WO2021081963A1 - 标定板、测试角分辨率的方法、装置及计算机存储介质 - Google Patents

标定板、测试角分辨率的方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2021081963A1
WO2021081963A1 PCT/CN2019/114899 CN2019114899W WO2021081963A1 WO 2021081963 A1 WO2021081963 A1 WO 2021081963A1 CN 2019114899 W CN2019114899 W CN 2019114899W WO 2021081963 A1 WO2021081963 A1 WO 2021081963A1
Authority
WO
WIPO (PCT)
Prior art keywords
stripe
width
pair
scanning system
angular resolution
Prior art date
Application number
PCT/CN2019/114899
Other languages
English (en)
French (fr)
Inventor
卢栋
水泳
董帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980039525.7A priority Critical patent/CN113133319A/zh
Priority to PCT/CN2019/114899 priority patent/WO2021081963A1/zh
Publication of WO2021081963A1 publication Critical patent/WO2021081963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the embodiments of the present invention relate to the field of radar, and more specifically, to a calibration board, a method and device for testing angular resolution, and a computer storage medium.
  • Angular resolution can characterize the ability of the scanning system to detect the smallest target or the smallest angle. It is one of the most critical indicators of the scanning system. Therefore, it is extremely important to accurately measure the angular resolution of the scanning system.
  • One method is the static test method, that is, the angular resolution of the scanning system is obtained indirectly by measuring the spot size or the scanning interval.
  • the test result of this static test method is inaccurate and has great limitations.
  • the embodiment of the present invention provides a calibration board, a method and device for testing the angular resolution, and a computer storage medium, which can conveniently test the angular resolution of the scanning system and obtain accurate test results.
  • a method for testing the angular resolution of a scanning system including:
  • the angular resolution of the scanning system in the at least one direction is determined.
  • a calibration board is provided, the calibration board is used to test the angular resolution of a scanning system, and the calibration board includes at least one marker in at least one direction.
  • a device for testing the angular resolution of a scanning system including: a memory and a processor, wherein:
  • the memory is used to store computer instructions
  • the processor is configured to call the computer instruction, and when the computer instruction is executed, it is configured to execute:
  • the angular resolution of the scanning system in the at least one direction is determined.
  • a scanning system which includes the calibration board described in the second aspect and the device described in the third aspect.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • the embodiment of the present invention uses a calibration plate that includes at least one marker in at least one direction to test the angular resolution of the scanning system.
  • This solution is simple, versatile and universal, and can obtain accurate angular resolution.
  • reliable object parameters can be provided for object detection and target tracking of the scanning system.
  • Figure 1 is a schematic structural diagram of a test system according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the calibration plate of the embodiment of the present invention placed in the FOV;
  • FIG. 3 is a schematic diagram of the stripe group of the calibration plate according to the embodiment of the present invention.
  • FIG. 4 is another schematic diagram of the stripe group of the calibration plate according to the embodiment of the present invention.
  • Figure 5 (a) and (b) are schematic diagrams of a calibration plate including stripe groups in two or three directions according to an embodiment of the present invention
  • Figure 6 (a) and (b) are another schematic diagrams of a calibration plate including stripe groups in two or three directions according to an embodiment of the present invention
  • Figure 7 (a) and (b) is a schematic diagram of a calibration plate including a linear shape according to an embodiment of the present invention
  • Figures 8 (a) to (c) are another schematic diagrams of a calibration plate including a linear shape according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a calibration plate including a plurality of marker blocks according to an embodiment of the present invention.
  • Fig. 10 is another schematic diagram of a calibration plate including a plurality of marker blocks according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method for testing the angular resolution of a scanning system according to an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of point cloud data obtained based on the calibration plate of Fig. 7(b) according to an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of an apparatus for testing the angular resolution of a scanning system according to an embodiment of the present invention.
  • the laser scanning device (or called the scanning system) can emit detection signals in different directions, so as to obtain the depth information, reflectivity information and other data of the object according to the echo signals in different directions.
  • the laser scanning device needs to be parameter tested (or called performance test) before use.
  • the parameters to be tested include angular resolution, that is, the parameters that need to be performed before use Testing can include testing diagonal resolution.
  • the method for testing angular resolution provided in the embodiment of the present invention can be executed by a test system (also referred to as a calibration system, a test device, a calibration device, etc.).
  • the test provided in the embodiment of the present invention is firstly combined with FIG. 1 below. The system is illustrated schematically.
  • FIG. 1 is a schematic structural diagram of a test system provided by an embodiment of the present invention.
  • the test system includes: a test device 11 and a movable platform 12.
  • a communication connection can be established between the movable platform 12 and the testing device 11 through a wireless communication connection.
  • a communication connection between the movable platform 12 and the testing device 11 may also be established through a wired communication connection.
  • the mobile platform 12 may be a mobile device such as a drone, an unmanned vehicle, an unmanned ship, and a mobile robot.
  • the movable platform 12 may include a power system 121, and the power system 121 is used to provide the movable platform 12 with moving power.
  • the testing device 11 may be installed on the movable platform 12, for example, the testing device 11 may be a component of the movable platform 12, that is, the mobile platform 12 includes the testing device 11.
  • the movable platform 12 and the test device 11 may be independent of each other, that is, the test device 11 may be spatially independent of the movable platform 12, for example, the test device 11 is set on a cloud server or a mobile terminal (including but not limited to a computer). , Mobile phones, etc.), establish a communication connection with the movable platform 12 through a wireless communication connection.
  • the movable platform 12 may be equipped with or equipped with a laser scanning device.
  • the laser scanning device is detachably connected to the movable platform 12.
  • the laser scanning device may also be fixedly arranged on the movable platform 12.
  • the laser scanning device may include any one or more of laser radar, electromagnetic wave radar, millimeter wave radar, and ultrasonic radar, which is not limited in the embodiment of the present application.
  • the embodiment of the present application adopts the field-of-View (FOV) of the laser scanning device to set a calibration board.
  • FOV field-of-View
  • the FOV 211 of the laser scanning device 21 passes through
  • the shaded diagonal line indicates that the calibration plate 22 is located in the FOV 211.
  • the laser scanning device 21 can emit detection signals to the calibration plate 22, and by collecting echoes with different signal strengths, point cloud data can be obtained.
  • the testing device 11 can use the point cloud data to test the angular resolution of the laser scanning device.
  • FIG. 2 is only schematic.
  • the laser scanning device 21 in FIG. 2 shows one emission source
  • the actual laser scanning device 21 may also have multiple sources.
  • the laser scanning device The FOV 211 of 21 may be an area where the FOVs of multiple sources are integrated.
  • the FOV 211 of the laser scanning device 21 in FIG. 2 shows a triangular shape (the space is a cone)
  • the actual FOV 211 of the laser scanning device 21 can also have other shapes, such as those of a 360-degree scanning system.
  • the FOV is different from the FOV 211 shown in FIG. 2 and will not be listed here.
  • only one calibration plate 211 is shown in FIG. 2, in practical applications, the number of calibration plates may also be multiple.
  • the calibration board can be used to test the angular resolution of a laser scanning device (also referred to as a scanning system).
  • the shape of the calibration plate can be circular, square or other arbitrary shapes.
  • the circular calibration plate is shown in the drawings of the present invention.
  • the calibration plate may have a certain thickness, and the thickness is smaller than the size of the plane.
  • the calibration plate is a circular calibration plate, its thickness is smaller than the diameter of the circle, for example, the thickness is equal to one-tenth of the diameter, or other values, and so on.
  • the calibration plate may include at least one marker in at least one direction.
  • the marker is a marker with reflectivity. When the laser pulse signal emitted by the laser scanning device hits the marker, the pulse signal will be reflected back.
  • At least one direction may be one direction, or two directions or more directions.
  • the following first takes the horizontal direction as an example to introduce the marker in the embodiment of the present invention.
  • the marker is a pair of stripes. This can be seen in Figure 3.
  • Figure 3 shows at least one marker in the horizontal direction.
  • the marker is a stripe pair
  • the horizontal direction means that the line connecting the centers of the stripe pair shown is the horizontal direction, as shown by the dashed line in FIG. 3.
  • the stripe pair includes two different stripes, where the difference refers to different reflectivity, that is, the stripe pair includes a first stripe having a first reflectivity and a second stripe having a second reflectivity.
  • the first stripe can be set as a high reflectivity stripe
  • the second stripe can be set as a low reflectivity stripe, that is, the first reflectivity can be set to be greater than the second reflectivity.
  • the embodiment of the present invention does not specifically limit the manner of implementing the stripe pair, and the stripe pair may be any of the following: black and white line pairs, hollow line pairs, color difference line pairs, and so on.
  • w1 in FIG. 3 is a stripe pair
  • the stripe pair w1 includes a white stripe and a black stripe, wherein the reflectance of the white stripe is greater than that of the black stripe. That is, the first stripe is a white stripe, and the second stripe is a black stripe.
  • the stripe pair can be realized by hollowing out, that is, part of the area in the calibration plate can be hollowed out.
  • the hollowed-out area can correspond to the black striped area shown in FIG.
  • the reflectivity of the hollowed out part is lower than that of the white striped area that is not hollowed out.
  • a stripe pair can also be realized by stripes with different color differences.
  • the white stripe in FIG. 3 is replaced with a stripe of the first color
  • the black stripe in FIG. 3 is replaced with a stripe of the first color.
  • Stripes of the second color, and the reflectivity of the first color is greater than the reflectivity of the second color.
  • a stripe pair composed of white stripes and black stripes as shown in FIG. 3 will be used as an example for description.
  • a stripe can occupy a rectangular area, which has a length and a width.
  • the dimension in the vertical direction shown is length, such as L
  • the dimension in the horizontal direction shown is width, such as w1.
  • the stripes in the same direction may have the same length, that is, the stripes in the same direction have the same length.
  • the length of all stripes in the horizontal direction shown in FIG. 3 is L, for example, the length of the stripe pair w1 is equal to the length of the stripe pair w2.
  • the length of the stripe pair w1 in FIG. 3 may be greater than or less than L
  • the length of the stripe pair w2 may be greater or less than L
  • the length of the stripe pair w1 and the length of the stripe pair w2 may not be equal.
  • the first stripe and the second stripe in the same stripe pair can be of equal width or unequal width, that is, in the same stripe pair, the width of the first stripe is equal to the width of the second stripe, or the width of the first stripe is different. Equal to the width of the second stripe.
  • the width of the white stripe in each stripe pair (for example, stripe pair w1) in FIG. 3 is equal to the width of the black stripe.
  • the width of the white stripes in the stripe pair w5 is not equal to the width of the black stripes. As shown in FIG. 4, the width of the white stripes is greater than the width of the black stripes.
  • the first stripe included in the stripe pair has a first width and the second stripe has a second width.
  • the width of the stripe pair is equal to the sum of the width of the first stripe and the width of the second stripe, that is, the width of the stripe pair is equal to the first width plus the second width.
  • the number of stripe pairs in the same direction may be at least two.
  • the width can be equal or unequal.
  • the width of the first stripe pair may be equal to or not equal to the width of the second stripe pair.
  • the width of the stripe pair w1 is not equal to the width of the stripe pair w2
  • the width of the stripe pair w4 is equal to the width of the stripe pair w41.
  • the width of the stripe pair can be from large to small or from small to large.
  • the width of the stripe pair w1 to the stripe pair w4 gradually decreases.
  • the width of the stripe pair from left to right in FIG. 4 gradually decreases.
  • the number of stripe pairs with the same width can be one or more.
  • some stripe pairs have the same width, and some stripe pairs have unequal widths.
  • the widths of the first stripe pair to the N1th stripe pair are all W1
  • the widths of the N1+1th to N1+N2th stripe pair are all W2, and W1 is not equal to W2.
  • N1 3, that is, the widths of the first stripe pair to the third stripe pair are equal, and they are all w1.
  • N2 3, that is, the widths of the fourth stripe pair to the sixth stripe pair are equal, and they are all w2.
  • the width of the first stripe may be equal or unequal.
  • the width of the first stripe in the first stripe pair is equal to or unequal to the width of the first stripe in the second stripe pair.
  • the width of the white stripes in the stripe pair w1 is not equal to the width of the white stripes in the stripe pair w2.
  • the width of the white stripes in the stripe pair w5 is equal to the width of the white stripes in the stripe pair w6.
  • the width of at least one stripe pair in a single direction needs to include the spot size or scanning interval of the laser scanning device at a first distance, and the first distance is the distance between the laser scanning device and the calibration plate.
  • At least one marker that is, at least one stripe pair in the same direction is classified into the same stripe group.
  • Each stripe group includes at least one stripe element, each stripe element includes at least one stripe pair, and the width of the stripe pair in each stripe element in the same stripe group is from large to small or from small to large.
  • FIG. 3 or FIG. 4 shows an example of a stripe group corresponding to the horizontal direction.
  • the stripe group can include several stripe elements.
  • the stripe group as shown in FIG. 3 includes 4 stripe elements, which are respectively denoted as twy11, twy12, twy13, and twy14.
  • the stripe group as shown in FIG. 4 includes 5 stripe elements, which are respectively denoted as twy21, twy22, twy23, twy24, and twy25.
  • the stripe element may include at least one stripe pair.
  • each stripe element in twy11, twy12, and twy13 includes 3 stripe pairs, and twy14 includes 5 stripe pairs.
  • each stripe element of twy21, twy22, twy23, twy24, and twy25 includes one stripe pair.
  • the widths of the stripe pairs in the same stripe element can be equal. Referring to Figure 3, the widths of the three stripe pairs in twy11 are all w1, the widths of the three stripe pairs in twy12 are all w2, and the three stripes in twy13 The widths of the pairs are all w3, and the widths of the five stripe pairs in twy14 are all w4.
  • the stripe element may include multiple stripe pairs, and each stripe pair in the same stripe element may be the same, that is, each stripe pair has an equal width, and the width of the first stripe included in each stripe pair is also Are all equal.
  • the widths of the three stripe pairs in twy11 in Figure 3 are all w1, and among these three stripe pairs, the width of the first stripe is all w11, and the width of the second stripe is all w12 ( Figure 3 Not shown).
  • the same stripe pair means that the width of the stripe pair is equal.
  • the width of the stripe pair can be from large to small or from small to large. Assuming that a stripe group is in the horizontal direction, the stripe pair is from large to small or small to large along the horizontal direction. Referring to Figure 3, along the direction from left to right as shown in Figure 3, the width of the stripe pairs from large to small, that is, w1>w2>w3>w4; of course, it can also be understood as the direction from the right as shown in Figure 3. To the left, the width of the stripe pairs increases from small to large.
  • the width of the first stripe in the stripe pair may be equal to the width of the second stripe.
  • the width of the first stripe in each stripe pair is equal to the width of the second stripe.
  • the width of the stripe pair in twy11 is w1
  • the width of the first stripe and the width of the second stripe are both w1/2.
  • the width of the first stripe in twy12 is greater than the width of the second stripe.
  • the width of the first stripe in the stripe pair may not be equal to the width of the second stripe. As shown in FIG. 4, the width of the first stripe and the width of the second stripe in each of twy22 to twy25 are not equal.
  • the width of the first stripe in all stripe pairs in the same stripe group is equal.
  • the width of the first stripe in each stripe pair is equal to w0. It should be understood that, in order to simplify the example, only the width of the first stripe in the first stripe pair is shown in FIG. 4 as w0.
  • FIGS. 3 and 4 are only schematic illustrations of the stripe group, and should not be construed as a limitation.
  • the stripe group may be in any form within the scope of the embodiment of the present invention.
  • the above only takes the horizontal direction as an example to introduce the schematic diagram of the stripe pair in conjunction with Figures 3 and 4.
  • the calibration plate includes the stripe pair in at least one direction, and the at least one direction may include one of the horizontal direction, the vertical direction, and the oblique direction. Or several. As an example, it may include only the horizontal direction or only the vertical direction, for example, only the stripe pairs in the horizontal direction shown in FIGS. 3 and 4 are included.
  • the horizontal direction and the vertical direction may be included, for example, as shown in FIG. 5(a) and FIG. 6(a), the stripe pair includes the horizontal direction and the vertical direction.
  • the horizontal direction, the vertical direction, and the oblique direction may be included. For example, as shown in FIG. 5(b) and FIG. 6(b), the stripe pair includes the horizontal direction, the vertical direction, and the oblique direction.
  • the horizontal direction and the vertical direction refer to two orthogonal directions.
  • the horizontal direction may be parallel to the ground, and the vertical direction may be perpendicular to the ground; or, the horizontal direction may be at an angle to the ground, and the vertical direction may be orthogonal to the horizontal direction.
  • the angle between the ground and the ground is related to the placement position of the calibration board.
  • rotating the calibration board can change the angle between at least one direction and the ground.
  • the horizontal direction in the embodiment of the present invention means that one of at least one direction can be made parallel to the ground by rotating the calibration plate.
  • the tilt direction may refer to a direction at a preset angle to the horizontal direction.
  • the preset angle may be 30°, 45°, 60° or other angles.
  • the inclination direction as shown in Fig. 5(b) and Fig. 6(b) is a direction at 45° from the horizontal direction.
  • At least one direction may include more directions, such as including 4 directions: a horizontal direction, a vertical direction, a 45° oblique direction, a 60° oblique direction, and so on.
  • At least one marker in the same direction that is, at least one pair of stripes
  • at least one marker in at least one direction that is, at least one pair of stripes
  • different stripe groups may have the same or different patterns.
  • the pattern of the stripe group may include at least one of the following: the number of stripe elements, the number of stripe pairs in a single stripe element, the width of the stripe pair, the width of the first stripe and/or the second stripe in the stripe pair, and so on.
  • the patterns of different stripe groups can be the same.
  • the first stripe group in the first direction and the second stripe group in the second direction can be the same pattern, for example, the first stripe group can be rotated as a whole After a certain angle to the second direction, the second stripe group and the first stripe group have the same pattern.
  • the pattern of the stripe group in the horizontal direction and the vertical direction is the same, which can be considered as the stripe in the horizontal direction Rotate the group by 90 degrees and then translate it so that it does not overlap with the group of stripes in the horizontal direction.
  • the stripe group in the horizontal direction in Figures 5(a) and 5(b) is the stripe group shown in Figure 3
  • the stripe group in the horizontal direction in Figures 6(a) and 6(b) is the image 4 shows the stripe group.
  • the styles of different stripe groups may be different. 5(b) and 6(b), the pattern of the stripe group in the oblique direction and the stripe group in the horizontal direction (or vertical direction) are different. Specifically, the number of stripe elements in the stripe group in the oblique direction and the stripe group in the horizontal direction (or vertical direction), the width of the stripe pairs in the stripe element, and the like are different. Specifically, the stripe group in the horizontal direction in Figure 5(b) is the stripe group shown in Figure 3. The stripe group in the oblique direction is obtained after the stripe group in Figure 4 is rotated by 45 degrees.
  • the horizontal stripe group in 5(b) includes 4 stripe elements, while the oblique stripe group in Figure 5(b) includes 5 stripe elements; and the stripe element in the horizontal stripe group in Figure 5(b) It includes 3 or 5 stripe pairs, and the stripe element in the stripe group in the oblique direction in Figure 5(b) includes 1 stripe pair; and so on.
  • Fig. 6(b) it can be seen similarly that the stripe group in the oblique direction and the stripe group in the horizontal direction (or the vertical direction) have different patterns, which will not be repeated here.
  • the embodiment of the present invention does not limit the positional relationship between different stripe groups corresponding to different directions.
  • two stripe groups in two different directions may have a larger or smaller spatial interval between them.
  • At least one direction coincides with the scanning direction of the scanning system.
  • the scanning direction includes the horizontal direction
  • at least one direction also includes the horizontal direction.
  • the at least one direction includes the scanning direction of the scanning system.
  • the scanning direction is a horizontal direction
  • at least one direction includes a horizontal direction, and optionally may also include a vertical direction and/or an oblique direction.
  • the calibration board should include at least one pair of stripes in the horizontal direction.
  • the calibration board can also be used at this time. At least one stripe pair in a vertical direction and/or an oblique direction is included.
  • the angular resolution of the scanning system in the horizontal direction can be determined based on at least one stripe pair in the horizontal direction on the calibration board. At this time, at least the other directions on the calibration board can be ignored. A pair of stripes.
  • the calibration plate should include at least one pair of stripes in the horizontal direction and at least the vertical direction.
  • One stripe pair of course, at this time, the calibration plate may also include at least one stripe pair in an oblique direction.
  • a first calibration plate including at least one stripe pair in the horizontal direction can be used to determine the angular resolution of the scanning system in the horizontal direction
  • a second calibration plate including at least one stripe pair in the vertical direction can be used to determine whether the scanning system is Angular resolution in the vertical direction.
  • a calibration including at least one stripe pair in three directions can be used.
  • the embodiment of the present invention provides a calibration plate, which includes at least one stripe pair in at least one direction, which can be used to test the angular resolution of the scanning system in at least one direction.
  • the width of the stripe pair can be controlled.
  • the width of the first stripe and the second stripe can be used to test scanning systems with different angular resolutions and has universal applicability.
  • the markers can also be linear.
  • the line type is a line type with reflectivity. When the laser pulse signal emitted by the laser scanning device hits the line type, the pulse signal will be reflected back. The line type will be described below in conjunction with FIG. 7 and FIG. 8.
  • the line type may have a certain width, and the specific value of the width is not limited in the embodiment of the present invention.
  • the width can be a small value, for example, a few millimeters or less than 1 millimeter, that is, the line type is a thin line.
  • the width may be, for example, a value on the order of centimeters. Referring to FIG. 7, 7(a) and 7(b) both include horizontal and vertical line types, and the width of the line type in 7(a) is smaller than the width of the line type in 7(b).
  • FIG. 7(a) includes horizontal and vertical line types
  • the present invention is not limited to this, and may include only one-directional line types, or may include horizontal, vertical, and oblique directions.
  • Line style in three directions For example, referring to Fig. 8, Fig. 8(a) includes a vertical line type, Fig. 8(b) includes a horizontal direction and a vertical line type, and Fig. 8(c) includes a horizontal direction, a vertical direction and an oblique line. The line style of the direction.
  • the oblique direction may refer to a direction that forms a preset angle with the horizontal direction.
  • the preset angle may be 30°, 45°, 60° or other angles.
  • the oblique direction as shown in FIG. 8(c) is a direction at 45° from the horizontal direction.
  • the embodiment of the present invention does not limit the specific implementation of the line type, for example, it may be any one of a thin line, a cardboard, a metal strip, a total reflection sheet, and the like.
  • the line type may form a rectangular, square, or triangular lattice shape.
  • the line type in Figure 8(a) forms a rectangular grid
  • the line type in Figure 8(b) forms a square grid
  • the line type in Figure 8(c) forms a square and a triangle. Lattice.
  • the calibration plate may only include line types in one direction (such as a horizontal direction), or may include line types in two or more directions.
  • the number of line types in a certain direction can be one or more.
  • FIG. 8(a) includes vertical line types, and the number of line types is multiple (4).
  • Figure 8(b) includes horizontal and vertical line types, the number of horizontal line types is multiple (3), and the number of vertical line types is also multiple (3).
  • Figure 8(c) includes horizontal, vertical and oblique line types. The number of horizontal line types is multiple (3), and the number of vertical line types is also multiple (3).
  • the number of line types in the oblique direction is one.
  • At least one direction is perpendicular to the scanning direction of the scanning system.
  • the scanning direction includes the horizontal direction
  • at least one direction includes the vertical direction.
  • the at least one direction includes a vertical direction of the scanning direction of the scanning system.
  • the scanning direction is a horizontal direction
  • at least one direction includes a vertical direction, and optionally may also include a horizontal direction and/or an oblique direction.
  • the calibration board should include at least one line type in the vertical direction.
  • the calibration board also It may include at least one line type in a horizontal direction and/or an oblique direction.
  • the angular resolution of the scanning system in the horizontal direction can be determined based on at least one line type in the vertical direction on the calibration board. At this time, the angular resolution in other directions on the calibration board can be ignored. At least one line type.
  • the calibration board should include at least one line type in the vertical direction and at least the horizontal direction.
  • One line type may also include at least one line type in an oblique direction.
  • a first calibration plate including at least one line type in the vertical direction may be used to determine the angular resolution of the scanning system in the horizontal direction
  • a second calibration plate including at least one line type in the horizontal direction may be used to determine whether the scanning system is Angular resolution in the vertical direction.
  • At least one linear calibration plate in each direction can be determined, or at least one linear calibration plate in a direction perpendicular to the corresponding single scanning direction can be used to determine separately, or it can be used to include a direction perpendicular to the single scanning direction.
  • At least one linear calibration plate and at least one linear calibration plate including directions perpendicular to the other two scanning directions are respectively determined.
  • the embodiment of the present invention provides a calibration board, which includes at least one line type in at least one direction, and can be used to test the angular resolution of the scanning system in the vertical direction in at least one direction.
  • the calibration board may include a plurality of marking blocks, each of which has a different position on the calibration board.
  • the calibration board shown is circular, and the calibration board in FIG. 9 includes 11 marking blocks, which are marked with serial numbers 1 to 11, and the calibration board in FIG. 10 includes 5 marking blocks, which are marked in turn. There are serial numbers 1 to 5.
  • the multiple marker blocks in FIGS. 9 and 10 are arranged relatively regularly, such as being symmetrical in the center, the position of the marker blocks in practice can be arbitrary, which is not limited by the present invention.
  • the calibration plates in FIGS. 9 and 10 are circular, they can actually have other shapes, such as rectangles, hexagons, other regular or irregular shapes, and so on.
  • Each marker block may include at least one marker in at least one direction.
  • the marker is a stripe pair, and the stripe pair included in the marker block may be any of the aforementioned FIG. 3, FIG. 4, FIG. 5(a) or (b), and FIG. 6(a) or (b).
  • the marker is a line type, and the line type included in the marker block may be any one of the aforementioned FIG. 7(a) or (b) and FIG. 8(a) to (c).
  • the patterns of the markers on different marker blocks on the same calibration board can be the same or different.
  • Such as the direction, the number of markers, the width of the markers, etc. are different.
  • the marking block A includes a stripe group in the horizontal direction
  • the marking block B includes a stripe group in the horizontal direction and the vertical direction.
  • the marking block A includes a horizontal stripe group
  • the marking block B includes a vertical line type.
  • the above describes the calibration board in conjunction with the embodiments of FIGS. 3 to 10, specifically describing the shape of the calibration board and at least one marker in at least one direction included in the calibration board.
  • the calibration board can be used to test the angular resolution of the scanning system. The process of the method for testing the angular resolution of the scanning system will be described below in conjunction with specific embodiments.
  • FIG. 11 is a schematic flowchart of a method for testing the angular resolution of a scanning system according to an embodiment of the present invention.
  • the method can include:
  • S20 Determine the angular resolution of the scanning system in the at least one direction according to the point cloud data.
  • the scanning system may emit beams.
  • the scanning system may be radar, such as lidar or electromagnetic wave radar.
  • the calibration plate can be placed in the forward direction of the transmission beam of the scanning system, that is, the transmission beam of the scanning system can reach the calibration plate.
  • the calibration plate can be placed in the field of vision (FOV) of the scanning system.
  • the transmitting beam may be perpendicular to the calibration plate, for example, the center of the transmitting beam and the center normal of the calibration plate are on a straight line.
  • the transmitting beam may form a certain angle with the calibration plate, for example, the center of the transmitting beam and the center normal of the calibration plate form a certain angle.
  • the relative position relationship between the scanning system and the calibration plate can be adjusted by moving the scanning system or moving the calibration plate.
  • the mobile scanning system saves more space and is easier to implement.
  • the relative position relationship includes angle and/or distance.
  • the scanning system or the calibration plate can be moved so that the angle between the transmission beam of the scanning system and the calibration plate is changed, and/or the distance between the scanning system and the center of the calibration plate is changed.
  • the calibration plate can be located at a specific position of the FOV of the scanning system by moving the scanning system or moving the calibration plate.
  • the calibration plate may include a plurality of marking blocks.
  • the angular resolution can be obtained based on any marker block.
  • the angular resolution can be obtained based on all or part of a plurality of marker blocks.
  • the average value of multiple angular resolutions obtained based on multiple marker blocks can be determined as the angular resolution of the scanning system.
  • a weighted sum of multiple angular resolutions obtained based on multiple marker blocks may be determined as the angular resolution of the scanning system, and the weight may be preset according to the position of the marker block.
  • the systematic errors and random errors of the scanning system can be considered, so that the test results are more accurate.
  • the dynamic angular resolution of the scanning system can be determined based on the multiple marker blocks, so that accurate test results can also be obtained.
  • the angular resolution of the scanning system in at least one direction or in the vertical direction of at least one direction may be determined based on a calibration plate including at least one marker in at least one direction. That is, S20 may determine the angular resolution of the scanning system in the at least one direction or in the vertical direction of the at least one direction according to the point cloud data.
  • the angular resolution of the scanning system in the horizontal direction may be determined based on at least one stripe pair in the horizontal direction or at least one line type in the vertical direction on the calibration board . If the calibration plate includes multiple marker blocks, the angular resolution in the horizontal direction can be obtained based on each marker block, and then the average value can be calculated as the angular resolution in the horizontal direction of the scanning system.
  • the calibration board used when testing the angular resolution of the scanning system may be the calibration board described in the foregoing embodiment, wherein the marker may be a stripe pair or a line type, which will be described separately below.
  • the marker is a pair of stripes, so the calibration plate can be, for example, as described above in conjunction with FIGS. 3 to 6.
  • the width of the at least one stripe pair in the single direction on the calibration plate includes the spot size or scanning interval of the scanning system at a first distance, and the first distance is the distance between the scanning system and the scanning system. Describe the distance between the calibration plates.
  • the length L of the stripe group is at least greater than the length of the light spot in the corresponding direction.
  • the horizontal angular resolution of the scanning system can be estimated first. For example, it can be the batch-marked angular resolution associated with the scanning system.
  • the estimated angular resolution determines the spot size at the first distance.
  • the range of the width of the second stripe in the horizontal stripe pair on the selected calibration plate should include the spot size.
  • the length of the stripe group is at least greater than the length of the light spot in the corresponding direction.
  • the range of the width of the second fringe should include a.
  • the range of the second stripes is w4/2 to w1/2, specifically, four values of w4/2, w3/2, w2/2, and w1/2, and w4/2 ⁇ a ⁇ w1 /2.
  • the distance between the scanning system and the calibration plate can be adjusted according to the estimated angular resolution of the scanning system and the width range of the second stripe on the calibration plate to make the spot size at the first distance within the range of the width of the second stripe.
  • the minimum width of the discernible second fringe in the first direction in at least one direction may be determined according to the point cloud data; and the minimum width of the discernible second fringe may be determined according to the minimum width of the discernible second fringe.
  • the angular resolution of the scanning system in the first direction may be determined according to the point cloud data.
  • the clear fringe interval is the resolution limit at this distance, that is, the minimum width of the second fringe that can be resolved.
  • determining the minimum width of the distinguishable second fringe in the first direction according to the point cloud data may include: determining, based on the point cloud data, the minimum width of the second fringe in the first direction according to a preset visibility. The minimum width of the discernible second fringe in one direction.
  • the discernibility condition of the fringe that is, define the visibility (such as 50% or other value)
  • the minimum width of the discernible second fringe can be found based on the change law of the point cloud density along the first direction.
  • visibility can be understood as the ratio of the point cloud density to the maximum value. For example, 50% means that the point cloud density is reduced to half of the maximum value.
  • the visibility can be set and updated according to the attributes of the scanning system.
  • determining the angular resolution of the scanning system in the first direction according to the minimum width of the resolvable second fringe may include: adjusting the resolvable second fringe in the first direction The ratio of the minimum width of the two fringes to the distance between the scanning system and the position of the second fringe of the minimum width is determined as the angular resolution of the scanning system in the first direction.
  • the distance between the scanning system and the second stripe of the minimum width may refer to the distance between the scanning system and the center of the second stripe of the minimum width or the marking block where the scanning system and the second stripe of the minimum width are located. the distance between.
  • the angular resolution of the scanning system in the first direction can be obtained, and similarly, the angular resolution of the scanning system in other directions can be obtained, which will not be repeated here.
  • the marker is a line type, so that the calibration plate can be, for example, as described above in conjunction with Figs. 7 to 8.
  • the point cloud width of the line type along the vertical direction of the line type may be determined according to the point cloud data; according to the point cloud width, it is determined that the scanning system is in the Angular resolution in the vertical direction of the line type.
  • Fig. 12 it shows the point cloud obtained by using the calibration plate of Fig. 7(b), in which the width of the point cloud along the vertical direction in the horizontal direction can be obtained, that is, the “left”, The width of the two "right” rectangles (the size in the vertical direction), and then the angular resolution of the scanning system in the vertical direction can be determined based on this.
  • the width of the point cloud along the horizontal direction in the vertical direction can be obtained, such as the width of the two rectangles "upper” and “lower” in Figure 12 (the size in the horizontal direction), and then the scan can be determined based on this The angular resolution of the system in the horizontal direction. It should be understood that if it is only necessary to test the angular resolution of the scanning system in the horizontal direction, only the width of the point cloud in the horizontal direction in the vertical direction can be determined, and the point cloud in the horizontal direction can be ignored.
  • determining the angular resolution of the scanning system in the vertical direction of the line type according to the width of the point cloud may include: calculating the difference between the width of the point cloud and the width of the line type; The ratio between the difference and the distance between the position of the scanning system and the line type is determined as the angular resolution of the scanning system in the vertical direction of the line type.
  • the width of the line type is very small, much smaller than the width of the light spot, such as the ratio of the width of the line type to the light spot width is less than a preset value (such as 0.01), the width of the line type can be ignored, and the point cloud
  • a preset value such as 0.01
  • multiple calibration plates can be used in S10.
  • one or more of the multiple calibration plates may be used to determine the angular resolution in the first direction, and another one or more of the multiple calibration plates may be used to determine the angular resolution in the second direction. rate.
  • each calibration board can be used to determine the angular resolution in at least one direction included on the calibration board, and then the angular resolution in a certain direction obtained based on multiple calibration boards can be averaged or weighted. And, get the angular resolution of the scanning system in a certain direction.
  • the angular resolution of the scanning system can be determined by setting a plurality of marking blocks on the calibration board, or determining the angular resolution of the scanning system through a plurality of calibration boards, which can improve the accuracy of the test.
  • a calibration plate including at least one marker in at least one direction is used to test the angular resolution of the scanning system.
  • This solution is simple, versatile and universal, and can obtain accurate angular resolution. In turn, it can provide reliable object parameters for object detection and target tracking of the scanning system.
  • FIG. 13 is another schematic block diagram of an apparatus for testing the angular resolution of a scanning system according to an embodiment of the present invention.
  • the device shown in FIG. 13 includes a processor 210 and a memory 220.
  • the memory 220 stores computer instructions.
  • the processor 210 executes the computer instructions, the processor 210 executes the following steps: acquiring point cloud data after the scanning system scans the calibration board, wherein the calibration board includes At least one marker in at least one direction; determining the angular resolution of the scanning system in the at least one direction according to the point cloud data.
  • the marker is a pair of stripes, so that the calibration plate may be, for example, as described above in conjunction with FIG. 3 to FIG. 6.
  • the processor 210 may be specifically configured to: determine, according to the point cloud data, the minimum width of the distinguishable second fringe in the first direction among the at least one direction; The minimum width of the resolvable second fringe determines the angular resolution of the scanning system in the first direction.
  • the processor 210 may be specifically configured to determine the minimum resolvable second fringe in the first direction based on the point cloud data according to a preset visibility. width.
  • the processor 210 may be specifically configured to: compare the minimum width of the recognizable second fringe in the first direction with the scanning system and the minimum width The ratio of the distance between the positions of the two stripes is determined as the angular resolution of the scanning system in the first direction.
  • the marker is a line type, so that the calibration plate may be, for example, as described above in conjunction with FIG. 7 to FIG. 8.
  • the processor 210 may be specifically configured to: determine the point cloud width along the vertical direction of the line type on the line type according to the point cloud data; The width determines the angular resolution of the scanning system in the vertical direction of the line type.
  • the processor 210 may be specifically configured to: calculate the difference between the width of the point cloud and the width of the line type; and compare the difference with the scanning system and the line type.
  • the ratio of the distance between the positions of the two is determined as the angular resolution of the scanning system in the vertical direction of the line.
  • the device for testing the angular resolution of the scanning system can be implemented as a testing system or calibration equipment as shown in FIG. 1, or can be a mobile platform, a computer, a tablet computer, a smart phone, etc., which can implement the present invention. Any device of the method of the embodiment.
  • the device shown in FIG. 13 can be used to implement the method of testing the angular resolution of the scanning system shown in FIG. 11.
  • the embodiment of the present invention also provides a scanning system, including: the device shown in FIG. 13 and a calibration board, which can be used to test the angular resolution of the scanning system.
  • the calibration board may be the calibration board described in conjunction with FIG. 3 to FIG. 10.
  • the embodiment of the present invention also provides a test system, including: the device shown in FIG. 13, a calibration board, and a scanning system, which can be used to test the angular resolution of the scanning system.
  • the calibration board may be the calibration board described in conjunction with FIG. 3 to FIG. 10.
  • the embodiment of the present invention also provides a computer storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer or a processor, the computer or processor executes the angular resolution of the test scanning system provided in the above method embodiment. Rate method.
  • the point cloud data obtained after the scanning system scans the calibration board, wherein the calibration board includes at least one marker in at least one direction; Cloud data to determine the angular resolution of the scanning system in the at least one direction.
  • the embodiment of the present invention also provides a computer program or computer program product containing instructions, which when executed by a computer causes the computer to execute the method for testing the angular resolution of the scanning system provided in the above method embodiments.
  • the computer executes: obtain the point cloud data after the scanning system scans the calibration plate, wherein the calibration plate includes at least one marker in at least one direction; according to the point cloud Data to determine the angular resolution of the scanning system in the at least one direction.
  • a calibration plate including at least one marker in at least one direction is used to test the angular resolution of the scanning system.
  • This solution is simple, versatile and universal, and can obtain accurate angular resolution. In turn, it can provide reliable object parameters for object detection and target tracking of the scanning system.
  • the calibration plate may include at least one pair of stripes in at least one direction, which can be used to test the angular resolution of the scanning system in at least one direction. Specifically, the width of the pair of stripes and the difference between the first and second stripes can be controlled. Width, can be used to test scanning systems with different angular resolutions, has universal applicability, is easy to transplant and implement on a large scale.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processor, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种标定板、测试角分辨率的方法、装置及计算机存储介质。其中,测试角分辨率的方法包括:获取扫描系统向标定板进行扫描之后的点云数据,其中,标定板上包括至少一个方向上的至少一个标记物(S10);根据点云数据,确定扫描系统在至少一个方向上的角分辨率(S20)。该方法使用包括至少一个方向的至少一个标记物的标定板来测试扫描系统的角分辨率,该方法简单具有通用性和普适性,并且能够得到准确的角分辨率,进而能够为扫描系统的物体检测、目标追踪等提供可靠的物体参数。

Description

标定板、测试角分辨率的方法、装置及计算机存储介质 技术领域
本发明实施例涉及雷达领域,并且更具体地,涉及一种标定板、测试角分辨率的方法、装置及计算机存储介质。
背景技术
随着诸如雷达等的扫描系统的成本降低,扫描系统已经被应用在更加广泛的领域中。角分辨率能够表征扫描系统能够探测到的最小目标或最小角度的能力,是扫描系统的最为关键的指标之一,因此准确测量扫描系统的角分辨率极为重要。
一种方式是静态测试方法,即通过测量光斑尺寸或者扫描间隔来间接得出扫描系统的角分辨率,然而这种静态测试的方式测试结果不准确,且具有很大的局限性。
发明内容
本发明实施例提供了一种标定板、测试角分辨率的方法、装置及计算机存储介质,能够方便地对扫描系统的角分辨率进行测试,得到准确的测试结果。
第一方面,提供了一种测试扫描系统的角分辨率的方法,包括:
获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;
根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
第二方面,提供了一种标定板,所述标定板用于对扫描系统的角分辨率进行测试,所述标定板上包括至少一个方向上的至少一个标记物。
第三方面,提供了一种测试扫描系统的角分辨率的装置,包括:存储器和处理器,其中,
所述存储器,用于存储计算机指令;
所述处理器,用于调用所述计算机指令,当所述计算机指令被执行时,用于执行:
获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;
根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
第四方面,提供了一种扫描系统,包括第二方面所述的标定板以及第三方面所述的装置。
第五方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现前述第一方面所述方法的步骤。
由此可见,本发明实施例使用包括至少一个方向的至少一个标记物的标定板来测试扫描系统的角分辨率,该方案简单具有通用性和普适性,并且能够得到准确的角分辨率,进而能够为扫描系统的物体检测、目标追踪等提供可靠的物体参数。
附图说明
下面将对实施例所需要使用的附图作简单地介绍。
图1是本发明实施例的一种测试系统的结构示意图;
图2是本发明实施例的标定板置于FOV内的示意图;
图3是本发明实施例的标定板的条纹组的一个示意图;
图4是本发明实施例的标定板的条纹组的另一个示意图;
图5(a)和(b)是本发明实施例的包括两个或三个方向的条纹组的标定板的一个示意图;
图6(a)和(b)是本发明实施例的包括两个或三个方向的条纹组的标定板的另一个示意图;
图7(a)和(b)是本发明实施例的包括线型的标定板的一个示意图;
图8(a)至(c)是本发明实施例的包括线型的标定板的另一个示意图;
图9是本发明实施例的包括多个标记块的标定板的一个示意图;
图10是本发明实施例的包括多个标记块的标定板的另一个示意图;
图11是本发明实施例的测试扫描系统的角分辨率的方法的一个示意性流程图;
图12是本发明实施例的基于图7(b)的标定板得到的点云数据的一个示意图;
图13是本发明实施例的测试扫描系统的角分辨率的装置的一个示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
激光扫描装置(或者称为扫描系统)可以向不同方向发射探测信号,从而根据不同方向的回波信号获取物体的深度信息、反射率信息等数据。为保证激光扫描装置的测距的准确性,激光扫描装置在使用前需要进行参数测试(或称为性能测试),例如所要测试的参数包括角分辨率,也就是说在使用前需要进行的参数测试可以包括对角分辨率进行测试。本发明实施例中提供的测试角分辨率的方法可以由一种测试系统(也可称为标定系统、测试装置、标定装置等等)执行,下面首先结合附图1对本发明实施例提供的测试系统进行示意性说明。
请参见图1,图1是本发明实施例提供的一种测试系统的结构示意图。所述测试系统包括:测试装置11、可移动平台12。
其中,可移动平台12和测试装置11之间可以通过无线通信连接方式建立通信连接。其中,在某些场景下,可移动平台12和测试装置11之间也可以通过有线通信连接方式建立通信连接。可移动平台12可以为无人机、无人车、无人船、可移动机器人等可移动设备。参照图1,可移动平台12可以包括动力系统121,动力系统121用于为可移动平台12提供移动的动力。
在某些实施例中,测试装置11可以安装在可移动平台12上,例如,测试装置11可以是可移动平台12的部件,即可移动平台12包括测试装置11。在其他实施例中,可移动平台12和测试装置11可以彼此独立,即测试装置11可以在空间上独立于可移动平台12,例如测试装置11设置在云端服务器或者移动终端(包括但不限于电脑、手机等)中,通过无线通信连接方式与可移动平台12建立通信连接。
可移动平台12可以搭载或者装备有激光扫描装置。在某些实施例中,激光扫描装置与可移动平台12可拆卸连接。在其他实施例中,激光扫描装置也可以固定设置在可移动平台12上。进一步地,在某些实施例中,激光扫描装置可以包括激光雷达、电磁波雷达、毫米波雷达、超声波雷达中的任 意一种或多种,本申请实施例对此不作限定。
其中,在测试角分辨率时,本申请实施例采用在激光扫描装置的扫描视场(field-of-View,FOV)设置标定板,如图2中,激光扫描装置21的FOV 211通过带有斜线的阴影表示,标定板22位于的FOV 211内。激光扫描装置21可以发射探测信号到标定板22上,通过采集具有不同信号强度的回波,可以获得点云数据。进而测试装置11可以利用点云数据测试激光扫描装置的角分辨率。
应当理解的是,图2仅是示意性的,尽管图2中的激光扫描装置21示出了具有一个发射源,但是实际的激光扫描装置21也可以具有多个源,相应地,激光扫描装置21的FOV 211可以是多个源各自的FOV进行集成后的区域。尽管图2中的激光扫描装置21的FOV 211示出的是三角形(空间为锥形)的形状,但是实际的激光扫描装置21的FOV 211也可以是其他的形状,如360度扫描的系统的FOV与图2中示出的FOV 211不同,这里不再一一罗列。尽管图2中仅示出了一个标定板211,在实际应用中,标定板的数量还可以是多个。
下面首先对本发明实施例所使用到的标定板进行阐述,该标定板可以用于测试激光扫描装置(也称为扫描系统)的角分辨率。
标定板的形状可以是圆形、方形或其他任意形状,作为一例,本发明的附图中示出的为圆形的标定板。标定板可以具有一定的厚度,并且该厚度小于平面的尺寸。作为一例,若标定板为圆形标定板,则其厚度小于圆形的直径,例如,厚度等于直径的十分之一,或其他值,等等。
示例性地,标定板上可以包括至少一个方向的至少一个标记物。该标记物为具有反射率的标记物,当激光扫描装置发射的激光脉冲信号打到标记物上时,会反射回脉冲信号。
其中,至少一个方向可以为一个方向、或者两个方向或更多个方向。下面首先以水平方向为例,来介绍本发明实施例中的标记物。
作为一种实现方式,标记物为条纹对。可以参见图3所示。图3示出的是水平方向的至少一个标记物。其中,标记物为条纹对,水平方向是指所示出的条纹对的中心的连线为水平方向,如图3中的虚线所示。
条纹对包括两个不同的条纹,这里的不同是指反射率不同,即条纹对包括具有第一反射率的第一条纹和具有第二反射率的第二条纹。可以将第一条 纹设为高反射率条纹,将第二条纹设为低反射率条纹,也就是说,可以设定第一反射率大于第二反射率。
本发明实施例对实现条纹对的方式不作具体限定,条纹对可以是以下任意一种:黑白线对、镂空线对、颜色差异线对、等等。
例如,图3中的w1为一个条纹对,并且条纹对w1包括白色条纹和黑色条纹,其中,白色条纹的反射率大于黑色条纹的反射率。也就是说,第一条纹为白色条纹,第二条纹为黑色条纹。
可选地,作为一种实现方式,可以通过镂空的方式实现条纹对,也就是说可以将标定板中的部分区域挖空,例如被挖空区域可以对应图3所示的黑色条纹区域,该被挖空的部分的反射率低于未被挖空的白色条纹区域的反射率。
可选地,作为另一种实现方式,也可以通过不同颜色差异的条纹来实现条纹对,例如,将图3中的白色条纹替换为第一颜色的条纹,将图3中的黑色条纹替换为第二颜色的条纹,且第一颜色的反射率大于第二颜色的反射率。
为了简化描述,本发明后续实施例中,将结合如图3所示的白色条纹和黑色条纹构成的条纹对为例进行阐述。
本发明实施例中,一个条纹可以占据一个矩形区域,其具有长和宽。参照图3,所示出的竖直方向上的尺寸为长,如L,所示出的水平方向上的尺寸为宽,如w1。可选地,同一个方向上的条纹可以是等长的,即同一个方向上的条纹的长相等。例如,图3所示出的水平方向上的所有条纹的长都为L,如条纹对w1的长与条纹对w2的长相等。可选地,图3中的条纹对w1的长可以大于或小于L,条纹对w2的长可以大于或小于L,并且条纹对w1的长与条纹对w2的长也可以不相等。
同一个条纹对中的第一条纹和第二条纹可以等宽或不等宽,也就是说,同一个条纹对中,第一条纹的宽度等于第二条纹的宽度,或者第一条纹的宽度不等于第二条纹的宽度。例如,图3中每个条纹对(例如条纹对w1)中的白色条纹的宽度等于黑色条纹的宽度。又例如,图4中,条纹对w5中的白色条纹的宽度不等于黑色条纹的宽度,如图4中示出的白色条纹的宽度大于黑色条纹的宽度。
针对一个条纹对而言,可以假设该条纹对包含的第一条纹具有第一宽 度,第二条纹具有第二宽度。并且可以定义条纹对的宽度等于第一条纹的宽度和第二条纹的宽度之和,即条纹对的宽度等于第一宽度加第二宽度。
同一方向上的条纹对的数量可以为至少两个。针对同一方向上的不同的条纹对,宽度可以相等或不相等。举例来说,以水平方向为例,假设水平方向上的条纹对包括第一条纹对和第二条纹对,第一条纹对的宽度可以等于或不等于第二条纹对的宽度。参照图3,条纹对w1的宽度不等于条纹对w2的宽度,而条纹对w4的宽度等于条纹对w41的宽度。
可选地,条纹对的宽度可以由大到小或者由小到大。参照图3,条纹对w1至条纹对w4,宽度逐渐减小。同样地,图4中从左到右条纹对的宽度逐渐减小。
针对同一方向,宽度相等的条纹对的数量可以是一个,也可以是多个。针对第一方向上的条纹对,有些条纹对的宽度相等,有些条纹对的宽度不相等。例如,第1个条纹对至第N1个条纹对的宽度都是W1,第N1+1个至第N1+N2个条纹对的宽度都是W2,并且W1不等于W2。其中,宽度相等的条纹对的数量可以为1个,例如N1=1或者N2=1;或者,宽度相等的条纹对的数量可以为多个,例如N1>1或者N2>1。参照图3,N1=3,即第1个条纹对至第3个条纹对的宽度相等,都是w1。N2=3,即第4个条纹对至第6个条纹对的宽度相等,都是w2。参照图4,N1=N2=1,即第1个条纹对的宽度不等于第2个条纹对的宽度。
针对不同的条纹对,其中的第一条纹的宽度可以相等或者不相等。举例来说,第一条纹对中的第一条纹的宽度与第二条纹对中的第一条纹的宽度相等或不相等。参照图3,条纹对w1中白色条纹的宽度不等于条纹对w2中白色条纹的宽度。参照图4,条纹对w5中白色条纹的宽度等于条纹对w6中白色条纹的宽度。
可选的,单个方向上的至少一种条纹对的宽度中需要包括激光扫描装置在第一距离的光斑尺寸或扫描间隔,该第一距离为激光扫描装置与标定板之间的距离。
为便于描述,将同一个方向上的至少一个标记物(即至少一个条纹对)归为同一个条纹组。每一个条纹组包括至少一个条纹元,每个条纹元包括至少一个条纹对,同一条纹组内的各个条纹元中的所述条纹对的宽度由大到小或者由小到大。
以水平方向为例,水平方向的所有条纹对构成条纹组,如图3或图4示出的是与水平方向对应的条纹组的一例。条纹组可以包括若干个条纹元。如图3示出的条纹组包括4个条纹元,分别表示为twy11、twy12、twy13和twy14。如图4示出的条纹组包括5个条纹元,分别表示为twy21、twy22、twy23、twy24和twy25。
条纹元可以包括至少一个条纹对。如图3中,twy11、twy12和twy13中的每个条纹元包括3个条纹对,twy14包括5个条纹对。如图4中,twy21、twy22、twy23、twy24和twy25的每个条纹元各包括1个条纹对。
同一个条纹元中的各个条纹对的宽度可以相等,参照图3,twy11中的3个条纹对的宽度均为w1,twy12中的3个条纹对的宽度均为w2,twy13中的3个条纹对的宽度均为w3,twy14中的5个条纹对的宽度均为w4。
示例性地,条纹元可以包括多个条纹对,并且同一个条纹元中的各个条纹对可以是相同的,即各个条纹对具有相等的宽度,且各个条纹对所包含的第一条纹的宽度也都相等。举例来说,图3中的twy11中的3个条纹对的宽度均为w1,并且这3个条纹对中,第一条纹的宽度均为w11,第二条纹的宽度均为w12(图3中未示出)。
也就是说,可以将相邻的若干个相同的条纹对归为一个条纹元。相同的条纹对是指:条纹对的宽度相等。
针对同一个条纹组内的不同条纹元,条纹对的宽度可以由大到小或者由小到大。假设一个条纹组为水平方向上的,则条纹对沿着水平方向由大到小或者由小到大。参照图3,沿着图3所示的从左到右的方向,条纹对的宽度由大到小,即w1>w2>w3>w4;当然也可理解为沿着图3所示的从右到左的方向,条纹对的宽度由小到大。
作为一例,条纹对中的第一条纹的宽度与第二条纹的宽度可以相等,如图3所示,每个条纹对中的第一条纹的宽度等于第二条纹的宽度。如,twy11中的条纹对的宽度均为w1,第一条纹的宽度和第二条纹的宽度均为w1/2。再如图4所示,twy12中的第一条纹的宽度大于第二条纹的宽度。
作为另一例,条纹对中的第一条纹的宽度与第二条纹的宽度可以不相等,如图4所示,twy22至twy25中各个的第一条纹的宽度与第二条纹的宽度不相等。
可选地,同一个条纹组内的所有条纹对中的第一条纹的宽度都相等。如 图4所示,所示出的5个条纹对中,每一个条纹对中的第一条纹的宽度都等于w0。应当理解的是,为了简化示例,在图4中仅示出了第一个条纹对中的第一条纹的宽度为w0。
另外,应当注意的是,图3和图4示出的仅仅是条纹组的示意,而不应该解释为限制,条纹组可以是在本发明实施例的范围内的任何形式。
上述仅以水平方向为例结合图3和图4介绍条纹对的示意图,标定板中包括至少一个方向上的条纹对,该至少一个方向可以包括:水平方向、竖直方向、倾斜方向中的一个或若干个。作为一例,可以只包括水平方向或者只包括竖直方向,例如图3和图4示出的只包括水平方向上的条纹对。作为另一例,可以包括水平方向和竖直方向,例如图5(a)和图6(a)示出的包括水平方向和竖直方向上的条纹对。作为再一例,可以包括水平方向、竖直方向和倾斜方向,例如图5(b)和图6(b)示出的包括水平方向、竖直方向和倾斜方向上的条纹对。
应当注意的是,水平方向和竖直方向是指两个正交的方向。其中,水平方向可以是与地面平行,竖直方向与地面垂直;或者,水平方向与地面成一个角度,竖直方向与水平方向正交。具体地,与地面之间的角度与标定板的放置位置有关,例如旋转标定板可以使得至少一个方向与地面的角度发生变化。本发明实施例中的水平方向是指:通过旋转标定板能够使得至少一个方向中的其中一个方向为与地面平行的方向。
倾斜方向可以是指与水平方向成预设角度的方向。例如,预设角度可以为30°、45°、60°或其他角度。如图5(b)和图6(b)示出的倾斜方向是与水平方向成45°的方向。
可理解,至少一个方向可以包括更多的方向,如包括4个方向:水平方向、竖直方向、45°倾斜方向以及60°倾斜方向等等。
如上所述,将同一个方向上的至少一个标记物(即至少一个条纹对)归为同一个条纹组,那么至少一个方向上的至少一个标记物(即至少一个条纹对)对应于至少一个条纹组。本发明实施例中,不同的条纹组可以具有相同或不同的样式。条纹组的样式可以包括以下至少一项:条纹元的数量,单个条纹元中条纹对的数量、条纹对的宽度、条纹对内第一条纹和/或第二条纹的宽度、等等。
可选地,不同条纹组的样式可以是一样的。举例来说,假设至少一个方 向包括第一方向和第二方向,那么第一方向的第一条纹组和第二方向的第二条纹组可以是一样的样式,例如可以将第一条纹组整体旋转一定角度后至第二方向,这样第二条纹组与第一条纹组的样式是一样的。参照图5(a)、图5(b)、图6(a)和图6(b),水平方向与竖直方向上的条纹组的样式是一样的,可以认为是将水平方向上的条纹组旋转90度然后再平移至与水平方向上的条纹组不重叠。具体地,图5(a)和图5(b)中水平方向上的条纹组即图3所示的条纹组,图6(a)和图6(b)中水平方向上的条纹组即图4所示的条纹组。
可选地,不同条纹组的样式可以是不一样的。参照图5(b)和图6(b),倾斜方向上的条纹组与水平方向(或竖直方向)上的条纹组的样式是不一样的。具体地,倾斜方向的条纹组与水平方向(或竖直方向)的条纹组的条纹元的数量、条纹元中条纹对的宽度等都不一样。具体地,图5(b)中水平方向的条纹组即图3所示的条纹组,倾斜方向的条纹组是图4的条纹组旋转45度之后得到的,结合图3和图4可知,图5(b)中水平方向的条纹组包括4个条纹元,而图5(b)中倾斜方向的条纹组包括5个条纹元;并且图5(b)中水平方向的条纹组中的条纹元包括3个或5个条纹对,而图5(b)中倾斜方向的条纹组中的条纹元包括1个条纹对;等等。关于图6(b)可以类似地看出倾斜方向的条纹组与水平方向(或竖直方向)的条纹组的样式不一样,这里不再赘述。
本发明实施例对与不同方向对应的不同的条纹组之间的位置关系不作限定。例如,两个不同方向上的两个条纹组之间可以具有较大或较小的空间间隔。
示例性地,至少一个方向与扫描系统的扫描方向一致。作为一例,若扫描方向包括水平方向,则至少一个方向也包括水平方向。
可选地,至少一个方向包括扫描系统的扫描方向。作为一例,若扫描方向为水平方向,则至少一个方向包括水平方向,并且可选地还可以包括竖直方向和/或倾斜方向等。
另外,如果期望测试的是扫描系统在某一个扫描方向(以水平方向为例)上的角分辨率,那么,标定板上应当包括水平方向的至少一个条纹对,当然此时标定板上也可以包括竖直方向和/或倾斜方向的至少一个条纹对。
为了测试扫描系统在水平方向上的角分辨率,可以基于标定板上水平方向的至少一个条纹对,确定扫描系统在水平方向上的角分辨率,此时可以忽略标定板上其他方向上的至少一个条纹对。
另外,如果期望测试的是扫描系统在某两个扫描方向(如水平方向、竖直方向)上的角分辨率,那么,标定板上应当包括水平方向的至少一个条纹对以及竖直方向的至少一个条纹对,当然此时标定板上也可以包括倾斜方向的至少一个条纹对。或者,可以使用包括水平方向的至少一个条纹对的第一标定板来确定扫描系统在水平方向的角分辨率,然后使用包括竖直方向的至少一个条纹对的第二标定板来确定扫描系统在竖直方向的角分辨率。
另外,如果期望测试的是扫描系统在三个扫描方向(即水平方向、竖直方向、倾斜方向)上的角分辨率,那么,类似地,可以使用包括三个方向的至少一个条纹对的标定板来确定,或者,可以使用对应的单个方向的至少一个条纹对的标定板来分别确定,或者,可以使用包括单个方向的至少一个条纹对的标定板、以及包括另两个方向的至少一个条纹对的标定板来分别确定。
由此可见,本发明实施例提供了一种标定板,包括至少一个方向上的至少一个条纹对,能够用于测试扫描系统在至少一个方向的角分辨率,具体地可以通过控制条纹对的宽度及其中第一条纹和第二条纹的宽度,可用于测试不同角分辨率的扫描系统,具有普适性。
作为另一种实现方式,标记物除了可以是条纹对外,还可以为线型。该线型为具有反射率的线型,当激光扫描装置发射的激光脉冲信号打到线型时,会反射回脉冲信号。下面将结合图7和图8对线型进行描述。
示例性地,该线型可以具有一定的宽度,本发明实施例对该宽度的具体取值不作限定。该宽度可以是很小的值,例如几毫米或者小于1毫米,即该线型为细线。或者,该宽度可以例如是厘米量级的值。参照图7,7(a)和7(b)中均包括水平方向和竖直方向的线型,且7(a)中的线型的宽度小于7(b)中的线型的宽度。
应当理解,尽管图7(a)中水平方向的线型和竖直方向的线型具有相同的宽度,但是本发明对此不限定,不同方向的线型可以具有不同的宽度。另外,尽管图7(a)中包括水平方向和竖直方向的线型,但是本发明对此不限定,也可以只包括一个方向的线型,或者可以包括水平方向、竖直方向和倾斜方向三个方向的线型。例如,参照图8,图8(a)中包括竖直方向的线型,图8(b)包括水平方向和竖直方向的线型,图8(c)包括水平方向、竖直方向和倾斜方向的线型。
其中,倾斜方向可以是指与水平方向成预设角度的方向。例如,预设角度可以为30°、45°、60°或其他角度。如图8(c)示出的倾斜方向是与水平方向成45°的方向。
示例性地,本发明实施例对线型的具体实现方式不作限定,例如可以是细线、纸板、金属条、全反射片、等中的任意一种。
示例性地,线型可以形成矩形、正方形或三角形的格子形状。参见图8,图8(a)中的线型形成的是矩形的格子,图8(b)中的线型形成的正方形的格子,图8(c)中的线型形成的是正方形和三角形的格子。
应当注意的是,图8示出的仅是示例,标定板可以只包括一个方向(如水平方向)的线型,或者可以包括两个方向或更多方向的线型。某一个方向的线型的数量可以为1个或更多个。例如,图8(a)中包括竖直方向的线型,且线型的数量为多个(4个)。图8(b)包括水平方向和竖直方向的线型,水平方向的线型的数量为多个(3个),且竖直方向的线型的数量也为多个(3个)。图8(c)包括水平方向、竖直方向和倾斜方向的线型,水平方向的线型的数量为多个(3个),竖直方向的线型的数量也为多个(3个),且倾斜方向的线型的数量为1个。
示例性地,至少一个方向与扫描系统的扫描方向垂直。作为一例,若扫描方向包括水平方向,则至少一个方向包括竖直方向。
可选地,至少一个方向包括扫描系统的扫描方向的垂直方向。作为一例,若扫描方向为水平方向,则至少一个方向包括竖直方向,并且可选地还可以包括水平方向和/或倾斜方向等。
另外,如果期望测试的是扫描系统在某一个扫描方向(以水平方向为例)上的角分辨率,那么,标定板上应当包括竖直方向的至少一个线型,当然此时标定板上也可以包括水平方向和/或倾斜方向的至少一个线型。
为了测试扫描系统在水平方向上的角分辨率,可以基于标定板上竖直方向的至少一个线型,确定扫描系统在水平方向上的角分辨率,此时可以忽略标定板上其他方向上的至少一个线型。
另外,如果期望测试的是扫描系统在某两个扫描方向(如水平方向、竖直方向)上的角分辨率,那么,标定板上应当包括竖直方向的至少一个线型以及水平方向的至少一个线型,当然此时标定板上也可以包括倾斜方向的至少一个线型。或者,可以使用包括竖直方向的至少一个线型的第一标定板来 确定扫描系统在水平方向的角分辨率,然后使用包括水平方向的至少一个线型的第二标定板来确定扫描系统在竖直方向的角分辨率。
另外,如果期望测试的是扫描系统在三个扫描方向(即水平方向、竖直方向、倾斜方向)上的角分辨率,那么,类似地,可以使用包括与这三个扫描方向分别垂直的三个方向的至少一个线型的标定板来确定,或者,可以使用与对应的单个扫描方向垂直的方向的至少一个线型的标定板来分别确定,或者,可以使用包括与单个扫描方向垂直的方向的至少一个线型的标定板、以及包括与另两个扫描方向分别垂直的方向的至少一个线型的标定板来分别确定。
由此可见,本发明实施例提供了一种标定板,包括至少一个方向上的至少一个线型,能够用于测试扫描系统在至少一个方向的垂直方向的角分辨率。
另外,标定板可以包括多个标记块,每个标记块在标定板上的位置不同。参照图9和图10,示出的标定板为圆形,且图9中的标定板包括11个标记块,依次记有序号1至11,图10的标定板包括5个标记块,依次记有序号1至5。应当注意的是,尽管图9和图10中的多个标记块较为规则地布置,如是中心对称的,但是实际中标记块的位置可以为任意的,本发明对此不限定。尽管图9和图10中的标定板是圆形的,实际也可以是其他的形状,如矩形、六边形、其他规则或不规则的形状等等。
每个标记块可以包括至少一个方向上的至少一个标记物。关于至少一个方向上的至少一个标记物可以参见前述实施例的详细描述。作为一例,标记物为条纹对,标记块包括的条纹对可以是前述图3、图4、图5(a)或(b)、图6(a)或(b)中的任一个。作为另一例,标记物为线型,标记块包括的线型可以是前述图7(a)或(b)、图8(a)至(c)中的任一个。
应当注意的是,同一标定板上不同的标记块上的标记物的样式可以相同或不同。如方向、标记物的数量、标记物的宽度等不同。举例来说,标记块A包括水平方向的条纹组,标记块B包括水平方向和竖直方向的条纹组。再举例来说,标记块A包括水平方向的条纹组,标记块B包括竖直方向的线型。
以上结合图3至图10的实施例描述了标定板,具体地描述了标定板的形状、标定板所包括的至少一个方向上的至少一个标记物。该标定板可以用 于测试扫描系统的角分辨率。下面将结合具体实施例描述测试扫描系统的角分辨率的方法的过程。
如图11所示为本发明实施例的测试扫描系统的角分辨率的方法的一个示意性流程图。该方法可以包括:
S10,获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;
S20,根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
其中,扫描系统可以发射波束,示例性地,扫描系统可以是雷达,如激光雷达或者电磁波雷达等等。
在S10之前,可以将标定板放置于扫描系统发射波束前进的方向,也就是说,使得扫描系统的发射波束到达标定板。具体地,可以使得标定板置于扫描系统的视场(field of vision,FOV)内。示例性地,发射波束可以与标定板垂直,例如发射波束的中心与标定板的中心法线在一条直线上。或者示例性地,发射波束可以与标定板成一定角度,例如发射波束的中心与标定板的中心法线成一定的夹角。
本发明实施例中,可以通过移动扫描系统或者移动标定板来调节扫描系统与标定板之间的相对位置关系。其中,移动扫描系统的方式更节省空间,也更容易实现。
相对位置关系包括角度和/或距离。例如,可以移动扫描系统或者移动标定板使得扫描系统的发射波束与标定板之间的角度改变,和/或,使得扫描系统与标定板的中心之间的距离改变。作为一例,可以通过移动扫描系统或者移动标定板使得标定板位于扫描系统的FOV的特定位置处。
如结合图9至图10所描述的,标定板可以包括多个标记块。则在图11中:可以基于任一标记块得到角分辨率。或者,可以基于多个标记块中的全部或部分得到角分辨率。例如,可以将基于多个标记块得到的多个角分辨率的均值确定为扫描系统的角分辨率。或者,例如,可以将基于多个标记块得到的多个角分辨率的加权和确定为扫描系统的角分辨率,权重可以是根据标记块的位置预先设定的。
这样,通过使用包括多个标记块的标定板,能够考虑扫描系统的系统误差以及随机误差,使得测试结果更加准确。并且,对于非固定角分辨率的扫 描系统,能够基于该多个标记块确定扫描系统的动态角分辨率,从而也能够得到准确的测试结果。
本发明实施例中,可以基于包括至少一个方向上的至少一个标记物的标定板,确定扫描系统在至少一个方向或者在至少一个方向的垂直方向上的角分辨率。也就是说,S20可以根据所述点云数据,确定所述扫描系统在所述至少一个方向或者在所述至少一个方向的垂直方向上的角分辨率。
示例性,为了测试扫描系统在水平方向上的角分辨率,可以基于标定板上水平方向的至少一个条纹对或者竖直方向上的至少一个线型,确定扫描系统在水平方向上的角分辨率。如果标定板上包括多个标记块,那么可以基于每个标记块都得到水平方向上的角分辨率,然后再计算均值,作为扫描系统在水平方向上的角分辨率。
其中,基于一个标记块中的一个方向的至少一个条纹对来计算该方向的角分辨率的方法的过程、以及基于一个标记块中的一个方向的至少一个线型对来计算该方向的垂直方向的角分辨率的方法的过程将在下面的实施例中进行详细阐述。
在测试扫描系统的角分辨率时所使用的标定板可以是前述实施例所述的标定板,其中标记物可以为条纹对或者为线型,下面将分别进行描述。
在一种实现方式中,标记物为条纹对,这样标定板可以是例如上述结合图3至图6所描述的。
在测试扫描系统的角分辨率时,可以选取合适的标定板。示例性地,标定板上的所述单个方向上的至少一种条纹对的宽度中包括所述扫描系统在第一距离的光斑尺寸或扫描间隔,所述第一距离为所述扫描系统与所述标定板之间的距离。条纹组的长度L至少大于该位置光斑对应方向的长度。
具体地,以某一个方向(如水平方向)为例,可以先预估扫描系统的水平方向的角分辨率,例如可以是该扫描系统所关联的被批量标记的角分辨率,进而可以根据该预估的角分辨率确定第一距离处的光斑尺寸。并且,所选择的标定板上的水平方向的条纹对中第二条纹的宽度的范围应当包括该光斑尺寸。条纹组的长度至少大于该位置光斑对应方向的长度。例如,如果计算的光斑尺寸为axb(宽x长),那么第二条纹的宽度的范围应包括a。参照图3,其中第二条纹的范围为w4/2至w1/2,具体地,为w4/2、w3/2、w2/2、w1/2四个值,且w4/2<a<w1/2。条纹组长L>b。
反过来,可以根据预估的扫描系统的角分辨率以及标定板上的条纹对中第二条纹的宽度的范围来调节扫描系统与标定板之间的距离,使得在第一距离处的光斑尺寸在第二条纹的宽度的范围内。
示例性地,S20中,可以根据点云数据确定在至少一个方向中的第一方向上的可分辨的第二条纹的最小宽度;根据所述可分辨的第二条纹的最小宽度,确定所述扫描系统在所述第一方向上的角分辨率。
由于扫描系统的发射波束的光信号在高反射率线条会有较强信号,而在低反射率线条信号很弱,因此获取的点云数据会呈现出清晰的条纹点云图像,其中刚好能分辨清楚的条纹间隔为该距离下分辨极限,即可分辨的第二条纹的最小宽度。
其中,根据所述点云数据确定在所述第一方向上的可分辨的第二条纹的最小宽度,可以包括:根据预先设定的可视度,基于所述点云数据确定在所述第一方向上的可分辨的第二条纹的最小宽度。
例如,可以预先设定条纹的可分辨条件,即定义可视度(如50%或其他值),然后基于该可视度确定可分辨的第二条纹的最小宽度。具体地,在点云数据中,可以基于沿第一方向的点云密度的变化规律,找出可分辨的第二条纹的最小宽度。其中,可视度可以理解为是点云密度降为最大值的比例,如50%表示点云密度降为最大值的一半。其中,可视度可以根据扫描系统的属性进行设定和更新。
其中,根据所述可分辨的第二条纹的最小宽度,确定所述扫描系统在所述第一方向上的角分辨率,可以包括:将在所述第一方向上的所述可分辨的第二条纹的最小宽度与所述扫描系统和所述最小宽度的第二条纹的位置之间的距离两者的比值,确定为所述扫描系统在所述第一方向上的角分辨率。
例如,假设可分辨的第二条纹的最小宽度表示为Δd,扫描系统与该最小宽度的第二条纹之间的距离为L,那么可以确定角分辨率为δ=Δd/L。
其中,扫描系统与该最小宽度的第二条纹之间的距离可以是指扫描系统与该最小宽度的第二条纹的中心之间的距离或扫描系统与该最小宽度的第二条纹所在的标记块之间的距离。
如此,便可以得到扫描系统在第一方向的角分辨率,并且类似地,可以得到扫描系统在其他方向的角分辨率,这里不再赘述。
在另一种实现方式中,标记物为线型,这样标定板可以是例如上述结合 图7至图8所描述的。
示例性地,S20中,可以根据所述点云数据,确定在所述线型上沿所述线型的垂直方向的点云宽度;根据所述点云宽度,确定所述扫描系统在所述线型的垂直方向上的角分辨率。
参照图12,其中示出了使用图7(b)的标定板得到的点云,其中,可以得到水平方向的线型上沿竖直方向的点云宽度,即图12中的“左”、“右”两个矩形的宽(竖直方向上的尺寸),进而可以基于此确定扫描系统在竖直方向的角分辨率。其中,可以得到竖直方向的线型上沿水平方向的点云宽度,如图12中的“上”、“下”两个矩形的宽(水平方向上的尺寸),进而可以基于此确定扫描系统在水平方向的角分辨率。应当理解,若只需要测试扫描系统在水平方向的角分辨率,则可以只确定在竖直方向的线型上沿水平方向的点云宽度,而忽略在水平方向的线型上的点云。
其中,根据所述点云宽度,确定所述扫描系统在所述线型的垂直方向上的角分辨率,可以包括:计算所述点云宽度与所述线型的宽度的差值;将所述差值与所述扫描系统和所述线型的位置之间的距离两者的比值,确定为所述扫描系统在所述线型的垂直方向上的角分辨率。
可理解,如果线型的宽度很小,远远小于光斑宽度,如线型的宽度与光斑宽度的比值小于一个预设值(如0.01),则可以忽略该线型的宽度,而将点云宽度与扫描系统和线型的位置之间的距离两者的比值,确定为扫描系统在线型的垂直方向上的角分辨率。
另外,可选地,S10中可以使用多个标定板。作为一种实现方式,可以使用多个标定板中的一个或多个确定在第一方向的角分辨率,而使用多个标定板中的另外的一个或多个确定在第二方向的角分辨率。作为另一种实现方式,可以使用每个标定板确定该标定板上包括的至少一个方向上的角分辨率,然后再将基于多个标定板得到的某个方向的角分辨率取平均或者加权和,得到扫描系统在某个方向的角分辨率。
本发明实施例中,通过在标定板上设定多个标记块,或者通过多个标定板来确定扫描系统的角分辨率,能够提高测试的准确性。
由此可见,本发明实施例中,使用包括至少一个方向的至少一个标记物的标定板来测试扫描系统的角分辨率,该方案简单具有通用性和普适性,并且能够得到准确的角分辨率,进而能够为扫描系统的物体检测、目标追踪等 提供可靠的物体参数。
图13是本发明实施例的测试扫描系统的角分辨率的装置的另一个示意性框图。图13所示的装置包括处理器210和存储器220。该存储器220中存储有计算机指令,该处理器210执行该计算机指令时,使得该处理器210执行以下步骤:获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
作为一种实现方式,标记物为条纹对,这样标定板可以是例如上述结合图3至图6所描述的。
可选地,在一些实施例中,处理器210可以具体用于:根据所述点云数据确定在所述至少一个方向中的第一方向上的可分辨的第二条纹的最小宽度;根据所述可分辨的第二条纹的最小宽度,确定所述扫描系统在所述第一方向上的角分辨率。
可选地,在一些实施例中,处理器210可以具体用于:根据预先设定的可视度,基于所述点云数据确定在所述第一方向上的可分辨的第二条纹的最小宽度。
可选地,在一些实施例中,处理器210可以具体用于:将在所述第一方向上的所述可分辨的第二条纹的最小宽度与所述扫描系统和所述最小宽度的第二条纹的位置之间的距离两者的比值,确定为所述扫描系统在所述第一方向上的角分辨率。
作为另一种实现方式,标记物为线型,这样标定板可以是例如上述结合图7至图8所描述的。
可选地,在一些实施例中,处理器210可以具体用于:根据所述点云数据,确定在所述线型上沿所述线型的垂直方向的点云宽度;根据所述点云宽度,确定所述扫描系统在所述线型的垂直方向上的角分辨率。
可选地,在一些实施例中,处理器210可以具体用于:计算所述点云宽度与所述线型的宽度的差值;将所述差值与所述扫描系统和所述线型的位置之间的距离两者的比值,确定为所述扫描系统在所述线型的垂直方向上的角分辨率。
应当理解的是,测试扫描系统的角分辨率的装置可以实现为如图1所示的测试系统或标定设备,或者可以为可移动平台、电脑、平板电脑、智能电 话等各种能够实现本发明实施例的方法的任何设备。
图13所示的装置能够用于实现前述图11所示的测试扫描系统的角分辨率的方法。
本发明实施例还提供一种扫描系统,包括:图13所示的装置以及标定板,能够用于测试扫描系统的角分辨率。其中,标定板可以是前述结合图3至图10所述的标定板。
本发明实施例还提供一种测试系统,包括:图13所示的装置、标定板以及扫描系统,能够用于测试扫描系统的角分辨率。其中,标定板可以是前述结合图3至图10所述的标定板。
本发明实施例还提供一种计算机存储介质,其上存储有计算机程序,该计算机程序被计算机或处理器执行时使得,该计算机或处理器执行上文方法实施例提供的测试扫描系统的角分辨率的方法。
具体地,计算机程序被计算机或处理器执行时使得:获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
本发明实施例还提供一种包含指令的计算机程序或者计算机程序产品,该指令被计算机执行时使得计算机执行上文方法实施例提供的测试扫描系统的角分辨率的方法。
具体地,该指令被计算机执行时使得计算机执行:获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
由此可见,本发明实施例中,使用包括至少一个方向的至少一个标记物的标定板来测试扫描系统的角分辨率,该方案简单具有通用性和普适性,并且能够得到准确的角分辨率,进而能够为扫描系统的物体检测、目标追踪等提供可靠的物体参数。其中,标定板可以包括至少一个方向上的至少一个条纹对,能够用于测试扫描系统在至少一个方向的角分辨率,具体地可以通过控制条纹对的宽度及其中第一条纹和第二条纹的宽度,可用于测试不同角分辨率的扫描系统,具有普适性,很容易移植并且大规模实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任 意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (86)

  1. 一种测试扫描系统的角分辨率的方法,其特征在于,包括:
    获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;
    根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
  2. 根据权利要求1所述的方法,其特征在于,所述标记物为条纹对,所述条纹对包括具有第一反射率的第一条纹和具有第二反射率的第二条纹,且所述第一反射率大于所述第二反射率。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个方向中的单个方向上的条纹对包括至少两个。
  4. 根据权利要求2或3所述的方法,其特征在于,所述至少一个方向中的单个方向上的条纹对的宽度包括至少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述单个方向上的条纹对的宽度由大到小或由小到大。
  6. 根据权利要求4或5所述的方法,其特征在于,所述单个方向上的宽度相同的条纹对包括一个或多个。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述单个方向上的至少一种条纹对的宽度中包括所述扫描系统在第一距离的光斑尺寸或扫描间隔,所述第一距离为所述扫描系统与所述标定板之间的距离。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述至少一个标记物属于至少一个条纹组,每个条纹组对应所述至少一个方向中的一个方向,每一个条纹组包括至少一个条纹元,每个条纹元包括至少一个条纹对,同一条纹组内的各个条纹元中的条纹对的宽度由大到小或者由小到大。
  9. 根据权利要求8所述的方法,其特征在于,所述每个条纹元包括三个条纹对。
  10. 根据权利要求8或9所述的方法,其特征在于,同一个条纹元中的条纹对的宽度相等。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述条纹对的宽度为所述第一条纹的宽度与所述第二条纹的宽度之和。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述条 纹对中的所述第一条纹的宽度等于所述第二条纹的宽度,或者,所述条纹对中的所述第一条纹的宽度不等于所述第二条纹的宽度。
  13. 根据权利要求8至11中任一项所述的方法,其特征在于,同一条纹组内的各个条纹元中的第一条纹的宽度都相等。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,不同条纹组所包括的条纹元的数量相等或者不相等。
  15. 根据权利要求2至14中任一项所述的方法,其特征在于,所述条纹对包括以下任一种:黑白线对、镂空线对、颜色差异线对。
  16. 根据权利要求2至15中任一项所述的方法,其特征在于,所述根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率,包括:
    根据所述点云数据确定在所述至少一个方向中的第一方向上的可分辨的第二条纹的最小宽度;
    根据所述可分辨的第二条纹的最小宽度,确定所述扫描系统在所述第一方向上的角分辨率。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述点云数据确定在所述第一方向上的可分辨的第二条纹的最小宽度,包括:
    根据预先设定的可视度,基于所述点云数据确定在所述第一方向上的可分辨的第二条纹的最小宽度。
  18. 根据权利要求16或17所述的方法,其特征在于,所述根据所述可分辨的第二条纹的最小宽度,确定所述扫描系统在所述第一方向上的角分辨率,包括:
    将在所述第一方向上的所述可分辨的第二条纹的最小宽度与所述扫描系统和所述最小宽度的第二条纹的位置之间的距离两者的比值,确定为所述扫描系统在所述第一方向上的角分辨率。
  19. 根据权利要求2至18中任一项所述的方法,其特征在于,所述至少一个方向与所述扫描系统的扫描方向一致。
  20. 根据权利要求1所述的方法,其特征在于,所述标记物包括线型。
  21. 根据权利要求20所述的方法,其特征在于,所述线型形成矩形、正方形或三角形的格子形状。
  22. 根据权利要求20或21所述的方法,其特征在于,所述线型包括以 下任意一项:细线、纸板、金属条、全反射片。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,所述根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率,包括:
    根据所述点云数据,确定在所述线型上沿所述线型的垂直方向的点云宽度;
    根据所述点云宽度,确定所述扫描系统在所述线型的垂直方向上的角分辨率。
  24. 根据权利要求23所述的方法,其特征在于,所述根据所述点云宽度,确定所述扫描系统在所述线型的垂直方向上的角分辨率,包括:
    计算所述点云宽度与所述线型的宽度的差值;
    将所述差值与所述扫描系统和所述线型的位置之间的距离两者的比值,确定为所述扫描系统在所述线型的垂直方向上的角分辨率。
  25. 根据权利要求20至24中任一项所述的方法,其特征在于,所述至少一个方向与所述扫描系统的扫描方向垂直。
  26. 根据权利要求1至25中任一项所述的方法,其特征在于,所述至少一个方向包括:水平方向、竖直方向、倾斜方向中的一个或若干个。
  27. 根据权利要求26所述的方法,所述倾斜方向为与所述水平方向成预设角度的方向。
  28. 根据权利要求1至27中任一项所述的方法,其特征在于,所述标定板置于所述扫描系统的视场内,并且,在扫描之前还包括:
    通过移动所述扫描系统或者移动所述标定板来调节所述扫描系统与所述标定板之间的相对位置关系。
  29. 根据权利要求1至28中任一项所述的方法,其特征在于,所述标定板上包括多个标记块,每个标记块上均包括所述至少一个方向上的至少一个标记物,不同的标记块在所述标定板上的位置不同。
  30. 根据权利要求29所述的方法,其特征在于,所述确定所述扫描系统在所述至少一个方向上的角分辨率,包括:
    将基于所述多个标记块得到的所述扫描系统在所述至少一个方向的第一方向上的多个角分辨率的均值确定为所述扫描系统在所述第一方向上的角分辨率。
  31. 一种标定板,其特征在于,所述标定板用于对扫描系统的角分辨率进行测试,所述标定板上包括至少一个方向上的至少一个标记物。
  32. 根据权利要求31所述的标定板,其特征在于,所述标记物为条纹对,所述条纹对包括具有第一反射率的第一条纹和具有第二反射率的第二条纹,且所述第一反射率大于所述第二反射率。
  33. 根据权利要求32所述的标定板,其特征在于,所述至少一个方向中的单个方向上的条纹对包括至少两个。
  34. 根据权利要求32或33所述的标定板,其特征在于,所述至少一个方向中的单个方向上的条纹对的宽度包括至少一种。
  35. 根据权利要求34所述的标定板,其特征在于,所述单个方向上的条纹对的宽度由大到小或由小到大。
  36. 根据权利要求34或35所述的标定板,其特征在于,所述单个方向上的宽度相同的条纹对包括一个或多个。
  37. 根据权利要求34至36中任一项所述的标定板,其特征在于,所述单个方向上的至少一种条纹对的宽度中包括所述扫描系统在第一距离的光斑尺寸或扫描间隔,所述第一距离为所述扫描系统与所述标定板之间的距离。
  38. 根据权利要求32至37中任一项所述的标定板,其特征在于,所述至少一个标记物属于至少一个条纹组,每个条纹组对应所述至少一个方向中的一个方向,每一个条纹组包括至少一个条纹元,每个条纹元包括至少一个条纹对,同一条纹组内的各个条纹元中的所述条纹对的宽度由大到小或者由小到大。
  39. 根据权利要求38所述的标定板,其特征在于,所述每个条纹元包括三个条纹对。
  40. 根据权利要求38或39所述的标定板,其特征在于,同一个条纹元中的条纹对的宽度相等。
  41. 根据权利要求38至40中任一项所述的标定板,其特征在于,所述条纹对的宽度为所述第一条纹的宽度与所述第二条纹的宽度之和。
  42. 根据权利要求38至41中任一项所述的标定板,其特征在于,所述条纹对中的所述第一条纹的宽度等于所述第二条纹的宽度,或者,所述条纹对中的所述第一条纹的宽度不等于所述第二条纹的宽度。
  43. 根据权利要求38至41中任一项所述的标定板,其特征在于,同一条纹组内的各个条纹元中的第一条纹的宽度都相等。
  44. 根据权利要求38至43中任一项所述的标定板,其特征在于,不同条纹组所包括的条纹元的数量相等或者不相等。
  45. 根据权利要求32至44中任一项所述的标定板,其特征在于,所述条纹对包括以下任一种:黑白线对、镂空线对、颜色差异线对。
  46. 根据权利要求32至45中任一项所述的标定板,其特征在于,所述至少一个方向与所述扫描系统的扫描方向一致。
  47. 根据权利要求31所述的标定板,其特征在于,所述标记物包括线型。
  48. 根据权利要求47所述的标定板,其特征在于,所述线型形成矩形、正方形或三角形的格子形状。
  49. 根据权利要求47或48所述的标定板,其特征在于,所述线型包括以下任意一项:细线、纸板、金属条、全反射片。
  50. 根据权利要求31至49中任一项所述的标定板,其特征在于,所述至少一个方向包括:水平方向、竖直方向、倾斜方向中的一个或若干个。
  51. 根据权利要求50所述的标定板,所述倾斜方向为与所述水平方向成预设角度的方向,所述预设角度为锐角。
  52. 根据权利要求31至51中任一项所述的标定板,其特征在于,所述标定板上包括多个标记块,每个标记块上均包括所述至少一个方向上的至少一个标记物,不同的标记块在所述标定板上的位置不同。
  53. 一种测试扫描系统的角分辨率的装置,其特征在于,包括:存储器和处理器,其中,
    所述存储器,用于存储计算机指令;
    所述处理器,用于调用所述计算机指令,当所述计算机指令被执行时,用于执行:
    获取扫描系统向标定板进行扫描之后的点云数据,其中,所述标定板上包括至少一个方向上的至少一个标记物;
    根据所述点云数据,确定所述扫描系统在所述至少一个方向上的角分辨率。
  54. 根据权利要求53所述的装置,其特征在于,所述标记物为条纹对, 所述条纹对包括具有第一反射率的第一条纹和具有第二反射率的第二条纹,且所述第一反射率大于所述第二反射率。
  55. 根据权利要求54所述的装置,其特征在于,所述至少一个方向中的单个方向上的条纹对包括至少两个。
  56. 根据权利要求54或55所述的装置,其特征在于,所述至少一个方向中的单个方向上的条纹对的宽度包括至少一种。
  57. 根据权利要求56所述的装置,其特征在于,所述单个方向上的条纹对的宽度由大到小或由小到大。
  58. 根据权利要求56或57所述的装置,其特征在于,所述单个方向上的宽度相同的条纹对包括一个或多个。
  59. 根据权利要求56至58中任一项所述的装置,其特征在于,所述单个方向上的至少一种条纹对的宽度中包括所述扫描系统在第一距离的光斑尺寸或扫描间隔,所述第一距离为所述扫描系统与所述标定板之间的距离。
  60. 根据权利要求54至59中任一项所述的装置,其特征在于,所述至少一个标记物属于至少一个条纹组,每个条纹组对应所述至少一个方向中的一个方向,每一个条纹组包括至少一个条纹元,每个条纹元包括至少一个条纹对,同一条纹组内的各个条纹元中的条纹对的宽度由大到小或者由小到大。
  61. 根据权利要求60所述的装置,其特征在于,所述每个条纹元包括三个条纹对。
  62. 根据权利要求60或61所述的装置,其特征在于,同一个条纹元中的条纹对的宽度相等。
  63. 根据权利要求60至62中任一项所述的装置,其特征在于,所述条纹对的宽度为所述第一条纹的宽度与所述第二条纹的宽度之和。
  64. 根据权利要求60至63中任一项所述的装置,其特征在于,所述条纹对中的所述第一条纹的宽度等于所述第二条纹的宽度,或者,所述条纹对中的所述第一条纹的宽度不等于所述第二条纹的宽度。
  65. 根据权利要求60至63中任一项所述的装置,其特征在于,同一条纹组内的各个条纹元中的第一条纹的宽度都相等。
  66. 根据权利要求60至65中任一项所述的装置,其特征在于,不同条纹组所包括的条纹元的数量相等或者不相等。
  67. 根据权利要求54至66中任一项所述的装置,其特征在于,所述条纹对包括以下任一种:黑白线对、镂空线对、颜色差异线对。
  68. 根据权利要求54至67中任一项所述的装置,其特征在于,所述处理器,用于执行:
    根据所述点云数据确定在所述至少一个方向中的第一方向上的可分辨的第二条纹的最小宽度;
    根据所述可分辨的第二条纹的最小宽度,确定所述扫描系统在所述第一方向上的角分辨率。
  69. 根据权利要求68所述的装置,其特征在于,所述处理器,用于执行:
    根据预先设定的可视度,基于所述点云数据确定在所述第一方向上的可分辨的第二条纹的最小宽度。
  70. 根据权利要求68或69所述的装置,其特征在于,所述处理器,用于执行:
    将在所述第一方向上的所述可分辨的第二条纹的最小宽度与所述扫描系统和所述最小宽度的第二条纹的位置之间的距离两者的比值,确定为所述扫描系统在所述第一方向上的角分辨率。
  71. 根据权利要求54至70中任一项所述的装置,其特征在于,所述至少一个方向与所述扫描系统的扫描方向一致。
  72. 根据权利要求53所述的装置,其特征在于,所述标记物包括线型。
  73. 根据权利要求72所述的装置,其特征在于,所述线型形成矩形、正方形或三角形的格子形状。
  74. 根据权利要求72或73所述的装置,其特征在于,所述线型包括以下任意一项:细线、纸板、金属条、全反射片。
  75. 根据权利要求72至74中任一项所述的装置,其特征在于,所述处理器,用于执行:
    根据所述点云数据,确定在所述线型上沿所述线型的垂直方向的点云宽度;
    根据所述点云宽度,确定所述扫描系统在所述线型的垂直方向上的角分辨率。
  76. 根据权利要求75所述的装置,其特征在于,所述处理器,用于执 行:
    计算所述点云宽度与所述线型的宽度的差值;
    将所述差值与所述扫描系统和所述线型的位置之间的距离两者的比值,确定为所述扫描系统在所述线型的垂直方向上的角分辨率。
  77. 根据权利要求72至76中任一项所述的装置,其特征在于,所述至少一个方向与所述扫描系统的扫描方向垂直。
  78. 根据权利要求53至77中任一项所述的装置,其特征在于,所述至少一个方向包括:水平方向、竖直方向、倾斜方向中的一个或若干个。
  79. 根据权利要求78所述的装置,所述倾斜方向为与所述水平方向成预设角度的方向。
  80. 根据权利要求53至79中任一项所述的装置,其特征在于,所述标定板置于所述扫描系统的视场内,并且,所述处理器,还用于执行:
    通过移动所述扫描系统或者移动所述标定板来调节所述扫描系统与所述标定板之间的相对位置关系。
  81. 根据权利要求53至80中任一项所述的装置,其特征在于,所述标定板上包括多个标记块,每个标记块上均包括所述至少一个方向上的至少一个标记物,不同的标记块在所述标定板上的位置不同。
  82. 根据权利要求81所述的装置,其特征在于,所述处理器,用于执行:
    将基于所述多个标记块得到的所述扫描系统在所述至少一个方向的第一方向上的多个角分辨率的均值确定为所述扫描系统在所述第一方向上的角分辨率。
  83. 一种角分辨率测试系统,其特征在于,包括:如权利要求53至82中任一项所述的装置和如权利要求31至52中任一项所述的标定板。
  84. 根据权利要求83所述的角分辨率测试系统,其特征在于,所述系统还包括扫描系统。
  85. 根据权利要求84所述的角分辨率测试系统,其特征在于,所述扫描系统包括激光雷达。
  86. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至30中任一项所述方法的步骤。
PCT/CN2019/114899 2019-10-31 2019-10-31 标定板、测试角分辨率的方法、装置及计算机存储介质 WO2021081963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980039525.7A CN113133319A (zh) 2019-10-31 2019-10-31 标定板、测试角分辨率的方法、装置及计算机存储介质
PCT/CN2019/114899 WO2021081963A1 (zh) 2019-10-31 2019-10-31 标定板、测试角分辨率的方法、装置及计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114899 WO2021081963A1 (zh) 2019-10-31 2019-10-31 标定板、测试角分辨率的方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021081963A1 true WO2021081963A1 (zh) 2021-05-06

Family

ID=75714437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114899 WO2021081963A1 (zh) 2019-10-31 2019-10-31 标定板、测试角分辨率的方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN113133319A (zh)
WO (1) WO2021081963A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015862A (zh) * 2022-06-30 2022-09-06 广东纳睿雷达科技股份有限公司 一种双偏振雷达标定方法、装置及存储介质
CN115128558A (zh) * 2022-06-28 2022-09-30 大陆泰密克汽车系统(上海)有限公司 毫米波雷达覆盖件测试方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115631249B (zh) * 2022-12-06 2023-05-26 广州镭晨智能装备科技有限公司 一种相机校正方法、装置、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589516A (zh) * 2012-03-01 2012-07-18 长安大学 一种基于双目线扫描摄像机的动态距离测量系统
CN206743459U (zh) * 2017-05-03 2017-12-12 武汉科技大学 一种多线阵相机检测系统的相机高精度校准标定板
CN108171756A (zh) * 2017-12-27 2018-06-15 苏州多比特软件科技有限公司 自适应标定方法、装置及计算机终端
CN108761430A (zh) * 2018-04-12 2018-11-06 江苏大学 一种超声波雷达标定装置及方法
CN109212510A (zh) * 2017-07-04 2019-01-15 百度在线网络技术(北京)有限公司 用于测量多线激光雷达的角分辨率的方法和装置
US20190094347A1 (en) * 2017-09-27 2019-03-28 Magna Electronics Inc. Vehicle lidar sensor calibration system
CN209460400U (zh) * 2019-02-01 2019-10-01 成都信息工程大学 一种用于激光雷达和相机外部参数标定的标定板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551039B (zh) * 2015-12-14 2017-12-08 深圳先进技术研究院 结构光三维扫描系统的标定方法及装置
CN108415035B (zh) * 2018-02-06 2019-08-02 北京三快在线科技有限公司 一种激光点云数据的处理方法及装置
CN108646259B (zh) * 2018-05-14 2021-05-07 南京数联空间测绘科技有限公司 一种三维激光扫描仪设站定向装置及方法
CN109712190A (zh) * 2018-11-10 2019-05-03 浙江大学 三维激光扫描仪与三维激光雷达的外参标定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589516A (zh) * 2012-03-01 2012-07-18 长安大学 一种基于双目线扫描摄像机的动态距离测量系统
CN206743459U (zh) * 2017-05-03 2017-12-12 武汉科技大学 一种多线阵相机检测系统的相机高精度校准标定板
CN109212510A (zh) * 2017-07-04 2019-01-15 百度在线网络技术(北京)有限公司 用于测量多线激光雷达的角分辨率的方法和装置
US20190094347A1 (en) * 2017-09-27 2019-03-28 Magna Electronics Inc. Vehicle lidar sensor calibration system
CN108171756A (zh) * 2017-12-27 2018-06-15 苏州多比特软件科技有限公司 自适应标定方法、装置及计算机终端
CN108761430A (zh) * 2018-04-12 2018-11-06 江苏大学 一种超声波雷达标定装置及方法
CN209460400U (zh) * 2019-02-01 2019-10-01 成都信息工程大学 一种用于激光雷达和相机外部参数标定的标定板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128558A (zh) * 2022-06-28 2022-09-30 大陆泰密克汽车系统(上海)有限公司 毫米波雷达覆盖件测试方法及系统
CN115015862A (zh) * 2022-06-30 2022-09-06 广东纳睿雷达科技股份有限公司 一种双偏振雷达标定方法、装置及存储介质

Also Published As

Publication number Publication date
CN113133319A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021081963A1 (zh) 标定板、测试角分辨率的方法、装置及计算机存储介质
US11002839B2 (en) Method and apparatus for measuring angular resolution of multi-beam lidar
CN110749874B (zh) 激光雷达发射光路的调平装置及方法
CN107290734A (zh) 一种基于自制地基激光雷达垂直度误差的点云误差校正方法
CN111007485B (zh) 一种图像处理方法、装置、以及计算机存储介质
CN112098964A (zh) 路端雷达的标定方法、装置、设备及存储介质
CN109725324A (zh) 一种利用激光雷达实现平面内坐标定位的方法
CN108182660B (zh) 一种区域气象雷达网数据融合方法及装置
CN111427027A (zh) 多线激光雷达的校准方法、装置及系统
CN115267745A (zh) 一种激光雷达校准装置和方法
RU2630686C1 (ru) Способ измерения угла места (высоты) низколетящих целей под малыми углами места в радиолокаторах кругового обзора при наличии мешающих отражений от подстилающей поверхности
CN107290735A (zh) 一种基于自制地基激光雷达铅垂度误差的点云误差校正方法
CN110687508A (zh) 微变雷达监测数据的校正方法
CN111025032A (zh) 一种基于升空平台的天线波束测量系统及方法
US20140247182A1 (en) Method, system and calibration target for the automatic calibration of an imaging antenna array
CN113740876B (zh) 三维激光雷达光路调节方法、装置和电子设备
CN108801226B (zh) 平面倾斜测试方法及设备
CN110602486B (zh) 检测方法、装置、深度相机及计算机可读存储介质
JP2019132700A (ja) マーカーおよび測定方法
US20230184911A1 (en) Method and system for evaluating point cloud quality of lidar, and apparatus
CN111707446B (zh) 光斑中心与探测器接收面中心对准的调节方法及系统
CN109259793A (zh) 超声校准系统、方法、电子设备及存储介质
CN116012455A (zh) 一种相对位置关系确定方法、结构光成像方法及相关系统
CN116879857B (zh) 一种远场目标和雷达中心波束对准方法
CN114152923B (zh) 一种空气耦合天线外壳辐射面时窗位置标定方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951164

Country of ref document: EP

Kind code of ref document: A1