WO2023005902A1 - 全球面放射治疗系统 - Google Patents

全球面放射治疗系统 Download PDF

Info

Publication number
WO2023005902A1
WO2023005902A1 PCT/CN2022/107804 CN2022107804W WO2023005902A1 WO 2023005902 A1 WO2023005902 A1 WO 2023005902A1 CN 2022107804 W CN2022107804 W CN 2022107804W WO 2023005902 A1 WO2023005902 A1 WO 2023005902A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
center
image
level
treatment center
Prior art date
Application number
PCT/CN2022/107804
Other languages
English (en)
French (fr)
Inventor
付东山
顾振宇
王亚波
安陆军
Original Assignee
北京瑞尔世维医学研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京瑞尔世维医学研究有限公司 filed Critical 北京瑞尔世维医学研究有限公司
Priority to US18/036,276 priority Critical patent/US11904188B2/en
Priority to EP22848507.4A priority patent/EP4205812A4/en
Publication of WO2023005902A1 publication Critical patent/WO2023005902A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1083Robot arm beam systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details

Definitions

  • the present application relates to a radiosurgery robotic system, for example to a global radiation therapy system.
  • Image-guided radiation therapy (Image Guided Radiation Therapy, IGRT) is a new technology for tumor radiation therapy that has been gradually developed in the past ten years. It uses advanced image equipment and image processing methods to accurately detect the target area of patients during the treatment planning stage. , Outlining and treatment beam distribution planning, dose distribution calculation, accurate target positioning before treatment irradiation, and target movement tracking during treatment, to achieve precise radiation therapy for tumors and reduce damage to normal tissues and key organs around the tumor. damage.
  • the radiosurgery robot system is a special equipment for radiosurgery treatment, which is mainly used for precise radiotherapy of whole body solid tumors.
  • the CyberKnife radiosurgery robot system developed by American Accuray company, combined with advanced technologies such as image guidance, modern robots and miniaturized linear accelerators, realizes precise radiotherapy under precise image guidance, and can treat patients of different sizes at low fractions (1 to 5 times). Tumor has been widely used clinically in the world.
  • the radiosurgery robot system based on a multi-degree-of-freedom robot needs an ideal global surface treatment space, so that the accelerator treatment beam can be projected to the patient's target area at different positions and directions on the spherical surface, so as to achieve the optimal treatment dose distribution and obtain the best results. the therapeutic effect.
  • the treatment center of the radiosurgery system is the reference point of the whole system.
  • the sphere is defined with the treatment center as the center of the sphere, and multiple nodes (up to thousands) evenly distributed on the sphere are called global surface treatment nodes.
  • the collection of all treatment nodes on the sphere is the global surface treatment space.
  • the treatment planning system selects the optimal treatment nodes (tens to hundreds) for specific patients from the global treatment space to meet the clinical requirements of optimal dose distribution.
  • the treatment space of the radiosurgery system is more than half a sphere, not an ideal global surface.
  • the treatment center at a low position is called the low-level treatment center, and the treatment is performed in the low-level treatment center.
  • the robot carries an accelerator and can reach most of the top and sides of the patient without colliding with the treatment bed and the patient. Spatial location, forming the treatment space of the low-level treatment center with a large half-sphere.
  • the treatment is usually carried out in the supine position of the patient.
  • the limited treatment space limits the irradiation of the treatment beam from the patient's bottom and bottom peripheral positions. , so that the treatment plan cannot obtain the optimal treatment dose distribution that meets the clinical requirements.
  • the target area close to the back it can be changed to the prone position for treatment, so as to meet the requirements of therapeutic dose distribution.
  • the movement close to the back target area caused by breathing will reduce the treatment accuracy, prolong the treatment time, and bring more clinical operational complexity to the treatment process.
  • the related technology discloses a robot non-invasive radiotherapy system, which is characterized by a large-scale mechanical G-arm and G-arm guide rails installed with image-guided equipment. Due to the large-scale and complex mechanical structure of the G-arm, the sliding accuracy of the X-ray source is difficult to control , it needs to be calibrated again after sliding into place. Regardless of whether the G-arm is installed on the ground or suspended from the ceiling, no matter where the treatment center is located or multiple treatment centers are set up, because the large space occupied by the G-arm will inevitably block the treatment space and affect The space position that the linear accelerator can reach, the linear accelerator cannot reach the global surface treatment space.
  • the related technology discloses a robotic radiotherapy system, which consists of forward and reverse radiotherapy planning systems, a three-dimensional numerically controlled treatment bed, a real-time image automatic tracking system, a robot system, a ray source, and a real-time dose verification system.
  • the automatic tracking system consists of a C-arm real-time imaging system, an infrared automatic tracking locator, and an electromagnetic automatic tracking locator.
  • the large space occupied by the C-arm affects the spatial position that the linear accelerator can reach, and inevitably produces blind spots for treatment, resulting in limited space for spherical treatment.
  • the related technology discloses a stereotactic radiosurgery treatment device, which is composed of a radiation device system, a six-dimensional robot treatment bed 1 and a treatment planning system; the radiation device system is composed of a frame 12 and a C-shaped machine arm 5, and the frame 12 is set There is a rotating shaft 10, which is connected to the guide rail 9 and controls the rotation of the guide rail 9.
  • the C-shaped machine arm 5 is installed on the guide rail 9 and moves in an arc along the guide rail 9; one end of the C-shaped machine arm 5 is equipped with a radiation source 2, and the radiation source 2
  • the bottom end is equipped with a small machine head 3, and the bottom end of the small machine head 3 is equipped with a collimator 4;
  • the other end of the C-shaped machine arm 5 is equipped with a retractable electronic field imaging device 7 and a movable shielding protection counterweight 8;
  • the organ positioning detection device 6 is installed on the side or below the bed surface of the six-dimensional robot treatment bed 1; the radiation therapy head can rotate 90 degrees (or ⁇ 45 degrees) around the X axis.
  • the treatment device provides treatment rays at multiple arc positions, and the treatment space formed is the middle part of the spherical surface.
  • the related technology discloses a radiotherapy positioning device and a static and dynamic target area positioning method.
  • the treatment robot has an operating arm, a compact linear electron accelerator is installed at the end of the operating arm of the treatment robot, and a secondary collimator is installed on the The end of the compact linear electron accelerator; the robot treatment bed is set at the corresponding position of the dual-image C-arm system, and a C-arm slide rail laser positioner is installed inside the dual-image C-arm system, and at the corresponding position outside the dual-image C-arm system Equipped with a positioner on the left side of the C-arm installation space, equipped with two sets of X-ray imaging systems, which can realize binocular imaging; Line tomography (Cone beam Computed Tomography, CBCT) imaging. Similar to the aforementioned patents, the design of the aforementioned patents also leads to the same problem. This treatment device does not provide a treatment space below the patient.
  • the related art discloses a whole-circle spherical stereotactic radiotherapy device, including an X-band accelerator, a multi-leaf collimator, a treatment couch, an imaging system, an electronic portal imaging device (Electronic Portal Imaging Device, EPID), a fixed frame and a rotating frame, the rotating frame is rotatably arranged on the fixed frame, the treatment bed is fixed relative to the fixed frame, the imaging system is arranged on the rotating frame, the X-band accelerator and The multi-leaf collimator is connected, the X-band accelerator is arranged on the rotating frame, so that the X-band accelerator forms a spherical irradiation on the treatment center; the EPID is arranged on the rotating frame, and the The EPID is orthogonal to the beams of the X-band accelerator to receive the remaining beams.
  • the treatment device provides treatment rays at multiple arc positions, and the treatment space formed is the middle part of the spherical surface.
  • the related art discloses a radiation therapy apparatus including a guide that moves a radiation generating unit along a track with a predetermined radius so that X-rays emitted from the radiation generating unit can pass through the isocenter, and a support that guides the The part rotates around a rotation axis passing through the isocenter, and the radiation generating unit moves along a spherical surface through guides and supports, and applies X-rays to the isocenter in multiple directions.
  • the treatment space formed by the treatment device is the middle part of the spherical surface.
  • the related art discloses a method and apparatus for quality assurance of image-guided radiation therapy delivery systems.
  • a quality assurance (Quality Assurance, QA) mark is positioned at a preset position.
  • a radiation beam is emitted from a radiation source of the radiation therapy delivery system at the QA mark, an exposure image of the QA mark due to the radiation beam is generated, and the exposure image is analyzed to determine whether the radiation therapy delivery system is aligned.
  • the moving position of the accelerator in the above-mentioned patent is limited and cannot be located below the patient, which limits the design of the treatment plan to a certain extent, so that it can only obtain a hemispherical treatment space, which is not conducive to the treatment of patients.
  • This application can avoid the limitation of the treatment space of the radiosurgery robot system in the related art, and provides a global radiotherapy system. Under the guidance of dual images, two treatment spaces composed of a low-level treatment center and a high-level treatment center can be realized. Radiosurgery in global treatment space.
  • a global radiation therapy system comprising a multi-degree-of-freedom robot, a linear accelerator, and a dual-image-guided positioning mechanism, the dual-image-guided positioning mechanism including four ray sources and two ray detectors; wherein, the four ray sources Including ray source 1, ray source 2, ray source 3 and ray source 4; the intersection of the two beams emitted by the ray source 1 and ray source 2 is an inferior treatment center, and the ray source 3 and ray source 4 emit The intersection of the two beams is the high-level treatment center, and a plurality of treatment nodes with the low-level treatment center and the high-level treatment center as the center of the sphere constitute a global treatment space.
  • An operation method of a global surface radiation therapy system using the global surface radiation therapy system as described above, the global surface radiation therapy system also includes a multi-degree-of-freedom treatment bed, the method includes:
  • the treatment planning system inputs the patient's computerized tomography (CT) or magnetic resonance imaging (Magnetic Resonance Imaging, MRI) diagnostic image, outlines the tumor target area and key organs, selects treatment nodes in the global treatment space, and calculates the treatment dose distribution and dose allocation for each treatment node, and formulate a treatment plan; wherein, the global treatment space includes a treatment space of a low-level treatment center and a treatment space of a high-level treatment center;
  • CT computerized tomography
  • MRI Magnetic Resonance Imaging
  • the treatment path is planned for the treatment nodes in the treatment space of the low-level treatment center and the treatment nodes in the treatment space of the high-level treatment center.
  • the dual image-guided positioning mechanism performs image-guided positioning verification on the patient on the multi-degree-of-freedom treatment bed to detect the position deviation of the patient.
  • the multi-degree-of-freedom treatment bed automatically corrects the patient's position deviation;
  • the multi-degree-of-freedom robot carries the linear accelerator and reaches the treatment node in the global treatment space. According to the treatment path planned by the treatment plan, the multi-degree-of-freedom robot carries the linear accelerator to complete the beam projection of the treatment node in the low-level treatment center, and switches to the high-level treatment center. Beamcasting of treatment nodes done at the treatment center.
  • Fig. 1 is a schematic diagram of a radiosurgery robot system in the related art.
  • Fig. 2 is a schematic diagram of treatment in the treatment space of the low-level treatment center in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of the treatment using the treatment space of the advanced treatment center in the embodiment of the present application.
  • Fig. 4 is a combined schematic diagram of the treatment space of the lower treatment center and the treatment space of the higher treatment center in the embodiment of the present application.
  • Fig. 5(a) is a schematic diagram of the imaging geometry of the global radiation therapy system in the embodiment of the present application.
  • Fig. 5(b) is another schematic diagram of imaging geometry of the global radiation therapy system in the embodiment of the present application.
  • Fig. 6 is a schematic diagram of the transition between the actual projection plane and the virtual projection plane of the image-guided positioning mechanism of the advanced treatment center in the embodiment of the present application.
  • Fig. 6(a) is another schematic diagram of conversion between the actual projection plane and the virtual projection plane of the image-guided positioning mechanism of the advanced treatment center in the embodiment of the present application.
  • Fig. 7 is a treatment flow chart of the global radiation therapy system in the embodiment of the present application.
  • Fig. 8(a) is a schematic diagram of selected treatment nodes in a treatment example using a combined treatment mode of a high-level treatment center and a low-level treatment center in the embodiment of the present application.
  • Fig. 8(b) is a schematic diagram of a treatment example using a combined treatment mode of a high-level treatment center and a low-level treatment center in the state of a high-level treatment center in the embodiment of the present application.
  • Fig. 8(c) is a schematic diagram of a treatment example using a combined treatment mode of a high-level treatment center and a low-level treatment center in the state of a low-level treatment center in the embodiment of the present application.
  • Fig. 9(a) is a schematic diagram of selecting a treatment node in a treatment example using a treatment mode of a low-level treatment center in the embodiment of the present application.
  • Fig. 9(b) is a schematic diagram of a treatment example using a treatment mode of a low-level treatment center in the state of a low-level treatment center in the embodiment of the present application.
  • Fig. 10(a) is a schematic diagram of selecting treatment nodes when using the treatment example of the treatment mode of the advanced treatment center in the embodiment of the present application.
  • Fig. 10(b) is a schematic diagram of a treatment example using the treatment mode of the advanced treatment center in the state of the advanced treatment center in the embodiment of the present application.
  • a global surface radiotherapy system its structural composition is shown in Figure 2 and Figure 3: a miniaturized linear accelerator 1, a six-degree-of-freedom robot 2 equipped with an accelerator, a six-degree-of-freedom robot treatment bed 3, a respiratory motion tracking system 4,
  • the image-guided positioning system corresponding to the low-level treatment center 7, the image-guided positioning system corresponding to the high-level treatment center 8 (wherein, the treatment center at the low position is called the low-level treatment center, and the treatment center at the high position is called the high-level treatment center center).
  • the respiratory motion tracking system 4 uses infrared optical motion tracking technology to detect body surface motion in real time, combined with an image-guided positioning system, to realize real-time motion tracking of the target area in the body.
  • the imaging hardware of the dual image-guided positioning system consists of 4 X-ray tubes, corresponding 4 high-voltage generators (usually placed in the equipment room), and 2 X-ray flat panel detectors.
  • the low-level treatment center image-guided positioning mechanism takes the low-level treatment center 7 as the imaging center, and its imaging hardware is composed of, as shown in Figure 2, an X-ray tube 51 and a flat panel detector 61 generate an X-ray image on a projection surface, The second X-ray tube 52 and the second flat panel detector 62 produce an X-ray image on another projection plane.
  • the image-guided positioning mechanism of the advanced treatment center takes the advanced treatment center 8 as the imaging center, and its imaging hardware is composed of, as shown in Fig.
  • Tube four 54 and flat panel detector two 62 produce an X-ray image on another projection plane.
  • the lower treatment center 7 forms the treatment space of the lower treatment center above and on both sides of the patient
  • the higher treatment center 8 forms the treatment space of the higher treatment center below and on both sides of the patient.
  • the combination of the treatment space of the low-level treatment center and the treatment space of the high-level treatment center provides a global treatment space.
  • the imaging geometry of the image-guided positioning system of the global radiation therapy system as shown in Figure 5(a), emits source 1 and emitter 2, which respectively emit ray beams, cross to obtain the low-level treatment center 7, and generate Actual projection 1 and actual projection 2; emission source 3 and emission source 4, respectively emit ray beams, intersect to obtain advanced treatment center 8, generate two actual projections on two flat panel detectors, and then convert them into virtual projection 1 and virtual projection respectively two.
  • the installation position and mutual adaptation relationship of multiple components of the radiotherapy system are the key parameters and design focus of the technical solution of this application, because limited by the height of the ceiling from the ground and the requirements for ensuring image quality, low-level treatment centers
  • the height and relative height of the advanced treatment center need to be designed.
  • the distance from the source center of the X-ray tube to the flat panel imaging center also has a key influence on the imaging quality.
  • the Source-Axis Distance (Source-Axis Distance) needs to be considered , SAD), the stroke of the treatment bed, the center of the accelerator radiation source, and other components.
  • the six degrees of freedom of the accelerator head The robotic arm should be able to reach as much space as possible above, below and to the sides of the patient. Therefore, it is necessary to consider the above installation conditions for overall design and verification.
  • d 11 is the imaging center distance from the lower treatment center 7 to the flat panel detector 61;
  • d 12 is the tube source center distance from the lower treatment center 7 to the lower treatment center X-ray tube 51;
  • d 21 is the imaging center distance from the high-level treatment center 8 to the flat panel detector 1 61;
  • d 22 is the distance from the high-level treatment center 8 to the tube source center of the X-ray tube 3 53 at the high-level treatment center;
  • h 1 is the distance from the low-level treatment center 7 to the ground Height;
  • h 2 is the height of Advanced Treatment Center 8 from the ground.
  • the distance between the X-ray tube-51 of the image-guided positioning mechanism of the low-level treatment center and the ground The range of H1: 2000-2200mm, the distance between the X-ray tube 3 53 of the image guidance positioning mechanism of the advanced treatment center and the ground
  • the range of H2 2500-2700mm ;
  • the range of the angle ⁇ 2 between the beam center of the treatment center and the vertical plane is: 15°-60°, and ⁇ 1 > ⁇ 2 ; for example, in this application, the position of the flat panel detector can be adjusted, located on the ground or Next, in order to ensure the height of the advanced treatment center 8 from the ground and the stroke range of the treatment bed, it is advisable to place it 10-50mm below the ground.
  • the positions of the four ray sources and the two flat panel detectors are fixed, that is, the positions of the lower treatment center 7 and the higher treatment center 8 are fixed.
  • the treatment bed only needs to be raised and lowered according to the treatment needs to reach the low-level treatment center 7 or the high-level treatment center 8 .
  • the image-guided positioning mechanism of the low-level treatment center and the image-guided positioning mechanism of the high-level treatment center jointly use flat-panel detectors in two projection directions.
  • the beam emitted by the X-ray emission source of the image-guided positioning mechanism in the low-level treatment center is perpendicular to the actual projection surface of the flat-panel detector to generate an orthographic X-ray image, which is used for image-guided positioning of X-ray images and CT images.
  • - 3D image registration method for the above process, reference may be made to the two-plate-based two-dimensional-three-dimensional medical image registration method in the related art. .
  • the beam emitted by the emission source of the image-guided positioning mechanism of the advanced treatment center is not perpendicular to the actual projection surface of the flat panel detector, and an obliquely projected X-ray image is generated.
  • a virtual imaging plane perpendicular to the projection direction is set in the orthographic projection direction, and the acquired X-ray images are converted from the actual imaging plane to the virtual imaging plane , so as to generate an orthographic X-ray image, which facilitates the adoption of the two-dimensional-three-dimensional image registration method of the above-mentioned patent.
  • a virtual projection plane is set, so that the beam emitted by the X-ray emission source is perpendicular to the virtual projection plane, and then the image on the actual oblique projection plane is transformed into an orthographic projection image on the virtual projection plane.
  • x 1 py 1 and x 2 py 2 are the two-dimensional coordinate systems of the actual projection plane and the virtual projection plane respectively, and the angle between the planes of the two coordinate systems is ⁇ , and the X-ray emission The distance from the center point of the source to the center point of the flat panel detector is d.
  • the treatment planning system inputs the patient's CT or MRI diagnostic images, outlines the tumor target area and key organs, selects treatment nodes in the global treatment space, and calculates the treatment dose Distribution and dose allocation of each treatment node, formulate treatment plan; before treatment, plan the treatment path for the treatment nodes in the treatment space of the low-level treatment center and the treatment space of the high-level treatment center, and the image-guided positioning mechanism will image the patient on the treatment bed Guide the setup verification, detect the position deviation of the patient, and the six-degree-of-freedom treatment bed automatically corrects the patient's position deviation; According to the treatment path planned by the treatment plan, the six-degree-of-freedom robot carries the accelerator to complete the beam projection of the treatment node in the lower treatment center, then switches to the beam projection of the treatment node completed in the higher treatment center, and ends the treatment.
  • the image-guided positioning system continuously detects the patient's position deviation, and the six-degree-of-freedom robot accordingly corrects the beam position on each treatment node to compensate the patient's position Deviation:
  • the respiratory motion tracking system tracks the respiratory movement of the target area in real time, and the six-degree-of-freedom robot drives the accelerator to continuously adjust the treatment beam to compensate for the movement of the target area to achieve motion tracking treatment.
  • the treatment example using the combined treatment mode of high and low treatment centers needs to perform radiation therapy on the patient's top and back at the same time, assuming that there are 5 treatment points in total (the number of treatment points in real cases can be tens or More, here only use 5 as illustrations, wherein treatment points 91, 92, 93 are low-level treatment center mode treatment, treatment points 94, 95 are high-level treatment center mode treatment.
  • Treatment point 93 is located in low-level treatment center and For the treatment space of the high-level treatment center, this embodiment adopts the low-level treatment center model for treatment, as shown in Figure 8(a).
  • the six-degree-of-freedom robot carries an accelerator, and arrives at the designated treatment nodes 91, 92, and 93 on the treatment sphere in sequence, and performs treatment beam projection to complete the treatment in the treatment space of the low-level treatment center; switch to the image-guided positioning of the high-level treatment center, six degrees of freedom Carrying the accelerator, the robot arrives at the designated treatment nodes 94 and 95 on the treatment sphere in sequence to project treatment beams and complete the treatment in the treatment space of the advanced treatment center.
  • radiation therapy is performed on the top and side of the patient, assuming that there are 5 treatment points in total (the number of treatment points in a real case can be tens or more, here Only 5 places are used for illustration), wherein treatment points 101, 102, 103, 104, and 105 are treated in the low-level treatment center mode, as shown in Figure 9(a).
  • image-guided positioning of the low-level treatment center is performed, where d 11 is 1650 mm, d 12 is 2003 mm, h 1 is 920 mm, ⁇ 1 is 45°, H 1 It is 2336.33mm.
  • the six-degree-of-freedom robot carries the accelerator and arrives at the designated treatment nodes 101, 102, 103, 104, and 105 on the treatment sphere in sequence to project treatment beams and complete the treatment in the treatment space of the low-level treatment center.
  • radiation therapy is performed on the top and side of the patient, assuming that there are 5 treatment points in total (the number of treatment points in real cases can be tens or more, here Only 5 are used for illustration), among which 111, 112, 113, 114, and 115 treatment points are all treated in the advanced treatment center mode, as shown in Figure 10(a).
  • the image-guided positioning of the advanced treatment center is performed, where d 21 is 2018mm, d 22 is 1553mm, h 2 is 1400mm, ⁇ 2 is 35.3°, H 2 It is 2667.14mm.
  • the six-degree-of-freedom robot carries the accelerator and arrives at the designated treatment nodes 111, 112, 113, 114, and 115 on the treatment sphere in sequence to project the treatment beam and complete the treatment in the treatment space of the advanced treatment center.
  • the technical solution provided by this application uses the treatment space of the advanced treatment center to target the target area near the back, such as the spine target area and the thoracoabdominal target area near the back, so that patients can be effectively treated in a normal supine lying position.
  • the global treatment space combining the low-level treatment center and the high-level treatment center is adopted, so that multiple target areas can receive more treatment beam projections, obtain a more optimized and effective treatment dose distribution, and achieve better treatment effects.
  • the switch between the low-level treatment center and the high-level treatment center is fast, only need to switch the X-ray tube; two sets of X-ray tubes share a set of flat-panel detectors, which simplifies the treatment system.
  • the positions of the X-ray tube and the flat panel detector are fixed. During the treatment, only the treatment bed needs to be adjusted to reach the low-level treatment center or the high-level treatment center, and there is no need to recalibrate the image-guided positioning system.

Abstract

本申请公开了一种全球面放射治疗系统,包括多自由度机器人、直线加速器、双图像引导定位机构,双图像引导定位机构包括四个射线源、两个射线探测器;其中,所述四个射线源包括射线源一,射线源二,射线源三和射线源四;射线源一和射线源二发出的两个射束相交处为低等治疗中心,射线源三和射线源四发出的两个射束相交处为高等治疗中心,以低等治疗中心和高等治疗中心分别为球心的多个治疗节点构成全球面治疗空间。

Description

全球面放射治疗系统
本申请要求在2021年7月30日提交中国专利局、申请号为202110871185.3受理的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种放射外科机器人系统,例如涉及一种全球面放射治疗系统。
背景技术
图像引导放射治疗(Image Guided Radiation Therapy,IGRT)是近十几年来逐步发展起来的肿瘤放射治疗新技术,它通过先进的图像设备及图像处理方法,在治疗计划阶段,对患者进行准确靶区探测、勾画和治疗射束分布规划、剂量分布计算,在治疗照射前进行精确靶区定位、在治疗过程中进行靶区运动跟踪,实现对肿瘤的精确放射治疗,降低对肿瘤周边正常组织及关键器官的损伤。
放射外科机器人系统是放射外科治疗专用设备,主要用于全身实体肿瘤精确放射治疗。美国Accuray公司研发的CyberKnife放射外科机器人系统,结合图像引导、现代机器人和小型化直线加速器等先进技术,实现了精确图像引导下的精准放疗,可低分次(1至5次)治疗不同大小的肿瘤,已在世界上得到了较广泛临床应用。
基于多自由度机器人的放射外科机器人系统,需要理想的全球面治疗空间,使加速器治疗射束可以在球面上不同位置不同方向投射到患者靶区,以到达最优化的治疗剂量分布,获得最好的治疗效果。放射外科系统的治疗中心,是整个系统的基准点。以此治疗中心为球中心定义球面,球面上规划均匀分布的多个节点(可以多达数千个),称为全球面治疗节点,球面上所有治疗节点的集合即为全球面治疗空间。治疗计划系统,从全球面治疗空间中选择针对具体患者的优化治疗节点(数十至上百个),满足最佳剂量分布的临床要求。
基于多自由度机器人的放射外科机器人系统的一个主要缺陷是治疗空间有限性,如图1所示,放射外科系统的治疗空间是大半个球面,而非理想的全球面。采用在低位置的治疗中心,称为低等治疗中心,在低等治疗中心进行治疗,机器人携带加速器,在确保和治疗床以及患者不发生碰撞情况下,能到达病人上方和两侧的大部分空间位置,形成大半个球面的低等治疗中心治疗空间。而治疗通常在患者仰卧躺姿情况下进行,对靠近背部的靶区,如脊柱靶区和靠近背部的胸腹部靶区,有限治疗空间限制了治疗射束从患者底部位置和底部周边位置的照射,使治疗计划得不到满足临床要求的最优化治疗剂量分布。在实际临床应用中,对靠近背部的靶区,可改成俯卧躺姿治疗,达到治疗剂量分布的要求。但由于呼吸引起的靠近背部靶区运动,会降低治疗精度,延长治疗时间,同时给治疗过程带来更多的临床操作复杂性。
相关技术公开了一种机器人无创放射治疗系统,其技术特点是安装图像引导设备的大尺寸机械G型臂及G型臂导轨,由于G型臂大尺寸复杂机械结构,X射线源滑动精度难以控制,滑动到位后需要再次校准。无论G型臂安装在地面或悬挂在天花板上,无论等治疗中心在什 么位置或设置多个等治疗中心,因为在G型臂占据的很大空间上,必然会对治疗空间有一定遮挡,影响直线加速器可到达的空间位置,直线加速器无法到达全球面治疗空间。
相关技术公开了一种机器人放射治疗系统,其由正、逆向放射治疗计划系统,三维数控治疗床,实时影像自动跟踪系统,机器人系统,射线源,实时剂量验证系统六大模块组成,其中实时影像自动跟踪系统由C型臂实时影像系统、红外自动跟踪定位仪和电磁自动跟踪定位仪组成,但其C型臂占据的很大空间,影响直线加速器可到达的空间位置,必然产生治疗盲区,导致了有限的球面治疗空间。
相关技术公开了一种立体定向放射外科治疗装置,由辐射装置系统、六维机器人治疗床1和治疗计划系统组成;辐射装置系统由机架12和C形机臂5构成,机架12上设置有转轴10,转轴10与导轨9连接并控制导轨9的转动,C形机臂5安装在导轨9上并沿导轨9进行弧形运动;C形机臂5一端安装有射线源2,射线源2底端安装有小机头3,小机头3底端安装有准直器4;C形机臂5另一端安装有可伸缩电子射野影像装置7和活动屏蔽防护配重块8;靶器官定位探测装置6安装在六维机器人治疗床1床面侧方或下方;辐射治疗头可以绕X轴作90度(或±45度)旋转运动。此治疗装置提供多个弧度位置上的治疗射线,形成的治疗空间是球面中间部分。
相关技术公开了一种放射治疗摆位定位装置及静态、动态靶区摆位方法,治疗机器人具有操作手臂,紧凑型直线电子加速器安装于治疗机器人的操作手臂端部,二级准直器安装于紧凑型直线电子加速器的端部;机器人治疗床设置于双影像C臂系统相对应位置处,双影像C臂系统内侧设置有C臂滑轨激光定位器,在双影像C臂系统外部对应位置处设有C臂安装空间左侧定位器,配备两组X光影像系统,可以实现双目成像;当C臂滑轨自转,同时只启用一组X光影像系统时,可以实现锥形束计算机X线断层扫描(Cone beam Computed Tomography,CBCT)成像。与前述专利类似的,上述专利的设计方式也导致具有同样的问题。此治疗装置不能提供在患者下方的治疗空间。
相关技术公开了一种全周球面立体定向放疗装置,包括X波段加速器、多叶准直器、治疗床、影像系统、电子射野影像装置(Electronic Portal Imaging Device,EPID)、固定机架和旋转机架,所述旋转机架可转动的设于所述固定机架,所述治疗床相对于所述固定机架固定,所述影像系统设于所述旋转机架,所述X波段加速器和所述多叶准直器相连,所述X波段加速器设于所述旋转机架,以使所述X波段加速器对治疗中心形成球面照射;所述EPID设于所述旋转机架,并且所述EPID和所述X波段加速器的射束正交,以接收剩余射束。此治疗装置提供多个弧度位置上的治疗射线,形成的治疗空间是球面中间部分。
相关技术公开了一种辐射治疗设备包括引导件和支撑构件,所述引导件沿具有预定半径的轨道移动辐射产生单元,使得从辐射产生单元发射的X射线可以穿过等中心,支撑件使导向件绕穿过等心点的转动轴线转动,放射线发生单元通过导向件和支撑件沿球面移动,并在多个方向上向等中心施加X射线。此治疗装置提形成的治疗空间是球面中间部分。
相关技术公开了一种用于图像引导辐射治疗输送系统的质量保证的方法和设备。在放射治疗输送系统的成像引导系统的引导下,将质量保证(Quality Assurance,QA)标记定位在预设位置。在QA标记处从辐射治疗输送系统的辐射源发射辐射束,产生由于辐射束引起的QA 标记的曝光图像,然后分析曝光图像以确定辐射治疗递送系统是否对准。但上述专利其加速器的移动位置有限,不能位于患者下方位置,对治疗方案的设计形成一定限制,使其仅能获得半球形的治疗空间,不利于病患的治疗。
发明内容
本申请可避免相关技术中放射外科机器人系统治疗空间的有限性,提供一种全球面放射治疗系统,在双图像引导下通过低等治疗中心和高等治疗中心分别构成的两个治疗空间,实现在全球面治疗空间上的放射外科治疗。
本申请提供如下技术方案:
一种全球面放射治疗系统,包括多自由度机器人、直线加速器、双图像引导定位机构,所述双图像引导定位机构包括四个射线源、两个射线探测器;其中,所述四个射线源包括射线源一,射线源二,射线源三和射线源四;所述射线源一和射线源二发出的两个射束相交处为低等治疗中心,所述射线源三和射线源四发出的两个射束相交处为高等治疗中心,以所述低等治疗中心和所述高等治疗中心分别为球心的多个治疗节点构成全球面治疗空间。
一种全球面放射治疗系统的操作方法,使用如前所述的全球面放射治疗系统,所述全球面放射治疗系统还包括多自由度治疗床,所述方法包括:
治疗计划系统输入患者计算机X线断层扫描(Computed Tomography,CT)或磁共振成像(Magnetic Resonance Imaging,MRI)诊断影像,勾画肿瘤靶区及关键器官,在全球面治疗空间选择治疗节点,计算治疗剂量分布和每个治疗节点剂量分配,制定治疗计划;其中,所述全球面治疗空间包括低等治疗中心治疗空间和高等治疗中心治疗空间;
针对低等治疗中心治疗空间的治疗节点和高等治疗中心治疗空间的治疗节点进行治疗路径规划,双图像引导定位机构对在多自由度治疗床上的患者进行图像引导摆位验证,探测患者位置偏差,多自由度治疗床自动纠正患者位置偏差;
多自由度机器人携带直线加速器,到达所述全球面治疗空间的治疗节点,按照治疗计划规划的治疗路径,多自由度机器人携带直线加速器完成低等治疗中心的治疗节点的射束投射,切换至高等治疗中心完成的治疗节点的射束投射。
附图说明
图1是相关技术中放射外科机器人系统示意图。
图2是本申请实施例中采用低等治疗中心治疗空间的治疗示意图。
图3是本申请实施例中采用高等治疗中心治疗空间的治疗示意图。
图4是本申请实施例中低等治疗中心治疗空间和高等治疗中心治疗空间的组合示意图。
图5(a)是本申请实施例中全球面放射治疗系统的成像几何示意图。
图5(b)是本申请实施例中全球面放射治疗系统的另一成像几何示意图。
图6是本申请实施例中高等治疗中心图像引导定位机构的实际投影面与虚拟投影面的转换示意图。
图6(a)是本申请实施例中高等治疗中心图像引导定位机构的实际投影面与虚拟投影面 的另一转换示意图。
图7是本申请实施例中全球面放射治疗系统的治疗流程图。
图8(a)是本申请实施例中采用高等治疗中心和低等治疗中心组合治疗模式的治疗实例中选取治疗节点的示意图。
图8(b)是本申请实施例中采用高等治疗中心和低等治疗中心组合治疗模式的治疗实例在高等治疗中心状态下的示意图。
图8(c)是本申请实施例中采用高等治疗中心和低等治疗中心组合治疗模式的治疗实例在低等治疗中心状态下的示意图。
图9(a)是本申请实施例中采用低等治疗中心治疗模式的治疗实例中选取治疗节点的示意图。
图9(b)是本申请实施例中采用低等治疗中心治疗模式的治疗实例在低等治疗中心状态下的示意图。
图10(a)是本申请实施例中采用高等治疗中心治疗模式的治疗实例时选取治疗节点的示意图。
图10(b)是本申请实施例中采用高等治疗中心治疗模式的治疗实例在高等治疗中心状态下的示意图。
具体实施方式
一种全球面放射治疗系统,其结构组成如图2和图3所示:小型化直线加速器1,安装携带加速器的六自由度机器人2,六自由度机器人治疗床3,呼吸运动跟踪系统4,对应于低等治疗中心7的图像引导定位系统,对应于高等治疗中心8的图像引导定位系统(其中,在低位置的治疗中心称为低等治疗中心,在高位置的治疗中心称为高等治疗中心)。其中,呼吸运动跟踪系统4,利用红外光学运动跟踪技术,实时探测体表运动,结合图像引导定位系统,实现对体内靶区实时运动跟踪。双图像引导定位系统的成像硬件组成:4个X射线管,对应的4个高压发生器(通常放置在设备间),2个X射线平板探测器。低等治疗中心图像引导定位机构以低等治疗中心7为成像中心,其成像硬件组成,如图2所示,X射线管一51和平板探测器一61产生一个投影面上的X射线图像,X射线管二52和平板探测器二62产生另一个投影面上的X射线图像。高等治疗中心图像引导定位机构以高等治疗中心8为成像中心,其成像硬件组成,如图3所示,X射线管三53和平板探测器一61产生一个投影面上的X射线图像,X射线管四54和平板探测器二62产生另一个投影面上的X射线图像。如图4所示,低等治疗中心7形成病人上方及两侧的低等治疗中心治疗空间,高等治疗中心8形成病人下方及两侧的高等治疗中心治疗空间。低等治疗中心治疗空间和高等治疗中心治疗空间的组合,提供了全球面治疗空间。
全球面放射治疗系统的图像引导定位系统成像几何,如图5(a)所示,发射源一和发射源二,分别发射射线束,交叉获得低等治疗中心7,在两个平板探测器生成实际投影一和实际投影二;发射源三和发射源四,分别发射射线束,交叉获得高等治疗中心8,在两个平板探测器生成两个实际投影,然后分别转化为虚拟投影一和虚拟投影二。
放射治疗系统的多个部件的安装位置及相互之间的适配关系,是本申请技术方案的关键参数和设计重点,因为受限于天花板离地面高度以及保证图像质量的要求,低等治疗中心和高等治疗中心的高度及相对高度,需要进行设计,X射线管的球管源中心到平板成像中心的距离也对成像质量有关键性的影响,同时需要考虑到源轴距(Source-Axis Distance,SAD)、治疗床行程、加速器放射源中心等部件的影响,在确保硬件之间无碰撞、硬件与地面无碰撞、硬件与治疗安全区无碰撞的情况下,携带加速器机头的六自由度机械臂应能到达病人上方、下方和两侧的尽可能大空间位置。因此需要统筹考虑上述安装条件进行统筹设计并验证。
基于以上考虑,本申请通过对多个部件之间的位置关系进行理论计算并根据结果进行了设计,对设计方案通过仿真模拟和实际验证,以满足治疗过程中多种实际操作的便利性及多种条件下的成像质量的平衡性需求,参照图5(b)所示的结构与多个参数,采用了如下的限定关系:
3575≤d 11+d 12≤3700     (1)
0.54≤h 1/d 11≤0.58      (2)
3515≤d 21+d 22≤3600     (3)
0.68≤h 2/d 21≤0.72       (4)
0.42≤(h 2-h 1)/h 1≤0.56      (5)
式中:d 11为低等治疗中心7到平板探测器一61的成像中心距离;d 12为低等治疗中心7到低等治疗中心点X射线管一51的球管源中心距离;d 21为高等治疗中心8到平板探测器一61的成像中心距离;d 22为高等治疗中心8到高等治疗中心点X射线管三53的球管源中心距离;h 1为低等治疗中心7离地面高度;h 2为高等治疗中心8离地面高度。
此外,本申请的技术方案中,除了需同时满足上述公式(1)-(5)的安装条件外,还需要满足如下条件,低等治疗中心图像引导定位机构的X射线管一51与地面距离H 1的范围:2000-2200mm,高等治疗中心图像引导定位机构的X射线管三53与地面距离H 2的范围:2500-2700mm;低等治疗中心射束中心与垂直面夹角α 1和高等治疗中心射束中心与垂直面夹角α 2交角范围分别为:15°-60°,且α 1>α 2;例如,在本申请中,平板探测器的位置可调整,位于地面上或者地面下,为了保证高等治疗中心8离地面高度以及治疗床的行程范围,以放于地面下10-50mm为宜。
例如,为了简化图像引导定位系统的多次调准,设置四个射线源及两个平板探测器的位置固定,即低等治疗中心7和高等治疗中心8的位置固定。在治疗过程中,仅需根据治疗需求对治疗床进行升降,到达低等治疗中心7或高等治疗中心8。
低等治疗中心图像引导定位机构和高等治疗中心图像引导定位机构,共同使用两个投影方向上的平板探测器。低等治疗中心图像引导定位机构的X射线发射源发出的射束垂直于平板探测器的实际投影面,生成正投影的X射线图像,用于图像引导定位的X射线图像和CT图像的二维-三维图像配准方法。上述过程可参考相关技术中的基于双平板的二维-三维医学图像配准方法。。
高等治疗中心图像引导定位机构的发射源发出的射束不垂直于平板探测器的实际投影面,生成斜投影的X射线图像。为了X射线图像和三维CT图像能进行图像配准计算患者位置偏 差,在正投影方向设置一个垂直于投影方向的虚拟成像面,对采集的X射线图像进行从实际成像面到虚拟成像面的转换,从而生成正投影的X射线图像,便于采用上述专利的二维-三维图像配准方法。首先设置一个虚拟投影面,使X射线发射源发出的射束垂直于虚拟投影面,然后将实际斜投影面上的图像转化成虚拟投影面上的正投影图像。如图6和图6(a)所示,x 1py 1和x 2py 2分别为实际投影面和虚拟投影面的二维坐标系,两个坐标系平面的夹角为γ,X射线发射源中心点到平板探测器中心点的距离为d。
β 1=90°-α 1
β 2=90°-α 2
γ=β 21=α 12
假设(x 1,y 1)是实际斜投影面x 1py 1坐标系上的一个坐标点,在虚拟正投影面x 2py 2坐标系上的相对应坐标点(x 2,y 2)为:
Figure PCTCN2022107804-appb-000001
Figure PCTCN2022107804-appb-000002
全球面放射治疗系统的治疗流程如图7所示,在治疗计划阶段,治疗计划系统输入患者CT或MRI诊断影像,勾画肿瘤靶区及关键器官,在全球面治疗空间选择治疗节点,计算治疗剂量分布和每个治疗节点剂量分配,制定治疗计划;在治疗前,针对低等治疗中心治疗空间和高等治疗中心治疗空间的治疗节点进行治疗路径规划,图像引导定位机构对在治疗床上的患者进行图像引导摆位验证,探测患者位置偏差,六自由度治疗床自动纠正患者位置偏差;在治疗中,六自由度机器人携带加速器,到达治疗球面上的某个指定治疗节点,进行治疗射束投射,然后按照治疗计划规划的治疗路径,六自由度机器人携带加速器完成低等治疗中心的治疗节点的射束投射,切换至高等治疗中心完成的治疗节点的射束投射,结束治疗。
在整个治疗过程中,对头颈、脊柱等不受呼吸引起运动的静态靶区,图像引导定位系统持续探测患者位置偏差,六自由度机器人相应地在每个治疗节点上纠正射束位置补偿患者位置偏差;对由呼吸引起运动的胸腹部靶区,呼吸运动跟踪系统实时跟踪靶区呼吸运动,六自由度机器人带动加速器,连续调整治疗射束,补偿靶区运动,实现运动跟踪治疗。
在一实施例中,采用高、低等治疗中心组合治疗模式的治疗实例,需要同时对患者上方和背部进行放射治疗,假设总共有5个治疗点(真实病例治疗点个数可为几十或更多,此处仅用5个作示意,其中治疗点91、92、93为低等治疗中心模式治疗,治疗点94、95为高等治疗中心模式治疗。治疗点93同时位于低等治疗中心和高等治疗中心的治疗空间,本实施例采用低等治疗中心模式治疗,如图8(a)所示。
如图8(b)-8(c)所示,按照治疗计划规划的治疗路径,进行低等治疗中心图像引导定位,其中d 11为1650mm,d 12为2003mm,d 21为2018mm,d 22为1553mm,h 1为920mm,h 2为1400mm,α 1为45°,α 2为35.3°,H 1为2336.33mm,H 2为2667.14mm。六自由度机器人携带加速器,依次到达治疗球面上的指定治疗节点91、92、93,进行治疗射束投射,完成低等治疗中心治疗空 间的治疗;切换至高等治疗中心图像引导定位,六自由度机器人携带加速器,依次到达治疗球面上的指定治疗节点94、95,进行治疗射束投射,完成高等治疗中心治疗空间的治疗。
在一实施例中,采用低等治疗中心治疗模式的治疗实例,对患者上方和侧方进行放射治疗,假设总共有5个治疗点(真实病例治疗点个数可为几十或更多,此处仅用5个作示意),其中治疗点101、102、103、104、105均为低等治疗中心模式治疗,如图9(a)所示。
如图9(b)所示,按照治疗计划规划的治疗路径,进行低等治疗中心图像引导定位,其中d 11为1650mm,d 12为2003mm,h 1为920mm,α 1为45°,H 1为2336.33mm。六自由度机器人携带加速器,依次到达治疗球面上的指定治疗节点101、102、103、104、105,进行治疗射束投射,完成低等治疗中心治疗空间的治疗。
在一实施例中,采用高等治疗中心治疗模式的治疗实例,对患者上方和侧方进行放射治疗,假设总共有5个治疗点(真实病例治疗点个数可为几十或更多,此处仅用5个作示意),其中111、112、113、114、115治疗点均为高等治疗中心模式治疗,如图10(a)所示。
如图10(b)所示,按照治疗计划规划规划的治疗路径,进行高等治疗中心图像引导定位,其中d 21为2018mm,d 22为1553mm,h 2为1400mm,α 2为35.3°,H 2为2667.14mm。六自由度机器人携带加速器,依次到达治疗球面上的指定治疗节点111、112、113、114、115,进行治疗射束投射,完成高等治疗中心治疗空间的治疗。
本申请提供的技术方案通过高等治疗中心治疗空间,对靠近背部的靶区,如脊柱靶区和靠近背部的胸腹部靶区,使患者可以在正常仰卧躺姿情况下进行有效治疗。采用低等治疗中心和高等治疗中心相结合的全球面治疗空间,使多个部位靶区得到更多治疗射束投照,得到更优化更有效的治疗剂量分布,取得更好的治疗效果。低等治疗中心和高等治疗中心的切换快捷,仅需切换X射线管即可;两组X射线管共用一组平板探测器,简化了治疗系统。X射线管和平板探测器的位置固定,治疗过程中仅需调整治疗床到达低等治疗中心或高等治疗中心,无需对图像引导定位系统进行重新校准。

Claims (8)

  1. 一种全球面放射治疗系统,包括多自由度机器人、直线加速器、双图像引导定位机构;
    所述双图像引导定位机构包括四个射线源、两个射线探测器;其中,所述四个射线源包括射线源一,射线源二,射线源三和射线源四;
    所述射线源一和所述射线源二发出的两个射束相交处为低等治疗中心,所述射线源三和所述射线源四发出的两个射束相交处为高等治疗中心,以所述低等治疗中心和所述高等治疗中心分别为球心的多个治疗节点构成全球面治疗空间。
  2. 根据权利要求1所述的系统,其中,所述多自由度机器人携带所述直线加速器,所述多自由度机器人围绕所述低等治疗中心形成患者上方及两侧的球形治疗空间,所述多自由度机器人围绕所述高等治疗中心形成患者下方及两侧的球形治疗空间。
  3. 根据权利要求1或2所述的系统,其中,所述四个射线源分别为X射线管,所述两个射线探测器分别为平板探测器。
  4. 根据权利要求3所述的系统,其中,所述低等治疗中心和所述高等治疗中心满足如下条件:
    3575≤d 11+d 12≤3700
    0.54≤h 1/d 11≤0.58
    3515≤d 21+d 22≤3600
    0.68≤h 2/d 21≤0.72
    0.42≤(h 2-h 1)/h 1≤0.56
    式中:d 11为所述低等治疗中心到对应的平板探测器的成像中心距离;d 12为所述低等治疗中心到对应的X射线管的球管源中心距离;d 21为所述高等治疗中心到对应的平板探测器的成像中心距离;d 22为所述高等治疗中心到对应的X射线管的球管源中心距离;h 1为所述低等治疗中心离地面高度;h 2为所述高等治疗中心离地面高度。
  5. 根据权利要求3所述的系统,其中,所述双图像引导定位机构包括低等治疗中心图像引导定位机构和高等治疗中心图像引导定位机构,所述低等治疗中心图像引导定位机构的X射线管的高度为2000-2200mm,所述高等治疗中心图像引导定位机构的X射线管的高度为2500-2700mm,所述低等治疗中心图像引导定位机构和所述高等治疗中心图像引导定位机构的成像交角范围为30°-120°。
  6. 根据权利要求3所述的系统,其中,所述低等治疗中心图像引导定位机构的对应的射线源发出的射束垂直于对应的平板探测器的实际投影面,生成正投影的X射线图像;所述高等治疗中心图像引导定位机构对应的射线源发出的射束不垂直于对应的平板探测器的实际投影面,生成斜投影的X射线图像。
  7. 根据权利要求6所述的系统,其中,将所述斜投影的X射线图像转换到虚拟成像面,得到虚拟正投影的X射线图像,(x 1,y 1)是所述斜投影面x 1py 1坐标系上的坐标点,转换至所述虚拟正投影面x 2py 2坐标系上的相对应坐标点(x 2,y 2)为:
    Figure PCTCN2022107804-appb-100001
    Figure PCTCN2022107804-appb-100002
    其中,γ为所述斜投影面坐标系平面与所述虚拟正投影面坐标系平面的夹角;d为所述X射线管的发射源中心点到对应平板探测器中心点的距离。
  8. 一种使用权利要求1-7任一项的全球面放射治疗系统的操作方法,所述全球面放射治疗系统还包括多自由度治疗床,包括:
    治疗计划系统输入患者计算机X线断层扫描CT或磁共振成像MRI诊断影像,勾画肿瘤靶区及关键器官,在全球面治疗空间选择多个治疗节点,计算治疗剂量分布和每个治疗节点剂量分配,制定治疗计划;其中,所述全球面治疗空间包括低等治疗中心治疗空间和高等治疗中心治疗空间;
    针对所述低等治疗中心治疗空间的治疗节点和所述高等治疗中心治疗空间的治疗节点进行治疗路径规划,双图像引导定位机构对在所述多自由度治疗床上的患者进行图像引导摆位验证,探测患者位置偏差,所述多自由度治疗床自动纠正患者位置偏差;
    多自由度机器人携带直线加速器,到达所述全球面治疗空间上的治疗节点,按照所述治疗计划规划的治疗路径,所述多自由度机器人携带所述直线加速器完成所述低等治疗中心的治疗节点的射束投射,切换至所述高等治疗中心完成的治疗节点的射束投射。
PCT/CN2022/107804 2021-07-30 2022-07-26 全球面放射治疗系统 WO2023005902A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/036,276 US11904188B2 (en) 2021-07-30 2022-07-26 Fully-spherical radiation therapy system
EP22848507.4A EP4205812A4 (en) 2021-07-30 2022-07-26 FULLY SPHERICAL RADIOTHERAPY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110871185.3 2021-07-30
CN202110871185.3A CN113491844B (zh) 2021-07-30 2021-07-30 一种全球面放射治疗系统

Publications (1)

Publication Number Publication Date
WO2023005902A1 true WO2023005902A1 (zh) 2023-02-02

Family

ID=77996662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107804 WO2023005902A1 (zh) 2021-07-30 2022-07-26 全球面放射治疗系统

Country Status (4)

Country Link
US (1) US11904188B2 (zh)
EP (1) EP4205812A4 (zh)
CN (1) CN113491844B (zh)
WO (1) WO2023005902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116803449A (zh) * 2023-06-20 2023-09-26 江苏瑞尔医疗科技有限公司 一种基于多个等中心点的放射治疗系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113491844B (zh) 2021-07-30 2022-04-29 北京瑞尔世维医学研究有限公司 一种全球面放射治疗系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209368A (zh) * 2006-12-25 2008-07-02 深圳市海博科技有限公司 一种放射治疗中病人靶区自动定位的方法
CN104548375A (zh) * 2015-02-03 2015-04-29 瑞地玛医学科技有限公司 分象限放射治疗装置及由此治疗肿瘤靶区分象限放射方法
US20200406064A1 (en) * 2020-09-08 2020-12-31 Uih America, Inc. X-ray imaging system for radiation therapy
CN113491844A (zh) * 2021-07-30 2021-10-12 北京瑞尔世维医学研究有限公司 一种全球面放射治疗系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003018132A1 (ja) 2001-08-24 2004-12-09 三菱重工業株式会社 放射線治療装置
US7356120B2 (en) 2005-09-23 2008-04-08 Accuray Incorporated Integrated quality assurance for in image guided radiation treatment delivery system
CN101015723B (zh) 2006-02-09 2010-04-07 吴大怡 机器人放射治疗系统
US20070189455A1 (en) * 2006-02-14 2007-08-16 Accuray Incorporated Adaptive x-ray control
US20080123813A1 (en) * 2006-04-07 2008-05-29 Maurer Calvin R Automatic selection of multiple collimators
US8824630B2 (en) * 2010-10-29 2014-09-02 Accuray Incorporated Method and apparatus for treating a target's partial motion range
CN103143124B (zh) * 2013-04-06 2016-05-11 吴大可 机器人无创放射治疗系统
CN104307113B (zh) 2014-10-20 2017-01-25 苏州大学张家港工业技术研究院 放射治疗系统
CN104587609B (zh) 2015-02-03 2017-05-31 瑞地玛医学科技有限公司 放射治疗摆位定位装置及静态、动态靶区摆位方法
CN105031833B (zh) * 2015-08-28 2018-02-06 瑞地玛医学科技有限公司 放射治疗装置的剂量验证系统
US11000701B2 (en) * 2017-08-01 2021-05-11 Varex Imaging Corporation Dual-layer detector for soft tissue motion tracking
CN107362464A (zh) 2017-08-13 2017-11-21 吴大可 精准立体定向放射外科治疗装置
CN108744310B (zh) 2018-06-14 2021-04-23 中科超精(南京)科技有限公司 多模式引导自适应放疗系统
US11160526B2 (en) * 2018-11-30 2021-11-02 Accuray, Inc. Method and apparatus for scatter estimation in cone-beam computed tomography
CN110812717A (zh) * 2019-12-11 2020-02-21 山东新华医疗器械股份有限公司 一种全周球面立体定向放疗装置
CN212235656U (zh) * 2020-04-02 2020-12-29 戴建荣 多治疗头非共面放射治疗装置
US11666293B2 (en) * 2020-07-03 2023-06-06 The Brigham And Women's Hospital, Inc. Extended field-of-view x-ray imaging using multiple x-ray sources and one or more laterally offset x-ray detectors
CN112972912B (zh) * 2021-04-22 2021-08-17 北京大学第三医院(北京大学第三临床医学院) 非共面放疗射束入射路径优化方法
WO2022240894A1 (en) 2021-05-11 2022-11-17 Celestial Oncology Inc. Coupled robotic radiation therapy system
US11794039B2 (en) * 2021-07-13 2023-10-24 Accuray, Inc. Multimodal radiation apparatus and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209368A (zh) * 2006-12-25 2008-07-02 深圳市海博科技有限公司 一种放射治疗中病人靶区自动定位的方法
CN104548375A (zh) * 2015-02-03 2015-04-29 瑞地玛医学科技有限公司 分象限放射治疗装置及由此治疗肿瘤靶区分象限放射方法
US20200406064A1 (en) * 2020-09-08 2020-12-31 Uih America, Inc. X-ray imaging system for radiation therapy
CN113491844A (zh) * 2021-07-30 2021-10-12 北京瑞尔世维医学研究有限公司 一种全球面放射治疗系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4205812A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116803449A (zh) * 2023-06-20 2023-09-26 江苏瑞尔医疗科技有限公司 一种基于多个等中心点的放射治疗系统
CN116803449B (zh) * 2023-06-20 2024-03-22 江苏瑞尔医疗科技有限公司 一种基于多个等中心点的放射治疗系统

Also Published As

Publication number Publication date
US11904188B2 (en) 2024-02-20
EP4205812A1 (en) 2023-07-05
CN113491844B (zh) 2022-04-29
EP4205812A4 (en) 2024-04-03
CN113491844A (zh) 2021-10-12
US20230390589A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US11511132B2 (en) Tumor tracking during radiation treatment using ultrasound imaging
US10709903B2 (en) Gantry image guided radiotherapy system and related treatment delivery methods
US9155912B2 (en) Method and system for stereotactic intensity-modulated arc therapy
Shirato et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy
US9492125B2 (en) Patient positioning and imaging system
WO2023005902A1 (zh) 全球面放射治疗系统
EP2311528A2 (en) An imaging device for radiation treatment applications
US20120256103A1 (en) Modifying radiation beam shapes
US20130066134A1 (en) Multiplexed Radiation Therapy
WO2013060220A1 (zh) 4d立体定位放射治疗装置
CN108853753B (zh) 肿瘤实时监控装置、放射治疗系统
CN103099630B (zh) 肿瘤放射治疗中靶器官的定位装置
US20130289400A1 (en) Devices, apparatus and methods for analyzing, affecting and/or treating one or more anatomical structures
WO2019178270A1 (en) Limiting imaging radiation dose and improving image quality during treatment delivery
CN215841267U (zh) 一种全球面放射治疗装置
CN116803449B (zh) 一种基于多个等中心点的放射治疗系统
CN219050155U (zh) 质子治疗正交x射线影像引导系统
US11712584B1 (en) Prospective and retrospective on-line adaptive radiotherapy
Lacornerie et al. CyberKnife, TomoTherapy and MR-Guided Linear Accelerators
CN104117150A (zh) 一种基于射波刀的肿瘤治疗系统
Meyer et al. On the use of a hexapod table to improve tumour targeting in radiation therapy
Ouzidane et al. Dedicated linear accelerators for stereotactic radiation therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022848507

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE