WO2023005202A1 - 一种车辆传感器的控制方法及系统、一种车辆 - Google Patents

一种车辆传感器的控制方法及系统、一种车辆 Download PDF

Info

Publication number
WO2023005202A1
WO2023005202A1 PCT/CN2022/078300 CN2022078300W WO2023005202A1 WO 2023005202 A1 WO2023005202 A1 WO 2023005202A1 CN 2022078300 W CN2022078300 W CN 2022078300W WO 2023005202 A1 WO2023005202 A1 WO 2023005202A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicle sensor
sensor
driving
information
Prior art date
Application number
PCT/CN2022/078300
Other languages
English (en)
French (fr)
Inventor
张骋
李博
Original Assignee
武汉路特斯汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉路特斯汽车有限公司 filed Critical 武汉路特斯汽车有限公司
Priority to EP22847822.8A priority Critical patent/EP4332514A1/en
Publication of WO2023005202A1 publication Critical patent/WO2023005202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9318Controlling the steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9319Controlling the accelerator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details

Definitions

  • the invention relates to the technical field of vehicles, in particular to a control method and system for vehicle sensors, and a vehicle.
  • Autonomous driving also known as unmanned driving, is a way to make cars unmanned through the on-board control system.
  • Autonomous driving mainly relies on the cooperation of artificial intelligence, visual computing, radar, sensor monitoring devices and global positioning systems, so that the on-board control system can automatically and safely operate motor vehicles without any active human operation.
  • the vehicle sensors in self-driving cars are arranged in fixed positions, and environmental information perception cannot be performed for the sensing areas that cannot be covered in the pre-arrangement. As a result, the vehicle sensor coverage is limited due to the fixed arrangement of vehicle sensors.
  • the purpose of the present invention is to provide a control method and system for autonomous vehicle sensors, which are used to solve the problem of limited coverage when the vehicle sensors are fixedly arranged in the prior art.
  • the present invention provides a control method of a vehicle sensor, the method includes the following steps:
  • the vehicle driving information at least includes vehicle driving environment information
  • the vehicle driving information also includes vehicle positioning information;
  • the formation process of the vehicle driving environment information includes:
  • the process of determining the target grid according to the grid space includes:
  • the grid corresponding to the predicted collision area is selected from the grid space as the target grid.
  • the adjustment to the vehicle sensor includes: angle adjustment and/or position adjustment.
  • when adjusting the position of the vehicle sensor when adjusting the position of the vehicle sensor, it includes: moving the vehicle sensor up and down, moving the vehicle sensor left and right and/or moving the vehicle sensor forward and backward, Adjusting the original spatial position of the vehicle sensor and the corresponding coverage area;
  • adjusting the angle of the vehicle sensor includes: rotating the vehicle sensor clockwise or counterclockwise, and adjusting the original angle of the vehicle sensor and the corresponding coverage area.
  • the vehicle driving information when acquiring the vehicle driving information, it also includes: acquiring the vehicle function activation state, and turning on or off one or more vehicle sensors arranged at different positions of the vehicle according to the result of the vehicle function activation state; wherein, The vehicle function includes at least one of the following: automatic driving function, assisted driving function, lane changing function, steering function and cruise control function.
  • the method also includes:
  • one or more vehicle sensors are arranged on the rear side of the vehicle;
  • one or more vehicle sensors are arranged on the left side of the vehicle;
  • one or more sensors are arranged on the right side of the vehicle.
  • the present invention also provides a control system for vehicle sensors, the system includes:
  • An information collection module configured to acquire vehicle driving information; the vehicle driving information at least includes vehicle driving environment information;
  • An information decomposition module configured to decompose the vehicle driving environment information into a grid space, and determine a target grid according to the grid space;
  • a vehicle sensor adjustment module configured to obtain the perception ability of the vehicle sensor for the grid space, and adjust the vehicle sensor according to the acquired perception ability, and control the target grid within the coverage area of the vehicle sensor Inside.
  • the present invention also provides a vehicle, which is provided with the above-mentioned control system.
  • the present invention provides a control method and system for vehicle sensors, which have beneficial effects: the present invention can increase the mobility of the vehicle sensor and change the original position of the vehicle sensor by adjusting the angle and/or position of the sensor. Coverage angle and coverage area, so as to solve the problem of limited coverage capability of self-driving vehicles in the prior art due to the fixed arrangement of vehicle sensors.
  • the present invention optimizes the perception capability of automatic driving by dynamically changing the arrangement of sensors, which can meet the environmental perception requirements of the automatic driving function in real time, and achieve better user experience and more reliable driving safety.
  • Fig. 1 is a schematic flowchart of a control method of a vehicle sensor provided by an embodiment
  • Fig. 2 is a schematic diagram of grid space provided by an embodiment
  • Fig. 3 is a schematic diagram of the coverage area of the vehicle sensor in the normal driving state of the vehicle provided by an embodiment
  • Fig. 4 is a schematic diagram of the coverage area of the vehicle sensor when the vehicle assists the driving function is turned on according to an embodiment
  • Fig. 5 is a schematic diagram of the coverage area of the vehicle sensor when the vehicle turns on the lane change or steering function provided by an embodiment
  • Fig. 6 is a schematic diagram of the coverage area of the vehicle sensor when the cruise control function of the vehicle is turned on according to an embodiment
  • Fig. 7 is a schematic diagram of a hardware structure of a vehicle sensor control system provided by an embodiment.
  • the present invention provides a control method of a vehicle sensor, the method includes the following steps:
  • the vehicle driving information at least includes vehicle driving environment information
  • the target grid is the grid that the vehicle needs to perceive, and the perception capabilities and differences of different vehicle sensors to the grid space are tested and determined in advance in the design stage of the vehicle sensor.
  • the method can increase the mobility of the vehicle sensor, change the original coverage angle and coverage area of the vehicle sensor, and thus can solve the problems caused by the problem of the self-driving vehicle in the prior art.
  • the fixed arrangement of sensors leads to the problem of limited coverage.
  • the method optimizes the automatic driving perception ability by dynamically changing the sensor arrangement form, which can meet the environmental perception requirements of the automatic driving function in real time, and achieve better user experience and more reliable driving safety.
  • the vehicle driving information also includes vehicle positioning information; the forming process of the vehicle driving environment information includes: acquiring vehicle positioning information; generating vehicle driving trajectory according to the vehicle positioning information; Acquiring map data, and determining vehicle driving environment information according to the map data and the vehicle driving trajectory.
  • GNSS Global Navigation Satellite System
  • the high-precision map data may be map data with decimeter-level accuracy, or map data that can provide road-level navigation information and lane-level navigation information.
  • the vehicle running environment information in this embodiment may be space information around the vehicle.
  • the process of determining the target grid according to the grid space includes: after decomposing the vehicle driving environment information into the grid space, obtaining the current vehicle driving direction, and obtaining other The traffic flow when the vehicle is moving close to the current vehicle; determine the risk source direction of the current vehicle according to the traffic flow and the current vehicle driving direction; predict the probability of collision between other vehicles and the current vehicle based on the risk source direction, and the collision area ; Select the grid corresponding to the predicted collision area from the grid space as the target grid.
  • this embodiment first decomposes the driving environment information of the current vehicle into a grid space composed of multiple grids, and then obtains the current driving direction of the vehicle, and obtains other vehicles moving close to the current vehicle.
  • the risk source direction of the current vehicle based on the obtained traffic flow and current vehicle driving direction, and predict the probability of collision between other vehicles and the current vehicle based on the risk source direction, as well as the collision area; then from the grid space
  • the grid corresponding to the predicted collision area is screened out as the grid that the vehicle sensor must perceive, that is, the target grid.
  • the direction of the risk source is determined based on the current driving direction of the vehicle itself. Define the direction that the front of the current vehicle is pointing at to be 0°, and one circle in the clockwise direction is 360°. Traffic flow, then this direction is the direction of risk source.
  • the adjustment to the vehicle sensor includes: angle adjustment and/or position adjustment.
  • adjusting the position of the vehicle sensor includes: moving the vehicle sensor up and down, moving the vehicle sensor left and right, and/or moving the vehicle sensor forward and backward, and adjusting the position of the vehicle sensor The original spatial position of and the coverage area corresponding to the original spatial position.
  • adjusting the angle of the vehicle sensor includes: rotating the vehicle sensor clockwise or counterclockwise, and adjusting the original angle of the vehicle sensor and the coverage area corresponding to the original angle.
  • the vehicle sensor can be moved up and down, left and right, and/or forward and backward through a mechanical structure, so as to adjust the original spatial position of the vehicle sensor and the coverage area corresponding to the original spatial position.
  • the bracket can be moved up and down, left and right, and/or move, which is equivalent to indirectly adjusting the vehicle sensor, changing the original spatial position of the vehicle sensor and the corresponding position of the original spatial position. coverage area. It can be seen that, by adjusting the position of the sensor in this example, the mobility of the vehicle sensor can be increased, and the original coverage angle and coverage area of the vehicle sensor can be changed, thereby solving the problem of the fixed arrangement of the vehicle sensor in the prior art. Problems that lead to limitations in its coverage capabilities.
  • this embodiment can also control the rotation of the vehicle sensor through the mechanical structure, changing its original angle and the coverage area corresponding to the original angle, wherein the rotation direction includes clockwise rotation and counterclockwise rotation, and this example will Clockwise rotation is defined as a positive direction, and counterclockwise rotation is defined as a negative direction. If the rotation angle is "+15°", it means that the vehicle sensor is controlled to rotate 15° clockwise. It can be seen that, by adjusting the angle of the sensor in this example, the mobility of the vehicle sensor can be increased, and the original coverage angle and coverage area of the vehicle sensor can be changed, thereby solving the problem of fixed arrangement of the vehicle sensor in the prior art. Problems that lead to limitations in its coverage capabilities.
  • the vehicle driving information when acquiring the vehicle driving information, it also includes: acquiring the vehicle function activation state, and turning on or off one or more vehicle sensors arranged at different positions of the vehicle according to the result of the vehicle function activation state; wherein, the vehicle The function includes at least one of the following: automatic driving function, assisted driving function, lane changing function, steering function and cruise control function.
  • the vehicle sensors in the method may be disposed on the front, rear, left and/or right sides of the vehicle.
  • one or more vehicle sensors may be provided, for example, on the front side of the vehicle.
  • one or more vehicle sensors may be provided, for example, on the rear side of the vehicle.
  • one or more vehicle sensors may be located, for example, on the left side of the vehicle.
  • one or more sensors may be located on the right side of the vehicle, for example.
  • the vehicle sensor in this method can be set according to actual needs, for example, an infrared sensor, a distance sensor, etc. can be set.
  • a vehicle sensor A is provided on the front side of the vehicle M
  • a vehicle sensor B is provided on the rear side of the vehicle M
  • a vehicle sensor C is provided on the left side of the vehicle M
  • a vehicle sensor C is provided on the right side of the vehicle M sensor D.
  • the coverage area of the vehicle sensor in the vehicle M is the corresponding coverage area of the vehicle sensor A and the vehicle sensor B in the unadjusted state.
  • a vehicle sensor A is provided on the front side of the vehicle N
  • a vehicle sensor B is provided on the rear side of the vehicle N
  • a vehicle sensor C is provided on the left side of the vehicle N
  • a vehicle sensor C is provided on the right side of the vehicle N vehicle sensor D.
  • the vehicle sensor A on the front side of the vehicle N, the vehicle sensor B on the rear side of the vehicle N, the vehicle sensor C on the left side of the vehicle N, and the vehicle sensor D on the right side of the vehicle N are in working condition.
  • the coverage area of the vehicle sensor in the vehicle N is the corresponding coverage area of the vehicle sensor A, the vehicle sensor B, the vehicle sensor C and the vehicle sensor D in the unadjusted state.
  • a vehicle sensor A is provided on the front side of the vehicle X
  • a vehicle sensor B is provided on the rear side of the vehicle X
  • a vehicle sensor C is provided on the left side of the vehicle X
  • a vehicle sensor C is provided on the right side of the vehicle X vehicle sensor D.
  • vehicle sensor A on the front side of vehicle X
  • vehicle sensor B on the rear side of vehicle X
  • vehicle sensor C on the left side of vehicle X
  • vehicle sensor C on the right side of vehicle X Sensors D are all in working condition.
  • the vehicle sensor B on the rear side of the vehicle X and the vehicle sensor D on the right side of the vehicle X are rotated counterclockwise , adjust the angles of vehicle sensor B and vehicle sensor D to solve the area coverage problem when vehicle X turns on the lane change or steering function.
  • the coverage area of the vehicle sensor in vehicle X is the corresponding coverage area of vehicle sensor A and vehicle sensor C in the unadjusted state, and the corresponding coverage area of vehicle sensor B and vehicle sensor D after the counterclockwise angle adjustment .
  • a vehicle sensor A is provided on the front side of the vehicle Y
  • a vehicle sensor B is provided on the rear side of the vehicle Y
  • a vehicle sensor C is provided on the left side of the vehicle Y
  • a vehicle sensor C is provided on the right side of the vehicle Y vehicle sensor D.
  • the vehicle sensor A on the front side of vehicle Y, the vehicle sensor B on the rear side of vehicle Y, the vehicle sensor C on the left side of vehicle Y and the vehicle sensor on the right side of vehicle Y D are in working condition.
  • this embodiment adjusts the vehicle sensor C on the left side of the vehicle Y and the vehicle sensor D on the right side of the vehicle Y by adjusting the counterclockwise angle, which is equivalent to It is used to realize forward perception enhancement by turning the vehicle sensor C and the vehicle sensor D forward.
  • the coverage area of the vehicle sensor in vehicle Y is the corresponding coverage area of vehicle sensor A and vehicle sensor B in the unadjusted state, and the corresponding coverage area of vehicle sensor C and vehicle sensor D after the counterclockwise angle adjustment .
  • the present invention provides a control method for a vehicle sensor, by adjusting the angle and/or position of the sensor, the mobility of the vehicle sensor can be increased, and the original coverage angle and coverage area of the vehicle sensor can be changed, thereby solving the problem of
  • the fixed arrangement of vehicle sensors in autonomous vehicles leads to the problem of limited coverage.
  • the present invention optimizes the perception capability of automatic driving by dynamically changing the arrangement of sensors, which can meet the environmental perception requirements of the automatic driving function in real time, and achieve better user experience and more reliable driving safety.
  • the present invention also provides a control system for vehicle sensors, the system includes:
  • An information collection module M10 configured to acquire vehicle driving information; the vehicle driving information at least includes vehicle driving environment information;
  • An information decomposition module M20 configured to decompose the vehicle driving environment information into a grid space, and determine a target grid according to the grid space;
  • the vehicle sensor adjustment module M30 is configured to obtain the perception ability of the vehicle sensor for the grid space, and adjust the vehicle sensor according to the acquired perception ability, and control the target grid to be covered by the vehicle sensor within the area.
  • the target grid is the grid that the vehicle needs to perceive, and the perception capabilities and differences of different vehicle sensors to the grid space are tested and determined in advance in the design stage of the vehicle sensor.
  • the system can increase the mobility of the vehicle sensor, change the original coverage angle and coverage area of the vehicle sensor, and thus can solve the problem of self-driving vehicles in the prior art.
  • the fixed arrangement of sensors leads to the problem of limited coverage.
  • the system optimizes the perception ability of autonomous driving by dynamically changing the layout of sensors, which can meet the environmental perception requirements of autonomous driving functions in real time, and achieve better user experience and more reliable driving safety.
  • the vehicle driving information also includes vehicle positioning information; the forming process of the vehicle driving environment information includes: acquiring vehicle positioning information; generating vehicle driving trajectory according to the vehicle positioning information; Acquiring map data, and determining vehicle driving environment information according to the map data and the vehicle driving trajectory.
  • GNSS Global Navigation Satellite System
  • the high-precision map data may be map data with decimeter-level accuracy, or map data that can provide road-level navigation information and lane-level navigation information.
  • the vehicle running environment information in this embodiment may be space information around the vehicle.
  • the process of determining the target grid according to the grid space includes: after decomposing the vehicle driving environment information into grid spaces, obtaining the current vehicle driving direction, and obtaining other The traffic flow when the vehicle is moving close to the current vehicle; determine the risk source direction of the current vehicle according to the traffic flow and the current vehicle driving direction; predict the probability of collision between other vehicles and the current vehicle based on the risk source direction, and the collision area ; Select the grid corresponding to the predicted collision area from the grid space as the target grid.
  • this embodiment first decomposes the driving environment information of the current vehicle into a grid space composed of multiple grids, and then obtains the current driving direction of the vehicle, and obtains other vehicles moving close to the current vehicle.
  • the risk source direction of the current vehicle based on the obtained traffic flow and current vehicle driving direction, and predict the probability of collision between other vehicles and the current vehicle based on the risk source direction, as well as the collision area; then from the grid space
  • the grid corresponding to the predicted collision area is screened out as the grid that the vehicle sensor must perceive, that is, the target grid.
  • the direction of the risk source is determined based on the current driving direction of the vehicle itself. Define the direction that the front of the current vehicle is pointing at to be 0°, and one circle in the clockwise direction is 360°. Traffic flow, then this direction is the direction of risk source.
  • the adjustment to the vehicle sensor includes: angle adjustment and/or position adjustment.
  • adjusting the position of the vehicle sensor includes: moving the vehicle sensor up and down, moving the vehicle sensor left and right, and/or moving the vehicle sensor forward and backward, and adjusting the position of the vehicle sensor The original spatial position of and the coverage area corresponding to the original spatial position.
  • adjusting the angle of the vehicle sensor includes: rotating the vehicle sensor clockwise or counterclockwise, and adjusting the original angle of the vehicle sensor and the coverage area corresponding to the original angle.
  • the vehicle sensor can be moved up and down, left and right, and/or forward and backward through a mechanical structure, so as to adjust the original spatial position of the vehicle sensor and the coverage area corresponding to the original spatial position.
  • the bracket can be moved up and down, left and right, and/or move, which is equivalent to indirectly adjusting the vehicle sensor, changing the original spatial position of the vehicle sensor and the corresponding position of the original spatial position. coverage area. It can be seen that, by adjusting the position of the sensor in this example, the mobility of the vehicle sensor can be increased, and the original coverage angle and coverage area of the vehicle sensor can be changed, thereby solving the problem of the fixed arrangement of the vehicle sensor in the prior art. Problems that lead to limitations in its coverage capabilities.
  • this embodiment can also control the rotation of the vehicle sensor through the mechanical structure, changing its original angle and the coverage area corresponding to the original angle, wherein the rotation direction includes clockwise rotation and counterclockwise rotation, and this example will Clockwise rotation is defined as a positive direction, and counterclockwise rotation is defined as a negative direction. If the rotation angle is "+15°", it means that the vehicle sensor is controlled to rotate 15° clockwise. It can be seen that, by adjusting the angle of the sensor in this example, the mobility of the vehicle sensor can be increased, and the original coverage angle and coverage area of the vehicle sensor can be changed, thereby solving the problem of fixed arrangement of the vehicle sensor in the prior art. Problems that lead to limitations in its coverage capabilities.
  • the vehicle driving information when acquiring the vehicle driving information, it also includes: acquiring the vehicle function activation state, and turning on or off one or more vehicle sensors arranged at different positions of the vehicle according to the result of the vehicle function activation state; wherein, the vehicle The function includes at least one of the following: automatic driving function, assisted driving function, lane changing function, steering function and cruise control function.
  • the vehicle sensors in the present system may be located on the front, rear, left and/or right sides of the vehicle.
  • one or more vehicle sensors may be provided, for example, on the front side of the vehicle.
  • one or more vehicle sensors may be provided, for example, on the rear side of the vehicle.
  • one or more vehicle sensors may be located, for example, on the left side of the vehicle.
  • one or more sensors may be located on the right side of the vehicle, for example.
  • the vehicle sensors in this system can be set according to actual needs, for example, infrared sensors, distance sensors, etc. can be set.
  • a vehicle sensor A is provided on the front side of the vehicle M
  • a vehicle sensor B is provided on the rear side of the vehicle M
  • a vehicle sensor C is provided on the left side of the vehicle M
  • a vehicle sensor C is provided on the right side of the vehicle M sensor D.
  • the coverage area of the vehicle sensor in the vehicle M is the corresponding coverage area of the vehicle sensor A and the vehicle sensor B in the unadjusted state.
  • a vehicle sensor A is provided on the front side of the vehicle N
  • a vehicle sensor B is provided on the rear side of the vehicle N
  • a vehicle sensor C is provided on the left side of the vehicle N
  • a vehicle sensor C is provided on the right side of the vehicle N vehicle sensor D.
  • the vehicle sensor A on the front side of the vehicle N, the vehicle sensor B on the rear side of the vehicle N, the vehicle sensor C on the left side of the vehicle N, and the vehicle sensor D on the right side of the vehicle N are in working condition.
  • the coverage area of the vehicle sensor in the vehicle N is the corresponding coverage area of the vehicle sensor A, the vehicle sensor B, the vehicle sensor C and the vehicle sensor D in the unadjusted state.
  • a vehicle sensor A is provided on the front side of the vehicle X
  • a vehicle sensor B is provided on the rear side of the vehicle X
  • a vehicle sensor C is provided on the left side of the vehicle X
  • a vehicle sensor C is provided on the right side of the vehicle X vehicle sensor D.
  • vehicle sensor A on the front side of vehicle X
  • vehicle sensor B on the rear side of vehicle X
  • vehicle sensor C on the left side of vehicle X
  • vehicle sensor C on the right side of vehicle X Sensors D are all in working condition.
  • the vehicle sensor B on the rear side of the vehicle X and the vehicle sensor D on the right side of the vehicle X are rotated counterclockwise , adjust the angles of vehicle sensor B and vehicle sensor D to solve the area coverage problem when vehicle X turns on the lane change or steering function.
  • the coverage area of the vehicle sensor in vehicle X is the corresponding coverage area of vehicle sensor A and vehicle sensor C in the unadjusted state, and the corresponding coverage area of vehicle sensor B and vehicle sensor D after the counterclockwise angle adjustment .
  • a vehicle sensor A is provided on the front side of the vehicle Y
  • a vehicle sensor B is provided on the rear side of the vehicle Y
  • a vehicle sensor C is provided on the left side of the vehicle Y
  • a vehicle sensor C is provided on the right side of the vehicle Y vehicle sensor D.
  • the vehicle sensor A on the front side of vehicle Y, the vehicle sensor B on the rear side of vehicle Y, the vehicle sensor C on the left side of vehicle Y and the vehicle sensor on the right side of vehicle Y D are in working condition.
  • this embodiment adjusts the vehicle sensor C on the left side of the vehicle Y and the vehicle sensor D on the right side of the vehicle Y by adjusting the counterclockwise angle, which is equivalent to It is used to realize forward perception enhancement by turning the vehicle sensor C and the vehicle sensor D forward.
  • the coverage area of the vehicle sensor in vehicle Y is the corresponding coverage area of vehicle sensor A and vehicle sensor B in the unadjusted state, and the corresponding coverage area of vehicle sensor C and vehicle sensor D after the counterclockwise angle adjustment .
  • the present invention provides a vehicle sensor control system, which can increase the mobility of the vehicle sensor and change the original coverage angle and coverage area of the vehicle sensor by adjusting the angle and/or position of the sensor, thereby solving the problem of
  • the fixed arrangement of vehicle sensors in autonomous vehicles leads to the problem of limited coverage.
  • the present invention optimizes the perception capability of automatic driving by dynamically changing the arrangement of sensors, which can meet the environmental perception requirements of the automatic driving function in real time, and achieve better user experience and more reliable driving safety.
  • the present invention also provides a vehicle, which is provided with any one of the vehicle sensor control systems described above.
  • vehicle which is provided with any one of the vehicle sensor control systems described above.
  • control system please refer to the above-mentioned control system, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆传感器(A,B,C,D)的控制方法及系统,以及一种车辆(M,N,X,Y),具体涉及车辆技术领域;包括:获取车辆行驶信息(S100);车辆行驶信息至少包括车辆行驶环境信息;将车辆行驶环境信息分解为栅格空间,并根据栅格空间确定出目标栅格(S200);获取车辆传感器(A,B,C,D)对栅格空间的感知能力,并根据所获取的感知能力对车辆传感器(A,B,C,D)进行调整,将目标栅格控制在车辆传感器(A,B,C,D)的覆盖区域内(S300)。通过对传感器(A,B,C,D)进行角度和/或位置调整,能够增加车辆传感器(A,B,C,D)的可活动性,改变车辆传感器(A,B,C,D)的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆(M,N,X,Y)中因为车辆传感器(A,B,C,D)固定布置而导致其覆盖能力局限的问题。

Description

一种车辆传感器的控制方法及系统、一种车辆 技术领域
本发明涉及车辆技术领域,特别是涉及一种车辆传感器的控制方法及系统,以及一种车辆。
背景技术
自动驾驶(Automatic driving)又称无人驾驶,是一种通过车载控制系统来让汽车实现无人驾驶。自动驾驶主要依靠人工智能、视觉计算、雷达、传感器监控装置和全球定位系统协同合作,让车载控制系统可以在没有任何人类主动操作下,自动安全地操作机动车辆。但是,目前自动驾驶汽车中的车辆传感器是采用固定位置布置,对于不能在预先布置中覆盖的感知区域就无法进行环境信息感知,从而出现因为车辆传感器固定布置而导致车辆传感器覆盖能力局限的情况。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种自动驾驶车辆传感器的控制方法及系统,用于解决现有技术中车辆传感器固定布置时覆盖能力局限的问题。
为实现上述目的及其他相关目的,本发明提供一种车辆传感器的控制方法,所述方法包括以下步骤:
获取车辆行驶信息;所述车辆行驶信息至少包括车辆行驶环境信息;
将所述车辆行驶环境信息分解为栅格空间,并根据所述栅格空间确定出目标栅格;
获取车辆传感器对所述栅格空间的感知能力,并根据所获取的感知能力对所述车辆传感器进行调整,将所述目标栅格控制在所述车辆传感器的覆盖区域内。
于本发明的一实施例中,所述车辆行驶信息还包括车辆定位信息;所述车辆行驶环境信息的形成过程包括:
获取车辆定位信息;
根据所述车辆定位信息生成车辆行驶轨迹;
获取地图数据,并根据所述地图数据和所述车辆行驶轨迹确定出车辆行驶环境信息。
于本发明的一实施例中,根据所述栅格空间确定出目标栅格的过程包括:
将所述车辆行驶环境信息分解为栅格空间后,获取当前车辆行驶方向,以及获取其他车辆靠近当前车辆移动时的交通流;
根据所述交通流和当前车辆行驶方向确定当前车辆的风险来源方向;
基于所述风险来源方向预测其他车辆与当前车辆出现碰撞的概率,以及出现碰撞的区域;
从所述栅格空间中筛选出与预测碰撞区域对应的栅格,作为目标栅格。
于本发明的一实施例中,对所述车辆传感器进行的调整包括:角度调整和/或位置调整。
于本发明的一实施例中,对所述车辆传感器进行位置调整时,包括:对所述车辆传感器进行上下移动、对所述车辆传感器进行左右移动和/或对所述车辆传感器进行前后移动,调整所述车辆传感器的原始空间位置以及对应的覆盖区域;
对所述车辆传感器进行角度调整时,包括:对所述车辆传感器进行顺时针旋转或逆时针旋转,调整所述车辆传感器原始角度以及对应的覆盖区域。
于本发明的一实施例中,在获取车辆行驶信息时,还包括:获取车辆功能开启状态,根据车辆功能开启状态结果打开或关闭设置于车辆不同位置处的一个或多个车辆传感器;其中,车辆功能包括以下至少之一:自动驾驶功能、辅助驾驶功能、变道功能、转向功能和定速巡航功能。
于本发明的一实施例中,所述方法还包括:
在所述车辆的前侧设置一个或多个车辆传感器;
和/或,在所述车辆的后侧设置一个或多个车辆传感器;
和/或,在所述车辆的左侧设置一个或多个车辆传感器;
和/或,在所述车辆的右侧设置一个或多个传感器。
本发明还提供一种车辆传感器的控制系统,所述系统包括有:
信息采集模块,用于获取车辆行驶信息;所述车辆行驶信息至少包括车辆行驶环境信息;
信息分解模块,用于将所述车辆行驶环境信息分解为栅格空间,并根据所述栅格空间确定出目标栅格;
车辆传感器调整模块,用于获取车辆传感器对所述栅格空间的感知能力,并根据所获取的感知能力对所述车辆传感器进行调整,将所述目标栅格控制在所述车辆传感器的覆盖区域内。
本发明还提供一种车辆,所述车辆上设置有如上述所述的控制系统。
如上所述,本发明提供一种车辆传感器的控制方法及系统,具有的有益效果是:本发明通过对传感器进行角度和/或位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。同时,本发明通过动态改变传感器布置形态来优化自动驾 驶感知能力,能够实时地满足自动驾驶功能对环境感知的需求,实现更好的用户体验以及及更可靠的行驶安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例提供的车辆传感器的控制方法流程示意图;
图2为一实施例提供的栅格空间示意图;
图3为一实施例提供的车辆在正常行驶状态下车辆传感器的覆盖区域示意图;
图4为一实施例提供的车辆在开启辅助驾驶功能时车辆传感器的覆盖区域示意图;
图5为一实施例提供的车辆在开启变道或转向功能时车辆传感器的覆盖区域示意图;
图6为一实施例提供的车辆在开启定速巡航功能时车辆传感器的覆盖区域示意图;
图7为一实施例提供的车辆传感器的控制系统的硬件结构示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1所示,本发明提供一种车辆传感器的控制方法,所述方法包括以下步骤:
S100,获取车辆行驶信息;所述车辆行驶信息至少包括车辆行驶环境信息;
S200,将所述车辆行驶环境信息分解为栅格空间,并根据所述栅格空间确定出目标栅格;
S300,获取车辆传感器对所述栅格空间的感知能力,并根据所获取的感知能力对所述车辆传感器进行调整,将所述目标栅格控制在所述车辆传感器的覆盖区域内。
在本方法中,目标栅格是车辆需要感知的栅格,不同的车辆传感器对栅格空间的感知能力和差异预先在车辆传感器的设计阶段进行测试和确定。由此可知,本方法通过对传感器进行角度和/或位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。同时,本方法通过动态改变传感器布置形态来优化自动驾驶感知能力,能够实时地满足自动驾驶功能对环境感知的需求,实现更好的用户体验以及及更可靠的行驶安全性。
根据上述记载,在一示例性实施例中,所述车辆行驶信息还包括车辆定位信息;所述车辆行驶环境信息的形成过程包括:获取车辆定位信息;根据所述车辆定位信息生成车辆行驶轨迹;获取地图数据,并根据所述地图数据和所述车辆行驶轨迹确定出车辆行驶环境信息。作为示例,例如首先获取车辆的GNSS(Global Navigation Satellite System,全球导航卫星系统,简称GNSS)定位信息,然后根据所获取的GNSS定位信息生成当前车辆的行驶轨迹;再获取高精度地图数据,并将所获取的高精度地图数据和当前车辆的行驶轨迹进行结合,得到当前车辆的行驶环境信息。在本实施例中,高精度地图数据可以是精度达到分米级的地图数据,也可以是能提供道路级别导航信息和车道级别导航信息的地图数据。本实施例中的车辆行驶环境信息可以是车辆周边空间信息。
根据上述记载,在一示例性实施例中,根据所述栅格空间确定出目标栅格的过程包括:将所述车辆行驶环境信息分解为栅格空间后,获取当前车辆行驶方向,以及获取其他车辆靠近当前车辆移动时的交通流;根据所述交通流和当前车辆行驶方向确定当前车辆的风险来源方向;基于所述风险来源方向预测其他车辆与当前车辆出现碰撞的概率,以及出现碰撞的区域;从所述栅格空间中筛选出与预测碰撞区域对应的栅格,作为目标栅格。作为示例,如图2所示,本实施例首先将当前车辆的行驶环境信息分解为由多个栅格组成的栅格空间,然后获取当前车辆行驶方向,以及获取其他车辆靠近当前车辆移动时的交通流;再根据所获取的交通流和当前车辆行驶方向来确定当前车辆的风险来源方向,基于风险来源方向预测其他车辆与当前车辆出现碰撞的概率,以及出现碰撞的区域;然后从栅格空间中筛选出与预测碰撞区域对应的栅格,作为车辆传感器必须感知的栅格,即目标栅格。在本实施例中,风险来源方向是基于当前车辆自身行驶方向确定的,定义当前车辆车头指向的方向为0°,顺时针方向一圈为360°,若某方向有向当前车辆所在位置移动的交通流,则该方向就是风险来源方向。
根据上述记载,在一示例性实施例中,对所述车辆传感器进行的调整包括:角度调整和/ 或位置调整。具体地,在对所述车辆传感器进行位置调整时,包括:对所述车辆传感器进行上下移动、对所述车辆传感器进行左右移动和/或对所述车辆传感器进行前后移动,调整所述车辆传感器的原始空间位置以及原始空间位置所对应的覆盖区域。在对所述车辆传感器进行角度调整时,包括:对所述车辆传感器进行顺时针旋转或逆时针旋转,调整所述车辆传感器原始角度以及原始角度所对应的覆盖区域。
作为一示例,本实施例可以通过机械结构来对车辆传感器进行上下移动、左右移动和/或前后移动,从而调整车辆传感器的原始空间位置以及原始空间位置所对应的覆盖区域。例如,在车辆传感器与车辆是通过支架进行固定连接时,可以对支架进行上下、左右和/或移动,相当于间接地对车辆传感器进行调节,改变车辆传感器的原始空间位置以及原始空间位置所对应的覆盖区域。由此可知,本示例通过对传感器进行位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。
作为另一示例,本实施例还可以通过机械结构来对车辆传感器进行旋转控制,改变其原始角度以及原始角度对应的覆盖区域,其中,旋转方向包括顺时针旋转和逆时针旋转,本示例将顺时针旋转定义为正方向,逆时针旋转定义为负方向。若旋转角度为“+15°”,则表示控制车辆传感器按照顺时针方向旋转15°。由此可知,本示例通过对传感器进行角度调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。
在一示例性实施例中,在获取车辆行驶信息时,还包括:获取车辆功能开启状态,根据车辆功能开启状态结果打开或关闭设置于车辆不同位置处的一个或多个车辆传感器;其中,车辆功能包括以下至少之一:自动驾驶功能、辅助驾驶功能、变道功能、转向功能和定速巡航功能。
在一些示例性实施例中,本方法中的车辆传感器可以设置在车辆的前侧、后侧、左侧和/或右侧。作为一示例,例如可以在所述车辆的前侧设置一个或多个车辆传感器。作为另一示例,例如可以在所述车辆的后侧设置一个或多个车辆传感器。作为另一示例,例如可以在所述车辆的左侧设置一个或多个车辆传感器。作为又一示例,例如可以在车辆的右侧设置一个或多个传感器。其中,本方法中的车辆传感器可以根据实际需求进行设置,例如可以设置红外传感器、距离传感器等。
在一具体实施例中,分别在车辆M前侧设置有车辆传感器A,在车辆M后侧设置有车辆传感器B,在车辆M左侧设置有车辆传感器C,以及在车辆M右侧设置有车辆传感器D。 如图3所示,当车辆M处于正常行驶状态时,只有车辆M前侧的车辆传感器A和车辆M后侧的车辆传感器B处于工作状态,位于车辆M左侧的车辆传感器C和位于车辆M右侧的车辆传感器D处于折叠状态。此时,车辆M中车辆传感器的覆盖区域为车辆传感器A和车辆传感器B在未调整状态下所对应的覆盖区域。
在另一具体实施例中,分别在车辆N前侧设置有车辆传感器A,在车辆N后侧设置有车辆传感器B,在车辆N左侧设置有车辆传感器C,以及在车辆N右侧设置有车辆传感器D。当车辆N开启辅助驾驶功能时,车辆需要尽可能的覆盖周边区域,此时车辆N左侧的车辆传感器C和车辆N右侧的车辆传感器D向侧面展开。如图4所示,当车辆N开启辅助驾驶功能时,车辆N前侧的车辆传感器A,车辆N后侧的车辆传感器B,车辆N左侧的车辆传感器C和车辆N右侧的车辆传感器D均处于工作状态。此时,车辆N中车辆传感器的覆盖区域为车辆传感器A、车辆传感器B、车辆传感器C和车辆传感器D在未调整状态下所对应的覆盖区域。
在另一具体实施例中,分别在车辆X前侧设置有车辆传感器A,在车辆X后侧设置有车辆传感器B,在车辆X左侧设置有车辆传感器C,以及在车辆X右侧设置有车辆传感器D。如图5所示,当车辆X开启变道或转向功能时,车辆X前侧的车辆传感器A,车辆X后侧的车辆传感器B,车辆X左侧的车辆传感器C和车辆X右侧的车辆传感器D均处于工作状态。当车辆X开启变道或转向功能时,需要通过旋转传感器指向增强车辆一侧的感知冗余,所以本实施例通过逆时针旋转车辆X后侧的车辆传感器B和车辆X右侧的车辆传感器D,调节车辆传感器B和车辆传感器D的角度来解决车辆X开启变道或转向功能时的区域覆盖问题。此时,车辆X中车辆传感器的覆盖区域为车辆传感器A和车辆传感器C在未调整状态下所对应的覆盖区域,以及车辆传感器B和车辆传感器D在进行逆时针角度调整后所对应的覆盖区域。
在另一具体实施例中,分别在车辆Y前侧设置有车辆传感器A,在车辆Y后侧设置有车辆传感器B,在车辆Y左侧设置有车辆传感器C,以及在车辆Y右侧设置有车辆传感器D。如图6所示,当车辆Y开启定速巡航功能时,车辆Y前侧的车辆传感器A,车辆Y后侧的车辆传感器B,车辆Y左侧的车辆传感器C和车辆Y右侧的车辆传感器D均处于工作状态。当车辆Y开启定速巡航功能时,车辆需要更丰富的前部感知信息,因此本实施例通过对车辆Y左侧的车辆传感器C和车辆Y右侧的车辆传感器D进行逆时针角度调整,相当于通过对车辆传感器C和车辆传感器D向前翻转来实现前方感知强化。此时,车辆Y中车辆传感器的覆盖区域为车辆传感器A和车辆传感器B在未调整状态下所对应的覆盖区域,以及车辆传感器C和车辆传感器D在进行逆时针角度调整后所对应的覆盖区域。
综上所述,本发明提供一种车辆传感器的控制方法,通过对传感器进行角度和/或位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。同时,本发明通过动态改变传感器布置形态来优化自动驾驶感知能力,能够实时地满足自动驾驶功能对环境感知的需求,实现更好的用户体验以及及更可靠的行驶安全性。
如图7所示,本发明还提供一种车辆传感器的控制系统,所述系统包括有:
信息采集模块M10,用于获取车辆行驶信息;所述车辆行驶信息至少包括车辆行驶环境信息;
信息分解模块M20,用于将所述车辆行驶环境信息分解为栅格空间,并根据所述栅格空间确定出目标栅格;
车辆传感器调整模块M30,用于获取车辆传感器对所述栅格空间的感知能力,并根据所获取的感知能力对所述车辆传感器进行调整,将所述目标栅格控制在所述车辆传感器的覆盖区域内。
在本系统中,目标栅格是车辆需要感知的栅格,不同的车辆传感器对栅格空间的感知能力和差异预先在车辆传感器的设计阶段进行测试和确定。由此可知,本系统通过对传感器进行角度和/或位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。同时,本系统通过动态改变传感器布置形态来优化自动驾驶感知能力,能够实时地满足自动驾驶功能对环境感知的需求,实现更好的用户体验以及及更可靠的行驶安全性。
根据上述记载,在一示例性实施例中,所述车辆行驶信息还包括车辆定位信息;所述车辆行驶环境信息的形成过程包括:获取车辆定位信息;根据所述车辆定位信息生成车辆行驶轨迹;获取地图数据,并根据所述地图数据和所述车辆行驶轨迹确定出车辆行驶环境信息。作为示例,例如首先获取车辆的GNSS(Global Navigation Satellite System,全球导航卫星系统,简称GNSS)定位信息,然后根据所获取的GNSS定位信息生成当前车辆的行驶轨迹;再获取高精度地图数据,并将所获取的高精度地图数据和当前车辆的行驶轨迹进行结合,得到当前车辆的行驶环境信息。在本实施例中,高精度地图数据可以是精度达到分米级的地图数据,也可以是能提供道路级别导航信息和车道级别导航信息的地图数据。本实施例中的车辆行驶环境信息可以是车辆周边空间信息。
根据上述记载,在一示例性实施例中,根据所述栅格空间确定出目标栅格的过程包括: 将所述车辆行驶环境信息分解为栅格空间后,获取当前车辆行驶方向,以及获取其他车辆靠近当前车辆移动时的交通流;根据所述交通流和当前车辆行驶方向确定当前车辆的风险来源方向;基于所述风险来源方向预测其他车辆与当前车辆出现碰撞的概率,以及出现碰撞的区域;从所述栅格空间中筛选出与预测碰撞区域对应的栅格,作为目标栅格。作为示例,如图2所示,本实施例首先将当前车辆的行驶环境信息分解为由多个栅格组成的栅格空间,然后获取当前车辆行驶方向,以及获取其他车辆靠近当前车辆移动时的交通流;再根据所获取的交通流和当前车辆行驶方向来确定当前车辆的风险来源方向,基于风险来源方向预测其他车辆与当前车辆出现碰撞的概率,以及出现碰撞的区域;然后从栅格空间中筛选出与预测碰撞区域对应的栅格,作为车辆传感器必须感知的栅格,即目标栅格。在本实施例中,风险来源方向是基于当前车辆自身行驶方向确定的,定义当前车辆车头指向的方向为0°,顺时针方向一圈为360°,若某方向有向当前车辆所在位置移动的交通流,则该方向就是风险来源方向。
根据上述记载,在一示例性实施例中,对所述车辆传感器进行的调整包括:角度调整和/或位置调整。具体地,在对所述车辆传感器进行位置调整时,包括:对所述车辆传感器进行上下移动、对所述车辆传感器进行左右移动和/或对所述车辆传感器进行前后移动,调整所述车辆传感器的原始空间位置以及原始空间位置所对应的覆盖区域。在对所述车辆传感器进行角度调整时,包括:对所述车辆传感器进行顺时针旋转或逆时针旋转,调整所述车辆传感器原始角度以及原始角度所对应的覆盖区域。
作为一示例,本实施例可以通过机械结构来对车辆传感器进行上下移动、左右移动和/或前后移动,从而调整车辆传感器的原始空间位置以及原始空间位置所对应的覆盖区域。例如,在车辆传感器与车辆是通过支架进行固定连接时,可以对支架进行上下、左右和/或移动,相当于间接地对车辆传感器进行调节,改变车辆传感器的原始空间位置以及原始空间位置所对应的覆盖区域。由此可知,本示例通过对传感器进行位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。
作为另一示例,本实施例还可以通过机械结构来对车辆传感器进行旋转控制,改变其原始角度以及原始角度对应的覆盖区域,其中,旋转方向包括顺时针旋转和逆时针旋转,本示例将顺时针旋转定义为正方向,逆时针旋转定义为负方向。若旋转角度为“+15°”,则表示控制车辆传感器按照顺时针方向旋转15°。由此可知,本示例通过对传感器进行角度调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解 决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。
在一示例性实施例中,在获取车辆行驶信息时,还包括:获取车辆功能开启状态,根据车辆功能开启状态结果打开或关闭设置于车辆不同位置处的一个或多个车辆传感器;其中,车辆功能包括以下至少之一:自动驾驶功能、辅助驾驶功能、变道功能、转向功能和定速巡航功能。
在一些示例性实施例中,本系统中的车辆传感器可以设置在车辆的前侧、后侧、左侧和/或右侧。作为一示例,例如可以在所述车辆的前侧设置一个或多个车辆传感器。作为另一示例,例如可以在所述车辆的后侧设置一个或多个车辆传感器。作为另一示例,例如可以在所述车辆的左侧设置一个或多个车辆传感器。作为又一示例,例如可以在车辆的右侧设置一个或多个传感器。其中,本系统中的车辆传感器可以根据实际需求进行设置,例如可以设置红外传感器、距离传感器等。
在一具体实施例中,分别在车辆M前侧设置有车辆传感器A,在车辆M后侧设置有车辆传感器B,在车辆M左侧设置有车辆传感器C,以及在车辆M右侧设置有车辆传感器D。如图3所示,当车辆M处于正常行驶状态时,只有车辆M前侧的车辆传感器A和车辆M后侧的车辆传感器B处于工作状态,位于车辆M左侧的车辆传感器C和位于车辆M右侧的车辆传感器D处于折叠状态。此时,车辆M中车辆传感器的覆盖区域为车辆传感器A和车辆传感器B在未调整状态下所对应的覆盖区域。
在另一具体实施例中,分别在车辆N前侧设置有车辆传感器A,在车辆N后侧设置有车辆传感器B,在车辆N左侧设置有车辆传感器C,以及在车辆N右侧设置有车辆传感器D。当车辆N开启辅助驾驶功能时,车辆需要尽可能的覆盖周边区域,此时车辆N左侧的车辆传感器C和车辆N右侧的车辆传感器D向侧面展开。如图4所示,当车辆N开启辅助驾驶功能时,车辆N前侧的车辆传感器A,车辆N后侧的车辆传感器B,车辆N左侧的车辆传感器C和车辆N右侧的车辆传感器D均处于工作状态。此时,车辆N中车辆传感器的覆盖区域为车辆传感器A、车辆传感器B、车辆传感器C和车辆传感器D在未调整状态下所对应的覆盖区域。
在另一具体实施例中,分别在车辆X前侧设置有车辆传感器A,在车辆X后侧设置有车辆传感器B,在车辆X左侧设置有车辆传感器C,以及在车辆X右侧设置有车辆传感器D。如图5所示,当车辆X开启变道或转向功能时,车辆X前侧的车辆传感器A,车辆X后侧的车辆传感器B,车辆X左侧的车辆传感器C和车辆X右侧的车辆传感器D均处于工作状态。当车辆X开启变道或转向功能时,需要通过旋转传感器指向增强车辆一侧的感知冗余,所以 本实施例通过逆时针旋转车辆X后侧的车辆传感器B和车辆X右侧的车辆传感器D,调节车辆传感器B和车辆传感器D的角度来解决车辆X开启变道或转向功能时的区域覆盖问题。此时,车辆X中车辆传感器的覆盖区域为车辆传感器A和车辆传感器C在未调整状态下所对应的覆盖区域,以及车辆传感器B和车辆传感器D在进行逆时针角度调整后所对应的覆盖区域。
在另一具体实施例中,分别在车辆Y前侧设置有车辆传感器A,在车辆Y后侧设置有车辆传感器B,在车辆Y左侧设置有车辆传感器C,以及在车辆Y右侧设置有车辆传感器D。如图6所示,当车辆Y开启定速巡航功能时,车辆Y前侧的车辆传感器A,车辆Y后侧的车辆传感器B,车辆Y左侧的车辆传感器C和车辆Y右侧的车辆传感器D均处于工作状态。当车辆Y开启定速巡航功能时,车辆需要更丰富的前部感知信息,因此本实施例通过对车辆Y左侧的车辆传感器C和车辆Y右侧的车辆传感器D进行逆时针角度调整,相当于通过对车辆传感器C和车辆传感器D向前翻转来实现前方感知强化。此时,车辆Y中车辆传感器的覆盖区域为车辆传感器A和车辆传感器B在未调整状态下所对应的覆盖区域,以及车辆传感器C和车辆传感器D在进行逆时针角度调整后所对应的覆盖区域。
综上所述,本发明提供一种车辆传感器的控制系统,通过对传感器进行角度和/或位置调整,能够增加车辆传感器的可活动性,改变车辆传感器的原始覆盖角度和覆盖区域,从而能够解决现有技术中自动驾驶车辆中因为车辆传感器固定布置而导致其覆盖能力局限的问题。同时,本发明通过动态改变传感器布置形态来优化自动驾驶感知能力,能够实时地满足自动驾驶功能对环境感知的需求,实现更好的用户体验以及及更可靠的行驶安全性。
在一示例性实施例中,本发明还提供一种车辆,该车辆上设置有上述任一所述的车辆传感器的控制系统。该车辆的功能和技术效果请参见上述控制系统,此处不再进行赘述。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

  1. 一种车辆传感器的控制方法,其特征在于,所述方法包括以下步骤:
    获取车辆行驶信息;所述车辆行驶信息至少包括车辆行驶环境信息;
    将所述车辆行驶环境信息分解为栅格空间,并根据所述栅格空间确定出目标栅格;
    获取车辆传感器对所述栅格空间的感知能力,并根据所获取的感知能力对所述车辆传感器进行调整,将所述目标栅格控制在所述车辆传感器的覆盖区域内。
  2. 根据权利要求1所述的车辆传感器的控制方法,其特征在于,所述车辆行驶信息还包括车辆定位信息;所述车辆行驶环境信息的形成过程包括:
    获取车辆定位信息;
    根据所述车辆定位信息生成车辆行驶轨迹;
    获取地图数据,并根据所述地图数据和所述车辆行驶轨迹确定出车辆行驶环境信息。
  3. 根据权利要求1所述的车辆传感器的控制方法,其特征在于,根据所述栅格空间确定出目标栅格的过程包括:
    将所述车辆行驶环境信息分解为栅格空间后,获取当前车辆行驶方向,以及获取其他车辆靠近当前车辆移动时的交通流;
    根据所述交通流和当前车辆行驶方向确定当前车辆的风险来源方向;
    基于所述风险来源方向预测其他车辆与当前车辆出现碰撞的概率,以及出现碰撞的区域;
    从所述栅格空间中筛选出与预测碰撞区域对应的栅格,作为目标栅格。
  4. 根据权利要求1至3中任一所述的车辆传感器的控制方法,其特征在于,对所述车辆传感器进行的调整包括:角度调整和/或位置调整。
  5. 根据权利要求4所述的车辆传感器的控制方法,其特征在于,对所述车辆传感器进行位置调整时,包括:对所述车辆传感器进行上下移动、对所述车辆传感器进行左右移动和/或对所述车辆传感器进行前后移动,调整所述车辆传感器的原始空间位置以及对应的覆盖区域;
    对所述车辆传感器进行角度调整时,包括:对所述车辆传感器进行顺时针旋转或逆时针旋转,调整所述车辆传感器原始角度以及对应的覆盖区域。
  6. 根据权利要求1所述的车辆传感器的控制方法,其特征在于,在获取车辆行驶信息时,还包括:获取车辆功能开启状态,根据车辆功能开启状态结果打开或关闭设置于车辆不同位 置处的一个或多个车辆传感器;其中,车辆功能包括以下至少之一:自动驾驶功能、辅助驾驶功能、变道功能、转向功能和定速巡航功能。
  7. 根据权利要求1或6所述的车辆传感器的控制方法,其特征在于,所述方法还包括:
    在所述车辆的前侧设置一个或多个车辆传感器;
    和/或,在所述车辆的后侧设置一个或多个车辆传感器;
    和/或,在所述车辆的左侧设置一个或多个车辆传感器;
    和/或,在所述车辆的右侧设置一个或多个传感器。
  8. 一种车辆传感器的控制系统,其特征在于,所述系统包括有:
    信息采集模块,用于获取车辆行驶信息;所述车辆行驶信息至少包括车辆行驶环境信息;
    信息分解模块,用于将所述车辆行驶环境信息分解为栅格空间,并根据所述栅格空间确定出目标栅格;
    车辆传感器调整模块,用于获取车辆传感器对所述栅格空间的感知能力,并根据所获取的感知能力对所述车辆传感器进行调整,将所述目标栅格控制在所述车辆传感器的覆盖区域内。
  9. 一种车辆,其特征在于,所述车辆上设置有如权利要求8所述的控制系统。
PCT/CN2022/078300 2021-07-30 2022-02-28 一种车辆传感器的控制方法及系统、一种车辆 WO2023005202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22847822.8A EP4332514A1 (en) 2021-07-30 2022-02-28 Control method and system for vehicle sensor, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110874657.0A CN113607203B (zh) 2021-07-30 2021-07-30 一种车辆传感器的控制方法及系统、一种车辆
CN202110874657.0 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023005202A1 true WO2023005202A1 (zh) 2023-02-02

Family

ID=78338877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078300 WO2023005202A1 (zh) 2021-07-30 2022-02-28 一种车辆传感器的控制方法及系统、一种车辆

Country Status (3)

Country Link
EP (1) EP4332514A1 (zh)
CN (1) CN113607203B (zh)
WO (1) WO2023005202A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607203B (zh) * 2021-07-30 2024-05-28 宁波路特斯机器人有限公司 一种车辆传感器的控制方法及系统、一种车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180039273A1 (en) * 2016-08-08 2018-02-08 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for adjusting the position of sensors of an automated vehicle
US20190222652A1 (en) * 2019-03-28 2019-07-18 Intel Corporation Sensor network configuration mechanisms
CN110537109A (zh) * 2017-04-28 2019-12-03 深圳市大疆创新科技有限公司 用于自主驾驶的感测组件
CN111114807A (zh) * 2019-09-18 2020-05-08 重庆嘉陵华光光电科技有限公司 一种多旋翼无人机避障装置
CN111366192A (zh) * 2020-03-16 2020-07-03 华为技术有限公司 信息获取方法及装置
CN111522350A (zh) * 2020-07-06 2020-08-11 深圳裹动智驾科技有限公司 感知方法、智能控制设备及自动驾驶车辆
CN113607203A (zh) * 2021-07-30 2021-11-05 武汉路特斯汽车有限公司 一种车辆传感器的控制方法及系统、一种车辆

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661236B2 (ja) * 2005-01-28 2011-03-30 アイシン精機株式会社 回転検出センサ
CN104554060B (zh) * 2014-07-30 2017-09-22 浙江吉利控股集团有限公司 一种增加车辆过弯安全性的方法及系统
DE102015202863A1 (de) * 2015-02-17 2016-08-18 Conti Temic Microelectronic Gmbh Verfahren und Vorrichtung zum verzerrungsfreien Anzeigen einer Fahrzeugumgebung eines Fahrzeuges
CN105041026B (zh) * 2015-08-24 2017-06-13 中冶南方工程技术有限公司 一种车辆自动调正装置及方法
US10276049B2 (en) * 2016-08-29 2019-04-30 Aptiv Technologies Limited Camera based trailer identification and blind zone adjustment
CN210617998U (zh) * 2019-07-31 2020-05-26 杭州智波科技有限公司 一种用于货运和客运车辆的盲区检测设备
CN110351829A (zh) * 2019-08-07 2019-10-18 南京理工大学 基于深度强化学习的无线传感器网络目标追踪方法
CN211055032U (zh) * 2019-12-13 2020-07-21 武汉英途工程智能设备有限公司 无人驾驶压路机的防碰撞系统
CN111731283B (zh) * 2020-05-26 2022-05-24 北京百度网讯科技有限公司 自动驾驶车辆碰撞风险识别方法、装置以及电子设备
CN112466147B (zh) * 2020-11-18 2022-08-30 上海汽车集团股份有限公司 一种基于多传感器的库位检测方法及相关装置
CN112782720A (zh) * 2020-12-24 2021-05-11 东风商用车有限公司 一种汽车激光雷达探测装置及其调控方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180039273A1 (en) * 2016-08-08 2018-02-08 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for adjusting the position of sensors of an automated vehicle
CN110537109A (zh) * 2017-04-28 2019-12-03 深圳市大疆创新科技有限公司 用于自主驾驶的感测组件
US20190222652A1 (en) * 2019-03-28 2019-07-18 Intel Corporation Sensor network configuration mechanisms
CN111114807A (zh) * 2019-09-18 2020-05-08 重庆嘉陵华光光电科技有限公司 一种多旋翼无人机避障装置
CN111366192A (zh) * 2020-03-16 2020-07-03 华为技术有限公司 信息获取方法及装置
CN111522350A (zh) * 2020-07-06 2020-08-11 深圳裹动智驾科技有限公司 感知方法、智能控制设备及自动驾驶车辆
CN113607203A (zh) * 2021-07-30 2021-11-05 武汉路特斯汽车有限公司 一种车辆传感器的控制方法及系统、一种车辆

Also Published As

Publication number Publication date
CN113607203B (zh) 2024-05-28
CN113607203A (zh) 2021-11-05
EP4332514A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP6432116B2 (ja) 車両位置特定装置、車両制御システム、車両位置特定方法、および車両位置特定プログラム
US11099563B2 (en) Multi-controller synchronization
JP7088135B2 (ja) 信号表示推定システム
CN111976718B (zh) 自动泊车的控制方法和系统
CN113128326A (zh) 具有语义地图和lstm的车辆轨迹预测模型
US11555903B1 (en) Sensor calibration using dense depth maps
US20200004237A1 (en) Apparatus and method for virtual home service
JP7071250B2 (ja) 車両制御装置、車両制御方法、及びプログラム
WO2021146086A1 (en) Collaborative vehicle headlight directing
US11119502B2 (en) Vehicle control system based on social place detection
US20200284912A1 (en) Adaptive sensor sytem for vehicle and method of operating the same
WO2023005202A1 (zh) 一种车辆传感器的控制方法及系统、一种车辆
US11370419B2 (en) Use of driver assistance collision mitigation systems with autonomous driving systems
JP2020147139A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2024071623A (ja) 速度および位置情報を使用するレーダ反射の認識
US11474525B2 (en) Method and apparatus for method for dynamic multi-segment path and speed profile shaping
US20210003665A1 (en) Semantic Segmentation of Radar Data
US11794811B2 (en) Determining estimated steering data for a vehicle
WO2022144957A1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7125969B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022126341A (ja) 車両制御装置、車両制御方法、およびプログラム
JP7139300B2 (ja) 認識装置、認識方法、およびプログラム
US11414097B2 (en) Apparatus for generating position data, autonomous vehicle and method for generating position data
CN113932829A (zh) 针对传感器校准确定多自由度姿势
CN112639651A (zh) 信息处理方法、信息处理装置和可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022847822

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022847822

Country of ref document: EP

Effective date: 20231201

NENP Non-entry into the national phase

Ref country code: DE