WO2023005329A1 - 壁挂式空调室内机 - Google Patents

壁挂式空调室内机 Download PDF

Info

Publication number
WO2023005329A1
WO2023005329A1 PCT/CN2022/091761 CN2022091761W WO2023005329A1 WO 2023005329 A1 WO2023005329 A1 WO 2023005329A1 CN 2022091761 W CN2022091761 W CN 2022091761W WO 2023005329 A1 WO2023005329 A1 WO 2023005329A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
wall
air supply
indoor unit
supply port
Prior art date
Application number
PCT/CN2022/091761
Other languages
English (en)
French (fr)
Inventor
李英舒
李婧
尹晓英
李伟伟
黄满良
王永涛
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023005329A1 publication Critical patent/WO2023005329A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/12Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of sliding members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a wall-mounted air conditioner indoor unit.
  • Existing wall-mounted air-conditioning indoor units are usually provided with a strip-shaped air outlet at the lower part of the front side of the casing.
  • An object of the present invention is to overcome the above problems or at least partially solve the above problems, and provide a wall-mounted air conditioner indoor unit capable of aggregated air supply.
  • a further object of the present invention is to improve the effect of airflow polymerization.
  • the present invention provides a wall-mounted air conditioner indoor unit, which includes:
  • the front side of the casing is provided with a horizontally extending strip-shaped first air supply port, and an air duct connecting the first air supply port is formed inside, and the upper wall adjacent to the first air supply port is connected to the upper wall of the air duct.
  • the spacing of the lower walls gradually decreases in the direction of airflow, forming a tapered section;
  • the deflector is rod-shaped parallel to the length direction of the first air supply port, and is arranged in the air channel and defines an air outlet gap with its upper wall and lower wall, and is used to direct air blown to the first air supply port
  • the airflow is guided to the upper wall and the lower wall of the air duct, so that the airflow gradually converges toward the center of the airflow and flows out of the first air supply port under the guidance of the tapered section of the air duct;
  • the cross-sectional profile of the deflector is an "olive shape" with upper and lower pointed points and front and rear convex curved shapes;
  • the section of the upper wall of the air duct used to define the air outlet gap is a curved section with the concave side facing downward, which surrounds the air guide above the air guide;
  • the section of the lower wall of the air channel used to define the air outlet gap is an inwardly curved section extending obliquely upwards from the rear to the front, which is located at the front and bottom of the air guide.
  • the distance between the top and the bottom of the deflector is H, and the width of the first air supply port is h, satisfying: 4mm ⁇ H-h ⁇ 10mm,
  • the shortest distance between the outer surface of the deflector and the upper wall of the air duct is d1
  • the shortest distance from the lower wall of the air duct is d3, satisfying: 1.5d1 ⁇ d3 ⁇ 2d1.
  • the shortest distance between the outer surface of the deflector and the upper wall of the air duct is d1
  • the width of the first air supply port is h, satisfying: 0.15h ⁇ d1 ⁇ 0.25h.
  • the cross-sectional outer profile of the deflector includes a front arc segment and a rear arc segment, and the top and bottom ends of the two are joined by rounded transitions.
  • the radius of the front arc segment is R1
  • the radius of the rear arc segment is R2
  • the distance between the top and the bottom of the air guide is H, satisfying: 0.5 ⁇ R1/H ⁇ 0.8, 0.5 ⁇ R2/H ⁇ 0.8.
  • the radius of the front arc segment is larger than the radius of the rear arc segment.
  • the bottom wall of the casing is provided with a second air supply port that opens downward and connects with the air duct, and an air deflector is provided at the second air supply port;
  • the air duct includes the upper wall, the lower wall and the rear wall, the front end of the upper wall and the front end of the lower wall define the first air supply port, the rear end of the lower wall and the lower end of the rear wall defining the second air outlet, the upper wall and the rear wall defining the inlet of the air channel; and
  • the distance between the bottom end of the air guide member and the upper surface of the air guide plate is d2
  • the shortest distance between the outer surface of the air guide member and the upper wall of the air duct is d1, satisfying: 1.5d1 ⁇ d2 ⁇ 2d1.
  • the deflector is configured to move back and forth, so as to adjust the size of the air outlet gap and facilitate closing the first air outlet.
  • the section of the air duct adjacent to the first air supply port is a tapered section, so that the cross section of the air flow gradually becomes smaller along the airflow direction.
  • the deflector in the air duct and the upper wall and the lower wall of the air duct respectively define an air outlet gap.
  • the air flow will flow to the upper wall and the lower wall of the air channel under the guidance of the air guide, and enter the corresponding air outlet gap. Due to the smaller cross section of the air outlet gap, the air outlet speed is higher.
  • the high-speed airflow gradually converges towards the center of the airflow during the outward flow process, forming a convergence effect, making the wind force stronger and the air supply distance longer, which meets the requirements of the wall-mounted air conditioner indoor unit for long-distance transmission. Wind and strong supply air requirements.
  • the vertical dimension of the air guide is relatively larger, so that the outlet formed by the air guide and the upper wall of the air duct.
  • the downward sloping part of the air gap is longer, and the upward sloping part of the air outlet gap formed with the lower wall of the air duct is longer, so as to guide the airflow more forcefully and slope downward and upward respectively, so that the wind can flow in front of the air guide with greater force. Aggregate, so that the air supply distance is longer.
  • the wall-mounted air-conditioning indoor unit of the present invention makes 1.5d1 ⁇ d3 ⁇ 2d1 (d1 is the shortest distance between the outer surface of the air guide and the upper wall of the air duct, and d3 is the shortest distance between the outer surface of the air guide and the lower wall of the air duct), and
  • the air outlet gap between the guide piece and the lower wall of the air duct is larger, the air volume is larger, and the air outlet gap between the air duct upper wall and the air duct upper wall is smaller, and the air volume is smaller, so that the strength of the air guide on the lower wall of the air duct is greater than that of the upper wall of the air duct
  • the strength of the downward-sloping wind guide makes the two airflows meet and gather, and then flow upward as a whole. In the cooling mode, the upward flowing cold air can fully avoid the human body, reach the highest point and then scatter downward, realizing a "shower-style" cooling experience. Moreover, the upward airflow is also beneficial to increase the air supply distance.
  • the relationship between the shortest distance d1 between the outer surface of the air guide and the upper wall of the air duct and the width h of the first air supply port is specially set so that 0.15h ⁇ d1 ⁇ 0.25h, so that d1
  • the width is more matched to the width h of the first air supply port, so that the airflow aggregation effect is better.
  • Fig. 1 is a schematic structural view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic cross-sectional enlarged view of the wall-mounted air conditioner indoor unit shown in Fig. 1;
  • Fig. 3 is an enlarged view of place A of Fig. 2;
  • Fig. 4 is a schematic cross-sectional view of a flow guide of the wall-mounted air conditioner indoor unit shown in Fig. 1;
  • Fig. 5 is a schematic diagram of the indoor unit of the wall-mounted air conditioner shown in Fig. 2 when operating in the downward air supply mode;
  • Fig. 6 is a schematic diagram of the indoor unit of the wall-mounted air conditioner shown in Fig. 2 when operating in the maximum air supply mode;
  • Fig. 7 is a schematic diagram of the driving mechanism of the deflector.
  • the wall-mounted air conditioner indoor unit will be described below with reference to FIG. 1 to FIG. 7 .
  • the orientation or positional relationship indicated by “front”, “rear”, “upper”, “lower”, “top”, “bottom”, “inner”, “outer”, “horizontal”, etc. are based on the The orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the present invention . Arrows in the figure indicate the flow direction of the airflow.
  • first”, “second”, etc. are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the quantity of the indicated technical features.
  • features defined as “first”, “second”, etc. may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • An embodiment of the present invention provides a wall-mounted air conditioner indoor unit.
  • the wall-mounted air conditioner indoor unit is the indoor part of the split wall-mounted room air conditioner, and is used to adjust indoor air, such as cooling/heating, dehumidification, and introducing fresh air, etc.
  • Fig. 1 is a schematic structural view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic cross-sectional enlarged view of the wall-mounted air conditioner indoor unit shown in Fig. 1
  • Fig. 3 is an enlarged view of A in Fig. 2 .
  • the wall-mounted air conditioner indoor unit may generally include a casing 10 and a flow guide 30 .
  • the front side of the casing 10 is provided with a first elongated air outlet 11 extending transversely.
  • the casing 10 is in the shape of a long strip extending horizontally for hanging on an indoor wall.
  • the transverse direction of the casing 10 is its longitudinal direction, which is indicated by x in the figure.
  • the inside of the casing 10 is formed with an air duct 15 connected to the first air outlet 11.
  • the casing 10 described in this embodiment includes a skeleton for constituting the basic frame of the indoor unit and body parts such as a volute and a volute tongue for defining the air duct 15, and is not a pure air conditioner casing.
  • the first air outlet 11 is used to blow the airflow in the casing 10 to the room to adjust the indoor air.
  • the aforementioned airflow can be cold air produced by the indoor unit of the wall-mounted air conditioner in cooling mode, hot air produced in heating mode, or fresh air introduced in fresh air mode.
  • the air duct 15 is adjacent to the first air supply port 11, and the distance between its upper wall 151 (specifically its ba section) and its lower wall 152 (specifically its ed section) gradually decreases along the airflow direction, forming the tapering of the air duct 15 section, as shown in Figure 2. In other words, at a place adjacent to the first air supply port 11 , along the airflow direction, the flow cross section of the air duct 15 gradually becomes smaller.
  • the air guide 30 is a rod-shaped parallel to the length direction (x direction) of the first air supply port 11, which is arranged in the air duct 15 and is separated from the upper wall 151 (the sa section) and the lower wall 152 (the ed section).
  • Air outlet gaps 154, 155 are defined, and are used to direct the airflow blown to the first air outlet 11 to the upper wall 151 and the lower wall 152 of the air duct 15, so that the air flow is in the tapering section of the air duct 15 (by the upper wall of the upper wall)
  • the ba section and the ed section of the lower wall define) and gradually flow out of the first air outlet 11 toward the airflow center under the guidance of the ed section.
  • the projections of the upper edge a and the lower edge d of the first air supply port toward the air guide 30 fall on the air guide 30 instead of falling outside the air guide 30, and the projection direction is in It is shown by dashed hollow arrows in FIG. 3 .
  • the flow cross section of the air outlet gaps 154, 155 must be smaller than the flow cross section of the original air duct 15, which makes the air flow faster.
  • the high-speed air flow gradually converges towards the center of the air flow during the outward flow process, forming a convergence effect, which makes the wind force very strong and the air supply distance is longer, which meets the needs of wall-mounted air conditioner indoor units.
  • the demand for long-distance air supply and strong air supply also makes the air supply range larger, making the cooling/heating speed more uniform throughout the indoor space, and making the human body feel more comfortable.
  • the projections a0 and d0 of the upper edge a and the lower edge d of the first air blowing port 11 toward the air guide 30 fall on the air guide 30 . That is, the size of the air guide 30 in the vertical direction is relatively larger, so that the downwardly inclined part of the air outlet gap 154 formed by the air guide 30 and the upper wall 151 of the air duct 15 is longer, and formed with the lower wall 152.
  • the upward sloping part of the air outlet gap 155 is longer, so that the airflow can be more powerfully guided downwards and upwards, so as to aggregate in front of the deflector 30 with greater wind force and make the air supply distance farther.
  • the air guide 30 not only defines the air outlet gaps 154, 155 with the upper wall 151 and the lower wall 152 of the air duct 15, but also plays the role of increasing the wind speed, and can just guide the airflow to the air outlet gap 154. , 155, or to force the airflow to flow toward the air outlet gaps 154, 155, so as to force the airflow to accept the aggregate guidance of the tapered section of the air duct 15, forming the final aggregated air supply effect.
  • the embodiment of the present invention achieves a very good aggregated air supply effect only by improving the air duct 15 and adding a flow guide 30. Its structure is very simple, and its cost is low. It is easy to realize mass production and promotion, and the concept is very clever.
  • the indoor unit of the wall-mounted air conditioner can be an indoor unit of an air conditioner for cooling/heating through a vapor compression refrigeration cycle system, which also includes a heat exchanger 40 and a fan 50 .
  • the heat exchanger 40 is arranged in the casing 10 for exchanging heat with the air flow passing through it to form a heat exchange air flow, namely cold air or hot air, which can be a three-stage fin heat exchanger.
  • the fan 50 is arranged in the casing 10, and is used to force the indoor air to enter the casing 10 through the air inlet 13 on the top of the casing 10, so that it can complete heat exchange with the heat exchanger 40 to become a heat exchange air flow, and then force the heat exchange air to flow through the air duct 15 flows to the first air supply port 11, and finally blows into the room from the first air supply port 11.
  • Fig. 4 is a schematic cross-sectional view of a flow guide of the wall-mounted air conditioner indoor unit shown in Fig. 1 .
  • the profile of the cross section of the air guide 30 (cutting the air guide 30 along the sectional plane extending in the front and rear direction) is to have two upper and lower pointed points, and two front and rear bulges. Curved "olive”.
  • the outwardly convex curved surface of the deflector 30 is very conducive to splitting the airflow into two streams and guiding them upward and downward respectively, so that the guidance is smoother and the airflow resistance is smaller.
  • the curved surface protruding forward of the deflector 30 can guide the airflow near it to flow on the surface and gradually converge towards the central direction, so as to jointly exert pressure on the airflow together with the tapered inner wall of the air duct 15. Polymerization, enhance the effect of airflow polymerization.
  • the upper wall 151 of the air duct 15 is used to define the section of the air outlet gap 154 (that is, the section as) is a curved section with the concave side facing downward, which can be arc-shaped or formed by connecting multiple arc-shaped sections, and has a front end point a, The highest point b and the back end point s. It surrounds the air guide 30 above the air guide 30 .
  • the section of the lower wall 152 of the air duct 15 used to define the air outlet gap 155 is a concave curved section extending obliquely upwards from the rear to the front, which is located below the front of the air guide 30 . In this way, both the air outlet gap 154 and the air outlet gap 155 are curved, or further arc-shaped, so that the airflow direction can be changed more smoothly and the airflow resistance can be reduced.
  • the cross-sectional outer profile of the deflector 30 may include a front arc segment 31 and a rear arc segment 32 .
  • the top and bottom ends of the two meet with a rounded r transition.
  • the radius of the front arc section 31 can be made greater than the radius of the back arc section 32, so that the back arc section 32 is relatively more convex, so that the distance between it and the upper wall 151 is smaller, and the front arc section 31 is relatively more Flat, so that the distance between it and the upper wall 151 is larger, so that the airflow can flow through the air outlet gap 154 more smoothly.
  • the radius of the front arc segment 31 may also be equal to or smaller than the radius of the rear arc segment 32 .
  • the front arc segment 31 and/or the rear arc segment 32 may be formed by connecting multiple segments of arcs, which will not be repeated here.
  • the radius of the front arc segment 31 is R1
  • the radius of the rear arc segment 32 is R2
  • the distance between the top and the bottom of the air guide 30 is H, satisfying: 0.5 ⁇ R1/H ⁇ 0.8 , 0.5 ⁇ R2/H ⁇ 0.8, further satisfying 0.3 ⁇ R1/H ⁇ 0.6, 0.3 ⁇ R2/H ⁇ 0.6.
  • the width (maximum dimension in the vertical direction) of the air guiding member 30 is more coordinated with the curvature of the front and rear surfaces, so as to achieve a balance between the wind guiding effect and the flow resistance.
  • the distance between the top and the bottom of the air guide 30 can be H
  • the width of the first air supply port 11 can be h
  • the relationship between the two satisfies: 4mm ⁇ H-h ⁇ 10mm, further Satisfy 6mm ⁇ H-h ⁇ 8mm, so that the downward sloping part of the air outlet gap 154 formed by the air guide 30 and the upper wall 151 of the air duct and the upward sloping part of the air outlet gap 155 formed by the lower wall 152 will not be too large. long to avoid increased airflow resistance.
  • the shortest distance between the outer surface of the flow guide 30 and the upper wall 151 is d1
  • the shortest distance between the outer surface of the flow guide 30 and the lower wall 152 is d3, preferably 1.5d1 ⁇ d3 ⁇ 2d1, and further make 1.7d1 ⁇ d3 ⁇ 1.9d1
  • the gap between the air guide 30 and the lower wall 152 of the air duct is larger, the air volume is larger, and the gap with the upper wall 151 of the air duct is smaller, and the air volume is smaller, so that the lower wall 152 rises
  • the strength of the air guide is greater than that of the upper wall 151 downwards, so that the two airflows converge and then flow upward as a whole.
  • Figure 2 shows the direction of the airflow with arrows, please refer to it.
  • the upward flowing cold air can fully avoid the human body, reach the highest point and then scatter downward, realizing a "shower-style" cooling experience.
  • the upward airflow is also beneficial to increase the air supply distance.
  • the width of the first air outlet 11 is h.
  • the inventor has found through multiple tests that the relationship between d1 and h has a great influence on the air supply distance. When 0.15h ⁇ d1 ⁇ 0.25h is satisfied, further satisfying 0.18h ⁇ d1 ⁇ 0.22h, the air supply distance is relatively large.
  • the bottom wall of the cabinet 10 defines a second air outlet 12 that opens downward and connects with the air duct 15 .
  • air can be blown directly below the wall-mounted air conditioner indoor unit from the second air supply port 12 .
  • the downward air supply is more conducive to accelerating the temperature rise of the lower space of the house, so that the human body can feel the heating effect faster.
  • the air duct 15 includes the aforementioned upper wall 151 ( ak ), lower wall 152 ( de ) and rear wall 153 ( fg ).
  • the front end (a) of the upper wall 151 and the front end (d) of the lower wall 152 define the first air outlet 11.
  • the rear end (e) of the lower wall 152 and the lower end (f) of the rear wall 153 define the second air supply port 12, and the upper wall 151 (the k section) and the rear wall (the g end) jointly define the inlet of the air duct 15
  • the cross-flow fan 50 is located at the inlet of the air duct 15 .
  • the rear wall 153 is the volute of the cross-flow fan, which can be a curved structure with the concave side facing forward as a whole.
  • the second air outlet 12 is provided with an air guide plate 60 .
  • the air deflector 60 is rotatably mounted on the casing 10 for opening or closing the second air outlet 12 and guiding the air blowing direction of the second air outlet 12 .
  • an air guiding mechanism such as a swing leaf assembly may also be installed at the second air supply port 12 .
  • the rear wall 153 is the volute of the cross-flow fan, specifically a curved structure with the concave side facing forward; the section (sck) of the upper wall 151 except the section as is the volute tongue of the cross-flow fan. It includes the kc segment extending backward and downward and the cs segment extending forward and downward.
  • the inclination angle of the cs section is ⁇ , preferably ⁇ 25°, so as to guide the airflow obliquely downward and facilitate heating and airflow.
  • the distance between the bottom end of the deflector 30 and the upper surface of the wind deflector 60 is d2, and the airflow flows to the air outlet gap 155 through this gap. It is preferable to make 1.5d1 ⁇ d2 ⁇ 2d1, so that more airflow enters the air outlet gap 155, so that the force of the upward direction of the lower wall 152 is greater than that of the downward direction of the upper wall 151, so that the two airflows converge and gather the whole upward flow.
  • Fig. 5 is a schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 2 when operating in the downward air supply mode
  • Fig. 6 is a schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 2 operating in the maximum air supply mode.
  • the deflector 30 can be configured to move back and forth, so as to adjust the size of the air outlet gaps 154 , 155 .
  • the air outlet gaps 154 and 155 can be enlarged by moving the air guide 30 backwards to increase the wind force, speed up the cooling/heating speed and extend the air supply distance; the air outlet can be reduced by moving the air guide 30 forward Gaps 154, 155 are used to reduce wind force, simulate natural wind, and make airflow more comfortable.
  • the forward and backward movement of the air guiding member 30 is also convenient for closing the first air outlet 11 . Therefore, the embodiment of the present invention has the following three air supply modes for users to choose from, specifically as follows:
  • the deflector 30 is located behind the first air supply port 11, the air deflector 60 closes the second air supply port 12, and the first air supply port 11 aggregates upward to supply air.
  • the air conditioner When the air conditioner is running in the cooling mode, it can supply air according to the combined air supply mode.
  • Downward air supply mode as shown in FIG. 5 , control the air deflector 30 to move forward to close the first air supply port 11, so that the air deflector 60 opens the second air supply port 12, and under the guidance of the air deflector 60, the first air supply Two air supply outlets 12 supply air downwards.
  • the air conditioner is running in the heating mode, the air can be supplied according to the downward air supply mode, so as to accelerate the heating speed.
  • the deflector 30 is located behind the first air supply port 11, the air deflector 60 opens the second air supply port 12, and the first air supply port 11 aggregates upward to supply air. Guided by the wind plate 60, air is blown forward and downward by the second air supply port 12.
  • the maximum air supply mode can be selected.
  • the definition of the dimensional relationship between the air guide 30 and the upper wall 151 and the lower wall 152 of the air duct 15 is based on the opening of the first air outlet 11 by the air guide 30 . state (as shown in Figure 2).
  • Fig. 7 is a schematic diagram of the driving mechanism of the deflector.
  • the driving mechanism for driving the deflector 30 to translate back and forth is a rack and pinion mechanism, which is installed on the lateral side of the casing 10 so as not to affect the air flow.
  • the driving mechanism includes a rack 71 extending forward and backward and fixed to the air guide 30 , a gear 72 meshing with the rack 71 , and a motor 73 for driving the gear 72 to rotate to drive the rack 71 to translate forward and backward.
  • the motor 73 can be fixed on the casing 10 , and the rack 71 can be slidably mounted on the casing 10 along the front and rear directions.
  • the motor 73 can be controlled forward and reverse, so that the deflector 30 can reciprocate and translate along the front and rear directions.
  • the motor 73 can be a stepping motor.

Abstract

一种壁挂式空调室内机,其包括机壳(10)和导流件(30)。机壳(10)前侧开设有横向延伸的长条状的第一送风口(11),内部形成有连接第一送风口(11)的风道(15),风道(15)在邻近第一送风口(11)处的上壁(151)与下壁(152)的间距沿气流方向逐渐变小,构成渐缩区段。导流件(30)为平行于第一送风口(11)长度方向的杆状,设置在风道(15)内且与其上壁(151)和下壁(152)分别限定有出风间隙(154,155),并用于将吹向第一送风口(11)的气流导向风道(15)的上壁(151)和下壁(152),使气流在风道(15)渐缩区段的引导下逐渐向气流中心聚合地流出第一送风口(11);且第一送风口(11)上、下边缘朝导流件(30)的投影(a,d)落在导流件(30)之上。该壁挂式空调室内机具有更好的远距离送风和强劲送风效果。

Description

壁挂式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种壁挂式空调室内机。
背景技术
现有的壁挂式空调室内机通常在机壳前侧下部设置一个长条状出风口,出风口朝向前下方,出风口处设置有导风板来引导上下送风方向。
在此基础上,一些现有技术对出风结构进行了很多改进,但由于受到出风口本身朝向的约束,空调的送风方向、送风范围和送风距离仍然受到极大限制,影响用户体验。
发明内容
本发明的一个目的是要克服上述问题或者至少部分地解决上述问题,提供一种能够聚合送风的壁挂式空调室内机。
本发明的进一步的目的是要提高气流聚合效果。
特别地,本发明提供了一种壁挂式空调室内机,其包括:
机壳,前侧开设有横向延伸的长条状的第一送风口,内部形成有连接所述第一送风口的风道,所述风道在邻近所述第一送风口处的上壁与下壁的间距沿气流方向逐渐变小,构成渐缩区段;和
导流件,为平行于所述第一送风口长度方向的杆状,设置在所述风道内且与其上壁和下壁分别限定有出风间隙,并用于将吹向所述第一送风口的气流导向所述风道的上壁和下壁,使气流在所述风道渐缩区段的引导下逐渐向气流中心聚合地流出所述第一送风口;且
所述第一送风口上、下边缘朝所述导流件的投影落在所述导流件之上。
可选地,所述导流件的横截面外形轮廓为具有上下两个尖端、前后两个外凸弯曲形的“橄榄形”;
所述风道上壁用于限定所述出风间隙的区段为凹侧朝下的弯曲段,其在所述导流件上方环绕所述导流件;且
所述风道下壁用于限定所述出风间隙的区段为从后向前逐渐向上倾斜延伸的内凹的弯曲段,其位于所述导流件前下方。
可选地,所述导流件的顶端与底端间距为H,所述第一送风口的宽度为 h,满足:4mm≤H-h≤10mm,
可选地,所述导流件外表面与所述风道上壁最近距离为d1,与所述风道下壁最近距离为d3,满足:1.5d1≤d3≤2d1。
可选地,所述导流件外表面与所述风道上壁最近距离为d1,所述第一送风口的宽度为h,满足:0.15h≤d1≤0.25h。
可选地,所述导流件的横截面外轮廓包括前弧线段、后弧线段,两者的顶端和底端以圆角过渡相接。
可选地,所述前弧线段的半径为R1,所述后弧线段的半径为R2,所述导流件的顶端与底端间距为H,满足:0.5≤R1/H≤0.8,0.5≤R2/H≤0.8。
可选地,所述前弧线段的半径大于所述后弧线段的半径。
可选地,所述机壳的底壁开设有朝下敞开且与所述风道相接的第二送风口,所述第二送风口处设置有导风板;
所述风道包括所述上壁、所述下壁和后壁,所述上壁前端和所述下壁前端限定出所述第一送风口,所述下壁后端和所述后壁下端限定出所述第二送风口,所述上壁和所述后壁限定出所述风道的进口;且
所述导风板处于关闭状态时,所述导流件的底端与所述导风板上表面间距为d2,所述导流件外表面与所述风道上壁最近距离为d1,满足:1.5d1≤d2≤2d1。
可选地,所述导流件配置成可前后移动,以便调节所述出风间隙的大小,且便于封闭所述第一送风口。
本发明的壁挂式空调室内机中,风道邻近第一送风口的区段为渐缩区段,使其过流截面沿气流方向逐渐变小。风道内的导流件与风道上壁和下壁分别限定出了出风间隙。气流吹向第一送风口的过程中,将在导流件引导下流向风道上壁和下壁,进入相应的出风间隙。由于出风间隙的过流截面更小,出风速度更高。高速气流在渐缩区段的引导下,在向外流动过程中逐渐向气流中心方向聚合,形成汇聚效应,使得风力更加强劲,送风距离更远,满足了壁挂式空调室内机对远距离送风和强劲送风的需求。
此外,由于第一送风口上、下边缘朝导流件的投影落在导流件上,也就是使导流件竖直方向的尺寸相对更大,使导流件与风道上壁形成的出风间隙的向下倾斜部分更长,与风道下壁形成的出风间隙的向上倾斜的部分更长,以便更有力地引导气流分别向下和向上倾斜,以更大风力在导流件前方聚 合,使送风距离更远。
进一步地,本发明的壁挂式空调室内机使1.5d1≤d3≤2d1(d1为导流件外表面与风道上壁最近距离,d3为导流件外表面与风道下壁最近距离),以使导流件与风道下壁的出风间隙更大,风量更大,与风道上壁的出风间隙更小,风量更小,如此使风道下壁上扬导风的力度大于风道上壁下倾导风的力度,使两股气流交汇聚集后将整体上扬流动。在制冷模式时,上扬流动的冷风可充分避开人体,达到最高点后再向下散落,实现一种“淋浴式”制冷体验。并且,气流上扬吹出也有利于提升其送风距离。
进一步地,本发明的壁挂式空调室内对导流件外表面与风道上壁最近距离d1和第一送风口宽度h的关系进行特别设定,使0.15h≤d1≤0.25h,以使d1的宽度与第一送风口宽度h更加匹配,使气流聚合效果更好。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的壁挂式空调室内机的结构示意图;
图2是图1所示壁挂式空调室内机的示意性剖视放大图;
图3是图2的A处放大图;
图4是图1所示壁挂式空调室内机的导流件横截面示意图;
图5是图2所示壁挂式空调室内机在运行向下送风模式时的示意图;
图6是图2所示壁挂式空调室内机在运行最大送风模式时的示意图;
图7是导流件的驱动机构的示意图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所 附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图7来描述本发明实施例的壁挂式空调室内机。其中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。图中用箭头示意了气流的流动方向。
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
本发明实施例提供了一种壁挂式空调室内机。壁挂式空调室内机为分体壁挂式房间空调器的室内部分,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。
图1是根据本发明一个实施例的壁挂式空调室内机的结构示意图;图2是图1所示壁挂式空调室内机的示意性剖视放大图;图3是图2的A处放大图。
如图1至图3所示,本发明实施例的壁挂式空调室内机一般性地可包括机壳10和导流件30。
机壳10的前侧开设有横向延伸的长条状的第一送风口11。机壳10为沿水平方向延伸的长条状,以用于挂在室内墙壁上。机壳10的横向也就是其长度方向,在图中用x表示。机壳10的内部形成有连接第一送风口11的风 道15。本实施例所述的机壳10包括用于构成室内机基本框架的骨架和用于限定出风道15的蜗壳、蜗舌等机体部件,并非纯粹的空调外壳。第一送风口11用于将机壳10内的气流吹向室内,调节室内空气。前述的气流可为壁挂式空调室内机在制冷模式下制取的冷风,在制热模式下制取的热风,或者在新风模式下引入的新风等。风道15在邻近第一送风口11处,其上壁151(具体为其ba段)和下壁152(具体为其ed段)的间距沿气流方向逐渐变小,构成风道15的渐缩区段,如图2。换言之,在邻近第一送风口11处,沿着气流方向,风道15的过流截面逐渐变小。
导流件30为平行于第一送风口11的长度方向(x方向)的杆状,其设置在风道15内且与其上壁151(的sa段)和下壁152(的ed段)分别限定有出风间隙154、155,并用于将吹向第一送风口11的气流导向风道15的上壁151和下壁152,使气流在风道15的渐缩区段(由上壁的ba段和下壁的ed段限定出)的引导下逐渐向气流中心聚合地流出第一送风口11。并且,第一送风口上边缘a、下边缘d朝导流件30的投影(分别为a0和d0)落在导流件30之上,而非落在导流件30之外,投影方向在图3中用虚线空心箭头示出。
由于增加了导流件30,出风间隙154、155的过流截面必然小于原有的风道15的过流截面,这使得气流速度更快。高速气流在风道15的渐缩区段的引导下,在向外流动过程中逐渐向气流中心方向聚合,形成汇聚效应,使得风力非常强劲,送风距离更远,满足了壁挂式空调室内机对远距离送风和强劲送风的需求,也使得送风范围更大,使室内空间各处制冷/制热速度更加均匀,使人体感觉更加舒适。并且,由于第一送风口11的上边缘a、下边缘d朝导流件30的投影a0和d0落在导流件30上。也就是使导流件30在竖直方向的尺寸相对更大,从而使导流件30与风道15的上壁151形成的出风间隙154的向下倾斜部分更长,与下壁152形成的出风间隙155的向上倾斜的部分更长,以便更有力地引导气流分别向下和向上倾斜,以更大风力在导流件30的前方聚合,使送风距离更远。
本发明实施例中,导流件30不仅与风道15的上壁151和下壁152限定出了出风间隙154、155,起到提升风速的作用,也恰好能将气流导向出风间隙154、155,或者说是强迫气流朝出风间隙154、155流动,以迫使气流接受风道15渐缩区段的聚合引导,形成最终的聚合送风效果。本发明实施例 仅通过改进风道15和增设一导流件30就实现了非常好的聚合送风效果,其结构非常简单,而且成本较低,易于实现量产推广,构思非常巧妙。
如图2所示,壁挂式空调室内机可为通过蒸气压缩制冷循环系统进行制冷/制热的空调器的室内机,其还包括换热器40和风机50。换热器40设置在机壳10内,用于与流经其的气流进行换热,形成热交换气流,即冷风或热风,其可为三段式翅片换热器。风机50设置于机壳10内,用于促使室内空气经机壳10顶部进风口13进入机壳10,使其与换热器40完成换热成为热交换气流,然后促使热交换气流经风道15流动至第一送风口11处,最终从第一送风口11吹向室内。
图4是图1所示壁挂式空调室内机的导流件横截面示意图。
在一些实施例中,参考图2至图4,导流件30的横截面(沿前后方向延伸的剖切面剖切导流件30)的外形轮廓为具有上下两个尖端、前后两个外凸弯曲形的“橄榄形”。导流件30朝后的外凸弯曲形表面非常利于将气流拆分为两股并分别向上和向下引导,引导更加顺畅、气流阻力更小。导流件30的朝前凸出的外凸弯曲形表面能引导其附近的气流贴合于该表面流动,以逐渐向其中央方向聚合,以与风道15的渐缩状内壁共同对气流施加聚合作用,提升气流聚合效果。
风道15的上壁151用于限定出风间隙154的区段(即as段)为凹侧朝下的弯曲段,可为弧形或由多段弧形相接而成,具有前端点a,最高点b和后端点s。其在导流件30的上方环绕导流件30。风道15的下壁152用于限定出风间隙155的区段(即de段)为从后向前逐渐向上倾斜延伸的内凹的弯曲段,其位于导流件30的前下方。如此,使得出风间隙154和出风间隙155均为弯曲形状,或进一步为圆弧形,使气流方向改变地更加顺滑,减少气流阻力。
具体地,参考图4,可使导流件30的横截面外轮廓包括前弧线段31和后弧线段32。两者的顶端和底端以圆角r过渡相接。可使前弧线段31的半径大于后弧线段32的半径,以使后弧线段32相对更加凸出,从而使其与上壁151的间距更小,使前弧线段31相对更加平坦,以使其与上壁151的间距更大些,以利于气流更顺畅地流过出风间隙154。当然,在一些替代性实施例中,也可使前弧线段31的半径等于或小于后弧线段32的半径。在另一些替代性实施例中,可使前弧线段31和/或后弧线段32由多段圆弧相接而成, 具体不再赘述。
参考图3和图4,使前弧线段31的半径为R1,后弧线段32的半径为R2,导流件30的顶端与底端的间距为H,满足:0.5≤R1/H≤0.8,0.5≤R2/H≤0.8,进一步满足0.3≤R1/H≤0.6,0.3≤R2/H≤0.6。如此,使得导流件30的宽度(竖直方向的最大尺寸)与前后表面的弯曲度更加协调,以达到平衡导风效果和流动阻力的作用。
在一些实施例中,如图3所示,可使导流件30的顶端与底端的间距为H,第一送风口11的宽度为h,两者的关系满足:4mm≤H-h≤10mm,进一步满足6mm≤H-h≤8mm,以使导流件30与风道的上壁151形成的出风间隙154的向下倾斜部分以及与下壁152形成的出风间隙155的向上倾斜的部分不至于过长,从而避免气流阻力增大。
如图3所示,导流件30的外表面与上壁151的最近距离为d1,导流件30的外表面与下壁152最近距离为d3,优选使1.5d1≤d3≤2d1,进一步使1.7d1≤d3≤1.9d1,以使导流件30与风道的下壁152的间隙更大,风量更大,与风道上壁151的间隙更小,风量更小,如此使下壁152上扬导风的力度大于上壁151下倾导风的力度,使两股气流交汇聚集后将整体上扬流动,图2用箭头示意了气流走向,请参考。在制冷模式时,上扬流动的冷风可充分避开人体,达到最高点后再向下散落,实现一种“淋浴式”制冷体验。并且,气流上扬吹出也有利于提升其送风距离。
此外,也可使下壁152的出风间隙155的气流上扬角度大于上壁151的出风间隙154的气流下倾角度,以便出风间隙155的气流带动出风间隙154的气流共同朝前上方上扬流动。
请参考图3,第一送风口11的宽度为h。发明人经多次测试发现,d1与h的关系对于送风距离存在较大影响。当满足0.15h≤d1≤0.25h时,进一步满足0.18h≤d1≤0.22h,送风距离较大。
在一些实施例中,如图2所示,机壳10的底壁开设有朝下敞开且与风道15相接的第二送风口12。如此一来,可由第二送风口12向壁挂式空调室内机的正下方送风。制热模式时向下送风更有利于加快房屋下层空间的温度升高速度,使人体更快感受到制热效果。
为与第一送风口11和第二送风口12相接,风道15包括前述的上壁151(ak)下壁152(de)和后壁153(fg)。其中,上壁151的前端(a)和下 壁152的前端(d)限定出第一送风口11。下壁152的后端(e)和后壁153的下端(f)限定出第二送风口12,上壁151(的k段)与后壁(的g端)共同限定出风道15的进口,贯流式的风机50位于风道15的进口处。后壁153为贯流风机的蜗壳,其整体上可为凹侧朝前的弯曲状结构。
请参考图2,第二送风口12处设置有导风板60。导风板60可转动地安装于机壳10,以用于打开或关闭第二送风口12和引导第二送风口12的送风方向。此外,第二送风口12处还可安装有摆叶组件等导风机构。后壁153为贯流风机的蜗壳,具体为凹侧朝前的弯曲状结构;上壁151除as段之外的区段(sck)为贯流风机的蜗舌。其包括向后下方延伸的kc段和向前下方延伸的cs段。并且,cs段的倾斜角度为θ,优选使θ≥25°,以利于将气流向斜下方引导,利于制热出风。
当导风板60处于关闭状态时,如图2,导流件30的底端与导风板60的上表面的间距为d2,气流经过该间隔流向出风间隙155。优选使1.5d1≤d2≤2d1,以使进入出风间隙155的气流更多,使下壁152上扬导风的力度大于上壁151下倾导风的力度,使两股气流交汇聚集后将整体上扬流动。
图5是图2所示壁挂式空调室内机在运行向下送风模式时的示意图;图6是图2所示壁挂式空调室内机在运行最大送风模式时的示意图。
在一些实施例中,如图5和图6所示,可使导流件30配置成可前后移动,以便调节出风间隙154、155的大小。具体地,可通过后移导流件30来调大出风间隙154、155,以提高风力,加快制冷/制热速度并延长送风距离;可通过前移导流件30来调小出风间隙154、155,以降低风力,模拟自然风,使气流舒适度更高。并且,导流件30的前后移动还便于封闭第一送风口11。由此,本发明实施例具有以下三种送风模式供用户选择,具体如下:
向前聚合送风模式:如图2所示,使导流件30位于第一送风口11的后方,使导风板60关闭第二送风口12,由第一送风口11聚合上扬送风,使气流避开人体,达到最高点后再向下散落,实现一种“淋浴式”的制冷体验。在空调运行制冷模式时,可以按照聚合送风模式送风。
向下送风模式:如图5所示,控制导流件30前移以关闭第一送风口11,使导风板60打开第二送风口12,在导风板60的引导下,由第二送风口12向下送风。在空调运行制热模式时,可以按照下送风模式送风,以利于加快制热速度。
最大送风模式:如图6所示,使导流件30位于第一送风口11的后方,使导风板60打开第二送风口12,由第一送风口11聚合上扬送风,在导风板60引导下,由第二送风口12向前下方送风。空调在运行制冷或制热模式时,均可选择最大送风模式。
需要注意的是,在前述实施例中,对于导流件30与风道15的上壁151、下壁152的尺寸关系等等限定,均是基于导流件30在打开第一送风口11的状态(如图2)。
图7是导流件的驱动机构的示意图。
在一些实施例中,如图7所示,用于驱动导流件30前后平移的驱动机构为齿轮齿条机构,其安装于机壳10的横向侧部以不影响气流流动。驱动机构包括沿前后方向延伸且固定于导流件30的齿条71,与齿条71啮合的齿轮72,和用于驱动齿轮72转动以带动齿条71前后平移的电机73。电机73可固定于机壳10,齿条71可沿前后方向滑动地安装于机壳10。电机73能够受控地正反转,以使导流件30能沿前后方向往复平移。电机73可为步进电机。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种壁挂式空调室内机,包括:
    机壳,前侧开设有横向延伸的长条状的第一送风口,内部形成有连接所述第一送风口的风道,所述风道在邻近所述第一送风口处,其上壁与下壁的间距沿气流方向逐渐变小,构成渐缩区段;和
    导流件,为平行于所述第一送风口长度方向的杆状,设置在所述风道内且与其上壁和下壁分别限定有出风间隙,并用于将吹向所述第一送风口的气流导向所述风道的上壁和下壁,使气流在所述风道的渐缩区段的引导下逐渐向气流中心聚合地流出所述第一送风口;且
    所述第一送风口上、下边缘朝所述导流件的投影落在所述导流件之上。
  2. 根据权利要求1所述的壁挂式空调室内机,其中
    所述导流件的横截面外形轮廓为具有上下两个尖端、前后两个外凸弯曲形的“橄榄形”;
    所述风道的上壁用于限定所述出风间隙的区段为凹侧朝下的弯曲段,其在所述导流件上方环绕所述导流件;且
    所述风道的下壁用于限定所述出风间隙的区段为从后向前逐渐向上倾斜延伸的内凹的弯曲段,其位于所述导流件前下方。
  3. 根据权利要求2所述的壁挂式空调室内机,其中
    所述导流件的顶端与底端间距为H,所述第一送风口的宽度为h,满足:4mm≤H-h≤10mm。
  4. 根据权利要求2或3所述的壁挂式空调室内机,其中
    所述导流件外表面与所述风道上壁最近距离为d1,与所述风道下壁最近距离为d3,满足:1.5d1≤d3≤2d1。
  5. 根据权利要求2-4中任一项所述的壁挂式空调室内机,其中
    所述导流件外表面与所述风道上壁最近距离为d1,所述第一送风口的宽度为h,满足:0.15h≤d1≤0.25h。
  6. 根据权利要求2-5中任一项所述的壁挂式空调室内机,其中
    所述导流件的横截面外轮廓包括前弧线段、后弧线段,两者的顶端和底端以圆角过渡相接。
  7. 根据权利要求6所述的壁挂式空调室内机,其中
    所述前弧线段的半径为R1,所述后弧线段的半径为R2,所述导流件的顶端与底端间距为H,满足:0.5≤R1/H≤0.8,0.5≤R2/H≤0.8。
  8. 根据权利要求6或7所述的壁挂式空调室内机,其中
    所述前弧线段的半径大于所述后弧线段的半径。
  9. 根据权利要求2-8中任一项所述的壁挂式空调室内机,其中
    所述机壳的底壁开设有朝下敞开且与所述风道相接的第二送风口,所述第二送风口处设置有导风板;
    所述风道包括所述上壁、所述下壁和后壁,所述上壁的前端和所述下壁的前端限定出所述第一送风口,所述下壁的后端和所述后壁的下端限定出所述第二送风口,所述上壁和所述后壁限定出所述风道的进口;且
    所述导风板处于关闭状态时,所述导流件的底端与所述导风板上表面间距为d2,所述导流件外表面与所述风道上壁最近距离为d1,满足:1.5d1≤d2≤2d1。
  10. 根据权利要求1-9中任一项所述的壁挂式空调室内机,其中
    所述导流件配置成可前后移动,以便调节所述出风间隙的大小,且便于封闭所述第一送风口。
PCT/CN2022/091761 2021-07-28 2022-05-09 壁挂式空调室内机 WO2023005329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121734290.4 2021-07-28
CN202121734290.4U CN216131990U (zh) 2021-07-28 2021-07-28 壁挂式空调室内机

Publications (1)

Publication Number Publication Date
WO2023005329A1 true WO2023005329A1 (zh) 2023-02-02

Family

ID=80768327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091761 WO2023005329A1 (zh) 2021-07-28 2022-05-09 壁挂式空调室内机

Country Status (2)

Country Link
CN (1) CN216131990U (zh)
WO (1) WO2023005329A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623737B (zh) * 2021-07-28 2023-05-16 重庆海尔空调器有限公司 壁挂式空调室内机
CN216131990U (zh) * 2021-07-28 2022-03-25 青岛海尔空调器有限总公司 壁挂式空调室内机
CN114593463A (zh) * 2021-08-10 2022-06-07 青岛海尔空调器有限总公司 壁挂式空调室内机的控制方法以及计算机存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083501A1 (ja) * 2006-01-20 2007-07-26 Sharp Kabushiki Kaisha 空気調和機
CN110411000A (zh) * 2019-06-21 2019-11-05 宁波奥克斯电气股份有限公司 一种出风结构及出风控制方法
CN111912012A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN112113277A (zh) * 2020-10-15 2020-12-22 青岛海尔空调器有限总公司 壁挂式空调室内机
CN112113276A (zh) * 2020-10-15 2020-12-22 青岛海尔空调器有限总公司 壁挂式空调室内机
CN113566295A (zh) * 2021-07-28 2021-10-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN113623737A (zh) * 2021-07-28 2021-11-09 重庆海尔空调器有限公司 壁挂式空调室内机
CN216080079U (zh) * 2021-07-28 2022-03-18 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216080080U (zh) * 2021-07-28 2022-03-18 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216131990U (zh) * 2021-07-28 2022-03-25 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143823U (zh) * 2021-07-28 2022-03-29 重庆海尔空调器有限公司 壁挂式空调室内机
CN216143844U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143846U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083501A1 (ja) * 2006-01-20 2007-07-26 Sharp Kabushiki Kaisha 空気調和機
CN110411000A (zh) * 2019-06-21 2019-11-05 宁波奥克斯电气股份有限公司 一种出风结构及出风控制方法
CN111912012A (zh) * 2020-07-16 2020-11-10 青岛海尔空调器有限总公司 立式空调室内机
CN112113277A (zh) * 2020-10-15 2020-12-22 青岛海尔空调器有限总公司 壁挂式空调室内机
CN112113276A (zh) * 2020-10-15 2020-12-22 青岛海尔空调器有限总公司 壁挂式空调室内机
CN113566295A (zh) * 2021-07-28 2021-10-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN113623737A (zh) * 2021-07-28 2021-11-09 重庆海尔空调器有限公司 壁挂式空调室内机
CN216080079U (zh) * 2021-07-28 2022-03-18 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216080080U (zh) * 2021-07-28 2022-03-18 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216131990U (zh) * 2021-07-28 2022-03-25 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143823U (zh) * 2021-07-28 2022-03-29 重庆海尔空调器有限公司 壁挂式空调室内机
CN216143844U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN216143846U (zh) * 2021-07-28 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Also Published As

Publication number Publication date
CN216131990U (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023005330A1 (zh) 壁挂式空调室内机
WO2023005329A1 (zh) 壁挂式空调室内机
CN112113276B (zh) 壁挂式空调室内机
CN216143846U (zh) 壁挂式空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
WO2021190213A1 (zh) 空调室内机
CN110360665A (zh) 窗机空调
WO2021223391A1 (zh) 立式空调室内机
CN216080080U (zh) 壁挂式空调室内机
CN216080079U (zh) 壁挂式空调室内机
CN112113277A (zh) 壁挂式空调室内机
CN216143844U (zh) 壁挂式空调室内机
WO2021190200A1 (zh) 空调室内机
WO2022012055A1 (zh) 立式空调室内机
WO2020020299A1 (zh) 壁挂式空调室内机
WO2023029543A1 (zh) 壁挂式空调室内机
WO2023005423A1 (zh) 壁挂式空调室内机
WO2023246706A1 (zh) 立式空调室内机
WO2022247543A1 (zh) 壁挂式空调室内机
WO2023029541A1 (zh) 壁挂式空调室内机
WO2023029542A1 (zh) 壁挂式空调室内机
CN111912006A (zh) 立式空调室内机
CN216143823U (zh) 壁挂式空调室内机
WO2023098242A1 (zh) 空调室内机
WO2023098054A1 (zh) 立式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE