WO2023004959A1 - 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法 - Google Patents

一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法 Download PDF

Info

Publication number
WO2023004959A1
WO2023004959A1 PCT/CN2021/118909 CN2021118909W WO2023004959A1 WO 2023004959 A1 WO2023004959 A1 WO 2023004959A1 CN 2021118909 W CN2021118909 W CN 2021118909W WO 2023004959 A1 WO2023004959 A1 WO 2023004959A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
filter tube
carbide ceramic
slurry
ceramic filter
Prior art date
Application number
PCT/CN2021/118909
Other languages
English (en)
French (fr)
Inventor
沈凡
余泳幸
徐慢
Original Assignee
武汉工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉工程大学 filed Critical 武汉工程大学
Publication of WO2023004959A1 publication Critical patent/WO2023004959A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2086Other inorganic materials, e.g. ceramics the material being filamentary or fibrous sintered or bonded by inorganic agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Definitions

  • the invention belongs to the technical field of particle separators using rigid hollow filter bodies, and relates to a mullite fiber reinforced silicon carbide ceramic filter tube and a preparation method thereof.
  • the method of using inorganic ceramic filter tubes to filter exhaust gas has a series of advantages such as high efficiency, low energy consumption and environmental friendliness.
  • silicon carbide ceramics have high temperature resistance, corrosion resistance, thermal shock resistance, strong hydrophilicity and long service life. It has outstanding advantages such as length, and can be applied in various harsh environmental conditions, thus being widely used.
  • the structure of the common porous silicon carbide ceramic filter tube includes a support body located in the inner layer of the filter tube to provide mechanical strength and a surface film layer attached to the outside of the support body to remove dust and other pollutant particles. A two-layer structure is used for dust and other pollutants. of adsorption.
  • the powder of the surface film layer will enter the pores of the support body, so that the actual thickness of the surface film is greater than the nominal thickness, which increases the filtration pressure to a certain extent, and not only reduces the filtration accuracy and filtration efficiency. efficiency, and even affect its service life.
  • the technical problem to be solved by the present invention is to provide a mullite fiber reinforced silicon carbide ceramic filter tube and its preparation method in view of the above-mentioned deficiencies in the prior art, adding a layer of mullite between the original support body and the surface film layer
  • the Laishi fiber transition layer can not only make the surface film more uniform, but also prevent the surface film powder from entering the pores of the support and reduce the filtration pressure. At the same time, it has high mechanical strength and excellent properties such as acid and alkali resistance.
  • a mullite fiber reinforced silicon carbide ceramic filter tube is provided, the mullite fiber reinforced silicon carbide ceramic filter tube is provided with a layer of mullite fiber transition layer between the silicon carbide ceramic support body and the surface film layer, and its preparation
  • the method includes the following steps:
  • step 4 Spray a part of the adhesive slurry prepared in step 2) onto the surface of the silicon carbide ceramic support body, add the remaining adhesive slurry to the silicon carbide slurry prepared in step 3) several times in small amounts, and then Add a pore-forming agent, stir evenly to obtain a slurry, and apply the obtained slurry to the surface of the silicon carbide ceramic support body by casting to obtain a semi-finished silicon carbide ceramic filter tube, then dry the entire semi-finished silicon carbide ceramic filter tube, and then Move it into a sintering furnace for sintering to obtain a mullite fiber reinforced silicon carbide ceramic filter tube.
  • the thickness of the mullite fiber transition layer is 20-50 ⁇ m.
  • the mixed silicon carbide powder in step 1) is obtained by mixing coarse silicon carbide powder and fine silicon carbide powder at a mass ratio of 85-90:10-15, and the total of the two is 100 parts, wherein the coarse silicon carbide powder
  • the particle size D 50 of the powder is 20-60 ⁇ m
  • the particle size D 50 of the fine silicon carbide powder is 10-20 ⁇ m
  • the purity of both the coarse silicon carbide powder and the fine silicon carbide powder is above 98 wt%. Silicon carbide powders with different particle sizes are used.
  • the smaller silicon carbide particles first sublime and then condense, and the large particle crystals grow up to form a three-dimensional connected structure with high bonding strength, which can further improve the obtained carbonization. Flexural strength, purity and corrosion resistance of silicon ceramic supports.
  • the adhesive in step 1) is obtained by mixing potassium feldspar powder, quartz sand and kaolin powder according to the mass ratio of 60 ⁇ 68:8 ⁇ 16:19 ⁇ 32, and the potassium feldspar powder particles
  • the diameter is 15-30 ⁇ m, wherein the K 2 O content is 8-15 wt%, the Al 2 O 3 content is 17-20 wt%, and the SiO 2 content is 62-74 wt % . %; the particle size of the kaolin powder is 10-20 ⁇ m, the content of Al 2 O 3 is 40-46 wt%, and the content of SiO 2 is 46-50 wt%.
  • mullite was generated by solid-state reaction.
  • the melting temperature of potassium feldspar is about 1200°C. During the sintering process, it will form a liquid phase, which will coat the particles and combine with it. It is a suitable co-solvent.
  • kaolin first transforms into metakaolin with higher aluminum activity at 500-900 ° C, and the aluminum source provided by it can react with smaller-sized quartz to promote the formation of mullite phase ; continue to heat up to about 1000 °C, and the amorphous mullite phase and glass phase begin to appear.
  • the amorphous mullite phase and silicon carbide particles have good chemical compatibility and can flow with the glass phase, which means There will be mullite interpenetrating between the support body and the adhesive layer to form a transitional film layer reinforced with mullite fibers; at 1200 ° C, potassium feldspar can be used as a sintering aid to melt, so that part of the mullite
  • the liquid phase is capable of bonding the SiC particles together, and it provides a potassium source that inhibits the formation of the cristobalite phase.
  • the mullite in the liquid phase solidifies, and the overall structure is tightly bound together.
  • the quartz fineness used is very small, and the surface activity is high, which can accelerate the reaction at the beginning of sintering.
  • the pore forming agent in step 1) is carbon black with a particle size of 1.5 ⁇ m.
  • the dispersant in step 1) is obtained by compounding methylcellulose, tetramethylammonium hydroxide and sodium carboxymethylcellulose at a mass ratio of 1:1-2:0.9-1.3.
  • the combination of these three raw materials can make the system in a highly stable dispersed state, and avoid the phenomenon of large particle settlement caused by adsorption and aggregation between powder particles.
  • the solid content of the binder slurry in step 2) is 40-60 wt%.
  • step 4) the adhesive slurry is sprayed on the surface of the silicon carbide ceramic support to a thickness of 10-25 ⁇ m.
  • step 4) adopts a casting method to coat the surface of the silicon carbide ceramic support body with a thickness of 0.1-1mm.
  • the drying condition in step 4) is: drying at 105° C. for 3 hours.
  • the sintering process conditions in step 4) are as follows: in an atmosphere of carbon embedding, the temperature is raised from room temperature to 550°C at a rate of 5°C/min, kept for 1-2h, and then passed through at a flow rate of 490-510mL/min. Wash the furnace with argon gas for 20 minutes, then raise the temperature to 1280°C at a rate of 5°C/min, keep it for 2-3 hours, then raise the temperature to 1560°C at a rate of 2°C/min, keep it for 80-90min, and finally Cool down to 300-400°C at a rate of 5°C/min, keep warm for 30-60min, and cool down to room temperature naturally with the furnace.
  • Silicon carbide can form silicon dioxide with oxygen at high temperature, which is attached to the surface of silicon carbide. Although silicon carbide particles can be bonded together to increase the strength of the sample during cooling, the sample after cooling is resistant to alkali due to the adhesion of silicon dioxide. Poor sex. In the carbon embedding atmosphere, it can not only prevent the oxidation of silicon carbide, but also allow the alumina and silicon dioxide in the powder to react to form mullite phase. Around 550°C is the temperature range where kaolin starts to react, and the furnace washing treatment can reduce the influence of other impurity atmospheres.
  • the present invention also includes the preparation method of the above-mentioned mullite fiber reinforced silicon carbide ceramic filter tube, the specific steps are as follows:
  • step 4 Spray a part of the adhesive slurry prepared in step 2) onto the surface of the silicon carbide ceramic support body, add the remaining adhesive slurry to the silicon carbide slurry prepared in step 3) several times in small amounts, and then Add a pore-forming agent, stir evenly to obtain a slurry, and apply the obtained slurry to the surface of the silicon carbide ceramic support body by casting to obtain a semi-finished silicon carbide ceramic filter tube, then dry the entire semi-finished silicon carbide ceramic filter tube, and then Move it into a sintering furnace for sintering to obtain a mullite fiber reinforced silicon carbide ceramic filter tube.
  • the present invention also includes the application of the mullite fiber reinforced silicon carbide ceramic filter tube in the field of gas treatment.
  • a mullite fiber transition layer is formed between the silicon carbide ceramic support body and the surface film layer.
  • the mullite phase crystal region can not only form good surface infiltration with silicon carbide at high temperature, but also the melting temperature is much higher than the use temperature of the support.
  • the filter membrane is directly coated on the surface of the support body, a part of the membrane material will enter the void of the support body, resulting in an increase in the filtration pressure drop of the ceramic particle filter membrane, and the introduction of the mullite fiber transition layer in the present invention can not only effectively reduce the filtration pressure
  • the mullite fiber membrane produced can better absorb the slurry, and the interpenetrating mullite fiber can promote the overall structure of the silicon carbide ceramic filter tube to be more stable.
  • the silicon carbide ceramic support has good microscopic properties and flexural strength on the basis of this kind of double-layer filter membrane coating. At the same time, because mullite has good high-temperature strength, its thermal expansion coefficient is the same as that of silicon carbide. It has good chemical compatibility, can realize low-temperature sintering, and effectively reduces production costs.
  • the present invention takes the K 2 O-SiO 2 -Al 2 O 3 phase diagram as the standard, controls the ratio of potassium feldspar, kaolin and quartz, and sinters mullite fibers between the support and the surface film layer to strengthen silicon carbide
  • the structure of the ceramic tube, the generated mullite fiber and silicon carbide have good chemical compatibility, stable structure, and environmental friendliness;
  • the adhesive is firstly coated on the support body, which helps in the sintering process Connect the mullite phase in the transitional film layer; and potassium feldspar as a sintering aid provides a liquid sintering environment for the sintering of kaolin, so that the mullite phases at different positions can penetrate each other, It also provides a potassium source to inhibit the formation of cristobalite.
  • the present invention forms a transition layer of mullite fiber between the silicon carbide ceramic support body and the surface film layer, which can prevent the increase of the filtration pressure drop of the ceramic particle filter membrane caused by a part of the film material entering the space of the support body .
  • the mullite fiber layer can not only effectively reduce the pressure drop, but also produce a fiber membrane that can better absorb the slurry.
  • the beneficial effects of the present invention are: 1.
  • the mullite fiber reinforced silicon carbide ceramic filter tube provided by the present invention has excellent characteristics such as high strength, high temperature resistance, and corrosion resistance, and the formed mullite fiber layer can not only effectively reduce the pressure drop , and the resulting fibrous membrane is better able to absorb the slurry.
  • the preparation method provided by the present invention has simple steps, flexible process control, low calcination temperature, significantly reduces process cost, has important popularization value, and can be applied on a large scale.
  • Fig. 1 is the SEM image of the mullite fiber reinforced silicon carbide ceramic filter tube surface prepared by Example 1 of the present invention
  • FIG. 2 is a cross-sectional SEM image of the mullite fiber-reinforced silicon carbide ceramic filter tube prepared in Example 1.
  • FIG. 2 is a cross-sectional SEM image of the mullite fiber-reinforced silicon carbide ceramic filter tube prepared in Example 1.
  • the silicon carbide ceramic support used is a silicon carbide support sample fired uniformly in the laboratory, with a porosity of 26-35% and a flexural strength of 18-26 MPa;
  • the average particle size of the potassium feldspar powder used is 16 ⁇ m, and the K 2 O content is 12wt %, the content of Al 2 O 3 is 17wt %, and the content of SiO 2 is 65wt % .
  • the pore-forming agent used is carbon black with a particle size of 1.5 ⁇ m.
  • a kind of mullite fiber reinforced silicon carbide ceramic filter tube, its preparation method comprises the following steps:
  • the spray thickness is 10 ⁇ m, add the remaining adhesive slurry to the silicon carbide slurry several times in small amounts, so that the adhesive is wrapped in the carbonized On the surface of the silicon aggregate, add a pore-forming agent and stir for 3 minutes to obtain a slurry;
  • step 5) Prepare the slurry obtained in step 4) on the surface of the silicon carbide ceramic support body by casting method to form a surface film layer with a thickness of 0.2 mm to obtain a semi-finished silicon carbide ceramic filter tube, and dry the semi-finished product at 105°C for 3 hours Then transfer it to a high-temperature furnace, raise the temperature from room temperature to 550°C at a rate of 5°C/min in a carbon-buried atmosphere, keep it for 1h, and then flow argon gas at a flow rate of 500mL/min to clean the furnace for 20 minutes , then raise the temperature to 1280°C at a rate of 5°C/min, hold for 2 hours, then raise the temperature to 1560°C at a rate of 2°C/min, hold for 90 minutes, and finally cool down to 300°C at a rate of 5°C/min, and hold for 45 minutes. And naturally cool down to room temperature with the furnace to obtain the mullite fiber reinforced silicon carbide ceramic filter tube.
  • the mullite fiber reinforced silicon carbide ceramic filter tube prepared in this example has uniform pores inside the filter tube and little difference in pore size, with a porosity of 33% and a bending strength of 34Mpa. A layer of mullite fiber transition layer is formed between them, with a thickness of 26 ⁇ m.
  • the filter pressure drop of the mullite fiber reinforced silicon carbide ceramic filter tube is 855Pa, and the filtration degree of PM1.0 dusty smoke is 96%.
  • Figure 1 shows the SEM image of the surface of the mullite fiber reinforced silicon carbide ceramic filter tube prepared in this example. It can be seen from the figure that the surface of the silicon carbide particles is smooth and shows good sintering performance.
  • Fig. 2 shows the cross-sectional SEM figure of the mullite fiber reinforced silicon carbide ceramic filter tube prepared by the present embodiment, as can be seen, a layer of mullite fiber transition layer is formed between the silicon carbide ceramic support body and the surface film layer, And the mullite fiber transition layer is fully in contact with the silicon carbide ceramic support body.
  • a kind of mullite fiber reinforced silicon carbide ceramic filter tube, its preparation method comprises the following steps:
  • step 5) Prepare the slurry obtained in step 4) on the surface of the silicon carbide ceramic support body by casting method to form a surface film layer with a thickness of 0.5mm to obtain a semi-finished silicon carbide ceramic filter tube, and then dry the semi-finished product at 105°C for 3 hours Transfer to a high-temperature furnace, raise the temperature from room temperature to 550°C at a rate of 5°C/min in a carbon-buried atmosphere, keep it for 1 hour, and then flow argon gas at a flow rate of 490mL/min to clean the furnace for 20 minutes.
  • the temperature was raised to 1280°C at a rate of 5°C/min, kept for 2 hours, then raised to 1560°C at a rate of 2°C/min, kept at a temperature of 90 minutes, and finally cooled to 300°C at a rate of 5°C/min, kept at a temperature of 40 minutes, and Naturally cool down to room temperature with the furnace to obtain the mullite fiber reinforced silicon carbide ceramic filter tube.
  • the mullite fiber reinforced silicon carbide ceramic filter tube prepared in this example has uniform pores inside the filter tube, with little difference in pore size, a porosity of 26%, and a bending strength of 41Mpa. Between the silicon carbide ceramic support and the surface film layer A layer of mullite fiber transition layer is formed between them, with a thickness of 34 ⁇ m. When the inlet side pressure is 0.1MPa, the filter pressure drop of the mullite fiber reinforced silicon carbide ceramic filter tube is 785Pa, and the filtration degree of PM1.0 dusty smoke is 98%.
  • a kind of mullite fiber reinforced silicon carbide ceramic filter tube, its preparation method comprises the following steps:
  • step 5) Prepare the slurry obtained in step 4) on the surface of the silicon carbide ceramic support body by casting method to form a surface film layer with a thickness of 0.8mm to obtain a semi-finished silicon carbide ceramic filter tube, and then dry the semi-finished product at 105°C for 3 hours Transfer to a high-temperature furnace, raise the temperature from room temperature to 550°C at a rate of 5°C/min in a carbon-buried atmosphere, keep it for 1h, and then flow argon gas at a flow rate of 510mL/min to clean the furnace for 20 minutes.
  • the temperature was raised to 1280°C at a rate of 5°C/min, kept for 2 hours, then raised to 1560°C at a rate of 2°C/min, kept at a temperature of 90 minutes, and finally cooled to 360°C at a rate of 5°C/min, kept at a temperature of 38 minutes, and Naturally cool down to room temperature with the furnace to obtain the mullite fiber reinforced silicon carbide ceramic filter tube.
  • the mullite fiber reinforced silicon carbide ceramic filter tube prepared in this example has uniform pores inside the filter tube, and the difference in pore size is not large, the porosity is 22%, and the bending strength reaches 46Mpa. Between the silicon carbide ceramic support and the surface film layer A layer of mullite fiber transition layer is formed between them, with a thickness of 38 ⁇ m. When the inlet side pressure is 0.1MPa, the filter pressure drop of the mullite fiber-reinforced silicon carbide ceramic filter tube is 763Pa, and the filtration degree of PM1.0 dusty smoke is 97%.
  • a kind of mullite fiber reinforced silicon carbide ceramic filter tube, its preparation method comprises the following steps:
  • Coarse silicon carbide powder and fine silicon carbide powder are mixed and stirred evenly according to the mass ratio of 89:11 to obtain mixed silicon carbide powder, which is set aside; methyl cellulose, tetramethylammonium hydroxide, carboxymethyl cellulose The sodium is mixed according to the mass ratio of 1:1.2:1.1 to obtain the dispersant; the potassium feldspar powder, quartz sand and kaolin powder are mixed according to the mass ratio of 66:14:25 to obtain the adhesive;
  • step 5) Prepare the slurry obtained in step 4) on the surface of the silicon carbide ceramic support body by casting method to form a surface film layer with a thickness of 0.5 mm to obtain a semi-finished product of mullite fiber reinforced silicon carbide ceramic filter tube, and then place the semi-finished product at 105 ° C After drying at low temperature for 3 hours, transfer it to a high-temperature furnace, raise the temperature from room temperature to 550°C at a rate of 5°C/min in a carbon-buried atmosphere, keep it warm for 1h, and then flow argon gas at a flow rate of 510mL/min to clean the furnace.
  • the time is 20 minutes, and then the temperature is raised to 1280°C at a rate of 5°C/min, kept for 2 hours, then raised to 1560°C at a rate of 2°C/min, kept for 80 minutes, and finally cooled to 360°C at a rate of 5°C/min. Keep it warm for 38 minutes, and cool down to room temperature naturally with the furnace to get the mullite fiber reinforced silicon carbide ceramic filter tube.
  • the mullite fiber reinforced silicon carbide ceramic filter tube prepared in this embodiment has uniform pores inside the filter tube, and the difference in pore size is not large, the porosity is 27%, and the bending strength reaches 36Mpa. Between the silicon carbide ceramic support and the surface film layer A layer of mullite fiber transition layer is formed between them, with a thickness of 28 ⁇ m. When the inlet side pressure is 0.1MPa, the filter pressure drop of the mullite fiber reinforced silicon carbide ceramic filter tube is 1030Pa, and the filtration degree of PM1.0 dusty smoke is 95%.
  • a kind of mullite fiber reinforced silicon carbide ceramic filter tube, its preparation method comprises the following steps:
  • Coarse silicon carbide powder and fine silicon carbide powder are mixed and stirred evenly at a mass ratio of 84:16 to obtain a mixed silicon carbide powder for later use; methyl cellulose, tetramethylammonium hydroxide, carboxymethyl cellulose The sodium is mixed according to the mass ratio of 1:1.8:1 to obtain the dispersant; the potassium feldspar powder, quartz sand and kaolin powder are mixed according to the mass ratio of 63:11:22 to obtain the adhesive;
  • step 5) Prepare the slurry obtained in step 4) on the surface of the silicon carbide ceramic support body by casting method to form a surface film layer with a thickness of 0.5 mm to obtain a semi-finished product of mullite fiber reinforced silicon carbide ceramic filter tube, and then place the semi-finished product at 105 ° C After drying at high temperature for 3 hours, transfer it to a high-temperature furnace, raise the temperature from room temperature to 550°C at a rate of 5°C/min in a carbon-buried atmosphere, keep it for 1h, and then flow argon gas at a flow rate of 510mL/min to clean the furnace.
  • the furnace time is 20min, then the temperature is raised to 1280°C at a rate of 5°C/min, kept for 2 hours, then raised to 1560°C at a rate of 2°C/min, kept at a temperature of 80min, and finally cooled to 360°C at a rate of 5°C/min , keep warm for 38 minutes, and naturally cool to room temperature with the furnace to obtain the mullite fiber reinforced silicon carbide ceramic filter tube.
  • the mullite fiber reinforced silicon carbide ceramic filter tube prepared in this example has uniform pores inside the filter tube, with little difference in pore size, a porosity of 28%, and a bending strength of 38Mpa. Between the silicon carbide ceramic support and the surface film layer A layer of mullite fiber transition layer is formed between them, with a thickness of 31 ⁇ m.
  • the filter pressure drop of the mullite fiber reinforced silicon carbide ceramic filter tube is 810Pa, and the filter degree of PM1.0 dusty smoke is 95%.
  • a method for preparing a silicon carbide ceramic filter tube the specific steps of which are similar to those in Example 1, except that a layer of adhesive slurry is not coated on the surface of the support body.
  • the porosity is 27%, and the bending strength is 22Mpa; when the inlet side pressure is 0.1MPa, the filter pressure drop is 1580Pa; Air filtration degree is 92%.
  • a method for preparing a silicon carbide ceramic filter tube the specific steps of which are similar to those in Example 2, except that a layer of adhesive slurry is not coated on the surface of the support body.
  • the porosity is 22%, and the bending strength is 31Mpa; when the inlet side pressure is 0.1MPa, the filter pressure drop is 1350Pa; Air filtration degree is 93%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)

Abstract

一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法,该过滤管在碳化硅陶瓷支撑体及表面膜层之间设有一层莫来石纤维过渡层,其制备方法如下:1)将混合碳化硅粉体、粘接剂、造孔剂、分散剂、无水乙醇和去离子水称取备用;2)将粘结剂与去离子水混合得到粘结剂浆料;3)将分散剂与无水乙醇混合得到分散剂溶液,与混合碳化硅粉体混合均匀得到碳化硅浆料;4)将一部分粘接剂浆料喷涂到支撑体表面,剩余粘接剂浆料加入碳化硅浆料中,再加入造孔剂,将所得浆料采用流延法在碳化硅陶瓷支撑体外表面涂膜,烘干再烧结得到莫来石纤维增强碳化硅陶瓷过滤管。所述的莫来石纤维增强碳化硅陶瓷过滤管具有强度高、耐高温、耐腐蚀等优点。

Description

一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法 技术领域
本发明属于采用刚性空心滤体的粒子分离器技术领域,涉及一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法。
背景技术
近年以来,随着我国城市的工业化和城市化建设的高速发展,环境能源的消耗量也在迅速增加。煤炭目前仍然处于主体能源地位,是我国基础能源和重要的工业原料,由于煤炭在利用中会产生大量成分复杂有害的高温废气,直接排放会导致水污染和大气污染问题,因此,废气需要进行严格处理减少环境污染。
利用无机陶瓷过滤管对废气进行过滤处理的方法具有效率高、能耗低和环境友好等一系列优势,其中碳化硅陶瓷由于具有耐高温、耐腐蚀、抗热冲击、亲水性强以及使用寿命长等突出优点,可应用在各种恶劣的环境条件下,从而得到广泛应用。目前常见的多孔碳化硅陶瓷过滤管的结构包括位于过滤管内层提供力学强度的支撑体及附着在支撑体外面的除去粉尘等污染物颗粒的表面膜层,采用两层结构用于粉尘等污染物的吸附。但在多孔碳化硅陶瓷过滤管制备成型过程中,表面膜层的粉料会进入支撑体孔隙中,使表面膜实际厚度大于名义厚度,一定程度上提高了过滤压,不仅会降低过滤精度和过滤效率,甚至影响其使用寿命。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法,在原有支撑体和表面膜层之间增加一层莫来石纤维过渡层,不仅能使表面膜成膜更均匀,还能防止表面膜粉料进入支撑体孔隙,降低过滤压,同时具有很高的机械强度和耐酸碱性等优异性能。
为解决上述技术问题,本发明提供的技术方案是:
提供一种莫来石纤维增强碳化硅陶瓷过滤管,所述莫来石纤维增强碳化硅陶瓷过滤管在碳化硅陶瓷支撑体及表面膜层之间设有一层莫来石纤维过渡层,其制备 方法包括以下步骤:
1)将混合碳化硅粉体、粘接剂、造孔剂、分散剂、无水乙醇和去离子水按以下质量百分比称取,备用:混合碳化硅粉体49~63%,粘接剂6.5~15%,造孔剂0.25~1%,分散剂1.4~3.4%,去离子水6~13%,无水乙醇17.9~21.6%;
2)将粘结剂与去离子水混合,得到粘结剂浆料;
3)将分散剂与无水乙醇混合,得到分散剂溶液,将分散剂溶液与混合碳化硅粉体混合均匀得到碳化硅浆料;
4)将一部分步骤2)制备的粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,将剩余的粘接剂浆料少量多次地加入到步骤3)所制备的碳化硅浆料中,再加入造孔剂,搅拌均匀得到浆料,将所得浆料采用流延法在碳化硅陶瓷支撑体外表面涂膜,得到碳化硅陶瓷过滤管半成品,然后将整个碳化硅陶瓷过滤管半成品烘干,再移入烧结炉中烧结,得到莫来石纤维增强碳化硅陶瓷过滤管。
按上述方案,所述莫来石纤维过渡层厚度为20~50μm。
按上述方案,步骤1)所述混合碳化硅粉体由粗碳化硅粉体与细碳化硅粉体按质量份比85~90:10~15混合得到,两者合计100份,其中粗碳化硅粉体的粒径D 50为20~60μm,细碳化硅粉体的粒径D 50为10~20μm,粗碳化硅粉体与细碳化硅粉体的纯度均为98wt%以上。采用不同粒径的碳化硅粉体,在高温重结晶过程中,较小的碳化硅颗粒先升华后凝结,大颗粒晶体长大,最终形成具有高结合强度的立体连通结构,可进一步提升所得碳化硅陶瓷支撑体的抗折强度、纯度以及耐腐蚀性。
按上述方案,步骤1)所述粘接剂由钾长石粉体、石英砂和高岭土粉体按照质量比60~68:8~16:19~32混合得到,所述钾长石粉体粒径为15~30μm,其中K 2O含量8~15wt%,Al 2O 3含量17~20wt%,SiO 2含量62~74wt%;所述石英砂目数为200目以上,SiO 2含量≥95%;所述高岭土粉体粒径10~20μm,Al 2O 3含量40~46wt%,SiO 2含量46~50wt%。根据K 2O-SiO 2-Al 2O 3相图通过固相反应生成莫来石。其次钾长石的熔融温度为1200℃左右,在烧结过程中会形成液相,会包覆颗粒与之结合,是一种合适的助溶剂。在钾长石的助溶作用下,高岭土首先在500~900℃转变成铝活性较高的偏高岭土,其所提供的铝源能与细度较小的石英开始反应促进莫来石相的生成;继续升温至1000℃左右,开始有非晶莫来石相和玻璃相出现,此时非晶莫来石相与碳化硅颗粒有较好的化学相容性,能够伴随着玻璃相流动,意味着在支撑体和粘接剂层会有莫来石相互相渗透,形成具有莫来石纤维 增强的过度膜层;到1200℃,钾长石既能作为烧结助剂熔融,使部分莫来石液相能够与碳化硅颗粒粘接在一起,而且它能提供钾源,抑制方石英相的生成。降温时液相的莫来石凝固,将整体结构紧密结合在一起。所用石英细度很小,表面活性高较高,可以在烧结开始阶段加速反应进行。
按上述方案,步骤1)所述造孔剂为炭黑,粒径为1.5μm。
按上述方案,步骤1)所述分散剂由甲基纤维素、四甲基氢氧化铵和羧甲基纤维素钠按质量比1:1~2:0.9~1.3复配得到。选用这三种原料复配能使得体系处于一个高度稳定的分散状态,避免出现粉体颗粒之间吸附聚集而形成大颗粒沉降的现象。
按上述方案,步骤2)所述粘结剂浆料固含量为40~60wt%。
按上述方案,步骤4)粘接剂浆料喷涂到碳化硅陶瓷支撑体表面的厚度为10~25μm。
按上述方案,步骤4)采用流延法在碳化硅陶瓷支撑体外表面涂膜厚度为0.1~1mm。
按上述方案,步骤4)所述烘干条件为:105℃下烘3h。
按上述方案,步骤4)所述烧结工艺条件为:在埋炭气氛下,从室温下以5℃/min的速率升温到550℃,保温1~2h,然后以490~510mL/min的流速通入氩气洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2~3h,随后以2℃/min的速率升温至1560℃,保温80~90min,最后以5℃/min的速率降温至300~400℃,保温30~60min,并随炉自然冷却至室温。碳化硅在高温下与氧气可以生成二氧化硅,附着在碳化硅表面,冷却时虽可将碳化硅颗粒粘接在一起使样品增加一定强度,但冷却后的样品由于附着二氧化硅,耐碱性差。在埋炭气氛中,既可以防止碳化硅被氧化,也能让粉料中的氧化铝和二氧化硅反应生成莫来石相。550℃左右是高岭土开始反应的温度区间,洗炉处理能够减少其他杂质气氛的影响。
本发明还包括上述莫来石纤维增强碳化硅陶瓷过滤管的制备方法,具体步骤如下:
1)将混合碳化硅粉体、粘接剂、造孔剂、分散剂、无水乙醇和去离子水按以下质量百分比称取,备用:混合碳化硅粉体49~63%,粘接剂6.5~15%,造孔剂0.25~1%,分散剂1.4~3.4%,去离子水6~13%,无水乙醇17.9~21.6%;
2)将粘结剂与去离子水混合,得到粘结剂浆料;
3)将分散剂与无水乙醇混合,得到分散剂溶液,将分散剂溶液与混合碳化硅粉体混合均匀得到碳化硅浆料;
4)将一部分步骤2)制备的粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,将剩余的粘接剂浆料少量多次地加入到步骤3)所制备的碳化硅浆料中,再加入造孔剂,搅拌均匀得到浆料,将所得浆料采用流延法在碳化硅陶瓷支撑体外表面涂膜,得到碳化硅陶瓷过滤管半成品,然后将整个碳化硅陶瓷过滤管半成品烘干,再移入烧结炉中烧结,得到莫来石纤维增强碳化硅陶瓷过滤管。
本发明还包括上述莫来石纤维增强碳化硅陶瓷过滤管在气体处理领域的应用。
本发明在碳化硅陶瓷支撑体与表面膜层之间形成了一层莫来石纤维过渡层。莫来石物相晶区不仅在高温下能与碳化硅形成良好表面浸润,而且熔融温度也远高于支撑体的使用温度。由于在支撑体表面直接涂覆过滤膜时,会有一部分膜料进入支撑体空隙内部,导致陶瓷颗粒过滤膜的过滤压降增大,而本发明引入莫来石纤维过渡层不仅能有效降低过滤压降,同时产生的莫来石纤维膜能够更好地吸附浆料,而且相互渗透的莫来石纤维能促进碳化硅陶瓷过滤管整体结构更稳定。而碳化硅陶瓷支撑体在这种类似于双层过滤膜层包覆的基础上,拥有了良好的微观性能和抗弯强度,同时因莫来石具有良好的高温强度,其热膨胀系数与碳化硅相近,有良好的化学兼容性,可以实现低温烧结,有效降低生产成本。
本发明的原理为:
1)本发明以K 2O-SiO 2-Al 2O 3相图为标准,控制钾长石、高岭土和石英的比例,在支撑体与表面膜层之间烧结莫来石纤维来增强碳化硅陶瓷管的结构,所生成的莫来石纤维和碳化硅有很好的化学相容性,结构稳定,环境友好;粘接剂首先在支撑体上涂覆一层,有助于在烧结过程中连接过度膜层中的莫来石相;而钾长石作为烧结助剂,在高岭土的烧结中,为其提供了液相的烧结环境,使不同位置的莫来石相能够相互渗透在一起,而且还提供了钾源,抑制方石英的生成。
2)本发明在碳化硅陶瓷支撑体与表面膜层之间形成了一层莫来石纤维的过渡层,能够防止一部分膜料进入支撑体空隙内部引起的陶瓷颗粒过滤膜的过滤压降增大。而莫来石纤维层不仅能有效降低压降,同时产生的纤维膜能够更好的吸附浆料。
本发明的有益效果在于:1、本发明提供的莫来石纤维增强碳化硅陶瓷过滤管具有强度高、耐高温、耐腐蚀等优异特点,所形成的莫来石纤维层不仅能有效降低 压降,同时产生的纤维膜能够更好地吸附浆料。2、本发明提供的制备方法步骤简单、工艺控制灵活、煅烧温度低,明显降低了工艺成本,具有重要的推广价值,可大规模应用。
附图说明
图1为本发明实施例1所制备的莫来石纤维增强碳化硅陶瓷过滤管表面SEM图;
图2为实施例1所制备的莫来石纤维增强碳化硅陶瓷过滤管断面SEM图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合实施例对本发明作进一步详细描述。
以下实施例中,所用碳化硅陶瓷支撑体为实验室统一烧制的碳化硅支撑体样品,其气孔率26~35%,抗弯强度18~26MPa;所用粗碳化硅粉体的粒度为D 50=30μm,细碳化硅粉体的粒度为D 50=10μm,两种粒径的碳化硅粉体的纯度为98wt%以上;所用钾长石粉体平均粒径为16μm,其中K 2O含量12wt%,Al 2O 3含量17wt%,SiO 2含量65wt%;所述石英砂目数为200目,SiO 2含量≥95%;所述高岭土粉体平均粒径10μm,Al 2O 3含量45wt%,SiO 2含量49wt%;所用造孔剂为炭黑,粒径为1.5μm。
实施例1
一种莫来石纤维增强碳化硅陶瓷过滤管,其制备方法包括以下步骤:
1)将粗碳化硅粉体和细碳化硅粉体按质量比90:10混合搅拌均匀,得到混合碳化硅粉体,备用;将甲基纤维素、四甲基氢氧化铵、羧甲基纤维素钠按照质量比1:1:0.9混合,得到分散剂;将钾长石粉体、石英砂和高岭土粉体按照质量比60:8:19混合得到粘接剂;
2)按以下质量百分配比称取各原料:混合碳化硅粉体63%、粘接剂6.5%、造孔剂0.3%、分散剂1.4%、去离子水10%、无水乙醇18.8%;
3)将粘接剂与去离子水混合,制得粘接剂浆料;将分散剂与无水乙醇混合,制得分散剂溶液,将分散剂溶液与混合碳化硅粉体搅拌混合均匀,得碳化硅浆料;
4)将一部分粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,喷涂厚度为10μm,将剩余的粘接剂浆料少量多次地加入到碳化硅浆料中,使粘接剂包裹在碳化硅骨料表面,再加入造孔剂,搅拌3min,得到浆料;
5)把步骤4)所得浆料采用流延法在碳化硅陶瓷支撑体外表面制备成表面膜层,膜层厚度为0.2mm,得到碳化硅陶瓷过滤管半成品,将半成品在105℃温度下 干燥3h后转移至高温炉中,在埋炭气氛中从室温下以5℃/min的速率升温到550℃,保温1h,再以500mL/min的流速通入氩气进行洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2h,然后以2℃/min的速率升温至1560℃,保温90min,最后以5℃/min的速率降温至300℃,保温45min,并随炉自然冷却至室温,即得莫来石纤维增强碳化硅陶瓷过滤管。
本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管,整个过滤管内部气孔均匀,且孔径差别不大,气孔率33%,抗弯强度达34Mpa,在碳化硅陶瓷支撑体及表面膜层之间生成一层莫来石纤维过渡层,厚度为26μm。在进气侧压力为0.1MPa的情况下,莫来石纤维增强碳化硅陶瓷过滤管过滤压降为855Pa,对PM1.0的含尘烟气的过滤度为96%。
图1所示为本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管表面SEM图,图中可以看出碳化硅颗粒表面光滑,表现出良好的烧结性能。
图2所示为本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管的断面SEM图,可以看出在碳化硅陶瓷支撑体及表面膜层之间生成一层莫来石纤维过渡层,并且莫来石纤维过渡层与碳化硅陶瓷支撑体充分接触。
实施例2
一种莫来石纤维增强碳化硅陶瓷过滤管,其制备方法包括以下步骤:
1)将粗碳化硅粉体和细碳化硅粉体按质量比85:15混合搅拌均匀,得到混合碳化硅粉体,备用;将甲基纤维素、四甲基氢氧化铵、羧甲基纤维素钠按照质量比1:2:1.3混合得到分散剂;将钾长石粉体、石英砂和高岭土粉体按照质量比68:16:27混合得到粘接剂;
2)按以下质量百分配比称取各原料:混合碳化硅粉体60%、粘接剂12%、造孔剂0.7%、分散剂2%、去离子水6%、无水乙醇19.3%;
3)将粘接剂与去离子水混合,制得粘接剂浆料;将分散剂与无水乙醇混合,制得分散剂溶液,将分散剂溶液与混合碳化硅粉体搅拌混合均匀,得碳化硅浆料;
4)将一部分粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,喷涂厚度为18μm;将剩余的粘接剂浆料少量多次地加入到碳化硅浆料中,使粘接剂包裹在碳化硅骨料表面,再加入造孔剂,搅拌4min,得到浆料;
5)把步骤4)所得浆料采用流延法在碳化硅陶瓷支撑体外表面制备成表面膜 层,厚度为0.5mm,得到碳化硅陶瓷过滤管半成品,然后将半成品在105℃温度下干燥3h后转移至高温炉中,在埋炭气氛中从室温下以5℃/min的速率升温到550℃,保温1h,再以490mL/min的流速通入氩气进行洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2h,然后以2℃/min的速率升温至1560℃,保温90min,最后以5℃/min的速率降温至300℃,保温40min,并随炉自然冷却至室温,即得莫来石纤维增强碳化硅陶瓷过滤管。
本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管整个过滤管内部气孔均匀,且孔径差别不大,气孔率26%,抗弯强度达41Mpa,在碳化硅陶瓷支撑体及表面膜层之间生成一层莫来石纤维过渡层,厚度为34μm。在进气侧压力为0.1MPa的情况下,莫来石纤维增强碳化硅陶瓷过滤管过滤压降为785Pa,对PM1.0的含尘烟气的过滤度为98%。
实施例3
一种莫来石纤维增强碳化硅陶瓷过滤管,其制备方法包括以下步骤:
1)将粗碳化硅粉体和细碳化硅粉体按质量比88:12混合搅拌均匀,得到混合碳化硅粉体,备用;将甲基纤维素、四甲基氢氧化铵、羧甲基纤维素钠按照质量比1:1.5:1.1混合,得到分散剂;将钾长石粉体、石英砂和高岭土粉体按照质量比64:12:23混合得到粘接剂粉料;
2)按以下质量百分配比称取各原料:混合碳化硅粉体55%、粘接剂10%、造孔剂0.6%、分散剂2.8%、去离子水10%、无水乙醇21.6%;
3)将粘接剂与去离子水混合,制得粘接剂浆料;将分散剂与无水乙醇混合,制得分散剂溶液,将分散剂溶液与混合碳化硅粉体搅拌混合均匀,得碳化硅浆料;
4)将一部分粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,喷涂厚度为20μm;将剩余的粘接剂浆料少量多次地加入到碳化硅浆料中,使粘接剂包裹在碳化硅骨料表面,再加入造孔剂,搅拌5min,得到浆料;
5)把步骤4)所得浆料采用流延法在碳化硅陶瓷支撑体外表面制备成表面膜层,厚度为0.8mm,得到碳化硅陶瓷过滤管半成品,然后将半成品在105℃温度下干燥3h后转移至高温炉中,在埋炭气氛中从室温下以5℃/min的速率升温到550℃,保温1h,再以510mL/min的流速通入氩气进行洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2h,然后以2℃/min的速率升温至1560℃, 保温90min,最后以5℃/min的速率降温至360℃,保温38min,并随炉自然冷却至室温,即得莫来石纤维增强碳化硅陶瓷过滤管。
本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管整个过滤管内部气孔均匀,且孔径差别不大,气孔率22%,抗弯强度达46Mpa,在碳化硅陶瓷支撑体及表面膜层之间生成一层莫来石纤维过渡层,厚度为38μm。在进气侧压力为0.1MPa的情况下,莫来石纤维增强碳化硅陶瓷过滤管过滤压降为763Pa,对PM1.0的含尘烟气的过滤度为97%。
实施例4
一种莫来石纤维增强碳化硅陶瓷过滤管,其制备方法包括以下步骤:
1)粗碳化硅粉体和细碳化硅粉体按质量比89:11混合搅拌均匀,得到混合碳化硅粉体,备用;将甲基纤维素、四甲基氢氧化铵、羧甲基纤维素钠按照质量比1:1.2:1.1混合,得到分散剂;将钾长石粉体、石英砂和高岭土粉体按照质量比66:14:25混合得到粘接剂;
2)按以下质量百分配比称取各原料:混合碳化硅粉体52%、粘接剂14%、造孔剂0.3%、分散剂2.5%、去离子水12%、无水乙醇19.2%;
3)将粘接剂与去离子水混合,制得粘接剂浆料;将分散剂与无水乙醇混合,制得分散剂溶液,将分散剂溶液与混合碳化硅粉体搅拌混合均匀,得碳化硅浆料;
4)将一部分粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,喷涂厚度为13μm,将剩余的粘接剂浆料少量多次地加入到碳化硅浆料中,使粘接剂包裹在碳化硅骨料表面,再加入将造孔剂,搅拌3min,得到浆料;
5)把步骤4)所得浆料采用流延法在碳化硅陶瓷支撑体外表面制备成表面膜层,厚度为0.5mm,得到莫来石纤维增强碳化硅陶瓷过滤管半成品,然后将半成品在105℃下干燥3h后转移至高温炉中,在埋炭气氛中从室温下以5℃/min的速率升温到550℃,保温1h,再以510mL/min的流速通入氩气进行洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2h,然后以2℃/min的速率升温至1560℃,保温80min,最后以5℃/min的速率降温至360℃,保温38min,并随炉自然冷却至室温,即得莫来石纤维增强碳化硅陶瓷过滤管。
本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管整个过滤管内部气孔均匀,且孔径差别不大,气孔率27%,抗弯强度达36Mpa,在碳化硅陶瓷支撑体及 表面膜层之间生成一层莫来石纤维过渡层,厚度为28μm。在进气侧压力为0.1MPa的情况下,莫来石纤维增强碳化硅陶瓷过滤管过滤压降为1030Pa,对PM1.0的含尘烟气的过滤度为95%。
实施例5
一种莫来石纤维增强碳化硅陶瓷过滤管,其制备方法包括以下步骤:
1)粗碳化硅粉体和细碳化硅粉体按质量比84:16混合搅拌均匀,得到混合碳化硅粉体,备用;将甲基纤维素、四甲基氢氧化铵、羧甲基纤维素钠按照1:1.8:1的质量比混合,得到分散剂;将钾长石粉体、石英砂和高岭土粉体按照质量比63:11:22混合得到粘接剂;
2)按以下质量百分配比称取各原料:混合碳化硅粉体57%、粘接剂9%、造孔剂0.8%、分散剂2.3%、去离子水13%、无水乙醇17.9%;
3)将粘接剂与去离子水混合,制得粘接剂浆料;将分散剂与无水乙醇混合,制得分散剂溶液,将分散剂溶液与混合碳化硅粉体搅拌混合均匀,得碳化硅浆料;
4)将一部分粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,喷涂厚度为15μm;将剩余的粘接剂浆料少量多次地加入到碳化硅浆料中,使粘接剂包裹在碳化硅骨料表面,再加入造孔剂,搅拌5min,得到浆料;
5)把步骤4)所得浆料采用流延法在碳化硅陶瓷支撑体外表面制备成表面膜层,厚度为0.5mm,得到莫来石纤维增强碳化硅陶瓷过滤管半成品,然后将半成品在105℃温度下干燥3h后转移至高温炉中,在埋炭气氛中从室温下以5℃/min的速率升温到550℃,保温1h,再以510mL/min的流速通入氩气进行洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2h,然后以2℃/min将速率升到1560℃,保温80min,最后以5℃/min的速率降温至360℃,保温38min,并随炉自然冷却至室温,即得莫来石纤维增强碳化硅陶瓷过滤管。
本实施例制备的莫来石纤维增强碳化硅陶瓷过滤管整个过滤管内部气孔均匀,且孔径差别不大,气孔率28%,抗弯强度达38Mpa,在碳化硅陶瓷支撑体及表面膜层之间生成一层莫来石纤维过渡层,厚度为31μm。在进气侧压力为0.1MPa的情况下,莫来石纤维增强碳化硅陶瓷过滤管过滤压降为810Pa,对PM1.0的含尘烟气的过滤度为95%。
对比例1
一种碳化硅陶瓷过滤管的制备方法,其具体步骤与实施例1相似,不同之处在于没有在支撑体表面涂覆一层粘接剂浆料。
通过对所制得的过滤管成品进行测试,气孔率为27%,抗弯强度为22Mpa;在进气侧压力为0.1MPa的情况下,过滤压降为1580Pa;对PM1.0的含尘烟气过滤度为92%。
对比例2
一种碳化硅陶瓷过滤管的制备方法,其具体步骤与实施例2相似,不同之处在于没有在支撑体表面涂覆一层粘接剂浆料。
通过对所制得的过滤管成品进行测试,气孔率为22%,抗弯强度为31Mpa;在进气侧压力为0.1MPa的情况下,过滤压降为1350Pa;对PM1.0的含尘烟气过滤度为93%。

Claims (10)

  1. 一种莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,所述莫来石纤维增强碳化硅陶瓷过滤管在碳化硅陶瓷支撑体及表面膜层之间设有一层莫来石纤维过渡层,其制备方法包括以下步骤:
    1)将混合碳化硅粉体、粘接剂、造孔剂、分散剂、无水乙醇和去离子水按以下质量百分比称取,备用:混合碳化硅粉体49~63%,粘接剂6.5~15%,造孔剂0.25~1%,分散剂1.4~3.4%,去离子水6~13%,无水乙醇17.9~21.6%;
    2)将粘结剂与去离子水混合,得到粘结剂浆料;
    3)将分散剂与无水乙醇混合,得到分散剂溶液,将分散剂溶液与混合碳化硅粉体混合均匀得到碳化硅浆料;
    4)将一部分步骤2)制备的粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,将剩余的粘接剂浆料少量多次地加入到步骤3)所制备的碳化硅浆料中,再加入造孔剂,搅拌均匀得到浆料,将所得浆料采用流延法在碳化硅陶瓷支撑体外表面涂膜,得到碳化硅陶瓷过滤管半成品,然后将整个碳化硅陶瓷过滤管半成品烘干,再移入烧结炉中烧结,得到莫来石纤维增强碳化硅陶瓷过滤管。
  2. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,所述莫来石纤维过渡层厚度为20~50μm。
  3. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,步骤1)所述混合碳化硅粉体由粗碳化硅粉体与细碳化硅粉体按质量份比85~90:10~15混合得到,两者合计100份,其中粗碳化硅粉体的粒径D 50为20~60μm,细碳化硅粉体的粒径D 50为10~20μm,粗碳化硅粉体与细碳化硅粉体的纯度均为98wt%以上。
  4. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,步骤1)所述粘接剂由钾长石粉体、石英砂和高岭土粉体按照质量比60~68:8~16:19~32混合得到,所述钾长石粉体粒径为15~30μm,其中K 2O含量8~15wt%,Al 2O 3含量17~20wt%,SiO 2含量62~74wt%;所述石英砂目数为200目以上,SiO 2含量≥95%;所述高岭土粉体粒径10~20μm,Al 2O 3含量40~46wt%,SiO 2含量46~50wt%。
  5. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,步骤1)所述造孔剂为炭黑,粒径为1.5μm;步骤1)所述分散剂由甲基纤维素、四甲基氢氧化铵和羧甲基纤维素钠按质量比1:1~2:0.9~1.3复配得到。
  6. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,步骤2)所述粘结剂浆料固含量为40~60wt%。
  7. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,步骤4)粘接剂浆料喷涂到碳化硅陶瓷支撑体表面的厚度为10~25μm;采用流延法在碳化硅陶瓷支撑体外表面涂膜厚度为0.1~1mm。
  8. 根据权利要求1所述的莫来石纤维增强碳化硅陶瓷过滤管,其特征在于,步骤4)所述烘干条件为:105℃下烘3h;所述烧结工艺条件为:在埋炭气氛下,从室温下以5℃/min的速率升温到550℃,保温1~2h,然后以490~510mL/min的流速通入氩气洗炉,洗炉时间为20min,接着再以5℃/min的速率升温至1280℃,保温2~3h,随后以2℃/min的速率升温至1560℃,保温80~90min,最后以5℃/min的速率降温至300~400℃,保温30~60min,并随炉自然冷却至室温。
  9. 一种权利要求1-8任一所述的莫来石纤维增强碳化硅陶瓷过滤管的制备方法,其特征在于,具体步骤如下:
    1)将混合碳化硅粉体、粘接剂、造孔剂、分散剂、无水乙醇和去离子水按以下质量百分比称取,备用:混合碳化硅粉体49~63%,粘接剂6.5~15%,造孔剂0.25~1%,分散剂1.4~3.4%,去离子水6~13%,无水乙醇17.9~21.6%;
    2)将粘结剂与去离子水混合,得到粘结剂浆料;
    3)将分散剂与无水乙醇混合,得到分散剂溶液,将分散剂溶液与混合碳化硅粉体混合均匀得到碳化硅浆料;
    4)将一部分步骤2)制备的粘接剂浆料喷涂到碳化硅陶瓷支撑体表面,将剩余的粘接剂浆料少量多次地加入到步骤3)所制备的碳化硅浆料中,再加入造孔剂,搅拌均匀得到浆料,将所得浆料采用流延法在碳化硅陶瓷支撑体外表面涂膜,得到碳化硅陶瓷过滤管半成品,然后将整个碳化硅陶瓷过滤管半成品烘干,再移入烧结炉中烧结,得到莫来石纤维增强碳化硅陶瓷过滤管。
  10. 一种权利要求1-8任一所述的莫来石纤维增强碳化硅陶瓷过滤管在气体处理领域的应用。
PCT/CN2021/118909 2021-07-27 2021-09-17 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法 WO2023004959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110847971.XA CN113651633B (zh) 2021-07-27 2021-07-27 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法
CN202110847971.X 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023004959A1 true WO2023004959A1 (zh) 2023-02-02

Family

ID=78490657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118909 WO2023004959A1 (zh) 2021-07-27 2021-09-17 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法

Country Status (2)

Country Link
CN (1) CN113651633B (zh)
WO (1) WO2023004959A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117342880A (zh) * 2023-12-04 2024-01-05 乌镇实验室 一种异形面陶瓷纤维刚性隔热瓦的连续湿法成型方法
CN117815805A (zh) * 2023-09-18 2024-04-05 江苏三责新材料科技有限公司 一种耐高温碳化硅陶瓷烟气过滤管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557730A (zh) * 2011-12-13 2012-07-11 长安大学 一种碳化硅陶瓷表面改性方法
CN102718494A (zh) * 2012-06-21 2012-10-10 海南大学 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN103113110A (zh) * 2012-12-04 2013-05-22 海南大学 一种复合碳化硅陶瓷纤维过渡层的涂覆方法
US20150275725A1 (en) * 2014-03-26 2015-10-01 Ngk Insulators, Ltd. Honeycomb structure
CN106187297A (zh) * 2016-08-26 2016-12-07 天津梦龙新能源技术有限公司 一种复合碳化硅陶瓷过滤膜材料的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236840C (zh) * 2001-06-08 2006-01-18 高斌 微孔陶瓷过滤板及制备方法
CN1714909B (zh) * 2005-05-11 2010-11-17 青海大学 洁净高温气体用陶瓷过滤管制备方法
CN101607158B (zh) * 2008-06-21 2011-06-15 淄博鑫拓耐火材料有限公司 碳化硅多孔陶瓷过滤器及其制造方法
DE102011109682A1 (de) * 2011-08-08 2013-02-14 Technische Universität Bergakademie Freiberg Verfahren zur Herstellung kohlenstoffhaltiger und/oder kohlenstoffgebundener keramischer Metallschmelze-Filter
CN103111132B (zh) * 2013-02-25 2014-12-24 中国石油大学(北京) 高温气体过滤管的制作装置和制作方法
CN104478437A (zh) * 2014-11-21 2015-04-01 安徽盛运环保(集团)股份有限公司 一种制造陶瓷过滤膜的原料以及工艺
CN106178976A (zh) * 2016-06-28 2016-12-07 董超超 一种含有二氧化钛颗粒的过滤膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557730A (zh) * 2011-12-13 2012-07-11 长安大学 一种碳化硅陶瓷表面改性方法
CN102718494A (zh) * 2012-06-21 2012-10-10 海南大学 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN103113110A (zh) * 2012-12-04 2013-05-22 海南大学 一种复合碳化硅陶瓷纤维过渡层的涂覆方法
US20150275725A1 (en) * 2014-03-26 2015-10-01 Ngk Insulators, Ltd. Honeycomb structure
CN106187297A (zh) * 2016-08-26 2016-12-07 天津梦龙新能源技术有限公司 一种复合碳化硅陶瓷过滤膜材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SU, KUIFAN ET AL.: "Preparation and Characterization of SiC Composite Filtration Membrane Materials", MEMBRANE SCIENCE AND TECHNOLOGY, vol. 33, no. 2, 30 April 2013 (2013-04-30), XP093029971, ISSN: 1007-8924 *
SU, KUIFAN: "Study on Preparation and Properties of SiC Ceramic Composite Filtration Membrane Materials", ENGINEERING SCIENCE AND TECHNOLOGY 1, CHINA MASTER',V THESES FULL-TEXT DATABASE, 15 February 2014 (2014-02-15), XP093029967, ISSN: 1674-0246 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117815805A (zh) * 2023-09-18 2024-04-05 江苏三责新材料科技有限公司 一种耐高温碳化硅陶瓷烟气过滤管及其制备方法
CN117342880A (zh) * 2023-12-04 2024-01-05 乌镇实验室 一种异形面陶瓷纤维刚性隔热瓦的连续湿法成型方法
CN117342880B (zh) * 2023-12-04 2024-04-02 乌镇实验室 一种异形面陶瓷纤维刚性隔热瓦的连续湿法成型方法

Also Published As

Publication number Publication date
CN113651633B (zh) 2022-10-21
CN113651633A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023004959A1 (zh) 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法
WO2012105478A1 (ja) 炭化珪素質材料、ハニカム構造体及び電気加熱式触媒担体
CN102718494B (zh) 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN101954246A (zh) 粉尘过滤用多孔陶瓷过滤管的双层非对称表面膜及制法
CN109279909B (zh) 一种高强度碳化硼多孔陶瓷的制备方法
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
CN106187297A (zh) 一种复合碳化硅陶瓷过滤膜材料的制备方法
CN108176249B (zh) 一种碳化硅纳米纤维膜的制备方法
JPWO2013054793A1 (ja) セラミックハニカム構造体の製造方法、及びセラミックハニカム構造体
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
CN105622079A (zh) 分子筛膜支撑体的制备方法
CN115521158B (zh) 一种高透气性陶瓷纤维过滤管的制备方法
JPWO2009041369A1 (ja) セラミックハニカム構造体及びその製造方法
CN113999046B (zh) 一种低温反应烧结碳化硅陶瓷膜的制备方法
KR101806575B1 (ko) 접합되고 외피-형성된 침상 뮬라이트 허니컴 구조물의 제조 방법
CN110304937A (zh) 一种蜂窝陶瓷过滤器载体及其制备方法
CN110981453B (zh) 一种轻质陶瓷过滤膜的制备方法
CN111039695A (zh) 碳化硅拓补骨架结构增强氧化铝多孔陶瓷的制备方法
JP4904515B2 (ja) セラミック多孔体
CN112876280B (zh) 一种碳化硅晶须增强的铝碳多孔陶瓷过滤器及其制备方法
CN109553424A (zh) 一种纤维增强耐高温轻质铝硅质发泡涂抹料
JPH0779935B2 (ja) コーディエライト質ガス用フィルタとその製造方法
CN111233502B (zh) 一种轻质隔热高强度莫来石材料及其制备方法
CN112794730B (zh) 复合增强的多孔尖晶石-刚玉-碳陶瓷过滤器及其制备方法
JP2001206785A (ja) 炭化ケイ素質多孔体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21951533

Country of ref document: EP

Kind code of ref document: A1