WO2023004792A1 - 一种激光雷达的姿态标定方法、相关装置、以及存储介质 - Google Patents

一种激光雷达的姿态标定方法、相关装置、以及存储介质 Download PDF

Info

Publication number
WO2023004792A1
WO2023004792A1 PCT/CN2021/109805 CN2021109805W WO2023004792A1 WO 2023004792 A1 WO2023004792 A1 WO 2023004792A1 CN 2021109805 W CN2021109805 W CN 2021109805W WO 2023004792 A1 WO2023004792 A1 WO 2023004792A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration object
position information
lidar
calibration
calibrated
Prior art date
Application number
PCT/CN2021/109805
Other languages
English (en)
French (fr)
Inventor
张莹莹
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202180100551.3A priority Critical patent/CN117716255A/zh
Priority to PCT/CN2021/109805 priority patent/WO2023004792A1/zh
Publication of WO2023004792A1 publication Critical patent/WO2023004792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00

Definitions

  • the present application relates to the field of measurement, in particular to a laser radar attitude calibration method, a related device, and a storage medium.
  • Micro-Electro Mechanical System (MEMS) lidar can replace the traditional mechanical rotating device by integrating the MEMS micro-vibration mirror on the silicon-based chip, and the laser is reflected by the micro-vibration mirror to form a wider scanning angle and Larger scanning range.
  • MEMS Micro-Electro Mechanical System
  • installation errors will inevitably be introduced, resulting in a certain amount of deviation between the real outgoing direction of the point cloud and the theoretical outgoing direction. In this way, if the point cloud data of MEMS is directly calculated in the theoretical outgoing direction , which may lead to inaccurate measurement data.
  • Embodiments of the present application provide a laser radar attitude calibration method, a related device, and a storage medium.
  • the embodiments of the present application can reduce measurement errors that may be caused when the lidar hardware is assembled.
  • the embodiment of the present application provides a laser radar attitude calibration method, the method comprising:
  • the first calibration object is located on a first preset plane parallel to the fixed surface of the lidar to be calibrated area
  • the second calibration object is located in a second preset area on a plane perpendicular to the fixed surface of the laser radar to be calibrated
  • the attitude of the laser radar to be calibrated is adjusted until the position information of the first calibration object
  • the position information and the position information of the second calibration object satisfy the preset convergence condition
  • the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the embodiment of the present application provides a laser radar attitude calibration device, the device includes:
  • An acquisition module configured to acquire the position information of the first calibration object detected by the laser radar to be calibrated and the position information of the second calibration object; wherein, the first calibration object is located on a plane parallel to the fixed surface of the laser radar to be calibrated The first preset area, the second calibration object is located in the second preset area of the plane perpendicular to the fixed surface of the lidar to be calibrated;
  • An adjustment module configured to adjust the attitude of the laser radar to be calibrated until the position information of the first calibration object and the position information of the second calibration object do not meet a preset convergence condition
  • an embodiment of the present application provides a computer storage medium, where a plurality of instructions are stored in the computer storage medium, and the instructions are adapted to be loaded by a processor and execute the above method steps.
  • the embodiment of the present application provides a terminal, which may include: a processor and a memory;
  • the memory stores a computer program
  • the computer program is suitable for being loaded by the processor and executing the above method steps.
  • the position information of the first calibration object and the position information of the second calibration object detected by the laser radar to be calibrated can be acquired; if the position information of the first calibration object and the position information of the second calibration object do not satisfy In the case of preset convergence conditions, adjust the attitude of the lidar to be calibrated until the position information of the first calibration object and the position information of the second calibration object meet the preset convergence conditions, the attitude calibration of the lidar to be calibrated is completed, and the lidar is saved current posture.
  • the position information of the detected calibration object in the pre-selected calibration scene, can be used to adjust the attitude parameters of the laser radar, so that within the range of each preset area in the detected calibration scene The position information of the calibration object satisfies the preset convergence conditions, thereby improving the accuracy of the detection point cloud and reducing the measurement error that may be caused when the lidar hardware is assembled.
  • FIG. 1 is an internal structure diagram of a laser radar provided in an embodiment of the present application
  • FIG. 2 is a calibration scene diagram of a lidar provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a three-dimensional coordinate system of a laser radar provided in an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a laser radar attitude calibration method provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another laser radar attitude calibration method provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another laser radar attitude calibration method provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a laser transceiver module in a laser radar system provided by an embodiment of the present application.
  • FIG. 8 is a calibration scene diagram of another laser radar system provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a laser radar attitude calibration device provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 exemplarily shows an internal structure diagram of a laser radar provided in an embodiment of the present application.
  • the laser radar 100 may include: a base 11 , a laser transceiver module 12 , a vibrating mirror assembly 13 , and a folding mirror assembly 14 .
  • at least one laser transceiver module 12 and the galvanometer assembly 13 are arranged on the base 11 .
  • the lidar 100 may include a number of turning mirror assemblies 14 corresponding to the number of laser transceiver modules 12 .
  • the outgoing light signal of the laser transceiver module 100 shoots to the corresponding folding mirror, and then shoots to the vibrating mirror assembly 13 after passing through the folding mirror, and the vibrating mirror assembly 13 sends out the outgoing light signal and scans it;
  • the reflected light signal generated by the reflection is received by the vibrating mirror assembly 13 and directed to the return mirror.
  • the return mirror reflects the reflected light signal and sends it to the corresponding laser transceiver module 100.
  • the laser transceiver module 100 receives the reflected light signal.
  • the laser transceiver module 12 may include: a transmitting module, a beam splitting module, and a receiving module. Specifically, the outgoing light signal sent by the transmitting module goes out after passing through the beam splitting module, and returns to the reflected light signal after being reflected by the target object in the calibration scene. After the reflected light signal is received and deflected by the beam splitting module, the receiving Module received.
  • the vibrating mirror assembly 13 includes a micro-electro-mechanical system (MEMS, Micro-Electro-Mechanical System) vibrating mirror.
  • MEMS Micro-Electro-Mechanical System
  • the turning mirror assembly 14 can be used to fold the optical path, so as to achieve the purpose of reducing the volume of the lidar system 100 .
  • the emitting module can include a laser diode, which can be used as an emitting light source of the lidar system.
  • the vibrating mirror assembly can deflect, modulate, open and close, and phase control the beam of the emitting light source under the driving action of MEMS.
  • the receiving module may include: a photodetector, such as a photodiode.
  • the single laser signal emitted by the transmitting module will be reflected back by the target object in a linear form, and the reflected photons will be received by the photodiode.
  • the photodiode can convert the reflected light signal into a corresponding current signal or The voltage signal, so as to obtain the propagation time of the laser signal from emission to reflection. Since the speed of light is known, the propagation time can be converted into a measurement of distance, and combined with the attitude parameters of the lidar, the three-dimensional coordinate information of any point in the point cloud formed based on reflected light can be calculated.
  • the embodiment of the present application does not specifically limit the number and form of the transceiver modules in the laser radar system; at the same time, the optical scanning element in the embodiment of the present application can be a MEMS oscillating mirror, or a reflective mirror or other rotating mirrors , the present application does not impose a unique limitation on the scanning element of the present application; meanwhile, the embodiment of the present application does not impose a unique limitation on whether the lidar 100 includes a turning mirror.
  • the attitude parameters of the lidar may include a pitch angle (pitch), a heading angle (yaw), and a roll angle (roll) of the outgoing laser light.
  • Fig. 2 exemplarily shows a calibration scene diagram of a lidar system provided by an embodiment of the present application. Specifically, the calibration scenario of the lidar system is used to solve the calibration of the attitude parameters of the lidar system before leaving the factory.
  • the reference feature point of the first calibration object and the reference feature point of the second calibration object in the laser radar system shown in FIG. The true value data obtained by the two calibration objects, or the reference point cloud data obtained by measuring the first calibration object and the second calibration object respectively by other calibrated reference three-dimensional scanners; it can be understood that when the lidar When multiple transceiver modules are included, the reference feature point of the first calibration object and the reference feature point of the second calibration object can also be determined from the detection data of the first calibration object and the second calibration object by the calibrated transceiver module.
  • the calibration scene may include smooth planes perpendicular to each other, for example, a smooth ground and a smooth wall perpendicular to the smooth ground.
  • a target object is set in the calibration scene.
  • FIG. 3 is a schematic diagram of a reference coordinate system provided by the embodiment of the present application. Specifically, the fixed surface of the lidar system is located at the origin of the reference coordinate system, the smooth ground in the calibration scene is parallel to the XOY plane in the reference coordinate system, and the smooth wall in the calibration scene is perpendicular to the XOY plane in the reference coordinate system.
  • the attitude calibration method of the lidar may include the following steps:
  • the first calibration object in the embodiment of the present application is located in the first preset area of the plane parallel to the fixed surface of the laser radar to be calibrated, and the second calibration object is located in the second area of the plane perpendicular to the fixed surface of the laser radar to be calibrated. Default area.
  • the calibration object may be any obstacle with a certain reflectivity such as a calibration board or a wall.
  • the embodiment of the present application can first obtain the detection point cloud of the first calibration object detected by the lidar to be calibrated and the detection point cloud of the second calibration object; then based on the detection point cloud of the first calibration object and the second calibration object The position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object are obtained.
  • the outgoing light direction of the lidar to be calibrated Adjust until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence conditions, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the detected point cloud of the first calibration object is used to represent the point cloud formed by the first calibration object detected in the first preset area parallel to its fixed surface when the lidar sends signal photons to the calibration scene.
  • the first preset area may be a preset area on a smooth ground parallel to the XOY plane in the laser radar calibration three-dimensional coordinate system.
  • the detection point cloud of the second calibration object is used to represent the point cloud formed by the second calibration object detected in the second preset area perpendicular to its fixed surface when the lidar sends signal photons to the calibration scene.
  • the second preset area may be a preset area on a smooth wall perpendicular to the XOY plane in the laser radar calibration three-dimensional coordinate system.
  • the outgoing light direction of the laser radar is used to indicate the outgoing laser direction corresponding to the transmission channel of the laser radar to be calibrated.
  • the position information of the detection point cloud of the first calibration object and the detection point cloud of the second calibration object may include coordinate information of each point in the point cloud in a three-dimensional coordinate system.
  • the preset convergence condition represents a preset condition for adjusting the attitude parameters of the lidar to reduce the deviation between the point cloud formed by the actual outgoing light direction and the point cloud formed by the reference outgoing light direction
  • the preset The convergence condition of can be: the distance difference between the coordinates of each point in the position information of the detection point cloud of the first calibration object and the coordinates of the corresponding point in the point cloud formed by the reference outgoing light direction, and the detection point of the second calibration object
  • the distance difference between the coordinates of each point in the cloud position information and the coordinates of corresponding points in the point cloud formed by the reference outgoing light direction is smaller than a preset value.
  • the distance difference between the coordinates of each point in the position information of the detection point cloud of the first calibration object in the first preset area and the coordinates of the corresponding point in the point cloud formed by the reference outgoing light direction, and/or the first If the distance difference between the coordinates of each point in the position information of the detected point cloud of the calibration object and the coordinates of the corresponding point in the point cloud formed by the theoretical outgoing light direction is greater than the preset distance, adjust the outgoing light direction of the lidar , so that the outgoing light direction of the lidar satisfies the preset convergence condition.
  • the adjustment of the outgoing light direction of the laser radar can be realized, for example, by fine-tuning the position of the laser transceiver module 12 in FIG. 1 under the condition that other optical components remain unchanged; The position of the components and the laser transceiver module 12 is realized.
  • the laser transceiver module 12 and the vibrating mirror positions in FIG. and roll angle (roll) to achieve.
  • the angle adjustment of the folding mirror assembly 14 can be realized by external components, and can also be fine-tuned by the folding mirror assembly 14 itself, which is not limited here.
  • the laser radar to be calibrated completes attitude calibration, and saves the current attitude of the laser radar.
  • the position information of the first calibration object and the position information of the second calibration object detected by the laser radar to be calibrated can be acquired; if the position information of the first calibration object and the position information of the second calibration object do not satisfy In the case of preset convergence conditions, adjust the attitude of the lidar to be calibrated until the position information of the first calibration object and the position information of the second calibration object meet the preset convergence conditions, the attitude calibration of the lidar to be calibrated is completed, and the lidar is saved current posture.
  • the position information of the detected calibration object in the pre-selected calibration scene, can be used to adjust the attitude parameters of the laser radar, so that within the range of each preset area in the detected calibration scene The position information of the calibration object satisfies the preset convergence conditions, thereby improving the accuracy of the detection point cloud and reducing the measurement error that may be caused when the lidar hardware is assembled.
  • FIG. 5 exemplarily shows a schematic flowchart of a laser radar attitude calibration method provided in an embodiment of the present application.
  • the attitude parameter calibration method may at least include the following steps:
  • S401 is the same as S501, which will not be repeated here.
  • the embodiment of the present application can obtain the position information of the detection feature points of the first calibration object and the position of the detection feature points of the second calibration object based on the detection feature points of the first calibration object and the detection feature points of the second calibration object information.
  • the embodiment of the present application may use plane filtering or statistical filtering to denoise and extract the detection point cloud of the first calibration object in the first preset area and the detection point cloud of the second calibration object in the second preset area respectively. , to obtain the detection feature points of the first calibration object and the detection feature points of the second calibration object.
  • noise data will inevitably appear in point cloud data.
  • the purpose of filtering is to solve problems such as point cloud data density irregularity, unevenness, outliers, large data downsampling, holes, and noise data.
  • outliers are often introduced by measurement noise. It is characterized by sparse distribution in space. Since each point expresses a certain amount of information, the denser the points in a certain area, the greater the amount of information may be. Noise information is useless information with a small amount of information. Therefore, the information expressed by outliers can be ignored. Considering the characteristics of outliers, it can be defined that when the point cloud at a certain point is less than the preset density, the point cloud data at this position is invalid.
  • planar filtering is to remove the glitch of a wave or the part above a certain frequency, and the reaction to the image is noise reduction and image blurring.
  • a nonlinear filter can be used in plane filtering of point cloud data, which can overcome the blurring problem that may exist in the image to a certain extent, and can better retain the edge information of the image while filtering out noise.
  • the reference feature points of the first calibration object in the first preset area and the reference feature points of the second calibration object in the second preset area can also be obtained in advance, and based on the first calibration object Determine the first distance difference between the detection feature point of the first calibration object and the reference feature point of the first calibration object based on the position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object;
  • the position information of the detected feature points and the position information of the reference feature points of the second calibration object determine the second distance difference between the detection feature points of the second calibration object and the reference feature points of the second calibration object.
  • the embodiment of the present application can calculate the first distance difference between the position coordinates of the detection feature point of the first calibration object and the position coordinates of the reference feature point of the first calibration object in the first preset area; Set the position coordinates of the detection feature point of the second calibration object in the area and the position coordinates of the reference feature point of the second calibration object to calculate the second distance difference therebetween.
  • the first distance difference and the second distance difference can be obtained by calculating the average distance from multiple feature points obtained after filtering noise information in a frame of point cloud data image to their corresponding reference feature points; Frame images form point cloud data, and after filtering the point cloud data, calculate the average distance from each feature point to its corresponding reference feature point; The average distance between feature points and their corresponding reference feature points is obtained.
  • the reference feature point of the first calibration object and the reference feature point of the second calibration object can be the true value obtained by the actual distance and size of the first calibration object and the second calibration object in the calibration scene respectively measured by the rangefinder data, or the reference point cloud data obtained by measuring the first calibration object and the second calibration object in the calibration scene respectively by a 3D scanner with higher precision.
  • the preset convergence condition in this embodiment of the present application may include that the first distance difference and the second distance difference are not greater than a preset value.
  • the channel information of the outgoing light is adjusted, for example, by adjusting the pitch angle, heading angle, and roll angle of the laser transceiver module 12 and/or the turning mirror assembly 14 inside the laser radar in FIG. 1 .
  • the embodiment of the present application can adjust the outgoing light direction of the lidar to obtain the adjusted position information of the detection feature points of the first calibration object and the position information of the detection feature points of the second calibration object; based on the adjusted The position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object obtain the adjusted first distance difference, based on the adjusted position information of the detection feature point of the second calibration object and the second The position information of the reference feature point of the calibration object is obtained by adjusting the second distance difference; determining whether the adjusted first distance difference and the adjusted second distance difference are greater than the preset distance; if the adjusted first distance difference and/or Or if the adjusted second distance difference is still greater than the preset distance, continue to adjust the attitude adjustment of the lidar.
  • the embodiment of the present application can adjust the roll angle, pitch angle, and heading angle of the laser transceiver module and/or the turning mirror assembly inside the lidar, and then use the lidar to send signal photons to the calibration scene, To obtain the re-formed point cloud data after adjustment, and further determine the distance between the detection feature point and the reference feature point in the re-formed point cloud data, if it is still greater than the preset distance, continue to monitor the laser radar’s outgoing light Adjust the channel information where the laser is located, for example, adjust the pitch angle, heading angle, and roll angle of the laser transceiver module and/or the turning mirror assembly inside the lidar.
  • the embodiment of the present application can adjust any direction angle of the outgoing light of the lidar to obtain the adjusted position information of the detection feature point of the first calibration object and the position information of the detection feature point of the second calibration object; based on The adjusted position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object are adjusted to obtain an adjusted first distance difference, based on the adjusted position information of the detection feature point of the second calibration object and the position information of the reference feature point of the second calibration object to obtain the adjusted second distance difference; determine whether the adjusted first distance difference and the adjusted second distance difference are greater than the preset value; if the adjusted first distance If the difference and the adjusted second distance difference are still greater than the preset value, continue to adjust any direction in the direction angle of the lidar.
  • the pitch angle of the outgoing light of the laser radar (that is, the pitch angle of the laser transceiver module and/or the turning mirror assembly) can be adjusted so that it approaches the measuring instrument or the three-dimensional The first calibration object and the second calibration object measured by the scanner, and then use the lidar to send signal photons to the calibration scene to obtain the adjusted and re-formed point cloud data, and further determine the detection features in the re-formed point cloud data If the distance between the point and the reference feature point is still greater than the preset distance, the heading angle of the laser radar output light (that is, the heading angle of the laser transceiver module and/or the turning mirror assembly) can be adjusted to make it Approach the first calibration object and the second calibration object measured by the measuring instrument or 3D scanner in the left and right directions, and then use the laser radar to send signal photons to the calibration scene to obtain the re-formed point cloud data after adjustment.
  • the re-formed point If the distance between the detection feature point and the reference feature point in the cloud data is not greater than the preset distance, you can stop adjusting the outgoing light direction of the laser radar; if the detection feature point and the reference feature point in the re-formed point cloud data If the distance between them is greater than the preset distance, the tumbling angle of the laser radar outgoing light (that is, the tumbling angle of the laser transceiver module and/or the turning mirror assembly) can be adjusted, and the cycle is repeated until the re-formed point cloud data. The distance between the detection feature point and the reference feature point is not greater than a preset distance.
  • the angle of each adjustment to the outgoing light direction of the lidar does not exceed 1 degree.
  • the lidar maintains the current attitude and saves the current attitude.
  • the laser radar is acquired
  • the pitch angle, heading angle, and roll angle of the outgoing light are used as the attitude calibration parameters of the lidar.
  • the above-mentioned embodiments of the present application can determine whether the point cloud data formed by the outgoing light of the laser radar meets the convergence condition by comparing the distance between the detection feature point and the reference feature point.
  • the roll angle, pitch angle, and heading angle of the outgoing light are adjusted simultaneously or sequentially, which not only improves the efficiency of attitude parameter calibration, but also improves the measurement accuracy of the laser radar for the target object.
  • FIG. 6 exemplarily shows a schematic flow chart of a laser radar attitude calibration method provided in an embodiment of the present application.
  • the attitude parameter calibration method may at least include the following steps:
  • the lidar to be calibrated sends out multiple light beams.
  • FIG. 7 exemplarily shows a schematic structural diagram of a laser transceiver module in a laser radar system provided by an embodiment of the present application.
  • the laser transceiver module may include: a transmitting module, a beam splitting module, and a receiving module. Among them: the laser signal sent by the transmitting module can form multiple beams through the beam splitting module and then go out, and the reflected light returned after being reflected by the smooth wall and ground in the calibration scene is received by the receiving module. Possibly, the detection area of a lidar that can emit multiple outgoing beams is tens of times that of a single beam.
  • the beam splitting module can enable the laser radar system to realize coaxial transmission and reception.
  • each optical channel is formed by one light beam, and there is an overlapping area between adjacent optical channels.
  • FIG. 8 it schematically shows an application scene diagram of a laser transceiver module with a beam splitting unit in a MEMS lidar system provided by an embodiment of the present application. Specifically, it can be observed from FIG. 8 that there may be overlapping areas A, B, C, and D between adjacent light beams (the entire overlapping areas of adjacent parts are not shown).
  • the laser radar output is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence conditions, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the preset convergence condition in the embodiment of the present application may include: the first distance difference and the second distance difference are not greater than the preset distance, and/or the detection points formed by different beams on both sides to the same position in the adjacent optical channel The clouds are aligned with each other.
  • the detection point cloud formed at the same position in the overlapped area of the calibrated standard channel is used to detect the same position of the other channels.
  • the point cloud is aligned.
  • the embodiment of the present application can adjust the roll angle, pitch angle, and heading angle of the outgoing light of the lidar to obtain the adjusted position information of the detection feature point of the first calibration object and the detection feature of the second calibration object
  • the position information of the point; the adjusted first distance difference is obtained based on the adjusted position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object, and based on the adjusted second calibration object.
  • the position information of the detection feature point and the position information of the reference feature point of the second calibration object obtain an adjusted second distance difference; determine whether the adjusted first distance difference and the adjusted second distance difference are greater than the preset distance, and /or whether the detection point clouds formed by different beams on both sides to the same position in the adjacent optical channel are aligned with each other; if the adjusted first distance difference and the adjusted second distance difference are still greater than the preset distance, and/or the relative If the detection point clouds formed by different beams on both sides of the same position in the adjacent light channel are still not aligned with each other, continue to adjust the roll angle, pitch angle, and heading angle of the outgoing light of the lidar.
  • the embodiment of the present application can adjust the roll angle, pitch angle, and any one or more direction angles of the laser transceiver module and/or the turning mirror assembly inside the lidar, so that the approaching measuring instrument or the three-dimensional
  • the first calibration object and the second calibration object measured by the scanner and then use the lidar to send signal photons to the calibration scene to obtain the adjusted and re-formed point cloud data, and further determine the detection features in the re-formed point cloud data
  • the distance between the point and the reference feature point if it is still greater than the preset distance, and/or the detection point cloud formed by different beams on both sides to the same position in the adjacent optical channel (for example, overlapping areas A and B in Figure 8 , C, D in the corresponding position of the point cloud data) are not aligned with each other, then adjust any one or more orientation angles in the laser transceiver module and/or turnback mirror assembly inside the lidar again until the re-formed point cloud
  • the distance between the detection feature point in the data and the reference feature point is not greater
  • the pitch angle of each channel in the beam splitting module can be adjusted first, so that it approaches the first calibration object and the second calibration object measured by the measuring instrument or the three-dimensional scanner in the up and down direction. , and the detection point clouds formed at the same position in the adjacent optical channel are aligned with each other, and then the laser radar is used to send signal photons to the calibration scene to obtain the adjusted and re-formed point cloud data, and further determine the re-formed point cloud data.
  • the heading angle of each channel in the beam splitting unit can be adjusted to make it approach the measurement in the left and right directions
  • the laser radar is used to send signal photons to the calibration scene, if the re-formed point cloud If the distance between the detection feature points in the data and the reference feature points is not greater than the preset distance, and/or the detection point clouds formed at the same position in adjacent optical channels are aligned with each other, then the direction of each channel in the beam splitting unit can be
  • the first distance difference and the second distance difference are greater than the preset distance, and/or the detection point clouds formed by different beams on both sides of the same position in the adjacent optical channel are not aligned with each other, when the multiple beams
  • the number of is an odd number
  • based on the detection point cloud of the middle optical channel adjust the outgoing light direction of the lidar until the position information of the detection point cloud of the first calibration object and the position of the detection point cloud of the second calibration object The information meets the preset convergence conditions, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the embodiment of the present application may use the detection point cloud of the middle optical channel in the beam splitting module as a reference to adjust the detection point cloud of other optical channels, So that the distance between the detection feature point and the reference feature point in the point cloud data is not greater than the preset distance, and/or the detection point clouds formed at the same position in adjacent optical channels are aligned with each other.
  • the lidar maintains the current attitude , and save the current pose.
  • the detection of the lidar Save the current attitude parameters.
  • the first distance difference of 0.8 cm in the first preset area and the second distance difference of 0.6 cm in the second preset area are not greater than the preset distance of 1 cm, and the adjacent optical channels are composed of
  • the above-mentioned embodiments of the present application can determine the output of the laser radar by comparing the distance between the detection feature points formed by each channel in the beam splitting module and the reference feature point, and/or whether the detection feature points at corresponding positions overlap. Whether the point cloud data formed by the shooting light meets the convergence conditions. If the convergence conditions are not met, the roll angle, pitch angle, and heading angle of each channel can be adjusted simultaneously or sequentially, which not only improves the laser radar output. The efficiency of optical time calibration of the attitude parameters of each channel also improves the measurement accuracy of the lidar for the target object when the measurement range increases.
  • Fig. 9 is a schematic structural diagram of a laser radar attitude calibration device provided by an exemplary embodiment of the present application.
  • the attitude parameter calibration device can execute the attitude parameter calibration method of any one of the above-mentioned embodiments of the present application.
  • the attitude parameter calibration device can include:
  • the acquisition module 91 is configured to acquire the position information of the first calibration object detected by the laser radar to be calibrated and the position information of the second calibration object; wherein, the first calibration object is located on a plane parallel to the fixed surface of the laser radar to be calibrated A first preset area of the plane, the second calibration object is located in a second preset area of the plane perpendicular to the fixed surface of the lidar to be calibrated;
  • An adjustment module 92 configured to adjust the attitude of the laser radar to be calibrated until the position information of the first calibration object and the position information of the second calibration object do not meet the preset convergence condition.
  • the position information of the first calibration object and the position information of the second calibration object detected by the laser radar to be calibrated can be acquired; if the position information of the first calibration object and the position information of the second calibration object do not satisfy In the case of preset convergence conditions, adjust the attitude of the lidar to be calibrated until the position information of the first calibration object and the position information of the second calibration object meet the preset convergence conditions, the attitude calibration of the lidar to be calibrated is completed, and the lidar is saved current posture.
  • the position information of the detected calibration object in the pre-selected calibration scene, can be used to adjust the attitude parameters of the laser radar, so that within the range of each preset area in the detected calibration scene The position information of the calibration object satisfies the preset convergence conditions, thereby improving the accuracy of the detection point cloud and reducing the measurement error that may be caused when the lidar hardware is assembled.
  • the device before the obtaining module 91, the device further includes:
  • a detection point cloud acquisition module configured to obtain the detection point cloud of the first calibration object detected by the lidar to be calibrated and the detection point cloud of the second calibration object;
  • a position information obtaining module configured to obtain the position information of the detection point cloud of the first calibration object and the second calibration object based on the detection point cloud of the first calibration object and the detection point cloud of the second calibration object The position information of the detection point cloud of the object;
  • the acquisition module 91 is specifically configured to: acquire the position information of the detection point cloud of the first calibration object detected by the laser radar to be calibrated and the position information of the detection point cloud of the second calibration object;
  • the adjustment module 92 is specifically used for:
  • the outgoing light of the lidar to be calibrated The direction is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the stored Describe the current attitude of the lidar.
  • the device before the adjustment module 92, the device further includes:
  • a filtering module configured to filter the detection point cloud of the first calibration object and the detection point cloud of the second calibration object to obtain the detection feature points of the first calibration object and the detection feature points of the second calibration object;
  • the position module of the detection feature point is used to obtain the position information of the detection feature point of the first calibration object and the detection feature point of the second calibration object based on the detection feature point of the first calibration object and the detection feature point of the second calibration object. 2. Position information of the detection feature points of the calibration object;
  • the adjustment module 92 is specifically used for:
  • the attitude of the lidar to be calibrated is performed. Adjust until the detection feature points of the first calibration object and the detection feature points of the second calibration object meet the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved .
  • the device before the adjustment module 92, the device further includes:
  • a reference feature point acquisition module configured to acquire reference feature points of the first calibration object and reference feature points of the second calibration object; wherein, the reference feature points of the first calibration object and the second calibration object
  • the reference feature point of the object is the true value data obtained by measuring the first calibration object and the second calibration object respectively by the distance meter, or the first calibration object and the second calibration object are respectively measured by the three-dimensional scanner
  • a first distance determination module configured to determine the distance between the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object based on the position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object. The first distance difference between the reference feature points of the first calibration object;
  • the second distance determination module is configured to determine the distance between the detection feature point of the second calibration object and the position information of the reference feature point of the second calibration object based on the position information of the detection feature point of the second calibration object and the position information of the reference feature point of the second calibration object. The second distance difference between the reference feature points of the second calibration object.
  • the preset convergence condition includes: the first distance difference and the second distance difference are not greater than a preset distance;
  • the adjustment module 92 is specifically configured to: when the first distance difference and the second distance difference are greater than the preset distance, adjust the outgoing light direction of the lidar to be calibrated until the The detection feature points of the first calibration object and the detection feature points of the second calibration object satisfy the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the device before the acquiring module 91, the device further includes: a transmitting module, configured to emit a plurality of light beams from the laser radar to be calibrated;
  • the acquisition module 91 is specifically configured to: acquire the detection point cloud of the first calibration object and the detection point cloud of the second calibration object in multiple optical channels based on the multiple light beams emitted by the lidar to be calibrated; wherein, each Each optical channel is formed by a light beam, and there is an overlapping area between adjacent optical channels.
  • the preset convergence condition includes: the first distance difference and the second distance difference are not greater than a preset distance, and/or different beams on both sides of the adjacent optical channel pair the same The detected point clouds formed by the positions are aligned with each other;
  • the adjustment module 92 is specifically used for:
  • the lidar to be calibrated completes attitude calibration, and saves the current attitude of the lidar.
  • the first distance difference and the second distance difference are greater than the preset distance, and/or the detection of the same position by different beams on both sides in the adjacent optical channel
  • at least one outgoing light direction of the lidar is adjusted until the position information of the detected point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object satisfy
  • the preset convergence condition, the attitude calibration of the lidar to be calibrated, and saving the current attitude of the lidar include:
  • the outgoing light direction of the lidar is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object satisfy the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the device before the obtaining module 91, the device further includes:
  • a detection point cloud acquisition module configured to obtain the detection point cloud of the first calibration object detected by the lidar to be calibrated and the detection point cloud of the second calibration object;
  • a position information obtaining module configured to obtain the position information of the detection point cloud of the first calibration object and the second calibration object based on the detection point cloud of the first calibration object and the detection point cloud of the second calibration object The position information of the detection point cloud of the object;
  • the acquisition module 91 is specifically configured to: acquire the position information of the detection point cloud of the first calibration object detected by the laser radar to be calibrated and the position information of the detection point cloud of the second calibration object;
  • the adjustment module 92 is specifically used for:
  • the outgoing light of the lidar to be calibrated The direction is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the stored Describe the current attitude of the lidar.
  • the adjustment module 92 is specifically configured to: when the first distance difference and the second distance difference are greater than the preset distance, and/or there are two sides in the adjacent optical channel In the case where the detection point clouds formed by different light beams on the same position are not aligned with each other, when the number of the plurality of light beams is an odd number, the outgoing light direction of the lidar is determined based on the detection point cloud of the intermediate optical channel. Adjust until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence condition, the attitude calibration of the laser radar to be calibrated is completed, and the laser radar is saved The current attitude of the radar.
  • the adjustment module 92 includes:
  • the obtaining unit is configured to adjust any one or more direction angles of the roll angle, pitch angle, and heading angle of the outgoing light of the laser radar, and obtain the adjusted position information and the position information of the detection feature points of the first calibration object The position information of the detection feature point of the second calibration object;
  • the first adjusting unit is configured to obtain an adjusted first distance difference based on the adjusted position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object, based on the An adjusted second distance difference is obtained between the adjusted position information of the detection feature point of the second calibration object and the position information of the reference feature point of the second calibration object;
  • a determining unit configured to determine whether the adjusted first distance difference and the adjusted second distance difference are greater than the preset distance, and/or the adjacent optical channel is paired by different beams on both sides Whether the detection point cloud formed by the position is aligned with each other;
  • the second adjustment unit is configured to if the adjusted first distance difference and the adjusted second distance difference are still greater than the preset distance, and/or there are different light beams on both sides of the adjacent optical channel If the detection point clouds formed at the same position are still not aligned with each other, continue to adjust any one or more direction angles of the outgoing light of the lidar.
  • the laser radar attitude calibration device provided in the above-mentioned embodiments executes the laser radar attitude calibration method, it only uses the division of the above-mentioned functional modules as an example. In practical applications, the above-mentioned functions can be allocated according to needs. It is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the laser radar attitude calibration device provided in the above embodiment and the laser radar attitude calibration method embodiment belong to the same concept, and its implementation process is detailed in the method embodiment, and will not be repeated here.
  • the electronic device 100 may include: at least one processor 110 , at least one network interface 140 , a user interface 130 , a memory 150 , and at least one communication bus 120 .
  • the communication bus 120 is used to realize connection and communication between these components.
  • the user interface 130 may include a display screen (Display) and a camera (Camera), and the optional user interface 130 may also include a standard wired interface and a wireless interface.
  • Display display screen
  • Camera Camera
  • the optional user interface 130 may also include a standard wired interface and a wireless interface.
  • the network interface 140 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the processor 110 may include one or more processing cores.
  • the processor 110 uses various interfaces and lines to connect various parts of the entire electronic device 100, by running or executing instructions, programs, code sets or instruction sets stored in the memory 150, and calling data stored in the memory 150 to execute Various functions of the electronic device 100 and processing data.
  • the processor 110 may adopt at least one of Digital Signal Processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA). implemented in the form of hardware.
  • the processor 110 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU), an image processor (Graphics Processing Unit, GPU), a modem, and the like.
  • the CPU mainly handles the operating system, user interface and application programs, etc.; the GPU is used to render and draw the content that needs to be displayed on the display screen; the modem is used to handle wireless communication. It can be understood that, the above-mentioned modem may not be integrated into the processor 110, but implemented by a single chip.
  • the memory 150 may include a random access memory (Random Access Memory, RAM), and may also include a read-only memory (Read-Only Memory).
  • the memory 150 includes a non-transitory computer-readable storage medium (non-transitory computer-readable storage medium).
  • the memory 150 may be used to store instructions, programs, codes, sets of codes or sets of instructions.
  • the memory 150 may include a program storage area and a data storage area, wherein the program storage area may store instructions for implementing an operating system, instructions for at least one function (such as a touch function, a sound playback function, an image playback function, etc.), Instructions and the like for implementing the above method embodiments; the storage data area can store the data and the like involved in the above method embodiments.
  • the memory 150 may also be at least one storage device located away from the aforementioned processor 110 .
  • the memory 150 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a laser radar attitude calibration application program.
  • the user interface 130 is mainly used to provide the user with an input interface to obtain the data input by the user; and the processor 110 can be used to call the attitude calibration application program of the laser radar stored in the memory 150 , and specifically do the following:
  • the first calibration object is located on a first preset plane parallel to the fixed surface of the lidar to be calibrated area
  • the second calibration object is located in a second preset area on a plane perpendicular to the fixed surface of the laser radar to be calibrated
  • the attitude of the laser radar to be calibrated is adjusted until the position information of the first calibration object
  • the position information and the position information of the second calibration object satisfy the preset convergence condition
  • the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • further execution includes:
  • the position information of the detection point cloud of the first calibration object and the position of the detection point cloud of the second calibration object are obtained.
  • the obtaining the position information of the first calibration object detected by the laser radar to be calibrated and the position information of the second calibration object includes: obtaining the position information of the detection point cloud of the first calibration object detected by the laser radar to be calibrated and the The position information of the detection point cloud of the second calibration object;
  • the processor 110 adjusts the attitude of the lidar to be calibrated when the position information of the first calibration object and the position information of the second calibration object do not meet the preset convergence condition, until The position information of the first calibration object and the position information of the second calibration object satisfy the preset convergence condition, and the laser radar to be calibrated completes attitude calibration, and when saving the current attitude of the laser radar, specifically execute:
  • the outgoing light of the lidar to be calibrated The direction is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the stored Describe the current attitude of the lidar.
  • the position information of the detected point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object do not satisfy the preset In the case of convergence conditions, before adjusting the outgoing light direction of the laser radar to be calibrated, it is also performed:
  • the position information of the detection feature points of the first calibration object and the position of the detection feature points of the second calibration object are obtained.
  • the position information of the detected point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object do not satisfy the preset
  • the outgoing light direction of the lidar to be calibrated is adjusted until the position information of the detected point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object meet the requirements.
  • the preset convergence condition when the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved, the specific execution:
  • the attitude of the lidar to be calibrated is performed. Adjust until the detection feature points of the first calibration object and the detection feature points of the second calibration object meet the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved .
  • the processor 110 executes on the condition that the position information of the first calibration object and the position information of the second calibration object do not satisfy a preset convergence condition.
  • the attitude of the laser radar to be calibrated is adjusted until the position information of the first calibration object and the position information of the second calibration object meet the preset convergence condition, the attitude calibration of the laser radar to be calibrated is completed, and the Before the current pose of the lidar, also execute include:
  • the reference feature points of the first calibration object and the reference feature points of the second calibration object are obtained by measuring The distance meter measures the true value data obtained by the first calibration object and the second calibration object respectively, or the reference point cloud data obtained by measuring the first calibration object and the second calibration object respectively by a three-dimensional scanner;
  • the preset convergence condition includes: the first distance difference and the second distance difference are not greater than a preset distance;
  • the processor 110 adjusts the attitude of the laser radar to be calibrated until the position information of the first calibration object and the position information of the second calibration object do not meet the preset convergence condition.
  • the position information of the first calibration object and the position information of the second calibration object satisfy the preset convergence condition, and when the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved, specifically execute:
  • the processor 110 before performing the step of acquiring the position information of the first calibration object and the position information of the second calibration object detected by the laser radar to be calibrated, the processor 110 further executes: Radar emits multiple beams;
  • the processor 110 executes acquiring the position information of the first calibration object detected by the laser radar to be calibrated and the position information of the second calibration object, it specifically executes:
  • the preset convergence condition includes: the first distance difference and the second distance difference are not greater than a preset distance, and/or the two sides of the adjacent optical channel are different The detection point clouds formed by the beams at the same position are aligned with each other;
  • the processor 110 performs the execution, in the case where the position information of the detected point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object do not satisfy the preset convergence condition,
  • the outgoing light direction of the lidar to be calibrated is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detection point cloud of the second calibration object meet the preset convergence condition, and the to-be-calibrated Calibrate the lidar to complete the attitude calibration, and when saving the current attitude of the lidar, specifically execute:
  • the lidar to be calibrated completes attitude calibration, and saves the current attitude of the lidar.
  • the processor 110 executes the step of determining whether the first distance difference and the second distance difference are greater than the preset distance, and/or in the adjacent optical channel
  • the processor 110 executes the step of determining whether the first distance difference and the second distance difference are greater than the preset distance, and/or in the adjacent optical channel
  • the outgoing light direction of the lidar is adjusted until the position information of the detection point cloud of the first calibration object and the position information of the detected point cloud of the second calibration object satisfy the preset convergence condition, the attitude calibration of the lidar to be calibrated is completed, and the current attitude of the lidar is saved.
  • the processor 110 executes the adjustment of the outgoing light direction of the lidar, it includes:
  • An adjusted first distance difference is obtained based on the adjusted position information of the detection feature point of the first calibration object and the position information of the reference feature point of the first calibration object, and based on the adjusted second calibration object
  • the position information of the detection feature point and the position information of the reference feature point of the second calibration object are adjusted to obtain a second distance difference
  • the adjusted first distance difference and the adjusted second distance difference are still greater than the preset distance, and/or the detection point formed by different beams on both sides to the same position in the adjacent optical channel If the clouds are still not aligned with each other, continue to adjust any one or more direction angles of the outgoing light of the lidar.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a computer or a processor, the computer or the processor executes the above-mentioned steps shown in Figures 4-6. One or more steps in the illustrated embodiment. If each component module of the attitude calibration device of the above-mentioned laser radar is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center to Another website site, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (Digital Versatile Disc, DVD)), or a semiconductor medium (for example, a solid state hard drive (Solid State Disk, SSD)) etc.
  • the program can be stored in a computer-readable storage medium.
  • the aforementioned storage media include various media that can store program codes such as a system memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk.
  • ROM Read Only Memory
  • RAM Random Access Memory

Abstract

一种激光雷达的姿态标定方法、装置、计算机存储介质和电子设备,其中,该方法包括:获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息(S401);在第一标定物的位置信息和第二标定物的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的姿态进行调整,直到第一标定物的位置信息和第二标定物的位置信息满足预设收敛条件(S402),待标定激光雷达完成姿态标定,保存激光雷达的当前姿态(S403)。利用探测得到的标定物的位置信息对激光雷达的姿态参数进行调整,可以减小激光雷达硬件装配时可能引起的测量误差。

Description

一种激光雷达的姿态标定方法、相关装置、以及存储介质 技术领域
本申请涉及测量领域,具体涉及一种激光雷达的姿态标定方法、相关装置、以及存储介质。
背景技术
微型电子机械系统(Micro-Electro Mechanical System,MEMS)激光雷达可以通过在硅基芯片上集成的MEMS微振镜来代替传统的机械式旋转装置,由微振镜反射激光形成较广的扫描角度和较大的扫描范围。但MEMS在硬件装配的过程中,无法避免地会引入安装误差,导致点云的真实出射方向与理论出射方向存在一定的偏差量,这样如果直接以理论出射方向对MEMS的点云数据进行解算,可能导致测量数据不准确。
发明内容
本申请实施例提供了一种激光雷达的姿态标定方法、相关装置、以及存储介质。本申请实施例可以减小激光雷达硬件装配时可能引起的测量误差。
第一方面,本申请实施例提供了激光雷达的姿态标定方法,所述方法包括:
获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;其中,所述第一标定物位于与所述待标定激光雷达的固定面平行的平面的第一预设区域,所述第二标定物位于与所述待标定激光雷达的固定面垂直的平面的第二预设区域;
在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
第二方面,本申请实施例提供了一种激光雷达的姿态标定装置,所述装置包括:
获取模块,用于获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;其中,所述第一标定物位于与所述待标定激光雷达的固定面平行的平面的第一预设区域,所述第二标定物位于与所述待标定激光雷达的固定面垂直的平面的第二预设区域;
调整模块,用于在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
第三方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行上述的方法步骤。
第四方面,本申请实施例提供一种终端,可包括:处理器和存储器;
其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行上述的方法步骤。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
在本申请实施例中,可以通过获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;在第一标定物的位置信息和第二标定物的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的姿态进行调整,直到第一标定物的位置信息和第二标定物的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。由此,本申请实施例可以在预先选定的标定场景中,利用探测得到的标定物的位置信息对激光雷达的姿态参数进行调整,以使探测得到的标定场景中的各个预设区域范围内 标定物的位置信息满足预设的收敛条件,从而提高探测点云的精度,以减小激光雷达硬件装配时可能引起的测量误差。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种激光雷达的内部结构图;
图2为本申请实施例提供的一种激光雷达的标定场景图;
图3为本申请实施例提供的一种激光雷达的三维坐标系示意图;
图4为本申请实施例提供的一种激光雷达的姿态标定方法的流程示意图;
图5为本申请实施例提供的另一种激光雷达的姿态标定方法的流程示意图;
图6为本申请实施例提供的又一种激光雷达的姿态标定方法的流程示意图;
图7为本申请实施例提供的一种激光雷达系统中激光收发模块的结构示意图;
图8为本申请实施例提供的另一种激光雷达系统的标定场景图;
图9为本申请实施例提供的一种激光雷达的姿态标定装置的结构示意图;
图10为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示例性示出了本申请实施例提供的一种激光雷达的内部结构图。具体地,激光雷达100可以包括:底座11、激光收发模块12、振镜组件13、以及折返镜组件14。其中:至少一个激光收发模块12和振镜组件13设置在底座11上。其中,可选的,激光雷达100可以包括与激光收发模块12数量对应的折返镜组件14。
具体地,激光收发模块100的出射光信号射向对应的折返镜,经折返镜后射向振镜组件13,振镜组件13将出射光信号向外出射并进行扫描;标定场景内的目标物体反射产生的反射光信号由振镜组件13接收后,射向折返镜,折返镜将反射光信号反射后射向对应的激光收发模块100,激光收发模块100接收反射光信号。
进一步地,该激光收发模块12可以包括:发射模组、分束模组、以及接收模组。具体地,发射模组发出的出射光信号经分束模组后向外出射,在标定场景内被目标物体反射后返回反射光信号,反射光信号由分束模组接收并偏转后,由接收模组接收。振镜组件13包括微机电系统(MEMS,Micro-Electro-Mechanical System)振镜。折返镜组件14可用于折叠光路,从而达到减小激光雷达系统100体积的目的。
可能地,发射模组可以包括激光二极管,该激光二极管可以用作该激光雷达系统的发射光源。振镜组件可以在MEMS驱动作用下对发射光源的光束进行偏转、调制、开启闭合 及相位控制。接收模组可以包括:光电探测器,例如光电二极管。
具体地,发射模组发出的单一束的激光信号会以线形形式被目标物体反射回来,反射的光子被光电二极管接收到,进一步地,该光电二极管能够将反射光信号转换成相应的电流信号或电压信号,从而得到激光信号从发射到被反射回的传播时间。由于光速是已知的,传播时间即可被转换为对距离的测量,再结合激光雷达的姿态参数,就可以计算出基于反射光形成的点云中任一点的三维坐标信息。
其中,本申请实施例不对激光雷达系统中的收发模组的数量及形式进行具体限制;同时,本申请实施例中的光学扫描元件可以为MEMS振镜,也可以为反射楞镜或其他转镜,本申请不对本申请的扫描元件进行唯一限制;同时,本申请实施例也不对激光雷达100是否包括折返镜进行唯一限制。
具体地,激光雷达的姿态参数可以包括出射激光的俯仰角(pitch)、航向角(yaw)、以及翻滚角(roll)。
图2示例性示出了本申请实施例提供的一种激光雷达系统的标定场景图。具体地,激光雷达系统的标定场景用于解决激光雷达系统出厂前姿态参数的标定。
具体地,图2中所示的激光雷达系统所述第一标定物的参考特征点和所述第二标定物的参考特征点是由测距仪分别测量所述第一标定物和所述第二标定物获得的真值数据,或由其他标定后的基准三维扫描仪分别测量所述第一标定物和所述第二标定物获得的基准点云数据;可以理解的是,当该激光雷达包括多个收发模组时,第一标定物的参考特征点和所述第二标定物的参考特征点也可以为已标定的收发模组对第一标定和第二标定物的探测数据确定。所述标定场景可以包括相互垂直的光滑平面,例如,光滑的地面以及与该光滑的地面相互垂直的光滑的墙面。目标物体被设置于该标定场景中。
进一步地,该激光雷达系统的固定面可以被放置于该标定场景的基准坐标系的原点处。例如,图3所示的本申请实施例提供的一种基准坐标系示意图。具体地,激光雷达系统的固定面位于基准坐标系的原点,标定场景中的光滑地面与该基准坐标系中XOY平面平行,该标定场景中的光滑墙面与该基准坐标系的XOY平面垂直。
接下来结合图1介绍的一种激光雷达的内部结构图、图2介绍的一种激光雷达系统的标定场景图、以及图3介绍的一种激光雷达系统的三维坐标系示意图,来介绍本申请实施例提供的信息监控方法。
在一个实施例中,图4所示,提供了一种激光雷达的姿态标定方法的流程示意图。如图4所示,该激光雷达的姿态标定方法可以包括如下步骤:
S401,获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息。
其中,本申请实施例中的第一标定物位于与待标定激光雷达的固定面平行的平面的第一预设区域,第二标定物位于与待标定激光雷达的固定面垂直的平面的第二预设区域。
其中,标定物可以是标定板、墙体等任意具有一定反射率的障碍物。可能地,本申请实施例可以先获取待标定激光雷达探测到的第一标定物的探测点云和第二标定物的探测点云;再基于第一标定物的探测点云和第二标定物的探测点云,得到第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息。
进一步地,本申请实施例可以在第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的出射光方向进行调整,直到第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。
具体地,第一标定物的探测点云用于表示激光雷达向标定场景发出信号光子时,探测到与其固定面平行的第一预设区域中第一标定物形成的点云。其中,举例来说,第一预设区域可以是与激光雷达标定三维坐标系中XOY平面平行的光滑地面中的预设区域。第二标 定物的探测点云用于表示激光雷达向标定场景发出信号光子时,探测到与其固定面垂直的第二预设区域中第二标定物形成的点云。其中,举例来说,第二预设区域可以是与激光雷达标定三维坐标系中XOY平面垂直的光滑墙面中的预设区域。激光雷达的出射光方向用于表示激光雷达待标定发射通道对应的出射激光方向。
可以理解的是,激光雷达的出射光方向受激光雷达的姿态控制。第一标定物的探测点云和第二标定物的探测点云的位置信息可以包括点云中的各点在三维坐标系中的坐标信息。
S402,在第一标定物的位置信息和第二标定物的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的姿态进行调整,直到第一标定物的位置信息和第二标定物的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。
其中,预设的收敛条件表示预先设定的用于调整激光雷达的姿态参数以缩小其实际出射光方向形成的点云与基准出射光方向形成的点云之间偏差的条件,例如,预设的收敛条件可以是:第一标定物的探测点云的位置信息中各点的坐标与基准出射光方向形成的点云中相应点的坐标之间的距离差、以及第二标定物的探测点云的位置信息中各点的坐标与基准出射光方向形成的点云中相应点的坐标之间的距离差小于预设值。
进一步地,在第一预设区域中的第一标定物的探测点云的位置信息各点的坐标与基准出射光方向形成的点云中相应点的坐标之间的距离差,和/或第二标定物的探测点云的位置信息中各点的坐标与理论出射光方向形成的点云中相应点的坐标之间的距离差大于预设距离情况下,对激光雷达的出射光方向进行调整,以使激光雷达的出射光方向满足预设的收敛条件。
其中,对激光雷达的出射光方向进行调整例如可以通过在其他光学原件不变的情况下,对图1中的激光收发模块12的位置进行微调来实现;可选的,也可以通过同时调整光学元件及激光收发模块12的位置实现。
可选的,作为一种优选的实施例,可以在图1中的激光收发模块12和振镜位置不变的情况下,通过调整折返镜组件14的俯仰角(pitch)、航向角(yaw)、以及翻滚角(roll)来实现。其中,对于折返镜组件14的角度调整可以通过外界组件来实现,也可以通过折返镜组件14自身进行微调,这里不做限制。
S403,当探测到第一标定物位置信息和第二标定物的位置信息满足预设收敛条件的情况下,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。
在本申请实施例中,可以通过获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;在第一标定物的位置信息和第二标定物的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的姿态进行调整,直到第一标定物的位置信息和第二标定物的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。由此,本申请实施例可以在预先选定的标定场景中,利用探测得到的标定物的位置信息对激光雷达的姿态参数进行调整,以使探测得到的标定场景中的各个预设区域范围内标定物的位置信息满足预设的收敛条件,从而提高探测点云的精度,以减小激光雷达硬件装配时可能引起的测量误差。
在一些实施方式中,图5示例性示出了本申请实施例提供的一种激光雷达的姿态标定方法的流程示意图。如图5所示,该姿态参数标定方法至少可以包括以下步骤:
S501,获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息。
具体地,S401与S501一致,此处不再赘述。
S502,对第一标定物的探测点云和第二标定物的探测点云分别进行滤波得到第一标定物的探测特征点和第二标定物的探测特征点。
进一步地,本申请实施例可以基于第一标定物的探测特征点和第二标定物的探测特征 点,得到第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息。
可以理解的是,本申请实施例可以基于探测特征点在基准坐标系中的位置
确定该探测特征点的位置坐标。
可能地,本申请实施例可以利用平面滤波或统计滤波分别对第一预设区域的第一标定物的探测点云和第二预设区域的第二标定物的探测点云进行去噪以及提取,以得到第一标定物的探测特征点和第二标定物的探测特征点。
具体地,由于采集设备精度,环境因素、光照因素、物体表面性质等影响,会导致点云数据不可避免的出现噪音数据。滤波的目的就是为了解决点云数据密度不规则、不平滑、离群点、大数据降采样、空洞、噪声数据等问题。
可以理解的是,统计滤波用于去除明显离群点(离群点往往由测量噪声引入)。其特征是在空间中分布稀疏,由于每个点都表达一定信息量,某个区域点越密集则可能信息量越大。噪声信息属于无用信息,信息量较小。所以离群点表达的信息可以忽略不计。考虑到离群点的特征,则可以定义某处点云小于预设密度时,该位置的点云数据无效。
可以理解的是,平面滤波是将一个波的毛刺或某一频率以上的部分去掉,反应到图像上就是降噪和图像模糊处理。进一步地,在点云数据进行平面滤波时可以采用非线性滤波器,其在一定程度上可以克服图像中可能存在的模糊问题,在滤除噪声的同时,较好地保留了图像的边缘信息。
可能地,本申请实施例还可以预先获取第一预设区域中的第一标定物的参考特征点、以及第二预设区域中的第二标定物的参考特征点,并基于第一标定物的探测特征点的位置信息与第一标定物的参考特征点的位置信息确定第一标定物的探测特征点与第一标定物的参考特征点之间的第一距离差;基于第二标定物的探测特征点的位置信息与第二标定物的参考特征点的位置信息确定第二标定物的探测特征点与第二标定物的参考特征点之间的第二距离差。
具体地,本申请实施例可以通过第一预设区域中第一标定物的探测特征点的位置坐标和第一标定物的参考特征点的位置坐标计算其间的第一距离差;通过第二预设区域中第二标定物的探测特征点的位置坐标和第二标定物的参考特征点的位置坐标计算其间的第二距离差。
进一步地,第一距离差和第二距离差可以通过计算一帧点云数据图像中滤除噪声信息后得到的多个特征点到其相应的参考特征点的距离均值获得;也可以先获得多帧图像形成点云数据,对点云数据进行滤波后计算各特征点到其相应的参考特征点的距离均值获得;或者,先对多帧图像中的每帧图像进行点云滤波,再计算各特征点到其相应的参考特征点的距离均值获得。
其中,第一标定物的参考特征点和第二标定物的参考特征点可以是由测距仪分别测量的标定场景中第一标定物和第二标定物的实际距离和尺寸而获得的真值数据,或由精度更高的三维扫描仪分别测量标定场景中第一标定物和第二标定物而获得的基准点云数据。
S503,在第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的姿态进行调整,直到第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。
可能地,本申请实施例中的预设收敛条件可以包括第一距离差和第二距离差不大于预设值。
具体地,在第一预设区域中的第一距离差和/或第二预设区域中的第二距离差大于预设值的情况下,这里应该是获取激光雷达出射激光,对激光雷达的出射光的所在的通道信息进行调整,例如对图1中激光雷达内部的激光收发模块12和/或折返镜组件14的俯仰角、 航向角、以及翻滚角进行调整来实现。
可能地,本申请实施例可以对激光雷达的出射光方向进行调整,得到调整后的第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息;基于调整后的第一标定物的探测特征点的位置信息和第一标定物的参考特征点的位置信息得到调整后的第一距离差,基于调整后的第二标定物的探测特征点的位置信息和第二标定物的参考特征点的位置信息得到调整后的第二距离差;确定调整后的第一距离差和调整后的第二距离差是否大于预设距离;若调整后的第一距离差和/或调整后的第二距离差仍大于预设距离,则继续对激光雷达的姿态调整进行调整。
可以理解的是,本申请实施例可以通过对激光雷达内部的激光收发模块和/或折返镜组件的翻滚角、俯仰角、以及航向角进行调整,然后再利用激光雷达向标定场景发出信号光子,以获取调整后重新形成的点云数据,并进一步确定重新形成的点云数据中的探测特征点与参考特征点之间的距离,若其仍大于预设距离,则继续对激光雷达的出射光的所在的通道信息进行调整,例如对激光雷达内部的激光收发模块和/或折返镜组件的俯仰角、航向角、以及翻滚角进行调整。
可能地,本申请实施例可以对激光雷达的出射光任意一个方向角进行调整,得到调整后的第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息;基于调整后的第一标定物的探测特征点的位置信息和第一标定物的参考特征点的位置信息得到调整后的第一距离差,基于调整后的第二标定物的探测特征点的位置信息和第二标定物的参考特征点的位置信息得到调整后的第二距离差;确定调整后的第一距离差和调整后的第二距离差是否大于预设值;若调整后的第一距离差和调整后的第二距离差仍大于预设值,则继续对激光雷达的方向角中的任意一个方向进行调整。
可以理解的是,本申请实施例可以对激光雷达的出射光的俯仰角(即对激光收发模块和/或折返镜组件的俯仰角)进行调整,以使其在上下方向上逼近测量仪或三维扫描仪测量的第一标定物和第二标定物,然后再利用激光雷达向标定场景发出信号光子,以获取调整后重新形成的点云数据,并进一步确定重新形成的点云数据中的探测特征点与参考特征点之间的距离,若其仍大于预设距离,则可以对激光雷达出射光的航向角(即对激光收发模块和/或折返镜组件的航向角)进行调整,以使其在左右方向上逼近测量仪或三维扫描仪测量的第一标定物和第二标定物,再利用激光雷达向标定场景发出信号光子,以获取调整后重新形成的点云数据,若重新形成的点云数据中的探测特征点与参考特征点之间的距离不大于预设距离,则可以停止对激光雷达的出射光方向进行调整;若重新形成的点云数据中的探测特征点与参考特征点之间的距离大于预设距离,则可以对激光雷达出射光的翻滚角(即对激光收发模块和/或折返镜组件的翻滚角)进行调整,依次循环,直到重新形成的点云数据中的探测特征点与参考特征点之间的距离不大于预设距离。
可以理解的是,在本申请实施例中每次对激光雷达的出射光方向调整的角度均不超过1度。
S504,在第一预设区域中的第一探测特征点的位置信息和第二预设区域中的第二探测特征点的位置信息满足预设收敛条件的情况下,激光雷达保持当前姿态,并保存该当前姿态。
具体地,在第一预设区域中的第一距离差和第二预设区域中的第二距离差不大于预设距离的情况下,激光雷达保持当前姿态,并保存该当前姿态。
在一个具体的实施例中,在第一预设区域中的第一距离差0.8cm和第二预设区域中的第二距离差0.6cm不大于预设距离1cm的情况下,获取激光雷达的出射光的俯仰角、航向角、以及翻滚角作为激光雷达的姿态标定参数。
由此,本申请上述实施例可以通过比对探测特征点与参考特征点之间的距离确定激光 雷达的出射光形成的点云数据是否符合收敛条件,在不符合收敛条件的情况下,可以对出射光的翻滚角、俯仰角、以及航向角进行同时调整或依次调整,这样不仅提高了姿态参数标定的效率,还提升了激光雷达对目标物体的测量精度。
在一些实施方式中,图6示例性示出了本申请实施例提供的一种激光雷达的姿态标定方法的流程示意图。如图6所示,该姿态参数标定方法至少可以包括以下步骤:
S601,待标定激光雷达发出多个光束。
具体地,图7示例性示出了本申请实施例提供的一种激光雷达系统中激光收发模块的结构示意图。该激光收发模块可以包括:发射模组、分束模组、以及接收模组。其中:发射模组发出的激光信号可以经分束模组形成多个光束后向外出射,在标定场景中内被光滑的墙面和地面反射后返回的反射光被接收模组接收。可能地,可以出射多个出射光束的激光雷达的检测面积是单光束的几十倍。
需要说明的是,分束模组作为连接发射模组与接收模组的枢纽,可以使激光雷达系统实现同轴收发。
S602,基于待标定激光雷达发出的多个光束获取多个光通道内的第一标定物的探测点云以及第二标定物的探测点云。
其中,本申请实施例中每个光通道由一个光束形成,相邻光通道之间存在重叠区域。
可以理解的是,在多光束的情况下,各通道的相邻部分会形成重叠区域,并且重叠区域中的特征点携带的位置信息可能不一样。
参见图8,其示例性示出了本申请实施例提供的MEMS激光雷达系统中具有分束单元的激光收发模块的应用场景图。具体地,从图8可以观察到相邻光束之间可能存在重叠区域A、B、C、D(未示意出相邻部分的全部重叠区域)。
S603,在第一距离差和第二距离差大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,对激光雷达的出射光方向进行调整,直到第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。
其中,本申请实施例中的预设收敛条件可以包括:第一距离差和第二距离差不大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐。
其中,可以理解的是,当形成重叠区域的两个通道中,有一个通道为标定后的标准通道,则根据已标定标准通道重叠区域同一位置形成的探测点云对其他通道同一位置形成的探测点云进行对齐调整。
可能地,本申请实施例可以对激光雷达的出射光的翻滚角、俯仰角、以及航向角进行调整,得到调整后的第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息;基于调整后的第一标定物的探测特征点的位置信息和第一标定物的参考特征点的位置信息得到调整后的第一距离差,基于调整后的第二标定物的探测特征点的位置信息和第二标定物的参考特征点的位置信息得到调整后的第二距离差;确定调整后的第一距离差和调整后的第二距离差是否大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云是否相互对齐;若调整后的第一距离差和调整后的第二距离差仍大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云仍相互不对齐,则继续对激光雷达的出射光的翻滚角、俯仰角、以及航向角进行调整。
具体地,本申请实施例可以对激光雷达内部的激光收发模块和/或折返镜组件的翻滚角、俯仰角、以及航向角中任意一个或多个方向角进行调整,以使逼近测量仪或三维扫描仪测量的第一标定物和第二标定物,然后再利用激光雷达向标定场景发出信号光子,以获取调整后重新形成的点云数据,并进一步确定重新形成的点云数据中的探测特征点与参考特征点之间的距离,若其仍大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置 形成的探测点云(例如,图8中重叠区域A、B、C、D中相应位置的点云数据)相互不对齐,则再次对激光雷达的内部的激光收发模块和/或折返镜组件中任意一个或多个方向角进行调整,直到重新形成的点云数据中的探测特征点与参考特征点之间的距离不大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐。
可以理解的是,本申请实施例可以先对分束模组中各通道的俯仰角进行调整,以使其在上下方向上逼近测量仪或三维扫描仪测量的第一标定物和第二标定物,以及相邻光通道内同一位置形成的探测点云相互对齐,然后再利用激光雷达向标定场景发出信号光子,以获取调整后重新形成的点云数据,并进一步确定重新形成的点云数据中的探测特征点与参考特征点之间的距离,以及相邻光通道内同一位置形成的探测点云是否相互对齐;若重新形成的点云数据中的探测特征点与参考特征点之间的距离仍大于预设距离,和/或相邻光通道内同一位置形成的探测点云仍相互不对齐,则可以对分束单元中各通道的航向角进行调整,以使其在左右方向上逼近测量仪或三维扫描仪测量的第一标定物和第二标定物,以及相邻光通道内同一位置形成的探测点云相互对齐;再利用激光雷达向标定场景发出信号光子,若重新形成的点云数据中的探测特征点与参考特征点之间的距离不大于预设距离,和/或相邻光通道内同一位置形成的探测点云相互对齐,则可以停止对分束单元中各通道的方向角进行调整;若重新形成的点云数据中的探测特征点与参考特征点之间的距离仍大于预设距离,和/或相邻光通道内同一位置形成的探测点云仍相互不对齐,则可以对分束单元中各通道的航向角进行调整,依次循环,直到重新形成的点云数据中的探测特征点与参考特征点之间的距离不大于预设距离,和/或相邻光通道内同一位置形成的探测点云相互对齐。
可能地,在第一距离差和第二距离差大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,当多个光束的数量为奇数时,以中间光通道的探测点云为基准,对激光雷达的出射光方向进行调整,直到第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。
具体地,当激光雷达出射的多个光束的数量为奇数时,本申请实施例可以以分束模组中的中间光通道的探测点云为基准,对其它光通道的探测点云进行调整,以使点云数据中的探测特征点与参考特征点之间的距离不大于预设距离,和/或相邻光通道内同一位置形成的探测点云相互对齐。
S604,在第一距离差和第二距离差不大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐的情况下,激光雷达保持当前姿态,并保存该当前姿态。
具体地,在第一距离差和第二距离差不大于预设距离,和/或相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐的情况下,对激光雷达的当前姿态参数进行保存。
在一个具体的实施例中,在第一预设区域中的第一距离差0.8cm和第二预设区域中的第二距离差0.6cm不大于预设距离1cm,并且相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐的情况下,获取分束模组中各通道的俯仰角、航向角、以及翻滚角作为激光雷达中分束模组的姿态标定参数。
由此,本申请上述实施例可以通过比对分束模组中各通道形成的探测特征点与参考特征点之间的距离,和/或相应位置的探测特征点是否重合,确定激光雷达的出射光形成的点云数据是否符合收敛条件,在不符合收敛条件的情况下,可以对各通道的翻滚角、俯仰角、以及航向角进行同时调整或依次调整,这样不仅提高了激光雷达出射多束光时标定各通道姿态参数的效率,还提升了在测量范围增大时激光雷达对目标物体的测量精度。
图9是本申请一示例性实施例提供的激光雷达的姿态标定装置结构示意图。该姿态参数标定装置可以执行本申请上述任一实施例姿态参数标定方法。如图9所示,该姿态参数 标定装置可以包括:
获取模块91,用于获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;其中,所述第一标定物位于与所述待标定激光雷达的固定面平行的平面的第一预设区域,所述第二标定物位于与所述待标定激光雷达的固定面垂直的平面的第二预设区域;
调整模块92,用于在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在本申请实施例中,可以通过获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;在第一标定物的位置信息和第二标定物的位置信息不满足预设收敛条件的情况下,对待标定激光雷达的姿态进行调整,直到第一标定物的位置信息和第二标定物的位置信息满足预设收敛条件,待标定激光雷达完成姿态标定,保存激光雷达的当前姿态。由此,本申请实施例可以在预先选定的标定场景中,利用探测得到的标定物的位置信息对激光雷达的姿态参数进行调整,以使探测得到的标定场景中的各个预设区域范围内标定物的位置信息满足预设的收敛条件,从而提高探测点云的精度,以减小激光雷达硬件装配时可能引起的测量误差。
在一些实施方式中,所述获取模块91之前,所述装置还包括:
探测点云获取模块,用于获取所述待标定激光雷达探测到的第一标定物的探测点云和第二标定物的探测点云;
位置信息得到模块,用于基于所述第一标定物的探测点云和所述第二标定物的探测点云,得到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
所述获取模块91,具体用于:获取所述待标定激光雷达探测的第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
所述调整模块92,具体用于:
在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述调整模块92之前,所述装置还包括:
滤波模块,用于对所述第一标定物的探测点云和所述第二标定物的探测点云分别进行滤波得到第一标定物的探测特征点和第二标定物的探测特征点;
探测特征点的位置模块,用于基于所述第一标定物的探测特征点和所述第二标定物的探测特征点,得到所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息;
所述调整模块92,具体用于:
在所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的探测特征点和所述第二标定物的探测特征点满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述调整模块92之前,所述装置还包括:
参考特征点获取模块,用于获取所述第一标定物的参考特征点、以及所述第二标定物的参考特征点;其中,所述第一标定物的参考特征点和所述第二标定物的参考特征点是由测距仪分别测量所述第一标定物和所述第二标定物获得的真值数据,或由三维扫描仪分别 测量所述第一标定物和所述第二标定物获得的基准点云数据;
第一距离确定模块,用于基于所述第一标定物的探测特征点的位置信息与所述第一标定物的参考特征点的位置信息确定所述第一标定物的探测特征点与所述第一标定物的参考特征点之间的第一距离差;
第二距离确定模块,用于基于所述第二标定物的探测特征点的位置信息与所述第二标定物的参考特征点的位置信息确定所述第二标定物的探测特征点与所述第二标定物的参考特征点之间的第二距离差。
在一些实施方式中,所述预设收敛条件包括:所述第一距离差和所述第二距离差不大于预设距离;
所述调整模块92,具体用于:在所述第一距离差和所述第二距离差大于所述预设距离的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测特征点和所述第二标定物的探测特征点满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述获取模块91之前,所述装置还包括:发射模块,用于所述待标定激光雷达发出多个光束;
所述获取模块91,具体用于:基于所述待标定激光雷达发出的多个光束获取多个光通道内的第一标定物的探测点云以及第二标定物的探测点云;其中,每个光通道由一个光束形成,相邻光通道之间存在重叠区域。
在一些实施方式中,所述预设收敛条件包括:所述第一距离差和所述第二距离差不大于预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐;
所述调整模块92,具体用于:
在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,对所述激光雷达的至少一个出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态,包括:
在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,当所述多个光束的数量为奇数时,以中间光通道的探测点云为基准,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述获取模块91之前,所述装置还包括:
探测点云获取模块,用于获取所述待标定激光雷达探测到的第一标定物的探测点云和第二标定物的探测点云;
位置信息得到模块,用于基于所述第一标定物的探测点云和所述第二标定物的探测点云,得到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
所述获取模块91,具体用于:获取所述待标定激光雷达探测的第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
所述调整模块92,具体用于:
在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述调整模块92,具体用于:在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,当所述多个光束的数量为奇数时,以中间光通道的探测点云为基准,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一些实施方式中,所述调整模块92,包括:
得到单元,用于对所述激光雷达的出射光的翻滚角、俯仰角、以及航向角中任意一个或多个方向角进行调整,得到调整后的第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息;
第一调整单元,用于基于所述调整后的第一标定物的探测特征点的位置信息和所述第一标定物的参考特征点的位置信息得到调整后的第一距离差,基于所述调整后的第二标定物的探测特征点的位置信息和所述第二标定物的参考特征点的位置信息得到调整后的第二距离差;
确定单元,用于确定所述调整后的第一距离差和所述调整后的第二距离差是否大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云是否相互对齐;
第二调整单元,用于若所述调整后的第一距离差和所述调整后的第二距离差仍大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云仍相互不对齐,则继续对所述激光雷达的出射光的任意一个或多个方向角进行调整。
需要说明的是,上述实施例提供的激光雷达的姿态标定装置在执行激光雷达的姿态标定方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的激光雷达的姿态标定装置与激光雷达的姿态标定方法实施例属于同一构思,其体现实现过程详见方法实施例,这里不再赘述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
请参见图10,为本申请实施例提供了一种电子设备的结构示意图。如图10所示,所述电子设备100可以包括:至少一个处理器110,至少一个网络接口140,用户接口130,存储器150,至少一个通信总线120。
其中,通信总线120用于实现这些组件之间的连接通信。
其中,用户接口130可以包括显示屏(Display)、摄像头(Camera),可选用户接口130还可以包括标准的有线接口、无线接口。
其中,网络接口140可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。
其中,处理器110可以包括一个或者多个处理核心。处理器110利用各种借口和线路连接整个电子设备100内的各个部分,通过运行或执行存储在存储器150内的指令、程序、代码集或指令集,以及调用存储在存储器150内的数据,执行电子设备100的各种功能和处理数据。可选的,处理器110可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable  Logic Array,PLA)中的至少一种硬件形式来实现。处理器110可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器110中,单独通过一块芯片进行实现。
其中,存储器150可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器150包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器150可用于存储指令、程序、代码、代码集或指令集。存储器150可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器150可选的还可以是至少一个位于远离前述处理器110的存储装置。如图10所示,作为一种计算机存储介质的存储器150中可以包括操作系统、网络通信模块、用户接口模块以及激光雷达的姿态标定应用程序。
在图10所示的电子设备100中,用户接口130主要用于为用户提供输入的接口,获取用户输入的数据;而处理器110可以用于调用存储器150中存储的激光雷达的姿态标定应用程序,并具体执行以下操作:
获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;其中,所述第一标定物位于与所述待标定激光雷达的固定面平行的平面的第一预设区域,所述第二标定物位于与所述待标定激光雷达的固定面垂直的平面的第二预设区域;
在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一种可能的实施例中,所述处理器110在执行获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息之前,还执行包括:
获取所述待标定激光雷达探测到的第一标定物的探测点云和第二标定物的探测点云;
基于所述第一标定物的探测点云和所述第二标定物的探测点云,得到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
所述获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息,包括:获取所述待标定激光雷达探测的第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
所述处理器110在执行在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态时,具体执行:
在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一种可能的实施例中,所述处理器110在执行在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整之前,还执行:
对所述第一标定物的探测点云和所述第二标定物的探测点云分别进行滤波得到第一 标定物的探测特征点和第二标定物的探测特征点;
基于所述第一标定物的探测特征点和所述第二标定物的探测特征点,得到所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息;
在一种可能的实施例中,所述处理器110在执行在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态时,具体执行:
在所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的探测特征点和所述第二标定物的探测特征点满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一种可能的实施例中,所述处理器110在执行在所述在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态之前,还执行包括:
获取所述第一标定物的参考特征点、以及所述第二标定物的参考特征点;其中,所述第一标定物的参考特征点和所述第二标定物的参考特征点是由测距仪分别测量所述第一标定物和所述第二标定物获得的真值数据,或由三维扫描仪分别测量所述第一标定物和所述第二标定物获得的基准点云数据;
基于所述第一标定物的探测特征点的位置信息与所述第一标定物的参考特征点的位置信息确定所述第一标定物的探测特征点与所述第一标定物的参考特征点之间的第一距离差;
基于所述第二标定物的探测特征点的位置信息与所述第二标定物的参考特征点的位置信息确定所述第二标定物的探测特征点与所述第二标定物的参考特征点之间的第二距离差。
在一种可能的实施例中,所述预设收敛条件包括:所述第一距离差和所述第二距离差不大于预设距离;
所述处理器110在执行在所述第一标定物的位置信息和所述第二标定物位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态时,具体执行:
在所述第一距离差和所述第二距离差大于所述预设距离的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测特征点和所述第二标定物的探测特征点满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一种可能的实施例中,所述处理器110在执行所述获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息之前,还执行:所述待标定激光雷达发出多个光束;
所述处理器110在执行获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息时,具体执行:
基于所述待标定激光雷达发出的多个光束获取多个光通道内的第一标定物的探测点云以及第二标定物的探测点云;其中,每个光通道由一个光束形成,相邻光通道之间存在 重叠区域。
在一种可能的实施例中,所述预设收敛条件包括:所述第一距离差和所述第二距离差不大于预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐;
所述处理器110在执行所述在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态时,具体执行:
在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一种可能的实施例中,所述处理器110在执行所述在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,对所述激光雷达的至少一个出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态时,具体执行:
在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,当所述多个光束的数量为奇数时,以中间光通道的探测点云为基准,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
在一种可能的实施例中,所述处理器110在执行所述对所述激光雷达的出射光方向进行调整,包括:
对所述激光雷达的出射光的翻滚角、俯仰角、以及航向角中任意一个或多个方向角进行调整,得到调整后的第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息;
基于所述调整后的第一标定物的探测特征点的位置信息和所述第一标定物的参考特征点的位置信息得到调整后的第一距离差,基于所述调整后的第二标定物的探测特征点的位置信息和所述第二标定物的参考特征点的位置信息得到调整后的第二距离差;
确定所述调整后的第一距离差和所述调整后的第二距离差是否大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云是否相互对齐;
若所述调整后的第一距离差和所述调整后的第二距离差仍大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云仍相互不对齐,则继续对所述激光雷达的出射光的任意一个或多个方向角进行调整。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述图4-图6所示实施例中的一个或多个步骤。上述激光雷达的姿态标定装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部 分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字多功能光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:制度存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。在不冲突的情况下,本实施例和实施方案中的技术特征可以任意组合。
以上所述的实施例仅仅是本申请的优选实施例方式进行描述,并非对本申请的范围进行限定,在不脱离本申请的设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形及改进,均应落入本申请的权利要求书确定的保护范围内。

Claims (12)

  1. 一种激光雷达的姿态标定方法,其特征在于,包括:
    获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;其中,所述第一标定物位于与所述待标定激光雷达的固定面平行的平面的第一预设区域,所述第二标定物位于与所述待标定激光雷达的固定面垂直的平面的第二预设区域;
    在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息之前,所述方法还包括:
    获取所述待标定激光雷达探测到的第一标定物的探测点云和第二标定物的探测点云;
    基于所述第一标定物的探测点云和所述第二标定物的探测点云,得到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
    所述获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息,包括:获取所述待标定激光雷达探测的第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息;
    所述在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态,包括:
    在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  3. 根据权利要求2所述的方法,其特征在于,所述在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整之前,所述方法还包括:
    对所述第一标定物的探测点云和所述第二标定物的探测点云分别进行滤波得到第一标定物的探测特征点和第二标定物的探测特征点;
    基于所述第一标定物的探测特征点和所述第二标定物的探测特征点,得到所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息;
    所述在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态,包括:
    在所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  4. 根据权利要求3所述的方法,其特征在于,所述在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进 行调整,直到所述第一标定物的位置信息和第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态之前,所述方法还包括:
    获取所述第一标定物的参考特征点、以及所述第二标定物的参考特征点;其中,所述第一标定物的参考特征点和所述第二标定物的参考特征点是由测距仪分别测量所述第一标定物和所述第二标定物获得的真值数据,或由三维扫描仪分别测量所述第一标定物和所述第二标定物获得的基准点云数据;
    基于所述第一标定物的探测特征点的位置信息与所述第一标定物的参考特征点的位置信息确定所述第一标定物的探测特征点与所述第一标定物的参考特征点之间的第一距离差;
    基于所述第二标定物的探测特征点的位置信息与所述第二标定物的参考特征点的位置信息确定所述第二标定物的探测特征点与所述第二标定物的参考特征点之间的第二距离差。
  5. 根据权利要求4所述的方法,其特征在于,所述预设收敛条件包括:所述第一距离差和所述第二距离差不大于预设距离;
    所述在所述第一标定物的位置信息和所述第二标定物位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态,包括:
    在所述第一距离差和所述第二距离差大于所述预设距离的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测特征点的位置信息和所述第二标定物的探测特征点的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  6. 根据权利要求4所述的方法,其特征在于,所述获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息之前,所述方法还包括:所述待标定激光雷达发出多个光束;
    所述获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息,包括:
    基于所述待标定激光雷达发出的多个光束获取多个光通道内的第一标定物的探测点云以及第二标定物的探测点云;其中,每个光通道由一个光束形成,相邻光通道之间存在重叠区域。
  7. 根据权利要求6所述的方法,其特征在于,所述预设收敛条件包括:所述第一距离差和所述第二距离差不大于预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互对齐;
    所述在所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息不满足所述预设收敛条件的情况下,对所述待标定激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态,包括:
    在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和所述第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  8. 根据权利要求7所述的方法,其特征在于,所述在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云 相互不对齐的情况下,对所述激光雷达的至少一个出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态,包括:
    在所述第一距离差和所述第二距离差大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云相互不对齐的情况下,当所述多个光束的数量为奇数时,以中间光通道的探测点云为基准,对所述激光雷达的出射光方向进行调整,直到所述第一标定物的探测点云的位置信息和第二标定物的探测点云的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  9. 根据权利要求5或7或8所述的方法,其特征在于,所述对所述激光雷达的出射光方向进行调整,包括:
    对所述激光雷达的出射光的翻滚角、俯仰角、以及航向角中任意一个或多个方向角进行调整,得到调整后的第一标定物的探测特征点的位置信息和第二标定物的探测特征点的位置信息;
    基于所述调整后的第一标定物的探测特征点的位置信息和所述第一标定物的参考特征点的位置信息得到调整后的第一距离差,基于所述调整后的第二标定物的探测特征点的位置信息和所述第二标定物的参考特征点的位置信息得到调整后的第二距离差;
    确定所述调整后的第一距离差和所述调整后的第二距离差是否大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云是否相互对齐;
    若所述调整后的第一距离差和所述调整后的第二距离差仍大于所述预设距离,和/或所述相邻光通道内由两侧不同光束对同一位置形成的探测点云仍相互不对齐,则继续对所述激光雷达的出射光的任意一个或多个方向角进行调整。
  10. 一种激光雷达的姿态标定装置,其特征在于,包括:
    获取模块,用于获取待标定激光雷达探测的第一标定物的位置信息和第二标定物的位置信息;其中,所述第一标定物位于与所述待标定激光雷达的固定面平行的平面的第一预设区域,所述第二标定物位于与所述待标定激光雷达的固定面垂直的平面的第二预设区域;
    调整模块,用于在所述第一标定物的位置信息和所述第二标定物的位置信息不满足预设收敛条件的情况下,对所述待标定激光雷达的姿态进行调整,直到所述第一标定物的位置信息和所述第二标定物的位置信息满足所述预设收敛条件,所述待标定激光雷达完成姿态标定,保存所述激光雷达的当前姿态。
  11. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行如权利要求1-9任一项的方法步骤。
  12. 一种电子设备,其特征在于,包括:处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由处理器加载并执行如权利要求1-9任一项的方法步骤。
PCT/CN2021/109805 2021-07-30 2021-07-30 一种激光雷达的姿态标定方法、相关装置、以及存储介质 WO2023004792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100551.3A CN117716255A (zh) 2021-07-30 2021-07-30 一种激光雷达的姿态标定方法、相关装置、以及存储介质
PCT/CN2021/109805 WO2023004792A1 (zh) 2021-07-30 2021-07-30 一种激光雷达的姿态标定方法、相关装置、以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109805 WO2023004792A1 (zh) 2021-07-30 2021-07-30 一种激光雷达的姿态标定方法、相关装置、以及存储介质

Publications (1)

Publication Number Publication Date
WO2023004792A1 true WO2023004792A1 (zh) 2023-02-02

Family

ID=85087362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109805 WO2023004792A1 (zh) 2021-07-30 2021-07-30 一种激光雷达的姿态标定方法、相关装置、以及存储介质

Country Status (2)

Country Link
CN (1) CN117716255A (zh)
WO (1) WO2023004792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840196A (zh) * 2023-02-24 2023-03-24 新石器慧通(北京)科技有限公司 基于实体标定间的激光雷达间标定方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044050A (ja) * 2008-07-14 2010-02-25 Ihi Corp レーザレーダの姿勢認識方法及びレーザレーダ
JP2012229987A (ja) * 2011-04-26 2012-11-22 Denso Corp レーザレーダの光軸検査方法及び検査システム
CN104142157A (zh) * 2013-05-06 2014-11-12 北京四维图新科技股份有限公司 一种标定方法、装置及设备
CN105445721A (zh) * 2015-12-15 2016-03-30 中国北方车辆研究所 基于带特征突起v型标定物的激光雷达与摄像机联合标定方法
CN110132130A (zh) * 2019-03-05 2019-08-16 上海宾通智能科技有限公司 激光雷达位置标定方法、系统及其数据处理方法、系统
CN111398937A (zh) * 2020-04-07 2020-07-10 广东博智林机器人有限公司 光学性能装调装置及光学性能装调方法
CN111913169A (zh) * 2019-05-10 2020-11-10 北京四维图新科技股份有限公司 激光雷达内参、点云数据的修正方法、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044050A (ja) * 2008-07-14 2010-02-25 Ihi Corp レーザレーダの姿勢認識方法及びレーザレーダ
JP2012229987A (ja) * 2011-04-26 2012-11-22 Denso Corp レーザレーダの光軸検査方法及び検査システム
CN104142157A (zh) * 2013-05-06 2014-11-12 北京四维图新科技股份有限公司 一种标定方法、装置及设备
CN105445721A (zh) * 2015-12-15 2016-03-30 中国北方车辆研究所 基于带特征突起v型标定物的激光雷达与摄像机联合标定方法
CN110132130A (zh) * 2019-03-05 2019-08-16 上海宾通智能科技有限公司 激光雷达位置标定方法、系统及其数据处理方法、系统
CN111913169A (zh) * 2019-05-10 2020-11-10 北京四维图新科技股份有限公司 激光雷达内参、点云数据的修正方法、设备及存储介质
CN111398937A (zh) * 2020-04-07 2020-07-10 广东博智林机器人有限公司 光学性能装调装置及光学性能装调方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840196A (zh) * 2023-02-24 2023-03-24 新石器慧通(北京)科技有限公司 基于实体标定间的激光雷达间标定方法及装置

Also Published As

Publication number Publication date
CN117716255A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US11328446B2 (en) Combining light-field data with active depth data for depth map generation
US10746855B2 (en) Multi-line laser radar and multi-line laser radar control method
US20220026544A1 (en) Ranging Method, Apparatus, and Device
WO2022126427A1 (zh) 点云处理方法、点云处理装置、可移动平台和计算机存储介质
US7999923B2 (en) Systems and methods for detecting and analyzing objects
CN109557547B (zh) 激光雷达、距离测量和/或速度确定方法及存储介质
US20190064510A1 (en) Remote control of a scanner using movement of a mobile computing device
US10484667B2 (en) Generating 3D depth map using parallax
WO2023004792A1 (zh) 一种激光雷达的姿态标定方法、相关装置、以及存储介质
WO2021062581A1 (zh) 路面标识识别方法及装置
CN115436912B (zh) 一种点云的处理方法、装置及激光雷达
WO2021081963A1 (zh) 标定板、测试角分辨率的方法、装置及计算机存储介质
US20210256740A1 (en) Method for increasing point cloud sampling density, point cloud processing system, and readable storage medium
CN110018491B (zh) 激光扫描方法、装置及激光雷达
WO2020215252A1 (zh) 测距装置点云滤噪的方法、测距装置和移动平台
WO2019188509A1 (ja) レーダ画像処理装置、レーダ画像処理方法、および記憶媒体
CN116745646A (zh) 根据飞行时间测量和光斑图案测量的三维图像捕获
US11163042B2 (en) Scanned beam display with multiple detector rangefinding
WO2021232227A1 (zh) 构建点云帧的方法、目标检测方法、测距装置、可移动平台和存储介质
WO2023185943A1 (zh) 确定激光雷达点云分层的方法、装置、设备及存储介质
EP3959586A1 (en) Mixed pixel unwrapping error mitigation by filtering optimization
WO2021232247A1 (zh) 点云着色方法、点云着色系统和计算机存储介质
WO2023077412A1 (zh) 一种物体测距方法及装置
WO2020155142A1 (zh) 一种点云重采样的方法、装置和系统
WO2020107379A1 (zh) 应用于测距装置的反射率校正方法、测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE