持私有协议,如果AP支持私有协议,则AP将第一频段以及至少一部分其他频段的配置信息全部发送给客户端,客户端停止第一频段之外的其他频段的协议交互进程,使用获得的配置信息在这些频段上桥接到AP。如果AP没有对客户端发出的查询报文进行回应,则客户端无法利用私有协议来获取配置信息从而进行通信,因此利用如参考图5-7描述的通信方法。
对于wifi easy connect技术,如果客户端与网络配置器无法识别对方是否支持私有协议。当客户端与网络配置器在一个频段内完成标准协议交互之后,网络配置器向客户端推送第一频段的配置信息。客户端使用这个配置信息桥接到通信设备AP的第一频段,然后客户端向AP发送一个查询报文,查询AP是否支持私有协议,如果AP支持私有协议,则AP将包括第一频段的至少一部分频段的配置信息全部发送给客户端,客户端停止第一频段之外的其他频段的协议交互进程,使用获得的配置信息在该至少一部分频段上桥接到AP。如果AP没有对客户端发出的查询报文进行回应,则客户端无法利用私有协议来获取配置信息从而进行通信,因此利用如参考图5-7描述的通信方法。
通过参考图8描述的客户端的通信方法,可以基于支持私有协议来确定是否可以直接从网络配置器或者通信设备AP获取所有频段的配置信息,从而在可以支持相同私有协议的情况下能够快速地完成在多个频段上的桥接。
参见图9,图9是本发明实施例提供的一种客户端900的结构框图。该客户端用于在多个频段(2.4G、5G、6G,以及后续wifi可能支持的频段)上与通信设备进行桥接。示例性的,该客户端可以为手机、电脑、RE(中继器) 等客户端,所述通信设备为AP(无线接入点)。
图9中,客户端900可以包括协议交互控制模块910、信息获取模块910、配置信息确定模块920和桥接模块930。
例如,协议交互控制模块910响应于单次桥接触发操作,在所述多个频段上分别启动与所述单频桥接通信设备相关联的协议交互进程。
信息获取模块920响应于单次桥接触发操作,获取所述多个频段的每个频段上的各个通信设备的设备信息,以及响应于确定在第一频段上完成协议交互进程,获取用于与所述单频桥接通信设备进行桥接的在第一频段上的配置信息。
配置信息确定模块930基于第一频段上的配置信息以及每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息。
桥接模块940利用所述第一频段上的配置信息以及所确定的至少一个其他频段上的配置信息,在所述多个频段中对应的频段上与所述单频桥接通信设备桥接。
值得说明的是,本发明实施例所述的多频桥接客户端900中各个模块的工作过程可参考图3-4B所述的客户端的通信方法的工作过程,并且相应地可以包括多个子模块,或者可以根据其他方式划分为更多或更少的模块或子模块,在此不再赘述。
相比于现有技术,本发明实施例公开的客户端900在与单频桥接通信设备进行桥接以实现通信的情况下,在获取了一个频段的配置信息之后,可以根据该配置信息以及保存的设备信息,基于SSID检索方法得到其他频段上的配置信息,以快速的利用这些配置信息实现在多个频段上与通信设备的桥接,而无需等待协议规定的较长时间(例如两分钟),因此可以缩短桥接时间。
参见图10,图10是本发明实施例提供的一种客户端1000的结构框图。该客户端用于在多个频段(2.4G、5G、6G,以及后续wifi可能支持的频段)上与通信设备进行桥接。示例性的,该客户端可以为手机、电脑、RE(中继器)等客户端,所述通信设备为AP(无线接入点)。
图10中,客户端1000可以包括协议交互控制模块1010、阶段确定模块1020、延迟时间获取模块1030、信息获取模块1040和桥接模块1050。此外, 客户端1000为了单频桥接AP和多频桥接AP的兼容,因此还可选地包括如图9所示的客户端中的各个模块或者将其功能进行整合,例如,图10中的协议交互控制模块1010、信息获取模块1040以及桥接模块1050可以与图9中的相关模块为同一个。
协议交互控制模块1010响应于单次桥接触发操作,在所述多个频段上分别启动协议交互进程。
阶段确定模块1020响应于确定在第一频段上完成协议交互进程,确定在除第一频段之外的各个其他频段上的协议交互进程的阶段,并且配置信息获取模块1040获取所述第一频段上的配置信息。
延迟时间确定模块1030根据在第一频段上完成协议交互进程时各个其他频段上的协议交互进程的阶段,确定各个其他频段各自对应的延迟时间,并且针对该各个其他频段中的每个频段确定在该频段对应的延迟时间内该频段上的协议交互进程是否完成。
在各个其他频段中的每个频段对应的延迟时间内各个其他频段上的协议交互进程均未完成的情况下,可以利用图9中的客户端的各个模块及其对应的动作完成与单频桥接设备的桥接。
可选地,在至少一个频段对应的延迟时间内该至少一个频段上的协议交互进程已完成的情况下,信息获取模块1040获取该至少一个频段上的配置信息,并且桥接模块1050利用所述第一频段上的配置信息以及所获取的该至少一个频段上的配置信息,在所述多个频段中对应的频段上与所述通信设备桥接。
值得说明的是,本发明实施例所述的多频桥接客户端1000中各个模块的工作过程可参考图7-9所述的客户端的通信方法的工作过程,并且相应地可以包括多个子模块,或者可以根据其他方式划分为更多或更少的模块或子模块,在此不再赘述。
相比于现有技术,在客户端1000的优势的基础上,本发明实施例公开的客户端1000可以通过基于除完成协议交互进程的第一频段之外的每个第二频段上的协议交互进程的阶段确定AP的桥接类型,从而确定是采用如图3-4B中描述的SSID检索方法来获取配置信息还是通过等待预设的延迟时间来获取其他频段的配置信息,以完成在所有频段上与AP的桥接,从而可以实现与单频桥接通信设备和多频桥接通信设备通信的兼容。
参见图11,图11是本发明实施例提供的一种客户端1100的结构框图。该客户端用于在多个频段(2.4G、5G、6G,以及后续wifi可能支持的频段)上与通信设备进行桥接。示例性的,该客户端可以为手机、电脑、RE(中继器)等客户端,所述通信设备为AP(无线接入点)。
图11中,客户端1100可以包括协议交互控制模块1110、私有协议通信模块1120、信息获取模块1130和桥接模块1140。此外,客户端1100为了在不支持私有协议的情况下也能进行与通信设备的通信,因此还可选地包括如图10所示的客户端中的各个模块或者将其功能进行整合。
协议交互控制模块1110响应于单次桥接触发操作,分别在所述多个频段上启动协议交互进程。
信息获取模块1130在所述多个频段中的第一频段上进行协议交互进程期间,在私有协议通信模块1120确定与协议交互进程的相对方支持相同的私有协议的情况下,在所述多个频段中的第一频段上完成协议交互进程之后,信息获取模块1130从所述相对方获取所述第一频段和至少一个其他频段上的配置信息,协议交互控制模块1110停止除了第一频段之外的其他频段上的协议交互进程,并且桥接模块1140利用所述第一频段和至少一个其他频段上的配置信息的配置信息在对应的频段上与所述通信设备桥接。
可选地,在私有协议通信模块1120确定与协议交互进程的相对方不支持相同的私有协议的情况下,利用图10中的客户端的各个模块及其对应的动作完成与通信设备在多个频段上的通信。
另外,可选地,在私有协议通信模块1120无法确定客户端与相对方是否支持相同的私有协议的情况下,在所述多个频段中的第一频段上完成协议交互进程之后,信息获取模块1130从所述相对方获取所述第一频段上的配置信息,并且桥接模块1140利用所述第一频段上的配置信息在所述第一频段上桥接到所述通信设备,信息获取模块1130查询所述通信设备是否支持预定私有协议,并且在所述通信设备支持预定私有协议的情况下,从所述通信设备获取包括所述第一频段的至少一个频段上的配置信息,协议交互控制模块1110停止除了第一频段之外的每个频段上的协议交互进程,桥接模块1140利用所述至少一个频段上的配置信息在所述至少一个频段上与所述通信设备桥接;在所述通信设备不支持预定私有协议的情况下,可以利用图10中的客户端的各 个模块及其对应的动作完成与单频桥接设备的桥接。
相比于现有技术,在客户端900-1000的优势的基础上,本发明实施例公开的客户端1100可以基于支持私有协议来确定是否可以直接从网络配置器或者通信设备AP获取所有频段的配置信息,从而在可以支持相同私有协议的情况下能够快速地完成在所有频段上的桥接。
参见图12,图12是本发明实施例提供的一种客户端1200的结构框图,所述客户端的通信设备1200包括:处理器1201、存储器1202以及存储在所述存储器1202中并可在所述处理器1201上运行的计算机程序。所述处理器1201执行所述计算机程序时实现上述参考图3-8描述的客户端的通信方法的各个实施例中的步骤。或者,所述处理器1201执行所述计算机程序时实现上述图9-11描述的装置实施例中各模块的功能。
示例性的,所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器1202中,并由所述处理器1201执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述客户端1200中的执行过程。
所述客户端可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。客户端1200可包括,但不仅限于,处理器1201、存储器1202。本领域技术人员可以理解,所述示意图仅仅是多频桥接客户端的通信设备1200的示例,并不构成对客户端1200的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如客户端的通信设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器1201可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器1201是客户端1200的控制中心,利用各种接口和线路连接整个客户端1200的各个部分。
所述存储器1202可用于存储所述计算机程序和/或模块,所述处理器1201通过运行或执行存储在所述存储器1202内的计算机程序和/或模块,以及调用存储在存储器1202内的数据,实现客户端1200的各种功能。所述存储器1202可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1202可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中,客户端1200集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器1201执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
参见图13,图13是本发明实施例提供的一种通信系统1300的结构框图, 所述通信系统1300包括至少一个通信设备1301和上述实施例所述的客户端1200。
具体的客户端1200与所述通信设备1301的工作过程可参考上述实施例所述的客户端1200的工作过程,在此不再赘述。
相比于现有技术,本发明实施例公开的通信系统1300中的客户端100响应于单次桥接触发操作,通过在与单频桥接AP通信时基于SSID检索方法得到除交互完成的频段之外的其他频段的配置信息从而快速桥接到该单频桥接AP;此外,可以通过基于每个频段上的协议交互进程的阶段确定该AP的桥接类型,来确定是采用SSID检索方法还是等待预设的延迟时间来获取其他频段的配置信息,以完成在所有频段上与AP的桥接,可以实现与单频桥接通信设备和多频桥接通信设备通信的兼容,此外,还可以基于支持私有协议来从网络配置器或者通信的AP获取所有频段的配置信息,从而进一步快速地完成在所有频段上的桥接。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (20)

  1. 一种客户端的通信方法,所述客户端用于在多个频段上与单频桥接通信设备进行桥接,所述通信方法包括:
    响应于单次桥接触发操作,获取所述多个频段的每个频段上的各个通信设备的设备信息,并且在所述多个频段上分别启动与所述单频桥接通信设备相关联的协议交互进程;
    响应于确定在第一频段上完成协议交互进程,获取用于桥接所述单频桥接通信设备的所述第一频段上的配置信息;
    基于第一频段上的配置信息以及所述多个频段的每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息;以及
    利用所述第一频段上的配置信息以及所确定的所述至少一个其他频段上的配置信息,在所述第一频段与所述至少一个其他频段上与所述单频桥接通信设备桥接。
  2. 根据权利要求1所述的通信方法,其中,获取用于桥接所述单频桥接通信设备的所述第一频段上的配置信息,包括:
    与管理所述单频桥接通信设备的网络配置器进行协议交互进程,并从所述网络配置器获取所述第一频段上的配置信息;或者
    与所述单频桥接通信设备在所述第一频段上进行协议交互进程,并从所述单频桥接通信设备获取所述第一频段上的配置信息。
  3. 根据权利要求1或2所述的通信方法,其中,获取所述多个频段的每个频段上的各个通信设备的设备信息,包括:
    启动全信道扫描,创建每个频段的临时设备信息表,并且保存针对所述多个频段的每个频段扫描到的各个通信设备的设备信息。
  4. 根据权利要求3所述的通信方法,其中,每个频段上的配置信息包括SSID、加密方式和密钥,并且每个频段上的加密方式和密钥是相同的。
  5. 根据权利要求4所述的通信方法,其中,基于所述第一频段上的配置 信息以及每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息,包括:
    基于所述第一频段上的配置信息,确定所述至少一个其他频段上的配置信息包括的加密方式和密钥;以及
    基于所述第一频段上的配置信息和/或每个频段上的所有通信设备的设备信息,确定所述至少一个其他频段上的配置信息包括的SSID。
  6. 根据权利要求5所述的通信方法,其中,每个通信设备的设备信息包括SSID,
    其中,基于所述第一频段上的配置信息和/或每个频段上的各个通信设备的设备信息,确定所述至少一个其他频段上的配置信息包括的SSID,包括:
    基于所述第一频段上的配置信息获取所述第一频段上的SSID;
    针对所述至少一个其他频段中的每个频段,确定所述频段上的各个通信设备中具有包括与所述第一频段上的SSID相同的SSID的设备信息的通信设备与所述单频桥接通信设备为同一设备,并将所述第一频段上的SSID作为所述频段上的配置信息中的SSID。
  7. 根据权利要求5所述的通信方法,其中,每个通信设备的设备信息包括MAC地址和UUID,
    其中,基于第一频段上的配置信息和/或每个频段上的各个通信设备的设备信息,确定所述至少一个其他频段上的配置信息包括的SSID,包括:
    基于所述单频桥接通信设备在第一频段上的设备信息,确定所述单频桥接通信设备在第一频段上的第一MAC地址和第一UUID;
    基于所述至少一个其他频段中的每个频段上的各个通信设备的设备信息,确定所述频段上的各个通信设备的第二MAC地址和第二UUID;
    针对所述至少一个其他频段中的每个频段,确定所述频段上的各个通信设备中具有与所述第一MAC地址满足映射规则的第二MAC地址以及与第一UUID相同的第二UUID的通信设备与所述单频桥接通信设备为同一设备,并将所确定的通信设备的设备信息中的SSID作为所述频段上的配置信息中的SSID。
  8. 根据权利要求5所述的通信方法,其中,每个通信设备的设备信息包括产品信息,
    其中,基于第一频段上的配置信息和/或每个频段上的各个通信设备的设备信息,确定所述至少一个其他频段中的每个频段上的配置信息包括的SSID,包括:
    基于所述单频桥接通信设备在第一频段上的设备信息确定所述单频桥接通信设备的第一产品信息;
    基于所述至少一个其他频段中的每个频段上的所有通信设备的设备信息,确定所述频段上的所有通信设备的第二产品信息;
    针对所述至少一个其他频段中的每个频段,确定所述频段上的所有通信设备中具有与所述第一产品信息相同的第二产品信息的通信设备与所述单频桥接通信设备为同一设备,并将所确定的通信设备的设备信息中的SSID作为所述频段上的配置信息中的SSID。
  9. 根据权利要求5所述的通信方法,其中,每个通信设备的设备信息包括预定格式的SSID,
    其中,基于第一频段上的配置信息和/或每个频段上的所有通信设备的设备信息,确定所述至少一个其他频段中的每个频段上的配置信息包括的SSID,包括:
    基于所述单频桥接通信设备在第一频段上的设备信息确定所述单频桥接通信设备的被嵌入有所述预定格式的第一SSID;
    基于所述至少一个其他频段中的每个频段上的所有通信设备的设备信息,确定所述频段上的所有通信设备的被嵌入有所述预定格式的第二SSID;
    针对所述至少一个其他频段中的每个频段,确定所述频段上的所有通信设备中具有与第一SSID满足关联关系的第二SSID的通信设备与所述单频桥接通信设备为同一设备,并将所确定的通信设备的设备信息中的第二SSID作为所述频段上的配置信息中的SSID。
  10. 一种客户端的通信方法,所述客户端用于在多个频段上与通信设备进行桥接,所述通信方法包括:
    响应于单次桥接触发操作,在所述多个频段上分别启动协议交互进程;
    响应于确定在第一频段上完成协议交互进程,获取所述第一频段上的配置信息,并确定在除第一频段之外的各个其他频段上的协议交互进程的阶段;
    根据在第一频段上完成协议交互进程时各个其他频段上的协议交互进程的阶段,确定所述各个其他频段各自对应的延迟时间;
    针对所述各个其他频段中的每个频段确定在所述频段对应的延迟时间内所述频段上的协议交互进程是否完成,并且
    在所述各个其他频段中的每个频段对应的延迟时间内所述各个其他频段上的协议交互进程均未完成的情况下,终止所述各个其他频段上的协议交互进程,获取所述多个频段的每个频段上的各个通信设备的设备信息,基于第一频段上的配置信息以及每个频段上的各个通信设备的设备信息,确定除第一频段之外的至少一个其他频段上的配置信息,以及利用所述第一频段上的配置信息以及所确定的所述至少一个其他频段上的配置信息在对应的频段上与所述通信设备桥接。
  11. 根据权利要求10所述的通信方法,还包括:
    在所述各个其他频段中至少一个频段对应的延迟时间内所述至少一个频段上的协议交互进程已完成的情况下,获取协议交互进程已完成的所述至少一个频段上的配置信息,并且利用各个频段上的配置信息以及协议交互进程已完成的所述至少一个频段上的配置信息,在对应的频段上与所述通信设备桥接。
  12. 根据权利要求10所述的通信方法,其中,所述协议交互进程在所述客户端与所述通信设备之间进行,并且划分为扫描阶段、认证关联阶段和报文交互阶段,
    其中,根据在第一频段上完成协议交互进程时各个其他频段上的协议交互进程的阶段确定所述各个其他频段各自对应的延迟时间,包括:针对所述各个其他频段中的每个频段,
    在所述频段上的协议交互进程的阶段为扫描阶段的情况下,确定具有第一预定时长的第一初始延迟时间,并根据在所述第一初始延迟时间结束时所述频段上的协议交互进程的更新阶段确定第一附加延迟时间,所述第一初始延迟时间和所述第一附加延迟时间作为所述频段对应的延迟时间;
    在所述频段上的协议交互进程的阶段为认证关联阶段的情况下,确定具有第二预定时长的第二初始延迟时间,作为所述频段对应的延迟时间;以及
    在所述频段上的协议交互进程的阶段为报文交互阶段的情况下,确定具有第三预定时长的第三初始延迟时间,作为所述频段对应的延迟时间,其中,所述第一预定时长小于所述第三预定时长,并且所述第三预定时长小于所述第二预定时长。
  13. 根据权利要求12所述的通信方法,其中,根据在所述第一初始延迟时间结束时所述频段上的协议交互进程的更新阶段确定第一附加延迟时间,包括:
    在所述第一初始延迟时间结束时所述更新阶段为扫描阶段的情况下,确定所述第一附加延迟时间的时长为0;
    在所述第一初始延迟时间结束时所述更新阶段为认证关联阶段的情况下,确定所述第一附加延迟时间具有所述第二预定时长;以及
    在所述第一初始延迟时间结束时所述更新阶段为报文交互阶段的情况下,确定所述第一附加延迟时间具有所述第三预定时长。
  14. 根据权利要求10所述的通信方法,其中,所述协议交互进程在所述客户端与管理所述通信设备的网络配置器之间进行,并且划分为自举阶段、验证阶段、配置阶段、网络接入阶段,
    其中,根据在第一频段上完成协议交互进程时各个其他频段上的协议交互进程的阶段确定所述各个其他频段各自对应的延迟时间,包括:针对所述各个其他频段中的每个频段,
    在所述频段上的协议交互进程的阶段为自举阶段的情况下,确定具有第一预定时长的第一初始延迟时间,并根据在所述第一初始延迟时间结束时所述频段上的协议交互进程的更新阶段确定第一附加延迟时间,所述第一初始延迟时间和所述第一附加延迟时间作为所述频段对应的延迟时间;
    在所述频段上的协议交互进程的阶段为验证阶段的情况下,确定具有第二预定时长的第二初始延迟时间,作为所述频段对应的延迟时间;以及
    在所述频段上的协议交互进程的阶段为配置阶段或网络接入阶段的 情况下,确定具有第三预定时长的第三初始延迟时间,作为所述频段对应的延迟时间,其中,所述第一预定时长小于所述第三预定时长,并且所述第三预定时长小于所述第二预定时长。
  15. 根据权利要求14所述的通信方法,其中,根据在所述第一初始延迟时间结束时所述频段上的协议交互进程的更新阶段确定第一附加延迟时间,包括:
    在所述第一初始延迟时间结束时所述更新阶段为自举阶段的情况下,确定所述第一附加延迟时间的时长为0;
    在所述第一初始延迟时间结束时所述更新阶段为验证阶段的情况下,确定所述第一附加延迟时间具有所述第二预定时长;以及
    在所述第一初始延迟时间结束时所述更新阶段为配置阶段或网络接入阶段的情况下,确定所述第一附加延迟时间具有所述第三预定时长。
  16. 一种客户端的通信方法,所述客户端用于在多个频段上与通信设备进行桥接,所述通信方法包括:
    响应于单次桥接触发操作,分别在所述多个频段上启动协议交互进程;
    在所述多个频段中的第一频段上进行协议交互进程期间,确定所述客户端与协议交互进程的相对方是否支持相同的私有协议,
    如果确定支持相同的私有协议,则在所述多个频段中的第一频段上完成协议交互进程之后,从所述相对方获取包括第一频段以及至少一个其他频段上的配置信息,并停止除了第一频段之外的其他频段上的协议交互进程,并利用所述第一频段以及至少一个其他频段上的配置信息在对应的频段上与所述通信设备桥接。
  17. 根据权利要求16所述的通信方法,还包括:
    如果确定不支持相同的私有协议,则利用如权利要求10-14任一项所述的通信方法与所述通信设备进行桥接。
  18. 根据权利要求16或17所述的通信方法,还包括:
    如果无法确定是否支持相同的私有协议,则在所述多个频段中的第一频 段上完成协议交互进程之后:
    从所述相对方获取所述第一频段上的配置信息,利用所述第一频段上的配置信息在所述第一频段上桥接到所述通信设备,并查询所述通信设备是否支持预定私有协议;并且
    在所述通信设备支持预定私有协议的情况下,从所述通信设备获取第一频段以及至少一个其他频段上的配置信息,并停止除了第一频段之外的其他频段上的协议交互进程,并利用所述第一频段以及至少一个其他频段上的配置信息在对应的频段上与所述通信设备桥接;
    在所述通信设备不支持预定私有协议的情况下,利用如权利要求10-14任一项所述的通信方法与所述通信设备进行桥接。
  19. 一种客户端,其特征在于,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至18中任意一项所述的客户端的通信方法。
  20. 一种通信系统,其特征在于,包括至少一个通信设备和上述权利要求19所述的客户端。
PCT/CN2022/108645 2021-07-28 2022-07-28 客户端的通信方法、客户端和通信系统 WO2023006039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22848644.5A EP4380206A1 (en) 2021-07-28 2022-07-28 Client communication method, client and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110854736.5A CN113727323B (zh) 2021-07-28 2021-07-28 双频客户端的通信方法、设备、双频客户端和通信系统
CN202110854736.5 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023006039A1 true WO2023006039A1 (zh) 2023-02-02

Family

ID=78674128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108645 WO2023006039A1 (zh) 2021-07-28 2022-07-28 客户端的通信方法、客户端和通信系统

Country Status (3)

Country Link
EP (1) EP4380206A1 (zh)
CN (1) CN113727323B (zh)
WO (1) WO2023006039A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727323B (zh) * 2021-07-28 2024-03-29 深圳市联洲国际技术有限公司 双频客户端的通信方法、设备、双频客户端和通信系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297952A (zh) * 2013-05-10 2013-09-11 深圳市共进电子股份有限公司 一种双频wps触发方法
CN104105170A (zh) * 2014-08-04 2014-10-15 上海斐讯数据通信技术有限公司 一种双频路由器的WiFi保护设置扫描连接方法及系统
US20150207578A1 (en) * 2014-01-17 2015-07-23 Apple Inc. Multichannel wireless local area network
CN105407542A (zh) * 2015-12-25 2016-03-16 珠海奔图电子有限公司 一种自动建立无线通信连接的方法、站设备和系统
CN107734717A (zh) * 2017-09-15 2018-02-23 深圳市共进电子股份有限公司 无线中继设备的wps连接方法、装置、设备及存储介质
CN109923900A (zh) * 2016-11-23 2019-06-21 哈曼贝克自动系统股份有限公司 对通向双频带wi-fi直连自治组所有者的wi-fi直连客户端连接进行频带转向
CN107852655B (zh) * 2016-05-31 2021-02-09 华为技术有限公司 切换接入点的方法和终端设备
CN113727323A (zh) * 2021-07-28 2021-11-30 深圳市联洲国际技术有限公司 双频客户端的通信方法、设备、双频客户端和通信系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8572698B1 (en) * 2010-05-20 2013-10-29 Qualcomm Incorporated Connecting a legacy wireless device to a WPS-enabled access point
WO2011144101A2 (zh) * 2011-05-27 2011-11-24 华为终端有限公司 RepeaterWPS连接方法及装置
KR101915314B1 (ko) * 2011-10-25 2018-11-07 삼성전자주식회사 휴대단말기에서 WPS(Wi-Fi Protecte d Setup)을 이용한 와이파이 연결 방법 및 장치
JP6727565B2 (ja) * 2014-08-22 2020-07-22 華為技術有限公司Huawei Technologies Co.,Ltd. Wpsを用いてネットワーク接続を確立する方法およびモバイルwi−fiデバイス
US9883538B2 (en) * 2014-08-27 2018-01-30 Qualcomm Incorporated Avoiding P2P connection failure due to push button configuration overlap
CN107613575A (zh) * 2017-10-26 2018-01-19 上海斐讯数据通信技术有限公司 一种基于wps的快速连接方法,无线设备
CN114731611A (zh) * 2019-11-01 2022-07-08 马斯公司 用于探测接入点的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297952A (zh) * 2013-05-10 2013-09-11 深圳市共进电子股份有限公司 一种双频wps触发方法
US20150207578A1 (en) * 2014-01-17 2015-07-23 Apple Inc. Multichannel wireless local area network
CN104105170A (zh) * 2014-08-04 2014-10-15 上海斐讯数据通信技术有限公司 一种双频路由器的WiFi保护设置扫描连接方法及系统
CN105407542A (zh) * 2015-12-25 2016-03-16 珠海奔图电子有限公司 一种自动建立无线通信连接的方法、站设备和系统
CN107852655B (zh) * 2016-05-31 2021-02-09 华为技术有限公司 切换接入点的方法和终端设备
CN109923900A (zh) * 2016-11-23 2019-06-21 哈曼贝克自动系统股份有限公司 对通向双频带wi-fi直连自治组所有者的wi-fi直连客户端连接进行频带转向
CN107734717A (zh) * 2017-09-15 2018-02-23 深圳市共进电子股份有限公司 无线中继设备的wps连接方法、装置、设备及存储介质
CN113727323A (zh) * 2021-07-28 2021-11-30 深圳市联洲国际技术有限公司 双频客户端的通信方法、设备、双频客户端和通信系统

Also Published As

Publication number Publication date
CN113727323B (zh) 2024-03-29
CN113727323A (zh) 2021-11-30
EP4380206A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US11399398B2 (en) Method and apparatus for Wi-Fi connection using Wi-Fi protected setup in portable terminal
US11490323B2 (en) Method and device for accessing a network hotspot device by an unconfigured device
JP5822416B1 (ja) 無線アクセスポイント
JP5897137B2 (ja) ワイヤレスローカルエリアネットワーク認証方法およびモバイル端末
KR101481873B1 (ko) 보호된 무선 네트워킹에 대한 요청된 활성화를 위한 방법 및 장치
KR101554743B1 (ko) 기기간에 무선랜 자동 연결을 위한 방법 및 이를 위한 기기
WO2018000834A1 (zh) 一种wifi热点信息修改方法及装置
EP2219412A2 (en) System and method for automatic wireless connection between a portable terminal and a digital device
KR20130079839A (ko) 와이파이 다이렉트 연결 방법
WO2023280194A1 (zh) 网络连接管理方法、装置、可读介质、程序产品及电子设备
CN110891266B (zh) 一种网络漫游方法、装置、终端设备及存储介质
CN111132305B (zh) 5g用户终端接入5g网络的方法、用户终端设备及介质
WO2023006039A1 (zh) 客户端的通信方法、客户端和通信系统
WO2018040524A1 (zh) 分享热点的方法及设备
JP6269025B2 (ja) 無線接続装置、無線通信に関する設定情報を複製する方法、および、ネットワークシステム
JP2023552243A (ja) 利用者識別子を送信する方法と装置
CN111093196B (zh) 5g用户终端接入5g网络的方法、用户终端设备及介质
CN111787538A (zh) 主机资源配置装置、方法及计算机可读存储介质
CN115348563A (zh) 建立Wi-Fi P2P连接的方法和电子设备
JP6468341B2 (ja) 無線接続装置、無線通信に関する設定情報を複製する方法、および、ネットワークシステム
CN110636529A (zh) 一种wlan网络配置和连接系统及方法
WO2023130821A1 (zh) 一种网络接入方法及装置
CN113766435B (zh) 通信群组的建立方法、设备以及存储介质
CN115209510B (zh) 无线网络连接方法及装置、电子设备及存储介质
WO2024183461A1 (en) Method for an access point to provision a wi-fi network, devices operating a wpa2-personal security protocol or a wpa3-personal security protocol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848644

Country of ref document: EP

Effective date: 20240228