WO2023005731A1 - 通信处理方法和通信处理装置 - Google Patents

通信处理方法和通信处理装置 Download PDF

Info

Publication number
WO2023005731A1
WO2023005731A1 PCT/CN2022/106436 CN2022106436W WO2023005731A1 WO 2023005731 A1 WO2023005731 A1 WO 2023005731A1 CN 2022106436 W CN2022106436 W CN 2022106436W WO 2023005731 A1 WO2023005731 A1 WO 2023005731A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
carrier
pattern
reservation pattern
carrier reservation
Prior art date
Application number
PCT/CN2022/106436
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005731A1 publication Critical patent/WO2023005731A1/zh
Priority to US18/423,504 priority Critical patent/US20240163152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2618Reduction thereof using auxiliary subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication processing method and a communication processing device.
  • the high power amplifier (HPA) at the transmitter works near the linear saturation region to improve the power efficiency of the HPA.
  • the communication system uses an orthogonal frequency division multiplexing (OFDM) waveform to transmit data, it has the disadvantage of peak-to-average power ratio (PAPR).
  • PAPR peak-to-average power ratio
  • carrier reservation tone reservation, TR
  • TR tone reservation
  • Embodiments of the present application provide a communication processing method and a communication processing device, which are used to suppress the signal PARA and improve communication transmission performance.
  • the first aspect of the embodiment of the present application provides a communication processing method, including:
  • the first communication device determines a first carrier reservation pattern (tone reservation pattern, TR); the first communication device transmits a data signal according to the first carrier reservation pattern; the first carrier reservation pattern is determined according to the first part of bandwidth, or, The first carrier reservation pattern is determined according to the first beam; the first part of the bandwidth is used for transmitting data signals between the first communication device and the second communication device, and the first beam is used for transmission between the first communication device and the second communication device transmit data signals.
  • a first carrier reservation pattern tone reservation pattern, TR
  • TR tone reservation pattern
  • the first carrier reservation pattern is determined according to the first part of bandwidth, or the first carrier reservation pattern is determined according to the first beam.
  • the first carrier pattern is more suitable for the first communication device and the second communication device, and the first communication device can use the first carrier reservation pattern to transmit data signals to suppress the signal PARA, thereby improving communication transmission performance.
  • determining the first carrier reservation pattern by the first communication device includes:
  • the first communication device acquires first configuration information, where the first configuration information is used to indicate a first carrier reservation pattern corresponding to the first part of bandwidth; the first communication device determines the first carrier reservation pattern according to the first configuration information.
  • the first configuration information is used to indicate the first carrier reservation pattern corresponding to the first part of the bandwidth. It can be seen that the first carrier reservation pattern indicated by the first configuration information is more suitable for the first communication device, which is beneficial to The first communications device transmits a data signal using a first carrier reservation pattern to suppress signal PARA. Thereby improving communication transmission performance.
  • the above provides a specific implementation manner for the first communication device to determine the first carrier reservation pattern, which provides a basis for the implementation of the solution.
  • the determining by the first communication device of the first carrier reservation pattern includes:
  • the first communication device determines a first carrier reservation pattern corresponding to the first partial bandwidth from the plurality of carrier reservation patterns according to the first mapping relationship, where the first mapping relationship is a mapping relationship between the carrier reservation pattern and the partial bandwidth.
  • the first communication device determines the first carrier reservation pattern corresponding to the first part of the bandwidth through the first mapping relationship.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the first communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner in which the first communication device determines the first carrier reservation pattern, and provides a basis for implementation of the solution.
  • the determining by the first communication device of the first carrier reservation pattern includes:
  • the first communication device determines the first carrier reservation pattern corresponding to the first beam from the plurality of carrier reservation patterns according to the second mapping relationship, where the second mapping relationship is a mapping relationship between the carrier reservation pattern and the beam.
  • the first communication device determines the first carrier reservation pattern corresponding to the first beam through the second mapping relationship.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the first communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner in which the first communication device determines the first carrier reservation pattern, which improves the diversity and integrity of the solution.
  • the determining by the first communication device of the first carrier reservation pattern includes:
  • the first communication device determines the first carrier reservation pattern corresponding to the first part of the bandwidth from the plurality of carrier reservation patterns according to the third mapping relationship.
  • the first communication device determines the first carrier reservation pattern corresponding to the first part of the bandwidth through the third mapping relationship.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the first communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner in which the first communication device determines the first carrier reservation pattern, which improves the diversity and integrity of the solution.
  • the reference signal is transmitted between the first communication device and the second communication device by using a first reference signal pattern; determining the first carrier reservation pattern by the first communication device includes:
  • the first communication device determines the carrier reservation pattern corresponding to the first reference signal pattern from the plurality of carrier reservation patterns according to the fourth mapping relationship and the first partial bandwidth.
  • the fourth mapping relationship is that the first communication device and the second communication device The mapping relationship between the carrier reservation pattern and the reference signal pattern adopted when each partial bandwidth of the multiple partial bandwidths is used.
  • the first communication device determines the carrier reservation pattern corresponding to the first reference signal pattern through the fourth mapping relationship.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the first communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner in which the first communication device determines the first carrier reservation pattern, which improves the diversity and integrity of the solution.
  • the method before the first communication device determines the first carrier reservation pattern, the method further includes:
  • the first communication device determines whether to use the carrier reserved pattern to transmit the data signal
  • the first communication device may first determine whether to use the carrier reservation pattern to transmit the data signal. It prevents the first communication device from using the carrier reservation pattern to transmit data signals in an unnecessary situation, thereby saving network resources.
  • the first communication device determines whether to use a carrier reservation pattern to transmit a data signal, including:
  • Acquiring first indication information determining whether to use a carrier reservation pattern to transmit data signals according to the first indication information.
  • the above implementation manner provides a specific judgment manner, and determines whether to use the carrier reservation pattern to transmit the data signal through the first indication information. In this way, the judging process of the first communication device is implemented, so as to improve the feasibility of the solution.
  • the first indication information is carried in a broadcast message.
  • a bearer of the first indication information is shown, and the broadcast message carries the first indication information, so that there is no need to redefine a new message to send the first indication information, and the practicability of the solution is improved.
  • the broadcast message includes a system information block (system information block, SIB 1) or a master system information block (mater information block, MIB).
  • SIB system information block
  • MIB master system information block
  • the broadcast message may be SIB1 or MIB, conveniently instructing the first communication device to determine whether to use the carrier reservation pattern to transmit data signals during the initial access process.
  • the first indication information is used to indicate location information of a third communication device, and the third communication device is used for the first communication device to communicate with the second communication device;
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal according to the first indication information, including:
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal according to the location information of the third communication device.
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal according to the location information of the third communication device. It is beneficial for the first communication device to determine whether to use the carrier reservation pattern to transmit data signals in a specific scenario, so as to improve communication transmission performance.
  • the third communication device is a satellite, and when the orbital altitude of the satellite is relatively high, the first communication device may use a carrier reserved pattern to transmit data signals. In order to improve the signal-to-noise ratio of the signal received by the second communication device.
  • the first indication information is used to indicate whether the first communication device uses a carrier reservation pattern to transmit the data signal carried by each beam in the multiple beams, where the multiple beams include the first beam.
  • the method further includes:
  • the first communication device determines the second carrier reservation pattern according to the second part of the bandwidth; the first communication device transmits the data signal according to the second carrier reservation pattern.
  • the first communication device switches part of the bandwidth, and the first communication device may update the carrier reservation pattern according to the second part of the bandwidth to which the first communication device is switched. Therefore, the updated carrier reservation pattern is more suitable for the first communication device and the second communication device, and the first communication device transmits data signals according to the updated carrier reservation pattern, thereby better suppressing the signal PARA.
  • the method further includes:
  • the first communication device determines the third carrier reservation pattern according to the second beam correspondence; the first communication device transmits the data signal according to the second carrier reservation pattern.
  • the first communication device switches beams, and the first communication device may update the carrier reservation pattern according to the second beam switched to by the first communication device. Therefore, the updated carrier reservation pattern is more suitable for the first communication device and the second communication device, and the first communication device transmits data signals according to the updated carrier reservation pattern, thereby better suppressing the signal PARA.
  • the first beam corresponds to the first part of the bandwidth and the third part of the bandwidth
  • the first part of the bandwidth corresponds to the first carrier reserved pattern
  • the third part of the bandwidth corresponds to the fourth carrier reserved pattern
  • the first communication device determines a fourth carrier reservation pattern according to the third part of the bandwidth; the first communication device transmits the data signal according to the fourth carrier reservation pattern.
  • the first communication device switches part of the bandwidth on the first beam, and the first communication device may update the carrier reservation pattern according to the part of bandwidth to which the first communication device switches on the first beam. Therefore, the updated carrier reservation pattern is more suitable for the first communication device and the second communication device, and the first communication device transmits data signals according to the updated carrier reservation pattern, thereby better suppressing the signal PARA.
  • the first communication device Carrier reservation patterns transmit data signals, including:
  • the first communication device punctures the overlapped reserved carrier in the first carrier reserved pattern to obtain a fifth reserved carrier pattern, where the overlapped reserved carrier overlaps with a carrier used to transmit a reference signal in the first carrier reserved pattern the reserved carrier; the first communication device transmits the data signal according to the fifth carrier reserved pattern.
  • the first communication device transmits the data signal by puncturing the first carrier reserved pattern, and then using the fifth carrier reserved pattern obtained by puncturing. That is to say, the present application provides a new rule for using the carrier reservation pattern, and the carrier reservation pattern has a puncturing feature.
  • the first communication device does not need to store or configure multiple sets of carrier reservation patterns, thereby reducing the storage overhead of the first communication device.
  • the method also includes:
  • the first communication device obtains the second configuration information
  • the second configuration information includes at least one of the following configuration parameters: multiple reserved carrier patterns, indexes of multiple reserved carrier patterns, and the number of times the first communication device and the second communication device use
  • the mapping relationship between carrier wave reservation pattern and reference signal pattern, the mapping relationship between carrier wave reservation pattern and partial bandwidth, the mapping relationship between carrier wave reservation pattern and beam, carrier The mapping relationship between the reserved pattern and multiple partial bandwidths corresponding to the beam.
  • the first communication device may obtain the second configuration information, so as to determine the configuration parameters included in the second configuration information, so that the first communication device can determine the first carrier reservation pattern, and transmit according to the first carrier reservation pattern data signal. Thereby improving communication transmission performance.
  • any one of the configuration parameters included in the second configuration information is carried in any of the following signaling: SIB1, MIB, radio resource control (radio resource control, RRC) signaling, (downlink control information , DCI), group DCI, media access control control element (media access control control element, MAC CE), timing advance command (timing advance command, TAC).
  • the second aspect of the embodiment of the present application provides a communication processing method, including:
  • the second communication device determines the first carrier reservation pattern; the second communication device transmits the data signal according to the first carrier reservation pattern; the first carrier reservation pattern is determined according to the first partial bandwidth, or the first carrier reservation pattern is Determined according to the first beam; the first part of the bandwidth is used to transmit data signals between the first communication device and the second communication device, and the first beam is used to transmit data signals between the first communication device and the second communication device.
  • the first carrier reservation pattern is determined according to the first part of bandwidth, or the first carrier reservation pattern is determined according to the first beam.
  • the first carrier pattern is more suitable for the first communication device and the second communication device, and the second communication device can use the first carrier reservation pattern to transmit data signals to suppress the signal PARA, thereby improving communication transmission performance.
  • determining the first carrier reservation pattern by the second communication device includes:
  • the second communication device determines a first carrier reservation pattern corresponding to the first partial bandwidth from the plurality of carrier reservation patterns according to the first mapping relationship, where the first mapping relationship is a correspondence between the carrier reservation pattern and the partial bandwidth.
  • the second communication device determines the first carrier reservation pattern corresponding to the first part of the bandwidth through the first mapping relationship.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the second communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner in which the second communication device determines the first carrier reservation pattern, which provides a basis for implementation of the solution.
  • the second communication device determines the first carrier reservation pattern, including:
  • the second communication device determines the first carrier reservation pattern corresponding to the first beam from the plurality of carrier reservation patterns according to the second mapping relationship, where the second mapping relationship is a mapping relationship between the carrier reservation pattern and the beam.
  • the second communication device determines the first carrier reservation pattern corresponding to the first beam through the second mapping relationship.
  • the first carrier reservation pattern is more suitable for the second communication device, which is beneficial for the second communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner for the second communication device to determine the first carrier reservation pattern, which improves the diversity and integrity of the solution.
  • the second communication device determines the first carrier reservation pattern, including:
  • the second communication device determines the first carrier reservation pattern corresponding to the first part of the bandwidth from the multiple carrier reservation patterns according to the third mapping relationship.
  • the second communication device determines the first carrier reservation pattern corresponding to the first part of the bandwidth through the third mapping relationship.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the second communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner for the second communication device to determine the first carrier reservation pattern, which improves the diversity and integrity of the solution.
  • the reference signal is transmitted between the first communication device and the second communication device using a first reference signal pattern; the second communication device determines the first carrier reservation pattern, including:
  • the second communication device determines the carrier reservation pattern corresponding to the first reference signal pattern from the plurality of carrier reservation patterns according to the fourth mapping relationship and the first partial bandwidth.
  • the fourth mapping relationship is that the first communication device and the second communication device The mapping relationship between the carrier reservation pattern and the reference signal pattern adopted when each partial bandwidth of the multiple partial bandwidths is used.
  • the second communication device determines the carrier reservation pattern corresponding to the first reference signal pattern through the fourth mapping relationship and the first partial bandwidth.
  • the first carrier reservation pattern is more suitable for the first communication device, which is beneficial for the second communication device to transmit data signals using the first carrier reservation pattern to suppress the signal PARA. Thereby improving communication transmission performance.
  • the foregoing provides yet another specific implementation manner for the second communication device to determine the first carrier reservation pattern, which improves the diversity and integrity of the solution.
  • the method also includes:
  • the second communication device sends first configuration information to the first communication device, where the first configuration information is used to indicate a first carrier reservation pattern corresponding to the first part of bandwidth.
  • the second communications device may indicate the first carrier reservation pattern to the first communications device, so that the first communications device determines the first carrier reservation pattern. In this way, the consensus of the communication parties is achieved, and the normal progress of the communication transmission is realized, so as to improve the performance of the communication transmission.
  • the method also includes:
  • the second communication device sends first indication information to the first communication device, where the first indication information is used to indicate whether to use the carrier reservation pattern to transmit the data signal.
  • the second communication device indicates to the first communication device whether to use the carrier reservation pattern to transmit the data signal. In this way, the judging process of the first communication device is implemented, so as to improve the feasibility of the solution.
  • the first indication information is carried in a broadcast message.
  • a bearer of the first indication information is shown, and the broadcast message carries the first indication information, so that there is no need to redefine a new message to send the first indication information, and the practicability of the solution is improved.
  • the broadcast message includes SIB1 or MIB.
  • the first indication information is used to indicate location information of the third communication device, and the third communication device is used for the first communication device to communicate with the second communication device; or,
  • the first indication information is used to indicate whether the first communication device uses the carrier reservation pattern to transmit the data signal carried by each beam in the multiple beams, where the multiple beams include the first beam.
  • the above implementation manners show several possible indication manners in which the first indication information indicates whether to use the carrier reservation pattern to transmit the data signal. It is beneficial for the first communication device to determine whether to use the carrier reservation pattern to transmit data signals in a specific scenario, so as to improve communication transmission performance.
  • the third communication device is a satellite, and when the orbital altitude of the satellite is relatively high, the first communication device may use a carrier reserved pattern to transmit data signals.
  • the first communication device accesses the satellite communication system, and the first communication device uses the first beam to perform data transmission. Therefore, the first communication device may use the first indication information to determine whether to use the carrier reservation pattern to transmit the data signal.
  • the method further includes:
  • the second communication device determines a second carrier reservation pattern according to the second part of the bandwidth; the second communication device transmits the data signal according to the second carrier reservation pattern.
  • the second communication device switches part of the bandwidth, and the second communication device may update the carrier reservation pattern according to the second part of the bandwidth to which the second communication device switches. Therefore, the updated carrier reservation pattern is more suitable for the first communication device and the second communication device, and the second communication device transmits data signals according to the updated carrier reservation pattern, thereby better suppressing the signal PARA.
  • the method further includes:
  • the second communication device determines the third carrier reservation pattern according to the second beam correspondence; the second communication device transmits the data signal according to the second carrier reservation pattern.
  • the second communication device switches beams, and the second communication device may update the carrier reservation pattern according to the second beam switched to by the second communication device. Therefore, the updated carrier reservation pattern is more suitable for the first communication device and the second communication device, and the second communication device transmits data signals according to the updated carrier reservation pattern, thereby better suppressing the signal PARA.
  • the first beam corresponds to the first part of the bandwidth and the third part of the bandwidth
  • the first part of the bandwidth corresponds to the first carrier reserved pattern
  • the third part of the bandwidth corresponds to the fourth carrier reserved pattern
  • the second communication device determines a fourth carrier reservation pattern according to the third part of the bandwidth; the second communication device transmits the data signal according to the fourth carrier reservation pattern.
  • the second communication device switches part of the bandwidth on the first beam, and the second communication device may update the carrier reservation pattern according to the part of bandwidth to which the second communication device switches on the first beam. Therefore, the updated carrier reservation pattern is more suitable for the first communication device and the second communication device, and the second communication device transmits data signals according to the updated carrier reservation pattern, thereby better suppressing the signal PARA.
  • the second communication device Carrier reservation patterns transmit data signals, including:
  • the second communication device punctures the overlapped reserved carrier in the first carrier reserved pattern to obtain a fifth reserved carrier pattern, where the overlapped reserved carrier overlaps with the carrier used to transmit the reference signal in the first carrier reserved pattern the reserved carrier; the second communication device transmits the data signal according to the fifth carrier reserved pattern.
  • the second communication device transmits the data signal by puncturing the first carrier reserved pattern, and then using the fifth carrier reserved pattern obtained by puncturing. That is to say, the present application provides a new rule for using the carrier reservation pattern, and the carrier reservation pattern has a puncturing feature.
  • the second communication device does not need to store or configure multiple sets of carrier reservation patterns, thereby reducing the storage overhead of the second communication device.
  • the method also includes:
  • the second communication device sends second configuration information to the first communication device, and the second configuration information includes at least one of the following configuration parameters: multiple carrier reservation patterns, indexes of multiple carrier reservation patterns, the first communication device and the second The mapping relationship between the carrier reservation pattern and the reference signal pattern, the mapping relationship between the carrier reservation pattern and the partial bandwidth, and the carrier reservation pattern and beam The mapping relationship between the carrier reservation pattern and the multiple partial bandwidths corresponding to the beam.
  • the second communication device sends the second configuration information to the first communication device, so as to facilitate the first communication device to determine the configuration parameters included in the second configuration information.
  • the first communication device may determine the first carrier reservation pattern according to the mapping relationship included in the second configuration information, and transmit the data signal according to the first carrier reservation pattern. Thereby improving communication transmission performance.
  • any configuration parameter included in the second configuration information is carried in any of the following signaling: SIB1, MIB, RRC signaling, DCI, group DCI, MAC CE, TAC.
  • the third aspect of the embodiment of the present application provides a first communication device, and the first communication device includes:
  • a processing module configured to determine a first carrier reservation pattern
  • the transceiver module is configured to transmit data signals according to the first carrier reservation pattern; the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam; the first part of the bandwidth is determined by For transmitting data signals between the first communication device and the second communication device, the first beam is used for transmitting data signals between the first communication device and the second communication device.
  • the processing module is specifically used for:
  • the first configuration information is used to indicate a first carrier reservation pattern corresponding to the first part of the bandwidth
  • processing module is specifically used for:
  • a first carrier reservation pattern corresponding to the first partial bandwidth is determined from the plurality of carrier reservation patterns according to the first mapping relationship, where the first mapping relationship is a mapping relationship between the carrier reservation pattern and the partial bandwidth.
  • processing module is specifically used for:
  • the first carrier reservation pattern corresponding to the first beam is determined from the plurality of carrier reservation patterns according to the second mapping relationship, where the second mapping relationship is a mapping relationship between the carrier reservation pattern and the beam.
  • processing module is specifically used for:
  • the third mapping relationship includes the relationship between the carrier reservation pattern and the plurality of partial bandwidths corresponding to each of the plurality of beams mapping relationship between them.
  • processing module is specifically used for:
  • the fourth mapping relationship is that the first communication device and the second communication device use multiple parts
  • processing module is also used for:
  • processing module is specifically used for:
  • the first indication information is carried in a broadcast message.
  • the broadcast message includes SIB1 or MIB.
  • the first indication information is used to indicate the location information of the third communication device, and the third communication device is used for the first communication device to communicate with the second communication device;
  • the processing module is used specifically for:
  • Whether to use the carrier reservation pattern to transmit the data signal is determined according to the location information of the third communication device.
  • the first indication information is used to indicate whether the first communication device uses a carrier reservation pattern to transmit the data signal carried by each beam in the multiple beams, where the multiple beams include the first beam.
  • the processing module is further configured to:
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the processing module is further configured to:
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the first beam corresponds to the first part of the bandwidth and the third part of the bandwidth
  • the first part of the bandwidth corresponds to the first carrier reserved pattern
  • the third part of the bandwidth corresponds to the fourth carrier reserved pattern
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the fourth carrier reservation pattern.
  • the transceiver module is specifically used for:
  • the overlapping reserved carrier in the first carrier reserved pattern is punctured to obtain the fifth reserved carrier pattern, the overlapping reserved carrier is the reserved carrier overlapping with the carrier used to transmit the reference signal in the first carrier reserved pattern ;
  • the data signal is transmitted according to the fifth carrier reserved pattern.
  • the transceiver module is also used for:
  • the second configuration information includes at least one of the following configuration parameters: multiple carrier reservation patterns, indexes of multiple carrier reservation patterns, and the use of multiple partial bandwidths by the first communication device and the second communication device.
  • any configuration parameter included in the second configuration information is carried in any of the following signaling: SIB1, MIB, RRC signaling, DCI, group DCI, MAC CE, TAC.
  • the fourth aspect of the embodiment of the present application provides a second communication device, including:
  • a processing module configured to determine a first carrier reservation pattern
  • the transceiver module is configured to transmit data signals according to the first carrier reservation pattern; the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam; the first part of the bandwidth is determined by For transmitting data signals between the first communication device and the second communication device, the first beam is used for transmitting the data signals between the first communication device and the second communication device.
  • the processing module is specifically used for:
  • a first carrier reservation pattern corresponding to the first partial bandwidth is determined from the plurality of carrier reservation patterns according to the first mapping relationship, where the first mapping relationship is a mapping relationship between the carrier reservation pattern and the partial bandwidth.
  • processing module is specifically used for:
  • the first carrier reservation pattern corresponding to the first beam is determined from the plurality of carrier reservation patterns according to the second mapping relationship, where the second mapping relationship is a mapping relationship between the carrier reservation pattern and the beam.
  • processing module is specifically used for:
  • the third mapping relationship includes the relationship between the carrier reservation pattern and the plurality of partial bandwidths corresponding to each of the plurality of beams mapping relationship between them.
  • the reference signal is transmitted between the first communication device and the second communication device using a first reference signal pattern; the processing module is specifically configured to:
  • the fourth mapping relationship is that the first communication device and the second communication device use multiple parts
  • the transceiver module is also used for:
  • the transceiver module is also used for:
  • the first indication information is carried in a broadcast message.
  • the first indication information is used to indicate location information of the third communication device, and the third communication device is used for the first communication device to communicate with the second communication device; or,
  • the first indication information is used to indicate whether the first communication device uses the carrier reservation pattern to transmit the data signal carried by each beam in the multiple beams, where the multiple beams include the first beam.
  • the processing module is further configured to:
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the processing module is further configured to:
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the first beam corresponds to the first part of the bandwidth and the third part of the bandwidth
  • the first part of the bandwidth corresponds to the first carrier reserved pattern
  • the third part of the bandwidth corresponds to the fourth carrier reserved pattern
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the fourth carrier reservation pattern.
  • the processing module is specifically configured to:
  • the overlapping reserved carrier in the first carrier reserved pattern is punctured to obtain the fifth reserved carrier pattern, the overlapping reserved carrier is the reserved carrier overlapping with the carrier used to transmit the reference signal in the first carrier reserved pattern ;
  • Transceiver modules are also used to:
  • the data signal is transmitted according to the fifth carrier reserved pattern.
  • the transceiver module is also used for:
  • the second configuration information includes at least one of the following configuration parameters: multiple carrier reservation patterns, indexes of multiple carrier reservation patterns, the first communication device and the second communication device are using In the case of each partial bandwidth in multiple partial bandwidths, the mapping relationship between the carrier reservation pattern and the reference signal pattern, the mapping relationship between the carrier reservation pattern and the partial bandwidth, and the mapping between the carrier reservation pattern and the beam relationship, the mapping relationship between the carrier reservation pattern and the multiple partial bandwidths corresponding to the beam.
  • any configuration parameter included in the second configuration information is carried in any of the following signaling: SIB1, MIB, RRC signaling, DCI, group DCI, MAC CE, TAC.
  • a fifth aspect of the embodiment of the present application provides a first communication device, where the first communication device includes: a processor and a memory.
  • a computer program is stored in the memory; the processor is used to invoke and run the computer program stored in the memory, so that the processor implements any one of the implementation manners in the first aspect.
  • the first communication device further includes a transceiver; and the processor is further configured to control the transceiver to send and receive signals.
  • a sixth aspect of the embodiments of the present application provides a second communication device, where the second communication device includes: a processor and a memory.
  • a computer program is stored in the memory; the processor is used to call and run the computer program stored in the memory, so that the processor implements any one of the implementation manners in the second aspect.
  • the second communication device further includes a transceiver; and the processor is further configured to control the transceiver to send and receive signals.
  • the seventh aspect of the embodiment of the present application provides a first communication device.
  • the first communication device includes a logic circuit and an input and output interface; It is used to perform the transceiving operation in any one of the implementation manners in the first aspect above.
  • the eighth aspect of the embodiment of the present application provides a second communication device.
  • the second communication device includes a logic circuit and an input and output interface; the logic circuit is used to perform the processing operation in any implementation manner in the second aspect above, and the input and output interface It is used to perform the sending and receiving operation in any one of the implementation manners in the second aspect above.
  • the ninth aspect of the embodiment of the present application provides a computer program product including instructions, which is characterized in that, when it is run on a computer, it causes the computer to execute any implementation method according to the first aspect to the second aspect.
  • a tenth aspect of the embodiments of the present application provides a computer-readable storage medium, including computer instructions, and when the computer instructions are run on a computer, the computer executes any one of the implementation manners of the first aspect to the second aspect.
  • the eleventh aspect of the embodiment of the present application provides a chip device, including a processor, configured to be connected to a memory, and call a program stored in the memory, so that the processor executes any one of the above first to second aspects. way of realization.
  • a twelfth aspect of the embodiments of the present application provides a communication system, where the communication system includes the first communication device of the third aspect and the second communication device of the fourth aspect.
  • the first communication device determines the first carrier reservation pattern; the first communication device transmits the data signal according to the first carrier pattern.
  • the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam; the first part of the bandwidth is used to transmit data signals between the first communication device and the second communication device, The first beam is used to transmit data signals between the first communication device and the second communication device.
  • the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam.
  • the first carrier pattern is more suitable for the first communication device and the second communication device, and the first communication device can use the first carrier reservation pattern to transmit data signals to suppress the signal PARA, thereby improving communication transmission performance.
  • FIG. 1A is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 1B is another schematic diagram of the communication system of the embodiment of the present application.
  • FIG. 1C is another schematic diagram of the communication system of the embodiment of the present application.
  • FIG. 1D is another schematic diagram of the communication system of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of a communication processing method in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a scenario of a communication processing method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another scene of a communication processing method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another scene of a communication processing method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a carrier reservation pattern, a demodulation reference signal (demodulation reference signal, DMRS) pattern, and a carrier reservation pattern obtained by puncturing according to an embodiment of the present application;
  • DMRS demodulation reference signal
  • phase-tracking reference signal phase-tracking reference signal, PTRS
  • carrier reservation pattern obtained by puncturing according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 18 is another schematic structural diagram of the first communication device according to the embodiment of the present application.
  • FIG. 19 is another schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Embodiments of the present application provide a communication processing method and a communication processing device, which are used to suppress the signal PARA and improve communication transmission performance.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B can be singular or plural. "At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items. For example, at least one item (unit) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c. Among them, a, b, c can be single or multiple.
  • the technical solution of the present application can be applied to a terrestrial network system, and can also be applied to a non-terrestrial network (non-terrestrial network, NTN) system.
  • NTN non-terrestrial network
  • Ground network systems may include: cellular communication systems, Internet of Things communication systems, Internet of Vehicles communication systems, device to device (device to device, D2D) communication systems, mobile communication systems, etc.
  • the mobile communication system can be a fourth generation (4th generation, 4G) communication system, a worldwide interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, a fifth generation (5th generation, 5G) communication system, and future mobile communication systems, etc.
  • the 4G communication system may be a long term evolution (long term evolution, LTE) system)
  • the 5G communication system may be a new radio (new radio, NR) system.
  • Non-terrestrial network systems may include: satellite communication systems, high altitude platform station (HAPS) communication systems.
  • HAPS high altitude platform station
  • IcaN integrated communication and navigation
  • GNSS global navigation satellite system
  • ultra-dense low-orbit satellite communication system The satellite communication system can be integrated with the traditional mobile communication system.
  • a communication system to which this embodiment of the present application is applicable includes a first communication device and a second communication device.
  • the second communication device supports the access of the first communication device, so as to implement communication transmission between the first communication device and the second communication device.
  • the first communication device may be a terminal device
  • the second communication device may be a network device.
  • both the first communication device and the second communication device are terminal devices.
  • the technical solution of the present application will be introduced by taking the first communication device as a terminal device and the second communication device as a network device as an example.
  • the first communication device may be a terminal device.
  • Terminal equipment can be a device that provides voice or data connectivity to users.
  • Terminal equipment is also called user equipment (UE), and can also be called mobile station (mobile station), subscriber unit (subscriber unit), and station (station), terminal equipment (terminal equipment, TE), etc.
  • the terminal device can be a cellular phone (0phone), a personal digital assistant (personal digital assistant, PDA), a wireless modem (modem), a handheld device (handheld), a laptop computer (laptop computer), a cordless phone (cordless phone), a wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), vehicle-mounted equipment, vehicle module, vehicle, wearable device, computing device, aircraft, drone, etc.
  • devices that can access the communication system, communicate with the network side of the communication system, or communicate with other objects through the communication system can all be terminal devices in the embodiments of this application, for example, smart Terminal equipment and automobiles in transportation, household equipment in smart homes, power meter reading instruments in smart grids, voltage monitoring instruments, environmental monitoring instruments, video surveillance instruments in smart security networks, cash registers, etc.
  • the second communication device may be a network device, and the second communication device supports functions such as terminal device access and providing communication services for the terminal device.
  • the second communication device may be an evolved base station (evolved nodeB, eNB) in a 4G access technology communication system, a next generation base station (next generation nodeB, gNB) in a 5G access technology communication system, or a transmission and reception point (transmission Reception point (TRP), relay node (relay node), access point (access point, AP) and other ground equipment.
  • eNB evolved base station
  • gNB next generation base station
  • TRP transmission Reception point
  • relay node relay node
  • access point access point
  • AP access point
  • the first communication device can also be a non-ground device: a high-altitude base station, such as a hot air balloon that can provide wireless access functions for terminal devices, low-orbit satellites, medium-orbit satellites or high-orbit satellites, etc., and can also be unmanned It can also be a mobile switching center and a device to device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine-to-machine (machine-to-machine, M2M) communication Equipment for base station functions, etc.
  • a high-altitude base station such as a hot air balloon that can provide wireless access functions for terminal devices, low-orbit satellites, medium-orbit satellites or high-orbit satellites, etc.
  • a mobile switching center can also be a device to device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine-to-machine (machine-
  • the carrier reservation pattern includes a reserved carrier among carriers included in a part of the bandwidth and/or outside the part of the bandwidth, and the reserved carrier is used to transmit a kernel (TR kernel) signal to suppress PARA of the signal.
  • the carrier reservation pattern includes the reserved carrier among the carriers included in the part of the bandwidth as an example for description in the following.
  • the transmitting end device sends a carrier reservation core signal to the receiving end device on the reserved carrier within the partial bandwidth to suppress PARA of the signal.
  • the sending end device sends data signals on carriers other than the reserved carrier within the part of the bandwidth.
  • the receiving end device receives the core signal on the reserved carrier, and the receiving end device receives the data signal from the sending end device on other carriers except the reserved carrier within the part of the bandwidth according to the resource scheduling of the network side.
  • the receiver device After transforming the received signal into the frequency domain, the receiver device skips the data of the reserved carrier included in the carrier reservation pattern when taking out the data on the corresponding carrier. That is, the receiving end device does not decode the data on the reserved carrier included in the carrier reservation pattern.
  • the sending end device is the first communication device
  • the receiving end device is the second communication device
  • the sending end device is the second communication device
  • the receiving end device is the first communication device.
  • the carrier reservation pattern includes reserved carriers among the carriers outside the part of the bandwidth, the receiving end device may not receive signals on the reserved carrier, that is, the receiving end device does not monitor the channel on the reserved carrier .
  • the reserved carrier in the carrier reservation pattern may be represented by the carrier number of the reserved carrier.
  • the carrier number included in the carrier reservation pattern indicates that the carrier corresponding to the carrier number is a reserved carrier, that is, the carrier occupied by the core signal.
  • the number of carriers included in a part of the bandwidth starts from 1, that is, the carrier number of the first carrier in the part of the bandwidth is 1, the carrier number of the second carrier is 2, and so on.
  • a part of the bandwidth includes 2048 carriers, and the carrier reservation pattern is ⁇ 2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 293 912 919 961 ⁇ , that is, in this part of the bandwidth Among the 2048 carriers included, the 2nd carrier, the 3rd carrier, the 13th carrier, the 19th carrier, the 20th carrier, the 29th carrier, the 39th carrier, the 40th carrier, the 44th carrier, 45th carrier, 49th carrier, 69th carrier, 79th carrier, 89th carrier, 94th carrier, 105th carrier, 136th carrier, 141st carrier, 157th carrier
  • the first carrier, the 213th carrier, the 220th carrier, the 246th carrier, the 293rd carrier, the 912th carrier, the 919th carrier, and the 961st carrier are reserved carriers.
  • the present application does not limit the carrier numbers of the carriers included in a part of the bandwidth.
  • the present application may start from 0 to number the carriers included in a part of the bandwidth. For example, if the carrier number starts from 0, it is only necessary to subtract 1 from the carrier number included in the carrier reservation pattern shown below.
  • different beams can be distinguished according to partial bandwidth, transmission configuration indicator (TCI) or synchronization signal block (synchronization signal block, SSB) in the communication standard protocol.
  • TCI transmission configuration indicator
  • SSB synchronization signal block
  • beams can be indicated in terms of fractional bandwidth, TCI or SSB. Therefore, the terminal device and the network device can indicate the switching of beams by switching part of the bandwidth, TCI or SSB. Therefore, for the terminal device and/or the network device, the actual operation performed by beam switching may be: switching of partial bandwidth, TCI or SSB.
  • the beam can be replaced by partial bandwidth, TCI or SSB. Therefore, that is, the first communication device or the second communication device can complete the determination of the carrier reservation pattern in the scenario of partial bandwidth switching, TCI switching or SSB switching according to the method provided in this application.
  • the beam currently used by the terminal device to access the network device may be replaced by: a part of the bandwidth, TCI or SSB used by the terminal device to currently access the network device.
  • the carrier may be a subcarrier, which is not specifically limited in this application.
  • FIG. 1A is a schematic diagram of a communication system according to an embodiment of the present application. Please refer to FIG. 1A, the communication system shown in FIG. 1A includes network equipment and terminal equipment.
  • the carrier reservation pattern may be used for communication transmission between the network device and the terminal device.
  • the transmission may include uplink transmission and downlink transmission.
  • the first communication device may be understood as the terminal device shown in FIG. 1A above, and the second communication device may be understood as the network device shown in FIG. 1A above.
  • FIG. 1B is another schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system shown in FIG. 1B includes terminal equipment, satellites, gNBs and gateway stations (also called gateway stations).
  • Terminal equipment may include user equipment, aircraft, and the like.
  • the communication between the base station and the terminal equipment is transmitted through satellites and gateway stations.
  • the carrier reservation pattern can be used for communication transmission between the gNB and the terminal equipment.
  • the communication transmission may include uplink transmission and downlink transmission.
  • the first communication device may be understood as the terminal device shown in FIG. 1B above, and the second communication device may be understood as the gNB shown in FIG. 1B above.
  • FIG. 1C is another schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system shown in FIG. 1C includes high-altitude terminal equipment (for example, aircraft, UAV, etc.) and network equipment.
  • Carrier reservation patterns can be used for communication transmission between high-altitude terminal equipment and network equipment.
  • the communication transmission may include uplink transmission and downlink transmission.
  • the first communication device may be understood as the high-altitude terminal device shown in FIG. 1C above
  • the second communication device may be understood as the network device shown in FIG. 1C above.
  • FIG. 1D is another schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system shown in FIG. 1D includes terminal equipment and satellites.
  • Terminal equipment may include user terminals, aircraft, and the like.
  • satellites have the function of network equipment, and satellites can provide access services and communication services for terminal equipment.
  • communication transmission between terminal equipment and satellites.
  • the communication transmission may include uplink transmission and downlink transmission.
  • the first communication device may be understood as the terminal device shown in FIG. 1D above, and the second communication device may be understood as the satellite shown in FIG. 1D above.
  • FIG. 2 is a schematic diagram of an embodiment of a communication processing method according to an embodiment of the present application.
  • communication processing methods include:
  • the first communications device determines a first carrier reservation pattern (TR pattern).
  • the first carrier reservation pattern is determined according to the first part of bandwidth (bandwidth part, BWP), or the first carrier reservation pattern is determined according to the first beam.
  • the first part of bandwidth is used to transmit data signals between the first communication device and the second communication device
  • the first beam is used to transmit data signals between the first communication device and the second communication device.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the first carrier reservation pattern may be a carrier reservation pattern corresponding to the first part of the bandwidth, or the first carrier reservation pattern may be a carrier reservation pattern corresponding to the first beam. Therefore, the first carrier pattern is more suitable for the terminal device.
  • Step 201a may be performed before step 201.
  • the first communication device judges whether to use the carrier reservation pattern to transmit the data signal, and if yes, execute step 201; if not, execute step 203.
  • step 201a there are many ways for the first communication device to judge whether to use the carrier reservation pattern to transmit the data signal.
  • the first communication device please refer to the relevant introduction later, which will not be introduced in detail here.
  • the first communications device transmits a data signal according to a first carrier reservation pattern.
  • the first communications device receives the data signal according to the first carrier reservation pattern.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the second communication device sends the downlink data signal to the first communication device according to the first carrier reservation pattern.
  • the first communication device receives the downlink data signal from the second communication device according to the first carrier reservation pattern.
  • the first communication device is a terminal device, and the terminal device is in an idle state, and the terminal device executes the above steps 201 to 202. That is, the terminal device can use the first carrier reservation pattern for data transmission during the initial access process, thereby improving communication transmission performance.
  • the first communication device is a terminal device, and the terminal device is in an inactive state or a connected state, and the terminal device executes the above steps 201 to 202.
  • the first carrier reservation pattern is a carrier reservation pattern corresponding to the first part of the bandwidth or the first beam.
  • the first carrier pattern is more suitable for the terminal device, and the terminal device can use the first carrier reserved pattern to transmit data signals to suppress the signal PARA, thereby improving communication transmission performance.
  • the first communications device sends the data signal according to the first carrier reservation pattern.
  • the first communication device is a terminal device
  • the second communication device is a network device.
  • the first communication device sends the uplink data signal to the second communication device according to the first carrier reservation pattern.
  • the second communication device receives the uplink data signal sent from the first communication device according to the first carrier reservation pattern.
  • the first communications device does not use the carrier reservation pattern to transmit the data signal.
  • the second communication device does not use the carrier reservation pattern to send the downlink data signal to the first communication device.
  • the first communication device does not use the carrier reservation pattern to receive the downlink data signal from the second communication device.
  • the second communication device does not use the carrier reservation pattern to send the uplink data signal to the first communication device.
  • the first communication device does not use the carrier reservation pattern to receive the uplink data signal from the second communication device.
  • the operations performed by the second communication device include step 204 to step 205 .
  • the second communications device determines a first carrier reservation pattern.
  • the second communications device transmits the data signal according to the first carrier reservation pattern.
  • Steps 204 to 205 are similar to steps 201 to 202.
  • steps 201 to 202 please refer to the relevant introductions of the foregoing steps 201 to 202, which will not be repeated here.
  • the embodiment shown in FIG. 2 further includes step 204 a and step 206 .
  • Step 204a is performed before step 204 .
  • Step 206 may be performed before step 204a.
  • the second communication device judges whether to use the carrier reservation pattern to transmit the data signal, and if yes, execute step 204; if not, execute step 206.
  • the first communications device does not use the carrier reservation pattern to transmit the data signal.
  • Step 204a and step 206 are similar to step 201a and step 204, for details, please refer to the relevant introduction of the aforementioned step 201a and step 204, which will not be repeated here.
  • the first communication device determines a first carrier reservation pattern.
  • the first communication device transmits a data signal according to a first carrier pattern.
  • the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam.
  • the first part of bandwidth is used to transmit data signals between the first communication device and the second communication device, and the first beam is used to transmit data signals between the first communication device and the second communication device. It can be known from this that the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam.
  • the first carrier pattern is more suitable for the terminal device, and the terminal device uses the first carrier reserved pattern to transmit data signals to suppress the signal PARA, thereby improving communication transmission performance.
  • step 201 of the above embodiment shown in FIG. 2 there are multiple ways for the first communication device to determine the first carrier reservation pattern.
  • the present application is still applicable to other implementation manners, and the following example implementation manners are not limited to the technical solution of the present application.
  • the first carrier reservation pattern is a preconfigured or predefined default carrier reservation pattern in the first communication device.
  • the default carrier reservation pattern may be defined by the communication protocol.
  • the default carrier reservation pattern may be a carrier reservation pattern corresponding to an initial partial bandwidth (initial BWP), and the initial partial bandwidth is used for the first communication device to access the network.
  • the above step 201 specifically includes the terminal device determining the default carrier reservation pattern.
  • the configuration granularity of the initial partial bandwidth may be at the cell level, or at the UE level, or at the beam level, which is not limited in this application.
  • the network device configures a corresponding initial partial bandwidth for each cell, and different cells may correspond to different initial partial bandwidths. That is, the configuration granularity of the initial partial bandwidth is at the cell level.
  • the network device configures a corresponding initial partial bandwidth for each UE, and different UEs correspond to different initial partial bandwidths. That is, the configuration granularity of the initial partial bandwidth is at the UE level.
  • the network device configures a corresponding initial partial bandwidth for each beam, and different beams may correspond to different initial partial bandwidths. That is, the configuration granularity of the initial partial bandwidth is at the beam level.
  • the first communication device is a terminal device, and the terminal device is in an idle state.
  • the terminal device uses the initial partial bandwidth during the initial access process, and the default carrier reservation pattern corresponding to the initial partial bandwidth is the carrier reservation pattern 1 shown in FIG. 3 .
  • the terminal device determines a default carrier reservation pattern corresponding to the initial partial bandwidth.
  • the network device can send downlink data signals to the terminal device according to the default carrier reservation pattern, and correspondingly, the terminal device receives the downlink data signal from the network device according to the default carrier reservation pattern;
  • the device sends the uplink data signal, and correspondingly, the network device receives the uplink data signal from the terminal device according to the default carrier reservation pattern.
  • FIG. 4 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application.
  • communication processing methods include:
  • the first communications device receives first configuration information from the second communications device.
  • the first configuration information is used to indicate the first carrier reservation pattern corresponding to the first part of the bandwidth.
  • the first communication device acquires the first configuration information.
  • the second communication device sends the first configuration information to the first communication device.
  • the first communication device may receive the first configuration information from the second communication device.
  • the first configuration information includes a first carrier reservation pattern; or, the first configuration information includes an index of the first carrier reservation pattern.
  • the index of the first carrier reservation pattern is carried in the BWP configuration signaling.
  • a code format of BWP configuration signaling is shown below. It should be noted that the following code format is only an example, and does not limit the technical solution of the present application.
  • the first communication device may store multiple carrier reservation patterns, indexes of the multiple carrier reservation patterns, and a mapping relationship between the carrier reservation patterns and the indexes.
  • the first communication device may determine the first carrier reservation pattern from multiple carrier reservation patterns according to the index indicated by the first configuration information.
  • the multiple carrier reservation patterns, the indexes of the multiple carrier reservation patterns, and the mapping relationship between the carrier reservation patterns and the indexes may be pre-configured, or the second communication device sends the first communication device Indicated, or predefined (for example, specified by a communication protocol), which is not limited in this application.
  • Table 1 below shows an example of the mapping relationship between carrier reservation patterns and indexes.
  • the first configuration information indicates index 0. It can be seen from Table 1 that the first communication device can determine that the first carrier reservation pattern is ⁇ 2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 293 912 919 961 1003 1073 1085 1129 1138 1145 1146 1181 1264 1269 1302 1321 1396 1402 1452 1507 1507 1521 1537 1537 1557 1557575 1583 ⁇ .
  • the first communications device determines a first carrier reservation pattern according to the first configuration information.
  • the first configuration information includes a first carrier reservation pattern
  • the first communications device may determine the first carrier reservation pattern according to the first configuration information.
  • the first configuration information includes an index of the first carrier reservation pattern
  • the first communication device may use the index of the first carrier reservation pattern and the mapping relationship between the carrier reservation pattern and the index from The plurality of carrier reservation patterns determine a first carrier reservation pattern.
  • the first configuration information indicates index 0, and the first communication device can determine that the first carrier reservation pattern is ⁇ 2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 through the above Table 1 293 912 919 961 1003 1073 1085 1129 1138 1145 1146 1181 1264 1269 1303 1308 1396 1402 1452 1507 1507 1521 1537 1537 1549 1557 1575 1583 ⁇ .
  • the first communication device uses the first carrier reservation pattern to receive the data signal sent by the second communication device.
  • the first communication device receives the core signal from the second communication device on the reserved carrier included in the first carrier reservation pattern, and according to the resource scheduling of the network side, on other carriers in the partial bandwidth except the reserved carrier Receive data signals from the sending device. After transforming the received signal into the frequency domain, the first communication device skips the reserved carrier indicated by the first carrier reserved pattern when fetching the data on the corresponding carrier. That is, the second communication device does not perform decoding processing on the data on the reserved carriers included in the first carrier reservation pattern.
  • the first communications device determines a first carrier reservation pattern corresponding to a first part of bandwidth from multiple carrier patterns according to a first mapping relationship.
  • the first mapping relationship is a mapping relationship between carrier reservation patterns and partial bandwidths.
  • the first mapping relationship may be preconfigured, or indicated by the second communication device to the first communication device, or specified by a communication protocol, which is not limited in this application.
  • the multiple carrier reservation patterns are stored in the first communication device.
  • the multiple carrier reservation patterns may be pre-configured, or sent by the second communication device to the first communication device, or specified by a communication protocol, which is not specifically limited in this application.
  • the first mapping relationship is a mapping relationship between carrier reservation patterns and indices of partial bandwidths.
  • the first communication device determines a first carrier reservation pattern corresponding to an index of the first part of bandwidth from multiple carrier patterns according to the first mapping relationship.
  • Table 2 below shows the mapping relationship between the carrier reservation pattern and the index of the partial bandwidth.
  • the configuration information of the partial bandwidth corresponding to index 0 may include any of the following: 200M bandwidth, the carrier spacing is 120kHz (kilohertz); 100M bandwidth, the carrier spacing is 60kHz; 50M bandwidth, the carrier spacing is 30kHz; or 25M bandwidth, carrier spacing is 15kHz.
  • the configuration of the partial bandwidth corresponding to index 1 can be any of the following: 200M (Mega) bandwidth, carrier spacing is 120kHz; 100M bandwidth, carrier spacing is 60kHz; 50M bandwidth, carrier spacing is 30kHz; or 25M bandwidth, carrier spacing is 15kHz.
  • the partial bandwidth configuration information corresponding to index 2 can include any of the following: 30M bandwidth, carrier spacing is 120kHz; 15M bandwidth, carrier spacing is 60kHz; or 7.5M bandwidth, carrier spacing is 30kHz; 3.75M bandwidth, carrier spacing is 15kHz .
  • the configuration information of the partial bandwidth corresponding to index 3 can include any of the following: 30M bandwidth, the carrier spacing is 120kHz; 15M bandwidth, the carrier spacing is 60kHz; 7.5M bandwidth, the carrier spacing is 30kHz; or 3.75M bandwidth, the carrier spacing is 15kHz .
  • the first communication device can determine the first carrier reservation pattern corresponding to index 0 through Table 2: ⁇ 2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 293 912 919 961 1003 1073 1085 1129 1138 1146 1146 1181 1264 1269 1301321 1396 1402 1452 1507 1516 1533 1537 1549 1557575575 1583 ⁇ .
  • the first communication device uses the first carrier reservation pattern to receive the data signal sent by the second communication device.
  • the first communication device receives the core signal from the second communication device on the reserved carrier included in the first carrier reservation pattern, and according to the resource scheduling of the network side, on other carriers in the partial bandwidth except the reserved carrier Receive data signals from the sending device. After transforming the received signal into the frequency domain, the first communication device skips the reserved carrier indicated by the first carrier reserved pattern when fetching the data on the corresponding carrier. That is, the first communication device does not perform decoding processing on the data on the reserved carriers included in the first carrier reservation pattern.
  • the establishment of the mapping relationship between the carrier reservation pattern and the partial bandwidth index may consider at least one of the following factors: BWP bandwidth, carrier spacing, fast Fourier transform (fast Fourier transformation, FFT) or fast Fourier inverse transform (inverse fast Fourier transformation, IFFT) length, distribution of reserved carriers included in the carrier reservation pattern.
  • the distribution of reserved carriers included in the carrier reservation pattern includes: carrier reservations are distributed within the part of the bandwidth and/or outside the part of the bandwidth.
  • the second communication device considers the bandwidth of part of the bandwidth, carrier spacing, FFT length or IFFT length, and the distribution of reserved carriers included in the carrier reservation pattern, and traverses all
  • the carrier reservation pattern is selected to select the carrier reservation pattern corresponding to each partial bandwidth, and the mapping relationship between the carrier reservation pattern and the index of the partial bandwidth is established. That is, when the first communication device and the second communication device use the carrier reservation pattern corresponding to the first part of the bandwidth for data transmission, the signal PARA can be effectively suppressed.
  • the design can better suppress the signal PAPR
  • the carrier reservation pattern is used to establish a mapping relationship between the carrier reservation pattern and the partial bandwidth 1 .
  • the FFT length or IFFT length is 1024
  • the carrier reservation pattern is distributed in the band as an example, the carrier reservation pattern that can better suppress the signal PAPR is designed , to establish a mapping relationship between the carrier reservation pattern and the partial bandwidth 3 .
  • the first mapping relationship is a mapping relationship between a carrier reservation pattern and configuration information of a part of the bandwidth.
  • the first communication device determines the first carrier reservation pattern corresponding to the configuration information of the first partial bandwidth from the plurality of carrier reservation patterns according to the first mapping relationship.
  • the configuration information of the partial bandwidth includes the bandwidth of the partial bandwidth, the carrier interval.
  • Table 3 shows the mapping relationship between the carrier reservation pattern and the configuration information of the partial bandwidth.
  • the configuration information of the partial bandwidth is introduced by taking the bandwidth and the carrier spacing of the partial bandwidth as examples.
  • the configuration information of the first part of bandwidth includes: 30M bandwidth, and carrier spacing of 120kHz.
  • the first communication device can determine the first carrier reservation pattern corresponding to the configuration information of the first part of the bandwidth through the above table 3: 189 190 206 209 210 223 227 229 230 231 234 238 240 ⁇ .
  • step 501a the embodiment shown in FIG. 5 further includes step 501a, and step 501a may be performed before step 501 .
  • the second communications device sends second configuration information to the first communications device.
  • the first communication device receives the second configuration information from the second communication device.
  • the first configuration information is used to indicate the first mapping relationship.
  • the first configuration information includes a first mapping relationship.
  • the first configuration information further includes at least one of the following configuration parameters: the multiple reserved carrier patterns, indexes of the multiple reserved carrier patterns, a mapping relationship between reserved carrier patterns and indexes, and a second mapping relationship, the third mapping relationship, and the fourth mapping relationship.
  • the second mapping relationship is a mapping relationship between carrier reservation patterns and beams.
  • the third mapping relationship is a mapping relationship between the carrier reservation pattern and multiple partial bandwidths corresponding to each of the multiple beams.
  • the fourth mapping relationship is a mapping relationship between a carrier reservation pattern and a reference signal pattern adopted by the first communication device and the second communication device when each of the plurality of partial bandwidths is used.
  • the third mapping relationship and the fourth mapping relationship please refer to the related introduction later, and will not repeat them here.
  • each configuration parameter in the second configuration information may be carried in any of the following signaling: SIB1, MIB, RRC signaling, DCI, group DCI, MAC CE, TAC.
  • the first communication device is a terminal device, and the terminal device executes the above-mentioned embodiment shown in FIG. 2 during an initial access process.
  • the first mapping relationship may be carried in SIB1, MIB, or RRC signaling.
  • the first communications device determines a first carrier reservation pattern corresponding to a first beam from multiple carrier reservation patterns according to a second mapping relationship.
  • the second mapping relationship is a mapping relationship between carrier reservation patterns and beams.
  • the second mapping relationship may be preconfigured, or indicated by the second communication device to the first communication device, or specified by a communication protocol, which is not limited in this application.
  • the multiple carrier reservation patterns are stored in the first communication device.
  • the multiple carrier reservation patterns may be pre-configured, or sent by the second communication device to the first communication device, or specified by a communication protocol, which is not limited in this application.
  • Table 4 shows the mapping relationship between carrier reservation patterns and beams.
  • the beam number of the first beam is 0, and the first communication device can determine the first carrier reservation pattern according to the above table 4 as: 2 7 8 9 11 15 16 17 18 20 21 22 23 26 28 31 33 36 144 154 156 165 186 189 190 206 209 210 223 227 229 230 231 234 238 240.
  • the first communication device receives the core signal from the second communication device on the reserved carrier included in the first carrier reservation pattern, and receives the signal from the second communication device on other carriers except the reserved carrier within a part of the bandwidth according to the resource scheduling of the network side. Data signals from end devices. After transforming the received signal into the frequency domain, the first communication device skips the reserved carrier indicated by the first carrier reserved pattern when fetching the data on the corresponding carrier. That is, the first communication device does not perform decoding processing on the data on the reserved carriers included in the first carrier reservation pattern.
  • the establishment of the mapping relationship between the carrier reservation pattern and the beam may consider at least one of the following factors: bandwidth used for communication between the first communication device and the second communication device in the beam, FFT length or IFFT length, carrier reservation
  • bandwidth used for communication between the first communication device and the second communication device in the beam FFT length or IFFT length
  • carrier reservation The distribution of reserved carriers included in the reserved pattern.
  • the reserved carriers included in the carrier reservation pattern please refer to the aforementioned related introduction.
  • the second communication device considers the bandwidth used for communication between the first communication device and the second communication device in the beam, the FFT length or IFFT length, and the distribution of reserved carriers included in the carrier reservation pattern, With the goal of optimizing the PARA suppression effect, all carrier reservation patterns are traversed to select the carrier reservation pattern corresponding to each beam, and the mapping relationship between the carrier reservation pattern and the beam is established. That is, when the first communication device and the second communication device use the carrier reservation pattern corresponding to the first beam for data transmission, the signal PARA can be effectively suppressed.
  • the first communication device and the second communication device use 30M bandwidth for communication (the carrier spacing is 120kHz), the FFT length or IFFT length is 1024, and the carrier reservation pattern is distributed in the band
  • the carrier reservation pattern that can better suppress the signal PAPR is designed, and a mapping relationship between the carrier reservation pattern and beam 0 is established.
  • the first communication device is terminal device 1 , and terminal device 1 accesses beam 1 . Therefore, the terminal device 1 can determine the carrier reservation pattern 7 corresponding to the beam 1 .
  • the embodiment shown in FIG. 6 further includes step 601a, and step 601a may be performed before step 601.
  • the second communications device sends third configuration information to the first communications device.
  • the first communication device receives third configuration information from the second communication device.
  • the third configuration information is used to indicate the second mapping relationship.
  • the third configuration information includes the second mapping relationship.
  • the third configuration information further includes at least one of the following configuration parameters: the multiple reserved carrier patterns, indexes of the multiple reserved carrier patterns, the mapping relationship between reserved carrier patterns and indexes, the first A mapping relationship, a third mapping relationship, and a fourth mapping relationship.
  • the first mapping relationship please refer to the relevant introduction of the aforementioned FIG. 4 , and details will not be repeated here.
  • the relevant introduction of the third mapping relationship and the fourth mapping relationship please refer to the relevant introduction later, and will not be repeated here.
  • each configuration parameter in the third configuration information is similar to the carrying manner of each configuration parameter in the second configuration information in the aforementioned step 501a.
  • step 501a For details, please refer to the related introduction of step 501a, which will not be repeated here.
  • two different beams may correspond to the same carrier reservation pattern.
  • the distance between the signal coverage areas of the two beams is relatively large, and the two beams correspond to the same partial bandwidth.
  • the signal coverage of beam 2 is larger than the signal coverage of beam 7 . Therefore, both the beam 2 and the beam 7 may correspond to the carrier reservation pattern 5 .
  • the terminal device 2 accesses the beam 2, and uses the carrier reservation pattern 7 for data transmission.
  • the terminal device 3 accesses the beam 7 and uses the carrier reservation pattern 5 for data transmission. There will be no or little interference between the terminal device 2 and the terminal device 3 (the interference can be ignored).
  • the first communications device determines a first carrier reservation pattern corresponding to a first part of bandwidth from multiple carrier reservation patterns according to a third mapping relationship.
  • the third mapping relationship is a mapping relationship between the carrier reservation pattern and multiple partial bandwidths corresponding to each of the multiple beams.
  • the plurality of beams includes a first beam.
  • the third mapping relationship may be preconfigured, or indicated by the second communication device to the first communication device, or stipulated by a communication protocol, which is not limited in this application.
  • the multiple carrier reservation patterns are stored in the first communication device.
  • the multiple carrier reservation patterns may be pre-configured, or sent by the second communication device to the first communication device, or specified by a communication protocol, which is not limited in this application.
  • the third mapping relationship is the mapping relationship between the carrier reservation pattern and the indexes of multiple partial bandwidths corresponding to each of the multiple beams; or, the third mapping relationship is the carrier reservation pattern and A mapping relationship between configuration information of multiple partial bandwidths corresponding to each beam in the multiple beams.
  • the configuration information of the partial bandwidth includes bandwidth and carrier spacing of the partial bandwidth.
  • Table 5 shows the mapping relationship between carrier reservation patterns and indices of multiple partial bandwidths corresponding to each beam.
  • the configuration information of the partial bandwidth corresponding to index 0 may include any of the following:
  • carrier spacing is 120kHz (kilohertz)
  • FFT length is 1024
  • the configuration information of the partial bandwidth corresponding to index 1 may include any of the following:
  • the beam number of the first beam is 0, and the first partial bandwidth is the partial bandwidth corresponding to index 0.
  • the reserved pattern of the first carrier is ⁇ 2 7 8 9 11 15 16 17 18 20 21 22 23 26 28 31 33 36 144 154 156 165 186 189 190 206 209 210 223 227 229 2303 402 3 8 2 ⁇ .
  • the first communication device uses the carrier reservation pattern corresponding to index 0 on beam 0 to receive the signal sent by the second communication device. After transforming the received signal into the frequency domain, the first communication device skips the reserved carrier indicated by the carrier reservation pattern corresponding to index 0 when fetching the data on the corresponding carrier. That is, the first communication device does not perform decoding processing on the data on the reserved carrier included in the carrier reservation pattern corresponding to index 0.
  • beam 1 corresponds to partial bandwidth 1 , partial bandwidth 2 , partial bandwidth 3 , and partial bandwidth 4 .
  • Partial bandwidth 1 has index 1
  • partial bandwidth 2 has index 2
  • partial bandwidth 3 has index 3
  • partial bandwidth 4 has index 4.
  • Index 1 corresponds to carrier reserved pattern 1
  • index 2 corresponds to carrier reserved pattern 2
  • index 3 corresponds to carrier reserved pattern 3
  • index 4 corresponds to carrier reserved pattern 4.
  • the first communication device uses a part of bandwidth 1 corresponding to beam 1 . Therefore, the first communication device may determine the carrier reservation pattern 1 corresponding to the index 1 of the partial bandwidth 1, and use the carrier reservation pattern 1 to transmit the data signal.
  • the establishment of the third mapping relationship may consider at least one of the following factors: which part of the bandwidth each beam corresponds to, the bandwidth of the part of the bandwidth corresponding to each beam, carrier spacing, FFT length or IFFT length, carrier reservation pattern included Distribution of reserved carriers.
  • the reserved carriers included in the carrier reservation pattern please refer to the relevant introduction above.
  • the second communication device takes which partial bandwidths correspond to each beam, the bandwidth of the partial bandwidth corresponding to each beam, carrier spacing, FFT length or IFFT length, and the distribution of reserved carriers included in the carrier reservation pattern as considerations, All carrier reservation patterns are traversed with the goal of optimizing the PARA suppression effect, so as to select a carrier reservation pattern corresponding to each partial bandwidth among the plurality of partial bandwidths corresponding to each beam.
  • beam 0 corresponds to partial bandwidth 0 and partial bandwidth 1.
  • the partial bandwidth 0 is 30M bandwidth (the carrier spacing is 120kHz)
  • the FFT length or IFFT length is 1024
  • the carrier reservation pattern is distributed in the band, and the carrier reservation pattern that can better suppress the signal PAPR is designed, and the establishment of the The mapping relationship between the carrier reservation pattern and the part of bandwidth 0 corresponding to beam 0.
  • step 801a As for the manner in which the second communication device indicates the third mapping relationship to the first communication device, optionally, the embodiment shown in FIG. 8 further includes step 801a, and step 801a may be performed before step 801 .
  • the second communications device sends fourth configuration information to the first communications device.
  • the first communication device receives fourth configuration information from the second communication device.
  • the fourth configuration information is used to indicate the third mapping relationship.
  • the fourth configuration information includes the third mapping relationship.
  • the fourth configuration information further includes at least one of the following configuration parameters: the multiple reserved carrier patterns, indexes of the multiple reserved carrier patterns, the mapping relationship between reserved carrier patterns and indexes, the first A mapping relationship, a second mapping relationship, and a fourth mapping relationship.
  • first mapping relationship and the second mapping relationship please refer to the relevant introductions in the aforementioned FIG. 5 and FIG. 6 respectively, and details are not repeated here.
  • relevant introduction of the fourth mapping relationship please refer to the relevant introduction later, and will not be repeated here.
  • the carrying manner of each configuration parameter in the fourth configuration information is similar to the carrying manner of each configuration parameter in the first configuration information in the aforementioned step 501a.
  • the related introduction of step 501a which will not be repeated here.
  • FIG. 10 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application. Please refer to Figure 10, the communication processing method includes:
  • the first communications device determines a carrier reservation pattern corresponding to a first reference signal pattern from multiple carrier reservation patterns according to a fourth mapping relationship and a first partial bandwidth.
  • the fourth mapping relationship is a mapping relationship between a carrier reservation pattern and a reference signal pattern adopted by the first communication device and the second communication device when using each part of bandwidth in the plurality of partial bandwidths.
  • the first reference signal pattern is a pattern of reference signal samples transmitted by the first communication device.
  • the reference signal includes any one of the following: PTRS, channel-state information reference signal (channel-state information reference signal, CSI-RS), DMRS, tracking reference signal (tracking reference signal, TRS).
  • PTRS channel-state information reference signal
  • CSI-RS channel-state information reference signal
  • DMRS tracking reference signal
  • TRS tracking reference signal
  • the reference signal pattern may be characterized by configuration parameters of the reference signal, for example, the frequency domain density of the reference signal.
  • the frequency domain density of the reference signal may be expressed by mapping a reference signal for every resource block (resource block, RB) or by mapping a reference signal for every number of carriers.
  • the fourth mapping relationship includes a mapping relationship between carrier reservation patterns and frequency domain densities of reference signals adopted by the first communication device and the second communication device when using each of the plurality of partial bandwidths.
  • Table 6 shows the mapping relationship between the carrier reservation pattern and the frequency domain density of the reference signal adopted by the first communication device and the second communication device when using the first part of the bandwidth.
  • Table 6 takes PTRS as an example, and the frequency domain density of reference signals in Table 6 indicates that every K PT-RS RBs are mapped to one PTRS.
  • the reference signal is PTRS
  • the frequency domain density of PTRS is 2.
  • the first communication device can determine that the first carrier reservation pattern is ⁇ 2 3 13 19 20 29 39 40 44 45 69 79 89 94 105 136 141 through the above Table 6 157 213 220 246 293 912 919 1003 1073 1085 1138 1145 1146 1181 1236 1269 1302 1396 1402 1452 1507 1507 1521 1533 1535 1557 1564 1575 1583 ⁇ .
  • the establishment of the mapping relationship between the frequency domain density of the reference signal and the carrier reservation pattern may consider that the reserved carrier position included in the carrier reservation pattern avoids the carrier position occupied by the reference signal, so as to avoid carrier overlap.
  • Using the carrier reservation pattern by the first communication device and the second communication device can make the secondary peak of the obtained time-domain nuclear signal smaller or the ratio of the main peak to the secondary peak larger. This can not only ensure the complete transmission of the reference signal (guarantee the decoding performance), but also ensure better signal PAPR suppression effect.
  • the mapping relationship between the carrier reservation pattern shown in Table 6 and the frequency domain density of the reference signal is designed and obtained.
  • the above Table 6 introduces the frequency domain density of the reference signal by taking how many RBs are mapped to one PTRS as an example.
  • the frequency domain density of the above reference signal may also be expressed in other ways.
  • the frequency domain density of the reference signal maps one PTRS to every number of carriers, which is not limited in this application.
  • Table 7 shows the mapping relationship between the carrier reservation pattern adopted by the first communication device and the second communication device when using the first part of the bandwidth and the frequency domain density of the reference signal, and the relationship between the first communication device and the frequency domain density of the reference signal.
  • the frequency domain density of the reference signal in Table 7 indicates how many carriers are mapped to a reference signal.
  • the configuration information of the partial bandwidth corresponding to index 0 can include any of the following: 200M bandwidth, carrier spacing is 120kHz, FFT length or IFFT length is 2048; 100M bandwidth, carrier spacing is 60kHz, FFT length or IFFT length 2048; 50M bandwidth, carrier spacing is 30kHz, FFT length or IFFT length is 2048; or 25M bandwidth, carrier spacing is 15kHz, FFT length or IFFT length is 2048.
  • the configuration information of the partial bandwidth corresponding to index 1 can include any of the following: 30M bandwidth, carrier spacing is 120kHz, FFT length or IFFT length is 1024; 15M bandwidth, carrier spacing is 60kHz, FFT length or IFFT length is 1024; 7.5M Bandwidth, carrier spacing is 30kHz, FFT length or IFFT length is 1024; or 3.75M bandwidth, carrier spacing is 15kHz, FFT length or IFFT length is 1024.
  • the first part of bandwidth is the part of bandwidth corresponding to index 0.
  • the frequency domain density of the reference signal is 2.
  • the first communication device can determine the reserved pattern of the first carrier through the above table 7: ⁇ 2 28 40 42 68 72 82 84 122 140 160 184 212 890 930 988 1032 1086 1104 1162 1168 1270 1284 1328 1352 4139 41 0 4 139 1504 1522 1524 1554 1582 ⁇ .
  • the establishment of the fourth mapping relationship may consider at least one of the following factors: the frequency domain density of reference signals to be used in each partial bandwidth, partial bandwidth, carrier spacing, FFT length or IFFT length, carrier reservation
  • the distribution of patterns please refer to the above-mentioned related introductions, and details will not be repeated here.
  • the frequency domain densities of the reference signal are 2 and 24, the partial bandwidth corresponding to index 0 is 200M bandwidth (carrier spacing is 120kHz), the FFT length or IFFT length is 2048, and the carrier preset
  • the reserved carrier included in the reserved pattern is distributed in the band, the reserved carrier pattern capable of suppressing the signal PAPR is designed, and the mapping relationship between the reserved carrier pattern and the frequency domain density of the reference signal is established.
  • the frequency domain density of the reference signal is 2, 4 or 24, the partial bandwidth corresponding to index 1 is 30M bandwidth (carrier spacing is 120kHz), and the FFT length or IFFT length is 1024 , the reserved carriers included in the carrier reservation pattern are distributed in the band, the carrier reservation pattern that can better suppress the signal PAPR is designed, and the mapping relationship between the carrier reservation pattern and the frequency domain density of the reference signal is established.
  • the frequency domain density of the reference signal is 2, which means that one reference signal is mapped to every two carriers.
  • the frequency domain density of the reference signal is 4, which means that one reference signal is mapped to every four carriers.
  • the frequency domain density of the reference signal is 24, which means that every 24 carriers are mapped to a reference signal.
  • the frequency domain density of the reference signal is 2, which means that the reference signal is transmitted on the 1st, 3rd, 5th, 7th... carriers.
  • the frequency domain density of the reference signal is introduced in the above Table 7 by taking how many carriers are mapped to a reference signal as an example.
  • the frequency domain density of the reference signal is how many RBs are mapped to one reference signal.
  • the frequency domain densities of the reference signals are 2, 4 and 24 respectively, which can be replaced by the frequency domain densities of the reference signals being 1/2, 1/4 and 1/24.
  • the fourth mapping relationship may be preconfigured, or indicated by the second communication device to the first communication device, or specified by a communication protocol, which is not limited in this application.
  • the multiple carrier reservation patterns are stored in the first communication device.
  • the multiple carrier reservation patterns include the carrier reservation patterns shown in Table 7 above.
  • the multiple carrier reservation patterns may be pre-configured, or sent by the second communication device to the first communication device, or specified by a communication protocol, which is not limited in this application.
  • the embodiment shown in FIG. 10 further includes step 1001a, and step 1001a may be performed before step 1001.
  • the second communications device sends fifth configuration information to the first communications device.
  • the first communication device receives fifth configuration information from the second communication device.
  • the fifth configuration information is used to indicate the fourth mapping relationship.
  • the fifth configuration information further includes at least one of the following configuration parameters: the multiple reserved carrier patterns, indexes of the multiple reserved carrier patterns, the mapping relationship between reserved carrier patterns and indexes, the first A mapping relationship, a second mapping relationship, and a third mapping relationship.
  • the carrying manner of each configuration parameter in the fifth configuration information is similar to the carrying manner of each configuration parameter in the first configuration information in the aforementioned step 501a. For details, please refer to the relevant introduction of step 501a, and details will not be repeated here.
  • step 201a of the embodiment shown in FIG. 2 above the first communication device judges whether to use the carrier reservation pattern to transmit the data signal.
  • the specific determination process of the first communication device in the above step 201a will be described below in conjunction with step 1 and step 2.
  • Step 1 The first communication device acquires first indication information.
  • the first indication information is used to indicate whether the first communication device uses the carrier reservation pattern to transmit the data signal.
  • the first indication information is used to indicate the location information of the third communication device.
  • the third communication device is used for communication between the first communication device and the second communication device.
  • the third communication device and the first communication device are two different communication devices.
  • the first indication information comes from the second communication device, or from the intermediate node device.
  • a third communication device For example, a third communication device.
  • the third communication device is a satellite, and the first communication device and the second communication device perform communication and transmission through the satellite.
  • the position information of the satellite is included in the ephemeris information of the satellite. For example, the altitude of the satellite's orbit, the speed of the satellite's movement, the inclination angle of the satellite's orbit, etc.
  • the above step 1 specifically includes: the second communication device sends the first indication information to the first communication device.
  • the first communication device receives the first indication information from the second communication device.
  • the first indication information is used to indicate whether the first communication device uses a carrier reservation pattern to transmit the data signal carried by each of the multiple beams.
  • the signal coverage of the satellite includes beam 1 to beam 5
  • the first indication information indicates: whether the first communication device uses a carrier reservation pattern to transmit the data signal carried by each beam in beam 1 to beam 3, The first communication device does not use the carrier reservation pattern to transmit the data signal carried by each of the beams 4 to 5 .
  • the first indication information is carried in a broadcast message.
  • the broadcast message is the SIB1 or MIB sent by the second communication device to the first communication device.
  • Step 2 The first communication device determines whether to use the carrier reservation pattern to transmit the data signal according to the first instruction information. If yes, execute step 201 in the above embodiment shown in FIG. 2; if not, execute the above step 201 shown in FIG. 2 Step 204 in the embodiment.
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal according to the location information of the third communication device. If yes, execute step 201 in the embodiment shown in FIG. 2 above; if not, execute step 204 in the embodiment shown in FIG. 2 above.
  • the third communication device is a satellite, and the position information of the satellite includes ephemeris information of the satellite.
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal according to the ephemeris information of the satellite.
  • the ephemeris information of the satellite includes the orbital altitude of the satellite. If the orbital altitude of the satellite is greater than the first threshold, the first communication device determines to use the carrier reservation pattern to transmit the data signal; if the orbital altitude of the satellite is less than or equal to the first threshold, Then the first communication device determines to use the carrier reservation pattern to transmit the data signal.
  • the first threshold is 200KM (kilometer).
  • the size of the first threshold may be set with reference to the requirement of the signal-to-noise ratio of the receiving end. For example, when the altitude of the orbit between the first communication device and the satellite exceeds 200KM (kilometers), the first communication device communicates with the satellite. The first communication device sends a signal to the satellite, and the signal-to-noise ratio of the signal received by the satellite is low. The first communication device needs to increase the transmission power to improve the signal-to-noise ratio of the satellite. Therefore, the first communication device needs to use the carrier reservation pattern suppression signal PAPR to increase the transmit power. That is, the first threshold can be set as 200KM.
  • the first communication device determines whether to carry the data signal of the first beam according to the first indication information. If yes, execute step 201 in the embodiment shown in FIG. 2 above; if not, execute step 204 in the embodiment shown in FIG. 2 above.
  • the first communication device uses beam 1 to perform data transmission.
  • the first indication information instructs the first communication device to use the carrier reservation pattern to transmit the data signal carried by the beam 1 . Therefore, the first communications device may determine to use the carrier reservation pattern to transmit the data signal carried by the beam 1 .
  • the indication manner 1 in the above step 1 shows that the third communication device and the first communication device are two different communication devices.
  • the third communication device and the first communication device may also be the same communication device, and the first communication device obtains the location information of the first communication device; then, the first communication device judges whether to use the carrier wave according to the location information of the first communication device
  • the reserved pattern transmits data signals.
  • the first communication device is a high-altitude terminal device
  • the location information of the high-altitude terminal device includes height information of the high-altitude terminal device. Then, the high-altitude terminal device judges whether to use the carrier reservation pattern to transmit the data signal according to the height information of the high-altitude terminal device.
  • the first communication device is the aircraft shown in FIG. 1C.
  • the position information of the aircraft includes the flight altitude of the aircraft, the relative altitude difference between the aircraft and the sea level, and the like. If the relative height difference between the high-altitude terminal device and the sea level is greater than the second threshold, the high-altitude terminal device determines to use the carrier reservation pattern to transmit data signals; if the relative height difference between the high-altitude terminal device and the sea level is less than or equal to the second threshold, the high-altitude The terminal device determines to use the carrier reservation pattern to transmit the data signal.
  • the size of the second threshold may be set with reference to the requirement of the signal-to-noise ratio of the receiving end.
  • the high-altitude terminal device sends a data signal to the second communication device. If the signal-to-noise ratio of the signal received by the second communication device is low, the high-altitude terminal device needs to increase the transmission power to improve the signal-to-noise ratio of the receiving end. Therefore, the high-altitude terminal device can use the carrier reservation pattern to send data signals to suppress the signal PAPR to increase the transmit power.
  • the second threshold may be the relative height of the high-altitude terminal device from the sea level when the signal-to-noise ratio of the signal received by the receiving end is less than a certain value.
  • the first communication device is a satellite
  • the position information of the satellite may be included in the ephemeris information of the satellite.
  • the satellite judges whether to use the carrier reservation pattern to transmit the data signal according to the ephemeris information of the satellite.
  • the first communication device is the satellite shown in FIG. 1D , and the satellite also has the function of a network device.
  • the position information of the satellite is included in the ephemeris information of the satellite.
  • the ephemeris information and the process of the satellite judging whether to use the carrier reservation pattern to transmit the data signal please refer to the above-mentioned related introductions, and will not repeat them here.
  • step 201 of the embodiment shown in FIG. 2 above optionally, if the reserved carrier in the first carrier reservation pattern overlaps with the carrier used to transmit the reference signal on the first communication device on the same frequency domain resource , the above step 202 specifically includes step 202a and step 202b.
  • Step 202a the first communication device punctures the overlapped reserved carrier in the first carrier reserved pattern to obtain the fifth reserved carrier pattern;
  • the overlapping reserved carrier pattern is a reserved carrier overlapping with a carrier used to transmit the reference signal in the first carrier reserved pattern.
  • Overlapping the reserved carrier pattern means that the carrier is used as a reserved carrier and as a carrier for transmitting reference signals.
  • the first communication device is a terminal device, and the terminal device receives a core signal from a network device on the reserved carrier. The network device configures the terminal device to receive the reference signal on the reserved carrier. Since the terminal device does not decode the signal received on the reserved carrier, the first communication device cannot decode the reference signal. Therefore, the first communication device may puncture the overlapped reserved carrier pattern in the first carrier reserved pattern, so as to facilitate the transmission of the reference signal by the first communication device.
  • a partial bandwidth includes 2048 carriers.
  • the first -load wave reserved pattern is ⁇ 28 39 40 42 65 68 72 83 83 84 85 91 117 122 140 159 160 184 223 817 890 948 1032 1086 1168 1223 1270 1277 128444 1328 1345 1352 1388 1389 1390 1394 1396 1405 1442 1454 1471 1504 1522 1524 1553 1554 1563 1582 1583 ⁇ .
  • the first communication device punches holes in the first carrier reserved pattern, and obtains the fifth carrier reserved pattern after punching: ⁇ 2 28 39 40 42 65 68 72 82 83 84 85 91 115 117 122 140 159 160 184 212 223 890 930 949 988 1032 1086 1162 1168 1223 1267 1270 1277 1284 1352 1388 1390 1394 1396 1405 1454 1471 1504 1524 1554 1563 1582 1583 ⁇ .
  • a part of the bandwidth includes 2048 carriers.
  • the reserved pattern of the first carrier is: ⁇ 2 28 39 40 42 65 68 72 82 83 84 85 91 115 117 122 140 159 160 184 212 223 817 890 930 949 988 1032 1086 1104 1168 1223 1267 1270 1277 1284 1345 1352 1388 1390 1394 1396 1405 1454 1471 1504 1524 1553 1554 1582 1583 ⁇ .
  • the frequency domain density of the DMRS is 1/2, that is, on one symbol, one DMRS is mapped to every two carriers. That is, the DMRS is transmitted on the 1st, 3rd, 5th, 7th, 9th... carriers.
  • the first communication device punches the reserved pattern of the first carrier, and obtains the reserved pattern of the fifth carrier after punching: ⁇ 2 28 40 42 68 72 82 84 122 140 160 184 212 890 930 988 1032 1086 1104 1162 1168 1270 1284 1328 1352 1388 1390 1394 1396 1442 1454 1504 1522 1524 1554 1582 ⁇ .
  • Step 202b the first communication device transmits the data signal according to the fifth carrier reservation pattern.
  • the first communication device is a terminal device, and the carrier reservation pattern shown in FIG. 11 includes carrier 1, carrier 4, carrier 5, carrier 8, and carrier 10, and these carriers are all reserved carriers. That is, the terminal equipment does not transmit data signals on these carriers.
  • the DMRS pattern shown in FIG. 11 indicates that the terminal device receives the DMRS from the network device on carrier 1, carrier 3, carrier 5, carrier 7, carrier 9 and carrier 11. Therefore, carrier 1 and carrier 5 are overlapping reserved carriers.
  • the terminal device can puncture carrier 1 and carrier 5 in the carrier reserved pattern to obtain the punctured carrier reserved pattern, as shown in Figure 11, the punched carrier reserved pattern includes carrier 4 and carrier 8 and carrier 10.
  • the first communication device is a terminal device, and the carrier reservation pattern shown in FIG. 12 includes carrier 1, carrier 4, carrier 5, carrier 8, and carrier 10. These carriers are all reserved carriers included in the carrier reservation pattern. Terminal equipment does not transmit data signals on these carriers.
  • the PTRS pattern shown in Figure 12 indicates that the terminal device receives PTRS from the network device on carrier 1 and carrier 7. Carrier 1 thus reserves a carrier for the overlap in the carrier reservation pattern.
  • the terminal device can punch carrier 1 in the carrier reserved pattern to obtain the punched carrier reserved pattern, as shown in Figure 12, the punched carrier reserved pattern includes carrier 4, carrier 5, and carrier 8 and carrier 10.
  • the first communication device transmits the data signal by puncturing the first carrier reserved pattern, and then using the fifth carrier reserved pattern obtained by puncturing. That is to say, the present application provides a new rule for using the carrier reservation pattern, and the carrier reservation pattern has a puncturing feature.
  • the first communication device does not need to store or configure multiple sets of carrier reservation patterns, thereby reducing the storage overhead of the first communication device.
  • the first communication device may update the carrier reservation pattern.
  • the operations performed by the first communication device will be described below in conjunction with the embodiment shown in FIG. 13 .
  • FIG. 13 is a schematic diagram of another embodiment of a communication processing method according to an embodiment of the present application. Please refer to Figure 13, the communication processing method includes:
  • the first communications device determines a first carrier reservation pattern.
  • Step 1301 is similar to step 201 in the above-mentioned embodiment shown in FIG. 2 .
  • Step 1301 is similar to step 201 in the above-mentioned embodiment shown in FIG. 2 .
  • step 1301 a may be performed before step 1301.
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal, and if yes, execute step 1301; if not, execute step 1305.
  • Step 1301a and step 1305 are similar to step 201a and step 203 in the above-mentioned embodiment shown in FIG. 2 .
  • Step 1301a and step 1305 are similar to step 201a and step 203 in the above-mentioned embodiment shown in FIG. 2 .
  • the first communications device transmits a data signal according to a first carrier reservation pattern.
  • Step 1302 is similar to step 202 in the above-mentioned embodiment shown in FIG. 2 .
  • Step 1302 please refer to the related introduction of step 202 in the above-mentioned embodiment shown in FIG. 2 , which will not be repeated here.
  • the first communication device determines a second carrier reservation pattern according to the second part of bandwidth.
  • step 1303 the manner in which the first communication device determines the second carrier reservation pattern is similar to the manner in which the first communication device determines the first carrier reservation pattern in the embodiments shown in FIG. 4 and FIG. 4 and the relevant introductions in the embodiment shown in FIG. 5 will not be repeated here.
  • the first part of bandwidth is the part of bandwidth corresponding to index 0
  • the second part of bandwidth is the part of bandwidth corresponding to index 1.
  • the first communication device can determine the reserved pattern of the second carrier through the index 1 and the above table 2: 15.5
  • step 1303 a may be performed before step 1303.
  • the first communication device judges whether to use the carrier reservation pattern to transmit the data signal, and if yes, execute step 1303; if not, execute step 1306.
  • the first communication device determines whether to use the carrier reservation pattern to transmit the data signal. If yes, go to step 1303, if not, go to step 1306.
  • Step 1303a is similar to step 201a of the above-mentioned embodiment shown in FIG. 2 .
  • Step 1303a is similar to step 201a of the above-mentioned embodiment shown in FIG. 2 .
  • the first communications device transmits the data signal according to the second carrier reservation pattern.
  • the first communications device does not use the carrier reservation pattern to transmit the data signal.
  • Steps 1304 to 1305 are similar to steps 202 to 203 in the above-mentioned embodiment shown in FIG. 2 .
  • steps 202 to 203 in the above-mentioned embodiment shown in FIG. 2 please refer to the related introduction of steps 202 to 203 in the above-mentioned embodiment shown in FIG. 2 , which will not be repeated here.
  • the first communications device does not use the carrier reservation pattern to transmit the data signal.
  • Step 1306 is similar to step 203 in the above-mentioned embodiment shown in FIG. 2 .
  • Step 1306 please refer to the related introduction of step 203 in the above-mentioned embodiment shown in FIG. 2 , which will not be repeated here.
  • step 1304 if the first communication device and the second communication device switch from the second part of the bandwidth to the third part of the bandwidth, the operation performed by the first communication device is similar to that of the aforementioned step 1303a to step 1304 and step 1306 , the details will not be repeated here.
  • the operation performed by the second communication device is similar to the operation performed by the first communication device in the above embodiment shown in FIG. 13 , which will not be repeated here.
  • the first communication device is a terminal device, and during the initial access process, the terminal device uses carrier reservation pattern 1 corresponding to the initial partial bandwidth to initiate initial access to the network device. After the terminal device accesses the network, the terminal device switches from the initial partial bandwidth to partial bandwidth 1. The terminal device uses the carrier reservation pattern 2 corresponding to the partial bandwidth 1 to perform data communication with the network device. The terminal device then switches from the partial bandwidth 1 to the partial bandwidth 2, and the terminal device uses the carrier reservation pattern 3 corresponding to the partial bandwidth 2 to perform data communication with the network device.
  • the present application also provides an embodiment, which is similar to the above-mentioned embodiment shown in FIG. 13 , the difference lies in step 1303 and step 1304 in the above-mentioned embodiment shown in FIG. 13 .
  • Step 1303 is replaced by step 1303b
  • step 1304 is replaced by step 1304a.
  • Step 1303b If the first communication device and the second communication device switch from the first beam to the second beam, the first communication device determines a third carrier reservation pattern according to the second beam.
  • the beam number of the first beam is 1, and the beam number of the second beam is 2.
  • the first communication device can determine the reserved pattern of the third carrier through the above table 4 and the beam number of the second beam: 175 195 196 200 211 212 214 216 220 222 223 228 230 232 236 239 ⁇ .
  • step 1303b the manner in which the first communication device determines the third carrier reservation pattern is similar to the manner in which the first communication device determines the first carrier reservation pattern in the embodiment shown in FIG. The relevant introduction of the embodiment of the present invention will not be repeated here.
  • Step 1304a The first communication device transmits the data signal according to the third carrier reservation pattern.
  • Step 1304a is similar to step 1304 in the above-mentioned embodiment shown in FIG. 13 .
  • steps 1304 in the above-mentioned embodiment shown in FIG. 13 please refer to the related introduction of step 1304 in the above-mentioned embodiment shown in FIG. 13 , and details will not be repeated here.
  • the operations performed by the second communication device are similar, and details are not repeated here.
  • the present application also provides an embodiment, which is similar to the above-mentioned embodiment shown in FIG. 13 , the difference lies in step 1303 and step 1304 in the above-mentioned embodiment shown in FIG. 13 .
  • Step 1303 is replaced by step 1303c
  • step 1304 is replaced by step 1304b.
  • Step 1303c If the first communication device and the second communication device switch from the first part of bandwidth to the third part of bandwidth on the first beam, the first communication device determines a fourth carrier reservation pattern according to the third part of bandwidth.
  • the first beam corresponds to multiple partial bandwidths, and each partial bandwidth corresponds to a carrier reservation pattern.
  • the plurality of partial bandwidths includes a first partial bandwidth and a third partial bandwidth.
  • the beam number of the first beam is 0, the index of the first part of the bandwidth is 0, and the index of the second part of the bandwidth is 1.
  • the first communication device can determine the reserved pattern of the fourth carrier as: 301 305 800 959 988 988 1001 1160 1203 1225 1244 1265 1298 1343 1372 1377 1385 1390 1405 1439 1455 1472 1482 1514 1527 1544 1563 1564 1571 ⁇ .
  • Step 1303c The manner in which the first communication device determines the fourth carrier reservation pattern is similar to the manner in which the first communication device determines the first carrier reservation pattern in the embodiment shown in FIG. The related introduction of the embodiment will not be repeated here.
  • Step 1304b The first communication device transmits the data signal according to the fourth carrier reservation pattern.
  • Step 1304b is similar to step 1304 in the above-mentioned embodiment shown in FIG. 13 .
  • steps 1304 in the above-mentioned embodiment shown in FIG. 13 please refer to the related introduction of step 1304 in the above-mentioned embodiment shown in FIG. 13 , and details will not be repeated here.
  • the operations performed by the second communication device are similar, and details are not repeated here.
  • the present application also provides an embodiment, which is similar to the above-mentioned embodiment shown in FIG. 13 , the difference lies in step 1303 and step 1304 in the above-mentioned embodiment shown in FIG. 13 .
  • Step 1303 is replaced by step 1303d
  • step 1304 is replaced by step 1304c.
  • Step 1303d If the first communication device and the second communication device switch from the first beam to the second beam, and switch from the first part of the bandwidth to the third part of the bandwidth, the first communication device determines the second part of the bandwidth according to the second beam and the third part of the bandwidth. Six carrier reserved patterns.
  • the first beam and the second beam respectively correspond to multiple partial bandwidths
  • the multiple partial bandwidths include the first partial bandwidth and the second partial bandwidth.
  • the first communication device may determine the mapping relationship between the carrier reservation pattern and the multiple partial bandwidths corresponding to the second beam from the third mapping relationship. Then, the first communication device determines a carrier reservation pattern corresponding to the second beam and the second partial bandwidth among the plurality of carrier reservation patterns according to the mapping relationship between the carrier reservation pattern and the multiple partial bandwidths corresponding to the second beam.
  • the beam number of the second beam is 1, and the index of the second part of the bandwidth is 1.
  • the first communication device can determine the reserved pattern of the sixth carrier as: 912 919 1003 1073 1073 1085 1138 1145 1146 1181 1236 1264 1269 1303 1396 1402 1452 1507 1507 1521 1533 1533 1549 1557 1564 1575 1583 ⁇ .
  • Step 1304c The first communication device transmits the data signal according to the sixth carrier reservation pattern.
  • Step 1304c is similar to step 1304 in the above-mentioned embodiment shown in FIG. 13 .
  • steps 1304 in the above-mentioned embodiment shown in FIG. 13 please refer to the related introduction of step 1304 in the above-mentioned embodiment shown in FIG. 13 , and details will not be repeated here.
  • the operations performed by the second communication device are similar, and details are not repeated here.
  • FIG. 14 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • the first communication device can be used to execute the steps performed by the first communication device in the embodiments shown in Figure 2, Figure 4, Figure 5, Figure 6, Figure 8, Figure 10 and Figure 13, and reference can be made to the above method embodiments related descriptions.
  • the first communication device 1400 includes a processing module 1401 and a transceiver module 1402 .
  • the transceiver module 1402 is configured to transmit data signals according to the first carrier reservation pattern; the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam; the first part of the bandwidth
  • the first beam is used for transmitting data signals between the first communication device and the second communication device, and the first beam is used for transmitting data signals between the first communication device and the second communication device.
  • processing module 1401 is specifically configured to:
  • the first configuration information is used to indicate a first carrier reservation pattern corresponding to the first part of the bandwidth
  • processing module 1401 is specifically configured to:
  • a first carrier reservation pattern corresponding to the first partial bandwidth is determined from the plurality of carrier reservation patterns according to the first mapping relationship, where the first mapping relationship is a correspondence between the carrier reservation pattern and the partial bandwidth.
  • processing module 1401 is specifically configured to:
  • the first carrier reservation pattern corresponding to the first beam is determined from the plurality of carrier reservation patterns according to the second mapping relationship, where the second mapping relationship is a mapping relationship between the carrier reservation pattern and the beam.
  • processing module 1401 is specifically configured to:
  • the third mapping relationship includes the relationship between the carrier reservation pattern and the plurality of partial bandwidths corresponding to each of the plurality of beams mapping relationship between them.
  • processing module 1401 is specifically configured to:
  • the fourth mapping relationship is that the first communication device and the second communication device use multiple parts
  • processing module 1401 is also used to:
  • processing module is specifically used for:
  • the first indication information is carried in a broadcast message.
  • the broadcast message includes SIB1 or MIB.
  • the first indication information is used to indicate location information of a third communication device, and the third communication device is used for the first communication device to communicate with the second communication device;
  • the processing module 1401 is specifically used for:
  • Whether to use the carrier reservation pattern to transmit the data signal is determined according to the location information of the third communication device.
  • the first indication information is used to indicate whether the first communication device uses a carrier reservation pattern to transmit the data signal carried by each beam in the multiple beams, where the multiple beams include the first beam.
  • the processing module 1401 is further configured to:
  • the transceiver module 1402 is also used for:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the processing module 1401 is further configured to:
  • the transceiver module 1402 is also used for:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the first beam corresponds to the first part of the bandwidth and the third part of the bandwidth
  • the first part of the bandwidth corresponds to the first carrier reserved pattern
  • the third part of the bandwidth corresponds to the fourth carrier reserved pattern
  • the transceiver module 1402 is also used for:
  • the data signal is transmitted according to the fourth carrier reservation pattern.
  • the transceiver module 1402 is specifically configured to:
  • the overlapping reserved carrier in the first carrier reserved pattern is punctured to obtain the fifth reserved carrier pattern, the overlapping reserved carrier is the reserved carrier overlapping with the carrier used to transmit the reference signal in the first carrier reserved pattern ;
  • the data signal is transmitted according to the fifth carrier reserved pattern.
  • the transceiver module 1402 is also used to:
  • the second configuration information includes at least one of the following configuration parameters: multiple carrier reservation patterns, indexes of multiple carrier reservation patterns, and the use of multiple partial bandwidths by the first communication device and the second communication device.
  • any configuration parameter included in the second configuration information is carried in any of the following signaling: SIB1, MIB, RRC signaling, DCI, group DCI, MAC CE, TAC.
  • FIG. 15 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • the second communication device may be used to execute the steps performed by the second communication device in the embodiment shown in FIG. 2 , and reference may be made to relevant descriptions in the foregoing method embodiments.
  • the second communication device 1500 includes a processing module 1501 and a transceiver module 1502 .
  • a processing module 1501 configured to determine a first carrier reservation pattern
  • the transceiver module 1502 is configured to transmit data signals according to the first carrier reservation pattern; the first carrier reservation pattern is determined according to the first part of the bandwidth, or the first carrier reservation pattern is determined according to the first beam; the first part of the bandwidth Used for transmitting data signals between the first communication device and the second communication device, the first beam is used for transmitting data signals between the first communication device and the second communication device.
  • processing module 1501 is specifically configured to:
  • a first carrier reservation pattern corresponding to the first partial bandwidth is determined from the plurality of carrier reservation patterns according to the first mapping relationship, where the first mapping relationship is a correspondence between the carrier reservation pattern and the partial bandwidth.
  • processing module 1501 is specifically configured to:
  • the first carrier reservation pattern corresponding to the first beam is determined from the plurality of carrier reservation patterns according to the second mapping relationship, where the second mapping relationship is a mapping relationship between the carrier reservation pattern and the beam.
  • processing module 1501 is specifically configured to:
  • the third mapping relationship includes the relationship between the carrier reservation pattern and the plurality of partial bandwidths corresponding to each of the plurality of beams mapping relationship between them.
  • the reference signal is transmitted between the first communication device and the second communication device using a first reference signal pattern; the processing module 1501 is specifically configured to:
  • the fourth mapping relationship is that the first communication device and the second communication device use multiple parts
  • the transceiver module 1502 is also used to:
  • the transceiver module 1502 is also used to:
  • the first indication information is carried in a broadcast message.
  • the first indication information is used to indicate location information of the third communication device, and the third communication device is used for the first communication device to communicate with the second communication device; or,
  • the first indication information is used to indicate whether the first communication device uses the carrier reservation pattern to transmit the data signal carried by each beam in the multiple beams, where the multiple beams include the first beam.
  • the processing module 1501 is further configured to:
  • the transceiver module 1502 is also used for:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the processing module 1501 is further configured to:
  • the transceiver module 1502 is also used for:
  • the data signal is transmitted according to the second carrier reservation pattern.
  • the first beam corresponds to the first part of the bandwidth and the third part of the bandwidth
  • the first part of the bandwidth corresponds to the first carrier reserved pattern
  • the third part of the bandwidth corresponds to the fourth carrier reserved pattern
  • the transceiver module 1502 is also used for:
  • the data signal is transmitted according to the fourth carrier reservation pattern.
  • the processing module 1501 is specifically configured to:
  • the overlapping reserved carrier in the first carrier reserved pattern is punctured to obtain the fifth reserved carrier pattern, the overlapping reserved carrier is the reserved carrier overlapping with the carrier used to transmit the reference signal in the first carrier reserved pattern ;
  • the transceiver module 1502 is also used for:
  • the data signal is transmitted according to the fifth carrier reserved pattern.
  • the transceiver module 1502 is also used to:
  • the second configuration information includes at least one of the following configuration parameters: multiple carrier reservation patterns, indexes of multiple carrier reservation patterns, the first communication device and the second communication device are using In the case of each partial bandwidth in multiple partial bandwidths, the mapping relationship between the carrier reservation pattern and the reference signal pattern, the mapping relationship between the carrier reservation pattern and the partial bandwidth, and the mapping between the carrier reservation pattern and the beam relationship, the mapping relationship between the carrier reservation pattern and the multiple partial bandwidths corresponding to the beam.
  • any configuration parameter included in the second configuration information is carried in any of the following signaling: SIB1, MIB, RRC signaling, DCI, group DCI, MAC CE, TAC.
  • FIG. 16 A schematic structural diagram of a possible structure in which the first communication device is a terminal device is shown below by using FIG. 16 .
  • Fig. 16 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device takes a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, and the like.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 16 For ease of illustration, only one memory and processor are shown in FIG. 16 .
  • processors and one or more memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the terminal device, and the processor with the processing function may be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1610 and a processing unit 1620 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 1610 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 1610 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 1610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • transceiving unit 1610 is used to perform the sending and receiving operations of the first communication device in the above method embodiments
  • processing unit 1620 is used to perform other operations on the first communication device in the above method embodiments except for the sending and receiving operations.
  • the chip When the terminal device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit or a logic circuit integrated on the chip.
  • the present application also provides a second communication device, please refer to FIG. 17 , which is another schematic structural diagram of the second communication device according to an embodiment of the present application.
  • the second communication device may be configured to execute the steps performed by the second communication device in the embodiment shown in FIG. 2 , and reference may be made to relevant descriptions in the foregoing method embodiments.
  • the second communication device 1700 includes a processor 1701 and a memory 1702 .
  • the second communication device further includes a transceiver 1703 .
  • the processor 1701, the memory 1702, and the transceiver 1703 are respectively connected through a bus, and computer instructions are stored in the memory.
  • the processing module 1501 in the foregoing embodiments may specifically be the processor 1701 in this embodiment, so the specific implementation of the processor 1701 will not be repeated here.
  • the transceiver module 1502 in the foregoing embodiments may specifically be the transceiver 1703 in this embodiment, so the specific implementation of the transceiver 1703 will not be repeated here.
  • FIG. 18 is another schematic structural diagram of the first communication device according to the embodiment of the present application.
  • the first communication device includes a logic circuit 1801 and an input and output interface 1802 .
  • the first communication device shown in FIG. 18 may be used to execute the steps performed by the first communication device in the embodiments shown in FIG. 2 , FIG. 4 , FIG. 5 , FIG. 6 , FIG. 8 , FIG. 10 and FIG. 13 .
  • the logic circuit 1802 may have the function of the processing module 1401 in the embodiment shown in FIG. 14 .
  • the input and output interface 1802 may have the functions of the transceiver module 1402 in the embodiment shown in FIG. 14 .
  • the first communication device shown in FIG. 18 can implement the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar and will not be repeated here.
  • FIG. 19 is another schematic structural diagram of a second communication device according to an embodiment of the present application.
  • the second communication device includes a logic circuit 1901 and an input and output interface 1902 .
  • the second communication device shown in FIG. 19 may be used to execute the steps performed by the second communication device in the embodiment shown in FIG. 2 above.
  • the logic circuit 1902 may have the function of the processing module 1501 in the embodiment shown in FIG. 15 .
  • the input and output interface 1902 may have the functions of the transceiver module 1502 in the embodiment shown in FIG. 15 .
  • the second communication device shown in FIG. 19 can execute the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar and will not be repeated here.
  • an embodiment of the present application further provides a communication system, and the communication system includes a first communication device as shown in FIG. 14 and a second communication device as shown in FIG. 15 .
  • the first communication device shown in Figure 14 can be used to perform all or part of the steps performed by the first communication device in the embodiments shown in Figure 2, Figure 4, Figure 5, Figure 6, Figure 8, Figure 10 and Figure 13 .
  • the second communication device shown in FIG. 15 may be used to perform all or part of the steps performed by the second communication device in the embodiment shown in FIG. 2 above.
  • the embodiment of the present application also provides a computer program product including instructions, which, when run on a computer, make the computer execute The communication processing method of the illustrated embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer executes the above-mentioned steps such as those shown in Figure 2, Figure 4, Figure 5, Figure 6, Figure 8, and Figure 8. 10 and the communication processing method of the embodiment shown in FIG. 13 .
  • the embodiment of the present application also provides a chip device, including a processor, which is used to connect to the memory, and call the program stored in the memory, so that the processor executes the above-mentioned Fig. 2, Fig. 4, Fig. 5, Fig. 6, Fig. 8 , the communication processing method of the embodiment shown in FIG. 10 and FIG. 13 .
  • the processor mentioned in any of the above-mentioned places can be a general-purpose central processing unit, a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the above-mentioned Fig. 2, 4, 5, 6, 8, 10 and 13 are integrated circuits for program execution of the communication processing method of the embodiment.
  • the memory mentioned in any of the above can be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信处理方法,包括:第一通信设备确定第一载波预留图样;第一通信设备根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一部分带宽BWP确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。由此可知,第一载波预留图样与第一通信设备和第二通信设备更为适配。第一通信设备根据第一载波预留图样传输数据信号可以有效抑制信号高峰均功率比,从而提高通信传输性能。

Description

通信处理方法和通信处理装置
本申请要求于2021年7月29日提交中国专利局,申请号为202110864933.5,发明名称为“通信处理方法和通信处理装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信处理方法和通信处理装置。
背景技术
在通信系统中,发射端的高功率放大器(high power amplifier,HPA)工作在线性饱和区附近,以提高HPA的功率效率。若通信系统采用正交频分复用(orthogonal frequency division multiplexing,OFDM)波形来传输数据,其具有高峰均功率比(peak-to-average power ratio,PAPR)的缺点。当HPA工作在饱和区附近时,输入HPA的信号有一定概率进入非线性区域而产生非线性失真。非线性失真会引入带内失真和带外辐射,影响接收端的解码正确率,给相邻信道用户带来干扰。
目前,载波预留(tone reservation,TR)技术可以用于抑制信号PARA。因此,如何采用载波预留图样传输数据以提高通信传输性能是当前亟待解决的问题。
发明内容
本申请实施例提供了一种通信处理方法和通信处理装置,用于抑制信号PARA,提高通信传输性能。
本申请实施例第一方面提供一种通信处理方法,包括:
第一通信设备确定第一载波预留图样(tone reservation pattern,TR);第一通信设备根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。
上述技术方案中,第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样根据第一波束确定的。第一载波图样与第一通信设备以及第二通信设备更为适配,第一通信设备可以采用第一载波预留图样传输数据信号以抑制信号PARA,从而提高通信传输性能。
一种可能的实现方式中,第一通信设备确定第一载波预留图样,包括:
第一通信设备获取第一配置信息,第一配置信息用于指示第一部分带宽对应的第一载波预留图样;第一通信设备根据第一配置信息确定第一载波预留图样。
上述实现方式第一配置信息用于指示第一部分带宽对应的第一载波预留图样,由此可知,第一配置信息指示的第一载波预留图样与第一通信设备更为适配,有利于第一通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提 供了第一通信设备确定第一载波预留图样的一种具体实现方式,为方案的实施提供基础。
另一种可能的实现方式中,第一通信设备确定第一载波预留图样,包括:
第一通信设备根据第一映射关系从多个载波预留图样中确定与第一部分带宽对应第一载波预留图样,第一映射关系为载波预留图样与部分带宽之间的映射关系。
上述实现方式第一通信设备通过第一映射关系确定与第一部分带宽对应第一载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第一通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第一通信设备确定第一载波预留图样的又一种具体实现方式,为方案的实施提供基础。
另一种可能的实现方式中,第一通信设备确定第一载波预留图样,包括:
第一通信设备根据第二映射关系从多个载波预留图样中确定与第一波束对应第一载波预留图样,第二映射关系为载波预留图样与波束之间的映射关系。
上述实现方式第一通信设备通过第二映射关系确定与第一波束对应第一载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第一通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第一通信设备确定第一载波预留图样的又一种具体实现方式,提高了方案的多样性和完整性。
另一种可能的实现方式中,第一通信设备确定第一载波预留图样,包括:
第一通信设备根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样,第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
上述实现方式第一通信设备通过第三映射关系确定与第一部分带宽对应的第一载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第一通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第一通信设备确定第一载波预留图样的又一种具体实现方式,提高了方案的多样性和完整性。
另一种可能的实现方式中,第一通信设备与第二通信设备之间采用第一参考信号图样传输参考信号;第一通信设备确定第一载波预留图样,包括:
第一通信设备根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图样,第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
上述实现方式第一通信设备通过第四映射关系确定与第一参考信号图样对应的载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第一通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第一通信设备确定第一载波预留图样的又一种具体实现方式,提高了方案的多样性和完整性。
另一种可能的实现方式中,第一通信设备确定第一载波预留图样之前,方法还包括:
第一通信设备判断是否使用载波预留图样传输数据信号;
若是,则执行第一通信设备确定第一载波预留图样的步骤。
在该可能的实现方式中,第一通信设备可以先判断是否需要使用载波预留图样传输数 据信号。避免第一通信设备在不必要的情况下使用载波预留图样传输数据信号,从而节约网络资源。
另一种可能的实现方式中,第一通信设备判断是否使用载波预留图样传输数据信号,包括:
获取第一指示信息;根据第一指示信息确定是否使用载波预留图样传输数据信号。
上述实现方式提供了一种具体的判断方式,通过第一指示信息确定是否使用载波预留图样传输数据信号。从而实现第一通信设备的判断过程,以提升方案的可实现性。
另一种可能的实现方式中,第一指示信息承载于广播消息。
在该可能的实现方式示出了第一指示信息的承载载体,通过广播消息承载第一指示信息,从而无需重新定义新的消息发送第一指示信息,提高方案的实用性。
另一种可能的实现方式中,广播消息包括系统信息块(system information block,SIB 1)或主系统信息块(mater information block,MIB)。
在该可能的实现方式,广播消息可以为SIB1或MIB,方便指示第一通信设备在初始接入过程判断是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息用于指示第三通信设备的位置信息,第三通信设备用于第一通信设备与第二通信设备进行通信;
第一通信设备根据第一指示信息确定是否使用载波预留图样传输数据信号,包括:
第一通信设备根据第三通信设备的位置信息确定是否使用载波预留图样传输数据信号。
上述实现方式第一通信设备根据第三通信设备的位置信息确定是否使用载波预留图样传输数据信号。有利于针对第一通信设备在特定场景下判断是否需要使用载波预留图样传输数据信号,以提高通信传输性能。例如,第三通信设备为卫星,当卫星的轨道高度较大时,第一通信设备可以使用载波预留图样传输数据信号。以提高第二通信设备接收到的信号的信噪比。
另一种可能的实现方式中,第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号,多个波束包括第一波束。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽;方法还包括:
第一通信设备根据第二部分带宽确定第二载波预留图样;第一通信设备根据第二载波预留图样传输数据信号。
上述实现方式中,第一通信设备切换部分带宽,第一通信设备可以根据第一通信设备所切换至的第二部分带宽更新载波预留图样。从而实现更新后的载波预留图样与第一通信设备和第二通信设备更为适配,第一通信设备根据更新后的载波预留图样传输数据信号,从而更好的抑制信号PARA。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一波束切换至第二波束;方法还包括:
第一通信设备根据第二波束对应确定第三载波预留图样;第一通信设备根据第二载波 预留图样传输数据信号。
上述实现方式中,第一通信设备切换波束,第一通信设备可以根据第一通信设备所切换至的第二波束更新载波预留图样。从而实现更新后的载波预留图样与第一通信设备和第二通信设备更为适配,第一通信设备根据更新后的载波预留图样传输数据信号,从而更好的抑制信号PARA。
另一种可能的实现方式中,第一波束对应所述第一部分带宽和第三部分带宽,第一部分带宽对应第一载波预留图样,第三部分带宽对应第四载波预留图样;若第一通信设备与第二通信设备在第一波束上从第一部分带宽切换至第三部分带宽,方法还包括:
第一通信设备根据第三部分带宽确定第四载波预留图样;第一通信设备根据第四载波预留图样传输数据信号。
上述实现方式中,第一通信设备在第一波束上切换部分带宽,第一通信设备可以根据第一通信设备在第一波束上所切换至的部分带宽更新载波预留图样。从而实现更新后的载波预留图样与第一通信设备和第二通信设备更为适配,第一通信设备根据更新后的载波预留图样传输数据信号,从而更好的抑制信号PARA。
另一种可能的实现方式中,若同一时域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,第一通信设备根据第一载波预留图样传输数据信号,包括:
第一通信设备将第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,重叠预留载波为第一载波预留图样中与用于传输参考信号的载波重叠的预留载波;第一通信设备根据第五载波预留图样传输数据信号。
由此可知,第一通信设备通过对第一载波预留图样进行打孔,再通过打孔得到的第五载波预留图样传输数据信号。也就是说本申请提供一种新的载波预留图样的使用规则,载波预留图样具有打孔特性。第一通信设备无需存储或配置多套载波预留图样,从而减少第一通信设备的存储开销。
另一种可能的实现方式中,方法还包括:
第一通信设备获取第二配置信息,第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
上述实现方式中第一通信设备可以获取第二配置信息,从而确定上述第二配置信息包括的配置参数,以便于第一通信设备确定第一载波预留图样,并根据第一载波预留图样传输数据信号。从而提高通信传输性能。
另一种可能的实现方式中,第二配置信息包括的任一项配置参数承载于以下任一种信令:SIB1、MIB、无线控制资源(radio resource control,RRC)信令、(downlink control information,DCI)、组DCI、介质访问控制控制元素(media access control control element,MAC CE)、定时提前命令(timing advance command,TAC)。上述实现方式示出 了第二配置信息的一些可能的承载载体,为方案的实施提供基础。
本申请实施例第二方面提供一种通信处理方法,包括:
第二通信设备确定第一载波预留图样;第二通信设备根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。
上述技术方案中,第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样根据第一波束确定的。第一载波图样与第一通信设备以及第二通信设备更为适配,第二通信设备可以采用第一载波预留图样传输数据信号以抑制信号PARA,从而提高通信传输性能。
一种可能的实现方式中,第二通信设备确定第一载波预留图样,包括:
第二通信设备根据第一映射关系从多个载波预留图样中确定与第一部分带宽对应第一载波预留图样,第一映射关系为载波预留图样与部分带宽之间的对应关系。
上述实现方式第二通信设备通过第一映射关系确定与第一部分带宽对应第一载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第二通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第二通信设备确定第一载波预留图样的又一种具体实现方式,为方案的实施提供基础。
另一种可能的实现方式中,第二通信设备确定第一载波预留图样,包括:
第二通信设备根据第二映射关系从多个载波预留图样中确定与第一波束对应第一载波预留图样,第二映射关系为载波预留图样与波束之间的映射关系。
上述实现方式第二通信设备通过第二映射关系确定与第一波束对应第一载波预留图样。第一载波预留图样与第二通信设备更为适配,有利于第二通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第二通信设备确定第一载波预留图样的又一种具体实现方式,提高了方案的多样性和完整性。
另一种可能的实现方式中,第二通信设备确定第一载波预留图样,包括:
第二通信设备根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样,第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
上述实现方式第二通信设备通过第三映射关系确定与第一部分带宽对应的第一载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第二通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第二通信设备确定第一载波预留图样的又一种具体实现方式,提高了方案的多样性和完整性。
另一种可能的实现方式中,第一通信设备与第二通信设备之间采用第一参考信号图样传输参考信号;第二通信设备确定第一载波预留图样,包括:
第二通信设备根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图样,第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关 系。
上述实现方式第二通信设备通过第四映射关系和第一部分带宽确定与第一参考信号图样对应的载波预留图样。第一载波预留图样与第一通信设备更为适配,有利于第二通信设备采用第一载波预留图样传输数据信号以抑制信号PARA。从而提高通信传输性能。上述提供了第二通信设备确定第一载波预留图样的又一种具体实现方式,提高了方案的多样性和完整性。
另一种可能的实现方式中,方法还包括:
第二通信设备向第一通信设备发送第一配置信息,第一配置信息用于指示第一部分带宽对应的第一载波预留图样。
上述实现方式第二通信设备可以向第一通信设备指示第一载波预留图样,以便于第一通信设备确定第一载波预留图样。从而实现通信双方的协商一致,实现通信传输的正常进行,以提高通信传输性能。
另一种可能的实现方式中,方法还包括:
第二通信设备向第一通信设备发送第一指示信息,第一指示信息用于指示是否使用载波预留图样传输数据信号。
上述实现方式第二通信设备向第一通信设备指示提是否使用载波预留图样传输数据信号。从而实现第一通信设备的判断过程,以提升方案的可实现性。
另一种可能的实现方式中,第一指示信息承载于广播消息。在该可能的实现方式示出了第一指示信息的承载载体,通过广播消息承载第一指示信息,从而无需重新定义新的消息发送第一指示信息,提高方案的实用性。
另一种可能的实现方式中,广播消息包括SIB1或MIB。
另一种可能的实现方式中,第一指示信息用于指示第三通信设备的位置信息,第三通信设备用于第一通信设备与第二通信设备进行通信;或者,
第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号,多个波束包括第一波束。
上述实现方式示出了第一指示信息指示是否使用载波预留图样传输数据信号的几种可能的指示方式。有利于针对第一通信设备在特定场景下判断是否需要使用载波预留图样传输数据信号,以提高通信传输性能。例如,第三通信设备为卫星,当卫星的轨道高度较大时,第一通信设备可以使用载波预留图样传输数据信号。以提高第二通信设备接收到的信号的信噪比。例如,第一通信设备接入卫星通信系统,第一通信设备采用第一波束进行数据传输。因此,第一通信设备铜棍第一指示信息可以确定是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽;方法还包括:
第二通信设备根据第二部分带宽确定第二载波预留图样;第二通信设备根据第二载波预留图样传输数据信号。
上述实现方式中,第二通信设备切换部分带宽,第二通信设备可以根据第二通信设备 所切换至的第二部分带宽更新载波预留图样。从而实现更新后的载波预留图样与第一通信设备和第二通信设备更为适配,第二通信设备根据更新后的载波预留图样传输数据信号,从而更好的抑制信号PARA。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一波束切换至第二波束;方法还包括:
第二通信设备根据第二波束对应确定第三载波预留图样;第二通信设备根据第二载波预留图样传输数据信号。
上述实现方式中,第二通信设备切换波束,第二通信设备可以根据第二通信设备所切换至的第二波束更新载波预留图样。从而实现更新后的载波预留图样与第一通信设备和第二通信设备更为适配,第二通信设备根据更新后的载波预留图样传输数据信号,从而更好的抑制信号PARA。
另一种可能的实现方式中,第一波束对应第一部分带宽和第三部分带宽,第一部分带宽对应第一载波预留图样,第三部分带宽对应第四载波预留图样;若第一通信设备与第二通信设备在第一波束上从第一部分带宽切换至第三部分带宽,方法还包括:
第二通信设备根据第三部分带宽确定第四载波预留图样;第二通信设备根据第四载波预留图样传输数据信号。
上述实现方式中,第二通信设备在第一波束上切换部分带宽,第二通信设备可以根据第二通信设备在第一波束上所切换至的部分带宽更新载波预留图样。从而实现更新后的载波预留图样与第一通信设备和第二通信设备更为适配,第二通信设备根据更新后的载波预留图样传输数据信号,从而更好的抑制信号PARA。
另一种可能的实现方式中,若同一时域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,第二通信设备根据第一载波预留图样传输数据信号,包括:
第二通信设备将第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,重叠预留载波为第一载波预留图样中与用于传输参考信号的载波重叠的预留载波;第二通信设备根据第五载波预留图样传输数据信号。
由此可知,第二通信设备通过对第一载波预留图样进行打孔,再通过打孔得到的第五载波预留图样传输数据信号。也就是说本申请提供一种新的载波预留图样的使用规则,载波预留图样具有打孔特性。第二通信设备无需存储或配置多套载波预留图样,从而减少第二通信设备的存储开销。
另一种可能的实现方式中,方法还包括:
第二通信设备向第一通信设备发送第二配置信息,第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
上述实现方式中,第二通信设备向第一通信设备发送第二配置信息,从而便于第一通 信设备确定上述第二配置信息包括的配置参数。第一通信设备可以根据第二配置信息包括的映射关系确定第一载波预留图样,并根据第一载波预留图样传输数据信号。从而提高通信传输性能。
另一种可能的实现方式中,第二配置信息包括的任一项配置参数承载于以下任一种信令:SIB1、MIB、RRC信令、DCI、组DCI、MAC CE、TAC。
本申请实施例第三方面提供一种第一通信设备,第一通信设备包括:
处理模块,用于确定第一载波预留图样;
收发模块,用于根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。
一种可能的实现方式中,处理模块具体用于:
获取第一配置信息,第一配置信息用于指示第一部分带宽对应的第一载波预留图样;
根据第一配置信息确定第一载波预留图样。
另一种可能的实现方式中,处理模块具体用于:
根据第一映射关系从多个载波预留图样中确定与第一部分带宽对应第一载波预留图样,第一映射关系为载波预留图样与部分带宽之间的映射关系。
另一种可能的实现方式中,处理模块具体用于:
根据第二映射关系从多个载波预留图样中确定与第一波束对应第一载波预留图样,第二映射关系为载波预留图样与波束之间的映射关系。
另一种可能的实现方式中,处理模块具体用于:
根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样,第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,处理模块具体用于:
根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图样,第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
另一种可能的实现方式中,处理模块还用于:
判断是否使用载波预留图样传输数据信号;
若是,则执行处理模块确定第一载波预留图样的步骤。
另一种可能的实现方式中,处理模块具体用于:
获取第一指示信息;
根据第一指示信息确定是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息承载于广播消息。
另一种可能的实现方式中,广播消息包括SIB1或MIB。
另一种可能的实现方式中,第一指示信息用于指示第三通信设备的位置信息,第三通 信设备用于第一通信设备与第二通信设备进行通信;
处理模块具体用于:
根据第三通信设备的位置信息确定是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号,多个波束包括第一波束。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽;处理模块还用于:
根据第二部分带宽确定第二载波预留图样;
收发模块还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一波束切换至第二波束;处理模块还用于:
根据第二波束对应确定第三载波预留图样;
收发模块还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,第一波束对应所述第一部分带宽和第三部分带宽,第一部分带宽对应第一载波预留图样,第三部分带宽对应第四载波预留图样;若第一通信设备与第二通信设备在所述第一波束上从第一部分带宽切换至第三部分带宽,处理模块还用于:
根据第三部分带宽确定第四载波预留图样;
收发模块还用于:
根据第四载波预留图样传输数据信号。
另一种可能的实现方式中,若同一时域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,收发模块具体用于:
将第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,重叠预留载波为第一载波预留图样中与用于传输参考信号的载波重叠的预留载波;
根据第五载波预留图样传输数据信号。
另一种可能的实现方式中,收发模块还用于:
获取第二配置信息,第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,第二配置信息包括的任一项配置参数承载于以下任一种信令:SIB1、MIB、RRC信令、DCI、组DCI、MAC CE、TAC。
本申请实施例第四方面提供一种第二通信设备,包括:
处理模块,用于确定第一载波预留图样;
收发模块,用于根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一 部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输所述数据信号。
一种可能的实现方式中,处理模块具体用于:
根据第一映射关系从多个载波预留图样中确定与第一部分带宽对应第一载波预留图样,第一映射关系为载波预留图样与部分带宽之间的映射关系。
另一种可能的实现方式中,处理模块具体用于:
根据第二映射关系从多个载波预留图样中确定与第一波束对应第一载波预留图样,第二映射关系为载波预留图样与波束之间的映射关系。
另一种可能的实现方式中,处理模块具体用于:
根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样,第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,第一通信设备与第二通信设备之间采用第一参考信号图样传输参考信号;处理模块具体用于:
根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图样,第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
另一种可能的实现方式中,收发模块还用于:
向第一通信设备发送第一配置信息,第一配置信息用于指示第一部分带宽对应的第一载波预留图样。
另一种可能的实现方式中,收发模块还用于:
向第一通信设备发送第一指示信息,第一指示信息用于指示是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息承载于广播消息。
另一种可能的实现方式中,第一指示信息用于指示第三通信设备的位置信息,第三通信设备用于第一通信设备与第二通信设备进行通信;或者,
第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号,多个波束包括第一波束。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽;处理模块还用于:
根据第二部分带宽确定第二载波预留图样;
收发模块还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一波束切换至第二波束;处理模块还用于:
根据第二波束对应确定第三载波预留图样;
收发模块还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,第一波束对应第一部分带宽和第三部分带宽,第一部分带宽对应第一载波预留图样,第三部分带宽对应第四载波预留图样;若第一通信设备与第二通信设备在第一波束上从第一部分带宽切换至第三部分带宽,处理模块还用于:
根据第三部分带宽确定第四载波预留图样;
收发模块还用于:
根据第四载波预留图样传输数据信号。
另一种可能的实现方式中,若同一时域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,处理模块具体用于:
将第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,重叠预留载波为第一载波预留图样中与用于传输参考信号的载波重叠的预留载波;
收发模块还用于:
根据第五载波预留图样传输数据信号。
另一种可能的实现方式中,收发模块还用于:
向第一通信设备发送第二配置信息,第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,第二配置信息包括的任一项配置参数承载于以下任一种信令:SIB1、MIB、RRC信令、DCI、组DCI、MAC CE、TAC。
本申请实施例第五方面提供一种第一通信设备,该第一通信设备包括:处理器和存储器。该存储器中存储有计算机程序;该处理器用于调用并运行该存储器中存储的计算机程序,使得处理器实现如第一方面中的任意一种实现方式。
可选的,该第一通信设备还包括收发器;该处理器还用于控制该收发器收发信号。
本申请实施例第六方面提供一种第二通信设备,该第二通信设备包括:处理器和存储器。该存储器中存储有计算机程序;该处理器用于调用并运行该存储器中存储的计算机程序,使得处理器实现如第二方面中的任意一种实现方式。
可选的,该第二通信设备还包括收发器;该处理器还用于控制该收发器收发信号。
本申请实施例第七方面提供一种第一通信设备,第一通信设备包括逻辑电路和输入输出接口;逻辑电路用于执行上述第一方面中任意一种实现方式中的处理操作,输入输出接口用于执行上述第一方面中任意一种实现方式中的收发操作。
本申请实施例第八方面提供一种第二通信设备,第二通信设备包括逻辑电路和输入输出接口;逻辑电路用于执行上述第二方面中任意一种实现方式中的处理操作,输入输出接口用于执行上述第二方面中任意一种实现方式中的收发操作。
本申请实施例第九方面提供一种包括指令的计算机程序产品,其特征在于,当其在计 算机上运行时,使得该计算机执行如第一方面至第二方面中任一种的实现方式。
本申请实施例第十方面提供一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如第一方面至第二方面中的任一种实现方式。
本申请实施例第十一方面提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述第一方面至第二方面中的任一种实现方式。
本申请实施例第十二方面提供一种通信系统,该通信系统包括如第三方面的第一通信设备和第四方面的第二通信设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案可知,第一通信设备确定第一载波预留图样;第一通信设备根据第一载波图样传输数据信号。第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。由此可知,第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样根据第一波束确定的。第一载波图样与第一通信设备以及第二通信设备更为适配,第一通信设备可以采用第一载波预留图样传输数据信号以抑制信号PARA,从而提高通信传输性能。
附图说明
图1A为本申请实施例通信系统的一个示意图;
图1B为本申请实施例通信系统的另一个示意图;
图1C为本申请实施例通信系统的另一个示意图;
图1D为本申请实施例通信系统的另一个示意图;
图2为本申请实施例通信处理方法的一个实施例示意图;
图3为本申请实施例通信处理方法的一个场景示意图;
图4为本申请实施例通信处理方法的另一个实施例示意图;
图5为本申请实施例通信处理方法的另一个实施例示意图;
图6为本申请实施例通信处理方法的另一个实施例示意图;
图7为本申请实施例通信处理方法的另一个场景示意图;
图8为本申请实施例通信处理方法的另一个实施例示意图;
图9为本申请实施例通信处理方法的另一个场景示意图;
图10为本申请实施例通信处理方法的另一个实施例示意图;
图11为本申请实施例载波预留图样、解调参考信号(demodulation reference signal,DMRS)图样、打孔得到的载波预留图样的一个示意图;
图12为本申请实施例载波预留图样、相位跟踪参考信号(phase-tracking reference signal,PTRS)图样、打孔得到的载波预留图样的一个示意图;
图13为本申请实施例通信处理方法的另一个实施例示意图;
图14为本申请实施例第一通信设备的一个结构示意图;
图15为本申请实施例第二通信设备的一个结构示意图;
图16为本申请实施例终端设备的一个结构示意图;
图17为本申请实施例第二通信设备的另一个结构示意图;
图18为本申请实施例第一通信设备的另一个结构示意图;
图19为本申请实施例第二通信设备的另一个结构示意图;
图20为本申请实施例通信系统的一个示意图。
具体实施方式
本申请实施例提供了一种通信处理方法和通信处理装置,用于抑制信号PARA,提高通信传输性能。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中,A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c。其中,a,b,c可以是单个,也可以是多个。
本申请的技术方案可以应用于地面网络系统,也可以应用于非地面网络(non-terrestrial network,NTN)系统。
地面网络系统可以包括:蜂窝通信系统、物联网通信系统、车联网通信系统、设备到设备(device to device,D2D)通信系统、移动通信系统等。移动通信系统可以为第四代(4th generation,4G)通信系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)通信系统,以及未来的移动通信系统等。例如,4G通信系统可以为长期演进(long term evolution,LTE)系统),5G通信系统可以为新无线(new radio,NR)系统。
非地面网络系统可以包括:卫星通信系统、高空平台(high altitude platform station,HAPS)通信系统。例如,通信、导航一体化(integrated communication and navigation,IcaN)系统、全球导航卫星系统(global navigation satellite system,GNSS)和超密低轨卫星通信系统等。卫星通信系统可以与传统的移动通信系统相融合。
本申请实施例适用的通信系统包括第一通信设备和第二通信设备。第二通信设备支持第一通信设备的接入,以实现第一通信设备与第二通信设备之间的通信传输。其中,第一通信设备可以为终端设备,第二通信设备可以为网络设备。或者,第一通信设备和第二通 信设备均为终端设备。后文以第一通信设备可以为终端设备,第二通信设备可以为网络设备为例介绍本申请的技术方案。
第一通信设备可以为终端设备。终端设备可以是一种向用户提供语音或者数据连通性的设备,终端设备也称为用户设备(user equipment,UE),也可以称为移动台(mobile station),用户单元(subscriber unit),站台(station),终端设备(terminal equipment,TE)等。终端设备可以为蜂窝电话(0phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台,平板电脑(pad)、车载设备、整车模块、车辆、可穿戴设备、计算设备、飞机、无人机等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络侧进行通信,或者通过通信系统与其它物体进行通信的设备都可以是本申请实施例中的终端设备,譬如,智能交通中的终端设备和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。
第二通信设备可以为网络设备,第二通信设备支持终端设备接入和为终端设备提供通信服务等功能。例如,第二通信设备可以是4G接入技术通信系统中的演进型基站(evolved nodeB,eNB)、5G接入技术通信系统中的下一代基站(next generation nodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node)、接入点(access point,AP)等地面设备。第一通信设备还可以为非地面设备:高空基站,例如:可为终端设备提供无线接入功能的热气球等设备、低轨卫星、中轨卫星或高轨卫星等等,还可以是无人机,还可以是移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等。
下面对本申请涉及的术语进行介绍。
载波预留图样包括一个部分带宽内和/或该部分带宽外包括的载波中的预留载波,预留载波用于传输内核(TR kernel)信号,以抑制信号的PARA。后文以载波预留图样包括该部分带宽内包括的载波中的预留载波为例进行说明。
例如,发送端设备在该一个部分带宽内的预留载波向接收端设备发送载波预留内核信号以抑制信号的PARA。发送端设备在该部分带宽内除了预留载波之外的其他载波上发送数据信号。而接收端设备在该预留载波接收内核信号,接收端设备根据网络侧的资源调度在该部分带宽内除了预留载波之外的其他载波上接收来自发送端设备的数据信号。
接收端设备在将接收到的信号变换到频域后,取出对应的载波上的数据时跳过载波预留图样包括的预留载波的数据。即接收端设备不对载波预留图样包括的预留载波上的数据进行译码。本申请中,若发送端设备为第一通信设备,则接收端设备为第二通信设备;若发送端设备为第二通信设备,则接收端设备为第一通信设备。需要说明的是,如果是载波预留图样包括该部分带宽外包括的载波中的预留载波,接收端设备可以在预留载波上不接收信号,即接收端设备在预留载波上不监听信道。
载波预留图样中的预留载波可以通过预留载波的载波号表示。载波预留图样包括的载 波号表示该载波号对应的载波为预留载波,即内核信号占用的载波。下文中,一个部分带宽包括的载波从1开始编号,即该部分带宽内包括的载波中第一个载波的载波号为1,第二个载波的载波号为2,以此类推。
例如,一个部分带宽内包括2048个载波,载波预留图样为{2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 293 912 919 961},即在该部分带宽内包括的2048个载波中,第2个载波、第3个载波、第13个载波、第19个载波、第20个载波、第29个载波、第39个载波、第40个载波、第44个载波、第45个载波、第49个载波、第69个载波、第79个载波、第89个载波、第94个载波、第105个载波、第136个载波、第141个载波、第157个载波、第213个载波、第220个载波、第246个载波、第293个载波、第912个载波、第919个载波以及第961个载波为预留载波。
在实际应用中,本申请对一个部分带宽包括的载波的载波号不做限定。例如,本申请可以从0开始对一个部分带宽包括的载波进行编号。例如,如果载波号从0开始编号,只需将下文中示出的载波预留图样包括的载波号减1即可。
本申请中,不同的波束在通信标准协议中可以根据部分带宽、传输配置指示(transmission configuration indicator,TCI)或同步信号块(synchronization signal block,SSB)进行区分。或者,换句话说,波束可以根据部分带宽、TCI或SSB进行指示。因此,终端设备和网络设备之间可以通过部分带宽、TCI或者SSB的切换来指示波束的切换。因此,对于终端设备和/或网络设备来说,波束的切换实际上执行的操作可以是:部分带宽、TCI或者SSB的切换。
本申请中,波束可以替换为部分带宽、TCI或者SSB。因此,即第一通信设备或第二通信设备可以根据本申请提供的方法在部分带宽切换、TCI切换或者SSB切换的场景,完成载波预留图样的确定。例如,本申请中,终端设备当前接入网络设备所使用的波束可以替换为:终端设备当前接入网络设备所使用的部分带宽、TCI或者SSB。
本申请中,可选的,载波可以为子载波,具体本申请不做限定。
下面介绍本申请适用的一些应用场景。
图1A为本申请实施例通信系统的一个示意图。请参阅图1A,图1A所示的通信系统包括网络设备和终端设备。网络设备与终端设备之间可以采用载波预留图样进行通信传输。该传输可以包括上行传输和下行传输。
第一通信设备可以理解为上述图1A所示的终端设备,第二通信设备可以理解为上述图1A所示的网络设备。
图1B为本申请实施例通信系统的另一个示意图。请参阅图1B,图1B所示的通信系统包括终端设备、卫星、gNB和信关站(也称关口站)。终端设备可以包括用户设备、飞机等。其中,基站与终端设备之间通过卫星以及信关站之间通信传输。gNB与终端设备之间可以采用载波预留图样进行通信传输。该通信传输可以包括上行传输和下行传输。
第一通信设备可以理解为上述图1B所示的终端设备,第二通信设备可以理解为上述图1B所示的gNB。
图1C为本申请实施例通信系统的另一个示意图。请参阅图1C,图1C所示的通信系统 包括高空终端设备(例如,飞机,无人机等)和网络设备。高空终端设备与网络设备之间可以采用载波预留图样进行通信传输。该通信传输可以包括上行传输和下行传输。
第一通信设备可以理解为上述图1C所示的高空终端设备,第二通信设备可以理解为上述图1C所示的网络设备。
图1D为本申请实施例通信系统的另一个示意图。请参阅图1D,图1D所示的通信系统包括终端设备和卫星。终端设备可以包括用户终端、飞机等。其中,卫星具备网络设备的功能,卫星能够为终端设备提供接入服务和通信服务。例如,终端设备与卫星之间进行通信传输。该通信传输可以包括上行传输和下行传输。
第一通信设备可以理解为上述图1D所示的终端设备,第二通信设备可以理解为上述图1D所示的卫星。
下面结合具体实施例介绍本申请的技术方案。
图2为本申请实施例通信处理方法的一个实施例示意图。请参阅图2,通信处理方法包括:
201、第一通信设备确定第一载波预留图样(TR pattern)。
第一载波预留图样是根据第一部分带宽(bandwidth part,BWP)确定的,或者,第一载波预留图样是根据第一波束确定的。第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。
例如,第一通信设备为终端设备,第二通信设备为网络设备。第一载波预留图样可以是第一部分带宽对应的载波预留图样,或者,第一载波预留图样可以是第一波束对应的载波预留图样。因此,第一载波图样与终端设备更为适配。
关于第一通信设备确定第一载波预留图样的确定方式请参阅后文相关介绍,这里不详细说明。
可选的,图2所示的实施例还包括步骤201a。步骤201a可以在步骤201之前执行。
201a、第一通信设备判断是否使用载波预留图样传输数据信号,若是,则执行步骤201;若否,则执行步骤203。
上述步骤201a中,第一通信设备判断是否使用载波预留图样传输数据信号的方式有多种,具体的判断方式请参阅后文的相关介绍,这里不详细介绍。
202、第一通信设备根据第一载波预留图样传输数据信号。
一种可能的实现方式中,第一通信设备根据第一载波预留图样接收数据信号。
例如,第一通信设备为终端设备,第二通信设备为网络设备。第二通信设备根据第一载波预留图样向第一通信设备发送下行数据信号。第一通信设备根据第一载波预留图样接收来自第二通信设备的下行数据信号。
在一些实施方式中,第一通信设备为终端设备,该终端设备处于空闲态(idle)态,终端设备执行上述步骤201至步骤202。也就是终端设备在初始接入过程中可以采用第一载波预留图样进行数据传输,从而提高通信传输性能。
在一些实施例方式中,第一通信设备为终端设备,该终端设备处于未激活(inactive)态或连接(connect)态,终端设备执行上述步骤201至步骤202。例如,第一载波预留图 样是第一部分带宽或第一波束对应的载波预留图样。第一载波图样与终端设备更为适配,终端设备可以采用第一载波预留图样传输数据信号以抑制信号PARA,从而提高通信传输性能。
另一种可能的实现方式中,第一通信设备根据第一载波预留图样发送数据信号。
例如,第一通信设备为终端设备,第二通信设备为网络设备。第一通信设备根据第一载波预留图样向第二通信设备发送上行数据信号。第二通信设备根据第一载波预留图样接收来自第一通信设备发送上行数据信号。
203、第一通信设备不采用载波预留图样传输数据信号。
例如,第二通信设备不采用载波预留图样向第一通信设备发送下行数据信号。第一通信设备不采用载波预留图样接收来自第二通信设备的下行数据信号。
例如,第二通信设备不采用载波预留图样向第一通信设备发送上行数据信号。第一通信设备不采用载波预留图样接收来自第二通信设备的上行数据信号。
对应的,第二通信设备执行的操作包括步骤204至步骤205。
204、第二通信设备确定第一载波预留图样。
205、第二通信设备根据第一载波预留图样传输数据信号。
步骤204至步骤205与步骤201至步骤202类似,具体可以参阅前述步骤201至步骤202的相关介绍,这里不再赘述。
可选的,图2所示的实施例还包括步骤204a和步骤206。步骤204a在步骤204之前执行。步骤206可以在步骤204a之前执行。
204a、第二通信设备判断是否使用载波预留图样传输数据信号,若是,则执行步骤204;若否,则执行步骤206。
206、第一通信设备不采用载波预留图样传输数据信号。
步骤204a和步骤206与步骤201a和步骤204类似,具体可以参阅前述步骤201a和步骤204的相关介绍,这里不再赘述。
本申请实施例中,第一通信设备确定第一载波预留图样。第一通信设备根据第一载波图样传输数据信号。第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的。第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。由此可知,第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的。第一载波图样与终端设备更为适配,终端设备采用第一载波预留图样传输数据信号以抑制信号PARA,从而提高通信传输性能。
上述图2所示的实施例的步骤201中,第一通信设备确定第一载波预留图样的方式有多种。下面示出几种可能的实现方式,对于其他实现方式本申请仍适用,下述示例的实现方式并不属于对本申请的技术方案的限定。
实现方式一
上述图2所示的实施例的步骤201中,第一载波预留图样是第一通信设备中预配置的或预定义的默认载波预留图样。例如,默认载波预留图样可以是通信协议定义的。该默认 载波预留图样可以是初始部分带宽(initial BWP)对应的载波预留图样,初始部分带宽用于第一通信设备接入网络。上述步骤201具体包括终端设备确定该默认载波预留图样。
可选的,初始部分带宽的配置粒度可以是小区级别的,或者UE级别的,或者是波束级别的,具体本申请不做限定。
例如,网络设备为每个小区配置对应的初始部分带宽,不同小区可以对应不同的初始部分带宽。即初始部分带宽的配置粒度是小区级别的。
例如,网络设备为每个UE配置相应的初始部分带宽,不同UE对应不同的初始部分带宽。即初始部分带宽的配置粒度是UE级别的。
例如,网络设备为每个波束配置对应的初始部分带宽,不同波束可以对应不同的初始部分带宽。即初始部分带宽的配置粒度是波束级别的。
例如,第一通信设备为终端设备,终端设备处于空闲态。如图3所示,终端设备在初始接入过程采用初始部分带宽,初始部分带宽对应的默认载波预留图样,即图3所示的载波预留图样1。终端设备确定初始部分带宽对应的默认载波预留图样。网络设备可以根据默认载波预留图样向终端设备发送下行数据信号,相应的,终端设备根据默认载波预留图样接收来自网络设备的下行数据信号;或者,终端设备可以根据默认载波预留图样向网络设备发送上行数据信号,相应的,网络设备根据默认载波预留图样接收来自终端设备的上行数据信号。
实现方式二
下面结合图4所示的实施例介绍实现方式二。
图4为本申请实施例通信处理方法的另一个实施例示意图。请参阅图4,通信处理方法包括:
401、第一通信设备接收来自第二通信设备的第一配置信息。第一配置信息用于指示第一部分带宽对应的第一载波预留图样。
具体的,第一通信设备获取第一配置信息。例如,第二通信设备向第一通信设备发送第一配置信息。相应的,第一通信设备可以接收来自第二通信设备的第一配置信息。
在一些实施方式中,第一配置信息包括第一载波预留图样;或者,第一配置信息包括第一载波预留图样的索引。
例如,第一载波预留图样的索引承载于BWP配置信令。下面示出BWP配置信令的一种代码格式。需要说明的是,下述代码格式仅仅是一种示例,并不属于对本申请的技术方案的限定。
Figure PCTCN2022106436-appb-000001
Figure PCTCN2022106436-appb-000002
需要说明的是,第一通信设备中可以存储有多个载波预留图样、多个载波预留图样的索引和载波预留图样与索引之间的映射关系。第一通信设备可以根据第一配置信息指示的索引从多个载波预留图样中确定第一载波预留图样。
需要说明的是,多个载波预留图样、多个载波预留图样的索引和载波预留图样与索引之间的映射关系可以是预配置的,或者是,第二通信设备向第一通信设备指示的,或者是,预定义的(例如,通信协议规定的),具体本申请不做限定。
下面通过表1示出载波预留图样与索引之间的映射关系的一种示例。
表1
Figure PCTCN2022106436-appb-000003
Figure PCTCN2022106436-appb-000004
例如,第一配置信息指示索引0,由表1可知,第一通信设备可以确定第一载波预留图样为{2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 293 912 919 961 1003 1073 1085 1129 1138 1145 1146 1181 1236 1264 1269 1302 1308 1321 1396 1402 1449 1452 1506 1507 1516 1521 1532 1533 1537 1549 1550 1557 1564 1575 1583}。
402、第一通信设备根据第一配置信息确定第一载波预留图样。
一种可能的实现方式中,第一配置信息包括第一载波预留图样,第一通信设备可以根据第一配置信息确定第一载波预留图样。
另一种可能的实现方式中,第一配置信息包括第一载波预留图样的索引,第一通信设备可以根据第一载波预留图样的索引以及载波预留图样与索引之间的映射关系从多个载波预留图样确定第一载波预留图样。
例如,第一配置信息指示索引0,第一通信设备通过上述表1可以确定第一载波预留图样为{2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157 213 220 246 293 912 919 961 1003 1073 1085 1129 1138 1145 1146 1181 1236 1264 1269 1302 1308 1321 1396 1402 1449 1452 1506 1507 1516 1521 1532 1533 1537 1549 1550 1557 1564 1575 1583}。例如,第一通信设备采用第一载波预留图样接收第二通信设备发送的数据信号。具体的,第一通信设备在第一载波预留图样包括的预留载波上接收来自第二通信设备的内核信号,根据网络侧的资源调度在部分带宽内除了预留载波之外的其他载波上接收来自发送端设备的数据信号。第一通信设备在将接收到的信号变换到频域后,取出对应的载波上的数据时跳过第一载波预留图样指示的预留载波。即第二通信设备对第一载波预留图样包括的预留载波上的数据不做译码处理。
实现方式三
下面结合图5所示的实施例介绍实现方式三。
501、第一通信设备根据第一映射关系从多个载波图样中确定与第一部分带宽对应的第一载波预留图样。
其中,第一映射关系为载波预留图样与部分带宽之间的映射关系。
可选的,第一映射关系可以是预配置的,或者,第二通信设备向第一通信设备指示的,或者,通信协议规定的,具体本申请不做限定。
第一通信设备中存储有该多个载波预留图样。该多个载波预留图样可以是预配置的, 或者是,第二通信设备向第一通信设备发送的,或者是,通信协议规定的,具体本申请不做限定。
一种可能的实现方式中,第一映射关系为载波预留图样与部分带宽的索引之间的映射关系。第一通信设备根据第一映射关系从多个载波图样中确定与第一部分带宽的索引对应的第一载波预留图样。
例如,下面通过表2表示载波预留图样与部分带宽的索引之间的映射关系。
表2
Figure PCTCN2022106436-appb-000005
上述表2中,索引0对应的部分带宽的配置信息可以包括以下任一种:200M带宽,载波间隔为120kHz(千赫兹);100M带宽,载波间隔为60kHz;50M带宽,载波间隔为30kHz;或25M带宽,载波间隔为15kHz。索引1分别对应的部分带宽的配置可以为以下任一种:200M(兆)带宽,载波间隔为120kHz;100M带宽,载波间隔为60kHz;50M带宽,载波间隔为30kHz;或25M带宽,载波间隔为15kHz。
索引2对应的部分带宽的配置信息可以包括以下任一种:30M带宽,载波间隔为120kHz;15M带宽,载波间隔为60kHz;或7.5M带宽,载波间隔为30kHz;3.75M带宽,载波间隔为15kHz。索引3对应的部分带宽的配置信息可以包括以下任一种:30M带宽,载波间隔为120kHz;15M带宽,载波间隔为60kHz;7.5M带宽,载波间隔为30kHz;或3.75M带宽,载波间隔为15kHz。
例如,第一部分带宽的索引为0,那么第一通信设备通过表2可以确定索引0对应的第一载波预留图样为:{2 3 13 19 20 29 39 40 44 45 49 69 79 89 94 105 136 141 157  213 220 246 293 912 919 961 1003 1073 1085 1129 1138 1145 1146 1181 1236 1264 1269 1302 1308 1321 1396 1402 1449 1452 1506 1507 1516 1521 1532 1533 1537 1549 1550 1557 1564 1575 1583}。例如,第一通信设备采用第一载波预留图样接收第二通信设备发送的数据信号。具体的,第一通信设备在第一载波预留图样包括的预留载波上接收来自第二通信设备的内核信号,根据网络侧的资源调度在部分带宽内除了预留载波之外的其他载波上接收来自发送端设备的数据信号。第一通信设备在将接收到的信号变换到频域后,取出对应的载波上的数据时跳过第一载波预留图样指示的预留载波。即第一通信设备对第一载波预留图样包括的预留载波上的数据不做译码处理。
可选的,载波预留图样与部分带宽的索引之间的映射关系的建立可以考虑以下至少一项因素:BWP的带宽、载波间隔、快速傅立叶变换(fast Fourier transformation,FFT)或快速傅立叶反变换(inverse fast Fourier transformation,IFFT)长度、载波预留图样包括的预留载波的分布情况。载波预留图样包括的预留载波的分布情况包括:载波预留分布在该部分带宽内和/或分布在部分带宽外。
例如,第二通信设备将部分带宽的带宽、载波间隔、FFT长度或IFFT长度、以及载波预留图样包括的预留载波的分布情况作为考虑因素,以信号PARA抑制效果达到最优化为目标遍历所有的载波预留图样,以选择每个部分带宽对应的载波预留图样,并建立载波预留图样与部分带宽的索引之间的映射关系。也就是在第一通信设备与第二通信设备采用第一部分带宽对应的载波预留图样进行数据传输,可以有效地抑制信号PARA。
例如,上述表2中,以部分带宽1为200M带宽(载波间隔为120kHz),FFT长度或IFFT长度为2048,载波预留图样分布在带内为例,设计得到能够较优地抑制信号PAPR的载波预留图样,使该载波预留图样与部分带宽1建立映射关系。
又例如,以部分带宽3为30M带宽(载波间隔为120kHz),FFT长度或IFFT长度为1024,载波预留图样分布在带内为例,设计得到能够较优地抑制信号PAPR的载波预留图样,使该载波预留图样与部分带宽3建立映射关系。
另一种可能的实现方式中,第一映射关系为载波预留图样与部分带宽的配置信息之间的映射关系。第一通信设备根据第一映射关系从多个载波预留图样中确定与第一部分带宽的配置信息对应的第一载波预留图样,可选的,部分带宽的配置信息包括部分带宽的带宽、载波间隔。
例如,下面通过表3表示载波预留图样与部分带宽的配置信息之间的映射关系。其中,部分带宽的配置信息以部分带宽的带宽、载波间隔为例进行介绍。
表3
Figure PCTCN2022106436-appb-000006
Figure PCTCN2022106436-appb-000007
例如,第一部分带宽的配置信息包括:30M带宽、载波间隔为120kHz。第一通信设备通过上述表3可以确定第一部分带宽的配置信息对应的第一载波预留图样为:{2 7 8 9 11 15 16 17 18 20 21 22 23 26 28 31 33 36 144 154 156 165 186 189 190 206 209 210 223 227 229 230 231 234 238 240}。
关于表3的建立过程与上述表2的建立过程类似,具体请参阅前述的相关介绍,这里不再赘述。
对于第二通信设备向第一通信设备指示第一映射关系的方式,可选的,图5所示的实施例还包括步骤501a,步骤501a可以在步骤501之前执行。
501a、第二通信设备向第一通信设备发送第二配置信息。相应的,第一通信设备接收来自第二通信设备的第二配置信息。
第一配置信息用于指示第一映射关系。一种可能的实现方式中,第一配置信息包括第一映射关系。
可选的,第一配置信息还包括以下至少一项配置参数:该多个载波预留图样、该多个载波预留图样的索引、载波预留图样与索引之间的映射关系、第二映射关系、第三映射关系、第四映射关系。
其中,第二映射关系为载波预留图样与波束之间的映射关系。第三映射关系为载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽的各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。关于第二映射关系、第三映射关系和第四映射关系的相关介绍请参阅后文相关介绍,这里不再赘述。
在一些实施方式中,第二配置信息中的各个配置参数可以承载于以下任一种信令:SIB1、MIB、RRC信令、DCI、组DCI、MAC CE、TAC。
例如,第一通信设备为终端设备,终端设备在初始接入过程中执行上述图2所示的实施例。第一映射关系可以承载于SIB1、MIB、或RRC信令中。
实现方式四
下面结合图6所示的实施例介绍实现方式四。
601、第一通信设备根据第二映射关系从多个载波预留图样中确定与第一波束对于的第一载波预留图样。
其中,第二映射关系为载波预留图样与波束之间的映射关系。
可选的,第二映射关系可以是预配置的,或者,第二通信设备向第一通信设备指示的,或者,通信协议规定的,具体本申请不做限定。
第一通信设备中存储有该多个载波预留图样。该多个载波预留图样可以是预配置的,或者是,第二通信设备向第一通信设备发送的,或者是,通信协议规定的,具体本申请不 做限定。
例如,下面通过表4表示载波预留图样与波束之间的映射关系。
表4
Figure PCTCN2022106436-appb-000008
例如,第一波束的波束号为0,第一通信设备根据上述表4可以确定第一载波预留图样为:2 7 8 9 11 15 16 17 18 20 21 22 23 26 28 31 33 36 144 154 156 165 186 189 190 206 209 210 223 227 229 230 231 234 238 240。第一通信设备在第一载波预留图样包括的预留载波上接收来自第二通信设备的内核信号,根据网络侧的资源调度在部分带宽内除了预留载波之外的其他载波上接收来自发送端设备的数据信号。第一通信设备在将接收到的信号变换到频域后,取出对应的载波上的数据时跳过第一载波预留图样指示的预留载波。即第一通信设备对第一载波预留图样包括的预留载波上的数据不做译码处理。
可选的,载波预留图样与波束之间的映射关系的建立可以考虑以下至少一项因素:波束中第一通信设备和第二通信设备间通信使用的带宽、FFT长度或IFFT长度、载波预留图样包括的预留载波的分布情况。关于载波预留图样包括的预留载波的分布情况请参阅前述相关介绍。
例如,第二通信设备将波束中第一通信设备和第二通信设备之间进行通信所使用的带宽、FFT长度或IFFT长度、以及载波预留图样包括的预留载波的分布情况作为考虑因素,以PARA抑制效果达到最优化为目标遍历所有的载波预留图样,以选择每个波束对应的载波 预留图样,并建立载波预留图样与波束之间的映射关系。也就是在第一通信设备与第二通信设备采用第一波束对应的载波预留图样进行数据传输,可以有效地抑制信号PARA。
例如,表4中,以在波束0上,第一通信设备与第二通信设备之间使用30M带宽进行通信(载波间隔为120kHz),FFT长度或IFFT长度为1024,载波预留图样分布在带内为例,设计得到能够较优地抑制信号PAPR的载波预留图样,并建立该载波预留图样与波束0之间的映射关系。
例如,图7所示的卫星通信系统中,第一通信设备为终端设备1,终端设备1接入波束1。因此,终端设备1可以确定波束1对应载波预留图样7。
对于第二通信设备向第一通信设备指示第一映射关系的方式,可选的,图6所示的实施例还包括步骤601a,步骤601a可以在步骤601之前执行。
601a、第二通信设备向第一通信设备发送第三配置信息。相应的,第一通信设备接收来自第二通信设备的第三配置信息。其中,第三配置信息用于指示第二映射关系。
一种可能的实现方式中,第三配置信息包括第二映射关系。
在一些实施方式中,第三配置信息还包括以下至少一项配置参数:该多个载波预留图样、该多个载波预留图样的索引、载波预留图样与索引之间的映射关系、第一映射关系、第三映射关系、第四映射关系。关于第一映射关系请参阅前述图4的相关介绍,这里不再赘述。关于第三映射关系以及第四映射关系的相关介绍请参阅后文相关介绍,这里不再赘述。
第三配置信息中各个配置参数的承载方式与前述步骤501a中第二配置信息中各个配置参数的承载方式类似,具体可以参阅步骤501a的相关介绍,这里不再赘述。
可选的,不同的两个波束可以对应相同载波预留图样。其中,两个波束的信号覆盖区域之间的距离较大,两个波束对应相同的部分带宽。例如,如图7所示,波束2的信号覆盖范围与波束7的信号覆盖范围较大。因此,波束2与波束7可以都对应载波预留图样5。终端设备2接入波束2,采用载波预留图样7进行数据传输。终端设备3接入波束7,采用载波预留图样5进行数据传输。终端设备2和终端设备3之间不会产生干扰或干扰较小(干扰可以忽略不计)。
实现方式五
下面结合图8所示的实施例介绍实现方式五。
801、第一通信设备根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样。
其中,第三映射关系为载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。该多个波束包括第一波束。
可选的,第三映射关系可以是预配置的,或者是,第二通信设备向第一通信设备指示的,或者是,通信协议规定的,具体本申请不做限定。第一通信设备中存储有该多个载波预留图样。该多个载波预留图样可以是预配置的,或者是,第二通信设备向第一通信设备发送的,或者是,通信协议规定的,具体本申请不做限定。
一种可能的实现方式中,第三映射关系为载波预留图样与多个波束中各个波束对应的 多个部分带宽的索引之间的映射关系;或者,第三映射关系为载波预留图样与多个波束中各个波束对应的多个部分带宽的配置信息之间的映射关系。可选的,部分带宽的配置信息包括部分带宽的带宽和载波间隔。后文以第三映射关系为载波预留图样与多个波束中各个波束对应的多个部分带宽的索引之间的映射关系为例进行说明。
例如,下面通过表5表示载波预留图样与各个波束对应的多个部分带宽的索引之间的映射关系。
表5
Figure PCTCN2022106436-appb-000009
Figure PCTCN2022106436-appb-000010
上述表5中,索引0对应的部分带宽的配置信息可以包括以下任一种:
30M带宽,载波间隔为120kHz(千赫兹),FFT长度或IFFT长度为1024;
15M带宽,载波间隔为60kHz,FFT长度或IFFT长度为1024;
7.5M带宽,载波间隔为30kHz,FFT长度或IFFT长度为1024;
3.75M带宽,载波间隔为15kHz,FFT长度或IFFT长度为1024。
上述表5中,索引1对应的部分带宽的配置信息可以包括以下任一种:
200M带宽,载波间隔为120kHz,FFT长度或IFFT长度为2048;
100M带宽,载波间隔为60kHz,FFT长度或IFFT长度为2048;
50M带宽,载波间隔为30kHz,FFT长度或IFFT长度为2048;
25M带宽,载波间隔为15kHz,FFT长度或IFFT长度为2048。
例如,第一波束的波束号为0,第一部分带宽为索引0对应的部分带宽。由上述表5可知,第一载波预留图样为{2 7 8 9 11 15 16 17 18 20 21 22 23 26 28 31 33 36 144 154 156 165 186 189 190 206 209 210 223 227 229 230 231 234 238 240}。第一通信设备在波束0上使用索引0对应的载波预留图样接收第二通信设备发送的信号。第一通信设备在将接收到的信号变换到频域后,取出对应的载波上的数据时跳过索引0对应的载波预留图样指示的预留载波。即第一通信设备对索引0对应的载波预留图样包括的预留载波上的数据不做译码处理。
例如,如图9所示,波束1对应的部分带宽1、部分带宽2、部分带宽3和部分带宽4。部分带宽1的索引为1,部分带宽2的索引为2,部分带宽3的索引为3,部分带宽4的索引为4。索引1对应载波预留图样1,索引2对应载波预留图样2,索引3对应载波预留图样3,索引4对应载波预留图样4。第一通信设备采用波束1对应的部分带宽1。因此,第一通信设备可以确定部分带宽1的索引1对应的载波预留图样1,并采用载波预留图样1传输数据信号。
可选的,第三映射关系的建立可以考虑以下至少一项因素:在各个波束对应哪些部分带宽,各个波束对应的部分带宽的带宽、载波间隔、FFT长度或IFFT长度、载波预留图样包括的预留载波的分布情况。关于载波预留图样包括的预留载波的分布情况请参阅前述相 关介绍。
例如,第二通信设备将在各个波束对应哪些部分带宽,各个波束对应的部分带宽的带宽、载波间隔、FFT长度或IFFT长度、以及载波预留图样包括的预留载波的分布情况作为考虑因素,以PARA抑制效果达到最优化为目标遍历所有的载波预留图样,以选择各个波束对应的多个部分带宽中每个部分带宽对应的载波预留图样。
例如,表5中,波束0对应部分带宽0和部分带宽1。其中,部分带宽0是30M带宽(载波间隔为120kHz),FFT长度或IFFT长度为1024,载波预留图样分布在带内,设计得到能够较优地抑制信号PAPR的载波预留图样,并建立该载波预留图样与波束0对应的部分带宽0之间的映射关系。
对于第二通信设备向第一通信设备指示第三映射关系的方式,可选的,图8所示的实施例还包括步骤801a,步骤801a可以在步骤801之前执行。
801a、第二通信设备向第一通信设备发送第四配置信息。相应的,第一通信设备接收来自第二通信设备的第四配置信息。其中,第四配置信息用于指示第三映射关系。
一种可能的实现方式中,第四配置信息包括第三映射关系。
在一些实施方式中,第四配置信息还包括以下至少一项配置参数:该多个载波预留图样、该多个载波预留图样的索引、载波预留图样与索引之间的映射关系、第一映射关系、第二映射关系、第四映射关系。关于第一映射关系和第二映射关系分别参阅前述图5和图6的相关介绍,这里不再赘述。关于第四映射关系的相关介绍请参阅后文相关介绍,这里不再赘述。第四配置信息中各个配置参数的承载方式与前述步骤501a中第一配置信息中各个配置参数的承载方式类似,具体可以参阅步骤501a的相关介绍,这里不再赘述。
实现方式六
下面结合图10所示的实施例介绍实现方式六。
图10为本申请实施例通信处理方法的另一个实施例示意图。请参阅图10,通信处理方法包括:
1001、第一通信设备根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图。
第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。第一参考信号图样为第一通信设备传输参考信号采样的图样。
可选的,参考信号包括以下任一种:PTRS、信道状态信息参考信号(channel-state information reference signal,CSI-RS)、DMRS、跟踪参考信号(tracking reference signal,TRS)。
可选的,参考信号图样可以通过参考信号的配置参数表征,例如,参考信号的频域密度。例如,参考信号的频域密度可以通过每多少个资源块(resource block,RB)映射一个参考信号来表示或者通过每多少个载波映射一个参考信号。可选的,第四映射关系包括第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号的频域密度之间的映射关系。
例如,下面通过表6表示第一通信设备与第二通信设备在使用第一部分带宽的情况下采用的载波预留图样与参考信号的频域密度之间的映射关系。其中,表6是以PTRS为例,表6中参考信号的频域密度表示每K PT-RS个RB映射一个PTRS。
表6
Figure PCTCN2022106436-appb-000011
例如,参考信号为PTRS,PTRS的频域密度为2,第一通信设备通过上述表6可以确定第一载波预留图样为{2 3 13 19 20 29 39 40 44 45 69 79 89 94 105 136 141 157 213 220 246 293 912 919 1003 1073 1085 1138 1145 1146 1181 1236 1264 1269 1302 1308 1396 1402 1449 1452 1506 1507 1516 1521 1532 1533 1549 1550 1557 1564 1575 1583}。
参考信号的频域密度与载波预留图样之间的映射关系的建立可以考虑将载波预留图样包括的预留载波位置避开参考信号占用的载波位置,以避免发生载波重叠。第一通信设备与第二通信设备采用该载波预留图样可以使得到的时域核信号的次峰值较小或者主峰与次峰的比值较大。这样既能保证参考信号的完整发送(保证译码性能),又能保证取得较好的信号PAPR抑制效果。通过上述示出的设计原则,设计得到上述表6所示的载波预留图样与参考信号的频域密度之间的映射关系。
需要说明的是,上述表6以每多少个RB映射一个PTRS为例介绍参考信号的频域密度。实际应用中,上述参考信号的频域密度还可以通过其他方式表示。例如,参考信号的频域密度为每多少个载波映射一个PTRS,具体本申请不做限定。
例如,下面通过表7示出第一通信设备与第二通信设备在使用第一部分带宽的情况下采用的载波预留图样与参考信号的频域密度之间的映射关系,以及第一通信设备与第二通信设备在使用第二部分带宽的情况下采样的载波预留图样与参考信号的频域密度之间的映射关系。其中,表7中参考信号的频域密度表示每多少个载波映射一个参考信号。
表7
Figure PCTCN2022106436-appb-000012
上述表7中,索引0对应的部分带宽的配置信息可以包括以下任一种:200M带宽,载波间隔为120kHz,FFT长度或IFFT长度为2048;100M带宽,载波间隔为60kHz,FFT长度或IFFT长度为2048;50M带宽,载波间隔为30kHz,FFT长度或IFFT长度为2048;或25M带宽,载波间隔为15kHz,FFT长度或IFFT长度为2048。
索引1对应的部分带宽的配置信息可以包括以下任一种:30M带宽,载波间隔为120kHz,FFT长度或IFFT长度为1024;15M带宽,载波间隔为60kHz,FFT长度或IFFT长度为1024; 7.5M带宽,载波间隔为30kHz,FFT长度或IFFT长度为1024;或3.75M带宽,载波间隔为15kHz,FFT长度或IFFT长度为1024。
例如,第一部分带宽为索引0对应的部分带宽。参考信号的频域密度为2。第一通信设备通过上述表7可以确定第一载波预留图样为:{2 28 40 42 68 72 82 84 122 140 160 184 212 890 930 988 1032 1086 1104 1162 1168 1270 1284 1328 1352 1388 1390 1394 1396 1442 1454 1504 1522 1524 1554 1582}。
可选的,第四映射关系的建立可以考虑以下至少一项因素:在各个部分带宽中存在哪些要使用的参考信号的频域密度,部分带宽、载波间隔、FFT长度或IFFT长度、载波预留图样的分布情况。关于载波预留图样的分布情况请参阅前述相关介绍,这里不再赘述。
例如,表7中,索引0对应的部分带宽中,参考信号的频域密度2和24,索引0对应的部分带宽是200M带宽(载波间隔为120kHz),FFT长度或IFFT长度为2048,载波预留图样包括的预留载波分布在带内,设计得到能够较优地抑制信号PAPR的载波预留图样,并建立该载波预留图样与参考信号的频域密度之间的映射关系。
例如,表7中,索引1对应的部分带宽中,参考信号的频域密度为2、4或24,索引1对应的部分带宽是30M带宽(载波间隔为120kHz),FFT长度或IFFT长度为1024,载波预留图样包括的预留载波分布在带内,设计得到能够较优地抑制信号PAPR的载波预留图样,并建立该载波预留图样与参考信号的频域密度之间的映射关系。
上述表7中,参考信号的频域密度为2,表示每两个载波映射一个参考信号。参考信号的频域密度为4,表示每四个载波映射一个参考信号。参考信号的频域密度为24,表示每24个载波映射一个参考信号。例如,参考信号的频域密度为2,表示第1、3、5、7…个载波上传输参考信号。
需要说明的是,上述表7中是以每多少个载波映射一个参考信号为例介绍参考信号的频域密度。实际应用中,参考信号的频域密度还有别的表达方式。例如,参考信号的频域密度为每多少个RB映射一个参考信号。那么,上述表6中,参考信号的频域密度分别为2、4和24可以替换为参考信号的频域密度为1/2、1/4和1/24。
可选的,第四映射关系可以是预配置的,或者,第二通信设备向第一通信设备指示的,或者,通信协议规定的,具体本申请不做限定。第一通信设备中存储有该多个载波预留图样。例如,该多个载波预留图样包括上述表7所示的载波预留图样。该多个载波预留图样可以是预配置的,或者是,第二通信设备向第一通信设备发送的,或者是,通信协议规定的,具体本申请不做限定。
对于第二通信设备向第一通信设备指示第四映射关系的方式,可选的,图10所示的实施例还包括步骤1001a,步骤1001a可以在步骤1001之前执行。
1001a、第二通信设备向第一通信设备发送第五配置信息。相应的,第一通信设备接收来自第二通信设备的第五配置信息。其中,第五配置信息用于指示第四映射关系。
在一些实施方式中,第五配置信息还包括以下至少一项配置参数:该多个载波预留图样、该多个载波预留图样的索引、载波预留图样与索引之间的映射关系、第一映射关系、第二映射关系、第三映射关系。关于第一映射关系、第二映射关系和第三映射关系的相关 介绍请参阅前文的相关介绍,这里不再赘述。第五配置信息中各个配置参数的承载方式与前述步骤501a中第一配置信息中各个配置参数的承载方式类似,具体可以参阅步骤501a的相关介绍,这里不再赘述。
上述图2所示的实施例的步骤201a中,第一通信设备判断是否使用载波预留图样传输数据信号。下面结合步骤1和步骤2介绍上述步骤201a中第一通信设备的具体判断过程。
步骤1、第一通信设备获取第一指示信息。第一指示信息用于指示第一通信设备是否使用载波预留图样传输数据信号。
下面介绍第一指示信息的几种可能的指示方式。对于其他指示方式本申请仍适用,具体本申请不做限定。
指示方式1、第一指示信息用于指示第三通信设备的位置信息。
其中,第三通信设备用于第一通信设备与第二通信设备之间进行通信。第三通信设备与第一通信设备为不同的两个通信设备。第一指示信息来自第二通信设备,或者来自中间节点设备。例如,第三通信设备。
例如,如图1B所示,第三通信设备为卫星,第一通信设备与第二通信设备通过卫星进行通信传输。卫星的位置信息包含在卫星的星历信息中。例如,卫星的轨道高度、卫星的运动速度、卫星轨道的倾斜角度等。
对于第一指示信息来自第二通信设备的实现方式,上述步骤1具体包括:第二通信设备向第一通信设备发送第一指示信息。相应的,第一通信设备接收来自第二通信设备的第一指示信息。
指示方式2、第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号。
例如,如图1B所示,卫星的信号覆盖范围包括波束1至波束5,第一指示信息指示:第一通信设备是否使用载波预留图样传输波束1至波束3中各个波束承载的数据信号,第一通信设备不使用载波预留图样传输波束4至波束5中各个波束承载的数据信号。
可选的,第一指示信息承载于广播消息中。例如,广播消息为第二通信设备向第一通信设备发送的SIB1或MIB。
步骤2、第一通信设备根据第一指示信息确定是否使用载波预留图样传输数据信号,若是,则执行上述图2所示的实施例中步骤201;若否,则执行上述图2所示的实施例中的步骤204。
基于上述步骤1的指示方式1,第一通信设备根据第三通信设备的位置信息确定是否使用载波预留图样传输数据信号。若是,则执行上述图2所示的实施例中步骤201;若否,则执行上述图2所示的实施例中的步骤204。
一种可能的实现方式中,第三通信设备为卫星,卫星的位置信息包括卫星的星历信息。第一通信设备根据卫星的星历信息确定是否使用载波预留图样传输数据信号。
例如,卫星的星历信息包括卫星的轨道高度,若卫星的轨道高度大于第一阈值,则第一通信设备确定使用载波预留图样传输数据信号;若卫星的轨道高度小于或等于第一阈值,则第一通信设备确定使用载波预留图样传输数据信号。例如,第一阈值为200KM(千米)。
可选的,第一阈值的大小可以参考接收端的信噪比的需求设定。例如,当第一通信设备与卫星之间轨道高度超过200KM(千米)时,第一通信设备与卫星之间进行通信。第一通信设备向卫星发送信号,卫星接收到信号的信噪比较低。第一通信设备需要提高发射功率改善卫星的信噪比。因此,第一通信设备需要使用载波预留图样抑制信号PAPR来提高发射功率。即第一阈值可以设置为200KM。
基于上述步骤2的指示方式2,第一通信设备根据第一指示信息确定是否承载于第一波束的数据信号。若是,则执行上述图2所示的实施例中步骤201;若否,则执行上述图2所示的实施例中的步骤204。
例如,第一通信设备采用波束1进行数据传输。第一指示信息指示第一通信设备使用载波预留图样传输承载于波束1的数据信号。因此,第一通信设备可以确定使用载波预留图样传输承载于波束1的数据信号。
需要说明的是,上述步骤1中的指示方式1示出了第三通信设备与第一通信设备为不同的两个通信设备。实际上,第三通信设备与第一通信设备也可以为同一通信设备,第一通信设备获取第一通信设备的位置信息;然后,第一通信设备根据第一通信设备的位置信息判断是否采用载波预留图样传输数据信号。
例如,第一通信设备为高空终端设备,高空终端设备的位置信息包括高空终端设备的高度信息。然后,高空终端设备根据高空终端设备的高度信息判断是否采用载波预留图样传输数据信号。
例如,如图1C所示,第一通信设备为图1C所示的飞机。飞机的位置信息包括飞机的飞行高度、飞机与海平线的相对高度差等。若高空终端设备距离海平面的相对高度差大于第二阈值,则高空终端设备确定使用载波预留图样传输数据信号;若高空终端设备距离海平面的相对高度差小于或等于第二阈值,则高空终端设备确定使用载波预留图样传输数据信号。
可选的,第二阈值的大小可以参考接收端的信噪比的需求设定。
例如,高空终端设备向第二通信设备发送数据信号。若第二通信设备接收到的信号的信噪比较低时,高空终端设备需要提高发射功率改善接收端的信噪比。因此,高空终端设备可以使用载波预留图样发送数据信号以抑制信号PAPR来提高发射功率。第二阈值可以是接收端接收到的信号的信噪比小于一定数值时高空终端设备距离海平面的相对高度。
例如,第一通信设备为卫星,卫星的位置信息可以包含在卫星的星历信息中。卫星根据卫星的星历信息判断是否采用载波预留图样传输数据信号。
例如,如图1D所示,第一通信设备为图1D所示的卫星,该卫星同时具有网络设备的功能。卫星的位置信息包含在卫星的星历信息中。关于星历信息以及卫星判断是否采用载波预留图样传输数据信号的过程请参阅前述相关介绍,这里不再赘述。
上述图2所示的实施例的步骤201中,可选的,若同一频域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,上述步骤202具体包括步骤202a和步骤202b。
步骤202a、第一通信设备将第一载波预留图样中的重叠预留载波进行打孔,得到第五 预留载波图样;
其中,重叠预留载波图样为第一载波预留图样中与用于传输参考信号的载波发生重叠的预留载波。重叠预留载波图样是指该载波作为预留载波,又作为用于传输参考信号的载波,例如,第一通信设备为终端设备,终端设备在该预留载波上接收来自网络设备的内核信号。而网络设备配置终端设备在该预留载波上接收参考信号。由于终端设备不对预留载波上接收的信号做译码处理,导致第一通信设备无法对该参考信号进行译码。因此,第一通信设备可以将第一载波预留图样中的重叠预留载波图样进行打孔,以便于第一通信设备传输参考信号。
例如,一个部分带宽内包括2048个载波。在一个符号上,第一载波预留图样为{2 28 39 40 42 65 68 72 82 83 84 85 91 115 117 122 140 159 160 184 212 223 817 890 930 949 988 1032 1086 1104 1162 1168 1223 1267 1270 1277 1284 1328 1345 1352 1388 1389 1390 1394 1396 1405 1442 1454 1471 1504 1522 1524 1553 1554 1563 1582 1583}。
若PTRS的频域密度为2,在一个符号上,每两个RB映射一个PTRS,即在第1,25,49,73,97…个载波上传输PTRS参考信号。第一通信设备对第一载波预留图样进行打孔,得到打孔后的第五载波预留图样为:{2 28 39 40 42 65 68 72 82 83 84 85 91 115 117 122 140 159 160 184 212 223 890 930 949 988 1032 1086 1104 1162 1168 1223 1267 1270 1277 1284 1328 1352 1388 1389 1390 1394 1396 1405 1442 1454 1471 1504 1522 1524 1553 1554 1563 1582 1583}。
例如,一个部分带宽内包括2048个载波,在一个符号上,第一载波预留图样为:{2 28 39 40 42 65 68 72 82 83 84 85 91 115 117 122 140 159 160 184 212 223 817 890 930 949 988 1032 1086 1104 1162 1168 1223 1267 1270 1277 1284 1328 1345 1352 1388 1389 1390 1394 1396 1405 1442 1454 1471 1504 1522 1524 1553 1554 1563 1582 1583}。
若DMRS的频域密度为1/2,即在一个符号上,每2个载波映射一个DMRS。即在第1,3,5,7,9…个载波上传输DMRS。第一通信设备对第一载波预留图样进行打孔,得到打孔后的第五载波预留图样为:{2 28 40 42 68 72 82 84 122 140 160 184 212 890 930 988 1032 1086 1104 1162 1168 1270 1284 1328 1352 1388 1390 1394 1396 1442 1454 1504 1522 1524 1554 1582}。
步骤202b、第一通信设备根据第五载波预留图样传输数据信号。
例如,第一通信设备为终端设备,图11所示的载波预留图样包括载波1、载波4、载波5、载波8和载波10,这些载波均为预留载波。即终端设备在这些载波上不传输数据信号。而图11所示的DMRS图样表示终端设备在载波1、载波3、载波5、载波7、载波9和载波11接收来自网络设备的DMRS。因此,载波1和载波5为重叠的预留载波。终端设备可以将载波预留图样中的载波1和载波5进行打孔,得到打孔后的载波预留图样,具体如图11所示,打孔后的载波预留图样包括载波4、载波8和载波10。
例如,第一通信设备为终端设备,图12所示的载波预留图样包括载波1、载波4、载波5、载波8和载波10。这些载波均为载波预留图样包括的预留载波。终端设备在这些载波上不传输数据信号。图12所示的PTRS图样表示终端设备在载波1和载波7接收来自网 络设备的PTRS。因此,载波1为载波预留图样中的重叠预留载波。终端设备可以将载波预留图样中的载波1进行打孔,得到打孔后的载波预留图样,具体如图12所示,打孔后的载波预留图样包括载波4、载波5、载波8和载波10。
由此可知,第一通信设备通过对第一载波预留图样进行打孔,再通过打孔得到的第五载波预留图样传输数据信号。也就是说本申请提供一种新的载波预留图样的使用规则,载波预留图样具有打孔特性。第一通信设备无需存储或配置多套载波预留图样,从而减少第一通信设备的存储开销。
本申请中,若第一通信设备从第一部分带宽切换至第二部分带宽,那么第一通信设备可以更新载波预留图样。下面结合图13所示的实施例介绍第一通信设备执行的操作。
图13为本申请实施例通信处理方法的另一个实施例示意图。请参阅图13,通信处理方法包括:
1301、第一通信设备确定第一载波预留图样。
步骤1301与前述图2所示的实施例中的步骤201类似,具体请参阅前述图2所示的实施例中的步骤201的相关介绍,这里不再赘述。
可选的,图13所示的实施例还包括步骤1301a和步骤1305。步骤1301a可以在步骤1301之前执行。
1301a、第一通信设备判断是否使用载波预留图样传输数据信号,若是,则执行步骤1301;若否,则执行步骤1305。
步骤1301a与步骤1305与前述图2所示的实施例中的步骤201a和步骤203类似,具体请参阅前述图2所示的实施例中的步骤201a和步骤203的相关介绍,这里不再赘述。
1302、第一通信设备根据第一载波预留图样传输数据信号。
步骤1302与前述图2所示的实施例中的步骤202类似,具体请参阅前述图2所示的实施例中的步骤202的相关介绍,这里不再赘述。
1303、若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽,第一通信设备根据第二部分带宽确定第二载波预留图样。
步骤1303中,第一通信设备确定第二载波预留图样的方式与前述图4和图5所示的实施例中第一通信设备确定第一载波预留图样的方式类似,具体可以参阅前述图4和图5所示的实施例中的相关介绍,这里不再赘述。
例如,第一部分带宽为索引0对应的部分带宽,第二部分带宽为索引1对应的部分带宽。第一通信设备通过索引1和上述表2可以确定第二载波预留图样为:{4 10 13 22 28 37 39 58 89 109 123 140 154 161 166 189 190 193 207 214 229 290 323 325 327 335 817 911 965 1035 1065 1170 1181 1282 1288 1317 1348 1386 1397 1412 1414 1419 1440 1461 1464 1466 1467 1469 1512 1534 1541 1543 1544 1550 1551 1553 1568}。
可选的,图13所示的实施例还包括步骤1303a和步骤1306。步骤1303a可以在步骤1303之前执行。
1303a、第一通信设备判断是否使用载波预留图样传输数据信号,若是,则执行步骤1303;若否,则执行步骤1306。
具体的,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽,那么第一通信设备判断是否使用载波预留图样传输数据信号。如果是,则执行步骤1303,如果不是,则执行步骤1306。
步骤1303a与前述图2所示的实施例的步骤201a类似,具体请参阅前述图2所示的实施例的步骤201a的相关介绍,这里不再赘述。
1304、第一通信设备根据第二载波预留图样传输数据信号。
1305、第一通信设备不采用载波预留图样传输数据信号。
步骤1304至步骤1305与前述图2所示的实施例中的步骤202至步骤203类似,具体请参阅前述图2所示的实施例中的步骤202至步骤203的相关介绍,这里不再赘述。
1306、第一通信设备不采用载波预留图样传输数据信号。
步骤1306与前述图2所示的实施例中的步骤203类似,具体请参阅前述图2所示的实施例中的步骤203的相关介绍,这里不再赘述。
需要说明的是,在步骤1304之后,若第一通信设备与第二通信设备从第二部分带宽切换至第三部分带宽,第一通信设备执行的操作与前述步骤1303a至步骤1304以及步骤1306类似,具体此处不再赘述。针对本实施例,对应的,第二通信设备执行的操作与上述图13所示的实施例中第一通信设备执行的操作类似,这里不再赘述。
例如,如图3所示的,第一通信设备为终端设备,在初始接入过程中,终端设备采用初始部分带宽对应的载波预留图样1向网络设备发起初始接入。在终端设备接入网络后,终端设备从初始部分带宽切换至部分带宽1。终端设备采用部分带宽1对应的载波预留图样2与网络设备之间进行数据通信。终端设备再从部分带宽1切换至部分带宽2,终端设备采用部分带宽2对应的载波预留图样3与网络设备之间进行数据通信。
本申请还提供一个实施例,该实施例与上述图13所示的实施例类似,不同的地方在于上述图13所示的实施例中的步骤1303和步骤1304。步骤1303替换为步骤1303b,步骤1304替换为步骤1304a。
步骤1303b:若第一通信设备与第二通信设备从第一波束切换至第二波束,第一通信设备根据第二波束确定第三载波预留图样。
例如,第一波束的波束号为1,第二波束的波束号为2。第一通信设备通过上述表4和第二波束的波束号可以确定第三载波预留图样为:{2 4 6 7 8 10 11 14 16 18 20 28 30 31 32 35 38 40 138 139 154 156 160 174 175 195 196 200 211 212 214 216 220 222 223 228 230 232 236 239}。
步骤1303b中,第一通信设备确定第三载波预留图样的方式与前述图6所示的实施例中第一通信设备确定第一载波预留图样的方式类似,具体可以参阅前述图6所示的实施例的相关介绍,这里不再赘述。
步骤1304a:第一通信设备根据第三载波预留图样传输数据信号。
步骤1304a与前述图13所示的实施例中的步骤1304类似,具体可以参阅前述图13所示的实施例的步骤1304的相关介绍,这里不再赘述。针对本实施例,对应的,第二通信设备执行的操作类似,具体此处不再赘述。
本申请还提供一个实施例,该实施例与上述图13所示的实施例类似,不同的地方在于上述图13所示的实施例中的步骤1303和步骤1304。步骤1303替换为步骤1303c,步骤1304替换为步骤1304b。
步骤1303c:若第一通信设备与第二通信设备在第一波束上从第一部分带宽切换至第三部分带宽,第一通信设备根据第三部分带宽确定第四载波预留图样。
其中,第一波束对应多个部分带宽,每个部分带宽对应一个载波预留图样。该多个部分带宽包括第一部分带宽和第三部分带宽。
例如,第一波束的波束号为0,第一部分带宽的索引为0,第二部分带宽的索引为1。第一通信设备根据第一波束、第二部分带宽和上述表5可以确定第四载波预留图样为:{5 6 7 11 29 31 71 79 83 85 99 111 138 161 166 181 183 194 210 240 263 272 301 305 800 959 985 988 1001 1160 1203 1225 1244 1265 1298 1334 1343 1372 1377 1385 1390 1401 1405 1439 1448 1455 1472 1481 1482 1514 1527 1544 1555 1562 1563 1564 1571}。
步骤1303c:第一通信设备确定第四载波预留图样的方式与前述图8所示的实施例中第一通信设备确定第一载波预留图样的方式类似,具体可以参阅前述图8所示的实施例的相关介绍,这里不再赘述。
步骤1304b:第一通信设备根据第四载波预留图样传输数据信号。
步骤1304b与前述图13所示的实施例中的步骤1304类似,具体可以参阅前述图13所示的实施例的步骤1304的相关介绍,这里不再赘述。针对本实施例,对应的,第二通信设备执行的操作类似,具体此处不再赘述。
本申请还提供一个实施例,该实施例与上述图13所示的实施例类似,不同的地方在于上述图13所示的实施例中的步骤1303和步骤1304。步骤1303替换为步骤1303d,步骤1304替换为步骤1304c。
步骤1303d:若第一通信设备与第二通信设备从第一波束切换至第二波束,且从第一部分带宽切换至第三部分带宽,第一通信设备根据第二波束和第三部分带宽确定第六载波预留图样。
一种可能的实现方式中,第一波束和第二波束分别都对应多个部分带宽,该多个部分带宽包括第一部分带宽和第二部分带宽。例如,上述图8所示的实施例中可知,第一通信设备可以从第三映射关系中确定载波预留图样与第二波束对应的多个部分带宽之间的映射关系。然后,第一通信设备根据载波预留图样与第二波束对应的多个部分带宽之间的映射关系确定多个载波预留图样中与第二波束和第二部分带宽对应的载波预留图样。
例如,第二波束的波束号为1,第二部分带宽的索引为1。第一通信设备根据第二波束、第二部分带宽和上述表5可以确定第六载波预留图样为:{2 3 13 19 20 29 39 40 44 45 69 79 89 94 105 136 141 157 213 220 246 293 912 919 1003 1073 1085 1138 1145 1146 1181 1236 1264 1269 1302 1308 1396 1402 1449 1452 1506 1507 1516 1521 1532 1533 1549 1550 1557 1564 1575 1583}。
步骤1304c:第一通信设备根据第六载波预留图样传输数据信号。
步骤1304c与前述图13所示的实施例中的步骤1304类似,具体可以参阅前述图13所 示的实施例的步骤1304的相关介绍,这里不再赘述。针对本实施例,对应的,第二通信设备执行的操作类似,具体此处不再赘述。
下面对本申请实施例提供的第一通信设备进行描述。请参阅图14,图14为本申请实施例第一通信设备的一个结构示意图。该第一通信设备可以用于执行图2、图4、图5、图6、图8、图10和图13所示的实施例中第一通信设备执行的步骤,可以参考上述方法实施例中的相关描述。
第一通信设备1400包括处理模块1401和收发模块1402。
处理模块1401,用于确定第一载波预留图样;
收发模块1402,用于根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于第一通信设备与第二通信设备之间传输数据信号。
一种可能的实现方式中,处理模块1401具体用于:
获取第一配置信息,第一配置信息用于指示第一部分带宽对应的第一载波预留图样;
根据第一配置信息确定第一载波预留图样。
另一种可能的实现方式中,处理模块1401具体用于:
根据第一映射关系从多个载波预留图样中确定与第一部分带宽对应第一载波预留图样,第一映射关系为载波预留图样与部分带宽之间的对应关系。
另一种可能的实现方式中,处理模块1401具体用于:
根据第二映射关系从多个载波预留图样中确定与第一波束对应第一载波预留图样,第二映射关系为载波预留图样与波束之间的映射关系。
另一种可能的实现方式中,处理模块1401具体用于:
根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样,第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,处理模块1401具体用于:
根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图样,第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
另一种可能的实现方式中,处理模块1401还用于:
判断是否使用载波预留图样传输数据信号;
若是,则执行处理模块1401确定第一载波预留图样的步骤。
另一种可能的实现方式中,处理模块具体用于:
获取第一指示信息;
根据第一指示信息确定是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息承载于广播消息。
另一种可能的实现方式中,广播消息包括SIB1或MIB。
另一种可能的实现方式中,第一指示信息用于指示第三通信设备的位置信息,第三通信设备用于第一通信设备与第二通信设备进行通信;
处理模块1401具体用于:
根据第三通信设备的位置信息确定是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号,多个波束包括第一波束。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽;处理模块1401还用于:
根据第二部分带宽确定第二载波预留图样;
收发模块1402还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一波束切换至第二波束;处理模块1401还用于:
根据第二波束对应确定第三载波预留图样;
收发模块1402还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,第一波束对应所述第一部分带宽和第三部分带宽,第一部分带宽对应第一载波预留图样,第三部分带宽对应第四载波预留图样;若第一通信设备与第二通信设备在所述第一波束上从第一部分带宽切换至第三部分带宽,处理模块1401还用于:
根据第三部分带宽确定第四载波预留图样;
收发模块1402还用于:
根据第四载波预留图样传输数据信号。
另一种可能的实现方式中,若同一时域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,收发模块1402具体用于:
将第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,重叠预留载波为第一载波预留图样中与用于传输参考信号的载波重叠的预留载波;
根据第五载波预留图样传输数据信号。
另一种可能的实现方式中,收发模块1402还用于:
获取第二配置信息,第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,第二配置信息包括的任一项配置参数承载于以下任一种信令:SIB1、MIB、RRC信令、DCI、组DCI、MAC CE、TAC。
下面对本申请实施例提供的第二通信设备进行描述。请参阅图15,图15为本申请实 施例第二通信设备的一个结构示意图。该第二通信设备可以用于执行图2所示的实施例中第二通信设备执行的步骤,可以参考上述方法实施例中的相关描述。
第二通信设备1500包括处理模块1501和收发模块1502。
处理模块1501,用于确定第一载波预留图样;
收发模块1502,用于根据第一载波预留图样传输数据信号;第一载波预留图样是根据第一部分带宽确定的,或者,第一载波预留图样是根据第一波束确定的;第一部分带宽用于在第一通信设备与第二通信设备之间传输数据信号,第一波束用于在第一通信设备与第二通信设备之间传输数据信号。
一种可能的实现方式中,处理模块1501具体用于:
根据第一映射关系从多个载波预留图样中确定与第一部分带宽对应第一载波预留图样,第一映射关系为载波预留图样与部分带宽之间的对应关系。
另一种可能的实现方式中,处理模块1501具体用于:
根据第二映射关系从多个载波预留图样中确定与第一波束对应第一载波预留图样,第二映射关系为载波预留图样与波束之间的映射关系。
另一种可能的实现方式中,处理模块1501具体用于:
根据第三映射关系从多个载波预留图样中确定与第一部分带宽对应的第一载波预留图样,第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,第一通信设备与第二通信设备之间采用第一参考信号图样传输参考信号;处理模块1501具体用于:
根据第四映射关系和第一部分带宽从多个载波预留图样中确定与第一参考信号图样对应的载波预留图样,第四映射关系为第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
另一种可能的实现方式中,收发模块1502还用于:
向第一通信设备发送第一配置信息,第一配置信息用于指示第一部分带宽对应的第一载波预留图样。
另一种可能的实现方式中,收发模块1502还用于:
向第一通信设备发送第一指示信息,第一指示信息用于指示是否使用载波预留图样传输数据信号。
另一种可能的实现方式中,第一指示信息承载于广播消息。
另一种可能的实现方式中,第一指示信息用于指示第三通信设备的位置信息,第三通信设备用于第一通信设备与第二通信设备进行通信;或者,
第一指示信息用于指示第一通信设备是否使用载波预留图样传输多个波束中各个波束承载的数据信号,多个波束包括第一波束。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一部分带宽切换至第二部分带宽;处理模块1501还用于:
根据第二部分带宽确定第二载波预留图样;
收发模块1502还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,若第一通信设备与第二通信设备从第一波束切换至第二波束;处理模块1501还用于:
根据第二波束对应确定第三载波预留图样;
收发模块1502还用于:
根据第二载波预留图样传输数据信号。
另一种可能的实现方式中,第一波束对应第一部分带宽和第三部分带宽,第一部分带宽对应第一载波预留图样,第三部分带宽对应第四载波预留图样;若第一通信设备与第二通信设备在第一波束上从第一部分带宽切换至第三部分带宽,处理模块1501还用于:
根据第三部分带宽确定第四载波预留图样;
收发模块1502还用于:
根据第四载波预留图样传输数据信号。
另一种可能的实现方式中,若同一时域资源上,第一载波预留图样中的预留载波与第一通信设备上用于传输参考信号的载波发生重叠,处理模块1501具体用于:
将第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,重叠预留载波为第一载波预留图样中与用于传输参考信号的载波重叠的预留载波;
收发模块1502还用于:
根据第五载波预留图样传输数据信号。
另一种可能的实现方式中,收发模块1502还用于:
向第一通信设备发送第二配置信息,第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、第一通信设备与第二通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
另一种可能的实现方式中,第二配置信息包括的任一项配置参数承载于以下任一种信令:SIB1、MIB、RRC信令、DCI、组DCI、MAC CE、TAC。
下面通过图16示出第一通信设备为终端设备的一种可能的结构示意图。
图16示出了一种简化的终端设备的结构示意图。为了便于理解和图示方式,图16中,终端设备以手机作为例子。如图16所示,终端设备包括处理器、存储器、射频电路、天线及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。
存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。
输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图16所示,终端设备包括收发单元1610和处理单元1620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1610中用于实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1610用于执行上述方法实施例中第一通信设备的发送操作和接收操作,处理单元1620用于执行上述方法实施例中第一通信设备上除了收发操作之外的其他操作。
当该终端设备为芯片时,该芯片包括收发单元和处理单元。其中,该收发单元可以是输入输出电路或通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路或者逻辑电路。
本申请还提供一种第二通信设备,请参阅图17,本申请实施例第二通信设备的另一个结构示意图。第二通信设备可以用于执行图2所示的实施例中第二通信设备执行的步骤,可以参考上述方法实施例中的相关描述。
第二通信设备1700包括处理器1701和存储器1702。可选的,第二通信装置还包括收发器1703。
一种可能的实现方式中,该处理器1701、存储器1702和收发器1703分别通过总线相连,该存储器中存储有计算机指令。
前述实施例中的处理模块1501具体可以是本实施例中的处理器1701,因此该处理器1701的具体实现不再赘述。前述实施例中的收发模块1502则具体可以是本实施例中的收发器1703,因此收发器1703的具体实现不再赘述。
图18为本申请实施例第一通信设备的另一个结构示意图。请参阅图18,第一通信设备包括逻辑电路1801和输入输出接口1802。图18所示的第一通信设备可以用于执行上述图2、图4、图5、图6、图8、图10和图13所示的实施例中第一通信设备执行的步骤。
可选的,逻辑电路1802可以具有图14所示的实施例中的处理模块1401的功能。输入输出接口1802可以具有图14所示的实施例中的收发模块1402的功能。
图18所示的的第一通信设备可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似此处不再进行赘述。
图19为本申请实施例第二通信设备的另一个结构示意图。请参阅图19,第二通信设备包括逻辑电路1901和输入输出接口1902。图19所示的第二通信设备可以用于执行上述图2所示的实施例中第二通信设备执行的步骤。
可选的,逻辑电路1902可以具有图15所示的实施例中的处理模块1501的功能。输入输出接口1902可以具有图15所示的实施例中的收发模块1502的功能。
图19所示的的第二通信设备可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似此处不再进行赘述。
请参阅图20,本申请实施例还提供了一种通信系统,该通信系统包括如图14所示的第一通信设备和如图15所示的第二通信设备。图14所示的第一通信设备可以用于执行上述图2、图4、图5、图6、图8、图10和图13所示的实施例中第一通信设备执行的全部或部分步骤。图15所示的第二通信设备可以用于执行上述图2所示的实施例中第二通信设备执行的全部或部分步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如上述图2、图4、图5、图6、图8、图10和图13所示的实施例通信处理方法。
本申请实施例还提供了一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如上述图2、图4、图5、图6、图8、图10和图13所示的实施例通信处理方法。
本申请实施例还提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述图2、图4、图5、图6、图8、图10和图13所示的实施例通信处理方法。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图2、图4、图5、图6、图8、图10和图13所示的实施例通信处理方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (40)

  1. 一种通信处理方法,其特征在于,所述方法包括:
    第一通信设备确定第一载波预留图样;
    所述第一通信设备根据所述第一载波预留图样传输数据信号;
    所述第一载波预留图样是根据第一部分带宽BWP确定的,或者,所述第一载波预留图样是根据第一波束确定的;
    所述第一部分带宽用于在所述第一通信设备与第二通信设备之间传输所述数据信号,所述第一波束用于在所述第一通信设备与所述第二通信设备之间传输所述数据信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信设备确定第一载波预留图样,包括:
    所述第一通信设备获取第一配置信息,所述第一配置信息用于指示所述第一部分带宽对应的所述第一载波预留图样;
    所述第一通信设备根据所述第一配置信息确定所述第一载波预留图样。
  3. 根据权利要求1所述的方法,其特征在于,所述第一通信设备确定第一载波预留图样,包括:
    所述第一通信设备根据第一映射关系从多个载波预留图样中确定与所述第一部分带宽对应所述第一载波预留图样,所述第一映射关系为载波预留图样与部分带宽之间的映射关系。
  4. 根据权利要求1所述的方法,其特征在于,所述第一通信设备确定第一载波预留图样,包括:
    所述第一通信设备根据第二映射关系从多个载波预留图样中确定与所述第一波束对应所述第一载波预留图样,所述第二映射关系为载波预留图样与波束之间的映射关系。
  5. 根据权利要求1所述的方法,其特征在于,所述第一通信设备确定第一载波预留图样,包括:
    所述第一通信设备根据第三映射关系从多个载波预留图样中确定与所述第一部分带宽对应的所述第一载波预留图样,所述第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
  6. 根据权利要求1所述的方法,其特征在于,所述第一通信设备与所述第二通信设备之间采用第一参考信号图样传输参考信号;所述第一通信设备确定第一载波预留图样,包括:
    所述第一通信设备根据第四映射关系和所述第一部分带宽从多个载波预留图样中确定与所述第一参考信号图样对应的载波预留图样,所述第四映射关系为所述第一通信设备与所述第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一通信设备确定第一载波预留图样之前,所述方法还包括:
    所述第一通信设备判断是否使用载波预留图样传输所述数据信号;
    若是,则执行所述第一通信设备确定第一载波预留图样的步骤。
  8. 根据权利要求7所述的方法,其特征在于,所述第一通信设备判断是否使用载波预留图样传输数据信号,包括:
    所述第一通信设备获取第一指示信息;
    所述第一通信设备根据所述第一指示信息确定是否使用载波预留图样传输所述数据信号。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,若所述第一通信设备与所述第二通信设备从所述第一部分带宽BWP切换至第二部分带宽BWP;所述方法还包括:
    所述第一通信设备根据第二部分带宽确定第二载波预留图样;
    所述第一通信设备根据所述第二载波预留图样传输所述数据信号。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,若所述第一通信设备与所述第二通信设备从所述第一波束切换至第二波束;所述方法还包括:
    所述第一通信设备根据所述第二波束对应确定第三载波预留图样;
    所述第一通信设备根据所述第二载波预留图样传输所述数据信号。
  11. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一波束对应所述第一部分带宽BWP和第三部分带宽BWP,所述第一部分带宽BWP对应所述第一载波预留图样,所述第三部分带宽BWP对应第四载波预留图样;
    若所述第一通信设备与所述第二通信设备在所述第一波束上从所述第一部分带宽BWP切换至所述第三部分带宽BWP,所述方法还包括:
    所述第一通信设备根据所述第三部分带宽BWP确定所述第四载波预留图样;
    所述第一通信设备根据所述第四载波预留图样传输所述数据信号。
  12. 根据权利要求1至8中任一项所述的方法,其特征在于,若同一时域资源上,所述第一载波预留图样中的预留载波与所述第一通信设备上用于传输参考信号的载波发生重叠,所述第一通信设备根据所述第一载波预留图样传输数据信号,包括:
    所述第一通信设备将所述第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,所述重叠预留载波为所述第一载波预留图样中与所述用于传输参考信号的载波重叠的预留载波;
    所述第一通信设备根据第五载波预留图样传输所述数据信号。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备获取第二配置信息,所述第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、所述第一通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
  14. 一种通信处理方法,其特征在于,所述方法包括:
    第二通信设备确定第一载波预留图样;
    所述第二通信设备根据所述第一载波预留图样传输数据信号;
    所述第一载波预留图样是根据第一部分带宽BWP确定的,或者,所述第一载波预留图样是根据第一波束确定的;
    所述第一部分带宽BWP用于在所述第一通信设备与第二通信设备之间传输所述数据信号,所述第一波束用于在所述第一通信设备与所述第二通信设备之间传输所述数据信号。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第二通信设备向第一通信设备发送第一配置信息,所述第一配置信息用于指示所述第一部分带宽对应的所述第一载波预留图样。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述第二通信设备向第一通信设备发送第一指示信息,所述第一指示信息用于指示是否使用载波预留图样传输所述数据信号。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信设备向第一通信设备发送第二配置信息,所述第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、所述第一通信设备与所述第二通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
  18. 一种第一通信设备,其特征在于,所述第一通信设备包括:
    处理模块,用于确定第一载波预留图样;
    收发模块,用于根据所述第一载波预留图样传输数据信号;
    所述第一载波预留图样是根据第一部分带宽BWP确定的,或者,所述第一载波预留图样是根据第一波束确定的;
    所述第一部分带宽用于在所述第一通信设备与第二通信设备之间传输所述数据信号,所述第一波束用于在所述第一通信设备与所述第二通信设备之间传输所述数据信号。
  19. 根据权利要求18所述的第一通信设备,其特征在于,所述处理模块具体用于:
    获取第一配置信息,所述第一配置信息用于指示所述第一部分带宽对应的所述第一载波预留图样;
    根据所述第一配置信息确定所述第一载波预留图样。
  20. 根据权利要求18所述的第一通信设备,其特征在于,所述处理模块具体用于:
    根据第一映射关系从多个载波预留图样中确定与所述第一部分带宽对应所述第一载波预留图样,所述第一映射关系为载波预留图样与部分带宽之间的映射关系。
  21. 根据权利要求18所述的第一通信设备,其特征在于,所述处理模块具体用于:
    根据第二映射关系从多个载波预留图样中确定与所述第一波束对应所述第一载波预留图样,所述第二映射关系为载波预留图样与波束之间的映射关系。
  22. 根据权利要求18所述的第一通信设备,其特征在于,所述处理模块具体用于:
    根据第三映射关系从多个载波预留图样中确定与所述第一部分带宽对应的所述第一载波预留图样,所述第三映射关系包括载波预留图样与多个波束中各个波束对应的多个部分带宽之间的映射关系。
  23. 根据权利要求18所述的第一通信设备,其特征在于,所述处理模块具体用于:
    根据第四映射关系和所述第一部分带宽从多个载波预留图样中确定与所述第一参考信号图样对应的载波预留图样,所述第四映射关系为所述第一通信设备与所述第二通信设备在使用多个部分带宽中各个部分带宽的情况下采用的载波预留图样与参考信号图样之间的映射关系。
  24. 根据权利要求18至23中任一项所述的第一通信设备,其特征在于,所述处理模块还用于:
    判断是否使用载波预留图样传输所述数据信号;
    若是,则执行所述处理模块确定第一载波预留图样的步骤。
  25. 根据权利要求24所述的第一通信设备,其特征在于,所述处理模块具体用于:
    获取第一指示信息;
    根据所述第一指示信息确定是否使用载波预留图样传输所述数据信号。
  26. 根据权利要求18至25中任一项所述的第一通信设备,其特征在于,若所述第一通信设备与所述第二通信设备从所述第一部分带宽BWP切换至第二部分带宽BWP;所述处理模块还用于:
    根据第二部分带宽确定第二载波预留图样;
    根据所述第二载波预留图样传输所述数据信号。
  27. 根据权利要求18至25中任一项所述的第一通信设备,其特征在于,若所述第一通信设备与所述第二通信设备从所述第一波束切换至第二波束;所述处理模块还用于:
    根据所述第二波束对应确定第三载波预留图样;
    根据所述第二载波预留图样传输所述数据信号。
  28. 根据权利要求18至25中任一项所述的第一通信设备,其特征在于,所述第一波束对应所述第一部分带宽BWP和第三部分带宽BWP,所述第一部分带宽BWP对应所述第一载波预留图样,所述第三部分带宽BWP对应第四载波预留图样;若所述第一通信设备与所述第二通信设备在所述第一波束上从所述第一部分带宽BWP切换至所述第三部分带宽BWP,所述处理模块还用于:
    根据所述第三部分带宽BWP确定所述第四载波预留图样;
    根据所述第四载波预留图样传输所述数据信号。
  29. 根据权利要求18至25中任一项所述的第一通信设备,其特征在于,若同一时域资源上,所述第一载波预留图样中的预留载波与所述第一通信设备上用于传输参考信号的载波发生重叠,所述收发模块具体用于:
    将所述第一载波预留图样中的重叠预留载波进行打孔,得到第五预留载波图样,所述重叠预留载波为所述第一载波预留图样中与所述用于传输参考信号的载波重叠的预留载波;
    根据第五载波预留图样传输所述数据信号。
  30. 根据权利要求18至29中任一项所述的第一通信设备,其特征在于,所述收发模块还用于:
    获取第二配置信息,所述第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、所述第一通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
  31. 一种第二通信设备,其特征在于,所述第二通信设备包括:
    处理模块,用于确定第一载波预留图样;
    收发模块,用于根据所述第一载波预留图样传输数据信号;
    所述第一载波预留图样是根据第一部分带宽BWP确定的,或者,所述第一载波预留图样是根据第一波束确定的;
    所述第一部分带宽BWP用于所述第一通信设备与第二通信设备之间传输所述数据信号,所述第一波束是所述第一通信设备与所述第二通信设备之间传输所述数据信号。
  32. 根据权利要求31所述的第二通信设备,其特征在于,所述收发模块还用于:
    向第一通信设备发送第一配置信息,所述第一配置信息用于指示所述第一部分带宽对应的所述第一载波预留图样。
  33. 根据权利要求31或32所述的第二通信设备,其特征在于,所述收发模块还用于:
    向第一通信设备发送第一指示信息,所述第一指示信息用于指示是否使用载波预留图样传输所述数据信号。
  34. 根据权利要求31至33中任一项所述的第二通信设备,其特征在于,所述收发模块还用于:
    向第一通信设备发送第二配置信息,所述第二配置信息包括以下至少一项配置参数:多个载波预留图样、多个载波预留图样的索引、所述第一通信设备与所述第二通信设备在使用多个部分带宽中各个部分带宽的情况下所述载波预留图样与参考信号图样之间的映射关系、载波预留图样与部分带宽之间的映射关系、载波预留图样与波束之间的映射关系、载波预留图样与波束对应的多个部分带宽之间的映射关系。
  35. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于调用并运行所述存储器中存储的所述计算机程序,使得所述通信设备执行如权利要求1至13中任一项所述的方法,或者,使得所述通信设备执行如权利要求14至17中任一项所述的方法。
  36. 一种通信设备,其特征在于,所述通信设备包括处理器,所述处理器用于执行所述存储器中的计算机程序或计算机指令,以执行如权利要求1至13中任一项所述的方法,或者,以执行如权利要求14至17中任一项所述的方法。
  37. 一种通信设备,其特征在于,所述通信设备包括逻辑电路和输入输出接口,所述逻辑电路用于执行如权利要求1至13中任一项所述的方法中的处理操作,所述输入输出接口用于执行如权利要求1至13中任一项所述的方法中的收发操作。
  38. 一种通信设备,其特征在于,所述通信设备包括逻辑电路和输入输出接口,所述逻 辑电路用于执行如权利要求14至17中任一项所述的方法中的处理操作,所述输入输出接口用于执行如权利要求14至17中任一项所述的方法中的收发操作。
  39. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1至13中任一项所述的方法,或者,使得所述计算机执行如权利要求14至17中任一项所述的方法。
  40. 一种计算程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1至13或权利要求14至17中任一项所述的方法。
PCT/CN2022/106436 2021-07-29 2022-07-19 通信处理方法和通信处理装置 WO2023005731A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/423,504 US20240163152A1 (en) 2021-07-29 2024-01-26 Communication processing method and communication processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110864933.5 2021-07-29
CN202110864933.5A CN115695125A (zh) 2021-07-29 2021-07-29 通信处理方法和通信处理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,504 Continuation US20240163152A1 (en) 2021-07-29 2024-01-26 Communication processing method and communication processing apparatus

Publications (1)

Publication Number Publication Date
WO2023005731A1 true WO2023005731A1 (zh) 2023-02-02

Family

ID=85059023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106436 WO2023005731A1 (zh) 2021-07-29 2022-07-19 通信处理方法和通信处理装置

Country Status (3)

Country Link
US (1) US20240163152A1 (zh)
CN (1) CN115695125A (zh)
WO (1) WO2023005731A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220038322A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Peak reduction tone allocation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536446A (zh) * 2006-11-02 2009-09-16 Lm爱立信电话有限公司 用于降低papr的子载波激活和去激活
WO2014177839A1 (en) * 2013-05-02 2014-11-06 Sony Corporation Papr reduction in ofdm by using tone reservation
CN104519004A (zh) * 2013-09-26 2015-04-15 中国科学院上海高等研究院 Ngb-w系统的预留子载波位置图案的形成方法
WO2018098692A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种降低无线信号的papr的方法及相关装置
CN112291174A (zh) * 2020-10-24 2021-01-29 青岛鼎信通讯股份有限公司 一种应用于中压载波通信的峰均比抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101536446A (zh) * 2006-11-02 2009-09-16 Lm爱立信电话有限公司 用于降低papr的子载波激活和去激活
WO2014177839A1 (en) * 2013-05-02 2014-11-06 Sony Corporation Papr reduction in ofdm by using tone reservation
CN104519004A (zh) * 2013-09-26 2015-04-15 中国科学院上海高等研究院 Ngb-w系统的预留子载波位置图案的形成方法
WO2018098692A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 一种降低无线信号的papr的方法及相关装置
CN112291174A (zh) * 2020-10-24 2021-01-29 青岛鼎信通讯股份有限公司 一种应用于中压载波通信的峰均比抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)", EUROPEAN STANDARD (TELECOMMUNICATIONS SERIES), EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI), 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS ; FRANCE, no. V1.1.1, 1 July 2009 (2009-07-01), 650, route des Lucioles ; F-06921 Sophia-Antipolis ; France , XP014044393 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220038322A1 (en) * 2020-07-31 2022-02-03 Qualcomm Incorporated Peak reduction tone allocation
US11777777B2 (en) * 2020-07-31 2023-10-03 Qualcomm Incorporated Peak reduction tone allocation

Also Published As

Publication number Publication date
US20240163152A1 (en) 2024-05-16
CN115695125A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN110036617A (zh) 通信方法、装置、网络设备及终端
WO2020221318A1 (zh) 一种上行波束管理方法及装置
EP3641202B1 (en) Downlink control information transmission and reception methods and devices
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
CN110351809B (zh) 系统消息冗余版本确定方法及装置
CN108811074B (zh) 信息传输方法及装置
WO2022078176A1 (zh) 部分带宽切换方法、装置及系统
WO2020030254A1 (en) Joint channel estimation
US20210345303A1 (en) Semi-static resource allocation for new radio integrated access and backhaul (iab) network
US20240163152A1 (en) Communication processing method and communication processing apparatus
CN110545164B (zh) 用于通信系统中干扰指示的方法及装置
WO2019205169A1 (zh) 一种通信方法及装置
US20220417918A1 (en) Electronic device, method, and storage medium for wireless communication system
WO2021131307A1 (ja) 通信装置及び通信方法
TW201733297A (zh) 裝置及方法
WO2020030255A1 (en) Reducing dmrs overhead
WO2023082920A1 (zh) 一种通信方法及通信装置
US11895538B2 (en) Improving Wi-Fi spectrum efficiency
WO2023236713A1 (zh) 一种通信方法及装置
WO2023077382A1 (en) Methods of codebook based and non‐codebook based pusch transmission and related devices
CN112399561B (zh) 通信方法及装置
EP4247094A1 (en) Communication method and apparatus
WO2024016837A1 (zh) 一种通信方法及装置
CN109150470B (zh) 一种确定广播信息的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE