WO2023005719A1 - 三维磁环治疗装置及其应用 - Google Patents
三维磁环治疗装置及其应用 Download PDFInfo
- Publication number
- WO2023005719A1 WO2023005719A1 PCT/CN2022/106356 CN2022106356W WO2023005719A1 WO 2023005719 A1 WO2023005719 A1 WO 2023005719A1 CN 2022106356 W CN2022106356 W CN 2022106356W WO 2023005719 A1 WO2023005719 A1 WO 2023005719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- sine wave
- circuit
- wave generator
- magnetic ring
- Prior art date
Links
- 238000002560 therapeutic procedure Methods 0.000 title claims abstract description 15
- 210000004027 cell Anatomy 0.000 claims abstract description 88
- 230000005684 electric field Effects 0.000 claims abstract description 68
- 210000004881 tumor cell Anatomy 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 16
- 230000004907 flux Effects 0.000 claims description 50
- 238000011282 treatment Methods 0.000 claims description 50
- 230000000737 periodic effect Effects 0.000 claims description 45
- 230000007423 decrease Effects 0.000 claims description 22
- 230000001965 increasing effect Effects 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 239000000696 magnetic material Substances 0.000 claims description 12
- 230000010355 oscillation Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 229910000531 Co alloy Inorganic materials 0.000 claims description 6
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 6
- 230000002829 reductive effect Effects 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 3
- 229910000676 Si alloy Inorganic materials 0.000 claims description 3
- 229910001035 Soft ferrite Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 claims description 3
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 claims description 3
- -1 iron-silicon-aluminum Chemical compound 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 2
- 239000000969 carrier Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 51
- 206010028980 Neoplasm Diseases 0.000 description 33
- 230000005764 inhibitory process Effects 0.000 description 21
- 230000002401 inhibitory effect Effects 0.000 description 17
- 208000032612 Glial tumor Diseases 0.000 description 14
- 206010018338 Glioma Diseases 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 208000005017 glioblastoma Diseases 0.000 description 13
- 230000035755 proliferation Effects 0.000 description 12
- 230000011278 mitosis Effects 0.000 description 11
- 206010006187 Breast cancer Diseases 0.000 description 9
- 208000026310 Breast neoplasm Diseases 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- 210000001626 skin fibroblast Anatomy 0.000 description 9
- 238000007920 subcutaneous administration Methods 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 241000699660 Mus musculus Species 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000011580 nude mouse model Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 201000005249 lung adenocarcinoma Diseases 0.000 description 3
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 238000010291 electrical method Methods 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 201000010198 papillary carcinoma Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006417 Bronchial carcinoma Diseases 0.000 description 1
- 208000010667 Carcinoma of liver and intrahepatic biliary tract Diseases 0.000 description 1
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 1
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 206010073069 Hepatic cancer Diseases 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025219 Lymphangioma Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 208000006990 cholangiocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 208000010932 epithelial neoplasm Diseases 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 201000002250 liver carcinoma Diseases 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 208000015534 lymphangioendothelioma Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 201000008753 synovium neoplasm Diseases 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/02—Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/004—Magnetotherapy specially adapted for a specific therapy
Definitions
- the invention relates to the field of medical equipment, in particular to a three-dimensional magnetic ring treatment device and its application.
- tumors especially malignant tumors or cancers
- the device includes: at least two pairs of insulated electrodes (1620, 1630), wherein each electrode (1620, 1630) has a surface configured for placement against the patient's body; and an AC voltage source having at least two sets of outputs, wherein the at least two sets of outputs are phase-shifted and electrically connected to one of at least two pairs of insulated electrodes (1620, 1630); wherein the AC voltage source and electrodes (1620, 1630) are configured such that when the electrodes (1620, 1630) are placed against the patient's body, due to at least two phase shift between group outputs, an AC electric field is applied within the patient's target region (1612) in a direction that is rotated relative to the target region (1612), the applied electric field is such that the electric field (a) selectively destroys rapidly dividing tumor cells, and (b) frequency and field strength characteristics
- the device better distinguishes between dividing cells (including unicellular tissue) and non-dividing cells, and is capable of selectively destroying rapidly dividing tumor cells without substantially affecting normal cells or the organism.
- the electrodes therein must be close to the patient's skin, which is not suitable for long-term use, and the use comfort is low.
- the electrode has a certain service life and must be replaced regularly, and the cost of use is extremely high.
- the present invention provides a three-dimensional magnetic ring therapy device and its application, which can selectively destroy tumor cells without affecting normal cells or the body.
- the device When the device is used, it is Directly place the rapidly dividing tumor cell carrier at the origin of the three-dimensional coordinate system XYZ.
- this device can act on the rapidly dividing tumor from different directions and angles as much as possible. cell.
- the device does not have electrodes, does not need to be used close to the skin, can be worn or used for a long time, and has a high degree of comfort.
- the present invention provides a three-dimensional magnetic ring treatment device, which includes at least one group of three closed magnetic rings or magnetic chains fixed on the frame, and the central axes of each group of three magnetic rings or magnetic chains are respectively located at The three planes of the three-dimensional coordinate system XYZ intersect at the origin of the three-dimensional coordinate system XYZ, each of the magnetic rings or magnetic chains is wound with at least one metal coil, and the two ends of each of the metal coils are respectively connected to a A closed loop is formed between the signal generating circuits; each of the alternating signal generating circuits loads a preset alternating current on each of the metal coils in turn, and each of the preset alternating currents circulates in each of the magnetic rings in turn or a predetermined alternating magnetic field is generated in the magnetic chain, and each of the predetermined alternating magnetic fields forms a cycle in turn in a direction perpendicular to each of the magnetic rings or magnetic chains to destroy the rapidly dividing tumor cells in the carrier, or Inhibiting a preset alternating electric
- each of the alternating signal generating circuits can take turns on each of the metal coils cyclically load the preset alternating current; each of the electric control switches is connected between the VDD power supply and the input end of each of the alternating signal generating circuits, and the input end of each of the electric control switches is connected to the similar "order shifting The output end of the "register” circuit, and the input end of the similar "order shift register” circuit is connected to the output end of the random/periodic signal generation circuit.
- the three-dimensional plane also includes at least one magnetic ring or magnetic link with the coordinates of the center of the circle (x1, y1, z1), wherein, x1 ⁇ 0, y1 ⁇ 0, z1 ⁇ 0; the coordinates of the center of the circle are (x1, y1, z1) magnetic ring or flux linkage and the magnetic ring or flux linkage located in the three planes of the three-dimensional coordinate system XYZ, the two ends of each metal coil (2) alternate with a A closed loop is formed between the signal generating circuits, and each preset alternating current generates a preset alternating electric field whose center points to the origin in each of the magnetic rings or flux linkages.
- the center coordinates of a group of three magnetic rings or magnetic linkages located in the three planes of the three-dimensional coordinate system XYZ are (x2, 0, 0), (0, y2, 0) and ( 0, 0, z2), wherein, x2 ⁇ 0, y2 ⁇ 0, z2 ⁇ 0; the center coordinates of another group of three magnetic rings or magnetic linkages located in the three planes of the three-dimensional coordinate system XYZ They are (x3, y3, 0), (x3, 0, z3) and (0, y3, z3), where x3 ⁇ 0, y3 ⁇ 0, z3 ⁇ 0.
- This design can ensure that the center of all the magnetic rings or magnetic linkages have the same distance from the origin, thereby ensuring that the electric field strength of each magnetic ring or magnetic linkage is the same when acting on the focus position in turn.
- each of the alternating signal generating circuits is any one of the following circuits, and drives the coil after passing through a power amplifier circuit: equal amplitude sine wave generator circuit, reduced amplitude sine wave generator circuit, and increased amplitude sine wave generator circuit , A sine wave generator circuit whose amplitude first increases and then decreases, and a sine wave circuit whose frequency continuously changes between the maximum and minimum values.
- the equal-amplitude sine wave generator circuit is a Clapauer oscillation circuit or a Schiller oscillation circuit equal to the number of the magnetic ring or flux linkage; or, the equal-amplitude sine wave generator circuit mainly includes a sawtooth wave generation and a voltage-controlled oscillator equal to the number of the magnetic ring or flux linkage; or, the constant-amplitude sine wave generator circuit mainly includes a triangular wave generator and a voltage-controlled oscillator equal to the number of the magnetic ring or flux linkage ; Or, the equal-amplitude sine wave generator circuit mainly includes a sine wave generator and a voltage-controlled oscillator equal to the number of the magnetic ring or flux linkage; the reduced-amplitude sine wave generator circuit is an LC oscillator circuit; The amplified sine wave generator circuit mainly includes a high-frequency sine wave generator, a sawtooth wave generator and an analog multiplier circuit equal to the number of the magnetic ring or flux linkage; the first increase and then decrease sine wave generator circuit mainly Including
- each of the metal coils is wound around part or all of each of the magnetic rings or magnetic links.
- each of the magnetic rings or magnetic chains is made of flexible soft magnetic material or rigid soft magnetic material;
- the flexible soft magnetic material is any one of the following or a combination thereof: electromagnetic pure iron, iron-silicon alloy, iron-nickel alloy , iron-aluminum alloy, iron-silicon-aluminum alloy, iron-cobalt alloy, amorphous soft magnetic alloy, ultrafine crystal soft magnetic alloy;
- the rigid soft magnetic material is any one of the following or a combination thereof: pure iron and low carbon steel, Iron-cobalt alloys, soft ferrite, amorphous nanocrystalline alloys.
- the invention also provides the application of a three-dimensional magnetic ring treatment device in a hat or a helmet or a treatment bed.
- each alternating signal generating circuit is energized to generate an alternating current with a specific frequency and amplitude, and the alternating current output
- a predetermined alternating magnetic field is generated in each magnetic ring or flux link, and the direction of the alternating magnetic field is consistent with the direction of the magnetic ring or flux link, and forms a closed loop like the magnetic ring or flux link.
- the alternating magnetic field forms an alternating electric field in its vertical direction, that is, the direction perpendicular to the magnetic ring or flux linkage plane.
- each magnetic ring or flux link all point to the origin of the three-dimensional coordinate system XYZ, that is, each magnetic ring or flux link can act on the fast-split space located at the above-mentioned origin from different directions.
- the carrier of the cells usually the patient. Because when cells are rapidly dividing, they are more susceptible to damage by alternating electric fields with specific frequency and electric field strength characteristics. Therefore, when the carrier of the rapidly dividing tumor cells is located at the point of action of the above-mentioned alternating electric fields, the rapidly dividing tumor cells in the alternating magnetic field will be subjected to the same frequency and different frequency as the alternating current in the coil.
- the alternating electric field with the above-mentioned specific frequency and electric field strength characteristics lasts for a period of time, and it can selectively destroy the rapidly dividing tumor cells. are insensitive to alternating electric fields and will not be damaged. This selectively destroys rapidly dividing cells like tumor cells without harming normal cells.
- the carrier of the rapidly dividing tumor cells is directly placed at the origin of the three-dimensional coordinate system XYZ. Different angles of direction are used to act on tumor cells that are rapidly dividing, and the treatment effect is better.
- the device does not have electrodes, does not need to be used close to the skin, can be worn or used for a long time, and has a high degree of comfort; it can basically destroy cells or organisms that are rapidly dividing without affecting normal cells or organisms.
- Fig. 1 is a partial structural diagram of a three-dimensional magnetic ring therapy device in Embodiment 1;
- Fig. 2 is a structural schematic diagram of one of the magnetic rings or magnetic linkages in the three-dimensional magnetic ring therapy device, and the alternating signal generating circuit powered by VDD inputs an alternating current signal to the inductance coil;
- Fig. 3 is a structural schematic diagram of a magnetic ring or a magnetic link that includes an alternating signal generating circuit in the three-dimensional magnetic ring treatment device in Embodiment 1, wherein the inductive coil flows through a damped sine wave with periodic time intervals or random time intervals Current signal, each alternating signal generating circuit loads preset alternating current on each metal coil in turn;
- Fig. 4 is a structural schematic diagram of a switching power supply circuit providing a power supply voltage VDD for a subsequent circuit, which converts the system power supply into a suitable DC power supply for the subsequent circuit to work;
- Fig. 5 is the circuit diagram that is used to generate the damped sine wave of multiple groups of random time intervals
- Fig. 6 is the damped sine wave waveform diagram of many groups of random time intervals produced by the circuit shown in Fig. 5;
- Fig. 7 is the circuit diagram that is used to produce the damped sine wave of multiple groups of periodic time intervals
- Fig. 8 is the damped sine wave waveform diagram of the multiple groups of periodic time intervals produced by the circuit shown in Fig. 7;
- Fig. 9 is one of the constant-amplitude sine-wave generator circuits used to generate continuous constant-amplitude sine waves—the Clap wave oscillation circuit;
- Fig. 10 is continuous equal-amplitude sine wave waveform diagram
- FIG. 11 is one of the equal-amplitude sine wave generator circuits for generating periodic time intervals or random time intervals—the Clap wave oscillating circuit;
- Fig. 12 is the equal-amplitude sine wave waveform diagram of random time intervals produced by the circuit shown in Fig. 11;
- Fig. 13 is the equal-amplitude sine wave waveform diagram of the periodic time interval produced by the circuit shown in Fig. 11;
- Fig. 14 is another kind of the equal-amplitude sine wave generator circuit for producing the continuous equal-amplitude sine wave—Schiller oscillating circuit;
- Fig. 15 is another kind of equal-amplitude sine wave generator circuit for generating periodic time intervals and random time intervals—Schiller oscillating circuit;
- Figure 16 is a schematic diagram of an alternating electric field generated in a magnetic ring or flux linkage
- Fig. 17 is the increasing sine wave waveform diagram of multiple groups of cycle time intervals
- Fig. 18 is the circuit diagram that can produce the increased sine wave of multiple groups of periodic time intervals shown in Fig. 17;
- Fig. 19 is a schematic diagram of the generation of the increased sine wave of multiple groups of periodic time intervals shown in Fig. 18;
- Fig. 20 is a sine wave waveform diagram in which the amplitude of multiple groups of cycle time intervals first increases and then decreases;
- Fig. 21 is a kind of circuit diagram that can produce the amplitude of multiple groups of periodic time intervals shown in Fig. 20 to increase first and then decrease the sine wave;
- Fig. 22 is the principle diagram that the circuit shown in Fig. 21 produces the amplitude of multiple groups of cycle time intervals shown in Fig. 20 first increasing and then decreasing the sine wave;
- Fig. 23 is another kind of circuit diagram that can produce the amplitude of multiple groups of periodic time intervals shown in Fig. 20 to increase first and then decrease the sine wave;
- Fig. 24 is the schematic diagram that the amplitude value of multiple groups of cycle time intervals shown in Fig. 20 increases first and then decreases the sine wave for the circuit shown in Fig. 23;
- Figure 25 is a waveform diagram of a frequency modulated continuous FMCW wave
- Fig. 26 is a circuit diagram capable of producing the continuous FMCW wave waveform shown in Fig. 25;
- Fig. 27 is the principle diagram that the circuit shown in Fig. 26 produces the continuous FMCW wave waveform shown in Fig. 25;
- Figure 28 is a waveform diagram of a frequency-modulated continuous FMCW wave
- Fig. 29 is a circuit diagram capable of producing the continuous FMCW wave waveform shown in Fig. 28;
- Fig. 30 is a schematic diagram of the continuous FMCW wave waveform shown in Fig. 28 generated by the circuit shown in Fig. 29;
- Fig. 31 is another waveform diagram of frequency modulated continuous FMCW wave
- Fig. 32 is a circuit diagram capable of producing the continuous FMCW wave waveform shown in Fig. 31;
- Fig. 33 is a schematic diagram of the continuous FMCW wave waveform shown in Fig. 31 generated by the circuit shown in Fig. 32;
- Figure 34 is a schematic diagram of the inhibitory effect on the growth and proliferation of human skin fibroblasts 3T3 when the three-dimensional magnetic ring therapy device acts on human skin fibroblasts 3T3;
- Figure 35 is a schematic diagram of the inhibition rate of human skin fibroblast 3T3 when the three-dimensional magnetic ring treatment device acts on human skin fibroblast 3T3;
- Fig. 36 is a schematic diagram of detection of proliferation of human non-small cell lung cancer cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on human non-small cell lung cancer cells;
- Figure 37 is a schematic diagram of the inhibition rate of human non-small cell lung cancer cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on human non-small cell lung cancer cells;
- Fig. 38 is a schematic diagram of detecting the proliferation of human glioblastoma cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on human glioblastoma cells;
- Figure 39 is a schematic diagram of the inhibition rate of human glioblastoma cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on human glioblastoma cells;
- Figure 40 is a schematic diagram of detecting the proliferation of mouse glioma cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on mouse glioma cells;
- Figure 41 is a schematic diagram of the inhibition rate of mouse glioma cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on mouse glioma cells;
- Figure 42 is a schematic diagram of the migration inhibition rate of human glioma cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on human glioma cells;
- Figure 43 is a schematic diagram of the inhibition rate of human glioma volume when the device for selectively destroying or inhibiting tumor cell mitosis acts on subcutaneous human glioma cells in nude mice;
- Figure 44 is a schematic diagram of the inhibition rate of human glioma weight when the device for selectively destroying or inhibiting tumor cell mitosis acts on subcutaneous human glioma cells in nude mice;
- Figure 45 is a schematic diagram of the volume inhibition rate of human breast cancer cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on the subcutaneous human breast cancer cells of mice with normal immune function;
- Figure 46 is a schematic diagram of the weight inhibition rate of human breast cancer cells when the device for selectively destroying or inhibiting tumor cell mitosis acts on subcutaneous human breast cancer cells of mice with normal immune function;
- Fig. 47 is a partial structural diagram of the three-dimensional magnetic ring therapy device in Embodiment 2;
- Fig. 48 is a partial structural diagram of the three-dimensional magnetic ring therapy device in Embodiment 3.
- Fig. 49 is a structural schematic diagram of a cap or a helmet of the therapeutic wearable device in Embodiment 4.
- Figure 50 is a schematic structural view of the treatment bed in Embodiment 5.
- Fig. 51 is a schematic structural view of the treatment bed in Embodiment 6.
- At least one metal coil 2 (not shown in FIG.
- Each metal coil 2 is alternately loaded with a preset alternating current through each alternating signal generating circuit, and an electric control switch is connected between the VDD power supply and the input end of each alternating signal generating circuit, and each electric control switch
- the input terminals are all connected to the output terminals of the circuit similar to the "sequential shift register", and the input terminals of the circuit similar to the “sequential shift register” are connected to the output terminals of the random/periodic signal generation circuit, as shown in Figure 3.
- the preset alternating electric fields generated in the three magnetic rings or magnetic links 1 are applied to the origin of the three-dimensional coordinate system XYZ in turn.
- the carrier 3 of rapidly dividing cells is placed on the origin of the three-dimensional coordinate system XYZ, and the three metal coils 2 are loaded with preset alternating currents in turn through three alternating signal generating circuits, and the preset alternating currents loaded in three turns are cyclically loaded.
- the alternating current can generate preset alternating electric fields in the corresponding three magnetic rings or flux chains 1 in turn
- the three preset alternating electric fields can generate alternating cycles in different directions in the rapidly dividing tumor cells.
- a preset alternating electric field to destroy or suppress it.
- the above-mentioned magnetic ring or magnetic link 1 is made of flexible soft magnetic material or rigid soft magnetic material.
- the flexible soft magnetic material is any one or combination of the following: electromagnetic pure iron, iron-silicon alloy, iron-nickel alloy, iron-aluminum alloy, iron-silicon-aluminum alloy, iron-cobalt alloy, amorphous soft magnetic alloy, ultrafine crystalline soft magnetic Alloy; rigid soft magnetic material is any one or combination of the following: pure iron and low carbon steel, iron-cobalt alloy, soft ferrite, amorphous nanocrystalline alloy.
- the above-mentioned three alternating signal generation circuits all need a power supply circuit - switching power supply circuit, as shown in Figure 4, through the switching power supply circuit, the AC mains (such as the Chinese standard 220V 50Hz) power supply or battery power is converted into a DC voltage V DD , power supply for the alternating signal generation circuit.
- the AC mains such as the Chinese standard 220V 50Hz
- V DD DC voltage
- the above three alternating signal generating circuits are used to generate alternating signals meeting the requirements of frequency, amplitude and time interval.
- the above-mentioned three alternating signal generating circuits can be a constant-amplitude sine wave generator circuit, a reduced-amplitude sine-wave generator circuit, an increased-amplitude sine-wave generator circuit, a sine-wave generator circuit whose amplitude first increases and then decreases, and the frequency is between maximum and minimum Any one or combination of sine wave circuits that vary continuously in value.
- the equal-amplitude sine wave generator circuit is a Clapauer oscillation circuit or Schiller oscillation circuit equal in number to the magnetic ring or flux linkage 1; or, the equal-amplitude sine wave generator circuit mainly includes a sawtooth wave generator and a magnetic ring or flux linkage 1 equal-number voltage-controlled oscillators; or, the equal-amplitude sine wave generator circuit mainly includes a triangular wave generator and voltage-controlled oscillators equal to the number of magnetic rings or flux linkages 1; or, the equal-amplitude sine-wave generator circuit It mainly includes a sine wave generator and a voltage-controlled oscillator equal to the number of magnetic rings or flux linkages 1; the reduced amplitude sine wave generator circuit is an LC oscillator circuit equal to the number of magnetic rings or flux linkages 1; the increased sine wave generator The circuit mainly includes a high-frequency sine wave generator, a sawtooth wave generator and an analog multiplier circuit equal in number to the magnetic ring or flux linkage 1; the sine wave generator circuit mainly includes a sine wave generator
- a periodic signal generation circuit In order to realize the equal time interval or random time interval between multiple groups of sine waves, a periodic signal generation circuit, or a random signal generation circuit, or a combination of a periodic signal generation circuit and a random signal generation circuit is required.
- An electric control switch is respectively connected between the power supply input ends of the variable signal generating circuit, and the output signal of the random/periodic signal generating circuit is used to control each electric control switch.
- the random/periodic signal generating circuit can control each alternating signal generating circuit, so that the generated alternating signal can be divided into multiple series, and the appearance time of each series of signals can be periodic, random, or continuous .
- two typical damped sine wave generating circuits are LC oscillator circuits combined with inductance coils.
- the number of the damped sine wave generating circuits is equal to the number of magnetic rings or flux linkages.
- Figure 5 is used to generate multiple sets of damped sine waves with random time intervals
- Figure 7 is used to generate multiple sets of damped sine waves with periodic time intervals.
- C in the figure and the primary square coil L wound on the magnetic ring or magnetic link 1 constitute an LC oscillator circuit. Because there is a non-negligible parasitic resistance in the inductor L, the LC oscillator is a damped oscillator with an oscillation frequency of The larger the equivalent series resistance in L, the faster the decay.
- the random signal generator generates a random signal
- the periodic signal generator generates a periodic signal
- the random signal and the periodic signal respectively control the electronically controlled switch (usually power MOS tube, BJT tube, IGBT tube, relay, etc. device implementation).
- the electronic control switch After the electronic control switch is turned on, it is turned off immediately, and the LC oscillator is full of energy and starts to resonate.
- the damped oscillator circuit is turned on at random time intervals to form a damped sine wave at random time intervals as shown in Figure 6; the damped oscillator circuit is turned on at periodic time intervals to form a sine wave as shown in Figure 8 A damped sine wave with a period interval of .
- the constant-amplitude sine wave generator circuit can be a plurality of Clapauer oscillator circuits (as shown in Figure 9) equal to the number of magnetic rings or flux linkages 1, the circuit A sine wave generator circuit incorporating an inductor coil is used to generate a continuous constant amplitude sine wave as shown in Figure 10.
- the inductance L used can directly adopt the metal coil 2 in the magnetic ring array device for treatment. If a sine wave generator of other structures is used instead, for example, the sine wave generated by an RC oscillator is sent to the primary coil of the transformer, and the present invention can also be realized. Function.
- an electric control switch is respectively added between the VDD power supply and the power input terminal of each Clapo oscillation circuit, supplemented by a random/periodic signal generating circuit (the output signal of the random/periodic signal generating circuit is used for control each electric control switch), as shown in Figure 11, a random signal or a periodic signal is generated, and the current waveform of the preset alternating current output is a plurality of groups of equal-amplitude sine waves at random time intervals (as shown in Figure 12) or a plurality of cycles Equal-amplitude sine waves at time intervals (as shown in Figure 13).
- the constant-amplitude sine wave generator circuit can also be a plurality of Schiller oscillation circuits (as shown in Figure 14) equal to the number of magnetic rings or flux linkages, the circuit A sine wave generator circuit incorporating an inductor coil is used to generate a continuous constant amplitude sine wave as shown in Figure 10.
- the inductance L used can directly adopt the metal coil 2 in the magnetic ring array device for treatment.
- an electronically controlled switch can be added between the VDD power supply and the power input terminal of each Schiller oscillation circuit, supplemented by a random/periodic signal generation circuit, as shown in Figure 15, to generate random signals or periodic signals, Realize the output of multiple groups of equal-amplitude sine waves with random time intervals (as shown in Figure 12) or multiple groups of equal-amplitude sine waves with periodic time intervals (as in Figure 13).
- the carrier of the rapidly dividing cells is placed at the origin of the three-dimensional coordinate system XYZ, and the three alternating signal generating circuits are energized to generate preset frequencies and amplitudes in turn
- the alternating current is output to the three metal coils 2
- the three magnetic rings or flux links 1 will cycle in turn to generate a preset alternating magnetic field. Consistent, and form a closed loop like the magnetic ring or magnetic chain 1.
- the alternating magnetic field forms an alternating electric field in its vertical direction, that is, the direction perpendicular to the plane of the magnetic ring or the magnetic link 1 .
- each magnetic ring or magnetic chain 1 can act on the origin of the three-dimensional coordinate system XYZ in turn, and the carrier (usually the patient) of the rapidly dividing cells is located in the three-dimensional coordinate system XYZ on the origin. Because when cells are rapidly dividing, they are more susceptible to damage by alternating electric fields with specific frequency and electric field strength characteristics. Therefore, when the carrier of the rapidly dividing tumor cell is located at the focal point of the above three alternating electric fields, the rapidly dividing tumor cell will receive the alternating electric field with the same frequency as the alternating current in the coil in turn.
- the alternating electric field with the characteristics of the electric field strength lasts for a period of time, and it can selectively destroy the rapidly dividing tumor cells, while normal cells will not be damaged due to their insensitivity to the alternating electric field with the above-mentioned specific frequency and electric field strength characteristics . This selectively destroys rapidly dividing cells like tumor cells without harming normal cells.
- the frequency of the above-mentioned preset alternating current signal is a sine wave within 30kHz-300kHz, and the strength of the preset alternating electric field is 0.1V/cm-10V/cm.
- the current waveform of the preset alternating current is a continuous constant-amplitude sine wave with the same frequency and the same amplitude, as shown in FIG. 10 .
- Both the alternating signal generating circuits shown in FIG. 9 and FIG. 14 can generate the continuous sine wave of equal amplitude as shown in FIG. 10 .
- the current waveform of the above-mentioned preset alternating current is equal-amplitude sine waves with multiple groups of periodic time intervals.
- the equal-amplitude sine waves of each group of periodic time intervals have the same frequency, the same amplitude, and the same duration.
- the adjacent two groups of periodic time intervals The idle time intervals between equal-amplitude sine waves are the same, as shown in Figure 13.
- the duration of the equal-amplitude sine waves of each group of cycle time intervals is at least one sine wave cycle; the idle time interval between the equal-amplitude sine waves of two adjacent groups of cycle time intervals is at least one sine wave cycle.
- Both the alternating signal generating circuits shown in FIG. 11 and FIG. 15 can generate equal-amplitude sine waves with periodic time intervals as shown in FIG. 13 .
- the current waveform of the above-mentioned preset alternating current is multiple groups of equal-amplitude sine waves at random time intervals.
- the equal-amplitude sine waves of each group of random time intervals have the same frequency, the same amplitude, and random duration.
- the adjacent two groups of random time intervals The idle time intervals between equal-amplitude sine waves are the same or random, as shown in Figure 12.
- the duration of each group of equal-amplitude sine waves at random time intervals is at least one sine wave cycle; the idle time interval between two adjacent groups of equal-amplitude sine waves at random time intervals is at least one sine wave cycle.
- Both the alternating signal generating circuits shown in FIG. 11 and FIG. 15 can generate multiple groups of equal-amplitude sine waves with random time intervals as shown in FIG. 12 .
- the current waveform of the above-mentioned preset alternating current is the reduced amplitude sine wave of multiple groups of periodic time intervals, the frequency of the reduced amplitude sine wave of each group of cycle time intervals is the same, the initial amplitude is the same, the amplitude damping attenuation coefficient is the same, adjacent
- the idle time interval between the two sets of periodic damped sine waves is the same; FIG. 8 .
- the reduced amplitude sine wave of the next group of periodic time intervals starts after a fixed idle time interval;
- the idle time interval between them is at least one sine wave cycle;
- the attenuation coefficient of the damped sine wave of each group of cycle time intervals is R/2L, where R is the series resistance value of the LC oscillator circuit or the equivalent series parasitic resistance value, L is the inductance of the LC oscillating circuit, and C is the capacitance value connected in parallel to the inductance L;
- the duration of each group of damped sine waves is 5 to 30 sine wave cycles. Changing the resistance value R can change the attenuation coefficient.
- the sine wave attenuation coefficient (equal to the series resistance value R of the adjustment inductor L) can be preset according to the patient's location and disease severity.
- the alternating signal generating circuit shown in FIG. 7 can generate multiple sets of damped sine waves with periodic time intervals as shown in FIG. 8 .
- the current waveform of the above-mentioned preset alternating current is multiple sets of damped sine waves at random time intervals.
- the frequency of the damped sine waves at random time intervals in each group is the same, the initial amplitude is the same or different, and the attenuation coefficient is the same or different , the idle time interval between two adjacent groups of damped sine waves at random time intervals is random, as shown in Figure 6.
- the attenuation coefficient of the damped sine wave at random time intervals of each group is R/2L, where R is the series resistance value of the LC oscillating circuit or the equivalent series parasitic resistance value, L is the inductance of the LC oscillating circuit, and C is the inductance connected in parallel
- the capacitance value on L; the duration of the damped sine wave at random time intervals of each group is 5 to 30 sine wave cycles.
- Changing the resistance value R can change the attenuation coefficient.
- Attenuation systems are usually evaluated simply by how many continuous sine waves there are in each group.
- the sine wave attenuation coefficient (equal to adjusting the series resistance R of the inductor L) can be set according to the patient's location and disease severity.
- the alternating signal generation circuit shown in FIG. 5 can generate multiple sets of damped sine waves with random time intervals as shown in FIG. 6 .
- the current waveform of the above-mentioned preset alternating current is multiple groups of periodic or random time intervals or continuous increasing sine waves whose amplitude gradually increases.
- the frequency of each group of increasing sine waves is the same, and the amplitude gradually increases.
- the adjacent two groups of increasing sine waves The idle time interval between is the same or random.
- the duration of the increasing sine wave in each group is 5-30 sine wave cycles.
- the circuit shown in Figure 18 includes a high-frequency sine wave generator, a sawtooth wave generator, and an analog multiplier circuit equal to the number of magnetic rings or flux linkages, and each analog multiplier circuit is connected to an inductance coil as a load , the inductance coil used can directly adopt the metal coil 2 in the magnetic ring array device for treatment.
- the current waveform of the above-mentioned preset alternating current is multiple groups of cycles or random time intervals or continuous sine waves whose amplitude increases first and then decreases.
- the frequency of each group of sine waves is the same. Decrease, the idle time interval between each group of amplitude increasing and then decreasing sine waves is the same or random.
- the circuit shown in Figure 21 is one of the circuits that generate the sine wave waveforms in which the amplitudes of multiple groups of periodic time intervals shown in Figure 20 first increase and then decrease, including a high-frequency sine wave generator and a low-frequency sine wave generator
- Each analog multiplier circuit is connected with an inductance coil, and the inductance coil used can directly adopt the metal coil 2 in the magnetic ring array device for treatment.
- the amplitude of the interval first increases and then decreases as a sine wave.
- the principle of generating this waveform is shown in Figure 22: multiply the second and third waveforms together to obtain the first waveform.
- the circuit shown in Figure 23 is another circuit that generates the sine wave waveform with the amplitude of multiple groups of periodic time intervals shown in Figure 20 first increasing and then decreasing, including a high-frequency sine wave generator, a triangular wave generator and The number of analog multiplier circuits equal to the number of magnetic rings or flux linkages is connected with an inductance coil, and the inductance coil used can directly adopt the metal coil 2 in the magnetic ring array device for treatment.
- the amplitudes of multiple sets of periodic time intervals whose amplitudes first gradually increase and then gradually decrease as shown in Figure 20 are obtained First increase and then decrease the sine wave.
- the principle of waveform generation is shown in Figure 24: the first waveform is obtained by multiplying the second and third waveforms.
- the circuit for generating the sine wave waveforms in which the amplitudes of multiple groups of periodic time intervals first increase and then decrease as shown in FIG. 20 is not limited to the circuits shown in FIG. 21 and FIG. 23 .
- the current waveform of the above-mentioned preset alternating current is similar to a frequency-modulated continuous FMCW wave.
- the frequency of the frequency-modulated continuous FMCW wave increases linearly within a preset time, and then the frequency decreases linearly within a preset time, as shown in Figure 25.
- Both the initial frequency and the final frequency are within the preset range of 30KHz-300KHz, the maximum limit of the highest frequency is 300kHz, and the minimum limit of the lowest frequency is 30kHz.
- the highest and lowest frequency values are selected and set according to the specific properties of cancer cells, but they always fall within the range of 30KHz to 300KHz.
- There is a preset time interval between the highest frequency and the lowest frequency; the duration of the linear increase from the lowest frequency to the highest frequency is 5 to 100 sine wave cycles.
- FIG. 26 is a circuit diagram for generating the continuous FMCW wave waveform of FIG. 25.
- FIG. It includes a triangular wave generator and voltage-controlled oscillators equal to the number of magnetic rings or flux linkages. Each voltage-controlled oscillator is connected with an inductance coil. The inductance coil used can directly use the metal coil in the magnetic ring array device for treatment. 2.
- the triangular wave voltage generated by the triangular wave generator is used to control the voltage-controlled oscillator, and the output frequency can continuously change but the amplitude of the sine wave is constant, that is, the continuous FMCW wave.
- the preset time interval between the highest frequency and the lowest frequency depends on the frequency of the triangle wave.
- the principle diagram of its waveform generation is shown in Figure 27.
- the second waveform corresponds to the sine wave frequency of the first waveform.
- the current waveform of the above-mentioned preset alternating current is similar to a frequency-modulated continuous FMCW wave.
- the frequency of the frequency-modulated continuous FMCW wave increases linearly from the lowest frequency to the highest frequency within a preset time, and then rapidly decreases to the lowest frequency, and then It also increases linearly from the lowest frequency to the highest frequency, and so on, as shown in Figure 28.
- Both the starting frequency and the final frequency are within the preset range of 30KHz-300KHz, the limit value of the highest frequency is 300kHz, and the limit value of the lowest frequency is 30kHz.
- the highest and lowest frequency values are selected and set according to the specific properties of cancer cells, but they always fall within the range of 30KHz to 300KHz.
- There is a preset time interval between the highest frequency and the lowest frequency; the duration of the linear increase from the lowest frequency to the highest frequency is 5 to 100 sine wave cycles.
- FIG. 29 is a circuit diagram for generating the continuous FMCW wave waveform shown in FIG. 28.
- FIG. It includes a sawtooth wave generator and voltage-controlled oscillators equal to the number of magnetic rings or flux linkages. Each voltage-controlled oscillator is connected to an inductance coil. The inductance coil used can directly use the metal in the magnetic ring array device for treatment. Coil 2.
- the sawtooth wave voltage generated by the sawtooth wave generator is used to control the voltage-controlled oscillator, and the output frequency can be continuously changed but the amplitude is constant.
- the sine wave that is, the frequency modulated continuous FMCW wave.
- the principle diagram of its waveform generation is shown in Figure 30.
- the second waveform corresponds to the sine wave frequency of the first waveform.
- the current waveform of the above-mentioned preset alternating current is similar to a frequency-modulated continuous FMCW wave.
- the frequency of the frequency-modulated continuous FMCW wave increases first and then decreases at the preset time.
- Both the starting frequency and the final frequency are within the preset range of 30KHz-300KHz, the limit value of the highest frequency is 300kHz, and the limit value of the lowest frequency is 30kHz.
- the highest and lowest frequency values are selected and set according to the specific properties of cancer cells, but they always fall within the range of 30KHz to 300KHz.
- There is a preset time interval between the highest frequency and the lowest frequency; the duration of the linear increase from the lowest frequency to the highest frequency is 5 to 100 sine wave cycles.
- FIG. 32 is a circuit diagram for generating the FMCW waveform shown in FIG. 31. It includes a sine wave generator and voltage-controlled oscillators equal to the number of magnetic rings or flux linkages. Each voltage-controlled oscillator is connected with an inductance coil. The inductance coil used can directly use the metal in the magnetic ring array device for treatment. Coil 2.
- the sine wave voltage generated by the sine wave generator is used to control the voltage-controlled oscillator, and the output frequency can continuously change but the amplitude of the sine wave is constant, that is, the frequency modulated continuous FMCW wave.
- the preset time interval between the highest frequency and the lowest frequency depending on the frequency of the low frequency sine wave.
- the principle diagram of its waveform generation is shown in Figure 33.
- the second waveform corresponds to the sine wave frequency of the first waveform.
- a frequency of 30kHz to 300kHz and an alternating electric field of 0.1V/cm to 10V/cm are applied to normal cells and different types of tumor cell lines to prove that the device in this embodiment applies a specific frequency (30KHz to 300KHz Between) and field strength (0.1V/cm-10V/cm) can selectively kill tumor cells and inhibit the growth of tumor cells.
- the experimental method is as follows:
- Normal cells human skin fibroblast 3T3, three cancer cells—human lung adenocarcinoma cell A549, human glioblastoma cell U87, human breast cancer cell 4T1 and mouse glioma cell C6 were inoculated in 96 in the orifice plate.
- cells were placed in magnetic rings that generated electric fields of different electric field strengths and frequencies.
- the magnetic ring array and cells were placed together in a carbon dioxide incubator with a volume of 54 ⁇ 50 ⁇ 68 cm. The incubator was grounded, and the internal electric field strength was 0. , without the influence of external electric field; the control group was routinely cultured in the same incubator without electric field environment.
- the experimental group and the control group were inoculated with the same number and the same density, and the culture conditions were DMEM+10% FBS medium, cultured for 1-3 days, and the CCK8 cell proliferation test was performed to detect the cell proliferation inhibition rate.
- the operation of the scratch experiment was to draw a straight line at the center of the 6-well culture dish with a 200 ⁇ l pipette tip, and then use serum-free medium for 24 hours, take multiple fields of view at 10 times the field of view of the microscope, and calculate the area of the center of the scratch by ImageJ.
- mice were used, and human glioblastoma U87 tissue pieces were implanted subcutaneously.
- the electric field magnetic ring is placed at the center of the cage to surround the cage, which can generate an electric field with a field strength of 1.5V/cm to 2.5V/cm within the cage.
- Mice were enrolled in the experiment when the tumor volume reached about 75mm3 , and were randomly divided into the electric field group and the control group.
- cultivate human skin fibroblast 3T3 Under the alternating electric field environment (test group/experimental group) and the normal culture environment (control group/control group) of the present embodiment, cultivate human skin fibroblast 3T3 respectively, detect the effect of proliferation and alternating electric field on human skin fibroblast 3T3 Inhibition of growth, expected results: the alternating electric field has no significant effect on the growth and proliferation of human skin fibroblast 3T3 cells, and the proliferation of cells in the experimental group and the control group is consistent, as shown in Figure 34.
- the inhibition rate of the alternating electric field on the growth of human skin fibroblast 3T3 is close to 0, and there is no obvious inhibition of proliferation, as shown in Figure 35.
- the inhibition rate is about 60%, that is, the number of inhibited cells accounts for 60% of the total number of cells in the control group.
- the inhibitory rate is about 53%, that is, the number of inhibited cells accounts for 53% of the total number of cells in the control group.
- the inhibition rate is 0.65, that is, the number of inhibited cells accounts for 65% of the total number of cells in the control group.
- the electric field can inhibit cell migration to the center of the scratch, and the area of the scratch in the electric field group is 205% of the central area of the scratch in the control group.
- the 21-day tumor volume inhibition rate in the electric field group was 59.14%, and the tumor inhibition rate was 60.61%.
- the tumor volume inhibition rate of the electric field group was 46.80% and the tumor inhibition rate was 40.67% at 15 days.
- the three-dimensional magnetic ring therapy device in addition to a group of three magnetic rings or magnetic links 1 in Embodiment 1, also includes a group of three magnetic rings whose central axes are respectively located in the three-dimensional coordinate system XYZ.
- the two ends of the three metal coils 2 corresponding to the three magnetic rings or magnetic links are also respectively connected to an intersection
- the variable signal generating circuits form a closed loop, and the three preset alternating currents applied to the corresponding three metal coil
- the two groups of six magnetic rings or flux links 1 in this embodiment work in the same way as in Embodiment 1—the six metal coils are alternately loaded with preset alternating currents through six alternating signal generating circuits, and the Six preset alternating electric fields are generated on the six magnetic rings or flux linkages 1 and applied to the origin of the three-dimensional coordinate system XYZ from six different directions in turn.
- This embodiment is a further improvement of Embodiment 2.
- the main improvement is that in this embodiment, as shown in Figure 48, in the space of the three-dimensional coordinate system XYZ, a magnetic field with the coordinates of the center of the circle (x1, y1, z1) is also provided.
- the distance from the origin of the three-dimensional coordinate system XYZ is equal, and the limit
- the two ends of the metal coil 2 corresponding to the magnetic ring or the magnetic linkage with the coordinates of the center of the circle (x1, y1, z1) also form a closed loop with an alternating signal generating circuit, and the preset alternating current applied to the metal coil 2
- a preset alternating electric field whose center points to the origin of the three-dimensional coordinate system XYZ is also generated in the magnetic ring or magnetic linkage whose center coordinates are (x1, y1, z1).
- the working mode of the seven magnetic rings or flux linkages 1 in this embodiment is the same as that in Embodiment 1—the preset alternating current is loaded on the seven metal coils in turn through seven alternating signal generating circuits, and the seven Seven preset alternating electric fields are generated on the magnetic ring or magnetic link 1 and applied to the origin of the three-dimensional coordinate system XYZ from seven different directions in turn.
- this embodiment provides a therapeutic wearable device, as shown in Figure 49 (only three magnetic rings or magnetic chains 1 are shown in the figure, in actual application It can also be six or seven magnetic rings or magnetic chains 1) in Embodiment 3 or 4 respectively, the wearable device can be in the shape of a helmet or a hat, and the wearable device includes a wearing component in the shape of a helmet or a hat and embodiments 1 to 4.
- the three-dimensional magnetic ring therapy device in any one of the 4 embodiments.
- the wearing component 4 is a helmet or hat shape made of ABS, HDPE, PC, FRP, fiber, nylon, rubber or silicone material, and each magnetic ring or magnetic chain in the three-dimensional magnetic ring treatment device passes through the hollow of the wearing component respectively.
- the installation and connection with the wearable components are realized in the cavity 8 ; the alternating signal generating circuits on the magnetic rings or magnetic links 1 are all installed in the hollow cavity 8 .
- the hat or helmet is used when there are tumor cells such as glioma on the patient's head, the patient only needs to put on the hat or helmet, and then select the preset alternation of appropriate frequency and amplitude according to the specific conditions of the tumor through the alternating signal generating circuit The current waveform of the current is sufficient.
- this embodiment provides a treatment bed, as shown in Figure 50 (only three magnetic rings or magnetic chains 1 are shown in the figure, and they can also be respectively Six or seven magnetic rings or magnetic chains 1) in Embodiment 3 or 4,
- the treatment bed includes a bed board 5, a positioning frame 6, a support 7 and the three-dimensional magnetic ring treatment in any one of Embodiments 1 to 4 device, in the treatment bed, each magnetic ring or magnetic link 1 in the three-dimensional magnetic ring treatment device is installed on the positioning frame 6 above the bed board 5, the positioning frame 6 is installed on the bracket 7, and the bracket 7 is installed on the bed board 5- side.
- the plane where the bed board 5 is located is parallel to and slightly below the XY plane in the three-dimensional coordinate system XYZ of the three-dimensional magnetic ring treatment device.
- the alternating signal generating circuits on each magnetic ring or magnetic link 1 are installed in a housing 9 fixed on a bracket.
- the patient When using the treatment bed, the patient directly lies flat on the bed board 5, and then selects the current waveform of the preset alternating current with a suitable frequency and amplitude through the alternating signal generating circuit according to the specific conditions of the tumor.
- the treatment bed can be applied to the treatment of various tumors.
- This embodiment is a further improvement of Embodiment 5.
- the main improvement is that in this embodiment, in order to make the origin of the three-dimensional coordinate system XYZ indicated by the center of the preset alternating electric field generated in each magnetic ring or flux linkage
- the relative position between the bed board and the bed board can be adjusted so as to treat diseases at different positions of the patient's body lying on the bed board 5.
- the treatment bed in this embodiment also includes a position adjustment mechanism, and the position adjustment mechanism includes a
- the X-axis slide rail 501 on the side, the bottom of the bracket 7 is slidingly connected with the X-axis slide rail 501 through the first slider 701, and the Y-axis slide rail 703 perpendicular to the X-axis slide rail 501 is installed on the beam 702 of the bracket 7,
- the positioning frame 6 is slidingly connected to the Y-axis slide rail 703 through the second slider 10, and the second sliding block 10 is connected to the positioning frame 6 through a rotating shaft, so that the positioning frame 6 can rotate around the second sliding block 10 in the horizontal plane 360°
- the upper and lower parts of the vertical bar of the support 7 are connected by the sleeve 704, and the sleeve 704 can be fixed by the positioning bolt 705 after moving up and down along the vertical bar, so as to realize the up and down adjustment of the three-dimensional magnetic ring.
- the three-dimensional magnetic ring moves in the X-axis direction along the X-axis slide rail 501 by pushing the bracket 7, and the three-dimensional magnetic ring moves in the Y-axis direction along the Y-axis slide rail 703 by pushing the positioning frame 6, and the three-dimensional magnetic ring moves in the Y-axis direction along the Y-axis slide rail 703 by pushing the positioning frame 6.
- the focus position of the magnetic induction lines of the variable electric field can be adjusted arbitrarily relative to the bed board 5, so that the application range of the treatment bed is wider.
- the three-dimensional magnetic ring therapy device in the present invention can also be used for other purposes besides treating tumors in living bodies.
- selective destruction using the present device can be used in conjunction with any organism that proliferates, divides and reproduces, for example, tissue cultures, microorganisms such as bacteria, mycoplasma, protozoa, etc., fungi, algae, plant cells, etc.
- Neoplastic cells as referred to herein include leukemias, lymphomas, myelomas, plasmacytomas; and solid tumors.
- solid tumors that may be treated in accordance with the present invention include sarcomas and carcinomas such as, but not limited to: fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, dorsal clavicular epithelioma, angiosarcoma, endothelial sarcoma, lymphatic Sarcoma, lymphangioendothelioma, synovial tumor, mesothelioma, leiomyosarcoma, rhabdomyosarcoma, colon cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma , sebaceous gland carcinoma, papillary carcinoma, papillary carcinoma, cystaden
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Treatment Devices (AREA)
Abstract
一种三维磁环治疗装置及其应用,涉及医疗设备领域。装置包括至少一组三个固定在机架上的闭合磁环或磁链(1),每组三个磁环或磁链(1)的中轴线分别位于三维坐标系XYZ的三个面内且相交于该三维坐标系XYZ的原点,各磁环或磁链(1)上均缠绕有至少一个金属线圈(2),各金属线圈(2)的两端分别与一个交变信号产生电路之间形成闭合回路;各交变信号产生电路在各金属线圈(2)上轮流循环加载预设交变电流,各预设交变电流轮流循环在各磁环或磁链(1)内产生中心均指向原点的预设交变电场;使用时,正在快速分裂的细胞的载体(3)位于原点处。本装置能够尽可能地从不同方向不同角度去作用正在快速分裂的肿瘤细胞,不存在电极,不用紧贴皮肤使用,舒适度较高。
Description
本发明涉及医疗器械领域,特别涉及一种三维磁环治疗装置及其应用。
众所周知,肿瘤,特别是恶性肿瘤或癌症,相比正常组织,其细胞分裂失控无限增殖、增长迅速,细胞分化低,并具有浸润性和扩散性(迁移性)。
如上所述,通常肿瘤(特别是恶性肿瘤)的快速增长是相比正常组织细胞的相对频繁的细胞分裂或增殖的结果。相对于正常细胞,癌细胞的频繁细胞分裂是现有癌症治疗的有效性的基础,例如放射治疗和使用各种各样的化疗药剂。此类治疗基于正在经历分裂的细胞相比未分裂的细胞对辐射和化疗药剂更为敏感的事实。因为肿瘤细胞比正常细胞分裂更为频繁,在一定程度上就可能通过放射治疗和/或化疗选择性地损害或破坏肿瘤细胞。细胞对辐射、治疗药剂等的实际敏感性还依赖于不同类型的正常或恶性细胞类型的特定特性。由此,不幸的是,肿瘤细胞的敏感性并不比许多类型的正常组织显著地要高。这就使得在肿瘤细胞和正常细胞之间不太容易区分,因此现有癌症典型治疗方案也会对正常细胞带来显著损害,由此限制了此类治疗方法的治疗效果。此外,对其它组织的不可避免的损害使得治疗对患者非常有损伤性,并且患者经常不能从表面上成功的治疗中恢复过来。并且,某些类型的肿瘤对现有治疗方法根本就不敏感。
还存在不单独依赖于放射治疗或化疗的用于破坏细胞的其它方法。例如,使用超声波或电去破坏肿瘤细胞的方法,可以替代常规治疗方法。电场和电流被用于医学目的已经有许多年了。最为普通的是借助于一对导电电极,在导电电极之间维持一个电位差,通过在人或动物的体内施加一个电场,从而在人或动物的体内产生电流。这些电流或者用于发挥它们的特殊效果,即刺激易兴奋的组织,或者由于身体可以等效为电阻从而通过在体内形成电流而产生热。第一种类型的应用的例子包括:心脏去纤颤器,外周神经和肌肉刺激器,大脑刺激器等。电流用于产生热的例子包括:肿瘤切除,不正常工作的心脏或脑组织的切除,烧灼,减轻肌肉风湿痛或其它疼痛等等。
电场用于医学目的的其它应用包括利用从发射例如射频电波的源或定向到对身体感兴趣的部位的微波源发射的高频振荡场。在这些实例中,在源和身体之间没有电能传导;而是能量通过辐射或感应传送到身体。更特别地,由源产生的电能经由导体到达身体的附近,并从该位置通过空气或某些其它电绝缘材料传送到人体。
在常规电方法中,电流是通过放置于患者身体接触的电极输送到目标组织区域的。所应用的电流基本上会破坏目标组织附近的所有细胞。因此,这种类型的电方法并未区分目标组织范围内的不同类型的细胞并导致即破坏了肿瘤细胞又破坏了正常细胞。
申请号为200580048335.X,名称为一种用于选择性破坏或抑制位于患者的目标区域内的快速分裂肿瘤细胞的增长的设备的专利,公开了该设备包括:至少两对绝缘电极(1620,1630),其中每个电极(1620,1630)具有一个配置用于紧靠患者的身体放置的表面;以及具有至少两组输出的AC电压源,其中至少两组输出是相移的并且被各自电连接到至少两对绝缘电极(1620,1630)中的一对;其中AC电压源和电极(1620,1630)被配置使得当电极(1620,1630)被紧靠患者的身体放置时,由于至少两组输出之间的相移,AC电场被以相对目标区域(1612)旋转的方向施加到患者的目标区域(1612)内,施加的电场具有使得电场(a)选择性破坏快速分裂的肿瘤细胞,以及(b)使正常细胞基本上不受伤害的频率和场强特性。该设备较好地在分裂细胞(包括单细胞组织)和未分裂的细胞之间作出区分,并且能够基本上不影响正常细胞或机体而选择性地破坏快速分裂的肿瘤细胞。但是,该设备在使用时,其中的电极必须紧贴患者皮肤,不适用于长时间使用,且使用舒适度较低。而且电极具有一定的使用寿命,必须定期更换,使用成本极高。
发明内容
发明目的:针对现有技术中存在的问题,本发明提供一种三维磁环治疗装置及其应用,能够基本上不影响正常细胞或机体而选择性地破坏肿瘤细胞,本装置在使用时,是直接将正在快速分裂的肿瘤细胞的载体置于三维坐标系XYZ的原点,相比与单个磁环或磁链的治疗装置,本装置能够尽可能地从不同方向不同角度去作用正在快速分裂的肿瘤细胞。本装置不存在电极,不用紧贴皮肤使用,可以长时间佩戴或使用,舒适度较高。
技术方案:本发明提供了一种三维磁环治疗装置,包括至少一组三个固定在机架上的闭合磁环或磁链,每组三个所述磁环或磁链的中轴线分别位于三维坐标系XYZ的三个面内且相交于该三维坐标系XYZ的原点,各所述磁环或磁链上均缠绕有至少一个金属线圈,各所述金属线圈的两端分别与一个交变信号产生电路之间形成闭合回路;通过各所述交变信号产生电路在各所述金属线圈上轮流循环加载预设交变电流,各所述预设交变电流轮流循环在各所述磁环或磁链内产生预设交变磁场,各所述预设交变磁场在垂直于各所述磁环或磁链的方向上形成轮流循环对所述载体内正在快速分裂的肿瘤细胞进行破坏或抑制而对正常细胞无作用的预设交变电场;各所述磁环或磁链内产生的各所述预设交变电场的中心均指向所述原点;在使用该装置时,正在快速分裂的肿瘤细胞的载体置于所述原点上。
优选地,通过在该装置中设置类似“顺序移位寄存器”电路和与所述磁环或磁链数量相等的电控开关,实现各所述交变信号产生电路在各所述金属线圈上轮流循环加载预设交变电流;在各所述交变信号产生电路的VDD电源与输入端之间连接各所述电控开关,各所述电控开关的输入端连接所述类似“顺序移位寄存器”电路的输出端,所述类似“顺序移位寄存器”电路的输入端连接随机/周期信号产生电路的输出端。
进一步地,在所述三维平面内,还包括圆心坐标为(x1,y1,z1)的至少一个所述磁环或磁链,其中,x1≠0,y1≠0,z1≠0;圆心坐标为(x1,y1,z1)的磁环或磁链与位于所述三维坐标系XYZ的三个面内的磁环或磁链中,各所述金属线圈(2)的两端分别与一个交变信号产生电路之间形成闭合回路,各所述预设交变电流在各所述磁环或磁链内产生中心均指向所述原点的预设交变电场。
优选地,位于所述三维坐标系XYZ的三个面内的其中一组三个所述磁环或磁链的圆心坐标分别为(x2,0,0),(0,y2,0)和(0,0,z2),其中,x2≠0,y2≠0,z2≠0;位于所述三维坐标系XYZ的三个面内的其中另一组三个所述磁环或磁链的圆心坐标分别为(x3,y3,0),(x3,0,z3)和(0,y3,z3),其中,x3≠0,y3≠0,z3≠0。
优选地,各所述交变信号产生电路均为以下任意一种电路,并通过功率放大电路后驱动线圈:等幅正弦波发生器电路、减幅正弦波发生器电路、增幅正弦波发生器电路、幅值先增再减正弦波发生器电路、频率在最大和最小值之间连续变化的正弦波电路。
优选地,所述等幅正弦波发生器电路为与所述磁环或磁链数量相等的克拉波振荡电路或席勒振荡电路;或者,所述等幅正弦波发生器电路主要包括锯齿波发生器和与所述磁环或磁链数量相等的压控振荡器;或者,所述等幅正弦波发生器电路主要包括三角波发生器和与所述磁环或磁链数量相等的压控振荡器;或者,所述等幅正弦波发生器电路主要包括正弦波发生器和与所述磁环或磁链数量相等的压控振荡器;所述减幅正弦波发生器电路为LC振荡器电路;所述增幅正弦波发生器电路主要包括高频正弦波发生器、锯齿波发生器和与所述磁环或磁链数量相等的模拟乘法器电路;所述先增再减正弦波发生器电路主要包括高频正弦波发生器、低频正弦波发生器和与所述磁环或磁链数量相等的模拟乘法器电路;或者,所述先增 再减正弦波发生器电路主要包括正弦波发生器、三角波发生器和与所述磁环或磁链数量相等的模拟乘法器电路。
优选地,各所述金属线圈缠绕各所述磁环或磁链的部分或全部。
优选地,各所述磁环或磁链由柔性软磁材料或刚性软磁材料制成;所述柔性软磁材料为以下任意一种或其组合:电磁纯铁、铁硅合金、铁镍合金、铁铝合金、铁硅铝合金、铁钴合金、非晶态软磁合金、超微晶软磁合金;所述刚性软磁材料为以下任意一种或其组合:纯铁和低碳钢、铁钴系合金、软磁铁氧体、非晶纳米晶合金。
本发明还提供了一种三维磁环治疗装置在帽子或头盔或治疗床中的应用。
工作原理:本装置在使用时,将正在快速分裂的细胞的载体置于三维坐标系XYZ的原点,给各交变信号产生电路通电后产生特定频率与幅值的交变电流,交变电流输出到各金属线圈时,各磁环或磁链中便产生预设交变磁场,该交变磁场的方向与磁环或磁链方向一致,并与磁环或磁链一样形成闭环。该交变磁场在其垂直方向,即垂直于磁环或磁链平面的方向上,形成交变电场。且在各磁环或磁链内产生的预设交变电场中心均指向三维坐标系XYZ的原点,也就是均各磁环或磁链能够从不同方向上作用于位于上述原点处的正在快速分裂的细胞的载体(通常为患者)。由于当细胞正在快速分裂的时候,其更易受到具有特定频率和电场强特性的交变电场的破坏。因此当正在快速分裂的肿瘤细胞的载体位于上述各交变电场的作用点上时,位于该交变磁场中的正在快速分裂的肿瘤细胞内就会受到与线圈中的交变电流同频率、不同方向的交变电场的影响,上述特定的频率和电场强特性的交变电场持续一段时间,就能够对正在快速分裂的肿瘤细胞进行选择性破坏,而正常细胞由于对上述特定频率和电场强特性的交变电场不敏感,将不会受到损害。这就选择性破坏了类似肿瘤细胞的正在快速分裂的细胞而不会损害正常细胞。
有益效果:本装置在使用时,是直接将正在快速分裂的肿瘤细胞的载体置于三维坐标系XYZ的原点,相比与单个磁环或磁链的治疗装置,本装置能够尽可能地从不同方向不同角度去作用正在快速分裂的肿瘤细胞,治疗效果更好。
本装置不存在电极,不用紧贴皮肤使用,可以长时间佩戴或使用,舒适度较高;能够基本上不影响正常细胞或机体而选择性地破坏正在快速分裂的细胞或机体。
图1为实施方式1中三维磁环治疗装置的部分结构简图;
图2为三维磁环治疗装置中其中一个磁环或磁链的结构示意图,由VDD供电的交变信号产生电路给电感线圈输入交变电流信号;
图3为实施方式1中三维磁环治疗装置中一个包含了交变信号产生电路的磁环或磁链的结构示意图,其中电感线圈中流过的是周期时间间隔或随机时间间隔的减幅正弦波电流信号,各交变信号产生电路在各金属线圈上轮流循环加载预设交变电流;
图4为开关电源电路为后续电路提供供电电压VDD的结构示意图,该电路将系统电源转换为可以供后续电路工作的合适的直流电源;
图5为用于产生多组随机时间间隔的减幅正弦波的电路图;
图6为由图5所示的电路产生的多组随机时间间隔的减幅正弦波波形图;
图7为用于产生多组周期时间间隔的减幅正弦波的电路图;
图8为由图7所示的电路产生的多组周期时间间隔的减幅正弦波波形图;
图9为用于产生持续等幅正弦波的等幅正弦波发生器电路的其中一种——克拉波振荡电路;
图10为持续等幅正弦波波形图;
图11为用于产生周期时间间隔或随机时间间隔的等幅正弦波发生器电路的其中一种——克拉波振荡电路;
图12为由图11所示的电路产生的随机时间间隔的等幅正弦波波形图;
图13为由图11所示的电路产生的周期时间间隔的等幅正弦波波形图;
图14为用于产生持续等幅正弦波的等幅正弦波发生器电路的另外一种——席勒振荡电路;
图15为用于产生周期时间间隔和随机时间间隔的等幅正弦波发生器电路的另外一种——席勒振荡电路;
图16为在一个磁环或磁链内产生的交变电场的示意图;
图17为多组周期时间间隔的增幅正弦波波形图;
图18为能够产生图17所示多组周期时间间隔的增幅正弦波的电路图;
图19为图18所示多组周期时间间隔的增幅正弦波的产生原理图;
图20为多组周期时间间隔的幅值先增再减正弦波波形图;
图21为能够产生图20所示多组周期时间间隔的幅值先增再减正弦波的一种电路图;
图22为图21所示电路产生图20所示多组周期时间间隔的幅值先增再减正弦波的原理图;
图23为能够产生图20所示多组周期时间间隔的幅值先增再减正弦波的另一种电路图;
图24为图23所示电路产生图20所示多组周期时间间隔的幅值先增再减正弦波的原理 图;
图25为频率调制连续FMCW波的波形图;
图26为能够产生图25所示连续FMCW波波形的电路图;
图27为图26所示电路产生图25所示连续FMCW波波形的原理图;
图28为频率调制连续FMCW波的波形图;
图29为能够产生图28所示连续FMCW波波形的电路图;
图30为图29所示电路产生图28所示连续FMCW波波形的原理图;
图31为另外一种频率调制连续FMCW波的波形图;
图32为能够产生图31所示连续FMCW波波形的电路图;
图33为图32所示电路产生图31所示连续FMCW波波形的原理图;
图34为三维磁环治疗装置作用于人皮肤成纤维细胞3T3时,对人皮肤成纤维细胞3T3的生长和增殖的抑制作用示意图;
图35为三维磁环治疗装置作用于人皮肤成纤维细胞3T3时,对人皮肤成纤维细胞3T3的抑制率示意图;
图36为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于人非小细胞肺癌细胞时,对人非小细胞肺癌细胞的增殖检测示意图;
图37为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于人非小细胞肺癌细胞时,对人非小细胞肺癌细胞的抑制率示意图;
图38为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于人胶质母细胞瘤细胞时,对人胶质母细胞瘤细胞的增殖检测示意图;
图39为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于人胶质母细胞瘤细胞时,对人胶质母细胞瘤细胞的抑制率示意图;
图40为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于鼠胶质瘤细胞时,对鼠胶质瘤细胞的增殖检测示意图;
图41为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于鼠胶质瘤细胞时,对鼠胶质瘤细胞的抑制率示意图;
图42为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于人胶质瘤细胞时,对人胶质瘤细胞的迁移抑制率示意图;
图43为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于裸鼠皮下人胶质瘤细胞时,对人胶质瘤体积抑制率示意图;
图44为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于裸鼠皮下人胶质瘤细胞时,对人胶质瘤重量抑制率示意图;
图45为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于正常免疫功能小鼠皮下人乳腺癌细胞时,对人乳腺癌细胞体积抑制率示意图;
图46为用于选择性破坏或抑制肿瘤细胞有丝分裂的设备作用于正常免疫功能小鼠皮下人乳腺癌细胞时,对人乳腺癌细胞重量抑制率示意图;
图47为实施方式2中三维磁环治疗装置的部分结构简图;
图48为实施方式3中三维磁环治疗装置的部分结构简图;
图49为实施方式4中治疗用穿戴设备的帽子或头盔结构示意图;
图50为实施方式5中治疗床的结构示意图;
图51为实施方式6中治疗床的结构示意图。
下面结合附图对本发明进行详细的介绍。
实施方式1:
本实施方式提供了一种三维磁环治疗装置,如图1所示,包括一组三个固定在机架上的闭合磁环或磁链1,三个磁环或磁链1的中轴线分别位于三维坐标系XYZ的三个轴上且分别垂直相交于该三维坐标系XYZ的原点,三个磁环或磁链1的圆心坐标分别为(x2,0,0),(0,y2,0)和(0,0,z2),其中,x2=y2=z2≠0。三个磁环或磁链1上均缠绕有至少一个金属线圈2(图1中没有示出),三个金属线圈2的两端分别与一个交变信号产生电路之间形成闭合回路,如图2所示;在三个磁环或磁链1内产生的预设交变电场中心均指向三维坐标系XYZ的原点。通过各交变信号产生电路在各金属线圈2上轮流循环加载预设交变电流,在各交变信号产生电路的VDD电源与输入端之间均连接有一个电控开关,各电控开关的输入端均连接类似“顺序移位寄存器”电路的输出端,类似“顺序移位寄存器”电路的输入端连接随机/周期信号产生电路的输出端,如图3。
在使用该装置时,三个磁环或磁链1内产生的预设交变电场轮流循环施加于三维坐标系XYZ的原点。将正在快速分裂的细胞的载体3置于三维坐标系XYZ的原点上,通过三个交变信号产生电路在三个金属线圈2上轮流循环加载预设交变电流,三个轮流循环加载的预设交变电流能够使得在对应的三个磁环或磁链1内轮流循环产生预设交变电场,三个预设交变电场能够在正在快速分裂的肿瘤细胞内产生轮流循环的从不同方向对其进行破坏或抑制的预设交变电场。
上述磁环或磁链1由柔性软磁材料或刚性软磁材料制成。柔性软磁材料为以下任意一种或其组合:电磁纯铁、铁硅合金、铁镍合金、铁铝合金、铁硅铝合金、铁钴合金、非晶态软磁合金、超微晶软磁合金;刚性软磁材料为以下任意一种或其组合:纯铁和低碳钢、铁钴系合金、软磁铁氧体、非晶纳米晶合金。
上述三个交变信号产生电路均需要一个供电电路——开关电源电路,如图4所示,通过开关电源电路将交流市电(例如中国标准的220V 50Hz)电源或电池电源转换为直流电压V
DD,为交变信号产生电路供电。
上述三个交变信号产生电路用于产生符合频率、幅值、时间间隔要求的交变信号。上述三个交变信号产生电路可以是等幅正弦波发生器电路、减幅正弦波发生器电路、增幅正弦波发生器电路、幅值先增再减正弦波发生器电路、频率在最大和最小值之间连续变化的正弦波电路中的任意一种或者组合。
等幅正弦波发生器电路为与磁环或磁链1数量相等的克拉波振荡电路或席勒振荡电路;或者,等幅正弦波发生器电路主要包括锯齿波发生器和与磁环或磁链1数量相等的压控振荡器;或者,等幅正弦波发生器电路主要包括三角波发生器和与磁环或磁链1数量相等的压控振荡器;或者,所述等幅正弦波发生器电路主要包括正弦波发生器和与磁环或磁链1数量相等的压控振荡器;减幅正弦波发生器电路为与磁环或磁链1数量相等的LC振荡器电路;增幅正弦波发生器电路主要包括高频正弦波发生器、锯齿波发生器和与磁环或磁链1数量相等的模拟乘法器电路;幅值先增再减正弦波发生器电路主要包括正弦波发生器、三角波发生器和与磁环或磁链1数量相等的模拟乘法器电路,或者,幅值先增再减正弦波发生器电路主要包括高频正弦波发生器、低频正弦波发生器和与磁环或磁链1数量相等的模拟乘法器电路。
为实现多组正弦波之间的等时间间隔或者随机时间间隔,还需要一个周期信号产生电路,或者随机信号产生电路,或者周期信号产生电路与随机信号产生电路的结合,在VDD电源与各交变信号产生电路的电源输入端之间还分别连接有一个电控开关,随机/周期信号产生电路的输出信号用于控制各电控开关。随机/周期信号产生电路可以控制各交变信号产生电路,从而将产生的交变信号分成多个系列,每一系列信号出现的时间可以是周期的,也可以是随机的,还可以是连续的。
如图5和7为其中两种典型的减幅正弦波产生电路,是结合了电感线圈的LC振荡器电路,该减幅正弦波产生电路与磁环或磁链的数量相等。图5用于产生多组随机时间间隔的减幅正弦波,图7用于产生多组周期时间间隔的减幅正弦波。其中图中的C和绕制在磁环或磁 链1上的原方线圈L,构成LC振荡器电路。因为电感L中存在着不可忽略的寄生电阻,则该LC振荡器是一个减幅振荡器,振荡频率为
L中等效串联电阻越大,则衰减越快。图5中,随机信号发生器产生随机信号,图7中,周期信号发生器产生周期信号,随机信号和周期信号分别去控制电控开关(通常用功率MOS管、BJT管、IGBT管、继电器等器件实现)。电控开关导通之后马上关断,则LC振荡器充满能量开始谐振。从而,该减幅振荡器电路被随机时间间隔下开启,形成如图6所示的随机时间间隔的减幅正弦波;该减幅振荡器电路被周期时间间隔下开启,形成如图8所示的周期时间间隔的减幅正弦波。
上述交变信号产生电路为等幅正弦波发生器电路时,该等幅正弦波发生器电路可以是与磁环或磁链1的数量相等的多个克拉波振荡电路(如图9),电路结合了电感线圈的正弦波发生器电路,用于产生如图10所示的持续等幅正弦波。所用电感L可以直接采用本治疗用磁环阵列装置中的金属线圈2,如果换用其他结构的正弦波发生器,例如RC振荡器产生的正弦波送至变压器原方线圈,也能实现本发明功能。
在图9电路基础上,在VDD电源和每个克拉波振荡电路的电源输入端之间分别加入一个电控开关,辅以随机/周期信号产生电路(随机/周期信号产生电路的输出信号用于控制各电控开关),如图11,产生随机信号或者周期信号,输出的所述预设交变电流的电流波形为多组随机时间间隔的等幅正弦波(如图12)或者多组周期时间间隔的等幅正弦波(如图13)。
上述交变信号产生电路为等幅正弦波发生器电路时,该等幅正弦波发生器电路也可以是与磁环或磁链的数量相等的多个席勒振荡电路(如图14),电路结合了电感线圈的正弦波发生器电路,用于产生如图10所示的持续等幅正弦波。所用电感L可以直接采用本治疗用磁环阵列装置中的金属线圈2。
在图14电路基础上,在VDD电源和每个席勒振荡电路的电源输入端之间可以加入一个电控开关,辅以随机/周期信号产生电路,如图15,产生随机信号或者周期信号,实现输出多组随机时间间隔的等幅正弦波(如图12)或者多组周期时间间隔的等幅正弦波(如图13)。
在使用本实施方式中的三维磁环治疗装置时,将正在快速分裂的细胞的载体置于三维坐标系XYZ的原点,给三个交变信号产生电路通电后轮流循环产生预设频率与幅值的交变电流,交变电流输出到三个金属线圈2时,三个磁环或磁链1中便轮流循环产生预设交变磁场,该交变磁场的方向与磁环或磁链1方向一致,并与磁环或磁链1一样形成闭环。该交变磁场在其垂直方向,即垂直于磁环或磁链1平面的方向上形成交变电场。如图16。且 由于上述在各磁环或磁链1内产生的预设交变电场能够轮流作用在三维坐标系XYZ的原点,而正在快速分裂的细胞的载体(通常为患者)就位于该三维坐标系XYZ的原点上。由于当细胞正在快速分裂的时候,其更易受到具有特定频率和电场强特性的交变电场的破坏。因此当正在快速分裂的肿瘤细胞的载体位于上述三个交变电场的焦点上时,正在快速分裂的肿瘤细胞内就会轮流受到与线圈中的交变电流同频率交变电场,上述特定的频率和电场强特性的交变电场持续一段时间,就能够对正在快速分裂的肿瘤细胞进行选择性破坏,而正常细胞由于对上述特定频率和电场强特性的交变电场不敏感,将不会受到损害。这就选择性破坏了类似肿瘤细胞的正在快速分裂的细胞而不会损害正常细胞。
上述预设交变电流信号的频率为30kHz~300kHz内的正弦波,预设交变电场的强度为0.1V/cm~10V/cm。
上述预设交变电流的电流波形为持续等幅正弦波,该持续等幅正弦波的频率相同、幅值相同,如图10。如图9和图14所示的交变信号产生电路都能够产生如图10所示的持续等幅正弦波。
上述预设交变电流的电流波形为多组周期时间间隔的等幅正弦波,各组周期时间间隔的等幅正弦波的频率相同、幅值相同、持续时间相同,相邻两组周期时间间隔的等幅正弦波之间的空闲时间间隔相同,如图13。各组周期时间间隔的等幅正弦波的持续时间为至少一个正弦波周期;相邻两组周期时间间隔的等幅正弦波之间的空闲时间间隔为至少一个正弦波周期。如图11和图15所示的交变信号产生电路都能够产生如图13所示的周期时间间隔的等幅正弦波。
上述预设交变电流的电流波形为多组随机时间间隔的等幅正弦波,各组随机时间间隔的等幅正弦波的频率相同、幅值相同、持续时间随机,相邻两组随机时间间隔的等幅正弦波之间的空闲时间间隔相同或随机,如图12。各组随机时间间隔的等幅正弦波的持续时间为至少一个正弦波周期;相邻两组随机时间间隔的等幅正弦波之间的空闲时间间隔为至少一个正弦波周期。如图11和图15所示的交变信号产生电路都能够产生如图12所示的多组随机时间间隔的等幅正弦波。
上述预设交变电流的电流波形为多组周期时间间隔的减幅正弦波,每组周期时间间隔的减幅正弦波的频率相同,起始幅值相同,幅值阻尼衰减系数相同,相邻两组周期减幅正弦波之间的空闲时间间隔相同;如图8。当每组周期时间间隔的减幅正弦波衰减至0之后,经固定的空闲时间间隔后再开始下一组周期时间间隔的减幅正弦波;相邻两组周期时间间隔的减幅正弦波之间的空闲时间间隔为至少一个正弦波周期;各组周期时间间隔的减幅正 弦波的衰减系数为R/2L,其中,R为LC振荡电路的串联电阻值或者等效串联寄生电阻值,L为LC振荡电路的电感,C为并联在电感L上的电容值;各组减幅正弦波的持续时间为5~30个正弦波周期。改变电阻值R,即可改变衰减系数。正弦波衰减系数(等同于调节电感L的串联电阻值R)可以根据病患位置、患病轻重进行预先设置。如图7所示的交变信号产生电路,即能够产生如图8所示的多组周期时间间隔的减幅正弦波。
上述预设交变电流的电流波形为多组随机时间间隔的减幅正弦波,每组随机时间间隔的减幅正弦波的频率相同,起始幅值相同或有差异,衰减系数相同或者有差异,相邻两组随机时间间隔的减幅正弦波之间的空闲时间间隔随机,如图6。各组随机时间间隔的减幅正弦波的衰减系数为R/2L,其中,R为LC振荡电路的串联电阻值或者等效串联寄生电阻值,L为LC振荡电路的电感,C为并联在电感L上的电容值;各组随机时间间隔的减幅正弦波的持续时间为5~30个正弦波周期。改变电阻值R,即可改变衰减系数。通常用每组有多少个持续的正弦波来简单评价衰减系统。正弦波衰减系数(等同于调节电感L的串联电阻值R)可以根据病患位置、患病轻重进行设置。如图5所示的交变信号产生电路,即能够产生如图6所示的多组随机时间间隔的减幅正弦波。
上述预设交变电流的电流波形为多组周期或随机时间间隔或持续的幅值逐渐增加的增幅正弦波,每组增幅正弦波的频率相同,幅值逐渐增强,相邻两组增幅正弦波之间的空闲时间间隔相同或随机。各组增幅正弦波的持续时间为5~30个正弦波周期。如图18所示的电路,包括一个高频正弦波发生器、一个锯齿波发生器以及与磁环或磁链数量相等的模拟乘法器电路,每个模拟乘法器电路均连接一个电感线圈作为负载,所用电感线圈可以直接采用本治疗用磁环阵列装置中的金属线圈2。将高频正弦波发生器产生的高频正弦波与锯齿波发生器产生的锯齿波相乘,就得到了如图17所示的多组幅值逐渐增加的周期时间间隔的增幅正弦波。其波形产生原理如图19所示。然后将该周期时间间隔的增幅正弦波电流加载到各自的金属线圈2中。
上述预设交变电流的电流波形为多组周期或随机时间间隔或持续的幅值先增再减正弦波,每组幅值先增再减正弦波的频率相同,幅值先逐渐增加再逐渐减小,每组幅值先增再减正弦波之间的空闲时间间隔相同或随机。如图21所示的电路,为其中一种产生图20所示的多组周期时间间隔的幅值先增再减正弦波波形的电路,包括一个高频正弦波发生器,一个低频正弦波发生器以及与磁环或磁链数量相等的模拟乘法器电路,每个模拟乘法器电路均连接有一个电感线圈,所用电感线圈可以直接采用本治疗用磁环阵列装置中的金属线圈2。将高频正弦波发生器产生的高频正弦波与低频正弦波发生器产生的低频正弦波相乘, 就得到了如图20所示的多组幅值先逐渐增加后逐渐减小的周期时间间隔的幅值先增再减正弦波,该波形产生原理如图22所示:将第二个和第三个波形相乘,就得到第一个波形。
如图23所示的电路,为另外一种产生图20所示的多组周期时间间隔的幅值先增再减正弦波波形的电路,包括一个高频正弦波发生器、一个三角波发生器以及与磁环或磁链数量相等的模拟乘法器电路,每个模拟乘法器电路均连接有一个电感线圈,所用电感线圈可以直接采用本治疗用磁环阵列装置中的金属线圈2。将高频正弦波发生器产生的高频正弦波与三角波发生器产生的三角波相乘,就得到了如图20所示的多组幅值先逐渐增加后逐渐减小的周期时间间隔的幅值先增再减正弦波。其波形产生原理如图24所示:将第二个和第三个波形相乘,就得到第一个波形。产生图20所示的多组周期时间间隔的幅值先增再减正弦波波形的电路,不局限于图21和图23所示电路。
上述预设交变电流的电流波形为类似频率调制连续FMCW波,频率调制连续FMCW波的频率在预设时间内线性增加,之后,频率在预设时间内线性递减,如图25。起始频率和最终频率均在预设范围30KHz~300KHz内,最高频率的极限最大值为300kHz,最低频率的极限最低值为30kHz。在某个装置中,其最高频率和最低频率值根据具体的癌细胞属性进行选择设置,但始终落在30KHz~300KHz范围内。最高频率和最低频率之间具有预设时间间隔;从最低频率线性增加到最高频率的持续时间为5~100个正弦波周期。
图26为产生图25连续FMCW波波形的电路图。包括一个三角波发生器以及与磁环或磁链数量相等的压控振荡器,每个压控振荡器均连接有一个电感线圈,所用电感线圈可以直接采用本治疗用磁环阵列装置中的金属线圈2。三角波发生器产生的三角波电压去控制压控振荡器,输出的频率可以持续变化但幅值恒定的正弦波,即连续FMCW波。最高频率和最低频率之间的预设时间间隔,取决于三角波的频率。其波形生成原理图如图27所示。第二个波形对应着第一个波形的正弦波频率。
上述预设交变电流的电流波形为类似频率调制连续FMCW波波,频率调制连续FMCW波的频率在预设时间内,从最低频线性增加至最高频,再迅速降到最低频,并随后又从最低频线性增加至最高频,如此周而复始,如图28。起始频率和最终频率均在预设范围30KHz~300KHz内,最高频率的极限值为300kHz,最低频率的极限值为30kHz。在某个装置中,其最高频率和最低频率值根据具体的癌细胞属性进行选择设置,但始终落在30KHz~300KHz范围内。最高频率和最低频率之间具有预设时间间隔;从最低频率线性增加到最高频率的持续时间为5~100个正弦波周期。
图29为产生图28所示连续FMCW波波形的电路图。包括一个锯齿波发生器以及与磁环 或磁链数量相等的压控振荡器,每个压控振荡器均连接有一个电感线圈,所用电感线圈可以直接采用本治疗用磁环阵列装置中的金属线圈2。锯齿波发生器产生的锯齿波电压去控制压控振荡器,输出频率可以持续变化但幅值恒定的正弦波,即频率调制连续FMCW波。最高频率和最低频率之间的预设时间间隔,取决于锯齿波的频率。其波形生成原理图如图30所示。第二个波形对应着第一个波形的正弦波频率。
上述预设交变电流的电流波形为类似频率调制连续FMCW波,频率调制连续FMCW波的频率在预设时间先增加后减小,增加和减小的频率变化符合正弦波规律,如图31。起始频率和最终频率均在预设范围30KHz~300KHz内,最高频率的极限值为300kHz,最低频率的极限值为30kHz。在某个装置中,其最高频率和最低频率值根据具体的癌细胞属性进行选择设置,但始终落在30KHz~300KHz范围内。最高频率和最低频率之间具有预设时间间隔;从最低频率线性增加到最高频率的持续时间为5~100个正弦波周期。
图32为产生图31所示FMCW波形的电路图。包括一个正弦波发生器以及与磁环或磁链数量相等的压控振荡器,每个压控振荡器均连接有一个电感线圈,所用电感线圈可以直接采用本治疗用磁环阵列装置中的金属线圈2。正弦波发生器产生的正弦波电压去控制压控振荡器,输出频率可以持续变化但幅值恒定的正弦波,即频率调制连续FMCW波。最高频率和最低频率之间的预设时间间隔,取决于低频正弦波的频率。其波形生成原理图如图33所示。第二个波形对应着第一个波形的正弦波频率。
本实施方式中对正常细胞和不同种类的肿瘤细胞系施加30kHz~300kHz的频率、0.1V/cm~10V/cm的交变电场,以证明本实施方式中的装置加上特定频率(30KHz到300KHz之间)和强度(0.1V/cm~10V/cm)的场强能够选择性的杀死肿瘤细胞,抑制肿瘤细胞生长。实验方法如下:
分别将正常细胞——人皮肤成纤维细胞3T3、三种癌细胞——人肺腺癌细胞A549、人胶质母细胞瘤细胞U87、人乳腺癌细胞4T1和鼠胶质瘤细胞C6接种于96孔板中。实验组将细胞置于产生不同电场强度和不同频率电场的磁环中,将磁环阵列和细胞一同置于体积为54×50×68cm的二氧化碳培养箱,培养箱接地,内部自身电场强度为0,无外源电场影响;对照组在相同的培养箱常规培养,无电场环境。实验组和对照组细胞以相同数量、相同密度接种,培养条件均为DMEM+10%FBS培养基,培养1-3天,进行CCK8细胞增殖实验检测,并计算细胞增殖抑制率。划痕实验操作为200μl枪头于6孔板培养皿中心处划1条直线,后使用无血清培养基24h,显微镜10倍视野取多个视野,通过ImageJ计算划痕中心面积。
动物实验使用Balbc裸鼠,皮下种植人胶质母细胞瘤U87组织块。电场磁环置于笼子中 心处包绕笼子,可在笼子范围内产生场强为1.5V/cm至2.5V/cm的电场。小鼠在肿瘤体积达到75mm
3左右时入组实验,随机分为电场组和对照组,U87实验入组后每7天使用游标卡尺测量肿瘤长轴和短轴,通过V=L×W2×0.52公式计算肿瘤体积。21天后处死小鼠,取小鼠肿瘤组织称重。使用Balbc正常小鼠,皮下种植人乳腺癌细胞4T1组织块。4T1实验入组后入组后每5天使用游标卡尺测量肿瘤长轴和短轴,通过V=L×W2×0.52公式计算肿瘤体积。15天后处死小鼠,取小鼠组织称重。
实验结果:
当电场强度范围为0.1V/cm~10V/cm、频率在30kHz~300kHz时,可对正常细胞和三种不同的肿瘤细胞增殖的抑制结果如下:
1,对正常细胞的作用:
在本实施方式交变电场环境(test组/实验组)和正常培养环境(control组/对照组)下,分别培养人皮肤成纤维细胞3T3,检测增殖和交变电场对人皮肤成纤维细胞3T3生长的抑制作用,结果预期:交变电场对人皮肤成纤维细胞3T3生长增殖无明显影响,实验组和对照组细胞增殖一致,如图34。交变电场对人皮肤成纤维细胞3T3生长的抑制率接近0,无明显抑制增殖作用,如图35。
2,对人肺腺癌细胞施加电场的抑制细胞增殖作用
如图36和37,对于人肺腺癌细胞A549,抑制效果最佳时,抑制率约为60%,即抑制的细胞数量占对照组细胞总数的60%。
3,对人胶质母细胞瘤细胞施加电场的抑制细胞增殖作用
如图38和39,对于人胶质母细胞瘤细胞U87,抑制效果最佳时,抑制率约为53%,即抑制的细胞数量占对照组细胞总数的53%。
4,对大鼠胶质细胞瘤细胞施加电场的抑制细胞增殖作用
如图40和41,对于鼠胶质瘤细胞C6,抑制效果最佳时,抑制率为0.65,即抑制的细胞数量占对照组细胞总数的65%。
5,对人胶质母细胞瘤U87施加电场抑制细胞迁移作用
如图42,对于人胶质母细胞瘤细胞U87,电场可抑制细胞向划痕中心处迁移,电场组划痕面积是照组划痕中心面积的205%。
6,对Balbc裸鼠皮下人胶质母细胞瘤U87肿瘤具有抑制增殖作用
如图48和44,对于Balbc裸鼠皮下人胶质母细胞瘤U87肿瘤,电场组21天的肿瘤体积抑制率为59.14%,抑瘤率为60.61%。
7,对Balbc正常小鼠皮下人乳腺癌细胞4T1肿瘤具有抑制增殖作用
如图45和46,对于Balbc正常小鼠皮下人乳腺癌细胞4T1肿瘤,电场组15天的肿瘤体积抑制率为46.80%,抑瘤率为40.67%。
实施方式2:
本实施方式与实施方式1大致相同,区别仅在于,在实施方式1中,三维磁环治疗装置中包括一组三个磁环或磁链1,三个磁环或磁链1的中轴线分别位于三维坐标系XYZ的三个坐标轴上且分别垂直相交于该三维坐标系XYZ的原点,三个磁环或磁链1的圆心坐标分别为(x2,0,0),(0,y2,0)和(0,0,z2),其中x2=y2=z2≠0。而在本实施方式中,如图47,三维磁环治疗装置中除了包括实施方式1中的一组三个磁环或磁链1外,还包括一组中轴线分别位于三维坐标系XYZ的三个面上且相交于该三维坐标系XYZ的原点的三个磁环或磁链1,这一组三个磁环或磁链1的圆心分别为(x3,y3,0),(x3,0,z3)和(0,y3,z3),即,本实施方式中的三维磁环治疗装置中包括两组六个圆心距离三维坐标系XYZ的原点相等的磁环或磁链1;其中x3=y3=z3≠0,且为了保证六个磁环或磁链的圆心距离三维坐标系XYZ的原点距离相等,限定
圆心坐标分别为(x2,0,0),(0,y2,0)和(0,0,z2)的三个磁环或磁链对应的三个金属线圈2的两端也分别与一个交变信号产生电路之间形成闭合回路,在对应的三个金属线圈2上施加的三个预设交变电流在对应的三个磁环或磁链内也会产生中心均指向三维坐标系XYZ的原点的预设交变电场。
本实施方式中的两组六个磁环或磁链1的工作方式与实施方式1中相同——通过六个交变信号产生电路在六个金属线圈上轮流循环加载预设交变电流,在六个磁环或磁链1上产生六个预设交变电场从六个不同的方向轮流循环施加到三维坐标系XYZ的原点。
除此之外,本实施方式与实施方式1完全相同,此处不做赘述。
实施方式3:
本实施方式为实施方式2的进一步改进,主要改进之处在于,本实施方式中,如图48,在三维坐标系XYZ的空间内,还设置有圆心坐标为(x1,y1,z1)的磁环或磁链,即,本实施方式中的三维磁环治疗装置中包括七个磁环或磁链1;其中,x1=y1=z1≠0,且为了保证七个磁环或磁链的圆心距离三维坐标系XYZ的原点距离相等,限定
圆心坐标为(x1,y1,z1)的磁环或磁链对应的金属线圈2的两端也与一个交变信号产生电路之间形成闭合回路,在金属线圈2上施加的预设交变电流在该圆心坐标为(x1,y1,z1)的磁环或磁链内也会产生中心均指向三维坐标系XYZ的原点的预设交变电场。
本实施方式中的七个磁环或磁链1的工作方式与实施方式1中相同——通过七个交变信号产生电路在七个金属线圈上轮流循环加载预设交变电流,在七个磁环或磁链1上产生七个预设交变电场从七个不同的方向轮流循环施加到三维坐标系XYZ的原点。
除此之外,本实施方式与实施方式3完全相同,此处不做赘述。
实施方式4:
根据实施方式1至3中任一实施方式中的装置,本实施方式提供了一种治疗用穿戴设备,如图49所示(图中仅示出三个磁环或磁链1,实际应用时也可以分别是实施方式3或4中的六个或七个磁环或磁链1),该穿戴设备可以是头盔或帽子形状,该穿戴设备包括头盔或帽子形状的穿戴组件以及实施方式1至4中任一实施方式中的三维磁环治疗装置。穿戴组件4是由ABS、HDPE、PC、FRP、纤维、尼龙、橡胶或硅胶材料制成的头盔或帽子形状,三维磁环治疗装置中的各磁环或磁链分别通过安装在穿戴组件的中空腔体8内实现与穿戴组件的安装连接;各磁环或磁链1上的交变信号产生电路均安装在中空腔体8内。
在患者头部存在肿瘤细胞比如胶质瘤时使用该帽子或头盔,患者只需戴上帽子或头盔,然后根据肿瘤的具体情况通过交变信号产生电路选择合适频率和幅值的预设交变电流的电流波形即可。
除此之外,本实施方式与实施方式1至3中任一实施方式完全相同,此处不做赘述。
实施方式5:
根据实施方式1至3中任一实施方式中的装置,本实施方式提供了一种治疗床,如图50(图中仅示出三个磁环或磁链1,实际应用时也可以分别是实施方式3或4中的六个或七个磁环或磁链1),该治疗床包括床板5、定位架6、支架7以及实施方式1至4中任一实施方式中的三维磁环治疗装置,该治疗床中,三维磁环治疗装置中的各磁环或磁链1分别安装在位于床板5上方的定位架6上,定位架6安装在支架7上,支架7安装在床板5一侧。床板5所在平面与三维磁环治疗装置中三维坐标系XYZ中的XY平面平行且位于XY平面略下方的位置。各磁环或磁链1上的交变信号产生电路均安装到一个固定在一个固定在支架上的壳体9内。
在使用该治疗床时,患者直接平躺在床板5上,然后根据肿瘤的具体情况通过交变信号产生电路选择合适频率和幅值的预设交变电流的电流波形即可。治疗床可以适用于各种肿瘤的治疗。
除此之外,本实施方式与实施方式1至3中任一实施方式完全相同,此处不做赘述。
实施方式6:
本实施方式为实施方式5的进一步改进,主要改进之处在于,在本实施方式中,为了使各磁环或磁链的内产生的预设交变电场中心所指的三维坐标系XYZ的原点与床板之间的相对位置可调,以便于治疗躺在床板5上的患者身体不同位置处的疾病,本实施方式中的治疗床还包括位置调节机构,该位置调节机构包括固定在床板5一侧的X轴滑轨501,支架7的底部通过第一滑块701与X轴滑轨501滑动连接,支架7的横梁702上安装有与X轴滑轨501垂直设置的Y轴滑轨703,定位架6通过第二滑块10与Y轴滑轨703滑动连接,第二滑块10与定位架6之间通过转轴连接,使得定位架6能够绕第二滑块10在水平面内360°旋转;本实施方式中支架7的竖杆的上下部为套筒704连接,套筒704可以沿竖杆上下移动后通过定位螺栓705固定,以实现三维磁环的上下调节。如图51。需要调节时,通过推动支架7实现三维磁环沿X轴滑轨501在X轴方向移动,通过推动定位架6实现三维磁环沿Y轴滑轨703在Y轴方向移动,通过旋转定位架6实现三维磁环在平面内任意角度的旋转,通过定位螺栓705和套筒704的配合,实现三维磁环的上下移动,这样就实现了三维磁环中各磁环或磁链1中产生的交变电场的磁感线的焦点位置相对床板5任意可调的目的,使得本治疗床的适用范围更加广泛。
除此之外,本实施方式与实施方式5完全相同,此处不做赘述。
应当理解,本发明中三维磁环治疗装置还可用于除治疗活体中的肿瘤之外的其它用途。事实上,利用本装置的选择性破坏可以与任何增殖分裂和繁殖的生物结合使用,例如,组织培养物,比如细菌、支原体,原生动物等这样的微生物,真菌,藻类,植物细胞,等。
本文中出现的肿瘤细胞包括白血病、淋巴瘤、骨髓瘤、浆细胞瘤;以及实性肿瘤。可以根据本发明治疗的实性肿瘤的例子包括肉瘤和癌,例如但不仅限于:纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、成骨肉瘤、背锁上皮瘤、血管肉瘤、内皮肉瘤、淋巴管肉瘤、淋巴管内皮瘤、滑膜瘤、间皮瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌、前列腺癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、皮脂腺癌、乳头状癌、乳头腺癌、囊腺癌、髓样癌、支气管癌、肾细胞癌、肝癌、胆管癌、绒膜癌、精原细胞癌、胚胎癌、子宫颈癌、睾丸肿瘤、肺癌、小细胞肺癌、膀胱癌、上皮癌、胶质瘤、星性细胞癌、成神经管细胞瘤、颅咽管瘤、室管膜瘤、松果体瘤、成血管细胞瘤、听神经瘤、寡枝神经胶质细胞瘤、脊膜瘤、黑素瘤、成神经细胞瘤以及成成视网膜细胞瘤。
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。
Claims (10)
- 一种三维磁环治疗装置,其特征在于,包括至少一组三个固定在机架上的闭合磁环或磁链(1),每组三个所述磁环或磁链(1)的中轴线分别位于三维坐标系XYZ的三个面内且相交于该三维坐标系XYZ的原点,各所述磁环或磁链(1)上均缠绕有至少一个金属线圈(2),各所述金属线圈(2)的两端分别与一个交变信号产生电路之间形成闭合回路;通过各所述交变信号产生电路在各所述金属线圈(2)上轮流循环加载预设交变电流,各所述预设交变电流轮流循环在各所述磁环或磁链(1)内产生预设交变磁场,各所述预设交变磁场在垂直于各所述磁环或磁链(1)的方向上形成轮流循环对所述载体内正在快速分裂的肿瘤细胞进行破坏或抑制而对正常细胞无作用的预设交变电场;各所述磁环或磁链(1)内产生的各所述预设交变电场的中心均指向所述原点;在使用该装置时,正在快速分裂的肿瘤细胞的载体(3)置于所述原点上。
- 根据权利要求1所述的三维磁环治疗装置,其特征在于,通过在该装置中设置类似“顺序移位寄存器”电路和与所述磁环或磁链数量相等的电控开关,实现各所述交变信号产生电路在各所述金属线圈上轮流循环加载预设交变电流;在各所述交变信号产生电路的VDD电源与输入端之间连接各所述电控开关,各所述电控开关的输入端连接所述类似“顺序移位寄存器”电路的输出端,所述类似“顺序移位寄存器”电路的输入端连接随机/周期信号产生电路的输出端。
- 根据权利要求1所述的三维磁环治疗装置,其特征在于,在所述三维平面内,还包括圆心坐标为(x1,y1,z1)的至少一个所述磁环或磁链,其中,x1≠0,y1≠0,z1≠0;圆心坐标为(x1,y1,z1)的磁环或磁链与位于所述三维坐标系XYZ的三个面内的磁环或磁链中,各所述金属线圈(2)的两端分别与一个交变信号产生电路之间形成闭合回路,各所述预设交变电流在各所述磁环或磁链内产生中心均指向所述原点的预设交变电场。
- 根据权利要求3所述的三维磁环治疗装置,其特征在于,位于所述三维坐标系XYZ的三个面内的其中一组三个所述磁环或磁链的圆心坐标分别为(x2,0,0),(0,y2,0)和(0,0,z2),其中,x2≠0,y2≠0,z2≠0;位于所述三维坐标系XYZ的三个面内的其中另一组三个所述磁环或磁链的圆心坐标分别为(x3,y3,0),(x3,0,z3)和(0,y3,z3),其中,x3≠0, y3≠0,z3≠0。
- 根据权利要求1所述的三维磁环治疗装置,其特征在于,各所述交变信号产生电路均为以下任意一种电路,并通过功率放大电路后驱动线圈:等幅正弦波发生器电路、减幅正弦波发生器电路、增幅正弦波发生器电路、幅值先增再减正弦波发生器电路、频率在最大和最小值之间连续变化的正弦波电路。
- 根据权利要求6所述的三维磁环治疗装置,其特征在于,所述等幅正弦波发生器电路为与所述磁环或磁链(1)数量相等的克拉波振荡电路或席勒振荡电路;或者,所述等幅正弦波发生器电路主要包括锯齿波发生器和与所述磁环或磁链(1)数量相等的压控振荡器;或者,所述等幅正弦波发生器电路主要包括三角波发生器和与所述磁环或磁链(1)数量相等的压控振荡器;或者,所述等幅正弦波发生器电路主要包括正弦波发生器和与所述磁环或磁链(1)数量相等的压控振荡器;所述减幅正弦波发生器电路为与所述磁环或磁链(1)数量相等的LC振荡器电路;所述增幅正弦波发生器电路主要包括高频正弦波发生器、锯齿波发生器和与所述磁环或磁链(1)数量相等的模拟乘法器电路;所述先增再减正弦波发生器电路主要包括高频正弦波发生器、低频正弦波发生器和与所述磁环或磁链(1)数量相等的模拟乘法器电路;或者,所述先增再减正弦波发生器电路主要包括正弦波发生器、三角波发生器和与所述磁环或磁链(1)数量相等的模拟乘法器电路。
- 根据权利要求1至7中任一项所述的三维磁环治疗装置,其特征在于,各所述金属线圈(2)缠绕各所述磁环或磁链(1)的部分或全部。
- 根据权利要求1至7中任一项所述的三维磁环治疗装置,其特征在于,所述磁环或磁链(1)由柔性软磁材料或刚性软磁材料制成;所述柔性软磁材料为以下任意一种或其组合:电磁纯铁、铁硅合金、铁镍合金、铁铝合金、铁硅铝合金、铁钴合金、非晶态软磁合金、超微晶软磁合金;所述刚性软磁材料为以下任意一种或其组合:纯铁和低碳钢、铁钴系合金、软磁铁氧体、非晶纳米晶合金。
- 一种如权利要求1至9中任一项所述的三维磁环治疗装置在帽子或头盔或治疗床中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110843859.9 | 2021-07-26 | ||
CN202110843859.9A CN113426022A (zh) | 2021-07-26 | 2021-07-26 | 三维磁环治疗装置及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023005719A1 true WO2023005719A1 (zh) | 2023-02-02 |
Family
ID=77761788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/106356 WO2023005719A1 (zh) | 2021-07-26 | 2022-07-19 | 三维磁环治疗装置及其应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113426022A (zh) |
WO (1) | WO2023005719A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113426022A (zh) * | 2021-07-26 | 2021-09-24 | 昆仑智鼎(北京)医疗技术有限公司 | 三维磁环治疗装置及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1522770A (zh) * | 2003-09-04 | 2004-08-25 | 高春平 | 立体定向经颅脑磁激治疗系统 |
WO2015142922A1 (en) * | 2014-03-17 | 2015-09-24 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | System with an electromagnetic field generator with coils for treating tumors and a method for treating tissue |
CN209286503U (zh) * | 2018-10-26 | 2019-08-23 | 中国人民解放军第一0一医院 | 一种磁场刺激仪辅助治疗固定头盔 |
US20190358448A1 (en) * | 2018-05-23 | 2019-11-28 | Ricoh Company, Ltd. | Power supply apparatus and magnetic field generation system |
CN113426022A (zh) * | 2021-07-26 | 2021-09-24 | 昆仑智鼎(北京)医疗技术有限公司 | 三维磁环治疗装置及其应用 |
CN216091890U (zh) * | 2021-07-26 | 2022-03-22 | 昆仑智鼎(北京)医疗技术有限公司 | 三维磁环治疗设备及其帽子或头盔或治疗床 |
-
2021
- 2021-07-26 CN CN202110843859.9A patent/CN113426022A/zh active Pending
-
2022
- 2022-07-19 WO PCT/CN2022/106356 patent/WO2023005719A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1522770A (zh) * | 2003-09-04 | 2004-08-25 | 高春平 | 立体定向经颅脑磁激治疗系统 |
WO2015142922A1 (en) * | 2014-03-17 | 2015-09-24 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | System with an electromagnetic field generator with coils for treating tumors and a method for treating tissue |
US20190358448A1 (en) * | 2018-05-23 | 2019-11-28 | Ricoh Company, Ltd. | Power supply apparatus and magnetic field generation system |
CN209286503U (zh) * | 2018-10-26 | 2019-08-23 | 中国人民解放军第一0一医院 | 一种磁场刺激仪辅助治疗固定头盔 |
CN113426022A (zh) * | 2021-07-26 | 2021-09-24 | 昆仑智鼎(北京)医疗技术有限公司 | 三维磁环治疗装置及其应用 |
CN216091890U (zh) * | 2021-07-26 | 2022-03-22 | 昆仑智鼎(北京)医疗技术有限公司 | 三维磁环治疗设备及其帽子或头盔或治疗床 |
Also Published As
Publication number | Publication date |
---|---|
CN113426022A (zh) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023005720A1 (zh) | 用于选择性破坏或抑制肿瘤细胞有丝分裂的交变电场装置 | |
WO2023005721A1 (zh) | 用于选择性破坏或抑制肿瘤细胞有丝分裂的装置 | |
US7335156B2 (en) | Digital electromagnetic pulse generator | |
EP1916013B1 (en) | Hyperthermia device for the selective treatment and monitoring of surface tissue | |
CN216091890U (zh) | 三维磁环治疗设备及其帽子或头盔或治疗床 | |
KR101755657B1 (ko) | 강한 자기장을 이용한 저주파 전기자극시 발생되는 피부의 통증을 완화시키는 자기장 인가장치 | |
CN109731217A (zh) | 用电场治疗细菌 | |
AU2005237539A1 (en) | Electromagnetic treatment induction apparatus and method | |
CN215275433U (zh) | 治疗用磁环阵列穿戴设备 | |
WO2023005719A1 (zh) | 三维磁环治疗装置及其应用 | |
JP2006519680A (ja) | 電磁治療器具および方法 | |
CN113546323A (zh) | 治疗用磁环阵列装置 | |
CN113521542A (zh) | 一种治疗用磁环阵列装置 | |
CN113577563A (zh) | 一种磁环阵列治疗装置 | |
TWI789554B (zh) | 用於提供脈衝式電磁場(pemf)治療的裝置、藉由施加一或多個pemf信號來治療對象的裝置、其製造方法及施加一或多個pemp信號到對象的方法 | |
CN113451016B (zh) | 三维磁环的治疗用交变电场装置 | |
CN215900735U (zh) | 三维磁环治疗床 | |
CN216091889U (zh) | 一种三维磁环治疗床 | |
CN215900737U (zh) | 治疗用三维磁环设备及其帽子或头盔或治疗床 | |
CN215309728U (zh) | 磁环阵列治疗设备 | |
CN215900736U (zh) | 三维磁环头盔或帽子 | |
CN215309725U (zh) | 磁环阵列治疗床 | |
CN113546316A (zh) | 三维磁环的交变电场装置 | |
CN215309726U (zh) | 一种磁环阵列治疗设备 | |
CN215309727U (zh) | 一种磁环阵列治疗床 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22848324 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22848324 Country of ref document: EP Kind code of ref document: A1 |