WO2023005367A1 - 壁挂式空调室内机 - Google Patents

壁挂式空调室内机 Download PDF

Info

Publication number
WO2023005367A1
WO2023005367A1 PCT/CN2022/093558 CN2022093558W WO2023005367A1 WO 2023005367 A1 WO2023005367 A1 WO 2023005367A1 CN 2022093558 W CN2022093558 W CN 2022093558W WO 2023005367 A1 WO2023005367 A1 WO 2023005367A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
splitter
air supply
outlet
supply port
Prior art date
Application number
PCT/CN2022/093558
Other languages
English (en)
French (fr)
Inventor
李英舒
尹晓英
黄满良
王永涛
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023005367A1 publication Critical patent/WO2023005367A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/12Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of sliding members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a wall-mounted air conditioner indoor unit.
  • Existing wall-mounted air-conditioning indoor units are usually provided with a strip-shaped air outlet at the lower part of the front side of the casing.
  • An object of the present invention is to overcome the above-mentioned problems or at least partially solve the above-mentioned problems, and provide a wall-mounted air-conditioning indoor unit with evenly distributed air supply and capable of solving the problem of cooling blowing.
  • a further object of the present invention is to avoid condensation on the outer surface of the distributor.
  • the present invention provides a wall-mounted air conditioner indoor unit, which includes:
  • a splitter arranged at an interval from the first air outlet outside the first air outlet, so that the air flow from the first air outlet blows to the splitter, and then guided by the surface of the splitter blowing divergently towards the room environment towards the edge of the diverter;
  • the splitter has an airflow channel, and the airflow channel runs through the inner side of the splitter towards the first air supply port and the outer side of the splitter away from the splitter, so as to allow the outlet air to flow through the airflow channel to the outside of the splitter.
  • the flow divider is a solid structure and is provided with a plurality of ventilation microholes passing through its inner and outer surfaces, and each of the ventilation microholes constitutes one airflow channel.
  • the flow divider is a hollow structure
  • the inner surface of the flow divider is provided with a plurality of air inlet microholes communicating with the internal space of the flow divider, and the outer surface of the flow divider is provided with a plurality of air outlet microholes connected with the inner space of the flow divider, each The air inlet microhole, one of the air outlet microholes and the inner space of the flow divider together form one airflow channel.
  • the first air supply port is in the shape of a strip whose length direction is parallel to the length direction of the casing, and the splitter is in the shape of a rod parallel to the length direction of the first air supply port;
  • Both surfaces of the splitter facing the first air supply port and facing away from the first air supply port are convex curved surfaces, and the junctions of the two form two top ends, so that the cross-sectional shape of the splitter is The outline forms an "olive shape".
  • the convex curved surface of the flow divider facing the first air supply port is formed by connecting two sections of arc surfaces, and the convex curved surface facing away from the first air supply port is formed by a section of arc surface.
  • the flow divider is configured to reciprocate in a direction approaching or away from the first air supply port, so as to open and close the first air supply port, or to adjust a distance between it and the first air supply port.
  • the casing also has an air duct for supplying air to the first air outlet;
  • the air duct has a gradually diverging outlet connected to the first air supply outlet and having a flow cross section gradually increasing along the airflow direction;
  • the surface profile at the diverging outlet of the air duct matches the surface profile of the corresponding section of the splitter, so that the splitter fits on the surface at the diverging outlet of the air duct in a closed state.
  • the first air outlet is opened on the front side of the casing.
  • the bottom wall of the casing is provided with a second air supply port opening downward.
  • the casing includes a volute tongue, a volute case, and a partition bar located below the front end of the volute tongue and in front of the lower end of the volute case, and the volute tongue, the volute case and the partition Articles jointly limit the air duct;
  • the partition bar and the front end of the volute tongue define the first air outlet
  • the partition bar and the lower end of the volute define the second air outlet
  • volute tongue includes in sequence from its inlet end to its outlet end:
  • the air inlet section extends backward and downward from the inlet end
  • the upper surface of the partition bar is gradually extended downwards from the rear to the front, so as to jointly form the gradually expanding outlet of the air duct together with the air outlet section.
  • a flow divider is arranged outside the first air supply port, and the outlet air flow blows to the flow divider, and is divergently blown toward the indoor environment toward the edge of the flow divider under the guidance of the surface of the flow divider, so that the air flow It is more dispersed and has a larger diffusion range, so that the indoor cooling/heating speed is faster, the temperature changes in the room are more uniform, and the temperature difference is smaller. After the air flow is scattered, it will not blow the human body forcefully, and it is closer to the natural wind, making people feel more comfortable.
  • the air flow channel is provided through the inner and outer surfaces of the air divider, some of the outlet air flows through the air flow channel to the outside of the divider, which can reduce the eddy current on the outside of the divider, so as to avoid the air conditioner cooling on the outer surface of the divider. Condensation.
  • the plurality of airflow channels also output some airflow outwards, achieving the effect of breeze blowing.
  • the surface of the flow divider facing the first air outlet is a convex curved surface.
  • the outlet airflow hits the convex curved surface and then diffuses along the edge of the convex curved surface, so that the airflow turning angle is smaller, the airflow turning is more gentle, and the airflow loss and noise are smaller.
  • the flow divider is configured to reciprocate along the direction approaching or away from the first air supply port to adjust the distance between it and the first air supply port, so that the flow of the first air supply port can be adjusted. Air volume.
  • the air duct has a gradually expanding outlet that connects with the first air supply port and whose flow cross section gradually increases along the airflow direction.
  • the front has begun to spread to the edge, which is more conducive to the diffusion and blowing of the airflow.
  • Fig. 1 is a schematic structural view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic cross-sectional enlarged view of the wall-mounted air conditioner indoor unit shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 2 when the first air supply port is opened by the diverter;
  • Fig. 4 is a schematic diagram of the indoor unit of the wall-mounted air conditioner shown in Fig. 2 when it is running in the down blowing mode;
  • Fig. 5 is a schematic diagram of the indoor unit of the wall-mounted air conditioner shown in Fig. 2 when operating in the maximum air supply mode;
  • Fig. 6 is a schematic diagram of a driving mechanism of a flow divider according to an embodiment of the present invention.
  • the wall-mounted air conditioner indoor unit will be described below with reference to FIGS. 1 to 6 .
  • the orientation or positional relationship indicated by “front”, “rear”, “upper”, “lower”, “top”, “bottom”, “inner”, “outer”, “horizontal”, etc. are based on the The orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present invention . Arrows in the figure indicate the flow direction of the airflow.
  • first”, “second”, etc. are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the quantity of the indicated technical features.
  • features defined as “first”, “second”, etc. may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • An embodiment of the present invention provides a wall-mounted air conditioner indoor unit.
  • the wall-mounted air conditioner indoor unit is the indoor part of the split wall-mounted room air conditioner, and is used to adjust indoor air, such as cooling/heating, dehumidification, and introducing fresh air, etc.
  • FIG. 1 is a schematic structural view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic cross-sectional enlarged view of the wall-mounted air conditioner indoor unit shown in Fig. 1
  • Fig. 3 is a wall-mounted air conditioner indoor unit shown in Fig. 2
  • FIG. 1 only shows the overall structure of the wall-mounted air conditioner indoor unit, and does not show the ventilation microholes of the flow divider 30 .
  • the wall-mounted air conditioner indoor unit may generally include a cabinet 10 and a flow divider 30.
  • the casing 10 has a first air outlet 11 .
  • the casing 10 is used to hang on the indoor wall.
  • the first air outlet 11 is used to blow the airflow in the casing 10 to the room to adjust the indoor air.
  • the aforementioned airflow can be cold air produced by the indoor unit of the wall-mounted air conditioner in cooling mode, hot air produced in heating mode, or fresh air introduced in fresh air mode.
  • the casing 10 is in the shape of a strip extending in the horizontal direction, and the transverse or longitudinal direction of the casing 10 is indicated by x in the figure.
  • the casing 10 may also be in other shapes such as a circle, a square, etc., which will not be repeated here.
  • the wall-mounted air conditioner indoor unit may be an indoor unit of an air conditioner that performs refrigeration/heating through a vapor compression refrigeration cycle system, and it also includes a heat exchanger 40 and a cross-flow fan 50 .
  • the heat exchanger 40 is arranged in the casing 10 for exchanging heat with the air flow passing through it to form a heat exchange air flow, namely cold air or hot air, which can be a three-stage fin heat exchanger.
  • the cross-flow fan 50 is arranged in the casing 10, and is used to force the indoor air to enter the casing 10 through the air inlet 13 on the top of the casing 10, so that it can complete heat exchange with the heat exchanger 40 and become a heat exchange air flow, and then promote the heat exchange air to pass through the casing 10.
  • the air channel 20 flows to the first air supply port 11 , and finally blows into the room from the first air supply port 11 .
  • the splitter 30 is spaced apart from the first air outlet 11 on the outside of the first air outlet 11, so that the air flow from the first air outlet 11 is blown to the splitter 30, and then guided by the surface of the splitter 30 toward the splitter.
  • the Edge of 30 blows divergently towards the indoor environment.
  • the first air supply port 11 is in the shape of a strip whose longitudinal direction is parallel to the longitudinal direction x of the casing 10
  • the flow divider 30 is in the shape of a rod parallel to the longitudinal direction of the first air supply port 11 .
  • the outlet airflow will be blown out towards both sides of the width direction (y direction) of the flow divider 30 , that is, both sides of the first air supply port 11 under the guidance of the surface of the flow divider 30 .
  • the air flow is divided into two branches, which are respectively blown upward and downward.
  • the airflow blown upwards flows upwards and is used for long-distance air supply; the airflow blown downwards flows downwards and is used for short-distance air supply.
  • the far and near two airflows supply air to expand the range of air supply.
  • the first air supply port 11 is circular or square
  • the flow divider 30 can be correspondingly circular or square, so that the outlet air flows outward along the radial direction of the flow divider 30 .
  • the outlet airflow flows out from the first air supply port 11, it is not directly blown to the indoor environment, but blows to the splitter 30, and diverges towards the edge of the splitter 30 under the guidance of the surface of the splitter 30. Blowing to the indoor environment can make the air flow more dispersed and the diffusion range larger, making the indoor cooling/heating faster, and the temperature changes in the room are more uniform and the temperature difference is smaller.
  • the airflow of the air outlet will not blow the human body strongly after being blown out, and it is also closer to the natural wind, making people feel more comfortable.
  • the existing wall-mounted air-conditioning indoor units focus more on how to better increase the air supply distance or strengthen the direction guidance of the airflow, so that it can blow to the set area and achieve the goal of avoiding the human body .
  • this embodiment creatively changes the way of thinking, and spreads to multiple directions (at least 2 directions) just after the first air supply port 11 is blown out by the air outlet airflow, so as to avoid the strong airflow directly blowing forward, so as to avoid the
  • the human body can also make the cooling/heat diffusion range larger and reduce the indoor temperature difference.
  • the present embodiment utilizes the flow diverter 30 to replace the conventional air deflector, and through the diversion, the flow velocity of the air flow is reduced, avoiding that the air deflector and the surface of the casing 10 cannot be sufficiently cooled due to the excessive flow velocity, so that the temperature distribution of the air deflector can be reduced. Condensation occurs due to unevenness.
  • surface treatment can be performed on the flow diverter 30 to increase the hydrophobic function of the surface and further prevent condensation on the surface.
  • the distribution member 30 since the distribution member 30 is located at the first air supply port 11, it is directly blown by the cold wind during the cooling of the air conditioner, and the temperature is low, and the water vapor in the air is easy to condense on its surface, resulting in condensation. Moreover, the cold air flows out through the edge of the flow divider 30 , but there is no airflow blowing through the outer surface 31 of the flow divider 30 and its adjacent area, which is easy to generate eddy currents, thereby generating condensation on the outer surface 31 of the flow divider 30 .
  • the splitter 30 has an airflow channel, and the airflow passage runs through the inner side 32 of the splitter 30 toward the first air supply port 11 and the outer side 31 away from the splitter. , so as to allow the outlet air flow to flow through the air flow channel to the outside of the flow divider 30 ( Figure 2 shows this part of the air flow with a hollow arrow).
  • Figure 2 shows this part of the air flow with a hollow arrow.
  • the plurality of airflow channels also output some airflow outwards, achieving the effect of breeze blowing and making the human body feel more comfortable.
  • the flow divider 30 can be a solid structure, and a plurality of ventilation microholes 301 passing through its inner surface 32 and outer surface 31 are opened, each ventilation Microholes 301 constitute an aforementioned gas flow channel.
  • the opening ratio of the flow divider 30 (total area of all ventilation pores/surface area of the flow divider) is preferably between 30% and 60%.
  • the ventilation hole is preferably a round hole to facilitate processing. Its diameter is preferably less than 1 cm, more preferably less than 0.5 cm, so as to avoid condensation and prevent excessive air flow from affecting the normal flow distribution function of the flow distribution member 30 .
  • the flow divider 30 is a hollow structure, and its inner surface 32 is provided with a plurality of air inlet microholes communicating with the inner space of the flow divider 30, and the outer surface 31 of the flow divider 30 is provided with multiple A air outlet micro-hole communicating with the internal space of the splitter 30.
  • Each air inlet micro-hole of the flow divider 30 together with one air outlet micro-hole and the inner space of the flow divider 30 form an airflow channel.
  • Each of the air inlet microholes and the air outlet microholes can be round holes to facilitate processing. It is preferable to arrange them evenly on the outer surface of the flow divider 30, but of course they can also be arranged unevenly.
  • each air inlet micropore and air outlet micropore is preferably less than 1cm, more preferably less than 0.5cm, and the opening ratio (total area of all holes/divider outer surface total area) of the flow divider 30 is preferably at 30%-60%. between, so as to not only avoid condensation, but also prevent too much airflow here from affecting the normal performance of the diversion function of the diverter 30 .
  • At least the inner side 32 of the flow divider 30 facing the first air outlet 11 may be a convex curved surface, so as to guide the airflow toward the edge of the flow divider 30 .
  • the inner surface of the flow divider 30 facing the first air supply port 11 is a plane, after the outlet airflow blows vertically to this surface, it will turn 90° before spreading along the surface to the edge.
  • the surface is a convex curved surface, and the air flow impacts on the convex curved inner surface 32 and then spreads along the inner surface 32 to the edge, and the airflow turns to less than 90°.
  • the inner surface 32 The convex shape results in relatively smoother directional changes, less air loss and less noise.
  • the first air supply port 11 is in the shape of a strip whose longitudinal direction is parallel to the longitudinal direction of the casing 10
  • the flow divider 30 is in the shape of a rod parallel to the longitudinal direction of the first air supply port 11
  • the side surfaces (the inner side 32 and the outer side 31 ) of the splitter 30 facing the first air supply port 11 and facing away from the first air supply port 11 are both convex and curved surfaces, and the junctions of the two form two top ends A1 and A2, Rounded corners can be provided at the two top ends A1 and A2, so that the profile of the cross section (section perpendicular to the x-axis) of the flow divider 30 forms an "olive shape".
  • This kind of structure of the shunt 30 is relatively simple and easy to manufacture, and also makes its appearance more beautiful.
  • the inner surface 32 of the flow divider 30 facing the first air supply port 11 can be formed by connecting two sections of arc surfaces CA1 and CA2, so that the inner surface 32, especially the middle Point C bulges out more, so that the airflow blowing on it can be more evenly divided to both sides of point C.
  • the outer surface 31 facing away from the first air supply port 11 can be a section of arc surface, so as to satisfy the aesthetic appearance and facilitate the manufacture.
  • the radii R1 and R2 and the lengths of the two sections of arc surfaces CA1 and CA2 on the inner surface 32 can be further made equal so that the airflows towards them tend to be equal.
  • the cross-sectional profile of the flow divider 30 may also be elliptical or other irregular shapes, which will not be repeated here.
  • the convex curved surface can be made into a spherical crown, which will not be repeated here.
  • the splitter 30 can be configured to reciprocate along the direction approaching or away from the first air supply port 11 to adjust the distance between it and the first air supply port 11 , and the first air supply port 11 can be adjusted accordingly.
  • air volume It can be understood that the closer the flow splitter 30 is to the first air supply port 11, the more the air outlet of the first air supply port 11 is hindered, and the air volume is smaller, but the turning effect of the flow splitter 30 on the outlet air flow (prompting the air flow toward its edge direction) steering) stronger.
  • the splitter 30 is farther away from the first air supply port 11 , the air flow from the first air supply port 11 is smoother and the air volume is greater, but the steering effect on the air flow becomes weaker.
  • the casing 10 further has an air duct 20 for supplying air to the first air outlet 11 .
  • the air duct 20 may have a gradually diverging outlet connected to the first air supply outlet 11 and having a flow cross section gradually increasing along the airflow direction. That is, the air duct 20 is in a gradually expanding shape adjacent to the first air supply port 11 , and this shape makes the air flow begin to diffuse toward the edge before flowing out of the first air supply port 11 , which is more conducive to the diffusion and blowing of the air flow.
  • the outlet of the air duct 20 is the end of the air duct 20 , and the air flowing through the air duct 20 flows out of the air duct 20 through the outlet of the air duct 20 .
  • the splitter 30 is configured to reciprocate in a direction approaching or away from the first air outlet 11 to open or close the first air outlet 11 .
  • the surface profile at the diverging outlet of the air duct 20 matches the surface profile of the corresponding section of the flow divider 30, so that the divider 30 fits on the surface of the diverging outlet of the air duct 20 when it is in the closed state. This enables the splitter 30 to better seal the first air supply port 11 , preventing foreign matter such as dust from entering the casing 10 through the first air supply port 11 .
  • the flow divider 30 when the indoor unit of the wall-mounted air conditioner is in a non-operating state such as power-off or standby, the flow divider 30 is moved to the closed state, and the flow divider 30 is also "embedded" inward at the first air outlet 11, so as to avoid the flow divider 30 being completely in a state of being closed.
  • the outside of the first air supply port 11 affects the appearance.
  • the splitter 30 is olive-shaped and its inner surface facing the first air outlet 11 is a convex curved surface
  • the air outlet section sa is a concave curved surface to match it.
  • the first air outlet 11 is opened on the front side of the casing 10 , and the bottom wall of the casing 10 is provided with a second opening that is open downward and connected to the air duct 20 .
  • Air supply port 12 An air deflector 60 may be disposed at the second air outlet 12 . In this way, air can be blown directly below the wall-mounted air conditioner indoor unit from the second air supply port 12 . In the heating mode, the downward air supply is more conducive to accelerating the temperature rise of the lower space of the house, so that the human body can feel the heating effect faster.
  • the casing 10 described in this embodiment includes a skeleton for constituting the basic frame of the indoor unit and body parts such as a volute and a volute tongue for defining an air duct, and is not a pure air conditioner casing.
  • the casing 10 includes a volute tongue 21, a volute case 22 arranged in front and back, and a partition bar 23 located below the front end of the volute tongue 21 and in front of the lower end of the volute case 22.
  • the volute tongue 21 , the volute case 22 and the partition bar 23 jointly define an air duct 20 .
  • the partition bar 23 and the front end of the volute tongue 21 define the first air supply port 11
  • the partition bar 23 and the lower end of the volute case 22 define the second air supply port 12
  • the volute tongue 21 , the volute case 22 and the partition bar 23 are all elongated strips extending along the length direction of the casing 10 .
  • a cross-flow fan 50 whose length direction is parallel to the length direction of the casing 10 is installed at the inlet of the air duct 20 .
  • the partition bar 23 is a part of the casing 10 and can be integrally formed with adjacent casing parts.
  • the volute tongue 21 sequentially includes an air inlet section (kc), a middle section (cs) and an air outlet section (sa) from its inlet end to its outlet end.
  • the air inlet section (kc) extends backward and downward from the inlet end (k).
  • the middle section (cs) extends forward and downward from the end (c) of the air inlet section (kc).
  • the outlet section (sa) extends forward and upward from the end (s) of the middle section (cs).
  • the volute 22 is located at the rear of the volute tongue 21 and is generally a curved structure with the concave side facing forward.
  • the upper surface (section ed) of the partition bar 23 gradually extends downwards from the rear to the front, so as to form the gradually expanding outlet of the air duct 20 together with the air outlet section (sa).
  • the air outlet section (sa) and the upper surface of the partition strip 23 (ed section) can be further made to be concave arcs, and each section is transitioned with rounded corners, so that the direction of the airflow can be changed more smoothly and the flow loss can be reduced .
  • Fig. 4 is a schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 2 when operating in the down blowing mode
  • Fig. 5 is a schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 2 operating in the maximum air supply mode.
  • the embodiment of the present invention has at least the following air supply modes for users to choose from, specifically as follows:
  • Forward air supply mode as shown in Fig. 3, move the splitter 30 forward to open the first air supply port 11, make the air guide plate 60 close the second air supply port 12 or open the second air supply port 12 at a small angle to avoid condensation Dew, the air is distributed forward by the first air supply port 11.
  • the air conditioner operates in cooling mode, it can supply air according to the air supply mode.
  • Downward air supply mode as shown in FIG. 4 , control the splitter 30 to close the first air supply port 11 , and make the air deflector 60 open the second air supply port 12 .
  • the second air outlet 12 blows air downward.
  • the air deflector 60 can be supplied according to the downward air supply mode, so as to accelerate the heating speed.
  • the air deflector 60 can be vertically extended, and its end is adjacent to the volute tongue 21 of the air channel 20 to guide the air flow to bend downwards to flow to the second air outlet 12 .
  • the cross-section gradually increases to realize the expansion, and after the action of the air deflector 60, it turns vertically downward, and then passes through the tapered channel defined by the air deflector 60 and the volute 22 of the air duct 20 to realize Acceleration before outflow.
  • the heating air supply has a large air volume, high wind speed, and vertical wind direction, which is conducive to the hot air reaching the ground directly, and the carpet air supply effect is good.
  • Fig. 6 is a schematic diagram of a driving mechanism of a flow divider according to an embodiment of the present invention.
  • Fig. 2-Fig. 5 better illustrate the direction of the wind path, omitting the driving mechanism, and
  • Fig. 6 better illustrates the driving mechanism, omitting the wind deflector 60.
  • the driving mechanism for driving the distributor 30 to translate back and forth is a rack and pinion mechanism, which is installed on the lateral side of the casing 10 so as not to affect the air flow.
  • the driving mechanism includes a rack 71 extending forward and backward and fixed to the distributor 30 , a gear 72 meshing with the rack 71 , and a motor 73 for driving the gear 72 to rotate to drive the rack 71 to translate forward and backward.
  • the motor 73 can be fixed on the casing 10 , and the rack 71 can be slidably mounted on the casing 10 along the front and rear directions.
  • the motor 73 can be controlled forward and reverse, so that the shunt 30 can reciprocate and translate along the front and rear directions.
  • the motor 73 can be a stepping motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种壁挂式空调室内机,包括机壳和分流件。机壳具有第一送风口。分流件与第一送风口间隔地设置在第一送风口外侧,以使第一送风口的出风气流吹向分流件,然后在分流件表面引导下朝分流件的边缘发散地吹向室内环境。分流件具有气流通道,气流通道贯穿分流件的朝向第一送风口的内侧面和背离分流件的外侧面,以允许出风气流经气流通道流动至分流件外侧。本发明的壁挂式空调室内机具有送风均匀分散、能解决制冷吹人的问题且可避免分流件外侧面产生凝露。

Description

壁挂式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种壁挂式空调室内机。
背景技术
现有的壁挂式空调室内机通常在机壳前侧下部设置一个长条状出风口,出风口朝向前下方,出风口处设置导风板来引导上下送风方向。
在此基础上,一些现有技术对出风结构进行了很多改进,但由于受到出风口本身朝向的约束,空调的送风方向、送风范围和送风距离仍然受到极大限制,特别是制冷时冷风吹人的问题难以解决,影响用户体验。
发明内容
本发明的一个目的是要克服上述问题或者至少部分地解决上述问题,提供一种送风均匀分散、能解决制冷吹人问题的壁挂式空调室内机。
本发明进一步的目的是要避免分流件外侧面产生凝露。
特别地,本发明提供了一种壁挂式空调室内机,其包括:
机壳,其具有第一送风口;和
分流件,与所述第一送风口间隔地设置在所述第一送风口外侧,以使所述第一送风口的出风气流吹向所述分流件,然后在所述分流件表面引导下朝所述分流件的边缘发散地吹向室内环境;且
所述分流件具有气流通道,所述气流通道贯穿所述分流件的朝向所述第一送风口的内侧面和背离所述分流件的外侧面,以允许出风气流经所述气流通道流动至所述分流件外侧。
可选地,所述分流件为实体结构,并开设有贯穿其内侧面和外侧面的多个通风微孔,每个所述通风微孔构成一个所述气流通道。
可选地,所述分流件为中空结构;且
所述分流件的内侧面开设有多个连通所述分流件内部空间的进风微孔,所述分流件的外侧面开设有多个连通所述分流件内部空间的出风微孔,每个所述进风微孔与一个所述出风微孔以及所述分流件内部空间共同构成一个所述气流通道。
可选地,所述第一送风口为长度方向平行于所述机壳长度方向的长条 状,所述分流件为平行于所述第一送风口长度方向的杆状;
所述分流件朝向所述第一送风口和背向所述第一送风口的两侧表面均为外凸弯曲面,两者相接处构成两个顶端,使所述分流件的横截面外形轮廓形成“橄榄形”。
可选地,所述分流件朝向所述第一送风口的外凸弯曲面由两段圆弧面相接而成,背向所述第一送风口的外凸弯曲面为一段圆弧面。
可选地,所述分流件配置成可沿接近或远离所述第一送风口的方向往复移动,以开闭所述第一送风口,或调节其与所述第一送风口的距离。
可选地,所述机壳还具有用于向所述第一送风口送风的风道;且
所述风道具有与所述第一送风口相接且过流截面沿气流方向逐渐变大的渐扩出口;
所述风道渐扩出口处的表面轮廓与所述分流件相应区段的表面轮廓相匹配,以使所述分流件在关闭状态时贴合于所述风道渐扩出口处的表面。
可选地,所述第一送风口开设于所述机壳的前侧;且
所述机壳的底壁开设有朝下敞开的第二送风口。
可选地,所述机壳包括前后排列的蜗舌、蜗壳以及位于所述蜗舌前端下方且位于所述蜗壳下端前方的分隔条,所述蜗舌、所述蜗壳与所述分隔条共同限定有风道;
所述分隔条与所述蜗舌的前端限定出所述第一送风口,所述分隔条与所述蜗壳的下端限定出所述第二送风口。
可选地,所述蜗舌从其进口端至出口端依次包括:
进风段,从所述进口端向后下方延伸;
中间段,从所述进风段末端向前下方延伸;和
出风段,从所述中间段末端向前上方延伸;且
所述分隔条上表面从后向前逐渐向下倾斜延伸,以与所述出风段共同构成所述风道的渐扩出口。
本发明的壁挂式空调室内机中,第一送风口外侧设置有分流件,出风气流吹向分流件,在分流件表面引导下朝分流件的边缘发散地吹向室内环境,使出风气流更加分散,扩散范围更大,从而使得室内制冷/制热速度更快,室内各处温度变化更加均匀,温差更小。出风气流分散吹出后不会强吹人体,也更加接近于自然风,使人感更加舒适。
此外,由于分流件开设有贯穿其内侧面和外侧面的气流通道,使一些出风气流经气流通道流动至分流件外侧,可以减少分流件外侧的涡流,以避免空调制冷时分流件外侧面产生凝露。而且,多个气流通道也向外输出了一些出风气流,达到了微风送风效果。
进一步地,本发明的壁挂式空调室内机中,分流件朝向第一送风口的表面为外凸弯曲面。出风气流冲击到外凸弯曲面后再沿外凸弯曲面向边缘扩散,使得气流转向角度更小,气流转向地更加缓和、气流损失和噪音都更小。
进一步地,本发明的壁挂式空调室内机中,分流件配置成可沿接近或远离第一送风口的方向往复移动,以调节其与第一送风口的距离,从而能够调节第一送风口的风量。
进一步地,本发明的壁挂式空调室内机中,风道具有与第一送风口相接且过流截面沿气流方向逐渐变大的渐扩出口,这种出口形状使气流在流出第一送风口前已经开始向边缘扩散,更加利于出风气流的扩散吹出。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的壁挂式空调室内机的结构示意图;
图2是图1所示壁挂式空调室内机的示意性剖视放大图;
图3是图2所示壁挂式空调室内机在分流件打开第一送风口时的示意图;
图4是图2所示壁挂式空调室内机在运行下吹模式时的示意图;
图5是图2所示壁挂式空调室内机在运行最大送风模式时的示意图;
图6是根据本发明一个实施例的分流件的驱动机构的示意图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人 员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图6来描述本发明实施例的壁挂式空调室内机。其中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。图中用箭头示意了气流的流动方向。
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
本发明实施例提供了一种壁挂式空调室内机。壁挂式空调室内机为分体壁挂式房间空调器的室内部分,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。
图1是根据本发明一个实施例的壁挂式空调室内机的结构示意图;图2是图1所示壁挂式空调室内机的示意性剖视放大图;图3是图2所示壁挂式空调室内机在分流件30打开第一送风口11时的示意图。为清楚起见,图1仅示意出壁挂式空调室内机的整体件结构,并未将分流件30的通风微孔示意出。
如图1至图3所示,本发明实施例的壁挂式空调室内机一般性地可包括 机壳10和分流件30。
机壳10具有第一送风口11。机壳10用于挂在室内墙壁上。第一送风口11用于将机壳10内的气流吹向室内,调节室内空气。前述的气流可为壁挂式空调室内机在制冷模式下制取的冷风,在制热模式下制取的热风,或者在新风模式下引入的新风等。
例如,在一种可选结构中,如图1,机壳10为沿水平方向延伸的长条状,机壳10的横向或者为长度方向在图中用x表示。当然,在一些替代性实施例中,也可使机壳10为圆形、方形等其他形状,在此不再赘述。
壁挂式空调室内机可为通过蒸气压缩制冷循环系统进行制冷/制热的空调器的室内机,其还包括换热器40和贯流风机50。换热器40设置在机壳10内,用于与流经其的气流进行换热,形成热交换气流,即冷风或热风,其可为三段式翅片换热器。贯流风机50设置于机壳10内,用于促使室内空气经机壳10顶部进风口13进入机壳10,使其与换热器40完成换热成为热交换气流,然后促使热交换气流经风道20流动至第一送风口11,最终从第一送风口11吹向室内。
分流件30与第一送风口11间隔地设置在第一送风口11外侧,以使第一送风口11的出风气流吹向分流件30,然后在分流件30的表面的引导下朝分流件30的边缘发散地吹向室内环境。例如图1至图3所示实施例中,第一送风口11为长度方向平行于机壳10长度方向x的长条状,分流件30为平行于第一送风口11长度方向的杆状。此时,出风气流将在分流件30表面的引导下,朝分流件30的宽度方向(y方向)的两侧,也就是第一送风口11宽度方向的两侧吹出。更具体地,当第一送风口11开设于机壳10的前侧时,在分流件30表面引导下,送风气流的分为两路支流,分别向上和向下吹出。其中,向上吹出的气流上扬流动,用于远距离送风;向下吹出的气流下沉流动,用于近距离送风。远近两股气流送风,使送风范围扩大。当然,若第一送风口11为圆形或方形,可使分流件30相应为圆形或方形,使出风气流沿分流件30的径向向外流动。
本发明实施例中,出风气流从第一送风口11流出后,并非直接吹向室内环境,而是吹向分流件30,在分流件30的表面的引导下朝分流件30的边缘发散地吹向室内环境,能够使出风气流更加分散,扩散范围更大,使得室内制冷/制热速度更快,室内各处温度变化更加均匀,温差更小。出风气流分 散吹出后不会强吹人体,也更加接近于自然风,使人感更加舒适。
现有的壁挂式空调室内机更多将改进方向放在如何更好地增大送风距离或加强对出风气流的方向引导,以使其吹到设定区域,使其达到躲避人体的目标。而本实施例创造性地改变思路,在出风气流刚刚吹出第一送风口11就使其向多个方向(至少2个方向)扩散,避免其出现向前直吹的强力气流,从而既能够躲避人体,又能够使冷量/热量扩散范围更大,减少室内温差。并且,本实施例利用分流件30取代了常规的导风板,并通过分流,使气流流速降低,避免因流速过快,未能对导风板及机壳10表面充分降温,使其温度分布不均而出现凝露。此外,可对分流件30进行表面处理,增加表面的疏水功能,进一步防止其表面产生凝露。
发明人发现,由于分流件30位于第一送风口11处,在空调制冷时受冷风直吹,温度较低,空气中的水蒸气容易在其表面容易遇冷凝结,产生凝露。并且,冷风经分流件30的边缘流出,但分流件30的外侧面31及其邻近区域内却没有气流吹过,容易产生涡流,从而在分流件30的外侧面31上产生凝露。
为此,本发明实施例中,如图2和图3所示,分流件30具有气流通道,气流通道贯穿分流件30的朝向第一送风口11的内侧面32和背离分流件的外侧面31,以允许出风气流经气流通道流动至分流件30的外侧(图2用空心箭头示意了该部分气流)。如此使分流件30外侧面邻近区域的涡流被打散,形成扰动流场,进而分流件30的外侧面31无法有效构成、累积凝露,避免出现较大凝露而滴落到室内环境,影响用户体验。
并且,多个气流通道也向外输出了一些出风气流,达到了微风送风效果,使人体感觉更加舒适。
在本发明的一些实施例中,如图2和图3所示,可使分流件30为实体结构,并开设有贯穿其内侧面32和外侧面31的多个通风微孔301,每个通风微孔301构成一个前述的气流通道。分流件30的开孔率(全部通风微孔的总面积/分流件表面积)优选在30%-60%之间。通风孔优选为圆孔,以方便加工。其直径优选处于小于1cm,进一步优选小于0.5cm,以既能够避免凝露,又避免此处流出过多气流影响分流件30的正常分流功能。
在本发明的另一些实施例中,使分流件30为中空结构,且其内侧面32开设有多个连通分流件30的内部空间的进风微孔,分流件30的外侧面31 开设有多个连通分流件30内部空间的出风微孔。分流件30的每个进风微孔与一个出风微孔以及分流件30的内部空间共同构成一个气流通道。各进风微孔和出风微孔可均为圆孔,以方便加工。优选使其分流件30的外表面上均布,当然也可使其不均布排列。各进风微孔和出风微孔的直径优选小于1cm,进一步优选小于0.5cm,分流件30的开孔率(全部孔的总面积/分流件外表面总面积)优选在30%-60%之间,以既能够避免凝露,又避免此处流出过多气流影响分流件30正常发挥其分流功能。基于本发明实施例的附图和文字描述,本领域技术人员应当易于获知进风微孔和出风微孔的位置和结构,因此,附图中省略了附图标记。
在一些实施例中,如图2和图3所示,可使分流件30至少朝向第一送风口11的内侧面32为外凸弯曲面,以利于将气流朝分流件30的边缘引导。具体地,假如分流件30朝向第一送风口11的内表面为平面,出风气流垂直地吹向该表面后,将转向90°后,才能沿该表面向边缘扩散。而本实施例使该表面为外凸弯曲面,出风气流冲击到外凸弯曲的内侧面32后再沿内侧面32向边缘扩散,气流转向小于90°,在转向过程中,内侧面32的外凸形状使得方向转变地相对更加缓和、气流损失和噪音都更小。
例如在图2和图3所示实施例中,第一送风口11为长度方向平行于机壳10长度方向的长条状,分流件30为平行于第一送风口11长度方向的杆状。分流件30朝向第一送风口11和背向第一送风口11的两侧表面(内侧面32和外侧面31)均为外凸弯曲面,两者相接处构成两个顶端A1和A2,两个顶端A1和A2处可设置有圆角,使分流件30的横截面(垂直于x轴的截面)外形轮廓形成“橄榄形”。分流件30的这种结构较为简洁,易于制作,也使其外观更加美观。
具体地,如图2和图3所示,可使分流件30朝向第一送风口11的内侧面32由两段圆弧面CA1和CA2相接而成,以使内侧面32特别是其中间点C更加向外凸出,从而能够将吹向其的气流更均匀地向C点两侧分开。使背向第一送风口11的外侧面31为一段圆弧面,使其满足外观美观且便于制作即可。可进一步使内侧面32的两段圆弧面CA1、CA2的半径R1、R2和长度均相等,以使流向两者的气流趋于相等。当然,分流件30的横截面外形轮廓也可为椭圆形或其他不规则的形状,在此不再赘述。
在一些替代性实施例中,若第一送风口和分流件均为圆形,可使外凸弯 曲面为球冠状,在此不再赘述。
在一些实施例中,可使分流件30配置成可沿接近或远离第一送风口11的方向往复移动,以调节其与第一送风口11的距离,并可据此调节第一送风口11的风量。可以理解的是,分流件30越接近第一送风口11,第一送风口11的出风越受阻,其风量越小,但分流件30对出风气流的转向作用(促使气流朝其边缘方向转向)越强。当分流件30越远离第一送风口11,第一送风口11的出风越顺畅,风量越大,但对气流的转向作用变弱。
在一些实施例中,如图3所示,机壳10还具有用于向第一送风口11送风的风道20。可使风道20具有与第一送风口11相接且过流截面沿气流方向逐渐变大的渐扩出口。即,风道20在邻近第一送风口11处为渐扩状,这种形状使气流在流出第一送风口11前已经开始向边缘扩散,更加利于出风气流的扩散吹出。风道20的出口即为风道20的末端,流经风道20的气流经风道20的出口流出风道20。
如图2和图3所示,分流件30配置成可沿接近或远离第一送风口11的方向往复移动地以打开或关闭第一送风口11。如图3,风道20渐扩出口处的表面轮廓与分流件30相应区段的表面轮廓相匹配,以使分流件30在关闭状态时贴合于风道20渐扩出口处的表面,这使得分流件30能更好地封闭第一送风口11,避免灰尘等异物经第一送风口11进入机壳10。并且,壁挂式空调室内机处于断电或者待机等非运行状态时,将分流件30移动至关闭状态,也使分流件30向内“嵌入”第一送风口11处,避免分流件30完全处于第一送风口11外影响美观。例如,当分流件30为橄榄形,其朝向第一送风口11的内侧面为外凸弯曲面时,使出风段sa为内凹的弯曲面,以与之匹配。
在一些实施例中,如图2和图3,使第一送风口11开设于机壳10的前侧,使机壳10的底壁开设有朝下敞开且与风道20相接的第二送风口12。第二送风口12处可设置有导风板60。如此一来,可由第二送风口12向壁挂式空调室内机的正下方送风。制热模式时向下送风更有利于加快房屋下层空间的温度升高速度,使人体更快感受到制热效果。
本实施例所述的机壳10包括用于构成室内机基本框架的骨架和用于限定出风道的蜗壳、蜗舌等机体部件,并非纯粹的空调外壳。具体地,如图2和图所示3,机壳10包括前后排列的蜗舌21、蜗壳22以及位于蜗舌21前 端下方且位于蜗壳22下端前方的分隔条23。蜗舌21、蜗壳22与分隔条23共同限定有风道20。分隔条23与蜗舌21的前端限定出第一送风口11,分隔条23与蜗壳22的下端限定出第二送风口12。可以理解的是,蜗舌21、蜗壳22与分隔条23均为沿机壳10的长度方向延伸的长条状。风道20的进口处安装有长度方向平行于机壳10长度方向的贯流风机50。分隔条23为机壳10的一部分,可使之与相邻的机壳部分为一体成型结构。
更具体地,蜗舌21从其进口端至出口端依次包括进风段(kc)、中间段(cs)和出风段(sa)。其中,进风段(kc)从进口端(k)向后下方延伸。中间段(cs)从进风段(kc)的末端(c)向前下方延伸。出风段(sa)从中间段(cs)的末端(s)向前上方延伸。蜗壳22位于蜗舌21后方,整体为凹侧朝前的弯曲形结构。分隔条23的上表面(ed段)从后向前逐渐向下倾斜延伸,以与出风段(sa)共同构成风道20的渐扩出口。可进一步使出风段(sa)和分隔条23的上表面(ed段)均为内凹的弧形,且各段均以圆角过渡,以使气流的方向转变更加平缓,减小流动损失。
图4是图2所示壁挂式空调室内机在运行下吹模式时的示意图;图5是图2所示壁挂式空调室内机在运行最大送风模式时的示意图。
本发明实施例至少具有以下几种送风模式供用户选择,具体如下:
向前送风模式:如图3所示,使分流件30前移打开第一送风口11,使导风板60关闭第二送风口12或以较小角度打开第二送风口12以避免凝露,由第一送风口11向前分流送风。在空调运行制冷模式时,可以按照该送风模式进行送风。
向下送风模式:如图4所示,控制分流件30关闭第一送风口11,使导风板60打开第二送风口12。在导风板60的引导下,由第二送风口12向下送风。在空调运行制热模式时,可以按照下送风模式送风,以利于加快制热速度。在该模式下,可使导风板60处于竖直延伸状态,其端部与风道20的蜗舌21邻近,以引导送风气流向下弯折流动,以流向第二送风口12。气流进入风道20后,截面逐渐增大实现扩压,经导风板60作用后转向竖直向下,再经过导风板60与风道20的蜗壳22限定的渐缩状通道,实现流出前的加速。最终制热送风风量大,风速高,风向竖直,有利于热风直达地面,地毯式送风效果良好。
最大送风模式:如图5所示,使第一送风口11和第二送风口12均打开, 两者同时出风,以使风量最大。
图6是根据本发明一个实施例的分流件的驱动机构的示意图。图2-图5为更好地示意风路走向,省略了驱动机构,图6为更好地示意驱动机构,省略了导风板60。
在一些实施例中,如图6所示,用于驱动分流件30前后平移的驱动机构为齿轮齿条机构,其安装于机壳10的横向侧部以不影响气流流动。驱动机构包括沿前后方向延伸且固定于分流件30的齿条71,与齿条71啮合的齿轮72,和用于驱动齿轮72转动以带动齿条71前后平移的电机73。电机73可固定于机壳10,齿条71可沿前后方向滑动地安装于机壳10。电机73能够受控地正反转,以使分流件30能沿前后方向往复平移。电机73可为步进电机。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种壁挂式空调室内机,包括:
    机壳,其具有第一送风口;和
    分流件,与所述第一送风口间隔地设置在所述第一送风口外侧,以使所述第一送风口的出风气流吹向所述分流件,然后在所述分流件表面引导下朝所述分流件的边缘发散地吹向室内环境;且
    所述分流件具有气流通道,所述气流通道贯穿所述分流件的朝向所述第一送风口的内侧面和背离所述分流件的外侧面,以允许出风气流经所述气流通道流动至所述分流件外侧。
  2. 根据权利要求1所述的壁挂式空调室内机,其中,
    所述分流件为实体结构,并开设有贯穿其内侧面和外侧面的多个通风微孔,每个所述通风微孔构成一个所述气流通道。
  3. 根据权利要求1所述的壁挂式空调室内机,其中,
    所述分流件为中空结构,其内侧面开设有多个连通所述分流件内部空间的进风微孔,所述分流件的外侧面开设有多个连通所述分流件内部空间的出风微孔,每个所述进风微孔与一个所述出风微孔以及所述分流件内部空间共同构成一个所述气流通道。
  4. 根据权利要求1-3中任一项所述的壁挂式空调室内机,其中,
    所述第一送风口为长度方向平行于所述机壳长度方向的长条状,所述分流件为平行于所述第一送风口长度方向的杆状;
    所述分流件朝向所述第一送风口和背向所述第一送风口的两侧表面均为外凸弯曲面,两者相接处构成两个顶端,使所述分流件的横截面外形轮廓形成“橄榄形”。
  5. 根据权利要求4所述的壁挂式空调室内机,其中,
    所述分流件朝向所述第一送风口的外凸弯曲面由两段圆弧面相接而成,背向所述第一送风口的外凸弯曲面为一段圆弧面。
  6. 根据权利要求1-5中任一项所述的壁挂式空调室内机,其中,
    所述分流件配置成可沿接近或远离所述第一送风口的方向往复移动,以开闭所述第一送风口,或调节其与所述第一送风口的距离。
  7. 根据权利要求6所述的壁挂式空调室内机,其中,
    所述机壳还具有用于向所述第一送风口送风的风道;且
    所述风道具有与所述第一送风口相接且过流截面沿气流方向逐渐变大的渐扩出口;
    所述风道渐扩出口处的表面轮廓与所述分流件相应区段的表面轮廓相匹配,以使所述分流件在关闭状态时贴合于所述风道渐扩出口处的表面。
  8. 根据权利要求1-7中任一项所述的壁挂式空调室内机,其中,
    所述第一送风口开设于所述机壳的前侧;且
    所述机壳的底壁开设有朝下敞开的第二送风口。
  9. 根据权利要求8所述的壁挂式空调室内机,其中,
    所述机壳包括前后排列的蜗舌、蜗壳以及位于所述蜗舌前端下方且位于所述蜗壳下端前方的分隔条,所述蜗舌、所述蜗壳与所述分隔条共同限定有风道;
    所述分隔条与所述蜗舌的前端限定出所述第一送风口,所述分隔条与所述蜗壳的下端限定出所述第二送风口。
  10. 根据权利要求9所述的壁挂式空调室内机,其中,所述蜗舌从其进口端至出口端依次包括:
    进风段,从所述进口端向后下方延伸;
    中间段,从所述进风段末端向前下方延伸;和
    出风段,从所述中间段末端向前上方延伸;且
    所述分隔条上表面从后向前逐渐向下倾斜延伸,以与所述出风段共同构成所述风道的渐扩出口。
PCT/CN2022/093558 2021-07-28 2022-05-18 壁挂式空调室内机 WO2023005367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110859101.4A CN115682152A (zh) 2021-07-28 2021-07-28 壁挂式空调室内机
CN202110859101.4 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023005367A1 true WO2023005367A1 (zh) 2023-02-02

Family

ID=85057757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093558 WO2023005367A1 (zh) 2021-07-28 2022-05-18 壁挂式空调室内机

Country Status (2)

Country Link
CN (1) CN115682152A (zh)
WO (1) WO2023005367A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200722A (ja) * 1995-01-31 1996-08-06 Mitsubishi Electric Corp 床置式空気調和機
CN107525131A (zh) * 2017-08-01 2017-12-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN207501380U (zh) * 2017-11-30 2018-06-15 广东美的制冷设备有限公司 壁挂式室内机及空调器
CN111912018A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN112113275A (zh) * 2020-10-15 2020-12-22 青岛海尔空调器有限总公司 壁挂式空调室内机
CN212390501U (zh) * 2020-07-24 2021-01-22 广东美的制冷设备有限公司 空调室内机
CN216131991U (zh) * 2021-07-28 2022-03-25 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143848U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143847U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143849U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143845U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200722A (ja) * 1995-01-31 1996-08-06 Mitsubishi Electric Corp 床置式空気調和機
CN107525131A (zh) * 2017-08-01 2017-12-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN207501380U (zh) * 2017-11-30 2018-06-15 广东美的制冷设备有限公司 壁挂式室内机及空调器
CN111912018A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN212390501U (zh) * 2020-07-24 2021-01-22 广东美的制冷设备有限公司 空调室内机
CN112113275A (zh) * 2020-10-15 2020-12-22 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216131991U (zh) * 2021-07-28 2022-03-25 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143848U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143847U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143849U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143845U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Also Published As

Publication number Publication date
CN115682152A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN216143845U (zh) 壁挂式空调室内机
CN112113276B (zh) 壁挂式空调室内机
CN216143847U (zh) 壁挂式空调室内机
CN108592366A (zh) 导风板组件、空调室内机和空调室内机的控制方法
CN112113277B (zh) 壁挂式空调室内机
CN216131991U (zh) 壁挂式空调室内机
CN216143849U (zh) 壁挂式空调室内机
CN216143848U (zh) 壁挂式空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
CN107449038A (zh) 空调室内机
WO2019119630A1 (zh) 一种空调器出风结构及空调器
WO2023065565A1 (zh) 壁挂式新风空调室内机及空调器
WO2019042326A1 (zh) 壁挂式空调室内机
WO2023246706A1 (zh) 立式空调室内机
CN212299182U (zh) 嵌入式空调
WO2023005367A1 (zh) 壁挂式空调室内机
CN112747368A (zh) 空调室内机
WO2023098054A1 (zh) 立式空调室内机
CN208920283U (zh) 空调器
WO2023005284A1 (zh) 壁挂式空调室内机
WO2023130769A1 (zh) 壁挂式空调室内机
WO2023098242A1 (zh) 空调室内机
CN216976951U (zh) 立式空调室内机
CN106288275B (zh) 空调器
WO2023005285A1 (zh) 壁挂式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE